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Abstract
A healthy skeleton depends on a continuous renewal and maintenance of the bone tissue. The process of bone remodeling 
is highly controlled and consists of a fine-tuned balance between bone formation and bone resorption. Biochemical markers 
of bone turnover are already in use for monitoring diseases and treatment involving the skeletal system, but novel biomark-
ers reflecting specific biological processes in bone and interacting tissues may prove useful for diagnostic, prognostic, and 
monitoring purposes. The Wnt-signaling pathway is one of the most important pathways controlling bone metabolism and 
consequently the action of inhibitors of the pathway such as sclerostin and Dickkopf-related protein 1 (DKK1) have crucial 
roles in controlling bone formation and resorption. Thus, they might be potential markers for clinical use as they reflect a 
number of physiological and pathophysiological events in bone and in the cross-talk with other tissues in the human body. 
This review focuses on the clinical utility of measurements of circulating sclerostin and DKK1 levels based on preanalytical 
and analytical considerations and on evidence obtained from published clinical studies. While accumulating evidence points 
to clear associations with a number of disease states for the two markers, and thus, the potential for especially sclerostin as 
a biochemical marker that may be used clinically, the lack of standardization or harmonization of the assays still hampers 
the clinical utility of the markers.
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Introduction

A healthy skeleton depends on a continuous renewal and 
maintenance of bone tissue. The human skeleton is a mul-
tifunctional organ that undergoes continuous remodeling 
which includes the coordinated and harmonized activities 
of multicellular components. The main activities involved in 
the remodeling process are osteoblastic bone formation and 
bone resorption performed by osteoclasts. These activities 
result in the release of proteins and protein metabolites by 

osteoblasts and osteoclasts, which reflect different aspects of 
the dynamic bone remodeling process. They are, therefore, 
referred to as bone turnover markers [1, 2].

Bone is an endocrine organ that maintains its metabolic 
activity throughout life. It has metabolic, mechanical, and 
protective functions. Bone metabolism is characterized by 
the ability to remodel already existing bone tissue, maintain-
ing the normal bone structure and the growth of the skeleton, 
depending on the age and stage of development. The storage 
of minerals such as calcium, phosphorus, magnesium, and 
the maintenance of homeostasis of these minerals are among 
the numerous metabolic functions of bone.

Bone turnover markers can be evaluated by measuring 
products of the synthetizing and enzymatic activities of 
osteoblasts and osteoclasts and the bone matrix elements 
that are released to the peripheral circulation during for-
mation and resorption. In addition to the traditional bone 
turnover markers such as N-terminal pro-peptide of procol-
lagen type I (PINP) and C-terminal cross-linking telopeptide 
of type I collagen (CTX), newer markers reflecting specific 
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pathways in the regulation of the individual activities have 
been explored. These include periostin, cathepsin-K, scle-
rostin, dickkopf-1 (DKK1), receptor activator of nuclear 
factor kappa-B ligand (RANKL), fibroblast growth factor 
23 (FGF-23), klotho, sphingosine-1-phosphate, and micro-
RNAs. Exploring these newer biochemical and molecular 
markers will potentially help us to predict risk groups for 
bone-related diseases in early stages. However, their rela-
tionship with fracture risk has still not been fully elucidated 
as well as the predictive value for many of these is still not 
established. Thus, the clinical utility of these markers as 
diagnostic, prognostic, or monitoring tools during treatment 
still needs to be studied.

Osteocytes are central in the coordination of bone remod-
eling and focusing on markers related to the regulation of 
osteocyte activities may prove useful clinically as diagnostic, 
prognostic, or monitoring markers for bone diseases. The 

aim of this review is, therefore, to review the clinical util-
ity and analytical and preanalytical specifics of two mark-
ers involved in regulating bone metabolism, sclerostin, and 
DKK1.

The Wnt/β‑catenin Pathway

One of the main regulators of bone remodeling is the Wnt 
signal transduction pathway. It is the most important regu-
lator of bone formation. The Wnt/β-catenin pathway is 
vital in normal bone homeostasis and has an important role 
in mediating the signal that couples bone formation with 
resorption primarily by regulating cell growth, differentia-
tion, and apoptosis (Fig. 1). It has a major role in stimulating 
osteoblast proliferation and regulates osteogenesis through 
multiple mechanisms [3].

Fig. 1  The figure shows the canonical Wnt/β-catenin pathway. A 
The inactivated Wnt/β-catenin pathway, β-catenin, is phosphorylated 
by GSK3 at specific serine/threonine residues, where it is degraded 
and does not reach the nucleus. B The activated pathway where Wnt, 
Frizzled protein, and LRP5/6 co-receptor are assembled into a com-
plex, GSK3 is inactivated leading to inhibition of degradation of 
β-catenin which subsequently activated the transcription and trans-

lation of target genes important for osteoblast differentiation and 
osteocyte formation. C In the presence of Wnt inhibitors sclerostin 
and DKK1, Wnt binding to LRP5/6 and Frizzled protein is blocked, 
resembling the inactivated pathway. This leads to lack of activation of 
bone formation. Please see text for additional details. GSK-3β, glyco-
gen synthase kinase 3 β; TCF/LEF, T-cell factor/lymphoid enhancer 
factor. Created with BioRender
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The Wnt-signaling pathway involves two signaling cas-
cades: canonical (Fig. 1) and non-canonical Wnt/β-catenin 
pathways with the non-canonical pathway are divided into 
the planar cell polarity signaling pathway (Wnt/PCP) and 
the Wnt/Ca2 + signaling pathway [4].

The Wnt/β-catenin pathway is expressed in many human 
tissues and represents a developmentally, highly conserved 
signal transduction pathway. The canonical pathway regu-
lates various cellular activities during embryonic develop-
ment and adult homeostasis, such as stem cell renewal and 
cell fate determination [5, 6]. Furthermore, it can induce 
differentiation, stimulate proliferation, inhibit apoptosis of 
osteoblasts as well as cell migration and adhesion (Fig. 1) 
[7, 8]. In bone tissue, the canonical pathway is mainly regu-
lated by osteocytes that are bone cells formed when active 
osteoblasts become embedded in the bone matrix. As a regu-
lator of skeletal remodeling and in addition to secrete scle-
rostin, osteocytes have a complex communication network in 
response to both mechanical and hormonal pathways. They 
communicate with osteoblasts and osteoclast via signaling 
molecules including sclerostin, dkk-1, and Wnt axis.

In a mineralized matrix as well as controlling osteoblast 
regulation by inhibiting apoptosis, classical Wnt-signaling 
pathway can also control osteoclast differentiation [9]. In 
addition to inhibition of osteoclast activity, it stimulates 
osteoprotegrin synthesis indirectly (Fig. 1) [10]. Osteocytes 
both act as locally at bone environment and function as an 
endocrine cell. Besides their endocrine functions as insu-
lin secretion in the pancreas, phosphate reabsorption from 
kidney and skeletal muscle function, they can also balance 
bone mass, shape, and size [11]. Inhibition of the β-catenin 
canonical pathway causes bone resorption and contributes to 
the dynamic balance of bone metabolism, while dysregula-
tion may lead to various osteoarticular diseases [5].

Wnt genes encode lipid-modified glycoproteins, acting 
as ligands for their cognate-frizzled receptors. The co-
receptor of the β-catenin-dependent Wnt-signaling pathway 
is a single-pass transmembrane protein called low-density 
lipoprotein receptor-related protein 5/6 (LRP5/6). It has an 
extracellular domain consisting of four repeating units that 
is an important regulatory site which binds of Wnt proteins. 
Wnt proteins are hydrophobic molecules which make them 
unstable and insoluble [3, 12, 13].

After the formation of the trimeric complex of the trans-
membrane Frizzled receptor together with its co-receptor 
LRP6/5 and Wnt, the canonical Wnt pathway is activated. 
Binding of a Wnt ligand to the Frizzled receptor induces 
phosphorylation of LRP5/6, which forms a docking site for 
AXIN, inactivating the glycogen synthase kinase 3 (GSK3). 
Subsequent sequestration of AXIN prevents the destruction of 
the complex and allows stabilization and nuclear translocation 
of non-phosphorylated β-catenin by the downstream-signaling 
cascade for intracellular actions. β-catenin is protected from 

proteasomal degradation. In the nucleus, β-catenin displaces 
repressors and activates the TCF/ LEF transcription factor 
complex resulting in pro-osteogenic gene expression [14–17].

Inhibitors of the Wnt‑Signaling Pathway

Wnt signaling is antagonized at multiple levels and regulated 
by different inhibitors. The first step of inhibition consists of 
various secreted Wnt inhibitor cell signaling molecules such 
as sclerostin and DKK1. They inhibit activation of Wnt sign-
aling by blocking the binding between Wnt and specific cell 
surface receptors (LRP5/6 and Frizzled), thus, inducing the 
degradation of β-catenin and hindering LRP5/6 phosphoryl-
ation. DKK1 acts as a bipartite inhibitor that interacts with 
the N- and C-terminal regions of LRP5/6. The binding of 
DKK1 on LRP-6 also named as functional DKK1 [18–20]. 
These inhibitors are expressed and secreted within the bone 
microenvironment and regulate bone formation and resorp-
tion resulting in changes in bone mass. They are involved in 
the PTH signal transduction pathway, and SCL is downregu-
lated by PTH [21, 22]. Moreover, an anti-sclerostin antibody, 
romosozumab, has recently been approved for clinical use 
as the most potent anabolic treatment for osteoporosis [23].

Sclerostin is a soluble antagonist of the canonical Wnt-
signaling pathway. It is primarily secreted by osteocytes 
as a 22-kDa glycoprotein and has anti-anabolic actions in 
bone. Sclerostin-mediated inhibition of the pathway leads 
to increased bone resorption, inhibition of bone formation, 
and growth through tandem interaction with two LRP6 ecto-
domains [24]. As the production and actions were initially 
thought to be limited to the skeleton, it appeared to be an 
attractive target for therapy [25]. However, recent studies 
showed that also osteoblasts, hepatocytes, and vascular 
smooth muscle cells are sources of sclerostin [26, 27] and 
targeting sclerostin may, therefore, have other non-skeletal 
effects. Its expression is regulated by cytokines, mecha-
nosensors, and endocrine factors [28]. Different studies 
suggested that the expression of sclerostin in osteocytes, 
osteoblastic cells, and mesenchymal stromal cells can be 
inhibited by estrogen [10, 29, 30].

Dickkopf proteins (DKK1–4) are soluble proteins belong-
ing to the family of secreted glycoproteins. DKK1 is the 
most extensively studied subtype in bone and has been clas-
sified as one of the most potent extracellular Wnt inhibitors 
[12, 14, 17]. DKK1 is expressed by mature osteoblasts and 
osteocytes, and it regulates bone homeostasis [31].

Preanalytical Considerations

The clinical utility of a bone turnover marker depends on 
(a) whether the marker truly reflects the physiological or 
pathophysiological process that we want to monitor and 
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(b) whether reliable and reproducible measurements of the 
specific marker can be done. In the first place, ideal BTMs 
should be bone specific, predict the risk of fracture, allow 
evaluation of treatment efficacy, measured with a standard-
ized method, and show low biological variation. In addi-
tion, the sample should be easily collected and suitable for 
automated measurement. Thus, for at potential marker, both 
preanalytical and analytical issues must be considered for 
both the clinician and the laboratory professional, and many 
clinical studies have shown discordant results possibly due 
to preanalytical and analytical issues.

Our knowledge related to the preanalytical variation of 
sclerostin and DKK1 is relatively limited as few studies have 
addressed this, especially in relation to the optimal sample 

handling. The available information is presented in Table 1 
(sclerostin) and Table 2 (DKK1). More studies investigat-
ing the preanalytical variation and requirements for the two 
markers are highly warranted.

Analytical Considerations of Sclerostin 
and DKK‑1 Assays

Sclerostin Assays

Sclerostin in serum or plasma is measured by immunoas-
says. A number of commercial assays are available and the 
most frequently used are listed in Table 3. No harmonization 

Table 1  Preanalytical recommendations for measurement of sclerostin in humans

Preanalytical factor Preanalytical consideration Comment References

Sample handling Sample type Serum or plasma (EDTA) Heparin as anti-coagulant might 
interfere with the binding 
of sclerostin to proteins and 
antibodies used in some assays. 
However, some manufactur-
ers recommend use of heparin 
plasma

Storage −70°C No studies investigating the long-
term stability are available

Transport ?
Stability Plasma stable within 4 h after 

collection
[124]

Freeze/thaw cycle ?
Controllable biological variation Circadian rhythm None (healthy young men)

None (older men and women)
Minor rhythmicity (patients with 

diabetes and healthy individu-
als > 50 years)

Discrepant results in different 
studies may be a result of dif-
ferent populations or different 
assays used, but sclerostin does 
not seem to have any major 
rhythmicity

[125]
[126]
[127]

Fasting/food intake ? Glucose intake affects levels 
and effects of food cannot be 
excluded. Fasting recommended

Physical activity Yes Levels are positively correlated 
with level of physical activity

[47]

Menopausal status Yes Pre-menopausal levels are lower 
than post-menopausal

[42]

Seasonal variation Yes Sclerostin levels are higher dur-
ing winter and lower during fall

[46]

Uncontrollable biological vari-
ation

Sex Yes Men have higher levels than 
women

Boys have slightly higher levels 
than girls

[37, 38, 40, 41]
[44]

Age Yes Sclerostin levels increase with 
increasing age in adults

[41, 43]

Fractures ?
CKD Yes [32, 105, 128]
Medications Yes Acute effects of glucocorticoids 

decrease circulating sclerostin 
levels

[73, 74]
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or standardization of assays have yet been done. Antibodies 
used in the immunoassays detect different epitopes of the 
sclerostin molecule which contributes to the large discrep-
ancies seen between the different assays (Table 3). Not only 
levels of sclerostin in serum or plasma are hugely different 
between the individual assays, but there is also an absence 
of systematic bias between the assays indicating that assays 
determine different fragments of the sclerostin molecule 
making it difficult to compare [32]. The Biomedica assay 
seems to detect both intact sclerostin and sclerostin frag-
ments in addition to other proteins with as similar structure 
to sclerostin as levels were detected in patients with scle-
rosteosis even if no levels were expected in these patients 
[33]. In addition, within the same assay, differences in levels 
between serum and plasma were seen though the degree 
of variation differed between different assays [34–36]. This 
indicates that antibodies used in the different assays detect 
varying degrees of free and protein-bound forms of the scle-
rostin-protein complex.

Newer assays targeting well-defined epitopes are now 
available such as the Bioactive Sclerostin ELISA from 
Biomedica [37] and the automated sclerostin assay for the 
Liaison XL from DiaSorin measuring “intact” sclerostin 
[38]. The latter uses antibodies directed against both the 
C- and N-terminal parts of the protein and a very high 
correlation between measurements in serum and EDTA-
plasma samples were demonstrated. This suggests that the 
variation seen in older assays may be avoided in newer 

assays using antibodies specific for the intact sclerostin 
molecule. Finally, it has been claimed that as the R&D 
assay gives the lowest sclerostin values, this would mean 
that it only measures the intact molecule [39]. However, 
there are still large differences in levels measured using the 
R&D assay and the DiaSorin assay so it is still not clear 
which assay most reliably measures the biologically intact 
sclerostin protein. Analytical characteristics are listed in 
Table 4.

DKK1 Assays

As for sclerostin, a number of immunoassays are commer-
cially available for DKK1. All of these are manual assays 
and no harmonization nor standardization have been done. 
While many assays exist, only two have been used consist-
ently in published, clinical studies (Table 5). No direct 
comparison between the assays have been published, but 
ranges determined in healthy individuals suggest varia-
tion in levels between the two assays (Table 8). While no 
evaluation of differences between serum and plasma has 
been published for the Biomedica assays, clear differences 
in DKK1 levels are demonstrated among serum, heparin, 
and EDTA plasma when measured with the R&D Systems 
assay (Table 8). No information on epitope is available for 
the two assays (Table 6).

Table 2  Preanalytical recommendations for measurement of DKK1 in humans

Preanalytical factor Recommended handling Comment References

Sample handling Sample type Serum or plasma 
depending on the 
assay

As platelets are major contributors to circulat-
ing levels of DKK1 which is released upon 
activation of clotting, one study recommends 
only to use serum

[129]

Storage -70 °C No studies investigating the long-term stability 
are available

Transport ?
Stability ?
Freeze/thaw cycle ?

Controllable biological variation Circadian rhythm No [126]
Fasting/food intake ?
Physical activity No [47, 57]
Menopausal status No [48]
Seasonal variation No

Uncontrollable biological variation Sex No [48]
Age No [48]
Fractures ?
CKD No clear relationship Minor associations in most studies

One study found decreasing DKK1 levels with 
decreasing GFR

[118–122]
[123]

Medications ? No effect of glucocorticoids [74]
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Table 3  Commercially available assays for measurement of serum/plasma sclerostin

Manufacturer Assay Methodology Measurand Analytics References

Biomedica Human Sclerostin ELISA Sandwich ELISA Epitope not defined Manual Biomedica validation data 
report

Biomedica Bioactive Sclerostin 
ELISA

Sandwich ELISA Epitope is in loop 2 of 
the sclerostin molecule, 
which is the binding site 
for the LRP5/6 complex. 
All sclerostin molecules 
including potential frag-
ments containing this 
receptor-binding region 
can be detected

Manual Biomedica validation data 
report

DiaSorin, Italy Sclerostin Chemiluminiscence immu-
noassay

Sclerostin (intact). Epitope 
is a 16-mer located 
within the N-terminal 
tail (Gln1 to Ser56) of 
sclerostin

Automated DiaSorin assay IFU and 
[38]

MesoScale 96-well MULTI-ARRAY® 
Human Sclerostin Assay

Electro-chemiluminiscence 
immunoassay

Epitope not defined Manual

R&D Systems Quantikine ELISA Human 
SOST Immunoassay

Solid-phase sandwich 
ELISA

Epitope not defined Manual R&D systems package 
insert

TECOmedical Sclerostin TECO® High-
sensitive EIA

ELISA Epitope not defined for 
the current assay. A 
previous version of the 
assay (discontinued in 
2013) recognized the 
amino terminus and mid-
region of the sclerostin 
molecule

Manual TECOmedical package 
insert

Table 4  Analytical characteristics of commercially available assays for sclerostin

Assay Measuring 
range (pg/
mL)

LOD/LLOQ (pg/mL) Intra-assay CV Inter-assay CV Sample material

Biomedica 72–5400 LOD: 72
LLOQ: < 169

 < 7%  < 10% Serum, plasma (EDTA, citrate, heparin)

Biomedica Bioactive 43–7200 LOD: 43
LLOQ: 29

 < 1%  < 5% Serum, plasma (EDTA, citrate)
Heparin disturbs binding of detection antibody

Diasorin 50–6000 LOD: 20
LLOQ: 50

 < 2.5%  < 5% Serum, EDTA plasma

MesoScale LOD: 0.9
LLOQ: N.A

 < 6%  < 10% Information not available in IFU. [71, 130]

R&D Systems 31–2000 LOD: 1.7
LLOQ: N.A

 < 3%  < 11% Serum, plasma (EDTA, heparin). Citrate has 
not been validated for use

TECOmedical 59–2970 LOD: 9
LLOQ: 59

 < 5%  < 5% Serum, plasma (EDTA, heparin)

Table 5  Commercially available 
assays for measurement of 
serum/plasma DKK1

Manufacturer Assay Methodology Measurand Analytics References

Biomedica DKK-1 ELISA Sandwich ELISA Manual Manufacturer IFU
R&D Systems Quantikine ELISA 

Human DKK-1 immu-
noassay

Sandwich ELISA Manual Manufacturer IFU
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Reference Values of Sclerostin and DKK1

Sclerostin Reference Values

Reference values for sclerostin have been established in 
several studies covering populations of different ethnicities 
in several geographical regions (Table 7). Also, ranges in 
healthy individuals are provided from most manufacturers in 
their IFU, though relatively little information about the char-
acteristics of the donors contributing to the manufacturer-
established reference ranges is provided. Most studies are 
based on relatively small numbers of participants affecting 
the validity of the estimated reference intervals. Moreover, 
as levels of sclerostin differ between the different assays, the 
established reference ranges are highly variable and indi-
vidual measurements should be interpreted in relation to the 
reference range of the particular assay and matrix type used 
for measuring the sample.

In general, circulating sclerostin levels are higher in men 
than in women [37, 38, 40, 41] independent of the assay 
used. Also, pre-menopausal sclerostin levels are lower than 
post-menopausal levels [42], and sclerostin levels increase 
with increasing age [41, 43]. In children, boys seem to have 
slightly higher circulating sclerostin levels [44] while age, 
height, weight, and BMI do not seem to influence the refer-
ence ranges in children and adolescents [45]. Finally, scle-
rostin levels vary with season, as levels are higher during 
winter and lower during fall [46], and sclerostin is positively 
correlated with the level of physical activity [47].

In summary, reference intervals have been published for 
the different sclerostin assays, but most are based on rela-
tively small populations. As sclerostin levels depend on both 
the assay used, matrix in which it is measured and biological 
factors such as sex, age, menopausal status and time of year, 
and specific reference ranges are warranted if measurements 
should be validly evaluated for the individual patient.

DKK1 Reference Values

Very few studies have established reference ranges for circu-
lating DKK1 in humans. Manufacturer-provided reference 
ranges are given in Table 8. One single study determined 

reference ranges in both pre- and post-menopausal women 
and men with levels significantly higher than the ranges pro-
vided by the manufacturer. DKK1 levels were not affected by 
age and sex [48] and are not correlated with level of physical 
activity [47]. Additional studies establishing DKK1 refer-
ence intervals are highly warranted.

Clinical Applications of Measuring Sclerostin 
and DKK1

The use of Wnt Inhibitors in Osteoporosis 
and Fracture Prediction

Because of the direct regulatory function of sclerostin on 
bone turnover, it has been proposed as an ideal marker for 
bone metabolism and predictor of fracture risk. Intuitively, 
as Wnt inhibitors inhibit bone formation that the effect 
on the skeleton would be decreased bone mass. However, 
although some conflicting results have been published, most 
studies demonstrated that serum sclerostin levels were posi-
tively associated with increased BMD levels, both in post-
menopausal women [10, 49] and in patients with chronic 
kidney disease [50, 51]. In contrast, studies addressing the 
association between circulating sclerostin levels and fracture 
risk have provided less clear correlations between circulating 
sclerostin levels and fracture incidence.. In some studies, 
serum sclerostin was found to be a strong and independent 
risk factor for higher fracture incidence in women [52, 53], 
while others found no association between baseline serum 
sclerostin and fracture incidence in post-menopausal women 
[49]. Finally, other studies found that high sclerostin levels 
in older men and women were associated with lower fracture 
risk [54, 55]. No similar association was found for DKK1 
[55], nor did a study investigating the association between a 
common genetic variation in the DKK1 gene find an associa-
tion between the genetic variation and bone mineral density 
or bone turnover markers in a cohort of young adult men 
[56].

In patients immobilized for 6 months or longer due to 
stroke, increased circulating levels of sclerostin were found 
when compared to non-immobilized controls [57]. The 
elevated levels correlated positively with increased bone 

Table 6  Analytical characteristics of commercially available assays for serum/plasma DKK1

Assay Measuring range 
(pg/mL)

LOD/LLOQ (pg/mL) Intra-assay CV Inter-assay CV Sample material

Biomedica 32–4103 LOD: 44
LLOQ: 32

 < 3%  < 3% Serum

R&D Systems 31–2000 LOD: 16
LLOQ: 31

 < 5%  < 8% Serum, plasma (EDTA, heparin). 
Citrate has not been validated 
for use
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Table 7  Reference intervals (95%) in healthy individuals for commercially available assays for serum/plasma sclerostin

95% reference intervals (RI) were calculated from published information on mean, SEM, SD, number of participants and 95% CI. If RI could not 
be calculated from the published information, range or median/inter quartile range (IQR) is given in the table. GM: Geometric mean

Manufacturer/ assay Sample matrix 95% RI
Sclerostin (pg/mL)

Sex Age group Geographical region/
ethinicity

References

Biomedica Serum 169–1453 All (n = 411) N.A N.A IFU
Serum GM: 600

GM: 714
Women (n = 443)
Women (n = 1,803)
GM values are given for 

10-year interval age 
groups

35-45y
20–79y

Saudi Arabia [43]

Serum 89–1,917
1–1,773

Men (n = 173)
Women (n = 273)

18–90y
18–90y

Tobago, African decent [40]

Serum Median (app.):
510
IQR: 380; 625
Median (app.): 430
IQR: 290; 550

Boys (n = 70)
Girls (n = 70)

6–21y US, primarily white [44]

Biomedica Bioactive Serum
EDTA plasma
Citrate plasma

281–3,226
657–5,081
432–3,719

All (n = 32)
All (n = 24)
All (n = 24)

N.A N.A IFU

Serum Median: 1,154
IQR: 857; 1,580
Median: 1,386
IQR: 914; 2,061

Women (n = 175)
Men (nn= 61)

Median: 43y
IQR: 37; 50
Median: 49y
IQR: 41; 56

Austria [37]

Diasorin Serum 139–663
139–921

Women (n = 265)
Men (n = 271)

21–97y
21–97y

Northern USA, primarily 
caucasian origin

[38]

MesoScale Serum 14–66 All (n = 77) 20–77y N.A [71, 130]
R&D Systems Serum

EDTA plasma
Heparin plasma

52–296
172–680
211–759

All (n = 35)
All (n = 35)
All (n = 35)

TECOmedical N.A 208–754
247–913
348–934

Pre-menopausal women 
(n = 20)

Post-menopausal women 
(n = 19)

Men (n = 10)

IFU

Serum 361–1,165
578–1,500

Pre-menopausal women 
(n = 77)

Post-menopausal women 
(n = 61)

29–40y
59–70y

Chinese-American and 
White

[42]

Serum 200–1,000 (no 
differences with 
age)

Children, adolescents 
(n = 424, where of  n  
= 221 boys)

0.1–21y Germany, Caucasian [45]

Table 8  Reference intervals 
(95% RI) and median (range) 
in healthy individuals for 
commercially available assays 
for serum/plasma DKK1

Manufacturer/assay Sample matrix 95% RI
DKK-1 (pg/mL)

Sex Age group Reference

Biomedica Serum 874 (129–1800) N.A. (n = 51) N.A IFU
Serum 95% RI: 1355–5785

95% RI: 340–6300
Post-menopausal 

women (n = 52)
Pre-menopausal 

(n = 123)

20-65y [48]

R&D Systems Serum
EDTA plasma
Heparin plasma

2513 (1357–5240)
630 (172–1499)
424 (151–865)

N.A. (n = 36) N.A IFU
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resorption measured as CTX and negatively with decreased 
bone formation, while no differences between groups were 
found for serum DKK1. This confirms the role of sclerostin 
in the adaptation of bone turnover to changes in mechani-
cal loading where sclerostin production increases during 
unloading with stimulation of bone resorption and inhibition 
of bone formation leading to pathophysiological bone loss.

While interesting associations between circulating scle-
rostin levels and different bone parameters have been dem-
onstrated and important information can be gained when 
using the marker in clinical studies, the marker is not yet 
suitable for clinical use.

The Use of Wnt inhibitors in Diabetes

Diabetes is associated with an increased risk of fractures. 
However, this is not explained by changes in bone mineral 
density but patients with diabetes have low bone turnover 
measured as decreased levels of serum CTX and PINP. 
Several studies have shown that patients with both type 1 
diabetes (T1DM) and type 2 diabetes (T2DM) have elevated 
circulating levels of sclerostin, which was confirmed by a 
meta-analysis [58]. Also, a recent study in post-menopau-
sal women investigating the expression of SOST, the gene 
regulating sclerostin production showed that women with 
T2DM had higher expression of SOST in bone tissue from 
the femoral head as compared to healthy women [59]. Thus, 
the high sclerostin levels may be an important contributing 
factor to low bone turnover seen in patients with diabetes as 
the high sclerostin levels may suppress bone formation and 
consequently bone turnover resulting in reduced remodeling 
and renewal of bone tissue. This may subsequently result in 
hypermineralization of old, non-remodeled bone tissue seen 
as normal to high BMD in patients with T2DM. However, it 
is not known whether the high sclerostin levels are the cause 
of the reduced bone turnover or secondary to other changes 
to glucose or bone metabolism seen in T2DM.

Sclerostin has also emerged as a potential regulator of 
glucose homeostasis. A recent study investigated the asso-
ciation of sclerostin with different measures of glucose 
metabolism. Overall, circulating levels of sclerostin were 
not associated with insulin secretion, insulin sensitivity, or 
prediabetes in healthy men. However, acute hyperinsuline-
mia suppressed serum sclerostin [60]. Other studies have 
reported conflicting associations between serum sclerostin 
and markers of glucose metabolism where both an inverse 
association with fasting plasma glucose levels [61] and no 
association with markers of glycemic variability [62] were 
found. Moreover, in children with T1DM, a negative correla-
tion between serum sclerostin and HbA1c was found [63], 
and in obese children, a negative correlation between serum 
sclerostin and HOMA-IR was shown [64].

For DKK1 only, few studies have investigated the associa-
tion with diabetes. However, they have consistently demon-
strated that children and adolescents with T1DM have ele-
vated levels of serum DKK1 compared to healthy children 
[65, 66]. Moreover, adult T2DM patients have increased 
DKK1 levels, though there was no correlation with glycemic 
control or duration of diabetes [67].

Thus, sclerostin seems to be involved in the low bone 
turnover found in diabetes, but its role as a regulator of glu-
cose metabolism is less evident. While highly important as 
a biomarker for studying the mechanisms underlying the 
development of diabetes-associated bone disease, the clini-
cal utility of determination of serum sclerostin levels is vir-
tually unexplored. Therefore, its use in the clinical setting 
of either diagnosing or monitoring diabetes or diabetic bone 
disease is currently not relevant though it holds promising 
potential in the future. The same is the case for DKK1.

Wnt Inhibitors and Inflammatory Diseases

Sclerostin has been suggested to be involved in both reg-
ulation of bone resorption and the pathogenesis of anky-
losing spondylitis and rheumatoid arthritis, yet the results 
of the studies have been conflicting. A recent systematic 
review and meta-analysis have evaluated relevant studies 
and found no differences in circulating sclerostin levels in 
neither patients with ankylosing spondylitis nor in patients 
with rheumatoid arthritis when compared to healthy controls 
[68]. In contrast, another meta-analysis found significantly 
elevated levels of DKK1 in patients with ankylosing spon-
dylitis, but not in patients with rheumatoid arthritis [69]. 
The markers have no current utility in the clinical setting.

Wnt Inhibitors and Other Hormone‑Related 
Diseases

Parathyroid hormone suppresses sclerostin expression and 
studies have shown that patient with increased levels of 
circulating PTH such as in primary hyperparathyroidism, 
sclerostin levels correlated inversely with PTH [70, 71]. 
Moreover, serum sclerostin levels normalized shortly after 
parathyroidectomy and faster than most of the other bone 
turnover markers measured.

Glucocorticoid excess has detrimental effects in the 
bone tissue and leads to a rapid bone loss and increased 
risk of fragility fractures. It is mainly characterized by a 
decrease bone formation and a few studies have investigated 
the serum levels of sclerostin in patients with endogenous 
hypercortisolism. Yet, the available studies have found 
inconsistent results. One study found higher circulating scle-
rostin levels, but not DKK1 levels in patients with Cushing’s 
syndrome than in healthy controls [72] while another study 
found lower levels of sclerostin in the patients as compared 
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with the controls [73]. In the latter study, sclerostin levels 
increased after surgical treatment of the disease with sub-
sequent biochemical remission. In support of the negative 
effect of glucocorticoids on serum sclerostin levels, as study 
examined the acute effects of glucocorticoids on levels of 
serum sclerostin and a number of bone turnover markers. 
During the first 96 h after glucocorticoid administration, 
serum levels of both sclerostin and PINP decreased while 
levels of CTX increased. No significant effects on DKK1 
were seen [74], though a positive correlation between DKK1 
and CTX was found. Thus, while sclerostin seems to be 
downregulated during glucocorticoid excess the clinical 
utility of this relationship is not yet determined though it 
might prove useful in the future.

Wnt Inhibitors as Markers in Cancer‑Related Bone 
Disease

Accumulating evidence indicates that the Wnt-signaling 
pathway is involved in the development and progression of 
both osteoblastic and osteolytic bone metastases [75, 76] 
and inhibitors of the signaling pathway may, therefore, be 
potential diagnostic or prognostic biomarkers of metasta-
sis. Yet, only few studies have addressed the potential use 
of sclerostin and DKK1 as biomarkers of metastasis. One 
study compared the levels of circulating sclerostin between 
patients with bone metastases from prostate cancer, patients 
with Paget’s disease and healthy controls. Both prostate 
cancer patients and Paget’s disease patients had increased 
sclerostin levels compared to the healthy controls, but levels 
of sclerostin could not distinguish between prostate cancer 
patients and patients with Paget’s disease [77]. While pros-
tate cancer metastases are primarily osteoblastic, metastases 
originating from breast, lung, and renal cancers are primarily 
osteolytic. One study of patients with renal cell carcinoma, 
sclerostin levels were compared between patients with local-
ized disease, patients with bone metastases and patients with 
visceral metastases. No differences between the three groups 
were found, indicating that serum sclerostin is not a useful 
marker for identifying patients with metastatic disease [78]. 
Another study examined the levels of serum sclerostin and 
DKK1 in patients with early breast cancer and found that 
breast cancer patients had higher levels of both markers than 
healthy controls and patients with benign breast tumors [79]. 
Finally, a longitudinal study compared the serum levels of 
sclerostin and DKK1 in patients with bone metastases from 
primarily breast and lung cancer and levels in patients with 
malignant disease but without metastases [80]. Not only did 
patients with metastases have higher serum sclerostin val-
ues, area under the curve (AUC) for the receiver operating 
characteristics (ROC) curve for diagnostic sensitivity shows 
good performance with AUC close to 0.9.

Multiple myeloma is a clonal neoplasm of plasma cells. 
More than 80% of the patients develop osteolytic lesions 
because of increased osteoclastic bone resorption [81]. 
Circulating levels of sclerostin and DKK1 are increased in 
patients with myeloma compared with healthy controls and 
patients with monoclonal gammopathy of unknown sig-
nificance (MGUS)[82–84]. Also, the level of DKK1 was 
positively correlated with the presence and number of lytic 
lesions [82, 85, 86]. In patients responding to chemother-
apy, both markers decreased while  non-responders, levels 
remained stable during treatment [83, 87, 88]. Finally, both 
markers seemed to increase early before a relapse of the 
disease [87, 89, 90].

Thus, compelling evidence demonstrates that patients 
with bone involvement of malignant diseases have increased 
circulating levels of both sclerostin, and in some cases 
DKK1, further and better powered studies addressing the 
diagnostic and prognostic potential of these markers are war-
ranted to fully explore and document the clinical utility of 
sclerostin and DKK1 as markers in malignant disease. How-
ever, the already published studies show a great potential for 
the two markers in this indication.

Wt Inhibitors as Biomarkers of Vascular Disease/
Calcification

Vascular calcification is common in a number of chronic 
diseases including diabetes, CKD (please see section below), 
and rheumatoid arthritis and is a marker of cardiovascu-
lar morbidity and mortality [91, 92]. Cumulating evidence 
points to a role for the Wnt-signaling pathway in multiple 
processes involved in atherosclerosis. A number of studies 
have investigated the association between levels of Wnt-
signaling inhibitors and different cardiovascular events in 
a number of clinical conditions including post-menopausal 
osteoporosis, chronic kidney disease in both dialyzed and 
non-dialyzed patients, rheumatoid arthritis, and T2DM. 
However, results have been inconsistent with studies show-
ing both positive [93–95] and inverse [96] associations 
between circulating levels of sclerostin and all-cause mortal-
ity, positive [97, 98], and inverse [99] associations between 
serum sclerostin and carotid intima media thickness, and 
associations between serum sclerostin and aortic artery cal-
cification [100–102]. Moreover, a meta-analysis based on 
the published literature did not find any association between 
serum sclerostin and neither risk of all-cause mortality, car-
diovascular mortality, nor cardiovascular events [103], but 
concluded that most studies were relatively small and het-
erogeneous in study design. In addition, different sclerostin 
assays were used further contributing to the heterogeneity of 
the studies. Thus, while sclerostin is clearly involved in the 
pathogenesis of vascular calcification, its potential for use 
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as a biomarker for cardiovascular disease has not yet been 
clearly demonstrated.

Influence of CKD on Sclerostin and DKK‑1 
Levels

Sclerostin and CKD

Chronic kidney disease (CKD) involves abnormalities of 
both mineral metabolism and bone turnover, also called 
CKD metabolic bone disease (CKD-MBD) which subse-
quently results in vascular calcifications and calcifications in 
soft tissues [104]. Several studies have investigated the role 
of sclerostin in CKD-MBD and in the associated vascular 
calcifications and the potential of serum sclerostin measure-
ments as a biomarker of bone and vascular changes. Circu-
lating sclerostin levels have been shown to increase when 
GFR decreases [105], though it is not clear whether this 
is due to reduced renal clearance or increased osteocytic 
production or whether it comes from extraskeletal sources 
[106]. In non-CKD individuals, sclerostin is cleared hepati-
cally and with no renal elimination [107], but no studies 
were found examining renal clearance in CKD patients.

Several studies have demonstrated that circulating scle-
rostin levels are negatively correlated with biochemical 
parameters of bone turnover such as PTH concentrations 
[49, 71, 108] and markers of bone formation [109, 110]. 
Sclerostin was also negatively correlated with histomor-
phometric bone indices of bone formation in CKD patients 
over a broad spectrum of disease stages [111], hemodialysis 
patients [112], and peritoneal dialysis patients [113]. How-
ever, the ability to distinguish between patients with high 
and low bone turnover was low [112] and sclerostin was not 
superior to bone-specific alkaline phosphatase as a meas-
ure of bone turnover [114]. A few studies have examined 
the correlation between serum sclerostin levels and bone 
mineral density (BMD). These generally found a positive 
correlation between circulating sclerostin and BMD both 
in hemodialysis patients [93, 109], in peritoneal analysis 
patients [51], and in patients with end-stage renal disease 
[115]. Finally, in a longitudinal study with hemodialysis 
patients, high sclerostin levels were predictive of one-year 
bone loss [116].

Although interesting correlations between sclerostin and 
different clinical and paraclinical parameters have been 
found in cohorts of CKD patients, the sometime discrep-
ant results warrant a discussion of alternative explanations. 
Recent studies have demonstrated that the correlates and 
determinants of sclerostin are highly dependent of the assay 
used for measuring sclerostin. In a cohort of 91 patients 
with CKD undergoing hemodialysis, sclerostin results dif-
fered significantly depending on whether samples were 

measured using the Biomedica or the TECOmedical assay 
[117]. In another study by Delanaye et al. in 82 non-dialysis 
patients referred for GFR measurement and 39 hemodialysis 
patients, large discrepancies were found between sclerostin 
levels measured on four different assays (Biomedica, TECO-
medical, R&D Systems, and MesoScale) [32]. Also, when 
correlating a number of different biological variables such 
as age, height, GFR, and PTH with sclerostin, either all, 
some, or none of the variables were correlated with scle-
rostin depending on the assay used. Finally, the effect of one 
single hemodialysis session on sclerostin levels was assessed 
and highly varying reduction ratios between 25 and 46% 
were found [32]. In another cohort of 68 end-stage kidney 
disease patients, serum sclerostin levels were measured on 
four different assays (DiaSorin, TECOmedical high sensi-
tivity, Biomedica, and R&D Systems) and correlated with 
measurements of bone sclerostin and bone histomorphom-
etry [39]. Again, large discrepancies were seen between scle-
rostin levels from the different assays. However, serum scle-
rostin levels from all 4 assays correlated moderately with the 
number of sclerostin-positive lacunae in bone biopsies from 
the patients. In 3 out of 4 assays, serum sclerostin correlated 
negatively with both histomorphometric parameters of bone 
formation and biochemical serum parameters of bone forma-
tion (bone-specific alkaline phosphatase and PINP) as well 
as parathyroid hormone (PTH). Only the DiaSorin assay did 
not correlate with the histomorphometric and biochemical 
formation parameters. For all 4 assays, serum sclerostin 
correlated with clinical parameters such as age, BMI and 
residual renal function [39]. Thus, while sclerostin may be 
a potential biomarker of bone turnover in patients with CKD 
as it correlates inversely with the bone formation parameters, 
it is currently difficult to use clinically due to the discrepan-
cies in sclerostin levels between assays. Only when we have 
a reference method for such as mass spectrometry, the true 
potential of using sclerostin as a biomarker for bone turnover 
in CKD patients will be fully uncovered.

DKK1 and CKD

In contrast to sclerostin, only relatively few studies have 
examined correlations of DKK1 with clinical parameters and 
disease characteristics in patients with CKD-MBD. Most 
of these studies report no association between circulating 
DKK1 levels with neither sex nor age and only minor cor-
relations with declining renal function [118–122]. Moreo-
ver, no correlations with BMD or bone histomorphometry 
were demonstrated [112]. However, most studies have used 
estimated GFR (eGFR) determination, but a recent study 
examined the association between directly measured GFR 
and circulating DKK1 levels. They found DKK1 to be asso-
ciated with PTH levels and that DKK1 levels decreased 
with decreasing GFR [123]. Further studies are needed to 
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determine the usefulness of DKK1 as a biomarker of CKD-
MBD and very little, if any, data are available on the analyti-
cal aspects of DKK1 in patients with CKD.

Conclusion

While studies have shown that both circulating levels of 
sclerostin and DKK1 are associated with a range of clinical 
parameters and outcomes and that the inhibitors in some 
cases can help understand the underlying pathophysiologi-
cal mechanisms regulating bone turnover, the clinical utility 
of the two markers is currently very limited. This is due to 
a number of issues. First, there is currently no standardiza-
tion nor harmonization of assays making the comparison of 
results between the individual studies complicated as the 
different assays possibly measure different molecules or 
metabolites as the primary antibodies in the assays meas-
ure different epitopes. Second, very little information on the 
preanalytical requirements of the samples is available. This 
carries a large risk of bias as the sample handling in the pub-
lished studies has not been standardized. These two aspects 
undoubtedly contribute to the large discrepancies between 
studies. Next, many of the studies have relatively low power 
to fully examine the associations between levels of sclerostin 
and DKK1 and the clinical outcomes we want to detect/
predict. Finally, most of the studies have not addressed the 
clinical utility of the markers with appropriate statistical 
methods such as calculation of predictive value of the mark-
ers, calculation of appropriate cut-offs with ROC-analyses, 
etc. Taken together, the clinical utility of sclerostin and 
DKK1 is currently very limited though it might be promis-
ing, given the issues with standardization/harmonization of 
assays are solved, more detailed information on preanalytical 
requirements are provided, and additional prospective stud-
ies sufficiently powered for investigation of the markers with 
relevant, clinical endpoints.
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