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Abstract
Transgenic mice overexpressing human high molecular weight fibroblast growth factor 2 (HMWFGF2) isoforms in osteo-
blast and odontoblast lineages (HMWTg) exhibit decreased dentin and alveolar bone mineralization, enlarged pulp chamber, 
and increased fibroblast growth factor 23 (FGF23). We examined if the alveolar bone and dentin mineralization defects in 
HMWTg mice resulted from increased FGF23 expression and whether an FGF23 neutralizing antibody could rescue the 
hypomineralization phenotype. HMWTg and VectorTg control mice were given subcutaneous injections of FGF23 neutral-
izing antibody twice/week starting at postnatal day 21 for 6 weeks. Since Calcitriol (1,25D) have direct effects in promoting 
bone mineralization, we also determined if 1,25D protects against the defective dentin and alveolar bone mineralization. 
Therefore, HMWTg mice were given subcutaneous injections of 1,25D daily or concomitantly with FGF23 neutralizing 
antibody for 6 weeks. Our results showed that HMWTg mice displayed thickened predentin, alveolar bone hypomineraliza-
tion, and enlarged pulp chambers. FGF23 neutralizing antibody and 1,25D monotherapy partially rescued the dentin min-
eralization defects and the enlarged pulp chamber phenotype in HMWTg mice. 1,25D alone was not sufficient to rescue the 
alveolar bone hypomineralization. Interestingly, HMWTg mice treated with both FGF23 neutralizing antibody and 1.25D 
further rescued the enlarged pulp chamber size, and dentin and alveolar bone mineralization defects. We conclude that the 
dentin and alveolar bone mineralization defects in HMWTg mice might result from increased FGF23 expression. Our results 
show a novel role of HMWFGF2 on dentoalveolar mineralization.

Keywords  Dentin · Odontoblast(s) · Osteoblast(s) · Mineralized tissue · Development · Fibroblast growth factor 2 · 
Hypophosphatemia

Introduction

Fibroblast growth factor 2 (FGF2), a member of the FGF 
family of ligands, is mitogenic for osteoblasts, induces early 
differentiation of odontoblasts, and is critical for regulat-
ing bone matrix mineralization [1–4]. A single Fgf2 gene 
encodes multiple FGF2 isoforms, an exported low molecular 
weight isoform, and several high molecular weight (HMW) 
isoforms. HMWFGF2 isoforms are nuclear localized and 
function in an intracrine manner to regulate the expression 
of target genes [5–8], however, the biological functions of 
HMWFGF2 isoforms are not fully defined.

XLH is caused by loss-of-function mutations in phos-
phate-regulating gene with homologies to endopeptidases on 
the X chromosome (PHEX) [9] and the Hyp mouse homolog 
phenocopies the human disease. Of importance for the cur-
rent study, the expression of both HMWFGF2 and FGF23 
is elevated in the Hyp mouse [10]. In addition, we reported 
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that transgenic mice overexpressing the human HMWFGF2 
(24 kDa, 23 kDa, and 22 kDa) isoforms in osteoblast and 
odontoblast lineages using the Col3.6 promoter (HMWTg) 
phenocopies the Hyp mouse and XLH subjects. HMWTg 
mice presents with reduced bone mineral density (BMD), 
osteomalacia, hypophosphatemia, and increased FGF23 in 
serum and bone [10].

In the disease XLH, PHEX functions to inactivate FGF23 
through its metalloprotease activity [11]. Loss-of-function 
PHEX mutations result in elevated FGF23 hormone levels 
and impaired renal production of 1,25-dihydroxyvitamin D 
(1,25D) and inorganic phosphate (Pi) reabsorption [12–15]. 
The increased FGF23 activity in XLH inhibits renal phos-
phate reabsorption in the proximal renal tubules, thereby 
promoting excessive Pi urine excretion [16, 17]. Renal Pi 
reabsorption is required for many biological systems includ-
ing dentinogenesis, the process of dentin formation within 
the tooth. Dentin matrix is secreted by odontoblasts as 
unmineralized predentin that is converted to mineralized 
dentin, in a process that requires both Ca and Pi deposi-
tion [17]. The major oral manifestations of XLH include 
spontaneous dental abscesses affecting non-carious primary 
and permanent teeth, which exhibit high pulp horns, large 
pulp chambers, and dysplastic and poorly mineralized dentin 
[18–21].

Although FGF23 is known to play a major role in the 
pathogenesis of hypophosphatemia and the associated 
appendicular bone hypomineralization in XLH, the cause 
of the dentoalveolar hypomineralization in XLH is not fully 
understood. This study explores the role of HMWFGF2 and 
FGF23 in dentoalveolar mineralization in HMWTg mice.

Materials and Methods

Mice

The UConn Health Institute of Animal Care and Use Com-
mittee approved animal protocols. Generation of Col3.6-
HMWFgf2 isoform-IRES-GFPsaph mice on FVBN back-
ground was previously described in detail [10]. Generation 
of Col3.6-IRES/GFPsaph (VectorTg) mice which were used 
as controls was also previously described in detail (10). In 
brief, Col3.6-HMWFgf2 isoforms-IRES-GFPsaph (Green 
Fluorescent Protein- Sapphire) was built by replacing a 
chloramphenicol acetyltransferase fragment in previously 
made Col3.6-CAT-IRES-GFPsaph with HMW isoforms 
of human Fgf2 cDNA. This expression vector concurrently 
overexpresses HMW and GFPsaph from a single bicistronic 
mRNA. Col3.6-IRES/GFPsaph (Vector) construct was also 
prepared as a control. The construct inserts were released 
from Col3.6-IRES/GFP (Vector) or Col3.6-HMWFgf2 
isoforms-IRES-GFPsaph by digestion with AseI and AflII. 

Microinjections into the pronuclei of fertilized oocytes were 
performed at the Gene Targeting and Transgenic Facility at 
the University of Connecticut Health Center. Founder mice 
of the F2 (FVBN) strain were bred with wild-type mice to 
establish individual transgenic lines. Mating of heterozygote 
male and female generated homozygote mice that were used 
in this study. Mice were euthanized for sample collection at 
60 d of postnatal unless stated otherwise. Female and male 
mice were used in this study.

FGF23 Neutralizing Antibody (FGF23Ab) 
and Calcitriol Treatment

FGF23Ab (Amgen Inc., Thousand Oaks, CA) or IgG (rat-
anti-NGFPb-3F8-raIgG2a) was administered. Subcutaneous 
(sc) injections of FGF23Ab (10 mg/kg, twice/week) or/and 
Calcitriol (175 pg/g, daily) were given starting at 21-dpn for 
6 weeks. Dosage and interval were based on published pro-
tocols [22, 23]. For these studies “the vehicle group” refers 
to IgG for FGF23 antibody treatment, while it refers to water 
in Calcitriol treatment. Mice were euthanized after 6 weeks 
by carbon dioxide for sample collection with 8 female mice 
per treatment group.

Radiography

Radiographs of hemisected mandibles were taken using 
CABINET X-RAY SYSTEM (Faxitron X-Ray Corpo-
ration, Lincolshire, IL) at 25 kV, 20-s exposure at 4.5X 
magnification.

Micro‑computed Tomography

60-dpn mandibles were used for analysis with micro-CT 
with 3 mice per group. μCT40, Scanco Medical (Bassers-
dorf, Switzerland) system was used for acquisition, data 
analysis, and 3D reconstruction, and calibrated using a phan-
tom provided by the manufacturer. Samples were scanned in 
70% ethanol at high resolution (6 microns) with an energy 
level of 55 kVp, intensity of 145 µA, and integration time 
of 300 ms. 3D analysis was conducted from 2D scanned 
slices to calculate morphometric parameters defining micro-
architecture, including pulp chamber volume, alveolar bone 
volume fraction (BVF), and apparent density.

Histology

Hematoxylin and eosin (H&E) immunohistochemistry 
experiments were performed on decalcified mandibles per 
standard protocols with anti-FGF23 (R&D SYSTEMS, 
MAB26291) at 1:50 dilution. von Kossa staining was com-
pleted on formalin-fixed undecalcified mandibles embedded 
in Cryomatrix per standard protocols. 7-μm coronal sections 
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were collected on Cryofilm type IIC (FINETEC Co. Ltd., 
Japan) cold adhesive tape. Images were captured with Nikon 
E400 microscope (Nikon Inc., Melville, NY). Alveolar BA/
TA% measurements were completed non-biased and blinded 
using OsteoMeasure image analysis (R&M Biometrics, 
Nashville, TN, USA).

Calcium, Phosphate, and PTH Serum Biochemistry

Blood was collected from euthanized animals by cardiac 
puncture. Serum phosphate and calcium were measured 
using Phosphorus Liqui-UV (StanBio Laboratory, Boerne, 
TX) and calcium reagent SET (Eagle Diagnostics, Cedar 
Hill, TX), respectively. Serum PTH was determined using 
mouse intact PTH ELISA kit (Immunotopics, Athens, OH).

Statistical Analysis

Results are presented as means ± SEM. Normal distribution 
was evaluated with the Shapiro–Wilk normality test. Sam-
ples were normally distributed. Student’s t-test and one-way 
ANOVA with LSD post hoc follow-up test were used to 
analyze differences between treatment groups. Differences 
were considered significant at P < 0.05. Sample size and 
power calculation were based on the effect size and standard 
deviation of the serum Pi in Vector and HMW obtained from 
our published data with a difference of 3.5 mg/dL in serum 
Pi between Vector and HMW, and standard deviation of 
2.6 mg/dL. The minimal sample size necessary determined 
was n = 3.

Results

Aberrant Dentin Mineralization and Enlarged Pulp 
Chamber in HMWTg Mice

We previously characterized the long bone mineralization 
defects in HMWTg mice. Further examination of these 
mutants revealed abnormalities in dentoalveolar minerali-
zation. To understand the basis of these abnormalities, we 
characterized the dental phenotype in HMWTg mice. H&E-
stained coronal sections through 60-dpn mandibular first 
molars revealed thin mineralized dentin and an expanded 
unmineralized predentin in HMWTg mice (Fig. 1A–D). The 
total dentin and mineralized dentin were significantly thin-
ner in HMWTg mice with thicker predentin (Fig. 1E–F). 
Micro-CT analysis of 60-dpn male and female mandibular 
first molars showed enlarged pulp chamber in HMWTg 
mice (Fig. 1G–J). 3D volumetric reconstruction of the pulp 
chamber further illustrates markedly enlarged coronal pulp 
and radicular pulp chambers in male and female HMWTg 
molars (Fig. 1K–N). We quantified the coronal pulp and the 

total pulp chamber volumes. The floor of the pulp chamber 
was employed as a reliable landmark to demarcate coronal 
pulp from radicular pulp canals. In both male and female 
HMWTg mandibular first molars, a significant increase in 
the coronal and total pulp chamber volume was observed 
(Fig. 1O–R). Together, these results indicate that mice over-
expressing HMWFGF2 in odontoblast and osteoblast lin-
eages exhibit thinner dentin, thicker predentin layers, and 
enlarged pulp volume.

Aberrant Alveolar Bone Mineralization in HMWTg 
Mice

To examine the alveolar bone morphology in HMWTg 
mandibles, we analyzed the alveolar bone in 60-dpn male 
and female mice using Micro-CT. 3D images revealed large 
marrow spaces in the alveolar bone of both male and female 
HMWTg mice compared with VectorTg control (Fig. 2A-
D). Transverse Micro-CT images at the furcation of man-
dibular first molars revealed large marrow spaces and mark-
edly reduced radiodense regions in both male and female 
HMWTg mandibles (Fig. 2E–H). Quantification of the 
alveolar bone revealed a significant reduction in alveolar 
BVF between VectorTg and HMWTg groups (Fig. 2I–J). In 
addition, the apparent density was significantly decreased in 
both male and female HMWTg mice (Fig. 2K–L). Alveolar 
bone mineralization was examined by von Kossa staining, 
which was localized to dentin and alveolar bone in both 
VectorTg and HMWTg (Fig. 2M–N). However, less von 
Kossa staining was detected in the alveolar bone of HMWTg 
mandibles (Fig. 2O–P). The reduced von Kossa staining is 
consistent with decreased BVF and apparent density and 
together indicates decreased alveolar bone mineralization 
in HMWTg mice.

FGF23 Neutralizing Antibody Reduces FGF23 
Expression in HMWTg Mice

We previously reported that serum FGF23 is elevated in 
HMWTg mice [10]. We performed immunohistochemis-
try to analyze FGF23 expression in mandibles of HMWTg. 
FGF23 expression was evident in odontoblasts, alveolar 
bone, and periodontal ligament of VectorTg and HMWTg 
mandibles (Fig. 3A–B). A magnified view of the odonto-
blasts lining the pulp cavity showed increased FGF23-pos-
itive odontoblasts in HMWTg mice. FGF23 staining was 
absent in the predentin and dentin (Fig. 3A’–B, arrow). A 
magnified view of the alveolar bone showed elevated FGF23 
expression in the marrow spaces and the trabeculated alveo-
lar bone (Fig. 3A”–B”).

Our previous work showed that FGF23Ab signifi-
cantly increased BMD in femurs of HMWTg mice [24]. 
We next determined whether FGF23Ab reduces FGF23 
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expression in HMWTg mandibles. Mandibles of HMWTg 
mice treated with FGF23Ab showed a marked reduction 
in FGF23 staining in the odontoblast and alveolar bone 
(Fig. 3C–C”). Quantification of the FGF23 immunohisto-
chemistry showed that FGF23 ( +) odontoblast and osteo-
cytes were significantly elevated in HMWTg mandibles 

which was significantly reduced with FGF23Ab treatment 
(Fig. 3D–E). Together, Our findings demonstrated that 
FGF23 protein is increased in odontoblasts and alveolar 
bone of HMWTg mice and FGF23Ab treatment reduces 
the FGF23 immunostaining odontoblast and osteocytes in 
HMWTg mandibles.
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Fig. 1   Defective dentin mineralization and enlarged pulp chamber in 
HMWTg mice. H&E staining of coronal sections of 60-dpn mandibu-
lar molar tooth from Vector and HMWTg male mice. Thickness of 
dentin (double head arrows) and predentin (dotted lines) examined at 
cemento-enamel junction (CEJ) and furcation (A-D; blue horizontal 
line denotes the CEJ). Images were acquired at 20X magnification. 
(E) Quantification of total dentin thickness (includes both mineralized 
and predentin) at CEJ and furcation (p < 0.05; n = 4). (F) Comparison 
of dentin and predentin thickness at furcation in HMWTg mice com-

pared to VectorTg controls (p < 0.05; n = 4). Coronal view of Micro-
CT images from 60-dpn male (G-H) and female (I-J) mandibular 
molar. Micro-CT 3D representation of pulp chamber in male (K-L) 
and female (M–N) molar teeth in VectorTg and HMWTg mice. (O-R) 
Coronal and total pulp chamber quantification in male and female 
VectorTg and HMWTg mice (P < 0.05; n = 3). Scale bar = 500um. P: 
pulp chamber; B: alveolar bone; D: dentin; PD: predentin; r1: mesial 
root; r2: distal root, PDL: periodontal ligament; B: alveolar bone; 
MN: mandible. Student’s T test was utilized for statistical analysis
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FGF23 Neutralizing Antibody Rescues 
Dentin Hypomineralization in HMWTg Mice

We previously repor ted that FGF23Ab rescued 

hypophosphatemia and osteomalacic bone phenotype 
of HMWTg mice [24]. We performed H&E staining to 
examine the effects of FGF23Ab on the increased pre-
dentin phenotype in HMWTg mice. HMWTg mice treated 
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eral staining on coronal sections of 60-dpn VectorTg and HMWTg 
mandibular molars (M-P). Scale bar (E–H) = 500um; Scale bar 
(M-P) = 100um. B: alveolar bone; r1: mesial root; r2: distal root; MN: 
mandible. Student’s T test was utilized for statistical analysis
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FGF23Ab which showed a marked decrease in predentin 
thickness that was comparable to vehicle VectorTg control 
groups (Fig. 4A–C). These findings suggest that FGF23Ab 
treatment rescued the widened predentin in HMWTg mice.

We compared the predentin phenotype of HMWTg 
mice that were given sc injections of 1,25D with vehi-
cle HMWTg mice to determine if 1,25D supplementation 
could rescue the dentin hypomineralization. H&E staining 
showed decreased predentin thickness in HMWTg-1,25D 
group that was comparable to vehicle VectorTg molars 
(Fig. 4D). Furthermore, we asked whether a combination 
of FGF23Ab and 1,25D has enhanced effects on improv-
ing dentin mineralization than FGF23Ab or 1,25D mono-
therapy. H&E-stained coronal sections at the furcation of 
mandibular first molar showed marked decrease in pre-
dentin thickness in HMWTg-FGF23Ab and 1,25D group 
that was comparable to vehicle VectorTg molars (Fig. 4E).

Taken together, these results suggest that FGF23Ab 
treatment rescued the widened predentin phenotype of 
HMWTg mice. We also demonstrated that 1,25D alone or 

in combination with FGF23Ab were sufficient to decrease 
predentin thickness in HMWTg mice.

FGF23 Neutralizing Antibody 
in Combination with 1,25D Improves 
Alveolar Bone Morphology in HMWTg Mice

To determine if FGF23Ab treatment improves alveolar bone 
morphology in HMWTg mice, we compared the alveolar 
bone morphology of vehicle controls with HMWTg mice 
that were treated with FGF23Ab. We observed less marrow 
spaces in the alveolar bone of HMWTg were given FGF23Ab 
treatment as compared to vehicle groups (Fig. 4F–H). These 
findings were consistent among numerous serial sections 
analyzed per sample. We observed a partial improvement 
of the alveolar bone morphology with FGF23Ab treatment. 
We asked if 1,25D alone or in combination of FGF23Ab 
improves the alveolar bone morphology in HMWTg mice. In 
HMWTg-1,25D group, we observed that the alveolar bone 
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was narrow with large marrow spaces (Fig. 4I). Conversely, 
HMWTg mice treated with both FGF23Ab and 1,25D 
exhibited wider alveolar bone and reduced marrow spaces 
when compared with HMWTg-vehicle mandibles (Fig. 4J). 
Although we observed marked morphological improvements 
in alveolar bone of HMWTg mice treated with FGF23Ab 

or 1,25D, quantification of alveolar BA/TA% by histo-
morphometry revealed no significant differences between 
FGF23Ab or 1,25D treatment monotherapy compared to 
HMWTg-vehicle mandibles. However, combined FGF23 
and 1,25D treatment significantly increased alveolar BA/
TA% in HMWTg mice (Fig. 4K).
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HMWTg mice (I; asterisk (*) depicts large marrow spaces). Alveo-
lar bone morphology of HMWTg mice that were treated with both 
Calcitriol and FGF23 neutralizing antibody (J; asterisk (*) depicts 
large marrow spaces). Quantification of alveolar bone BA/TA%, (K) 
(n = 3–5: p < 0.05). Quantitation of serum calcium, phosphate, and 
PTH (L–N) (n = 8; p < 0.05). One-way ANOVA was utilized for sta-
tistical analysis. Scale bar = 50um; PD: predentin; D: dentin; B: alve-
olar bone; PDL: periodontal ligament
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Calcium, Pi, and parathyroid hormone (PTH) directly 
influences dentoalveolar mineralization [25]. We measured 
serum levels of calcium, Pi, and PTH in HMWTg mice in 
each treatment group. We observed no significant differences 
in serum calcium in HMWTg mice with IgG or FGF23Ab 
treatment when compared with VectorTg-vehicle group. 
1,25D alone or concurrent with FGF23Ab showed a sig-
nificant increase in serum calcium levels (Fig. 4L). Serum 
Pi was decreased in HMWTg-vehicle group and FGF23Ab 
or 1,25D single treatment increased serum phosphate lev-
els. Furthermore, combined FGF23Ab and 1,25D treatment 
increased serum Pi to VectorTg-vehicle levels (Fig. 4M). 
Additionally, serum PTH was elevated in HMWTg-vehicle 
mice compared with VectorTg-vehicle controls. FGF23Ab 
or 1,25D treatment decreased serum PTH in HMWTg mice. 
Furthermore, serum PTH levels were reduced to VectorTg-
vehicle levels in HMWTg mice with FGF23 and 1,25D com-
bined treatment (Fig. 4N).

Taken together, FGF23Ab in combination with 1,25D 
improved alveolar bone morphology, increases alveolar BA/
TA%, and restored serum Pi and PTH to normal levels in 
HMWTg mice.

FGF23 Neutralizing Antibody Rescues 
Enlarged Pulp Chamber Phenotype 
in HMWTg Mice

We next asked whether neutralizing FGF23 rescues the 
increased pulp chamber size in HMWTg mice. Radiograph 
of hemisected mandibles showed decreased radiopacity in 
mandibles and molars from HMWTg-vehicle mice com-
pared with VectorTg-vehicle controls (Fig. 5A–B). A mag-
nified view showed high pulp horns and large coronal pulp 
chamber in HMWTg-vehicle molar teeth (Fig. 5A’–B’). 
HMWTg-FGF23Ab group showed increased radiopacity 
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Fig. 5   FGF23 neutralizing antibody rescues the enlarged pulp cham-
ber phenotype in HMWTg mice. Radiograph of vehicle treated 
VectorTg and HMWTg hemisected mandible (A–B). Magnified 
radiograph of mandibular first molar (yellow dotted line outlines the 
coronal pulp chamber) illustrates enlarged pulp chamber in HMWTg 
molars (A’–B’). The pulp chamber size is decreased in HMWTg mice 

treated with FGF23 neutralizing antibody and Calcitriol (C–C’ and 
D–D’). HMWTg mice treated with both 1,25D and FGF23 neutral-
izing antibody further reduces the pulp chamber size (E–E’). Quan-
tification of pulp chamber area in VectorTg and HMWTg molars (F) 
p < 0.05; n = 5. n.s: not significant; n = 6. MN: mandible. One-way 
ANOVA utilized for statistical analysis
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in mandibles and reduced pulp chamber size (Fig. 5C–C’). 
In HMWTg-1,25D group, we observed increased mandib-
ular radiopacity (Fig. 5D) and examination of the pulp 
chamber revealed reduced pulp chamber size (Fig. 5D’). 
With FGF23Ab and 1,25D treatment in HMWTg mice, we 
observed increased alveolar bone radiopacity, and reduced 
pulp chamber size (Fig. 5E–E’).

To determine whether the observed changes were sta-
tistically significant, coronal pulp chambers were quanti-
fied using ImageJ. There was a significant increase in pulp 
chamber size in HMWTg-vehicle-treated mice relative to 
VectorTg-vehicle group. HMWTg-FGF23Ab group showed 
a significant reduction in coronal pulp chamber area when 
compared with HMWTg-vehicle group. HMWTg mice 
treated with 1,25D alone resulted in a significant decrease 
in pulp chamber; however, pulp chamber size was further 
reduced when combined with FGF23Ab treatment (Fig. 5F).

Together, we showed that FGF23Ab monotherapy res-
cued the enlarged pulp chamber in HMWTg mice; however, 
in combination with 1,25D, the pulp chambers were similar 
to VectorTg mice.

Discussion

Transgenic mice overexpressing hHMWFGF2 isoforms in 
osteoblast and odontoblast lineages are characterized by 
hypomineralized dentin and alveolar bone, and enlarged pulp 
chamber. We determined that the dentoalveolar mineraliza-
tion defects and enlarged pulp chamber of HMWTg mice 
could be attributed in part to increased FGF23 signaling and 
are partially rescued by FGF23Ab treatment.

The dentoalveolar defects in Hyp mice are well estab-
lished [26, 27]. We reported that Hyp mice overexpress 
HMWFGF2 in osteoblasts [10]. Our observations including 
increased predentin, decreased dentin, enlarged pulp, and 
hypomineralized alveolar bone in HMWTg mice are con-
sistent with the studies by Fong et al. that showed similar 
defects in Hyp mice [27]. The increase in unmineralized 
predentin at the expense of mineralized dentin in HMWTg 
molar teeth suggests that HMWFGF2 does not impede 
odontoblast differentiation and the production of preden-
tin matrix but diminishes the mineralization of predentin to 
form dentin. Odontoblasts secrete predentin that is equiva-
lent to the osteoid layer in osteogenesis [25]. Like osteoid, 
mineralization of predentin is dependent upon extracellular 
matrix proteins and minerals such as calcium and Pi [17]. 
Overexpressing HMWFGF2 decreases serum phosphate. 
One mechanism is by decreasing renal phosphate reuptake 
by downregulating the sodium-dependent phosphate trans-
port protein 2A (NPT2A), resulting in hypophosphatemia 
and osteomalacia [10]. Of relevance we previously pub-
lished [28] that the kidney phenotype included significantly 

decreased the phosphate transporter Npt2a mRNA and pro-
tein in HMWTg mice that was rescued by in vivo FGF23AB 
treatment. Therefore, the dentin and alveolar bone minerali-
zation defects are partly due to reduced NPT2A resulting in 
phosphate wasting in HMWTg mice. The phosphaturic fac-
tor FGF23 mediates the Pi wasting of XLH [10, 22]. Renal 
phosphate excretion is significantly increased in HMWTg 
mice [24]. The osteomalacia of the appendicular bones and 
Pi wasting phenotypes of HMWTg mice is partially due to 
elevated FGF23/FGFR signaling [10]. HMWFGF2 isoforms 
transcriptionally regulate FGF23, which leads to elevated 
FGF23 in serum and bone [10, 29]. Our findings in HMWTg 
mandibles showed elevated FGF23 expression localized to 
the odontoblasts, periodontal ligament, and the alveolar 
bone. Since FGF23Ab only partially rescues the mineral-
ization defects, elevation of both results in dentoalveolar 
mineralization defects. Thus, HMWFGF2 and FGF23 both 
play a role to inhibit proper dentoalveolar mineralization.

The dentoalveolar phenotype of HMWTg mice parallels 
other genetic hypophosphatemic murine models with ele-
vated serum and local FGF23. Transgenic mice with DMP1 
(dentin matrix protein-1) deletion and mice overexpressing 
hFGF23 displayed widened predentin, decreased alveolar 
BMD, and enlarged pulp cavity [30, 31]. Although HMWTg 
mice phenocopy transgenic mice with elevated FGF23, it is 
likely that there is a direct mineralization inhibitory effect 
of HMWFGF2 isoforms that are highly expressed in odonto-
blasts. HMWTg mice uses Col1a1 promoter to drive hHM-
WFGF2 isoforms overexpression in Col1-rich tissue includ-
ing osteoblast [10] and odontoblast. HMWFGF2 directly 
impairs bone mineralization through FGF23-dependent 
and independent mechanisms [24]. In femurs of HMWTg 
mice, the expression of bone matrix-related genes including, 
osteopontin (OPN), matrix gla protein (Mgp), Phex, matrix 
extracellular phosphoglycoprotein (MEPE), and DMP1 that 
are involved in the mineralization of bone and teeth were 
altered with long-term FGF23Ab treatment. OPN mRNA 
was unchanged with FGF23Ab treatment in HMWTg mice. 
The expression of Mgp, an inhibitor of mineralization, was 
increased in HMWTg mice even with FGF23Ab treatment. 
Additionally, Phex and Mepe mRNA were increased in 
HMWTg mice and were further increased with FGF23Ab 
treatment. Furthermore, Dmp1 mRNA levels were decreased 
in HMWTg mice but was only partially increased with 
FGF23Ab treatment. Thus, it is evident that HMWFGF2 
modulates genes involved in matrix mineralization by both 
FGF23-dependent and independent mechanisms.

Although it is known that the mineralization defects in 
XLH arise from defects in FGF23-mediated renal phos-
phate transport, dietary supplementation of phosphorous 
and calcium could not sufficiently improve the dentoal-
veolar hypomineralization in XLH and the Hyp mouse 
[32]. The dentoalveolar mineralization defects in HMWTg 
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are accompanied by unaltered serum calcium, decreased 
serum Pi, and increased PTH. We showed that FGF23Ab 
markedly reduced the elevated FGF23 in odontoblasts and 
alveolar bone of HMWTg mandibles that was accompa-
nied by a complete rescue of the dentin hypomineraliza-
tion and enlarged pulp space and a partial rescue of the 
osteomalacic alveolar bone. The partial improvement 
in the alveolar bone morphology is consistent with an 
increase in serum Pi and a reduction in serum PTH levels 
in HMWTg with FGF23Ab treatment. Because FGF23Ab 
monotherapy partially improved the alveolar bone mor-
phology in HMWTg mandibles, it is possible that HMW-
FGF2 isoforms function independently of FGF23 to inhibit 
alveolar bone matrix mineralization. 1,25D monotherapy 
in Hyp mice improved skeletal microarchitecture and 
bone strength in the absence of phosphate supplementa-
tion while enhancing FGF23 expression [23]; however, 
1,25D monotherapy was not sufficient to rescue alveolar 
bone defects in HMWTg mice. FGF23 is known to antago-
nize renal 1,25D production which in turn, upregulates 
FGF23 expression in osteocytes [25]. It is possible that 
FGF23 levels were also increased in response to 1,25D 
treatment in HMWTg and that could contribute to the 
observed exacerbation of the alveolar bone morphology. 
Interestingly, combined 1,25D and FGF23Ab treatment in 
HMWTg reduces predentin thickness, increases alveolar 
bone BVF, and decreases pulp chamber area that was com-
parable to VectorTg mandibles. These observations were 
accompanied by an elevation in serum calcium and Pi and 
a decrease in serum PTH to normal levels. These results 
suggest an additive or synergistic effect of FGF23Ab and 
1,25D to promote dentin and alveolar bone mineralization 
in HMWTg mice.

Our study explored the role of HMWFGF2 on dentoal-
veolar mineralization. we believe that the minimal sample 
size in the experiments depicted in Figs. 1 and 2 (n = 3 and 
n = 4, respectively) is a limitation for our study. Further-
more, micro-CT analysis would be a valuable tool to exam-
ine the differences in alveolar bone density, pulp chamber 
size in HMWTg mice with FGF23Ab and/or 1,25D treat-
ments. However, given our limitations, our findings sup-
port a novel role for HMWFGF2 in dentin and alveolar 
bone mineralization in a hypophosphatemic murine model. 
We showed that dentoalveolar mineralization defects of 
HMWTg mice in part phenocopies human XLH.
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