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Abstract
In the course of chronic kidney disease (CKD), alterations in the bone-vascular axis augment the risk of bone loss, fractures, 
vascular and soft tissue calcification, left ventricular hypertrophy, renal and myocardial fibrosis, which markedly increase 
morbidity and mortality rates. A major challenge to improve skeletal and cardiovascular outcomes in CKD patients requires 
a better understanding of the increasing complex interactions among the main modulators of the bone-vascular axis. Serum 
parathyroid hormone (PTH), phosphorus (P), calcium (Ca), fibroblast growth factor 23 (FGF23), calcidiol, calcitriol and 
Klotho are involved in this axis interact with RANK/RANKL/OPG system and the Wnt/β-catenin pathway. The RANK/
RANKL/OPG system controls bone remodeling by inducing osteoblast synthesis of RANKL and downregulating OPG 
production and it is also implicated in vascular calcification. The complexity of this system has recently increased due the 
discovery of LGR4, a novel RANKL receptor involved in bone formation, but possibly also in vascular calcification. The 
Wnt/β-catenin pathway plays a key role in bone formation: when this pathway is activated, bone is formed, but when it is 
inhibited, bone formation is stopped. In the progression of CKD, a downregulation of the Wnt/β-catenin pathway has been 
described which occurs mainly through the not coincident elevations of sclerostin, Dickkopf1 (Dkk1) and the secreted Friz-
zled Related Proteins (sFRPs). This review analyzes the interactions of PTH, P, Ca, FGF23, calcidiol, calcitriol and Klotho 
with the RANKL/RANKL/OPG system and the Wnt/β-catenin, pathway and their implications in bone and cardiovascular 
disorders in CKD.
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General Aspects: Role of Parathormone, 
Phosphorus and Other Biomarkers

Aging in the general population, which is markedly acceler-
ated in chronic kidney disease (CKD) [1–8], is character-
ized by severe alterations in the bone-vascular axis that favor 
osteoporosis, fractures, vascular and soft tissue calcification 
as well as left ventricular hypertrophy (LVH), myocardial 
fibrosis and progression of renal damage.

In CKD patients, these abnormalities are associated to 
elevation in serum parathormone (PTH), phosphorus (P), 
fibroblast growth factor 23 (FGF23) and decrease in serum 
calcidiol, calcitriol and calcium (Ca), as well as a progres-
sive reduction in renal Klotho and increase in the degree of 
systemic inflammation.

In the context of bone and mineral disorders, high serum 
P stimulates not only PTH synthesis and secretion but also 
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parathyroid gland hyperplasia [9–12]. These P/PTH interac-
tions create a vicious bone-parathyroid gland circle, high PTH 
increases bone resorption releasing more P into the circula-
tion and there is a trend to increase serum P levels because 
CKD patients cannot eliminate P efficiently, not only due to the 
reduced renal function but also to the decrease in renal Klotho 
content that impair the phosphaturic response to FGF23.

High PTH induces high bone turnover and bone loss [13], 
but its effect in the vascular system is still controversial. 
While PTH 1–34 fragments inhibited vascular calcification 
in an atherosclerotic murine model [14], PTH 7–84 frag-
ments increased vascular calcification in others [7, 13, 15]. 
PTH seems to be not sufficient to directly induce vascular 
calcification [16]. In fact, PTH can have synergistic effects 
with P, in addition to the well-known capacity of PTH to 
increase osteoclast activity and bone turnover [16]. A recent 
study has demonstrated in uremic rats and in cultures of 
vascular smooth muscle cells (VSMC) that high concen-
tration of PTH increases the calcification induced by high 
serum P [17]. Furthermore, the silencing of PTH 1 recep-
tor (PTH1R), the most abundant PTH receptor in VSMC, 
partially abolished the pro-calcifying effect of high PTH, 
demonstrating an important PTH/PTH1R-driven induction 
of Ca deposition in the medial artery layer [17].

An additional critical consideration is that in advanced 
CKD, the serum levels of soluble Klotho cannot reflect 
the real reduction in renal Klotho content. In fact, soluble 
Klotho, due to its molecular weight cannot be filtered, so, its 
appearance in the urine to exert FGF23-independent phos-
phaturic actions involves a process of transcytosis of soluble 
Klotho from the blood into the urine through renal tubular 
cells [18], a process that is impaired in a damaged kidney.

The decrease in urinary soluble Klotho could also partly 
explain the defects in renal tubular Ca reabsorption and 
its adverse impact on the skeleton. In fact, urinary soluble 
Klotho favors the anchoring of the Transient Receptor Poten-
tial Cation Channel Subfamily V Member 5 (TRPV5) Ca 
channel to the cell membrane through its sialidase/glucosi-
dase activity, an action that attenuates the urinary excretion 
of Ca, preventing a negative Ca balance and, consequently, 
it could attenuate bone demineralization [19, 20].

This review will analyze the effect and interactions of the 
above-mentioned factors with the two main bone pathways, 
Receptor Activator of Nuclear Factor (NF)-ĸB (RANK)/
RANK ligand (RANKL)/osteoprotegerin (OPG) and Wnt/β-
catenin, describing their implications in bone and cardiovas-
cular disorders in CKD.

The RANK/RANKL/OPG/(LGR4) System

PTH is the main regulator of the RANK/RANKL/OPG sys-
tem that controls bone remodeling by inducing osteoblast 
synthesis of RANKL and downregulating OPG produc-
tion. Both mechanisms favor osteoclastogenesis and bone 
resorption through a Protein Kinase A (PKA)-driven mecha-
nism [21–23]. PKA agonists mimic the PTH regulation of 
RANKL and OPG gene expression [22, 24].

The OPG/RANK/RANKL system was described in the 
mid-1990s as an essential regulator of bone modeling and 
remodeling [25]. Its role in bone maintenance is well known, 
but some papers attribute to it an important role in vascular 
calcification [26, 27].

In bone, osteoblasts and osteocytes synthesize and secrete 
RANKL, which binds to its transmembrane receptor RANK 
in bone marrow-derived osteoclast progenitors, allowing the 
maturation, activation and survival of osteoclasts to initi-
ate resorption. In summary, the RANKL action promotes 
and increases the osteoclastogenesis and bone loss. In addi-
tion, osteoblasts secrete OPG, a soluble decoy receptor for 
RANKL, which prevents the binding of RANKL to RANK, 
thus attenuating osteoclastogenesis [28] (Fig. 1).

RANK, RANKL and OPG: The Classical Components 
of the Pathway

RANK is fundamental for osteoclast development. It is 
also called tumor necrosis factor (TNF)-related activation-
induced cytokine (TRANCE) receptor and is a member of 
TNF receptor superfamily. It is a transmembrane receptor 
that consists of 616 amino acid protein with four extracel-
lular cysteine-rich domains linked to a long C-terminal intra-
cellular region [25, 28–30].

RANK is constitutively expressed in multiple organs and 
cells such us osteoclasts’ precursors and mature osteoclasts, 
dendritic cells, mammary glands and vascular cells, among 
others. Its functions are associated with bone resorption, 
immune response, lymph node and mammary gland develop-
ment and thermal regulation [31–35]. RANK acts as a binder 
to the cytokine RANKL [31]; however, the RANK overex-
pression has shown to be enough to activate NF-ĸB [36].

RANKL (also called OPG ligand) is the main stimulator 
of its specific receptor RANK [36–40]. RANKL is a 316 
amino acid protein with a molecular weight of 38 kDa. Its 
expression is also modulated by several cytokines, glucocor-
ticoids and PTH [41]. RANKL is produced by osteoblasts, 
osteocytes and activated T cells. It promotes the formation, 
fusion, differentiation, activation and survival of osteoclasts, 
allowing increased bone resorption and mineral loss [42, 
43] (Fig. 1).
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Activation of RANK by RANKL initiates the intracel-
lular signaling cascade of NF-κB (a protein complex that 
functions as a transcription factor modulating many cel-
lular processes) [44, 45]. Indeed, the final step in RANK 
activation is the translocation of NF-κB to the nucleus, 
which can take place through the classical or the alter-
native route initiated by their respective kinases, named 
inhibitor of nuclear factor-κB (IκB) kinase (IKK) β and 
IKKα. The translocation of NF-κB to the nucleus mod-
ulates the expression of different genes, such as c-Fos, 
Nuclear Factor of Activated T cells 1 (NFATc1) and some 
bone morphogenetic proteins (BMPs) [25, 46].

OPG (also known as osteoclastogenesis inhibitory fac-
tor—OCIF) is a decoy receptor for RANKL that regulates 
osteoclastogenesis disrupting the interaction between 
RANKL and its receptor RANK [28] (Fig. 1). OPG is a 
60 KDa glycoprotein, member of the TNF superfamily 
that is normally secreted by the osteoblasts, even though 
it has also been detected in association with the cell mem-
brane in lymphoid cells [47]. OPG consists of 7 structural 
domains. Domains 1 to 4 give OPG its osteoclastogenesis 
inhibitory activity, and domains 5 and 6 are considered 
death domains and involved in apoptosis. Domain 7 har-
bors the heparin binding region, a common trait of growth 
factors and signaling molecules [48].

OPG is produced in a wide variety of tissues includ-
ing the cardiovascular system (heart, arteries and veins), 
lungs, kidneys, intestine and bone, as well as in hemat-
opoietic and immune cells [30, 47, 49–52]. Its expression 
and production are regulated by several cytokines, pep-
tides, hormones and drugs. Cytokines, including TNFα, 
interleukins 1α and 18, transforming growth factor β 

(TGFβ), bone morphogenic proteins (BMPs), and steroid 
hormones, such as 17β estradiol, regulate OPG mRNA 
levels [53–55]. Conversely, glucocorticoids (known to pro-
mote bone resorption), immunosuppressant cyclosporin A 
(which causes osteoporosis and vascular disease), PTH, 
prostaglandin E2 and fibroblastic growth factor (FGF) 
decrease OPG expression [53, 56–60].

It is well established that decreases in OPG favor not 
only increases in osteoclastogenesis and bone resorbing 
activity but also the increases in vascular Ca deposition. 
Indeed, OPG reduction was identified as an independent 
variable for coronary artery calcification [61]. Further-
more, a recent elegant work has linked the anti-calcifying 
effects of higher vascular Pit2 expression to increases in 
OPG levels as suggested by the low levels of OPG in the 
Pit2-deficient mice [62].

In healthy subjects over 70 years old, RANKL and OPG 
plasma levels were gender-independent [63, 64], but dif-
ferent serum OPG levels were found in men and premeno-
pausal women [65]. There is a discrepancy between OPG 
concentration and aging, some studies did not observe 
variations with age [64, 66], while others have shown a 
positive correlation [63, 65, 67] mainly in subjects over 
60 years old [63]. In two age-related disorders, such as 
rheumatic polymyalgia and osteoarthritis, circulating OPG 
levels did not differ from the age-matched controls, but 
soluble RANKL levels were higher in both diseases [63].

The RANK/RANKL/OPG system is of high clinical 
relevance in osteoporosis treatment. OPG is not used in 
clinical practice but its discovery and the studies of it 
actions were the base of the development of Denosumab, a 
human monoclonal antibody against RANKL that mimics 

Fig. 1  RANK/RANKL/OPG/LGR4 signaling in bone. a Osteoblasts 
synthesize and secrete RANKL which binds RANK allowing their 
activation, maturation and prolonging the survival of osteoclasts. 
b Osteoblasts also secrete OPG, a soluble RANKL decoy receptor, 

which prevents RANKL binding to RANK, inhibiting osteoclastogen-
esis. c RANKL can also bind the LGR4 receptor on the surface of the 
osteoblasts, triggering signals of mineralization and bone formation
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the actions of OPG (reducing osteoclastogenesis and bone 
resorption). Denosumab has been worldwide long-term 
used to prevent the reduction of bone mass and to decrease 
the risk of bone fractures [68].

LGR4: A New RANKL Receptor

The recent discovery of a new RANKL receptor, the leucine-
rich repeat-containing G-protein-coupled receptor 4 (LGR4) 
[69], also called G-protein-coupled receptor (GPR) 48, pro-
vided a novel member of this system that regulates bone 
formation. This receptor counteracts RANKL-driven osteo-
clastogenesis and also activates the Wnt/β-catenin pathway 
[70], and it acts on bone formation but may also adversely 
promote vascular calcification.

LGR4 is essential to increase bone formation by increas-
ing osteoblast maturation and mineralization [69]. In addi-
tion, LGR4 inhibits osteoclast differentiation and maturation 
by the competition with RANK to the binding to RANKL. 
In this sense, LGR4 knockout mice developed abnormalities 
in bone during embryonic and postnatal stages with delay in 
osteoblast differentiation and mineralization, reductions in 
osteoid formation and increases in osteoclast activity [71]. 
Also in humans, a nonsense mutation in LGR4 has been 
strongly associated with low bone mineral density and osteo-
porotic fractures [72].

However, the effect of PTH on LGR4 expression and the 
likely mechanisms involved are incompletely understood. A 
recent study has demonstrated that in uremic rats fed high P 
diet, LGR4 aortic expression markedly increased in response 
to high PTH. In vitro, the silencing of the LGR4 gene in 
VSMCs was capable to prevent PTH-induced vascular cal-
cification without changes in RANKL and OPG expression 
(73) (Fig. 1). Due to its recent discovery, it is still early to 
envision if LGR4 will play a future role in the clinical man-
agement of bone and vascular disorders.

The RANK/RANKL/OPG/(LGR4) System. Role 
in Osteoporosis and Vascular Calcification

PTH indirectly regulates osteoclast differentiation and activ-
ity by increasing the production of RANKL and decreasing 
OPG synthesis in osteoblasts [28].

The biological effects of OPG are opposite to those medi-
ated by RANKL, since OPG acts as a soluble inhibitor that 
prevents the interaction of RANKL with its receptor RANK 
and, subsequently, its stimulation of osteoclastogenesis [74]. 
The first evidence that this system was involved in vascular 
calcification derived from the study of the OPG knockout 
mouse, which presents osteoporosis and calcification of the 
aorta and renal arteries [51, 75].

OPG expression can be found in the media of large 
arteries [51] and in different cell types of the vessel wall 
such as VSMCs and endothelial cells [58, 76]. In endothe-
lial cells, OPG acts as an autocrine survival factor [76]. 
In contrast, RANKL and RANK have only been found in 
the calcified areas of aortas of transgenic mice prone to 
calcification, but not in the arteries of wild-type mice [77].

The hypothesis that the RANK/RANKL/OPG system 
could establish a link between osteoporosis and vascular 
calcification is clinically based on the increased risk of 
arterial calcifications and cardiovascular disease in post-
menopausal women and elderly people with osteoporosis 
[78–80]. Other studies have shown that OPG inhibits the 
extensive calcifications of the aortic, carotid, femoral, 
mesenteric, hepatic, renal arteries induced by treatment 
with warfarin or toxic doses of vitamin D [81]. Moreo-
ver, VSMC calcification induced by ß-glycerophosphate 
or RANKL was inhibited by OPG addition to the culture 
media [26].

The discovery that the OPG knockout mouse develops 
osteoporosis and severe arterial calcification [75] and the 
fact that RANKL expression increases in calcified arterial 
tissue [82], and also induces calcification of VSMCs through 
its binding to RANK and increases in BMP 4 expression 
(26), suggest that the OPG/RANK/RANKL axis could be 
an important autocrine/paracrine system involved in vascular 
calcification.

In the vasculature, increases in RANKL and decreases 
in OPG favor vascular calcification [26, 83]. As it has been 
previously mentioned, LGR4 seems to promote vascular cal-
cification in experimental models. In addition, LGR4 has 
also shown to potentiate Wnt/β-catenin pathway through 
two mechanisms: the increase in Wnt receptors that involve 
a direct inhibition of the ubiquitinases Ring Finger Protein 
(RNF) 43 and Zinc And Ring Finger (ZNRF) 3 that medi-
ate their degradation, and also through the recruitment of 
the guanosine triphosphate (GTP)ase-activating protein Ras 
GTPase-activating-like protein (IQGAP1) to the Wnt/β-
catenin pathway complex, which results in a potentiation of 
both, the canonical and noncanonical Wnt/β-catenin path-
ways [84]. Recently, Apelin was identified as an important 
down-regulator of the activation of LGR4/β-catenin signal-
ing, sufficient to ameliorate aortic remodeling and fibrosis 
in models of transverse aortic constriction [85]. As for most 
Wnt inhibitors, beneficial anti-calcifying actions in the vas-
culature could adversely impact adequate bone formation.

The role of RANKL and OPG as biomarkers of skeletal 
health has also been studied. In fact, the RANKL/OPG ratio 
is a useful tool to indirectly determining the degree of bone 
remodeling [86]; however, its relationship with the degree 
of vascular calcification [87, 88] is still a controversial issue.

Denosumab has not shown any effect on vascular calci-
fication. In the FREEDOM study (from fracture reduction 
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evaluation of denosumab in osteoporosis every 6 months), 
performed in osteoporotic women, the abdominal X-rays 
showed no differences in the progression of aortic calcifica-
tion and the reported adverse cardiovascular events were 
found in the placebo and Denosumab groups [89].

WNT/Β‑Catenin Pathway

The Wnt/β-catenin is an intracellular signaling pathway 
that plays a key role in bone formation, regulating the 
osteoblast activity [90–93]. When the Wnt/β-catenin path-
way is activated, bone is formed, but when this pathway is 
inhibited, bone formation is stopped.

The activation of the Wnt/β-catenin pathway starts 
when the Wnt ligand binds to their receptors, Frizzled 
and Low-density lipoprotein receptor-related protein 
(LRP)5/6, inactivating the Glycogen synthase kinase 3 
(GSK3) stabilizing ß-catenin in the cytoplasm making 
possible the translocation of ß-catenin into the nucleus 
initiating the transcription of bone forming genes, regulat-
ing the preosteoblast differentiation through Runt-related 

transcription factor 2 (Runx2) or/and Osterix induc-
tion, among others [94, 95]. In the absence of the Wnt 
ligand, ß-catenin is phosphorylated by GSK3, leading to 
its destruction avoiding its translocation to the nucleus 
and the osteoblast differentiation and osteocyte formation 
(Fig. 2).

The Wnt/β-catenin pathway has inhibitors such us the 
LRP inhibitors Dickkopf1 (Dkk1) and sclerostin (also called 
Sost), which bind to LRP5/6 receptor allowing its internali-
zation into the cytoplasm, and the frizzled inhibitors called 
secreted Frizzled Related Proteins (sFRPs), which are able 
to block the Wnt/β-catenin pathway, inhibiting an decreas-
ing the osteoblast differentiation and survival, respectively 
[96–98] (Fig. 2).

The Wnt/β-catenin pathway interacts with several hor-
mones and factors such as PTH, FGF23, calcitriol, Klotho 
and LGR4. The latter is not only a RANKL receptor, but also 
a key receptor for R-Spondin (R-spo) 2, which is a Wnt/β-
catenin pathway activator [99].

PTH is one of the main regulators of Wnt/ β-catenin path-
way in bone. It is well known that PTH is an inhibitor of 
sclerostin, and this action is fundamental to increase bone 

Fig. 2  Wnt/ß-catenin signaling pathway. a In the absence of Wnt 
ligand, ß-catenin is phosphorylated by GSK3 and destroyed avoiding 
its translocation to the nucleus to trigger the mechanisms of bone for-
mation. b If Wnt ligands bind to its LRP5/6 and Frizzled co-recep-
tors, GSK3 is inactivated, ß-catenin is stabilized in the cytoplasm 
and translocate into the nucleus which activates target genes promot-
ing osteoblast differentiation and osteocyte formation. c In presence 

of Wnt inhibitors, Dkk1 or sclerostin or the sFRPs bind to LRP5/6 
receptor or Frizzled, respectively; thus the Wnt/ß-catenin pathway is 
inhibited. (Modified from Gordon MD et al.  Wnt signaling: multiple 
pathways, multiple receptors, and multiple transcription J Biol Chem. 
2006; 281(32): 22,429–22,433 with permission from the American 
Society for biochemistry and Molecular biology)
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formation [100–103], but PTH also affects the differential 
regulation of LRP5/LRP6 and the antagonist Dkk1 [100]. 
The use of anti-sclerostin monoclonal antibodies has shown 
to be effective in preventing bone loss in normal rats and rats 
with chronic renal failure (CRF) and low serum PTH [104], 
but not with elevated serum PTH [105], which suggested 
that serum sclerostin values could be even a more sensitive 
and precise remodeling marker than circulating PTH. Both 
continuous and intermittent PTH administration decrease 
sclerostin levels [102, 103]. Also, continuous PTH increases 
the signaling receptor Frizzled 1 [103, 106] and co-receptors 
LRP5 and 6. However, there is no consensus in the effect of 
PTH over the agonist Dkk1. Several studies have shown that 
PTH decreases Dkk1 levels [100, 107–109] but others have 
found the opposite effect and PTH treatment was associated 
with increases in serum Dkk1 levels [110, 111].

Although there is not much evidence about the direct 
interaction of FGF23/Klotho with Wnt elements, it has been 
shown that the extracellular domain of Klotho binds to mul-
tiple Wnt ligands, inhibiting their ability to activate Wnt 
signaling [112, 113]. It is interesting to note that in CKD, in 
parallel to the decrease of Klotho and the increase of FGF23, 
there are also changes in the levels of Wnt inhibitors, such 
as sclerostin or Dkk1 [109, 114]. FGF23 directly inhibits 
the osteoblastic Wnt/β-catenin pathway through a soluble 
Klotho/mitogen-activated protein kinase (MAPK)-mediated 
process that requires Dkk1 induction [109]. However, the 
relationship between FGF23/Klotho and Wnt /β-catenin 
pathway has not been sufficiently explored.

The soluble Klotho acts as an antagonist of Wnt/β-catenin 
pathway activation through protein–protein interactions 
between soluble Klotho and extracellular activators of the 
Wnt/β-catenin pathway [113]. In CKD, the loss of kidney 
function is the most important cause of reduction in renal 
Klotho gene expression. As Klotho downregulates renal 
calcitriol production, its reduction could influence bone 
remodeling in CKD patients, acting through the complex 
PTH-calcitriol-FGF23 axis modulating through a direct pro-
tein–protein mechanism, the interaction between the vitamin 
D receptor (VDR) and β-catenin [115, 116].

Since the activation of the Wnt/β-catenin pathway is also 
involved in the progression of kidney damage [117], part 
of the renal and vascular anti-aging effect of blood-solu-
ble Klotho could be explained by its ability to inhibit the 
Wnt/β-catenin pathway [118, 119]. The interactions between 
soluble Klotho and the extracellular activators of the Wnt/β-
catenin pathway may have negative effects in bone and posi-
tive effects in vessels, a matter of current research.

As mentioned earlier, LGR4 (and also LGR5 and LGR6) 
have been recently identified as second class receptors for 
the R-spos family and it is another regulator of Wnt/β-
catenin pathway [70, 84] through the formation of com-
plexes with recognized Wnt/β-catenin pathway modulators 

action such us Frizzled/LRP [120]. R-spos activates the Wnt/
β-catenin pathway through increasing phosphorylation of the 
Wnt co-receptors LRP5/6. They cannot directly activate the 
Wnt/β-catenin pathway, but they can do it indirectly acting 
as a key receptor for R-spo2, which activates the canonical 
Wnt/β-catenin pathway promoting osteoblast differentiation 
and maturation [121–123]. A similar effect may occur in 
osteoblast-like cells derived from VSMCs to initiate vascular 
calcification. Another member of the family, R-spo1, may 
also play a role in bone formation by synergizing with the 
Wnt ligand Wnt3A to induce osteoblast differentiation and 
OPG expression (99).

The WNT/Β‑CATENIN Pathway Inhibitors 
and Vascular Calcification

As it has been discussed, the Wnt/β-catenin pathway is fun-
damental for bone formation, but it is also implicated in 
vascular calcification [17, 124–126]. The pathophysiology 
of vascular calcification involves a transition of the VSMCs 
to an “osteoblast-like” phenotype; afterwards, a process of 
mineralization takes place in the vessel [127–129]. In this 
transformation, several hormones and proteins are involved 
as a promoters or inhibitors of the vascular calcification. 
It is beyond the scope of this review to list and discuss the 
role of these factors which have been analyzed in detail in 
other publications [130–132] and also in another review of 
this special Calcified Tissue International supplement [133]. 
Among them, the RANK/RANKL/OPG pathway—already 
discussed in this review—and the Wnt/β-catenin pathway 
play an important role in bone and vascular metabolism 
mainly through the inhibitory action of the Wnt/β-catenin 
pathway through Dkk1, sclerostin and the sFRPs. As a result 
of the action of these Wnt/β-catenin pathway inhibitors, 
there is a decrease in the osteoblast differentiation and sur-
vival, reducing bone formation [96–98] (Fig. 2).

During several decades, the excessive PTH suppression, 
mainly due to aluminum and Ca load and overdosing of 
active vitamin D, with the consequent abnormally low serum 
PTH values, has been considered the main responsible of the 
pathogenesis of low bone turnover and low bone formation 
observed in CKD. However, in recent years, this paradigm 
has been challenged; as a result, the pathogenesis of low 
bone turnover is under reconstruction and the inhibitors 
of the Wnt/β-catenin pathway have been blamed as being 
responsible for the early low bone turnover observed in CKD 
patients. In fact, clinical and experimental data, both sup-
ported by bone biopsy, have shown that bone sclerostin is 
increased and bone formation decreased in early stages of 
CKD [17, 109, 134, 135]. Unfortunately, these findings are 
difficult to translate in the clinical practice to guide thera-
peutic decisions, due to the fact there is a poor or a lack of 
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correlation between the bone and serum values of the inhibi-
tors of the Wnt/β-catenin pathway, mainly in sclerostin, the 
most studied molecule [136, 137].

As vascular calcification and bone loss are age-depend-
ent, the association between serum sclerostin levels and age 
has been investigated. A study performed in healthy pre- and 
postmenopausal women (aged 20 to 79 years) showed the 
serum sclerostin significantly increased in postmenopausal 
women after the menopause [138]. Similarly, another study 
showed that serum sclerostin levels were 46% higher in old 
women (mean age, 72.9 years) compared to young women 
(mean age, 30.0 years), but in contrast, sclerostin mRNA 
levels measured in bone biopsies were no different in the 
two groups [139], suggesting the age-dependent decrease 
in glomerular filtration rate may play a role and it should be 
considered in the interpretation of serum sclerostin levels.

In experimental models of CRF, sclerostin increases at 
very early stages, before the increase in P, PTH and FGF23 
[109, 134, 140]. Furthermore, studies in humans [134], in 
a mouse model of slow developing polycystic disease [134, 
140] and in a model of CKD with hyperphosphatemia [109] 
have also shown that the increase in sclerostin in bone pre-
cedes the increase in serum P, PTH and FGF23. In fact, 
the increments of these three factors are a later event which 
coincides with the decrease in bone sclerostin and with the 
increments in other inhibitors of the Wnt/β-catenin pathway 
[109, 134, 140]. In fact, bone biopsies from CKD patients 
have shown the signals of inhibition in the Wnt/β-catenin 
pathway were associated with low levels of sclerostin in 
osteocytes [134], suggesting there may be a contribution 
of the other inhibitors of the Wnt/β-catenin pathway in the 
pathogenesis of low bone turnover [141].

In fact, in vitro studies have shown that although the 
decrease in one Wnt/β-catenin pathway inhibitors is associ-
ated with greater vascular calcification, the increase in other 
Wnt/β-catenin pathway inhibitors may play a role counter-
acting the decrease and attenuating the effect on vascular 
calcification [142–144]. A good example is a study in dia-
betic rats with CRF, in which the neutralization of Dkk1 
with monoclonal antibodies was sufficient to prevent both 
bone and vascular damage [145].

Recent studies analyzing the direct effect of PTH and 
FGF23 on osteoblasts have revealed that elevated PTH inhib-
its not only the increases in sclerostin, but also the increment 
of other Wnt/β-catenin pathway inhibitors and that FGF23 
may have a direct inhibitory effect on the Wnt/β-catenin 
pathway in osteoblasts through the induction of Dkk1 [109]. 
On the contrary, the action of FGF23 would be opposite 
to that of PTH, since high FGF23, through the induction 
of increases in Dkk1, would inhibit Wnt/β-catenin pathway 
in bone contributing to the bone loss, but in vessel could 
attenuate vascular calcification. In addition to these effects, 

sclerostin can influence serum concentration of calcitriol and 
FGF23, both implicated in the mineralization process [146].

The inhibition of sclerostin and other Wnt/β-catenin path-
way inhibitors in bone by high levels of PTH could contrib-
ute to maintaining bone health, but it is important to high-
light that PTH-dependent reduction of the Wnt/β-catenin 
pathway inhibitors in the vessels could favor vascular calci-
fication. Indeed, as mentioned earlier, recent studies in rats 
with CKD exposed to different concentrations of PTH sug-
gest that elevated PTH favors vascular calcification. Instead, 
normal circulating PTH levels appeared to be protective of 
aortic calcification despite high serum P [17].

It is important to highlight that even though the sclerostin 
inhibitors, such as Romosozumab, is one of the most prom-
ising therapeutic targets in the prevention and treatment 
of bone fragility fractures [147], its use in CKD patients 
is still a matter of controversy [148, 149]. In fact, Romo-
sozumab could have a negative action in the vascular system 
where the “natural” inhibition of the Wnt/β-catenin pathway 
observed when severe vascular calcification is present can 
play an important role protecting the vascular wall from fur-
ther vascular mineralization.

Studies in animals with CKD and severe aortic calcifica-
tion showed an increased aortic gene expression of some 
members of the sFRPs family (sFRPs 1, 2 and 4), suggest-
ing the inactivation of Wnt/β-catenin pathway in the ves-
sels wall may constitute a “natural” protective mechanism 
against the progression of vascular calcification [109, 124]. 
Thus, according to the present knowledge from experimental 
models, we can hypothesize that the increase in PTH—a 
potent sclerostin suppressor—progressively reduces the 
expression of sclerostin and the increment in other inhibi-
tors, such as Dkk1 and/or sFRPs, of the Wnt/β-catenin path-
way could compensate the sclerostin reduction, helping to 
protect from further vascular calcification [109, 124, 130]. 
However, another recent study has reported the hypothesis 
that the increased levels of serum sclerostin probably origi-
nating from excessive local production in calcified vessels 
may contribute to the linkage between vascular disorders and 
impaired bone mineralization [150].

Cardiac Impact

Among the cardiovascular disorders associated to abnor-
mal Wnt/β-catenin pathway activation, the abnormalities 
in left ventricular (LV) structure and function are also 
important. LVH is a well-recognized cardiovascular disor-
der, which occurs early in the course of CKD [151, 152]. 
Cardiomyocytes and fibroblasts are the cells implicated in 
the abnormal remodeling process leading to LVH, the car-
diomyocytes increase their size, and the fibroblasts increase 
collagen synthesis prompting the onset of fibrosis. These 



446 N. Carrillo-López et al.

1 3

changes progressively lead to cardiomyocyte apoptosis or 
necrosis, and the cardiomyocytes are replaced by fibroblasts 
and extracellular collagen [153]. In addition, PTH promotes 
apoptosis of the cardiomyocytes [154], which in the long 
term either causes or exacerbates myocardial fibrosis.

Several clinical studies have shown that high PTH lev-
els are associated with LVH [155, 156]. Recently, it was 
demonstrated that myocardial specific R-spo3 acts mainly 
through the LGR4 receptor to promote coronary stem cell 
proliferation in the developing heart [157], demonstrating 
that this receptor and its ligand have an important role in 
heart development. Moreover, abnormalities in the canonical 
Wnt/β-catenin pathway are fundamental in the establishment 
of cardiac lesions. Indeed, activation of β-catenin induces 
cardiomyocyte hypertrophy and myofibroblastic transfor-
mation of cardiac fibroblasts, increasing their ability to 
produce and secrete interstitial matrix components such as 
fibronectin and collagen I [158]. Furthermore, a high OPG/
RANKL ratio has been independently associated with LVH 
and abnormal LV structural remodeling in male overweight/
obese children and adolescents [159]. A better knowledge of 
the mechanisms that modulate the appropriate function of 
the discussed pathways may provide relevant information on 
novel therapeutic targets to attenuate LVH and myocardial 
fibrosis in CKD.

FGF23 is also elevated in CKD patients and it has been 
also related as a cause of LVH [160]. Some authors have 
speculated that FGF23 could develop LVH through the Wnt 
signaling activation. In fact, the Wnt signaling inhibition 
improves cardiac function and could attenuate LV changes 
[114, 161].

Final Comments

In summary, a better understanding of the intricate regu-
lation of the RANK/RANKL/OPG/LGR4 and the Wnt/β-
catenin pathways in bone and vessels is a highly needed 
step to improve the diagnosis and treatment of these CKD 
complications.

The design of therapeutic strategies to prevent the dete-
rioration of the bone-vessel axis in the progression of CKD 
requires a much better understanding of the interaction 
between classic factors such as Ca, P, calcitriol, PTH and 
FGF23 with the activation and inactivation of the RANK/
RANKL/OPG system and the Wnt/β-catenin pathway. 
Unfortunately, still it is not possible to translate into the 
clinical practice a great part of the new important and chal-
lenging information discussed in this review because still 
in many of them, the serum levels of the components of the 
two main pathways are not able to predict their changes at 
bone and vascular level.
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