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Abstract
Inorganic phosphate is a vital constituent of cells and cell membranes, body fluids, and hard tissues. It is a major intracel-
lular divalent anion, participates in many genetic, energy and intermediary metabolic pathways, and is important for bone 
health. Although we usually think of phosphate mostly in terms of its level in the serum, it is needed for many biological 
and structural functions of the body. Availability of adequate calcium and inorganic phosphate in the right proportions at 
the right place is essential for proper acquisition, biomineralization, and maintenance of mass and strength of the skeleton. 
The three specialized mineralized tissues, bones, teeth, and ossicles, differ from all other tissues in the human body because 
of their unique ability to mineralize, and the degree and process of mineralization in these tissues also differ to suit the 
specific functions: locomotion, chewing, and hearing, respectively. Biomineralization is a dynamic, complex, and lifelong 
process by which precipitations of inorganic calcium and inorganic phosphate divalent ions form biological hard tissues. 
Understanding the biomineralization process is important for the management of diseases caused by both defective and 
abnormal mineralization. Hypophosphatemia results in mineralization defects and osteomalacia, and hyperphosphatemia 
is implicated in abnormal excess calcification and/or ossification, but the exact mechanisms underlying these processes are 
not fully understood. In this review, we summarize available evidence on the role of phosphate in biomineralization. Other 
manuscripts in this issue of the journal deal with other relevant aspects of phosphate homeostasis, phosphate signaling and 
sensing, and disorders resulting from hypo- and hyperphosphatemic states.
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Introduction

Phosphate (Pi) is a vital constituent of cells and cell mem-
branes as well as of body fluids and tissues, it is a major 
intracellular divalent anion, participates in many genetic, 
energy and intermediary metabolic pathways, and is impor-
tant for bone health [1–3]. Availability of calcium (Ca) and 
inorganic phosphate (Pi) in the right proportions at the right 
place is crucial for proper acquisition, biomineralization of 
collagen fibrils, and maintenance of mass and strength of 

bones and teeth [4], the two hardest tissues in human body. 
Among the various micronutrients in bone, Ca and Pi are 
the two major components of hydroxyapatite, the crystalline 
mineral component of the extracellular organic matrix of 
bone. Phosphate metabolism, distribution, intracellular sign-
aling, physiological and pathological perturbations causing 
hypo- and hyperphosphatemia, and clinical aspects of phos-
phate excess and depletion are dealt with in other sections 
in this issue of the journal. Accordingly, in this section, we 
will focus exclusively on the role of phosphate in biomin-
eralization, and more specifically, in bone and other tissue 
mineralization. A knowledge and understanding the role of 
phosphate in biomineralization processes are essential to 
manage patients with disorders of phosphate metabolism 
and the associated abnormal biomineralization of bone and 
other tissues.
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Distribution and Role of Phosphate 
in the Body

Although we think of phosphate mostly in terms of its 
level in the serum, which is maintained within a narrow 
range for many biological and structural functions of the 
body, phosphate is also an integral part of bones, tissues, 
cells and cell membranes. In a typical Western diet con-
tains 1000–1600 mg of Pi/day, of which 3 mg/kg body-
weight/day enters the extracellular fluid with consequent 
exchange with bone as required [5, 6]. Bone contains about 
99 and 80% of the total body content of Ca and Pi with a 
mass ratio of 2:2. Both these divalent ions exist in soluble 
and semi-soluble form in body fluids, cells and cell mem-
branes, and phosphate circulates in the blood in free form, 
bound to protein, and as complex with Ca. A 70 kg individ-
ual has approximately 500–800 g of total body phosphate, 
80% of which is in the form of hydroxyapatite crystal in 
bone and 20% as intracellular component. Intracellularly, 
phosphate is present predominantly in the organic form in 
nucleic acids and nucleoproteins. In contrast, both organic 
and inorganic forms of phosphate are present in serum, the 
latter is measured routinely by standard methods in clini-
cal laboratories. At physiological pH of 7.40, phosphate 
exists as a mixture of ions (orthophosphates): HPO2− and 
H2PO4− in a ratio of 4:1. Normal physiological functions 
of phosphate are manifold: it is the major source of high 
energy phosphate bonds (ATP) required ubiquitously 
for cellular homeostasis-muscle contraction, electrolyte 
transport, etc.; it is an integral part of intracellular mes-
senger system including cyclic adenosine and guanosine 
monophosphates (c-AMP; c-GMP); it is required, for the 
synthesis phospholipid bilayer of all cell membranes; it is 
involved in the formation of 2,3-diphosphoglycerol that 
regulates oxygen delivery to tissues, and acts as a buffer 
to maintain normal blood pH and plays a significant role in 
immune functions and coagulation cascade (also see other 
chapters in this issue).

The Process of Biomineralization

The three most mineralized tissues (bones, teeth, and ossi-
cles) are specialized organs that differ from all other tis-
sues in the human body because of their unique ability to 
mineralize [7, 8]. Interestingly, the degree and process of 
mineralization in bone, teeth, and ossicles also differ to 
suit the specific functions of these hard tissues: locomo-
tion, chewing, and hearing, respectively. Biomineralization 
is a dynamic, complex, and lifelong process by which pre-
cipitations of inorganic Ca and Pi to form biological hard 

tissues such as bone, cementum, dentin, and enamel [8, 9]. 
Understanding the biomineralization process is important 
for the management of diseases caused by both defective 
and abnormal mineralization [10–15]. Throughout life 
bone and teeth, but not ossicles, are subject to processes 
of mineralization and demineralization on a constant and 
continual basis required for renovation of these hard tis-
sues [9]. Notwithstanding the significant progress made 
in our understanding of bone biology several questions 
remain: What are the initial steps in biomineralization? 
How is the temporal and spatial regulation of matrix 
production and biomineralization integrated and accom-
plished? Why does biologic mineralization normally occur 
only in certain types of tissues but not in others? Why, 
and under what circumstances, does abnormal biominer-
alization occur? Is non-skeletal biomineralization such as 
that occurs in muscles, tendons, cartilage, and blood ves-
sels dependent on ambient Pi or due to underlying tissue 
characteristics? Are any other cells involved in biominer-
alization besides the osteogenic cells? Nevertheless, con-
sidering that mineralized hard tissue formation in vivo is 
governed by a combination of cellularly driven processes 
and thermodynamics, biomineralization should be consid-
ered both biological and chemical in nature [16].

Phosphate, Ca and type-1 collagen fibrils are the major 
building blocks of bone tissue aided by key enzymes 
[17–20]. In humans, free phosphates also have control over 
the formation of new mineral by influencing a wide variety 
of cells (chondrocytes, osteoblasts, and osteocytes), signal-
ing molecules, and enzymes [16] (see other chapters in this 
issue). Not surprisingly serum phosphate concentrations 
vary considerably with age, higher in infants and children 
(1.5–2.65 mM) and decline during adulthood (0.8–1.5 mM) 
[21]. This is most likely because of higher requirements for 
phosphate needed for bone growth, optimal bone mineraliza-
tion, and to achieve peak bone mass in infants and growing 
children.

The first step in biomineralization process, at least in 
bone, appears to be the nucleation of Ca–Pi crystals within 
the matrix vesicles (Fig. 1) [4, 22, 23], followed by formation 
of amorphous Ca–Pi (ACP) phase with gradual transition to 
Ca–Pi crystal nucleation resulting in hydroxyapatite crys-
tal [4, 24]. The Ca–Pi crystal nucleation takes place within 
the matrix vesicles that bud from the plasma membrane of 
osteogenic cells [25]. The matrix vesicles are endowed with 
two key enzymes, tissues non-specific alkaline phosphatase 
(TNSALP) and PHOSPHO-1, and Na/Pi cotransporter to 
generate and accumulate Pi from organic phosphate com-
pounds (Fig. 1). TNSALP hydrolyzes inorganic pyrophos-
phate (PPi), adenosine triphosphate (ATP) and protein-P, 
whereas PHOSPHO-1 generates Pi from phosphatidyl cho-
line (PC) and phospho-ethanol amine (PEA). In addition, 
Pi is actively transported into the matrix vesicles from the 
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plasma by Na/Pi cotransporters (Fig. 1). In humans, bio-
logic mineralization occurs by precipitation Ca and Pi in the 
presence of collagenous and non-collagenous proteins, poly-
saccharides at a pH of 7.4, and an ambient temperature of 
37 °C [16]. Both H2PO4

− and HPO4
2−, the two most impor-

tant orthophosphate ions, react avidly with aqueous Ca ions 
resulting in the nucleation and subsequent growth of biologi-
cally relevant mineral complexes, providing a chemical basis 
for biomineralization [16]. Whether such a sequence occurs 
in tissues other than bone is less clear.

Additional supporting evidence for biomineralization 
process comes from the classical in vivo electron micro-
probe studies that demonstrated a rapid initial deposition 
of mineral when the Ca–Pi ratio of 1.35 with a further slow 
increase in the deposition of minerals up to a ratio of 1.6 
over a few days [26]. One possible sequence in the forma-
tion of bone mineral (or hydroxyapatite crystals) is that 
brushite, tricalcium phosphate, octocalcium phosphate, and 
hydroxyapatite are formed in succession (Fig. 2a, b). An 
alternate pathway is that a trimer of amorphous tricalcium 
brushite or three dimers of amorphous brushite are interme-
diate products before transitioning to hydroxyapatite crystal 
in bone. In either case, there is sequential addition of cal-
cium and phosphate from the extracellular fluid to bone, 
but these steps are phase transformations [27], not exactly 
true chemical reactions. In bone, the mineral ultrastructure 
organization, morphology, and composition are crucial for 
its mechanical and biological functions. Osteocalcin and 
osteopontin play specific roles in the biomolecular regula-
tion of mineral content in bone, the quality of bone mineral, 

and regulate bone mineral crystal size, shape, and organiza-
tion. While osteocalcin predominantly regulates the physical 
properties of bone mineral, osteopontin plays a major role in 
the regulation of mineral composition [28].

Bone Mineralization

As discussed broadly with respect to the process of biomin-
eralization, the basic template for bone formation is osteoid 
deposited by osteoblasts [29]. This unmineralized matrix, or 
osteoid, forms a scaffold for subsequent mineral deposition 
and bone formation. Osteoid is composed of organic materi-
als, the major component of which is type-1 collagen [30]. 
The exact role of this phase in the infiltration of mineral 
precursors and the subsequent evolution of highly oriented 
hydroxyapatite crystals remains unknown. Several non-col-
lagenous proteins, pH, and enzymes influence hydroxyapa-
tite crystal formation in addition to the availability of appro-
priate ratio of Ca–Pi ions. There is growing evidence that 
orthophosphate mineral precursors are formed separately 
before integrating with collagen [16, 18]. The orthophos-
phates required for biomineralization is provided in the form 
of inorganic phosphate (Pi) and the optimal Ca × Pi product 
for proper mineralization is ~ 40. At a Ca × P product of 60 
represents the saturation product above which spontaneous 
precipitation of ca-phosphate salt may occur in non-skeletal 
tissues [31].

As best as we currently understand, for proper and opti-
mal mineralization of bone, at a minimum, requires two prin-
cipal processes: synthesis of mature lamellar bone matrix by 
osteoblasts and exposure of the newly synthesized lamellar 
bone matrix to optimal calcium × phosphate product insured 
by the mineral homeostatic system regulated by parathyroid 
hormone (PTH), vitamin D, and fibroblast growth factor-23 
(FGF-23; and see other chapters) [32, 33]. Any abnormality 
in either component will result in defective mineralization 
(Tables 1, 2).

Role of Phosphate in Chondrocytes 
and Bone Cells

Attaining the full potential of adult height and achieving 
maximal peak bone mass require longitudinal bone growth 
and maximal consolidation of mineral into bones during 
growth period. Therefore, it is not surprising that these two 
important biological processes require participation of cells, 
hormones and minerals, each of which are interconnected 
and interdependent [2, 7, 34–39]. Both Ca and Pi influence 
bone cells, and their differentiation and function as well as 
mineralization process. Since hypophosphatemia is common 
in all types of rickets, much of the research is focussed on 

Fig. 1   Schematic depiction of initial step in bone mineralization. ATP 
adenosine triphosphate; Ca calcium; HA hydroxyapatite; Na sodium; 
Pi inorganic phosphate; PPi inorganic pyrophosphate; PEA phos-
phoethanolamine; TNSLAP tissue non-specific alkaline phosphatase
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the study of the effect of hypophosphatemia on chondro-
cytes. An orderly process of proliferation of resting chondro-
cytes and their differentiation into pre-hypertrophic, hyper-
trophic and terminally differentiated mature chondrocytes 
is necessary for longitudinal bone growth [40]. Adequate 
amounts of Pi are critical for the induction of apoptosis of 
mature chondrocytes in the growth plate [36, 38], without 
which the normal physiological chain of events fail resulting 
in expansion of growth plate, which is manifested as rick-
ets and delayed growth [41, 42]. Under normal conditions, 
hypertrophic chondrocytes secrete angiogenic factors that 
promote vascular invasion [37], undergo apoptosis [36–38], 
and are replaced by mineralized bone. The chondrocyte 

apoptotic pathway is facilitated by phosphate-regulated 
activation of the caspase-9-mediated mitochondrial pathway 
[38]. Since rickets caused either by vitamin D deficiency 
or ablation of vitamin D receptor (VDR) can be rescued 
by adequate dietary Ca and Pi suggest that rickets is not a 
direct consequence of impaired VDR action, but rather, is 
due to the resultant hypocalcemia, hypophosphatemia, or 
hyperparathyroidism [38, 39].

Other osteogenic cells are also involved in bone minerali-
zation. Crucial to the activity of osteoblasts and osteocytes 
in the process of matrix mineralization is the maintenance of 
adequate ambient Pi levels [2, 3]. Matrix vesicles arise from 
the cell membranes of osteoblasts and osteoblast lineage [7, 

Octocalcium phosphate: Ca8(PO4)4(HPO4)2

Amorphous Calcium Phosphate (ACP)

Secondary Calcium Phosphate: 4CaHPO4

Ter�ary Calcium Phosphate: 2Ca3(PO4)2 + 4H+

Hydroxyapa�te Crystal: Ca10(PO4)6(OH)2 + 4H+

A

B

Fig. 2   a A simplified schematic depiction of sequential phase trans-
formation of amorphous calcium phosphate to hydroxyapatite crystal 
formation. b Schematic depiction of different phases in bone miner-
alization. A Ca (red color filled circles) and Pi (lavender color filled 
circles) ions are co-localized in the physiological milieu. B The two 
divalent ions associate in a ratio of 1.5 to form Posner’s clusters. C 

Posner’s clusters agglomerate to form amorphous calcium phosphate 
(ACP) particulates. D ACP transforms into crystalline hydroxyapatite 
(HA) phase with a Ca:Pi ratio of 1.67. E The HA nanocrystals are 
then incorporated into collagen fibrils, mineralizing the organic scaf-
fold (modified from [16]
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23, 25], and osteocytes produce FGF-23 to regulate phos-
phate homeostasis to protect osteogenic cells from hyper-
phosphatemia, which negatively impacts osteoblasts and 
practically result in cell death [2, 32].

Abnormal Biomineralization

In contrast to some understanding of the physiological nor-
mal mineralization of bone, teeth and ossicles, the patho-
genesis of abnormal biomineralization is poorly understood. 
Nevertheless, research in the last two decades has shed light 
on our understanding of the non-skeletal calcifications and 
mineralization processes. The most extensively studied is the 
vascular calcifications in the context of chronic kidney dis-
ease (CKD) in which hyperphosphatemia plays a dominant 
role [43–48]. Several complex pathological mechanisms are 
implicated in the development of vascular, valvular and soft 

tissue calcifications, including trans-differentiation of vas-
cular smooth muscle cells to osteo/chondrogenic phenotype 
[49], apoptosis of vascular smooth muscle cells [50], insta-
bility and release of extracellular vesicles loaded calcium 
and phosphate [51], and elastin degradation [52]. Also, defi-
ciency of inhibitors of mineralization such as pyrophosphate 
contributes to abnormal calcification process [47, 49]. How-
ever, it is unclear why abnormal biomineralization outside 
the skeleton necessarily does not become bone.

In classical osteomalacia, deficiency of key divalent ions 
(calcium and phosphate), however produced, results in the 
accumulation of unmineralized bone matrix (or osteoid) 
[10, 11, 41]. In contrast, in bone disorders that resemble 
osteomalacia or “osteomalacia like” or sometimes referred to 
interchangeably as “hyperosteoidosis”, the osteoid accumu-
lation is a consequence of disturbances outside of these two 
principal components. In hypophosphatasia [53], it is the 

Table 1   Contrasting 
biochemical and bone 
histomorphometric features 
of vitamin D and phosphate 
deficiency osteomalacia

* Occasionally high due to severe hypocalcemia causing renal resistance to PTH action [85]
¶ Except in patients with tertiary hyperparathyroidism due to long term oral phosphate therapy [86]
§ Decreased only in acquired forms of hypophosphatemia most likely due to associated deficiency of vita-
min D or calcium or both. Modified from reference [87]

Measurement Vitamin D deficiency Phosphate deficiency

Serum calcium Normal or low Almost always normal¶

Serum phosphate Normal or low* By definition < 2.5 mg/dl
Serum PTH ↑ or ↑↑ Normal¶

Serum alkaline phosphatase Almost always elevated Almost always elevated
Osteoclast surface ↑↑ Normal¶

Marrow fibrosis Frequent Almost never¶

Cortical thickness ↓↓ Normal or ↑ or ↓§

Cancellous bone volume Normal or↓ Normal or ↑ or ↓§

Table 2   Representative values 
for bone histomorphometry 
in vitamin D and phosphate 
deficiency osteomalacia

Note higher mean values for OS, O.Th, OV, TBV, and CBV in phosphate deficiency osteomalacia, and 
lower mean value for C.Th in vitamin D deficiency osteomalacia, a characteristic feature due to associated 
secondary hyperparathyroidism
Differences in bone volumes and C.Th are not significant since the phosphate deficiency osteomala-
cia group is a mixture of both hereditary and acquired (tumor induced and tenofovir treated) hypophos-
phatemic osteomalacia. Bone volumes C.Th. are high in hereditary forms, but are low in the acquired 
forms [10]
OS osteoid surface, BS bone surface, O.Th osteoid thickness, OV osteoid volume, ES eroded surface, NOS 
non-osteoid surface, BV trabecular bone volume, TV total tissue volume, CBV cortical bone volume, C.Th 
cortical thickness

Measurement Vitamin D deficiency Phosphate deficiency Reference range

OS/BS (%) 61.3 ± 18.0 70.1 ± 15.9 21 ± 11
O.Th (µm) 29.7 ± 10.5 38.0 ± 12.2  < 12.5
OV/BV (%) 21.7 ± 11.5 33.6 ± 19.1 2.6 ± 1.4
ES/NOS (%) 5.27 ± 3.59 1.99 ± 1.53 4 ± 2
TBV/TV (% TV) 24.4 ± 9.97 26.4 ± 16.1 20 ± 6
CBV/TV (%) 84.1 ± 23.4 92.5 ± 45.7 94.5 ± 2.5
C.Th (cm) 0.51 ± 0.35 0.94 ± 0.71 1.27 ± 0.37
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enzyme deficiency, whereas in Paget disease of bone [54], 
fibrous dysplasia [55], fibrogenesis imperfecta ossium [56], 
and osteogenesis imperfecta [57], it is the abnormal bone 
matrix due either to abnormal collagen fibrillar arrangement 
or to mutations in type-1 collagen genes. In drug-induced 
bone disorders that are associated with prolonged treatment 
with etidronate [58], fluoride [59, 60], aluminum [61, 62], 
or iron excess [63], the mineralization defect is the result 
of the toxic effects of these drugs inhibiting matrix miner-
alization [64]. Understanding the fundamental differences 
in the pathogenesis of defective mineralization of bone in 
different disease states and conditions is critical for clinical 
management as many disorders that mimic osteomalacia do 
not respond to vitamin D therapy as the word osteomala-
cia might imply [41]. With a very few exceptions (adefovir, 
adefovir, and tenofovir-induced osteomalacia [65–67], and 
that associated with renal failure [62], the serum phosphate 
levels are generally normal in these various bone disorders.

Role of Phosphate in Abnormal Mineralization

Several types of calcifications, enthesopathy, and ossifica-
tion occur in a variety of conditions and disorders; some are 
associated with hyperphosphatemia, others with hypophos-
phatemia, and still others without any abnormalities in cal-
cium and phosphate homeostasis (Table 3). Calcification 
of tendons (calcific tendinitis) [68], cartilage (chondroc-
alcinosis) [69], and soft tissues (metastatic and dystrophic 
calcifications [70, 71], can occur in various conditions and 
in aging, but their pathogenesis is poorly understood. In 
most such instances the serum phosphate levels are normal 
except in patients with associated CKD [48, 49]. Chondro-
calcinosis and corneal calcifications (band keratopathy) 
have been described both in patients with primary hyper-
parathyroidism with hypophosphatemia, but with signifi-
cant hypercalcemia [72, 73], and in patients with uremic 
secondary hyperparathyroidism with hyperphosphatemia 
with variable concentrations of serum Ca levels [74, 75]. 

Calciphylaxis, an uncommon serious complication seen in 
patients with CKD is often, but not always, associated with 
hyperphosphatemia, and responds sometimes to parathy-
roidectomy [76]. Enthesopathy, a common complication of 
X-linked hypophosphatemic disorders (XLH), is associated 
with hypophosphatemia rather than hyperphosphatemia, and 
its pathogenesis remains largely elusive, but FGF-23-Klotho 
axis has been implicated [77, 78]. In contrast, basal gan-
glion calcifications, a characteristic feature of patients with 
all varieties of hypoparathyroidism, is associated with hyper-
phosphatemia and hypocalcemia [79, 80], but such intracra-
nial calcifications have also been described in patients with-
out the abnormalities in divalent ion mineral homeostasis 
[81]. More recently, therapeutic use of FGFR inhibitors to 
treat certain cancers is associated with hyperphosphatemia 
and calcinosis cutis [82]. Tumoral calcinosis is another 
interesting entity, first described in 1943, and occurs with or 
without hyperphosphatemia [83]. Even the least understood 
abnormal biomineralization is heterotopic ossification, the 
pathogenesis of which remains unknown [84].

Summary

Biomineralization is a complex and dynamic lifelong 
process necessary to maintain both the structural and the 
functional integrity of the skeleton. Inorganic phosphate 
is an essential nutrient needed for many genetic, energy, 
and intermediary metabolic pathways as well as function 
of the osteogenic cells. Availability of adequate calcium 
and inorganic phosphate in the right proportions, at the 
right place, and at the right time is critical for proper 
acquisition, biomineralization, and maintenance of mass 
and strength of the skeleton. Hypophosphatemia results in 
mineralization defects and osteomalacia, and hyperphos-
phatemia is implicated in abnormal excess calcification 
and/or ossification, but the exact mechanisms underlying 
these processes are not fully understood. In this review we 

Table 3   Types of abnormal 
calcification and mineralization 
associated with or without 
abnormalities in serum 
phosphate levels

Type of abnormality Hypophosphatemia Hyperphosphatemia

Basal ganglion calcification No Often, but not always
Calciphylaxis No Yes, exclusively in CKD patients
Calcinosis cutis No Yes, but not always
Chondrocalcinosis Yes Yes
Corneal calcifications Yes (with hypercalcemia) Yes (with or without hypercalcemia)
Enthesopathy Yes Uncertain
FGF-receptor inhibitor therapy No Yes
Heterotopic ossification No No/yes
Metastatic/dystrophic No Yes, but not always
Tumoral calcinosis No Almost always elevated
Vascular and valvular calcification No Yes
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summarize available evidence on the role of phosphate in 
biomineralization. Other papers in this issue of the journal 
deal with other relevant aspects of phosphate homeostasis, 
phosphate signaling and sensing, and disorders resulting 
from hypo- and hyperphosphatemic states.
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