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Abstract
This special issue article will focus on morphologic and functional roles of vitamin D in muscle, from strength to contrac-
tion to development and ageing and will characterise the controversy of VDR’s expression in skeletal muscle, central to our 
understanding of vitamin D’s effects on this tissue.
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Introduction

Osteomalacia and rickets are classical disorders of bone 
and mineral homeostasis. Defective skeletal mineralisation 
due to deficiency of vitamin D and substrates necessary for 
hydroxyapatite deposition, namely calcium and phosphate, 
are predominant mechanisms. However, effects of vitamin 
D on muscle are less well recognised. In the clinic, muscle 
weakness, pain and hypotonia are observed in subjects with 
severe vitamin D deficiency. Under the microscope, changes 
in muscle fibre size with preferential atrophy of type 2 (i.e. 
fast twitch) muscle fibres are seen and on electromyogram 
(EMG), reduced motor unit action potentials have long been 
reported in patients with vitamin D deficiency [1, 2]. In fact, 
in his seminal report on rickets in 1645, Daniel Whistler 
gave equal credence to the muscle and bone defects seen 
in children with this condition (i.e. he described both their 
“flabby, toneless muscles and flexible, waxy bones”) [3].

Vitamin D deficiency is generally defined as a 25-OH-
vitamin D less than 50 nmol/l (~ 20 ng/ml) [4], but seasonal 
variations, ethno-specific differences, body composition 
and alterations in the vitamin D-binding globulin amongst 

individuals may impact on “normal” levels. Optimal levels 
of vitamin D for musculoskeletal function may be lower than 
this threshold, and levels > 20 nmol/l (~ 8 ng/ml) are needed 
for calcium homeostasis.

How does vitamin D exert such critical effects on skel-
etal muscle? Attempts to answer this seemingly straight-
forward question have met challenges and controversy over 
the decades. The answer begins with the vitamin D receptor 
(VDR), a cognate nuclear receptor to which the active hor-
mone, 1,25(OH)2Vitamin D (calcitriol) binds to exert both 
genomic and non-genomic effects in cells. The VDR is the 
modus operandi by which vitamin D exerts its diverse effects 
in physiology, from a central role in calcium and mineral 
homeostasis to non-classical effects on cell division, tissue 
pleiotropy, fibrosis and immune modulation [5]. The VDR is 
widely expressed, both at classical sites of vitamin D activity 
including intestine, parathyroid and bone, and non-classical 
sites such as immune cells, the mammary gland and brain 
[6]. However, its presence in skeletal muscle has been hotly 
contested for years. This special issue article will focus on 
morphologic and functional roles of vitamin D in muscle, 
from strength to contraction to development and ageing and 
will characterise the controversy of VDR’s expression in 
skeletal muscle, central to our understanding of vitamin D’s 
effects on this tissue. * Christian M. Girgis 

 christian.girgis@sydney.edu.au
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Vitamin D Receptor and Muscle

We have learnt a great deal about the VDR since its dis-
covery in 1974 by Brumbaugh and Haussler [7]. Key 
insights in its biological activity, its protein and struc-
tural composition examined by xray crystallography and 
conformational changes induced by binding to its ligand 
have come to light [8]. It exerts its effects on the genome 
by binding to its ligand 1,25(OH)2D together with Reti-
noid X-receptor (RXR) to form a transcription factor 
complex (1,25D-VDR-RXR). However, VDR also func-
tions as an orphan nuclear receptor, that is, by direct bind-
ing to DNA without its ligand. VDR’s ligand-bound and 
orphan nuclear effects differ, the former possibly being 
responsible for its classical effects in skeletal and mineral 
homeostasis and the latter being associated with its less 
classical effects, such as the maintenance of healthy hair 
follicles. Hence, mice with whole-body VDR knockout 
display alopecia (i.e. hair loss), an effect that is not seen in 
subjects with ligand deficiency (i.e. low levels of vitamin 
D) [5]. Classical effects of ligand deficiency (i.e. vitamin 
D and 1,25(OH)2D deficiency) include reduced intestinal 
absorption of calcium and phosphate, reduced substrate 
for hydroxyapatite formation and subsequent osteomalacia 
(impaired mineralization of bone).

VDR is widely expressed in nature, in vertebrates and 
invertebrates, fish, avian species and mammals, and its 
expression spans a wide range of tissues and organs. How-
ever, its presence in skeletal muscle has been unclear for 
some time. Confirmation of VDR’s expression in skeletal 
muscle is essential in determining whether vitamin D’s 
effects are direct or indirect effects in this tissue. A num-
ber of issues have confounded the clear demonstration of 
this nuclear receptor in muscle. These include the hetero-
geneous, multi-cellular nature of skeletal muscle which 
comprises muscle fibres (i.e. a multinucleated, contractile 
syncytia of mycoytes) in addition to extracellular matrix, 
fibroblasts and satellite cells; time-dependent changes in 
VDR expression during the process of muscle develop-
ment and; technical, experimental factors, such as the low 
specificity of VDR antibodies [9].

Through a wide range of techniques, including scintil-
lation autoradiography, binding studies [10, 11], Reverse 
transcription polymerase chain reaction (RT-PCR) [12] 
and immunohistochemistry [13], VDR has been demon-
strated in cultured myocytes of avian, murine and human 
origin. Table 1 summarises studies examining VDR’s pres-
ence in skeletal muscle. Thirty years ago, in one of the 
first descriptions of VDR in human muscle cells, Costa 
and colleagues reported specific binding of tritiated 
1,25-(OH)2D3 with a protein component, presumably the 
VDR, with dose-dependent increases in the expression of 

CYP24A1, the classic VDR target gene [11]. VDR mRNA 
has been detected in muscle, both in cultured muscle cells 
and whole muscle tissue, but at much lower (4000-fold 
difference) levels compared to classical sites of VDR 
expression such as the duodenum [14]. Because RT-PCR 
is an exquisitely sensitive method that uses amplification 
of mRNA levels to produce a signal, the relevance of such 
low transcript levels of VDR in muscle that are found by 
this method remains unclear.

Contradictory reports on the detection of VDR protein 
by western blot and immunohistochemistry have been pub-
lished [15–17]. Using a specific VDR antibody (D6-Ab), 
VDR protein was either detected at low levels [14] or not at 
all [17, 18] in skeletal muscle from mice and adult humans. 
In contrast to RT-PCR which is exquisitely sensitive, pro-
tein detection methods may not be sufficiently sensitive to 
detect extremely low levels of VDR in muscle at baseline. 
However, priming VDR by treatment with its ligand may 
lift levels above a critical threshold of detection. To support 
this, VDR protein was detected in the quadriceps of older 
human subjects following a course of oral vitamin D sup-
plementation [19, 20].

Taking a novel approach to the question of whether VDR 
is present in muscle, Lee and colleagues explored whole-
body expression patterns of VDR in a mouse model in which 
native VDR was replaced with a VDR transgene expressing 
luciferase, using a bacterial artificial chromosome (BAC)) 
[21]. Luciferase refers to a group of enzymes that produce 
bioluminescence. The BAC-VDR protein was not detected 
in adult muscle using western blot, immunohistochemistry 
or luciferase studies, but by comparison was expressed at 
classical sites of vitamin D action. Reasons for this lack of 
VDR expression in muscle may be methodological. Owing 
to the relatively low baseline levels of VDR in muscle, a 
finite amount of BAC-VDR in this model may be preferen-
tially expressed in classical VDR sites.

A number of in vitro studies have characterised the activ-
ity of VDR in cultured myoblasts. Rapid translocation of 
VDR from nucleus to the cytoplasm was demonstrated fol-
lowing treatment of myoblasts with the ligand 1,25(OH)2D3 
[16, 22], a process dependent on microtubular transport. 
VDR interacted with a range of intracellular signalling 
pathways, the tyrosine phosphorylation cascade, [23], and 
membrane-scaffolding proteins such as caveolin-1 [16]. Fol-
lowing prolonged treatment of myoblasts with 1,25(OH)2D3, 
VDR translocated back to the nucleus to carry out its role in 
regulating transcription [24]. Hence, depending on its loca-
tion within the cell and exposure times to its ligand, VDR 
participated in both rapid and genomic actions in these cul-
tured myoblasts.

VDR levels within muscle may change over time, par-
ticularly across the various stages of muscle develop-
ment. Studies employing tissue culture report substantially 
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greater levels of VDR in immature muscle cells, myoblasts 
and muscle precursor cells, as opposed to fully differenti-
ated myotubes and whole muscle fibres [14, 18]. Newborn 
mice, whose muscles are actively involved in the process 
of secondary myogenesis (a process that occurs in utero in 
humans) express significantly higher levels of muscle VDR 
than 3-week old mice and adult mice [14]. However, follow-
ing muscle injury in adult mice, the process of post-natal 
muscle repair is activated, essentially a recapitulation of 
embryonic myogenesis, and a significant increase in mus-
cle VDR is seen [25, 26]. Therefore, higher VDR expression 
levels in primordial muscle cells and newborn mice, together 
with muscle fibres undergoing repair support a pleiotropic 
role of VDR in muscle and potential effects in muscle devel-
opment and repair. It is conceivable that VDR in adult mus-
cle may sequester within satellite cells and hence, escape 
detection on assays that examine whole muscle tissue.

In summary, the controversy of VDR’s presence in skel-
etal muscle has stemmed from wide differences in muscle 
models used to answer this question, non-specificity of VDR 
antibodies, and protein detection methods that may be insuf-
ficiently sensitive to detect low levels of VDR protein in 
this tissue. Low baseline levels do not preclude a biologi-
cal role for VDR in this tissue. Indeed, transcription fac-
tors are known to exert genomic effects even at low levels 
of expression, dependent on their binding affinity to DNA 
[27]. In addition, VDR may sequester within a specific cell 
population, such as satellite cells, and thus escape detection 
methods employing whole muscle (in which satellite cells 
comprise a minority, i.e. ~ 5% cells in adult muscle) [28]. 
To date, evidence indicates that VDR is indeed expressed 
in muscle but at very low baseline levels in adults. VDR in 
muscle predominates in precursor cells and in developing 
and regenerating muscle fibres, and hence its activity in this 
tissue appears related to muscle development and pleiotropy.

Vitamin D and Muscle Development

The VDR makes its first appearance early during embryonic 
life (i.e. day 13 in rats) and is initially expressed within the 
mesoderm, the embryonic tissue which gives rise to the mus-
culoskeletal system [29]. Mesenchymal stem cells (MSCs) 
express VDR in addition to components of the vitamin D 
–endocrine system including CYP27B1 (1α-hydroxylase) 
and CYP24A1 (24-hydroxylase) and respond to treatment 
with the ligand 1,25(OH)2D3, which induces myogenic and 
osteogenic programs [30].

Experiments on C2C12 cells, an immortalized murine 
muscle cell line, indicate that vitamin D alters myogenesis 
in its various stages, including myoblast proliferation, myo-
cyte differentiation and fusion to form myotubes and the 
determination of myotube size [12, 24, 30–32]. 1,25(OH)2D3 

exerted effects on post-translational modification in C2C12 
myoblasts by altering phosphorylation of Rb (Retinoblas-
toma protein), JNK (c-Jun N-terminal kinase), Raf-1 (ret-
inoblastoma associated factor 1), cAMP response element 
binding protein (CREB) and ElK-1 signalling, resulting in 
an anti-proliferative effect in these cells [33–36]. Vitamin D 
modulated C2C12 myotube formation, a complex process 
in which myocytes fuse to form tubular, contractile syn-
cytia, dependent on well characterised pathways involving 
IGF-1 and myogenin [12, 24, 32]. Key myogenic regulatory 
factors includng myogenin, myf5, myoD and IGF were all 
modulated by vitamin D treatment in these cells. Vitamin D 
exerted an anabolic effect in increasing C2C12 myotube size 
by downregulation of myostatin, a TGF-β which negatively 
regulates muscle mass [24, 32]. These effects of the ligand 
1,25(OH)2D3 were directly related to VDR activation and 
were negated by VDR knockdown [37].

The Vitamin D receptor knockout (VDRKO) mouse 
model has provided key insights in the biologic activity of 
the vitamin D and its role in muscle development [5]. In 
addition to wide-ranging defects including rickets, reduced 
calcium and phosphate levels, alopecia and immune dys-
function, these mice displayed lighter muscles, global reduc-
tion in muscle fibre size and increased myonuclei, changes 
that persisted despite normalisation of calcium and phos-
phate by the provision of a rescue diet [12, 38]. This mus-
cle phenotype was seen early in VDRKO mice, initially at 
3 weeks of age, preceding the development of phosphate 
and calcium abnormalities and systemic defects. Increased 
transcript levels of myostatin (> 2-fold), alteration of myo-
genic regulatory factors myf5 and myogenin and persistent 
expression of neonatal myosin heavy chain (MHC) isoforms 
were seen in the muscle of adult VDRKO mice [12, 38]. 
However, the VDRKO mouse model is subject to confound-
ing, specifically whole-body changes in these mice may have 
independent effects on muscle morphology. In addition, 
attempts to identify vitamin D response elements (VDRE) 
in the promoter regions of myf5 and myogenin genes have 
been unsuccessful, suggesting VDR’s effects on key myo-
genic regulatory factors may be indirect [39, 40].

To bypass potential confounding by systemic effects of 
the VDR, tissue-specific knockout mice have been generated 
[41]. The promoter gene used to ablate VDR in the muscle 
of these mice, MLC1f, is expressed in embryonic life, mak-
ing this an appropriate model to examine effects on muscle 
differentiation. Reductions in type II muscle fibre diameter 
were demonstrated in these mice but the primary focus of 
this paper was to examine effects on insulin sensitivity and 
hence, further detail on the muscle morphology of these 
mice was not presented in detail [41].

Effects of maternal vitamin D on muscle development in 
offspring have been examined in several species. In humans, 
maternal vitamin D levels were associated with arm muscle 



52 C. M. Girgis 

1 3

size in offspring as well as grip strength [42, 43]. In rodent 
studies, offspring of vitamin D-deficient dams demonstrated 
smaller muscle fibres with effects on protein catabolism and 
genes involved in muscle differentiation and the cytoskel-
eton [44, 45]. In pigs, vitamin D supplementation during 
pregnancy led to increased muscle fibre size and number in 
offspring, associated with higher transcript levels of myoD, 
myogenin and reduced myostatin transcript [46]. European 
sea bass treated with vitamin D after hatching demonstrated 
increases in muscle fibre size that were dose-dependent and 
associated with changes in myogenic genes [47]. Maternal 
vitamin D levels may possibly play an epigenetic role in 
foetal development, being associated with methylation at 4 
sites of the RXR-A (retinoid X receptor alpha) in umbilical 
cord tissue [48].

In summary, in vitro studies in muscle cells suggest a role 
for VDR in muscle proliferation, differentiation and myo-
tube development and size. In vivo studies in mice corrobo-
rate this effect by demonstrating reduced muscle mass and 
smaller fibres in mice with whole-body or muscle-specific 
VDR ablation. Alterations in myogenic regulatory gene 
and TGF-β expression have been demonstrated as potential 
mechanisms for these changes. To confirm direct genomic 
effects of VDR in muscle, chromatin immunoprecipitation 
(ChIP) studies are necessary to characterise the VDR cis-
trome in this tissue (i.e., DNA binding sites).

Vitamin D and Muscle Strength

People with vitamin D deficiency display muscle weakness 
and higher risk of falls, features that are reversible with vita-
min D supplementation [49]. In addition to changes in mus-
cle mass described in the previous section, VDRKO mice 
displayed reduced grip strength [38] and abnormal swim-
ming with reduced buoyancy and greater fatigue [50]. In 
open field testing, VDRKO mice displayed shorter steps and 
abnormal gait and on rotarod testing, they displayed reduced 
balance with shorter retention times implying abnormal mus-
cle coordination [50, 51]. These defects in muscle function 
progressed with ageing and a dose-dependent effect of VDR 
on grip strength was seen [38, 51]. However, no impair-
ment in swimming was demonstrated in 1α-hydroxylase 
knockout mice [51]. The contrasting phenotypes of VDR 
and 1α-hydroxylase knockout mice suggest different activi-
ties of the vitamin D endocrine system on muscle function. 
Whilst VDR is important in muscle function, as suggested 
by the VDRKO model, the active hormone, 1,25(OH)2D is 
not prerequisite for VDRs actions in this tissue, as suggested 
by lack of muscle phenotype in 1α-hydroxylase knockout 
mice. Taken together, this indicates that VDR exerts ligand-
independent functions in muscle.

On the other hand, reduced muscle strength has been 
demonstrated in animal models of vitamin D deficiency 
[38, 52, 53]. Significant reduction in muscle contraction 
and impaired recovery in vitamin D-deficient rats and chicks 
were demonstrated and reversed with vitamin D supplemen-
tation [53, 54]. Alterations in expression of components of 
the sarcomere, including actin and the troponin-tropomyo-
sin complex, provide a mechanism for reduced strength in 
these studies [55–57]. Alternatively, vitamin D may exert its 
effects on muscle strength via intracellular calcium handling. 
In vitamin D deficient mice, reduced grip strength was asso-
ciated with altered expression of mRNAa responsible for 
calcium-handling and sarco-endoplasmic reticulum calcium 
transport ATPase (Serca) channels [38]. Reduced calcium 
concentrations within muscle mitochondria and sarcoplas-
mic reticulum have been reported in vitamin D deficient 
animals [54, 58].

A study proposed a primary function for phosphate in 
vitamin D’s effects on muscle. Rats deficient in vitamin D, 
phosphorus and calcium underwent muscle strength testing 
via force transduction on soleus muscle [52]. Phosphate lev-
els displayed the strongest correlation with muscle dysfunc-
tion and phosphate repletion reversed defects independent 
of calcium and vitamin D levels. However, in another study 
muscle defects in vitamin D deficient mice persisted despite 
adjusting calcium and phosphate deficiency [38].

Vitamin D effects on the neuromuscular junction were 
examined in a study of vitamin D deficient rats. In associa-
tion with defects in muscle balance and coordination, vita-
min D deficient rats had increased muscle hypersensitivity 
and a higher number of nocioceptor axons [59]. In other 
studies, treatment of WT mice with eldecalcitol, a vitamin 
D analogue, improved coordination and locomotor perfor-
mance, with increased expression of IGF1 and myelin in 
Schwann cells and increased AchR density in neuromuscular 
junction [60]. Therefore, vitamin D exerts neuronal effects 
that may further impact on muscle function.

Recent studies have reported a novel ex vivo effect of 
VDR on muscle function [14, 61]. Muscles of VDRKO were 
dissected and examined in a controlled environment, unper-
turbed by systemic changes, and in these studies, VDR mod-
ulated the uptake and retention of 25(OH)D3 within muscle 
fibres [14, 61]. Upon entry into muscle, 25(OH)D3 may be 
locally converted to 1,25(OH)2D3 and elicit rapid effects 
on calcium handling thereby altering contraction and mus-
cle strength. Alternatively, muscle may be a storage depot 
for 25(OH)D3, in which the molecule may be bound to the 
D-binding protein (DBP), and as required, diffuse back into 
circulation upon degradation of DBP and its release from 
actin [61].

Rapid effects of 1,25(OH)2D3 on intramuscular calcium 
handling have been elucidated by a range of in vitro studies 
[62–64]. 1,25(OH)2D3 resulted in rapid calcium shifts from 
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the sarcoplasmic reticulum to the cytosol, through the action 
of signal transduction pathway including c-src, phospholi-
pase C gamma (PLC-gamma) and inositol triphosphate (IP3) 
[65]. Prolonged exposure to 1,25(OH)2D3 led to sustained 
calcium entry from the extracellular compartment via L-type 
voltage-dependent calcium-channel (VDCC) and store-oper-
ated calcium entry (SOCE) mechanisms. By modulating 
intracellular calcium, vitamin D may play an indirect role 
in muscle contraction, plasticity and metabolism, processes 
which are determined by calcium [66]. To confirm these 
effects, fura-2 studies in muscle would allow for real-time 
in vivo assessment of calcium flux in response to vitamin 
D, and provide a mechanistic basis for effects on contraction 
and strength.

In summary, muscle weakness and increased fatigue have 
been reported in vitamin D deficient humans and animals in 
addition to VDRKO mice. However, there are difficulties 
in differentiating direct effects of vitamin D deficiency in 
muscle dysfunction from those of associated phosphate, cal-
cium and parathyroid hormone defects. Cell studies indicate 
that 1,25(OH)2D regulates muscle cell calcium and phos-
phate handling in rapid and genomic fashions and uptake of 
25(OH)D3 within muscle, positing mechanisms for effects 
on contraction and strength. Definitive studies are needed to 
study contractile physiology, endurance and muscle fatigue 
in mice with distinct alterations of vitamin D signalling, 
independent of mineral defects.

Vitamin D and Muscle Ageing

Serum vitamin D levels predict the rate of functional decline 
and age-related atrophy of skeletal muscle in older subjects 
[67]. Vitamin D deficiency is common in older subjects 
and levels of VDR decline in muscle with age [15]. Type 2 
muscle fibres (i.e. fast twitch) undergo preferential atrophy, 
predisposing vitamin D deficient subjects to falls [2].

In ageing rodents with vitamin D deficiency, muscle atro-
phy pathways were upregulated with increased muscle pro-
tein catabolism via activation of ubiquitin ligases (MAFBx 
and MuRF1), TGF-β, FOXO and the ubiquitin-proteosome 
system were seen [38, 68]. These molecular changes were 
associated with significant muscle fibre atrophy that was 
only partly corrected by adjusting calcium levels [68]. 
Myostatin expression was greater in the muscles of vitamin 
D deficient rodents and expression of mygenic regulatory 
factors was also altered [38]. Studies on human myocytes 
corroborate effects of vitamin D and VDR agonists on path-
ways known to regulate muscle ageing including ubiquitin 
ligases, inflammatory markers TNF-alpha and IL6 and PI3K/
AKT signalling [20, 69].

Vitamin D may exert indirect effects on muscle ageing by 
its interaction with other hormones. FGF23 and its co-factor 

klotho regulate phosphate, vitamin D synthesis and have 
novel effects on ageing. Mice lacking FGF23 display pre-
mature ageing, osteopenia and sarcopenia, and these fea-
tures were completely reversed by concomitant ablation of 
CYP27B1 [70]. This suggests that the ligand 1,25(OH)2D 
may modulate age-related responses to FGF23, possibly 
through its action on the VDR. Klotho deficient mice display 
a muscle phenotype remarkably similar to VDRKO mice 
with weakness, impaired endurance and premature ageing 
associated with alterations in TGF-β and wnt signalling [71, 
72]. It is possible that vitamin D and klotho share inter-con-
nected effects on skeletal muscle morphology and function 
during ageing on the basis of these similarities.

Vitamin D deficiency results in mitochondrial dysfunc-
tion and oxidative stress in muscle cells with reduction in 
superoxide dismutase (SOD) [73]. Serum Vitamin D levels 
correlated with lactic acid, creatine kinase and total antioxi-
dant activity (TAC) in elderly subjects following exercise 
and vitamin D supplementation improved oxidative phos-
phorylation [74, 75]. In vitro, 1,25(OH)2D3 regulated tran-
scripts of mitochondrial genes in muscle cells with increased 
mitochondrial volume and oxygen consumption rates [76]. 
Thus, vitamin D may reduce oxygen free radicals in muscle 
and alleviate effects of mitochondrial dysfunction, thereby 
counteracting sarcopenia.

In summary, vitamin D deficiency accelerates muscle 
ageing with atrophy of muscle fibres and subsequent sar-
copenia with a risk of falls and functional decline. Mecha-
nisms elucidated in animal studies include increased muscle 
protein turnover via activation of ubiquitin-proteosome and 
oxidative stress. Vitamin D supplementation may reverse 
these effects and further research is needed on the potential 
anti-ageing effects of vitamin D on skeletal muscle.

Vitamin D and Muscle Repair

Muscle repair is an intricate process in which satellite cells, 
unique muscle stem cells, are activated by mitogenic fac-
tors and differentiate into myocytes which fuse into muscle 
fibres, governed by the myogenic regulatory program. Vita-
min D may also play a role in this process.

In vitro, vitamin D altered muscle cell response to 
mechanical injury with an increase in muscle cell migra-
tion, myotube fusion and expression of tissue regeneration 
and angiogenic markers [31, 77]. In vivo, muscle damage 
induced by via freeze-crush or  BaCl2-induced mechanisms 
resulted in significant activation of VDR and CYP27B1 in 
rodents, specifically within regenerating muscle fibers [26, 
78]. Resistance training, inducing lesser degrees of mus-
cle damage, also induced VDR and CYP27B1 in muscles of 
rodents [25, 79].
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Muscle injury induced by freeze-crush injury or high-
intensity exercise was ameliorated by vitamin D supple-
mentation in rats, associated with attenuated increase in 
creatine kinase (CK) and lactate dehydrogenase (LDH) [78, 
79]. Functionally, improved recovery in contractile force 
in the injured muscle was demonstrated. Mechanistically, 
reduced oxidative stress and inflammation, together with 
an effect on stress-related proteins (p38 MAPK, ERK1/2, 
IKK, IkappaB), may explain these beneficial effects [79, 80]. 
However, there may be a U-shaped effect as excessive doses 
of 1,25(OH)D3 were not beneficial on muscle regeneration 
with deleterious effects on satellite cell activity and muscle 
fibre repair following injury [81].

In human clinical studies, baseline levels of vitamin D 
correlated inversely with muscle weakness following exer-
cise [82]. Vitamin D altered cytokine levels following exer-
cise, including IL-10, IL-13 and inflammatory mediators 
TNF-a and IFN-g, suggesting a modulatory effect on inflam-
mation [82, 83]. Levels of VDR protein and IL6 displayed a 
positive correlation in human muscle, suggesting effects of 
vitamin D on the inflammatory response to muscle damage 
[84]. Vitamin D supplementation had a beneficial effect on 
muscle recovery in adult males in whom muscle injury was 
induced by repetitive eccentric contractions, i.e. jumping 
[77, 85].

In summary, vitamin D’s effects on muscle repair are sug-
gested by increases in VDR expression in regenerating mus-
cle tissue. Direct effects on oxidative stress, inflammatory 
cytokines and satellite cell activity in response to vitamin D 
have been demonstrated.

Conclusions

This special issue article summarises the current understand-
ing of vitamin D’s effects on skeletal muscle, specifically in 
development, strength, ageing and repair. While functional 
effects of vitamin D on muscle, particularly in relation to 
muscle strength and contraction, appear related to calcium 
and phosphate levels, pleiotropic effects on muscle develop-
ment, ageing and repair may be related to direct actions of 
vitamin D signalling within muscle cells.

At a basic level, vitamin D modulates intramuscular cal-
cium flux via the rapid activation of signalling cascades and 
second messenger systems [62–64]. Genomic responses to 
vitamin D involve myogenic regulatory factors, TGF-β sig-
nalling including myostatin and the ubiquitin-proteosome 
[24, 32]. Morphologically, muscle mass, fibre size, strength 
and the regenerative response to muscle damage are altered 
by vitamin D [26, 38]. Age-related changes in muscle func-
tion, protein turnover, oxidative stress and atrophy pathways 
are postulated mechanisms by which this occurs [38, 68].

The controversial question of VDR’s expression in skel-
etal muscle has also been discussed. Technical factors giving 
rise to this controversy, in addition to the heterogeneous, 
multicellular nature of skeletal muscle, in which individual 
components may respond differently to vitamin D, have 
been mentioned. Current evidence indicates that VDR is 
indeed expressed in muscle, but at low levels that may elude 
detection. VDR predominates in immature forms of mus-
cle, primordial muscle cells, such as satellite cells, and in 
developing and regenerating muscle fibres [14, 18]. VDR’s 
predominant expression in these early muscle cells indicates 
a primarily pleiotropic role in this tissue. At a functional 
level, VDR knockout mice display a distinct muscle pheno-
type, also in support of its presence and activity at this site.

Uncertainties remain. Although gene targets of vitamin D 
signalling in muscle have been reported, vitamin D response 
elements (VDRE) within these genes have not been clearly 
demonstrated and hence, it is unclear if these are direct tar-
gets. Chromatin immunoprecipitation (ChIP) studies to char-
acterise the muscle VDR cistrome are needed. Non-genomic 
effects of vitamin D on calcium flux have been reported in 
many in vitro studies but the translation of these findings 
to in vivo muscle physiology is not a foregone conclusion. 
For confirmation, fura-2 studies in muscle would allow for 
real-time in vivo assessment of calcium flux in response to 
vitamin D. A greater understanding of direct effects of VDR 
on muscle function will come to light with characterisation 
of tissue-specific models, circumventing systemic effects 
of vitamin D [41]. Finally, effects of vitamin D on muscle 
regeneration raise the intriguing possibility that vitamin D 
modulates satellite cells in their response to damage, and 
thereby enhances regeneration. Thus, vitamin D exerts 
diverse effects on skeletal muscle, with a broad functional 
repertoire in development, pleiotropy and ageing.
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