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Abstract The gut microbiota (GM) is the whole of com-

mensal, symbiotic, and pathogenic microorganisms living

in our intestine. The GM–host interactions contribute to the

maturation of the host immune system, modulating its

systemic response. It is well documented that GM can

interact with non-enteral cells such as immune cells, den-

dritic cells, and hepatocytes, producing molecules such as

short-chain fatty acids, indole derivatives, polyamines, and

secondary bile acid. The receptors for some of these

molecules are expressed on immune cells, and modulate

the differentiation of T effector and regulatory cells: this is

the reason why dysbiosis is correlated with several

autoimmune, metabolic, and neurodegenerative diseases.

Due to the close interplay between immune and bone cells,

GM has a central role in maintaining bone health and

influences bone turnover and density. GM can improve

bone health also increasing calcium absorption and mod-

ulating the production of gut serotonin, a molecule that

interacts with bone cells and has been suggested to act as a

bone mass regulator. Thus, GM manipulation by con-

sumption of antibiotics, changes in dietary habits, and the

use of pre- and probiotics may affect bone health. This

review summarizes evidences on the influence of GM on

immune system and on bone turnover and density and how

GM manipulation may influence bone health.
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Introduction

The whole of the commensal, symbiotic, and pathogenic

microorganisms living in our intestine has been defined as

gut microbiota (GM). It is acquired at birth and derives

almost entirely from the mother and changes accordingly to

environmental factors such as diet, diseases, and use of

drugs. The GM comprises about 1200 bacterial species, the

main phyla represented are Bacteroidetes, Firmicutes,

Actinobacteria, Proteobacteria, and Verrucomicrobia [1].

Some of the identified species and of the common bacterial

phyla varies between individuals [2]. Low microbial

diversity has been identified as a risk factor for different

chronic diseases such as intestinal inflammatory diseases,

obesity, and insulin resistance [3–6]. Arumugam and col-

leagues suggested that individuals can be clustered

according to the prevalence of different GM phyla and

introduced the concept of ‘‘enterotypes.’’ According to this

definition, humans can be stratified on the basis of their

microbial patterns dominated by Bacteroides, Prevotella,

or by Ruminococcus [7].

In physiological condition, GM relationship with host is

complex and comprehends various forms of symbiotic

relationship such as parasitic, commensal, and mutualistic.

GM helps in food digestion, in fighting pathogens and,

during the first years of post-natal life, contributes to the

maturation of the host immune system. During the whole

life, GM interacts with the host and contributes to the

modulation of gut and systemic immunity. Immune

homeostasis disruption is the causal mechanism of several

chronic non-communicable human diseases (NCDs) such

as allergy, asthma, some autoimmune, cardiovascular and

metabolic diseases, and neurodegenerative disorders. These

disorders are characterized by a low grade of inflammation.

Although inflammation and the pathways to disease are
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multifactorial, the altered gut colonization patterns, asso-

ciated with decreasing microbial diversity, are a central

theme and are increasingly implicated in the physiologic,

immunologic, and metabolic deregulation seen in many

NCDs. Altered GM–host interaction has been indicated as

a possible cause of immune deregulation and increased

inflammation associated with several NCDs [8].

This review summarizes the evidences on the influence

of GM on immune system and on bone turnover and

density and how GM manipulation may influence bone

health.

GM Influences Immune System

The interaction between immune system and GM has a

central role in the maturation of immune system during the

early post-natal period [9] and a role in the modulation of

immune system and response to self-antigens during the

whole life [9, 10]; thus it has been suggested that dysbiosis

may play a role in the development of diseases character-

ized by immune deregulation such as allergies, autoim-

mune, and inflammatory disorders.

The role of GM in the development and maturation of

host immune system in the early post-natal life has been

demonstrated in germ-free (GF) mice, i.e., animal raised in

sterile cages that maintains sterile gut. The use of this

experimental model has shown that the absence of GM

negatively influences the formation of lymphoid organs, in

particular, GF mice have defective formation of the spleen

and mesenteric lymph nodes, the intestinal Peyer’s patches

are smaller, and display a reduced number of CD4? T cells

and reduced production of IgA [11–16]. Also isolated

lymphoid follicle and cryptopatches are reduced in GF

mice [17, 18]. As regards, immune cells of different GM

phyla were associated with the development of different T

helper (Th) phenotypes: in animal model of rheumatoid

arthritis (RA), the disease is reduced in GF mice thanks to a

reduction of Th 17 [19]. Arthritic phenotypes are restored

when GF animals are colonized with segmented filamen-

tous bacteria, which enhance the differentiation and func-

tion of Th17 cells. In RA patients, a relationship between

the disease and Prevotellaceae has been suggested, in

particular Prevotella copri has been associated with

increased risk of RA [20, 21], whereas Prevotella histicola

seems to inhibit the development of arthritis [22]. Colo-

nization of GF animals with Bacteroides fragilis restores a

correct balance between Th1 and Th2 cells and redirects

lymphoid organogenesis [14]. Resident bacteria, such as

segmented filamentous bacteria and in particular some

Clostridia-related species, have been associated to Th cells

development and to Tregs cells induction [23, 24].

GM modulates immune system through the production

of molecules with immunomodulatory and anti-inflamma-

tory function that are capable to influence immune cells

[25, 26]. In particular, GM produces several metabolites

from digested food, by modifying host products and by the

novo synthesis, among these molecules short-chain fatty

acids (SCFAs) are the most widely investigated in the

regulation of inflammation and immune system. It has been

demonstrated that SCFAs have anti-inflammatory effects

on intestinal mucosa, thus protecting the bowel from the

development of inflammatory bowel disease [27–29]

(Fig. 1).

Short-chain fatty acids signal to several non-enteral cell

types through G-protein-coupled receptors also named free

fatty acid receptors (FFAR) [30–32]. One of these recep-

tors GPR109A/HCA2 is activated in immune system by

butyrate [33], and the signal between GM and immune

system is fundamental to regulate the homeostasis and to

maintain the balance between immune tolerance to com-

mensals bacteria and immunity to pathogens. The interac-

tion of butyrate and GPR109A/HCA2 cooperates in the

generation of immune tolerance and, in particular, mediates

Tregs development [28, 29, 34, 35].

Butyrate regulates gene expression by inhibiting histone

deacetylases (HDAC) [36], in particular butyrate inhibits

HDAC1 and HDAC3 [37]. Also propionate acts as a less

potent HDAC inhibitor [38]. Recently it has been sug-

gested that inhibition of HDAC may increase Tregs

development and function, hence this could be one of the

mechanisms by which GM enhances Treg generation in the

gut [39]. It has also been suggested that, depending on the

cytokines milieu, interaction between SCFA and FFAR

influences T cells differentiation not only toward Tregs, but

also toward effector T cells. Park and colleagues suggested

that, in certain conditions, SCFAs may induce T helper

differentiation into Th1 and Th17 thus increasing the host

defenses against pathogens [40]. SCFAs such as butyrate

and propionate also modulate antigens presentation

inhibiting the development of dendritic cells by HDAC

inhibition [41–44] and by interaction with FFAR [34, 45].

Beyond SCFAs, GM produces other metabolites, such as

indole derivatives and polyamines, from digested food that

have important immunomodulatory function. These

metabolites derive from dietary tryptophan and arginine,

respectively, and have an indirect immune function. Indole

derivatives favor the integrity of the enteral mucosa and the

barrier defense toward pathogens by stimulating the pro-

duction of anti-microbial peptides, mucins, and prolifera-

tion of intestinal goblet cells. Polyamines such as

putrescine, spermidine, and spermine fulfill important roles

in gene expression and proliferation. They enhance the

development and maintenance of the intestinal mucosa and

resident immune cells (Fig. 1). An immunomodulating role
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has also been postulated for other GM products such as

metabolized bile acids; however, physiological role of

these metabolites in health and disease is still an open

question [46].

Germ-free mice have imbalance in T helper cells:

reduced Treg, absence of Th17 cells, and altered ratio

between Th1 and Th2 with increased Th2 response [26]. In

these animals, gut colonization with Bacteroides fragilis

induces the development of Th1 cells, thanks to the pro-

duction of polysaccharide A [14]. Polysaccharide A is a

bacterial product that influences T cells fate through its

interaction with the toll-like receptor 2. Interacting with T

cells, it favors immune tolerance by inhibiting Th17 dif-

ferentiation and favoring Tregs activity [47]. Other bacte-

ria, such as segmented filamentous bacteria and

Clostridium spp., were shown to influence Th phenotype.

The first stimulates Th17 immune response, through ATP

or serum amyloid A production by innate immunity cells,

whereas the latter promotes Treg cell response through

SCFAs production [23, 48] (Fig. 1).

A recent study by Kim and colleagues suggests that GM

may also affect B cells antibody production through SCFAs

inhibition of HDAC and modulation of gene expression

[49]; however, further studies are needed to clarify the

underlying mechanism.

Taken together, these evidences suggest that GM influ-

ences T cells differentiation through the production of

bacterial metabolites such as SCFAs and polysaccharide A

at least at the intestinal mucosa level and T cells differ-

entiation through cognate bacterial antigens [50] (Fig. 1).

The majority of the evidences thus suggest that GM

metabolites and antigens may influence immune regulation

and hence dysbiosis may be the environmental factor

responsible for some immune and inflammatory disorders,

both at gut level such as inflammatory bowel disease [51]

and outside the gut such as Rheumatoid Arthritis [52], type

1 diabetes [53], and asthma [54]. However organs distant

from gut, skin, and lung are not in direct contact with GM.

This implies that GM has the ability to communicate with

the host immune system in distant organs as well as in the

gut. These signals have been identified in GM-derived

products such as lipopolysaccharide, SCFAs, and bile acid

and also in circulating antibodies or immune cells [2].

Relationship Between GM, Immune System
Activation, and Bone Loss

Osteoporosis increases dramatically the risk of fractures:

major osteoporotic fractures are a social and economic

burden. In developed countries, the lifetime risk for

osteoporotic fractures at the wrist, hip, or spine is 30–40%,

very close to that for coronary heart disease. The number of

new fractures in 2010 in the EU was estimated at 3,5

million, comprising approximately 620,000 hip fractures;

520,000 vertebral fractures; 560,000 forearm fractures; and
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1,800,000 other fractures [55]. Osteoporotic fractures

impair patients’ quality of life and increase mortality: 20%

of elderly patients suffering from femoral fractures will die

within a year, and 50% of the survivors will loose inde-

pendence. The most frequent cause of bone loss is post-

menopausal osteoporosis (PMO) that is driven by estrogen

deficiency at menopause. In PMO, there is an imbalance in

bone turnover with increased bone resorption and reduced

bone formation. It has been demonstrated both in experi-

mental models and in humans that estrogen deficiency

affects bone cells number and activation and bone turnover

partially through its effect on immune system [56]. During

estrogen deficiency, T cells increase their production of

pro-inflammatory and pro-osteoclastogenic cytokines, such

as TNF alpha and RANKL [57]; however, the reasons of

this increased activity in osteoporotic women and not in

non-osteoporotic subject are unknown. GM may be

involved in the mechanism of PMO.

Some papers suggest that the absence of GM influences

bone mass. The majority of the findings demonstrate that

GF mice have increased bone mass, whereas a single study

by Schwarzer and colleagues [58] demonstrated that GF

mice have a growth retardation due to reduced level of

IGF-1 and, consequently, reduced bone mass. These

authors argued that the difference in the results may be due

to the different genetic backgrounds used in the studies.

Similarly, a study by Yan and colleagues reported an effect

of GM on IGF-1 and consequently on bone growth. The

study demonstrated an acute effect of GF colonization with

GM obtained from conventionally raised mice on reduction

of bone mass due to increased bone resorption, whereas the

long-term colonization resulted in a net skeletal growth in

young animals [59].

Even the studies on mice treated with broad spectrum

antibiotics to alter GM bring to different conclusions

regarding the effect on bone density. These discrepancies

are possibly due to differences in animal age, sex, and

protocols applied for antibiotic treatment [59–63].

The majority of the reports suggest that antibiotic-trea-

ted mice have increased bone density [60, 63, 64] and also

best bone mechanical properties [64] than conventionally

raised mice.

GF mice showed a reduced number of osteoclast and

lower level of IL-6, RANKL, and TNFa in bone. These

cytokines have a well-known pro-inflammatory and pro-

osteoclastogenic effect [65, 66]. GF mice also displayed

alteration of immune system with lower number of

CD4? T cells and no difference of CD8? T cells. These

features are normalized by colonization with GM from

conventionally raised mice [65].

Recently, elegant studies demonstrated the role of innate

immunity in mediating the effect of GM on inflammation

and on bone metabolism. In particular, the role of toll-like

receptor 5 (TLR5) [64, 66], Myd88, Nod1, and Nod2 has

been studied.

TLR5 is the innate immune receptor for flagellin [67],

and mice knock-out (KO) for this receptor develop an

altered GM due to deficits in the immune system. TLR5KO

mice have an altered host–microbe interaction, increased

inflammation, and metabolic syndrome [68]. It has been

demonstrated that metabolic phenotype in these mice

depends on GM alteration as TLR5KO mice raised in GF

conditions do not develop the metabolic phenotype [69].

Bone phenotype is significantly different in TLR5KO mice

with respect to WT. These animals have larger cross-sec-

tional area and moment of inertia with a reduction in

whole-bone strength. The effect of antibiotic treatment and

disruption of the GM on bone tissue material properties

was different between WT and TLR5KO mice. In partic-

ular, TLR5KO mice display a greater reduction of the

whole-bone femoral bending stiffness with respect to WT

[64]. These differences may be due to several character-

istics of TLR5KO mice: these mice are mildly obese and it

is known that obesity influences bone mechanical compe-

tence [70]. Moreover GM is altered in TLRKO mice that

display low microbial diversity, which might, per se,

influence bone phenotype. Finally immune system is

altered in these animals, and this could affect GM-immune

system–bone interaction.

In order to study the role of innate immunity in medi-

ating the effect of GM on bone health, Ohlsson and col-

leagues [66] evaluated the role of Myd88, NOD1, and

NOD2. Myd88 is the main mediator of TLR activity on

inflammatory response [71]; however, Myd88KO mice

behave like WT mice when raised in GF environment and

display a significant increase in cortical bone mass, this

observation demonstrates that the effect of the GM on bone

mass is independent of Myd88.

NOD1 and NOD2 bind bacterial peptidoglycan and

cooperate to inflammatory response after bacterial recog-

nition in the cytoplasm activating the NFjB pathway.

NOD1 detects diaminopimelic acid-type peptidoglycan

that is mainly expressed by Gram-negative bacteria [72].

Nod2 detects all types of peptidoglycans found in Gram-

positive and Gram-negative bacteria [73].GF mice with

deletion of NOD1 or NOD2 do not have increased cortical

thickness nor increased expression of TNFa and RANKL;

thus the effect of GM on the production of these cytokines

and, hence, on bone mass is dependent on these molecules.

To investigate the role of GM in bone loss induced by

sex steroid deficiency, this condition was induced phar-

macologically in GF mice with the GnRH agonists

leuprolide by Li and colleagues [74].These authors

demonstrated that GM plays an important role in sex

steroid deficiency-induced osteoporosis: GF mice are pro-

tected against osteoporosis and the increase in bone
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turnover induced by sex steroid deprivation thanks to the

lack of increase in TNF, RANKL, and IL-17. The authors

also demonstrated that sex steroid depletion augments

inflammation in the intestine by increasing gut perme-

ability to bacterial antigens, namely, by decreasing the

expression of claudin 2, 3, and 15, and of Jam3, which are

modulators of intestinal barrier integrity [75, 76].

In humans, scarce data support results obtained in mice.

Recently Wang and colleagues [77] in a very limited cohort

suggest that GM component structure and diversity are

altered in osteoporosis and osteopenia patients as compared

with normal controls; however, they do not correlate with

different GM components with inflammation and immune

system, nor with bone turnover.

Relationships between immune system, estrogen defi-

ciency, bone loss, and GM are summarized in Fig. 2.

GM and Bone Health Beyond Immune System

It has been suggested that GM composition and manipu-

lation may affect bone health beyond immune system by

influencing calcium absorption and the production of gut-

derived serotonin.

A post hoc analyses on the use of Lactobacillus reuteri

demonstrated that the use of this probiotic in healthy sub-

ject increases the level of serum 25OH vitamin D that

influences calcium absorption and benefits bone health.

The mechanism through which this probiotic influences

vitamin D level is not clear; however, the authors argued

that this may be due to a modification in the gut environ-

ment that specifically favors vitamin D absorption or to

indirect effect on increased hepatic 25-hydroxylase activity

or 7-dehydrocholesterol concentration due to reduced

absorption of dietary and biliary cholesterol [78]. On the

other hand, the relation between GM and vitamin D may

also be inverse as it has been proposed that decreased

vitamin D intake is associated with different GM profiles

[79, 80].

Another possible mechanism through which GM bene-

fits bone health is the increase in calcium absorption. It is

well known that maintaining a positive calcium balance is

important in achieving a good peak of bone mass that

protects from the development of osteoporosis in older age

[81, 82]. Dietary intake of fibers influences calcium

absorption: after being fermented by GM, fibers improve

calcium absorption by reduction of gut pH, thus reducing

the formation of calcium phosphates and increasing the

calcium absorption and by increasing the production of
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SCFAs such as butyrate [83]. The effect of SCFAs may be

more complex than the effect on gut pH, and in fact it has

been demonstrated that SCFAs increase calcium transport

through signaling pathway modulation [84]. As previously

said SCFAs influence bone health also through immune

system modulation; hence dietary fiber intake may be

responsible for a healthier immune system and reduced

inflammation. In fact, there is a general consensus recog-

nizing that an adequate dietary fiber intake is associated

with lower risk of chronic diseases such as cardiovascular

disease [85].

Another possible mechanism through which GM influ-

ences bone health is mediated by its effect on the pro-

duction of gut serotonin (5HT). In recent past, a dual effect

of serotonin in the regulation of bone mass has been

described depending on the site of production of this

molecule [86]. In this review, we are interested in the role

of gut-derived 5HT (g5HT), which is influenced by GM, as

a bone mass regulator. Enterochromaffin cells of the duo-

denum are responsible for the synthesis of g5HT that is

partially modulated by GM as SCFAs increase the syn-

thesis of g5HT [87, 88]. It has been shown that 5HT

interacts with bone cells and, in particular, decreases

osteoblast proliferation via activation of 5-HT1B receptors

on pre-osteoblasts [89, 90].These observations suggest that

regulation of g5HT by GM may be a potential therapeutic

strategy to improve bone health. Indeed, in animal models

of ovariectomy-induced bone loss, pharmacological

inhibition of g5HT synthesis results in the prevention of

osteoporosis mediated by increased bone formation [91].

However, data on the effect of 5HT on bone health are

quite controversial. Cui and colleagues [92] showed that

mice KO for 5HT receptor 1 have no bone phenotype and

that inhibition of this receptor with LP923941, an enan-

tiomer of LP533401 used in a previous study with opposite

results [91], decreases circulating 5-HT, but has no effect

on bone density. Different results obtained may be

explained by different techniques used [93].

Relationships between GM and bone turnover beyond

immune system are summarized in Fig. 3.

GM Manipulation and Bone Health

GM composition may be manipulated in several ways such

as the use of broad spectrum antibiotics, change in dietary

habits and, more easily, by the use of prebiotics and pro-

biotics, change in GM composition may affect bone health.

The majority of experimental data produced in mice

demonstrated that modulation of GM by the use of probi-

otics is able to increase bone mass and reduce sex steroid-

associated bone loss [74, 94–96]. Probiotics used were

different in different studies, both a single strain or a

mixture of strains. The most used were Lactobacilli spp.

that were demonstrated to have the higher anti-inflamma-

tory and bone protective effect. McCabe and colleagues
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suggested that short-term oral administration of the Lac-

tobacillus reuteri enhanced bone density in male, but not in

female mice [97]; however, in estrogen-deficient female

mice the administration of this probiotic prevented bone

loss [95]. In a further study, the authors suggested that L.

reuteri is active on bone health also in intact females

providing the presence of an inflammatory status. The

authors speculated that estrogen deficiency is comparable

to a mild inflammatory status, thus explaining their previ-

ous findings on intact female [98].

Also some data on the use of yogurt that contains dif-

ferent probiotics, but is also a source of calcium and pro-

teins that are fundamental for bone health, have been

produced [99]. All these studies showed a protective effect

of probiotic yogurt on bone health. Moreover, it has been

demonstrated that dairy products consumption in early life

led to a higher peak bone mass [100]. Also in adults older

than 60 years, consumption of dairy products was associ-

ated to increased bone density and lower risk of osteo-

porosis [101–104]. The use of probiotics has been proposed

also as an adjuvant treatment in focal bone loss such as

alveolar erosion in periodontitis. The ability of different

Lactobacilli strains in reducing osteoclast number, alveolar

erosions, and tooth movement in rat and mice has been

demonstrated [105–107]. In humans, a recent meta-analysis

concludes that current evidences suggest a possible use of

probiotics as an adjuvant therapy in gingivitis and peri-

odontitis [108].

In a geriatric population, the administration of Lacto-

bacillus helveticus increases serum calcium [109]. In a

prospective double-blind, placebo-controlled randomized

clinical trial, the administration of Lactobacillus casei

Shirota in 417 elderly patients with a distal radius fracture

accelerates the healing process [110]. Also in osteopenic

women, the administration of a multispecies probiotic (6

different species) increases markers of bone formation,

decreases TNF alpha level, but has no effect on bone

density during a 6-month period [111].

Another method to influence GM is the administration

of prebiotics. Prebiotics are complex carbohydrates and

fibers that influence composition and/or activity of GM in a

way that favors host health. To generate beneficial meta-

bolic products, GM needs substrate availability. Prebiotics

partially provide these substrates, and can be used to

modify the GM components and their metabolites. To be

classified as a prebiotic, a substance should meet these

criteria: be resistant to low gastric pH, hydrolyzed by

mammalian digestive enzymes, and not be absorbable by

humans, be fermented by GM, and stimulate the growth

and activity of gastro intestinal tract [112]. Prebiotic sup-

plementation in animal models favors the proliferation of

Bifidobacteria and increases SCFAs production. As regards

the effect of prebiotics on bone health, some experimental

studies showed that they improved calcium absorption and

bone density in animal models [113, 114]. In humans, the

supplementation with different probiotics such as galac-

tooligosaccharide and a mixture of short- and long-chain

inulin-type fructans in adolescent girls improved calcium

absorption and bone density [115, 116]. Recently, the corn-

derived non-digestible carbohydrate, soluble corn fiber

(SCF), has been evaluated for its ability to increase calcium

absorption and improve bone health in humans. In partic-

ular, SCF administration enhances calcium absorption and

its consumption is associated with a favorable change in

GM, namely, increased presence of Bacteroidetes and

Firmicutes known to ferment starch and fiber [117, 118]. In

the study by Whisner and colleagues [117], increase in

calcium absorption was positively correlated with bone

formation marker, also the changes observed in GM phyla

proportion was associated with calcium absorption.

Parabacteroides significantly increase with larger SCF

doses and are negatively correlated with calcium absorp-

tion. Firmicutes are positively correlated with calcium

absorption. The results of this elegant study suggest that the

role of GM in calcium absorption is complex due to dif-

ferent species.

Prebiotic fiber may influence bone metabolism both by

the change in the composition of GM-favoring microbes

with higher anti-inflammatory potential and by increasing

SCFAs production thus increasing calcium absorption. It

has also been suggested that prebiotics could have direct

effect on immune system modulation and an anti-pathogen

effect regardless to their effect on GM [119]. However,

until now, in human studies on prebiotics only calcium

absorption, markers of bone metabolism, and bone density

have been investigated, whereas immune phenotype and

inflammation have not been.

Conclusions

Gut microbiota is becoming one of the new players in the

regulation of bone turnover by modulating immune system

and controlling inflammation and also by influencing cal-

cium absorption and vitamin D level.

Dysbiosis may favor bone loss in aged people and after

menopause. Manipulation of GM may become a future

adjuvant treatment in preventing osteoporosis, osteopenia,

and other diseases characterized by focal bone loss such as

periodontitis.

In the last years, several data obtained in animal models

strongly supported the role of GM in the control of bone

turnover; whereas less data have been published in humans,

field in which confirmatory studies are needed. In partic-

ular, large clinical trials are needed to clarify the efficacy of
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prebiotics and probiotics in favoring bone health during

growth, aging, and post-menopausal bone loss.
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