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Abstract Sarcopenia and osteoporosis are two sides of

the same coin. They represent different aspects of the same

age-related process of musculoskeletal atrophy and toge-

ther culminate in falls, fractures, deconditioning, and

increased mortality in older individuals. However, the

current therapeutic approach to the prevention of minimal

trauma fracture is unilateral and focuses solely on bone. In

theory, an integrated approach that recognizes the inter-

action between muscle and bone could break the vicious

cycle of their combined involution and more effectively

minimize falls/fractures. In this review, signaling pathways

and cross-talk mechanisms that integrate bone/muscle, and

the emergence of novel therapies that exploit these path-

ways to target osteoporosis/sarcopenia will be discussed. In

broad terms, these agents act on nuclear receptors (e.g.,

VDR, AR) or transmembrane receptors (e.g., activins, GH/

IGF-1) expressed in muscle and bone, and seek to alter

biologic responses to musculoskeletal aging, loading, and

injury. Challenges in the development of these dual bone–

muscle therapies, early clinical trials examining their

safety/efficacy, and novel targets that hold promise in the

reversal of musculoskeletal aging will be discussed.
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Introduction

Musculoskeletal disorders are very common and affect up

to 50 % of individuals in western countries [1, 2]. These

diseases are also costly and lead to an annual expenditure

of approximately $850 billion in the United States (8 %

GDP) and $4.5 billion in Australia (10 % GDP). As the

world’s population ages, the concerning effects of muscu-

loskeletal wasting will be on the rise: falls, fractures, the

need for assisted care, and the financial impact of these

significant life events [3].

Reduced muscle mass affects balance, increases postural

sway and thereby increases the risk of falls. As the subject

falls, fractures result due to bone’s inability to withstand

the loading forces applied to it by muscle and the sub-

sequent trauma [4]. In this regard, the gradual age-related

decline in bone and muscle (i.e., osteoporosis and sarco-

penia) culminate in acute events with potentially cata-

strophic effects on morbidity and mortality [5].

For many years, therapies used to prevent minimal

trauma fractures have focused solely on bone. Muscle and,

more specifically, the effects of sarcopenia in compounding

the risk of osteoporotic fracture have not received due

attention. As we begin to recognize the tight link between

sarcopenia and osteoporosis [6] and the effects of muscle

mass on fracture risk [7], a paradigm shift in the treatment

of these conditions may be underway. Recently, experts

have suggested a more inclusive name be given to the

combination of sarcopenia and osteoporosis, such as the

‘‘dysmobility syndrome’’, which integrates their patho-

genesis and unites them as a single therapeutic target [8].
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There are, however, technical challenges in considering

osteoporosis and sarcopenia as a single entity. Osteoporosis

has been clearly defined but sarcopenia and its endpoints

remain elusive [9]. Although there is consensus that a

combination of functional and quantitative parameters of

muscle mass are necessary to define sarcopenia [10–12],

the correlation of specific muscle tests to clinically mean-

ingful outcomes remains an open question [13].

Another challenge is to better understand the intercon-

nected biology of the musculoskeletal system. We have

known for centuries that muscle and bone interact ana-

tomically and through complex biomechanical signals.

More recently, a sophisticated network of paracrine and

endocrine signals that coordinates bone and muscle has

emerged with integrated effects in development, the

response to injury and aging [14]. There has been a call for

greater research in bone–muscle interactions and the

development of therapeutic agents that target sarcopenia

and osteoporosis as a single disorder [5]. A holistic

approach to these conditions may be a more effective one,

directly addressing the mechanisms of osteoporotic frac-

ture via bone and its fundamentally important neighbor,

muscle [15]. In this review, the biological basis of bone and

muscle interactions, therapies that target muscle and bone

as a single unit, and future directions in this exciting field

of research will be discussed.

Bone and Muscle Interactions

Throughout life’s various stages, the musculoskeletal sys-

tem operates as a finely coordinated unit. Muscle and bone

originate from the mesenchymal progenitor cell during

embryonic life and their development is regulated by

overlapping genes and humoral factors [16, 17]. Mechan-

ical forces from developing muscles exert critical effects in

periosteal bone growth, bone geometry, and density. In

demonstrating this integral association between bone and

muscle development, children with Duchenne muscular

dystrophy (DMD) and cerebral palsy have reduced bone

density and a greater fracture risk [18, 19]. Mice with

congenital paralysis have severe impairments in bone

development and mineralization [20, 21].

Throughout post-natal life, sex steroids, insulin-like

growth factor-1 (IGF-1), and growth hormone (GH) coor-

dinate musculoskeletal growth. Muscle seems to possess

the ‘‘upper hand’’ in its relationship with bone, driving

changes in bone density. This is seen initially in puberty

where the accumulation of lean mass precedes gains in

bone mass, and muscle mass determines cortical bone area

[22, 23]. Conversely, in aging adults, lean mass declines

before bone mass, and muscle mass correlates tightly with

reductions in bone density [24, 25]. A potential explanation

for muscle’s apparent primacy in these interactions is

found in the ‘‘mechanostat theory’’. This theory, as recently

reviewed in this journal [26], proposes that muscle loading

induces a range of biomechanical signals necessary for

bone growth and remodeling. Indeed, subjects exposed to a

gravity-free environment, such as astronauts or mice sus-

pended in mid-air for prolonged periods, experience dra-

matic bone loss due to lack of muscle loading [27, 28].

Pathways responsible for mechanotransduction such as

stretch-activated cation channels, G protein-coupled

receptors, sclerostin, and LRP5 provide a strong molecular

basis for this theory and are being targeted for their ther-

apeutic potential [29, 30].

The ‘‘mechanostat theory’’, however, does not fully

explain the complex nature of bone–muscle interactions.

For example, the correlation between muscle mass and

bone cortical thickness is seen not only in adjacent tissues

but also in muscles and bones located remotely to one

another [31]. This opens the possibility of cross-talk and

the presence of discrete hormonal influences between these

tissues. Indeed a number of muscle and bone-derived

hormones (i.e., myokines and osteokines) are under active

investigation for their integrative effects. Myostatin,

fibroblast growth factor 2 (FGF2), interleukin 6 (IL6), and

matrix metalloproteinase 2 (MMP2) are myokines with

potential effects in bone [32–34]. Conversely, humoral

factors made in bone, including FGF21, undercaboxylated

osteocalcin, and sclerostin exert potential effects in skeletal

muscle [35, 36]. There are also common pathways such as

GH/IGF-1, sex steroids, and Wnt signaling that may cen-

trally govern the bone–muscle unit, its adaptation to

mechanical stimuli and injury [31, 37].

Further support for bone–muscle cross-talk is seen in the

response to musculoskeletal injury. The use of muscle flaps

in the surgical correction of open fractures improves bone

healing in both rodents and humans [38, 39]. Conversely,

the incidence of nonunion is significantly higher in frac-

tures associated with muscle damage, as seen in compart-

ment syndrome [40]. Therefore, healthy muscle is a

positive factor for fracture healing and muscle may repre-

sent a sort of ‘outerperiosteum’, providing morphogens and

growth factors to assist bone repair.

Thus, an intricate network of biomechanical and endo-

crine signals connects muscle and bone with integrative

effects in musculoskeletal mass and function throughout

life. A number of common pathways, such as the GH/IGF1,

vitamin D signaling, and androgens have been investigated

for their therapeutic potential in musculoskeletal diseases.

Other pathways, such as myostatin/activin signaling and

bone-derived factors such as undercarboxylated osteocalcin,

are also being investigated for their systemic effects.

Examining these individual pathways for their specific

effects and therapeutic potential poses significant
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experimental challenges. However, a thorough understand-

ing of the endocrine network that connects bone and muscle

is critical for the discovery of therapeutic targets that may

lead to a more holistic approach to the combined syndrome

of osteoporosis and sarcopenia.

Vitamin D

Although history gave vitamin D the misnomer ‘‘vitamin’’,

the biologically active molecule (1,25(OH)2D) is a bona

fide hormone with potent effects in calcium/phosphate

handling, bone homeostasis, tissue development, and

immunomodulation [41]. Although its function in bone

mineralization and growth plate physiology is established,

our understanding of its role in muscle physiology is

emerging.

Vitamin D’s capacity to integrate muscle and bone is

suggested by the clinical syndrome of vitamin D defi-

ciency/rickets. As described four centuries ago, children

with rickets display the combination of ‘‘flexible, waxy’’

bones and ‘‘flabby, toneless’’ muscles [42]. Likewise,

adults with vitamin D deficiency display concurrent defects

in bone and muscle, characterized by osteomalacia (i.e.,

reduced bone mineral) and type 2 muscle fiber atrophy

[43]. These conditions are also seen in subjects with

mutations of the vitamin D receptor (VDR), implying local

genomic effects of vitamin D in the muscle–bone unit.

However, the precise mechanism of these effects has

been debated. Although vitamin D may directly alter these

tissues, its musculoskeletal effects are predominantly

indirect and relate to systemic calcium/phosphate homeo-

stasis [44, 45]. To demonstrate this, subjects with rickets

develop muscle wasting and bone deformity after weaning,

concurrent with declining levels of calcium and phosphate

(Li et al. 1997; Yoshizawa et al. 1997). This is despite the

early presence of the vitamin D receptor (VDR) within

embryonic mesoderm [46], the tissue from which bone and

muscle arise.

In bone, the VDR is expressed mainly in osteoblasts and

osteocytes, where it has been shown to directly regulate

mineral formation and bone mass [47]. The presence of the

VDR in muscle has been controversial for many years.

However, recent studies have reported its expression in

mouse and human skeletal muscle and its upregulation

following vitamin D supplementation in older women [48,

49]. In studies of cultured muscle cells, vitamin D treat-

ment leads to doubling in the size of myotubes and down-

regulation of myostatin, a TGF-b which negatively regu-

lates muscle mass [50]. The potential for vitamin D to exert

anabolic muscle effects was supported by a recent pilot

study. In 21 older women receiving vitamin D (4,000 IU

day, 4 months), there was a 30 % increase in muscle fiber

size and activation of myonuclear VDR [51]. However

these changes did not translate to clinically meaningful

effects in muscle strength.

Vitamin D deficiency is common in the elderly, due to

nutritional deficits, reduced capacity of the skin to syn-

thesize vitamin D, and lack of sun exposure, and has been

associated with sarcopenia and osteoporosis [52, 53]. At a

basic level, vitamin D deficiency mimics effects of aging

with increased adipose tissue infiltration, activation of

muscle proteolytic pathways, osteoclastogenesis, and

increased bone turnover [54]. Elderly subjects may be more

vulnerable to vitamin D deficiency due to lower expression

of VDR in muscle and bone [55].

Subjects living in institutions are at particular risk of

vitamin D deficiency and have been shown to benefit from

vitamin D supplementation with a reduction in falls and

fractures [56, 57]. However, effects of vitamin D supple-

mentation are less clear among community dwellers.

Vitamin D supplementation may increase bone mineral

density in such individuals but this effect is small, limited

to the femoral neck, and not associated with clear reduction

in fracture risk [58, 59]. Clear effects in muscle function

have been difficult to establish without standardized end-

points for strength or performance-based indices in these

trials [43].

The definition of vitamin D deficiency and recom-

mended daily intakes of vitamin D remain contentious.

There is also evidence of a U-shaped curve in the muscu-

loskeletal response to vitamin D. Individuals with high and

low serum vitamin D have the greatest risk of fracture and

frailty compared to those with intermediate levels [60, 61].

However, defining the intermediate range at which vitamin

D effects are most beneficial has been elusive. While the

Institute of Medicine (IOM) recommends 25(OH)D target

levels [50 nmol/l [62], the US Endocrine society advo-

cates a higher serum target level [75 nmol/l [63]. This

uncertainty is compounded by reports of a greater inci-

dence of kidney stones and increased falls and fractures in

subjects receiving megadoses of vitamin D [58, 64]. Thus,

at a certain point, the dose-limiting calcemic effects of

vitamin D may outweigh its potential musculoskeletal

benefits.

Therapeutic VDR agonists with low calcemic potency

are being used in Japan to treat osteoporosis. One such

agent, eldecalcitol, has been shown to increase bone min-

eral density, reduce the risk of falls/fractures, and improve

lower limb strength in older individuals [65, 66]. Preclin-

ical trials support these effects, demonstrating alterations in

bone microstructure, bone turnover, and locomotive ability

in rodents receiving eldecalcitol [67, 68]. These effects

may result from tissue-specific activation of VDR [51] and/

or direct effects on calcium flux within bone and muscle

cells [67]. Although promising, the drug discovery process
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for VDR agonists faces potential hurdles and may hamper

their widespread use. To achieve tissue selectivity, a better

understanding of VDR’s molecular mechanisms, its

downstream responses, particularly in muscle, and effects

of polymorphisms are necessary.

In summary, musculoskeletal levels of VDR decline

with age concurrent with the physiological involution of

muscle and bone. Evidence suggests that musculoskeletal

aging responds to vitamin D at a cellular level and in

human clinical studies. Therapeutic VDR agonists provide

hope in reversing the effects of musculoskeletal aging and

in circumventing vitamin D’s dose-limiting calcemic

effects in order to directly target muscle and bone.

Myostatin and Activin-Based Therapies

Discovered in 1997, myostatin is a member of the TGF-b
superfamily and a muscle-derived hormone which is a

potent negative regulator of muscle mass [69]. Mutations in

the myostatin gene lead to pronounced increases in muscle

mass in mammalian species [69, 70]. Conversely, increases

in myostatin lead to muscle wasting in chronic diseases

such as HIV [71], renal failure [72], and chronic obstruc-

tive pulmonary disease [73]. To produce these effects,

myostatin binds to a transmembrane receptor (i.e., activin

receptor IIB, ActRIIB), activates Smad family proteins and

regulates downstream signals, such as the ubiquitin–pro-

teasome system, that govern muscle protein turnover.

Myostatin also affects bone. Myostatin polymorphisms

correlate with peak bone density [74] and myostatin

knockout mice display increased bone mass and mineral

[32, 75] with larger callus size following osteotomy [76].

These effects on bone are predominantly indirect, related to

the increased loading forces from muscle. However, direct

effects are possible due to the local expression of activin

receptors in bone marrow stromal cells and osteoblasts

(ActRIIA) which can weakly bind myostatin [77, 78].

In vitro studies demonstrate that directly targeting activin

receptors alter bone cell differentiation [79, 80].

Activin-based therapies have the potential to target both

osteoporosis and sarcopenia, given the evidence that acti-

vin signaling and myostatin regulate bone and muscle

mass. Several activin-based therapies have already been

developed and broadly include soluble activin receptors,

recombinant follistatin (i.e., an endogenous inhibitor which

bioneutralizes myostatin), derivatives of follistatin and

myostatin inhibitors (i.e., propeptides and neutralizing

antibodies) [78]. Rodents administered with such agents

demonstrate substantial increases in muscle mass [34, 79]

and reversal of muscle wasting in models of cancer

cachexia [81], aging [82], and androgen deficiency [83].

Animal studies also demonstrate beneficial effects of

soluble activin receptors (i.e., ActRIIB-Fc and ActRIIA) on

bone mass via dual anabolic–antiresorptive effects and

direct influences on osteoblast activity [79, 82, 84]. How-

ever, effects differ according to the particular agent. While

soluble decoy receptors exert dual effects in muscle and

bone, effects of myostatin inhibitors are specific to muscle

[85, 86]. This highlights differences in tissue-specific

activin signaling and may allow different therapeutic

approaches depending on the predominance of muscle or

bone wasting.

Human clinical trials have reported promising effects of

activin-based therapies. In a phase I trial, stamulumab, a

recombinant human myostatin antibody (MYO-029), was

generally safe in healthy adults and patients with muscular

dystrophy [87]. Although stamulumab improved single

muscle fiber contraction [88], anabolic effects on muscle

mass were not statistically significant. Another myostatin

inhibitor (AMG-745) was shown to significantly increase

lean body mass in men receiving androgen deprivation

therapy for prostate cancer [89]. Activin decoy receptors

have also been studied for their dual effects in muscle and

bone. ACE-031 (ActRIIB decoy receptor) was shown to

significantly increase lean mass (3.3 %) and thigh muscle

volume (5.1 %) in a double-blind, placebo-controlled study

of post-menopausal women [90]. As an indication of ben-

eficial effects on bone, ACE-031 also significantly

increased bone-specific ALP and decreased C-telopeptide,

as did another soluble decoy receptor (ACE-011) [90, 91].

A significant increase in bone mineral density (3.4 %) was

also reported at *100 days in a trial of 60 post-meno-

pausal women on ACE-031 but this data appeared only on

the company website (www.acceleron.pharma.com) and

has not been published or peer reviewed.

A number of adverse effects have hampered the develop-

ment of activin-based therapies. Reports of nosebleeds and

skin telangiectasia in two trials of ACE-031 raised concerns

about unrecognized, systemic side effects of inhibiting activin

signaling (NCT01099761, clinicaltrials.gov) [90]. Sudden

drops in serum FSH levels after ACE-031 and ACE-011,

probably related to suppression of GnRH signaling [90, 91],

also raised concerns and the need for larger and longer trials to

examine the safety of these therapies.

In summary, activin signaling is an attractive therapeutic

target in treating osteoporosis and sarcopenia. Preclinical

trials have demonstrated anabolic musculoskeletal effects

of activin-based therapies and preliminary human trials

confirm these effects, particularly in muscle mass. How-

ever the clinical trials are generally small, inadequately

powered to detect changes in muscle strength, and too short

to show convincing effects on bone density. Thus, longer

and larger studies are needed to assess well-defined func-

tional endpoints of activin-based therapies and to address

concerns about their long-term safety.
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Growth Hormone (GH), Insulin-Like Growth Factor 1

(IGF-1), and GH secretagogues

The GH/IGF1 axis plays a central role in musculoskeletal

growth and maturation during childhood and puberty.

Throughout life, it exerts system-wide effects on lipid and

glucose homeostasis [92], body composition, and bone

mineralization [93]. GH is a polypeptide hormone secreted

in a pulsatile fashion by the anterior pituitary gland under

the control of central (GHRH) and peripheral signals (IGF-1)

[94]. GH acts via specific growth hormone receptors in

peripheral tissues or indirectly through the induction of

IGF-1 [94]. Circulating IGF-1 is synthesized mainly in the

liver but IGF-1 is also expressed in numerous tissues,

suggesting that local paracrine effects may be responsible

for growth. At a molecular level, GH/IGF-1 signaling relies

on JAK/STAT, PI3 K, and ERK pathways, and tissue-

specific effects of GH versus IGF-1 illustrate the com-

plexity of this system [95, 96]. In muscle, for example, GH

determines muscle cell proliferation, fiber size, and insulin

sensitivity while IGF-1 exerts effects on fiber type and is

locally induced following exercise and injury [94]. In bone,

GH and IGF-1 synergistically promote osteoblast activity,

inhibit osteoclast-mediated bone resorption, and regulate

the renal synthesis of 1,25(OH)2D and phosphate reab-

sorption [97–100].

GH deficiency and mutations of the GH receptor (i.e.,

Laron syndrome) are characterized by failure of longitu-

dinal bone growth with short stature, failure of growth plate

fusion, and reduced muscle mass, all of which respond to

GH or IGF-1 replacement [101]. During aging, serum

levels of GH and IGF-1 decline, correlating with reductions

in muscle/bone mass and a greater risk of osteoporotic

fracture [102]. In muscle, aging leads to attenuation of

growth hormone receptor (GHR) activity and of exercise-

mediated IGF-1 signals by the local dysregulation of

miRNAs [103, 104]. Similarly, bone’s sensitivity to the

effects of IGF-1 diminishes with age [105]. Given these

associations and the vital importance of GH/IGF-1 in

promoting musculoskeletal growth, this pathway presents

an attractive therapeutic target in addressing age-related

osteoporosis and sarcopenia. Animal studies support this

notion, showing a reversal in sarcopenia in aged rodents in

response to GH treatment via effects in muscle protein

synthesis, mitochondrial function, and oxidative stress

[106].

However, the use of recombinant human growth hor-

mone (rhGH) to reverse musculoskeletal aging is highly

contentious. Twenty-five years ago, a famous study by

Rudman and colleagues in older men treated with rhGH for

6 months demonstrated improvements in lean mass

(8.8 %) and lumbar bone density (1.6 %) but no change in

femoral neck density [107]. Despite the small number of

participants (n = 21) and the lack of a control group, this

study provoked intense interest in the ‘anti-aging’ potential

of rhGH. Subsequent studies and a recent meta-analysis

have tempered this excitement by demonstrating inconsis-

tent effects of rhGH on bone density and physical function

in older adults and concerning side effects including dia-

betes, edema, arthralgias, and entrapment neuropathy

[108–110]. These studies are also limited by variable

dosing regimens of rhGH, short treatment duration and

follow-up periods (*6 months), and a lack of long-term

safety data. In addition, there is the theoretical possibility

that rhGH may increase mortality. This is suggested by a

greater incidence of cancer and cardiovascular disease in

patients with acromegaly (GH-secretory pituitary ade-

noma). Conversely, reduced GH/IGF-1 signaling has been

shown to prolong lifespan in worms, insects, and mice

[111]. In humans, GH deficiency and resistance are also

associated with advanced longevity [101], and within the

same population, short individuals have a statistical

advantage in longevity versus tall individuals [112].

In spite of equivocal benefits of rhGH on musculoskel-

etal mass, its reported side effects and concerns of

increased mortality, anti-aging clinics across the US have

spawned a lucrative industry in the off-label use of rhGH as

an ‘‘elixir of youth’’. This raises serious concerns. In vitro

studies report increased proliferation of cancer cells in

response to rhGH [113]. In mice, rhGH enhances the

growth of hepatic carcinoma xenografts [114]. There is

also a published report of an elderly male with Crohn’s

disease who developed IGF-1 receptor-expressing meta-

static colon cancer 7 years after commencing rhGH [115].

Therefore longer-term and larger clinical trials are needed

to determine the risks and benefits of rhGH in older sub-

jects together with functional outcomes in osteoporosis and

sarcopenia.

In principle, GH secretagogues are a more physiological

alternative to rhGH. GH secretagogues result in pulsatile

rather than prolonged increases in GH and respond to

negative feedback by IGF-1. There have been small studies

of GH secretagogues (GHRH-1,44-amide and ghrelin

mimetic MK-677) which have demonstrated improvements

in lean mass, unclear effects in physical function, and no

change in bone mineral density [116, 117]. The largest

randomized clinical trial of a GH secretagogue (capromo-

relin) involved 395 elderly subjects and had a planned

duration of 2 years [118]. The trial was ceased prematurely

due to significant increases in weight gain (1.4 kg at

6 months), arising from the appetite-stimulatory effect of

this drug’s ghrelin mimetic action. On a positive note,

capromorelin was associated with improvements in lean

mass, tandem walking, and stair climbing [118]. However,

subjects in this trial had mild functional decline and it

therefore remains unclear whether GH secretagogues may
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have similar functional effects or improvements in bone

density in frail subjects. There are also a number of

downstream targets of GH/IGF-1, such as SOCS proteins,

Grb10 [119], and IGF binding proteins (IGFBP) that may

present future therapeutic targets which could potentially

circumvent undesirable systemic effects of GH therapy.

Androgens and Selective Androgen Receptor

Modulators (SARMs)

In addition to established effects in the reproductive sys-

tem, androgens regulate growth by exerting anabolic

effects in the musculoskeletal system. These effects are

complex, relying on the activation of the androgen receptor

(AR) at these sites, and the accrual of muscle tissue via an

increase in protein synthesis, muscle fiber hypertrophy, and

an increase in satellite cell number [120]. In bone, andro-

gen-mediated increases in cortical and trabecular mass rely

on the local conversion of testosterone to estrogen and the

activation of estrogen receptors (ER) in osteoblasts [121].

Muscle wasting and osteoporosis are cardinal features of

male hypogonadism and are amenable to testosterone

therapy [122]. Similarly, men with muscle wasting due to

HIV or chronic glucocorticoid therapy display increased

muscle mass and strength in response to testosterone

therapy [123]. The potential for testosterone therapy to

reverse musculoskeletal aging has been suggested by a

number of observations. Elderly men with reduced serum

testosterone have a higher risk of muscle and bone loss and

low-energy fracture [124]. Following testosterone therapy,

older men display significant increases in bone density and

lean mass [125, 126]. Studies suggest that testosterone

therapy leads to improvements in strength in older men,

related to muscle fiber type-specific effects and increased

muscle mass [126, 127]. However, effects in bone were

limited to the lumbar spine and the incidence of hard

outcomes such as falls/fractures in those receiving testos-

terone therapy have not been established.

Safety concerns have been raised regarding the long-

term use of testosterone therapy in older subjects. In par-

ticular, cardiovascular events and prostate cancer have

been raised as potential risks, generating significant con-

troversy in this field. In 2010, a study of community-

dwelling older men was terminated due to a significantly

higher incidence of cardiovascular incidents following the

use of transdermal testosterone gel [128]. Larger studies

have failed to clearly demonstrate the greater risk of car-

diovascular events and in a statement this year, the FDA

reported that the evidence was inconclusive [129]. How-

ever, a large meta-analysis of non-industry funded trials

and a US-based epidemiologic study showed a two-fold

increase in the risk of cardiovascular events with

testosterone [130, 131]. Despite these concerns, prescrip-

tion sales for testosterone in the US increased by 25 %

each year from 1993 to 2002 [132].

Tissue-specific agents that exploit anabolic effects of

androgens in muscle/bone, while circumventing trouble-

some effects in other tissues, have been studied for decades

[133]. Selective androgen receptor modulators (SARMs)

achieve tissue selectivity by differences in tissue distribu-

tion of AR isoforms and local interactions with 5-alpha

reductase and aromatase [123]. Non-steroidal SARMs

(e.g., quinolones, aryl propionamides) have greater oral

bioavailability, AR specificity, and tissue selectivity than

steroidal SARMs (e.g., 19-nortestosterone, 17-alpha-

methyl-testosterone) and their development has therefore

progressed further. Andarine (also known as S-4) is con-

sidered the ideal SARM due to its high oral bioavailability,

long biological half-life allowing once-daily dosing, and

preclinical data demonstrating consistent anabolic effects

in muscle and bone [134]. A related compound, Ostarine

(GTx-024, enobosarm), has been studied in phase I–III

clinical trials and shown to increase lean mass and physical

function in elderly men, post-menopausal women, and

cancer patients [135–137]. Effects in bone density, how-

ever, have not been demonstrated possibly due to relatively

short study periods of up to 3 months [135]. The agent

LGD-4033 increased muscle mass and strength in healthy

males in 3 weeks [138], and according to the company

website (www.ligand.com), had beneficial effects in bone

mass in preclinical studies. A phase II trial for this agent is

planned for disorders of muscle wasting (e.g., cancer,

fracture). In a recent mouse study, GLPG0492 reduced

muscle fiber atrophy in immobilized muscles by modulat-

ing atrophy and tissue pleiotropic pathways involving

MuRF1, myogenin, and FOXO1 [139]. Other agents such

as BMS-564929 and LGD-2941 have shown similar results

and are currently in phase I trials for age-related functional

decline.

SARMs, therefore, hold great promise as anabolic

agents that may reverse effects of musculoskeletal aging

and by their tissue selectivity, circumvent concerns arising

from off-target effects of AR activation. However, func-

tional outcomes and long-term side effects of these agents

need to be further explored.

Exercise and Nutrition

For decades, we have been instructing our patients with

osteoporosis to participate in weight-bearing exercise.

Enhanced muscle tone and balance, reduced falls, and bone

loss, particularly of the femoral neck, are beneficial effects

of regular exercise [140, 141]. Mechanical forces activate

diverse signaling pathways involved in bone formation and
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muscle protein turnover, thereby forming a plausible basis

for the beneficial effects of regular exercise [142]. Indeed,

a recent extension study demonstrated long-term benefits

of exercise in improving gait, parameters of physical

function, and reducing falls in older individuals [143].

However these effects rely on continued participation in

exercise. Positive effects in muscle strength and bone

density were lost within 6 months of ceasing regular

exercise in a group of post-menopausal women [144].

There is no consensus on the type, duration, or intensity of

exercise that is most effective. Some studies advocate the

benefits of regular walking [140] while others suggest

music-based programs and resistance exercises [143, 145].

Malnutrition is rife in the elderly, affecting up to 40 %

of those living in institutions [146]. It is also estimated that

1 in 5 older individuals in the USA consumes inadequate

amounts of protein (i.e., \0.66 g/kg body weight per day)

[147]. Malnutrition may exacerbate musculoskeletal aging

as nutrients form substrates that are essential for muscle

and bone accretion (protein, calcium, magnesium, phos-

phate) and dietary protein correlates with muscle mass and

fractures [139]. However, protein supplements have not

shown consistent effects in improving muscle mass and

strength [148]. Small studies have suggested some benefit

of essential amino acid (EAA) and leucine supplementation

in improving muscle function in community-dwelling older

individuals [149]. However, these studies were highly

variable in terms of quality, supplemental doses, and the

inclusion of exercise, and therefore cannot guide practice.

The use of calcium supplements for bone health is

contentious. Calcium supplements lead to small increments

in bone mineral density but these effects do not persist

beyond their duration of use and they do not reduce frac-

tures [150]. On the other hand, meta-analyses have linked

calcium supplements with an increased risk of myocardial

infarction, raising serious concerns about their widespread

use [151, 152]. In general, it appears that potential risks of

calcium supplementation, particularly in the elderly and

those with renal impairment, outweigh their minimal

benefits.

For 25 years, we have known of the association between

vitamin K deficiency and osteoporotic fractures [143].

Vitamin K2 carboxylates osteocalcin, facilitating the

incorporation of calcium into hydroxyapatite, increases the

production of other matrix Gla proteins and may inhibit

osteoclast-mediated bone resorption [145, 153]. However,

RCTs of vitamin K supplementation have not shown sig-

nificant improvements in bone mineral density or fracture

risk among the elderly [154]. The use of vitamin K sup-

plements for this group therefore remains an open question.

In summary, exercise and nutritional interventions lead

to equivocal and short-lived results in muscle/bone mass in

older individuals. The current evidence base is limited by

small studies of variable quality and interventional strate-

gies. Larger, standardized trials examining clinically

meaningful outcomes in response to exercise/dietary

intervention are needed before guidelines can be

considered.

Future Directions

In addition to myostatin, there are myriad muscle-secreted

factors, known as myokines, that also affect bone and may

serve as therapeutic targets in musculoskeletal disorders.

These include FGF-2, IL-6, IGF-1, BDNF, FSTL-1, and

irisin [33]. As an example, IL6 stimulates bone resorption

and IL6-related cytokines, Oncostatin M, and ciliary neu-

rotrophic factor (CNTF), alters osteoblast differentiation

and bone strength [155, 156]. Bone-secreted factors may

also present important therapeutic targets. Osteocalcin

alters muscle mitochondrial function [157] and lower limb

strength in older women [36]. Sclerostin regulates the

osteogenic response to muscle loading and is already being

targeted for treatment in osteoporosis [158], although its

effects in muscle mass are unclear. Increased understand-

ing of the interconnected nature of the musculoskeletal

system and the vast network of osteokines and myokines

will potentially open new avenues of research in bone/

muscle therapeutics.

Conclusions

Musculoskeletal aging, defined by the concurrent atrophy

of muscle and bone, the infiltration of adipose tissue at

these sites, and the attenuation of muscle fibers and bone

mineral, is a highly complex and integrated process.

Functionally, this progressive involution of muscle and

bone leads to postural imbalance, deconditioning, falls and

ultimately, fractures with dire consequences on morbidity

and mortality. Our current efforts in reducing fracture are

geared heavily toward bone and neglect the vastly intricate

network of signals that govern and connect bone and

muscle mass. An integrated approach that targets the

muscle–bone unit as a whole maybe more effective in

‘‘breaking the vicious cycle’’ of musculoskeletal aging by

exerting concurrent effects that reduce falls and fractures.

There has been significant progress in the development

of novel anabolic therapies for muscle and bone, most

notably activin pathway inhibitors, SARMs, and non-

calcemic VDR agonists. Preclinical data show clear mus-

culoskeletal benefits of these agents but the demonstration

of unequivocal effects in falls and fractures are yet to be

seen. This will depend on phase III clinical trials which are

yet to be conducted for the majority of these therapies.
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There are major challenges in the development of dual

muscle–bone therapies. The definition of sarcopenia

remains unclear and functional endpoints and markers of

the ‘musculoskeletal unit’ are needed to confirm positive

outcomes in efficacy trials. There have also been safety

concerns with these agents and these relate to off-target

effects of manipulating widespread signaling pathways.

Activin pathway inhibitors have been hindered by reports

of telangiectasia, bleeding, and gonadotropin suppression

[90]. Similar issues have been overcome for therapies

targeting other pathways. To circumvent undesirable

effects of androgens, SARMs have been developed to

specifically target muscle and bone. GH secretagogues

preserve IGF-1-mediated negative feedback of GH and

avoid the effects of supraphysiological levels of GH due to

GH therapy [123]. Finally, VDR agonists may specifically

target muscle and bone without dose-limiting systemic

effects on calcium and phosphate homeostasis.

In recognizing the integrated biology of the musculo-

skeletal system and the complex signals involved in bone/

muscle aging, the time has come to reconsider our approach

to the prevention of osteoporotic fracture. Collaborative

efforts by basic scientists, physicians, and the pharmaceuti-

cal industry are needed to address these complicated issues

and ignite the development of novel therapies for the com-

bined treatment of osteoporosis and sarcopenia.
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