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Abstract Osteoarthritis (OA), the most prevalent chronic

joint disease, increases in prevalence with age, and affects

majority of individuals over the age of 65 and is a leading

musculoskeletal cause of impaired mobility in the elderly.

Because the precise molecular mechanisms which are

involved in the degradation of cartilage matrix and devel-

opment of OA are poorly understood and there are cur-

rently no effective interventions to decelerate the

progression of OA or retard the irreversible degradation of

cartilage except for total joint replacement surgery. In this

paper, the important molecular mechanisms related to OA

pathogenesis will be summarized and new insights into

potential molecular targets for the prevention and treatment

of OA will be provided.
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Introduction

Osteoarthritis (OA), the most prevalent chronic joint

disease, increases in prevalence with age, and affects

majority of individuals over the age of 65 [1, 2]. A

report from the Third National Health and Nutrition

Examination Survey reveals that about 37.4 % of adults

in the United States who are 60 years of age or older

have radiographic evidence of OA [3]. OA most affects

the joint including knees, hands, hips, and spine, and is a

leading musculoskeletal cause of impaired mobility in

the elderly [4, 5]. While several risk factors associated

with OA have been put forward, including genetic pre-

disposition, aging, obesity, and joint mal-alignment, the

pathogenesis of OA remains largely unclear [6, 7]. The

major clinical symptoms include chronic pain, joint

instability, stiffness, joint deformities, and radiographic

joint space narrowing [8, 9]. Treatment of osteoarthritis

involves alleviating pain, reducing stiffness, maintaining

the functional capacities and improving quality of life

[8]. Current treatments include low-impact aerobic

exercise [10], weight loss [11], acupuncture [12], glu-

cosamine and chondroitin Sulfate [13], and surgical [14].

Because the precise molecular mechanisms which

involved in pathogenesis of OA are poorly understood

and there are currently no effective interventions to

decelerate the progression of OA or retard the irrevers-

ible degradation of cartilage except for total joint

replacement surgery [15]. The economic burden of

osteoarthritis may exceed $60 billion per year in the

United States [16]. In this paper, the important molecu-

lar mechanisms related to OA pathogenesis will be

summarized and new insights into potential molecular

targets for the prevention and treatment of OA will be

provided.
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Characteristics of Articular Cartilage

Articular cartilage is mainly composed of tissue fluid, type

II collagen (Col2), and proteoglycans. Of the wet mass,

65–80 % of cartilage is tissue fluid. This high fluid content

enables nutrients and oxygen to diffuse through the carti-

lage matrix to its cells. Collagen type II, and proteoglycans

account for 15–22 and 4–7 % of the cartilage wet weight,

respectively [17]. Other collagens and proteoglycans such

as types V, VI, IX, X, XI, XII, XIV collagens [18] and

decorin, biglycan, fibromodulin, lumican, epiphycan, and

perlecan [19] also account for a small part (less than 5 %)

of the normal cartilage composition. The articular chon-

drocyte is the only cell type in articular cartilage and

responsible for generating and maintaining the cartilagi-

nous extracellular environment [20, 21].

The collagen/proteoglycan matrix consists of a highly

dense meshwork of collagen fibrils including the major col-

lagen type II (Col2) and minor collagen types IX, and XI

embedded in gel-like negatively-charged proteoglycans [22].

This hydrated architecture of the matrix provides the articular

cartilage with tensile and resilient strength which allows joints

to maintain proper biomechanical function [23].

As articular cartilage matures, articular chondrocytes

maintain the cartilage by synthesizing matrix components

(Col2 and proteoglycans) and matrix degrading enzymes

with minimal turnover of cells and matrix. The existing

collagen network becomes cross-linked, and articular car-

tilage matures into a permanent tissue with the ability to

absorb and respond to mechanical stress [24]. Under nor-

mal conditions, articular chondrocytes become arrested at a

pre-hypertrophic stage of differentiation, thereby persisting

throughout postnatal life to maintain normal articular car-

tilage structure [25].

Progression of OA

Articular cartilage can be damaged by normal wear and

tear or pathological processes such as abnormal mechanical

loading or injury. During the early stages of OA, the car-

tilage surface is still intact. The molecular composition and

organization of the extracellular matrix is altered first [26].

The articular chondrocytes, which possess little regenera-

tive capacity and have a low metabolic activity in normal

joints, exhibit a transient proliferative response and

increased matrix synthesis (Col2, aggrecan etc.) attempting

to initiate repair causing by pathological stimulation. This

response is characterized by chondrocyte cloning to form

clusters and hypertrophic differentiation, including

expression of hypertrophic markers such as Runx2, ColX,

and Mmp13. Changes in the composition and structure of

the articular cartilage further stimulate chondrocytes to

produce more catabolic factors involved in cartilage deg-

radation. As proteoglycans and then the collagen network

breakdown [27], cartilage integrity is disrupted. The

articular chondrocytes will then undergo apoptosis and the

articular cartilage will eventually be completely lost. The

reduced joint space resulting from total loss of cartilage

will cause friction between bones, leading to pain and

limited joint mobility. Other signs of OA, including sub-

chondral sclerosis, bone eburnation, osteophyte formation,

as well as loosening and weakness of muscles and tendons

will also appear.

Molecular Mechanisms Related to OA Pathogenesis

The etiology of OA is multi-factorial, including genetic

predisposition, aging, obesity, and joint mal-alignment and

prior joint injury or surgery [6, 7], which can be segregated

into categories such as mechanical influences, the effects of

aging and genetic factors. Studies show that loss of intact

meniscus function leads to OA in humans due to joint

instability and abnormal mechanical loading [28, 29].

Recently, the meniscal ligamentous injury (MLI) induced-

OA model is becoming a well established mouse model

which mimics clinical situation allowing us to study the

development and progression of trauma-induced OA on

defined genetic backgrounds [30]. In this model, the liga-

tion of the medial collateral ligament coupled with dis-

ruption of the meniscus from its anterior-medial attachment

can reproducibly induce OA over a 3 month time period.

There are rare cases of OA involving mutations of types II,

IX, and XI collagen [31, 32]. In addition, there was pre-

cious little evidence that inflammatory cytokines such as

prostaglandins, TNF-a, interleukin-1, interleukin-6 and

nitric oxide, are important in vivo even though they are

potent inducers in vitro [33]. It is well known that genetic

factors contribute to the susceptibility for OA. Several

studies have demonstrated that molecular mechanisms

might be related to the pathogenesis of OA.

Growth Factors and OA

TGF-b

Chondrocyte differentiation and maturation during endo-

chondral ossification are tightly regulated by several key

growth factors and transcription factors, including members

of the transforming growth factor b (TGF-b) super family,

fibroblast growth factors (FGFs), Platelet-derived growth

factor (PDGF),and parathyroid hormone-related protein

(PTHrP) [34–38]. Growth factors have been extensively

studied for pathogenesis of OA and cartilage repair because of

its ability to enhance matrix synthesis [39].
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Since TGF-b inhibits chondrocyte hypertrophy and

maturation, the inhibition of TGF-b signaling represents a

potential mechanism in the development of OA [40]. There

are three isoforms of TGF-b, TGF-b1, 2 and 3, which can

bind to the type II receptor to activate the canonical TGF-

b/Smad signaling cascade. In the canonical pathway, TGF-

b binds to the type II receptor which then phosphorylates

type I transmembrane serine/threonine kinase receptors.

The type I receptor subsequently phosphorylates Smads 2

and 3 (R-Smad) at a conserved SSXS motif at the C-ter-

minus of Smads 2 and 3. The activated R-Smads thus

dissociate from the receptor complex and form a hetero-

meric complex with the common Smad, Smad4. This het-

eromeric Smad complex then enters the nucleus and

associates with other DNA binding proteins to regulate

target gene transcription [41].

Loss of TGF-b signaling is associated with cartilage

damage, which suggesting loss of the protective effect of

TGF-b during osteoarthritis progression. Additionally,

TGF-b is involved in early osteophyte formation [40]. In

mice, targeted disruption of the TGF-b1 gene results in

diffuse, and lethal inflammation about 3 weeks after birth

and loss of TGF-b2 or TGF-b3 results in defects in bone

development affecting the forelimbs, hindlimbs, and cra-

niofacial bones, suggesting that TGF-b plays an important

role in skeletogenesis [42].

Recent genetic manipulation of TGF-b signaling mem-

bers also demonstrated that TGF-b signaling plays a criti-

cal role during OA development. Transgenic mice that

over-express the dominant-negative type II TGF-b receptor

(dnTgfbr2) in skeletal tissue exhibit articular chondrocyte

hypertrophy with increased type X collagen expression,

cartilage disorganization and progressive degradation [43].

Consistent with these findings, Smad3 knockout mice show

progressive articular cartilage degradation resembling

human OA [44]. In order to overcome embryonic lethality

and redundancy, we generated chondrocyte-specific Tgfbr2

conditional knockout mice (Tgfbr2 cKO or Tgfbr2Col2C-

reER mice) in which deletion of the Tgfbr2 gene is med-

iated by Cre recombinase driven by the chondrocyte-

specific Col2a1 promoter in a tamoxifen (TM)-inducible

manner [45, 46]. These mice exhibit typical clinical fea-

tures of OA, including cell cloning, chondrocyte hyper-

trophy, cartilage surface fibrillation, vertical clefts, and

severe articular cartilage damage as well as the formation

of chondrophytes and osteophytes [47]. In addition, the

relationship between TGF-b and OA is strengthened by the

discovery that a single nucleotide polymorphism (SNP) in

the human Smad3 gene is linked to the incidence of hip and

knee OA in a 527 patient cohort [48].

The TGF-b pathway has been identified as a key sig-

naling pathway in osteoarthritis, but evidence for both

protective and catabolic roles of TGF-b signaling has been

reported. Zhen et al. provide new evidence using several

models of osteoarthritis to show that TGF-b is involved in

aberrant bone remodeling and cartilage degeneration in

osteoarthritis. As increased TGF-b activity in the sub-

chondral bone can be a primary cause of osteoarthritis and

can initiate pathology, therapeutic targeting may be used to

prevent and ease the disease [49].

Loss of TGF-b signaling in cartilage induces chondro-

cyte hypertrophy, eventually leading to cartilage degener-

ation, and pharmacological activation of the TGF-b
pathway has therefore been proposed to preserve articular

cartilage integrity during osteoarthritis [50]. However, such

a strategy exist several caveats, for example, TGF-b sig-

naling in chondrocytes seems to switch from the canonical

anabolic ALK5-Smad2/3 pathway to the catabolic ALK1-

Smad1/5/8 pathway as they age, suggesting that TGF-b
supplementation in aged individuals might actually exac-

erbate cartilage destruction [34].

FGF-2 and FGF-18

Some other growth factors have been described as having

a role in the response of cartilage to injury and the

development of OA [51]. Of these growth factors, the

fibroblast growth factor (FGF) signaling family is known

to have several roles [52, 53]. FGF-2 have a potent cat-

abolic and anti-anabolic role in human cartilage homeo-

stasis [54]. FGF-2 is released in supraphysiological

amounts during loading and/or injury of the cartilage

matrix and activates multiple transduction signal pathways

(MAPKs), such as ERK, p38, and JNK [52]. FGF-2 could

stimulate MMP-13 expression potently, which is the major

degrading enzyme to type II collagen [55]. The FGFR1-

Ras/PKCd-Raf-MEK1/2-ERK1/2 signaling pathway is

activated after FGF-2 stimulation, which mediates up-

regulation of matrix-degrading enzyme expression (AD-

AMTS-5 and MMP-13), as well as down-regulation of

aggrecan expression [54, 56–58]. Correspondingly, PKCd
inhibition significantly impairs these detrimental effects

mediated by FGF-2. These findings provide deeper

insights into the feasibility of utilizing downstream FGF-2

pathway-specific inhibitors in prevention and/or treatment

of degenerative joint diseases. Future focuses may be

toward elucidating pharmacological interventions that

have a high translational potential and may establish the

potential efficacy of a PKCd peptide inhibitor in the

treatment of OA [59].

FGF-18, a secreted heparin-binding polypeptide growth

factor, has been shown to have a number of functions in

different organs [60, 61]. In the musculoskeletal system,

FGF-18 is involved in cartilage growth and maturation and

is implicated in the development of functional cartilage and

bone tissue [62, 63]. It is also involved in processes within
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mature cartilage [62, 63] as well as being shown to have a

role in enhancing regeneration and repair [64, 65]. Studies

have examined the effects of FGF-18 on damaged carti-

lage. For example, Moore et al. [65] has recently demon-

strated that FGF-18 stimulated chondrogenesis and

articular cartilage repair in mechanical damage models.

And in an in vitro damage/repair model, rhFGF18 increases

the proteoglycan synthesis, the repair cell number and

prevents apoptosis [66, 67]. These results indicate that

rhFGF18 may be a good candidate growth factor candidate

for enhancement of cartilage repair following mechanical

damage.

Wnt, b-Catenin and OA

The canonical Wnt/b-catenin signaling, which controls

multiple developmental processes in skeletal and joint

patterning, may also be involved in the progression of OA.

When Wnt binds its receptor Frizzled and the co-receptor

protein LRP5/6, the signaling protein Disheveled (Dsh) is

activated, leading to inactivation of the serine/threonine

kinase GSK-3b, thus inhibiting the ubiquitination and

degradation of b-catenin. b-catenin then accumulates in the

nucleus and binds LEF-1/TCF to regulate the expression of

Wnt target genes. In the absence of the Wnt ligand, cyto-

solic b-catenin binds the APC-Axin-GSK-3b degradation

complex, and GSK-3b in this complex phosphorylates b-

catenin to induce its proteosomal degradation. The degra-

dation of b-catenin represses the expression of Wnt

responsive genes, allowing binding of the corepressor

Groucho to the transcription factors LEF-1/TCF.

In vitro studies show that over-expression of constitu-

tively active b-catenin leads to loss of the chondrocyte

phenotype including reduced Sox9 and Col2 expression in

chick chondrocytes [68]. Genome-wide scans, candidate

gene association analyses and single nucleotide polymor-

phism (SNP) studies have demonstrated the association of

hip OA with the Arg324Gly substitution mutation in the

sFRP3 protein that antagonizes the binding of Wnt ligands

to the Frizzled receptors. The mutation of sFRP3 causes

increased levels of active b-catenin, promoting aberrant

articular chondrocyte hypertrophy and thereby leading to

hip and knee OA in patients [69–72]. Lories et al. [73]

reported that the genetic association between osteoarthritis

and FRZB polymorphisms is corroborated by increased

cartilage proteoglycan loss in models of arthritis in

Frzb(-/-) mice and loss of Frzb may contribute to carti-

lage damage by increasing the expression and activity of

Mmps, in a Wnt-dependent and Wnt-independent manner.

Consistent with this finding, Frzb knockout mice are more

sensitive to chemical-induced OA [74].

Since human genetic association studies suggest that

Wnt/b-catenin signaling may play a critical role in the

pathogenesis of OA, we have generated chondrocyte-spe-

cific b-catenin conditional activation (cAct) mice. These

mice show high expression of b-catenin in articular chon-

drocytes leading to abnormal articular chondrocyte matu-

ration and progressive loss of the articular cartilage surface

in 5- and 8-month old mice [75]. The role of Wnt/b-catenin

signaling in cartilage degeneration is further demonstrated

in other animal models. Chondrocyte-specific Col2a1-

Smurf2 transgenic mice develop an OA-like phenotype due

to up-regulation of b-catenin caused by Smurf2-induced

ubiquitination and degradation of GSK-3b [76]. Further-

more, over-expression of Wnt-induced signaling protein 1

(WISP-1) in the mouse knee joint also leads to cartilage

destruction [77]. Consistent with these findings, it has been

reported that a panel of Wnt signaling related genes,

including WISP-1 and b-catenin, was significantly up-

regulated in knee joints and disc samples from patients

with OA and disc degenerative disease [77]. However,

some research reported that inhibition of b-catenin sig-

naling in articular chondrocytes causes increased cell

apoptosis and articular cartilage destruction in Col2a1-

ICAT- transgenic mice [78].

The discovery of drugs exerting selective effects on

the Wnt/b-catenin signaling may help to delimitate the

specific roles of this pathway in cartilage degeneration

and repair [79]. Recently, a number of antagonists have

been identified as the small molecule XAV939, which

selectively inhibits b-catenin-mediated transcription by

stabilizing axin [80]. Elevated circulating levels of Wnt

inhibitor Dickkopf-1 (Dkk-1) are associated with reduced

progression of radiologic hip OA in elderly women [81],

however, inhibition of this agent results in the bone-

forming pattern of OA in animals [82]. Further studies

are needed to establish the role of the different compo-

nents of the Wnt/b-catenin pathway and their interaction

networks.

Indian Hedgehog (Ihh) and OA

The Ihh/parathyroid hormone-related protein (PTHrP)

negative-feedback loop is critical for chondrocyte differ-

entiation during endochondral bone formation. Articular

chondrocytes undergo cellular changes reminiscent of ter-

minal growth plate chondrocyte differentiation during OA

[83]. These observations suggest Ihh signaling may play a

pivotal role in OA development. Ihh is a major Hh ligand

in chondrocytes, which binds with the Patched-1 (PTCH1)

receptor to release its inhibition on Smoothened (SMO).

SMO can then activate the glioma-associated oncogene

homolog (Gli) family of transcription factors to initiate

transcription of specific downstream target genes, includ-

ing Ihh signaling pathway members Gli1, Ptch1 and

hedgehog-interacting protein (HHIP).
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Immunohistochemical studies demonstrated that Ihh

signaling activation positively correlates with the severity

of OA in human OA knee joint tissues and high expression

of GLI1, PTCH, and HHIP was found in surgically induced

murine OA articular cartilage. Activation of Ihh signaling

in mice with chondrocyte-specific over-expression of the

Gli2 or Smo genes induced a spontaneous OA-like phe-

notype with high MMP13, ADAMTS5, and ColX expres-

sion. In contrast, deletion of the Smo gene or treatment

with a pharmacological inhibitor of Ihh attenuated the

severity of OA induced by MLI injury [84].

Genetic studies using knockout mice showed that acti-

vation of Ihh downstream signaling pathways results in a

decrease in articular cartilage thickness and proteoglycan

content while inhibiting Ihh signaling results in an increase

of articular cartilage thickness and PG [85, 86]. Consistent

with these observations, upregulation of hedgehog (Hh)

signaling in postnatal cartilage promotes chondrocyte

hypertrophy and cartilage degradation [87], suggesting the

possibility that blocking Ihh signaling can be used as a

therapeutic approach to prevent or delay cartilage degen-

eration. However, Ihh gene deletion is currently not a

therapeutic option as it is lethal in animals. RNA inter-

ference (RNAi) provides a means to knockdown Ihh

without the severe side effects caused by chemical inhibi-

tors [88]. In the future, it will be necessary to develop a

safe and effective RNAi delivery system to target Ihh

signaling for preventing and treating OA [89].

HIF-2a and OA

The HIF proteins, including HIF-1, 2 and 3, are the basic

helix-loop-helix transcription factors which function dif-

ferently under normoxic and hypoxic conditions [90–93].

HIF-1a, in the articular cartilage, acts as an anabolic signal

by stimulating specific extracellular matrix synthesis [94,

95]. In contrast, HIF-2a (encoded by EPAS1) is a potential

catabolic regulator of articular cartilage and induces

articular cartilage degeneration [96, 97]. Promoter assays

suggest that NF-jB signaling could significantly induce

HIF-2a expression and then HIF-2a specifically regulate

transcription of several catabolic genes such as Mmp13

[96]. Genetic screen using the human osteoarhritic cartilage

UniGene library suggests that HIF-2a is a potential cata-

bolic regulator of articular cartilage [97]. Based on the

Japanese population ROAD study, a functional SNP in

human EPAS1 proximal promoter region was associated

with knee osteoarthritis in a 397 patient cohort [96, 98].

Consistent with this finding, HIF-2a expression was

markedly increased in OA patients with degenerative car-

tilage [96, 97]. Chondrocyte-specific Epas1 transgenic

mice could spontaneously develop osteoarthritis phenotype

with increased MMP13 and ColX expression in articular

cartilage. In addition, Epas1 heteozygous deficient mice

showed resistance to cartilage degeneration induced by

meniscus surgery [96, 97]. Therefore, HIF-2a may be a

critical transcription factor that targets several genes for

osteoarthritis development.

However, due to the absence of vasculature, the chon-

drocytes, the only cell type present in the tissue, are appear

to have developed specific mechanisms to promote tissue

function in response to chronic hypoxia, for example, by

inducing increased expression of cartilage matrix compo-

nents [99–101]. Hypoxia-inducible factors (HIFs) appear to

be critical to tissue-specific responses in chondrocytes.

Applying the technique of RNA interference, they subse-

quently demonstrated that HIF-2a was critical for this

hypoxic induction of cartilage matrix synthesis in HACs

[99]. Furthermore, the main matrix genes, such as those

encoding Col-2a1, aggrecan and Col-9 are up-regulated by

hypoxia through cartilage-specific transcription factor

SOX9. When putative hypoxia response element sequences

were mutated, hypoxic induction was abolished. In addi-

tion, the specific role of HIFs in this hypoxic induction of

chondrogenesis from MSCs deserves further exploration,

and interestingly, Hardingham and colleagues have

recently shown that human MSCs isolated from the infra-

patellar fat pad showed enhanced chondrogenic differen-

tiation in hypoxia, and furthermore, that HIF-2a, but not

HIF-1a, was up-regulated in these cultures [102].

However, HIF-2a is a potential therapeutic strategy for

the regulation of osteoarthritic cartilage destruction, some

caution seems warranted. Most transcription factors are

active in multiple cell types and to avoid systemic side

effects of a putative inhibitor, local targeting of OA

affected joints probably is the preferred way forward [103].

In addition, HIF-2a is primarily expressed in early stages of

OA, so therapy should be started at recent onset of OA

[104].

GDF-5 and OA

Growth differentiation factor 5 (GDF-5), which is a

member of TGF-b superfamily [105], is an extracellular

signaling molecule that participates in bone and cartilage

morphogenesis as well as in joint formation [106].

A number of studies have demonstrated that GDF-5

plays important roles in musculoskeletal processes,

affecting endochondral ossification, synovial joint forma-

tion, tendon maintenance, and bone formation [107, 108].

Defects of this gene were shown to be correlated to

abnormal joint development or skeletal disorders in

humans and mice [109–112]. Mutations in human GDF-5

gene result in a broad spectrum of skeletal disorders [113].

Miyamoto et al. genotyped a number of common GDF-5

polymorphisms and demonstrated that rs143383, a T to C
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transition located in the 50 untranslated region (50UTR) of

the gene, was significantly associated with OA [114].

Further studies have revealed that rs143383 is functional,

the OA-associated T-allele mediating reduced GDF-5

transcription relative to the C-allele in all of the joint tis-

sues [115, 116], however, some other groups did not con-

firm these results [117].

Mouse models have provided a basis for better under-

standing of the role of GDF-5 in skeletogenesis and joint

maintenance [109–111]. The brachypodism (bp) mice

which carry a functional null allele of GDF-5 caused by a

frame-shift mutation, exhibited abnormal skeletal and bone

development [118, 119]. However, Gdf5Bp-J/? mice

appeared phenotypically normal, but do show an increased

propensity of developing an OA phenotype when chal-

lenged [120]. This model suggested that decreased GDF-5

levels in mice contribute to osteoarthritis development. In

addition, GDF-5 deficient mice exhibited biomechanical

abnormalities in the tendon, which may be associated with

altered type I collagen and skeletal abnormalities, one

hypothesis of the mechanism behind that was GDF-5 might

modulate the rate of endochondral bone growth by affect-

ing the duration of the hypertrophic phase in growth plate

chondrocytes [121]. It is supportive of the genetic data

indicating the association between GDF-5 and human

osteoarthritis, however, it remains unclear why the fre-

quency of the associated alleles varies across studies,

identification of functional variants will probably require

biological as well as additional genetic assays.

Several studies have reported the use of GDF5 in thera-

peutics. Bobacz et al. [122] showed an increase in glycos-

aminoglycan (GAG) synthesis in normal and OA

chondrocytes cultured with GDF5, and an increase in ACAN

mRNA levels. Chubinskaya et al. [123] observed an increase

in GAG synthesis in alginate bead cultures of chondrocytes

in the presence of GDF5. However, Ratnayake et al. [124]

showed that osteoarthritis chondrocytes do not respond in a

predictable manner to culture with exogenous GDF5. This

may be a cause or a consequence of the osteoarthritis disease

process and will need to be surmounted if treatment with

exogenous GDF5 is to be advanced as a potential means to

overcome the genetic deficit conferring osteoarthritis sus-

ceptibility at this gene [124].

MMP-13, ADAMTS, and OA

MMP-13 is a substrate-specific enzyme that targets colla-

gen for degradation. Compared to other MMPs, MMP-13

expression is more restricted to connective tissues [125–

128]. MMP-13 preferentially cleaves Col2, which is most

abundant in articular cartilage and in the nucleus pulposus,

inner anulus fibrosus and cartilage endplate of the inter-

vertebral disc. It also targets the degradation of other

proteins in cartilage, such as aggrecan, types IV and IX

collagen, gelatin, osteonectin and perlecan [129]. MMP-13

has a much higher catalytic velocity rate compared with

other MMPs over Col2 and gelatin, making it the most

potent peptidolytic enzyme among collagenases [130, 131].

Clinical investigations revealed that patients with artic-

ular cartilage destruction had high MMP-13 expression

[132], suggesting increased MMP-13 may be the cause of

cartilage degradation. Mmp13 deficient mice show no

gross phenotypic abnormalities, and the only alteration is in

growth plate architecture during early cartilage develop-

ment [133, 134]. However, transgenic mice with cartilage-

specific Mmp13-overexpressing develop spontaneous

articular cartilage destruction characterized by excessive

cleavage of Col2 and loss of aggrecan [135].

In the above-mentioned Tgfbr2 cKO and b-catenin cAct

mouse models, MMP-13 expression is significantly

increased [47, 60]. These findings suggest that MMP-13

deficiency does not affect articular cartilage function dur-

ing the postnatal and adult stages but abnormal up-regu-

lation of MMP-13 can lead to cartilage destruction.

Moreover, deletion of the Mmp-13 gene prevents articular

cartilage erosion induced by meniscal injury [136].

The ADAMTS family consists of large family members

and they share several distinct protein modules as well.

Studies show that ADAMTS 4 and 5 expression levels are

significantly increased during OA development. Single

knockout of the Adamts5 gene or double knockout of the

Adamts4 and Adamts5 genes prevents cartilage degrada-

tion in surgery-induced and chemical-induced murine knee

OA models [137–139]. Interestingly, in Tgfbr2 cKO, b-

catenin and Ihh activation mouse models, ADAMTS5 was

significantly increased in articular cartilage tissue, sug-

gesting that maintaining proper ADAMTS5 levels are

essential for normal articular cartilage function. Taken

together, these findings indicate that catabolic enzymes

play a significant role in OA progression and targeting

these enzymes may be a viable therapeutic strategy to

decelerate articular cartilage degradation.

Since MMP-13 and ADAMTS5 are two potentially

attractive targets for OA therapy, the inhibition of these

enzymes and their regulatory mechanisms has been

extensively studied. Tissue inhibitors of metalloproteinases

(TIMP) are specific inhibitors which directly bind MMPs

and ADAMTS in chondrocytes to prevent the destruction

of articular cartilage [140]. A specific small molecule

MMP-13 inhibitor can attenuate the severity of OA in the

MLI-induced injury model as well [141].

In addition to proteinase inhibitors, the transcription

factor Runt domain factor-2 (Runx2) appears to be another

potential target to regulate MMP-13 and ADAMTS5

in vivo. DNA sequence analysis of Mmp-13 and Adamts5

promoters identified putative Runx2 binding sites in the
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promoter regions of these genes. In addition, Runx2 has an

overlapping expression pattern with MMP-13 and AD-

AMTS5, almost exclusively in the developing cartilage and

bone, suggesting that Runx2 may be an important tran-

scription factor regulating tissue-specific expression of

Mmp13 and Adamts5 in articular chondrocytes [142–144].

Thus, manipulation of Runx2 expression in vivo could be

an effective therapeutic strategy. During bone develop-

ment, the temporal and spatial expression patterns of

Runx2 are regulated by cytokines and growth factors

including TGF-b, BMP, and FGF [145–148]. In addition to

gene expression, Runx2 protein levels are also regulated

through post-translational mechanisms involving phos-

phorylation, ubiquitination, and acetylation [149–154].

MicroRNA regulation is another important regulatory

mechanism for protein translation. MicroRNA-140 (miR-

140) is the first microRNA demonstrated to be involved in

the pathogenesis of OA at least partially through regulation

of ADAMTS5 mRNA expression. MiR-140 knockout mice

are susceptible to age-related OA progression and con-

versely, over-expression of miR-140 in chondrocytes pro-

tects mice from OA development [155–157].

Summary

Articular chondrocyte is the sensor of articular cartilage

homeostasis, and plays a critical role in maintaining the

normal physiological structure and function of articular

cartilage. Recent studies demonstrate that articular chon-

drocyte homeostasis can be disrupted by multiple factors,

including abnormal mechanical loading, and aging. Addi-

tionally, genetic alterations in TGF-b/Smad, Wnt/b-catenin

and Ihh signaling pathways can disrupt the balance

between anabolic and catabolic activity in articular carti-

lage and result in irreversible degradation of the extracel-

lular matrix. Thus far, most of the mouse models of

osteoarthritis converge at the up-regulation of catabolic

enzymes, such as MMP-13 and ADAMTS5, suggesting

that these enzymes may serve as potential therapeutic tar-

gets in regulation of the progression of OA. In addition,

manipulation of the above-mentioned molecule in articular

chondrocytes could also play a role in articular cartilage

regeneration.
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