
ORIGINAL RESEARCH

Acute Effects of Glucocorticoids on Serum Markers
of Osteoclasts, Osteoblasts, and Osteocytes

Kristyna Brabnikova Maresova • Karel Pavelka •

Jan J. Stepan

Received: 10 May 2012 / Accepted: 27 November 2012 / Published online: 18 December 2012

� Springer Science+Business Media New York 2012

Abstract The aim of this study was to investigate the

acute effects of oral glucocorticoids in doses used in clinical

practice on biochemical indices of the function of osteo-

clasts, osteoblasts, and osteocytes. In 17 adult patients suf-

fering from various medical pathologies requiring systemic

steroid therapy that were never before treated with gluco-

corticoids, glucocorticoid treatment was initiated (mean

prednisolone equivalent dose of 23.1 ± 12.7 mg/day, range

10–50). Fasting morning serum concentrations of osteo-

calcin (OC), amino-terminal propeptide of type I procolla-

gen (PINP), type 1 collagen cross-linked C-telopeptide

(bCTX), soluble receptor activator of nuclear factor kappaB

ligand (sRANKL), osteoprotegerin (OPG), sclerostin,

Dickkopf-1 (Dkk-1), and high-sensitivity C-reactive protein

(hsCRP) were measured at baseline and on three consecu-

tive days. Significant reductions in serum OC, PINP, OPG,

sclerostin, and hsCRP were observed during 96 h of glu-

cocorticoid administration, while serum bCTX showed a

significant percentual increase. A significant positive cor-

relation was found between serum concentrations of Dkk-1

and bCTX after 96 h of treatment with glucocorticoids. A

significant drop in serum sclerostin, OPG, and OC observed

in this study may reflect the rapid glucocorticoid-induced

apoptosis of osteocytes.

Keywords Bone markers � Dickkopf-1 � Glucocorticoids �
sRANKL � Sclerostin

Introduction

The anti-inflammatory, immunosuppressive, and antistress

actions of glucocorticoids (GCs) play a protective role

in vivo. Between 2.7 and 4.6 % of postmenopausal women

are reported as currently taking oral GCs [1]. One of the

principal complications of long-term GC use is a profound

alteration of bone metabolism. Rapid bone loss is most

marked on endocortical surfaces [2]. Fracture risk increases

already during the first 6 months of therapy and is positively

related to daily dose [3], emphasizing the medical need to

understand the biology of GC-induced bone loss so that cli-

nicians can effectively prevent and treat this disease [4].

Supraphysiological concentrations of GC induce an early

upregulation of genes associated with osteoclast cytoskeletal

reorganization and organic bone matrix degradation [5] and

stimulate bone resorption by promoting osteoclast survival

and activity [6, 7]. GCs also inhibit the Wnt/b-catenin sig-

naling pathway, enhance bone marrow stromal cell devel-

opment toward the adipocyte lineage rather than toward the

osteoblast lineage, and rapidly and significantly impair pro-

liferation and differentiation, survival, and function of oste-

oblasts [5, 8, 9]. GCs also induce the loss of osteocytes by

apoptosis and by autophagy [10, 11]. Osteocytes produce

negative regulators of the Wnt/b-catenin pathway such as

Dickkopf-1 (Dkk-1) and sclerostin, the key components

regulating the number and activity of bone-forming osteo-

blasts [12] as well as osteoprotegerin (OPG) and the receptor

activator of nuclear factor kappaB ligand (RANKL), the key

components involved in osteoclast differentiation [13]. These
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changes favor reduction in new bone formation, a decrease in

bone mass, and impaired quality of bone [4, 14, 15].

In clinical practice, high-dose (15 mg/kg daily for

10 days) iv methylprednisolone caused an immediate and

persistent decrease in the serum marker of type 1 collagen

synthesis (amino-terminal propeptide of type I procollagen,

PINP) and osteocalcin (OC) in 13 patients suffering from

multiple sclerosis [16] and in nine asthmatics treated with

high iv dosages of betamethasone (0.65 mg/h) [17]. Serum

concentrations of PINP were also significantly reduced after

2 weeks’ exposure to a low dose of prednisone (5 mg daily)

in healthy postmenopausal women [18]. Bone-specific

alkaline phosphatase, another marker of osteoblast function,

did not change significantly during administration of higher

doses of GCs [16, 18]. Effects of GCs on bone resorption

markers are dose-dependent. High-dose iv GCs cause a

rapid and transient increase of serum marker of type-1

collagen degradation (type 1 collagen cross-linked C-telo-

peptide, bCTX) [16, 18]. The above studies, however, did

not evaluate the acute-phase reactants to assess a possible

association between reduced inflammation and changes in

the bone turnover markers after GC administration. To

further assess the effects of oral GCs in doses used in

clinical practice on osteoclast, osteoblast, and osteocyte

function, we measured serum concentrations of the proven

markers of bone remodeling, such as bCTX, PINP, and OC

[19], simultaneously with the other possible mediators of

the effects of GCs on bone, including soluble RANKL

(sRANKL); its decoy receptor OPG [20]; two inhibitors of

the Wnt/b-catenin signaling pathway, sclerostin and Dkk-1

[12]; and the high-sensitivity C-reactive protein (hsCRP).

Subjects and Methods

Study Design

We prospectively enrolled adult patients suffering from

various medical pathologies requiring systemic steroid

therapy who were never before treated with GCs and in

whom GC treatment was currently initiated. All partici-

pants gave their written informed consent before enroll-

ment. The study protocol and informed consent documents

were prepared according to the Declaration of Helsinki and

approved by the local ethical review board.

Before inclusion into the study, patients underwent a

clinical examination (a full clinical history including details

of comorbidity, detailed personal history of rheumatic dis-

ease, fracture history, alcohol intake, smoking, height loss,

family history of osteoporosis, and hip fracture) and physical

and laboratory examination.

One day before the initiation of GC treatment and each day

before sampling, patients were asked to fast from 8:00 p.m.

overnight. They were instructed to maintain normal hydra-

tion. At baseline and then after 24, 48, and 96 h, venous blood

samples were collected for the assessment of biochemical

markers. Immediately after sampling, the blood was centri-

fuged and the serum directly stored at -70 �C.

End points were changes in serum markers of osteoblast,

osteocyte, and osteoclast activity during the first 96 h after

initiation of GC therapy.

Patients

Included were 17 patients, 3 premenopausal women (age range

19–36 years, body mass index [BMI] 18.1–24.8 kg/m2), 10

postmenopausal women (age range 19–87 years, BMI

19.8–31.9 kg/m2), and 3 men (age range 53–63 years, BMI

range 23.6–37.3 kg/m2) indicated for treatment with GCs. The

indications for treatment with GCs were as follows: rheuma-

toid arthritis (n = 5), polymyalgia rheumatica (n = 3), sys-

temic lupus erythematosus (n = 2), Churg–Strauss syndrome

(n = 1), polymyositis (n = 3), Takayasu arteritis (n = 1),

antisynthetase syndrome (n = 1), and pyrophosphate

arthropathy (n = 1). Exclusion criteria were Expanded Dis-

ability Status Scale greater than 5.5, history of diseases

affecting bone, prolonged immobilization (more than

3 weeks), and/or treatment with drugs known to influence

bone metabolism, including GCs, any time.

At baseline, three patients were treated with hydrochlo-

roquine, three with methotrexate, one with cyclosporine, and

one with cyclophosphamide at recruitment. None of these

patients was on biological therapy during the study. None of

these patients was bedridden. Patients received a mean

prednisolone equivalent dose of 23.1 ± 12.7 mg/day (range

10–50). Additional calcium and vitamin D supplements were

provided on the third day after completion of blood study

sampling. For ethical reasons it was not possible to postpone

initiation of treatment by 4 days in order to perform the

control tests of baseline reproducibility of the markers

enabling each patient to be his or her own control. Therefore,

the control group consisted of nine healthy adult volunteers

(six women, three men, mean age 38.9 ± 11.3 years) who

participated in the study after their written informed consent

was obtained.

Biochemical Analysis

Fasting morning blood samples were obtained by antecu-

bital venipuncture at baseline and before GC administra-

tion each day during treatment.

An enzyme-linked immunosorbent assay (ELISA) was

used according to the manufacturer’s instructions, and the
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results were read and calculated by the ELISA reader

Tecan Sunrise (Schoeller Instruments, Prague, Czech

Republic). The studied parameters included serum con-

centrations of sRANKL (Ampli-sRANKL ELISA; Bio-

medica Medizinprodukte, Vienna, Austria; intra-assay

imprecision coefficient of variation (CV) 9 %, interassay

imprecision CV 3 %, detection limit 0.02 pmol/L), OPG

(Osteoprotegerin ELISA, Biomedica Medizinprodukte;

intra-assay imprecision CV 4 %, interassay imprecision

8 %, detection limit 0.14 pmol/L), Dickkopf-1 (Dkk-1

ELISA, Biomedica Medizinprodukte; intra-assay impreci-

sion CV 8 %, interassay imprecision CV 12 %, detection

limit 0.38 pmol/L), and human sclerostin (Human SOST

ELISA; USCN Life Science, Brussels, Belgium; detection

range 0.312–20 lg/L, detection limit \0.081 lg/L).

Serum OC, PINP, bCTX, intact parathyroid hormone

(iPTH), and 25-hydroxyvitamin D [25(OH)D] were deter-

mined using electrochemiluminescence-based immuno-

analysis (Cobas Analyzer; Roche Diagnostics, Mannheim,

Germany). hsCRP was assessed using the immunoturbidi-

metric test (AU 400; Beckman Coulter, Prague, Czech

Republic). The within-run imprecision of bCTX was below

7 % for samples between 200 and 500 ng/L and below

10 % for very low bCTX concentration samples. The

within-run imprecision of iPTH was 5.4 % at serum con-

centration 3.2 pmol/L and 4.0 % at 6.6 pmol/L. The

within-run imprecision of OC was \5 % at concentrations

of 11–40 lg/L. The within-run imprecision of PINP was

below 5 % at concentrations of 20–90 lg/L. The within-

run imprecision of hsCRP was 2 %. The serum concen-

tration of calcium was determined using the colorimetric

color test Calcium Arzenazo III on the AU 400 analyzer.

The above serum markers, hsCRP, calcium, and phos-

phorus, were measured at baseline and after 24, 48, and

96 h of GC treatment. Serum 25(OH)D was measured at

baseline. Serum specimens collected from all sampling

days were analyzed simultaneously at the end of the study.

Bone Densitometry

Bone mineral density (BMD) was measured using dual-

energy X-ray absorptiometry by the bone densitometer GE

Prodigy (GE Healthcare, Madison, WI; software 12.10.113)

at the lumbar spine, proximal femur, and femoral neck.

Short-term in vivo precision errors for the lumbar spine,

total femur, and femoral neck were 0.7, 0.9, and 1.8 %,

respectively. BMD was expressed as a T score.

Statistical Methods

Statistical analysis of data was performed using SigmaPlot 10

software package (Systat Software, Erkrath, Germany).

Relationships between variables (absolute and percent

change from baseline) were explored using Pearson product

moment correlation coefficients (r and p values reported).

Differences in percentage change between the times were

assessed by analysis of variance. Where appropriate, the

Tukey test was used for comparisons. Results were considered

statistically significant at the level of 0.05.

Results

Baseline characteristics of patients under study are given in

Table 1. At baseline, BMD at the lumbar spine or proximal

femur was in the range of osteoporosis (B-2.5 T score) in

one patient and normal ([-1 T score) in five patients.

Serum 25(OH)D levels were in the deficient range

(\25 nmol/L) in 9 of 17 patients and in the insufficient

range (25–50 nmol/L) in 4 of 17 patients; serum iPTH

concentrations were in the normal range in 12 of 17

patients; in five they were 7.2–17.3 pmol/L, with normal

serum calcium. Serum concentrations of hsCRP [5 mg/L

were observed in 13 of 17 patients.

At baseline, no significant correlations were observed

between age, BMI, iPTH, 25(OH)D, hsCRP, and the other

biochemical indices, except for significant positive corre-

lations observed between serum PINP and OC (r = 0.82,

p \ 0.001), OPG and OC (r = 0.83, p \ 0.001), and OPG

and PINP (r = 0.62, p = 0.008) and a significant negative

Table 1 Baseline characteristics of the population under study

Age (years, mean and range) 68 (19–87)

BMI (kg/m2) 24.8 (21.9–29.3)

BMD lumbar spine (T score) –0.2 ± 1.3

BMD total femur (T score) –1.0 ± 0.9

BMD femoral neck (T score) –1.3 ± 1.1

Dose (prednisolone equivalent, mg/day) 20 (15.0–32.5)

S-Ca (mmol/L) 2.28 (2.21–2.38)

S-PO4 (mmol/L) 1.24 (1.13–1.31)

S-ALP (lkat/L) 1.56 (1.41–1.85)

S-PINP (lg/L) 41.2 (24.6–61.5)

S-Osteocalcin (lg/L) 13.0 (9.1–14.7)

S-OPG (pmol/L) 4.07 (3.16–5.83)

S-Sclerostin (lg/L) 24.7 (17.6–29.5)

S-bCTX (lg/L) 0.48 (0.32–0.65)

S-Dkk-1 (pmol/L) 118.2 (55.6–179.2)

S-sRANKL (pmol/L) 0.050 (0.000–0.125)

S-sRANKL/OPG (mol/mol) 0.005 (0.000–0.033)

S-25(OH)D (nmol/L) 24.5 (21.3–41.0)

S-iPTH (pmol/L) 5.2 (3.5–7.6)

TSH (mIU/L) 1.6 (1.4–2.2)

hsCRP (mg/L) 60.4 (11.2–104.0)

Mean ± SD or median (25–75 %)
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correlation between PINP and hsCRP (r = -0.51,

p = 0.036).

During 96 h of GC administration, a significant reduc-

tion of serum OC, PINP, OPG, and sclerostin was observed

(Fig. 1). Compared with baseline, after 24, 48, and 96 h,

hsCRP was reduced by 23.2 ± 21.3 % (nonsignificant),

44.6 ± 28.6 % (p \ 0.05), and 66.2 ± 21.7 % (p \ 0.05),

respectively. During 96 h of GC administration, serum

bCTX showed a significant percentual increase (Fig. 1),

while the increase in Dkk-1 did not reach statistical sig-

nificance. A significant positive correlation was found

between serum concentrations of Dkk-1 and bCTX (Fig. 2)

after 96 h of treatment with GCs. This correlation was not

significantly influenced by baseline iPTH, 25(OH)D, and

hsCRP serum concentrations (Table 2). Also, the signifi-

cant positive correlation between serum OPG and PINP

was not significantly influenced by baseline iPTH,

25(OH)D, and hsCRP serum concentrations. No significant

correlations were observed between age or sex and the

biochemical indices studied. The increase in serum

sRANKL (by 57 %) and sRANKL/OPG (by 77 %) did not

reach statistical significance.

A significant correlation was observed between change

in hsCRP and change in PINP and between change in

hsCRP and change in sRANKL/OPG ratio (Fig. 3). Daily

dose of GCs was borderline inversely correlated with

change from baseline in serum PINP (r = -0.482,

p = 0.05) but not with the other indices.

Discussion

Our main objective in the current study was to understand

whether the acute changes in serum biochemical markers of

bone turnover are associated with changes in mediators of

the effects of GCs on osteoblasts and osteocytes. We

studied a heterogeneous and small group of adults suffering

from various chronic, low-grade systemic inflammations

requiring systemic steroid therapy. The subjects received a

medium dose of oral GCs for 4 days. As expected, treat-

ment with GCs resulted in a fast and significant drop in

serum hsCRP, an acute-phase reactant. Serum hsCRP level

has been reported to be a significant predictor of low-trauma

fracture [21, 22], and circulating levels of inflammatory

markers correlate with bone resorption markers and predict

change in BMD [23, 24]. However, other studies did not

find a significant correlation between hsCRP and serum

C-telopeptide as a marker of bone resorption [22, 25]. In the

present study, we also did not find an association between

hsCRP and serum CTX at baseline. However, we observed

a significant negative correlation between hsCRP and PINP

at baseline, indicating reduced osteoblastic bone formation

in patients with chronic inflammation. This is in agreement

with histomorphometry of bone biopsy specimens indicat-

ing reduced bone formation in non-steroid-treated patients

with rheumatoid arthritis [26] and with a reduction in the

markers of bone formation in juvenile chronic arthritis [27].

Fig. 1 Change from baseline in

serum markers in 17 patients

treated with glucocorticoids

(mean ± SE). *p \ 0.05 versus

baseline (ANOVA on ranks).

Dotted lines indicate controls.

a bCTX (filled circles) and

PINP (empty circles). b Dkk-1

(filled circles) and sclerostin

(empty circles).

c Osteoprotegerin (filled circles)

and osteocalcin (empty circles)

Fig. 2 Correlation between serum concentrations of Dkk-1 and

bCTX after 96 h of treatment with glucocorticoids (r = 0.73, n = 17,

p = 0.001)
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In agreement with previous studies in healthy subjects

[16, 17, 28, 29] and in patients suffering from various med-

ical pathologies requiring steroid therapy [16, 17, 28, 29], we

observed a significant drop in serum OC and PINP concen-

trations after starting treatment with GCs. Gene expression

of both OC and procollagen-a1(I) is directly downregulated

by GCs [30]. In this study, a significant reduction in serum

OPG is in good agreement with inhibition by dexamethasone

of OPG in human osteoblastic lineage cells [31]. OPG

functions as a decoy receptor that is able to neutralize both

the cell-bound and soluble forms of RANKL. In mice, the

suppressive effect of GCs on spinal BMD, cortical thickness,

and strength was prevented by OPG [32].

Interestingly enough, a decrease in the serum markers of

bone formation was accompanied by a significant reduction

in serum sclerostin. Osteocytes, but no other cells of the

osteoblastic lineage, express sclerostin, a Runx2-dependent

product of the SOST gene. Sclerostin is a potent antagonist

of bone morphogenetic proteins critical for osteoblasto-

genesis (BMP -2, -4, -5, -6, and -7) and appears to

bind to lipoprotein-related receptors 5 and 6 (LRP5 and

LRP6) to inhibit canonical Wnt/b-catenin signaling [33].

Locally, sclerostin acts as a negative regulator of late-

osteoblast/preosteocyte differentiation, inhibits osteoblast

proliferation, promotes osteoblast apoptosis, and sup-

presses mineralization of osteoblastic cells [34]. Loss of

sclerostin in humans causes the high-bone mass disorders

Van Buchem disease [35] and sclerosteosis [36], and

Table 2 Pearson product moment correlation between baseline serum concentrations of 25(OH)D, iPTH, and hsCRP and changes from baseline

to 96 h in serum biochemical indices in 17 patients treated with glucocorticoids (r and p values)

iPTH hsCRP DPINP DOC DbCTX DOPG DDkk-1 DSclerostin DsRANKL

25-(OH)D –0.398 0.027 0.016 0.253 –0.107 –0.231 –0.220 –0.081 –0.073

0.127 0.919 0.950 0.326 0.683 0.372 0.397 0.759 0.781

iPTH –0.196 0.125 –0.271 0.088 0.514 –0.071 0.201 –0.068

0.466 0.645 0.309 0.747 0.042 0.793 0.455 0.802

hsCRP –0.012 0.302 –0.099 –0.218 –0.072 –0.274 –0.074

0.964 0.238 0.704 0.401 0.785 0.287 0.779

DPINP 0.603 0.260 0.570 0.154 -0.038 -0.141

0.010 0.313 0.017 0.554 0.886 0.590

DOC 0.412 0.120 0.449 –0.014 –0.030

0.100 0.645 0.071 0.959 0.909

DbCTX 0.046 0.733 0.180 0.143

0.860 0.001 0.489 0.584

DOPG –0.036 –0.330 –0.423

0.892 0.196 0.091

DDkk-1 0.343 0.217

0.178 0.403

DSclerostin 0.604

0.010

Bold values indicate p \ 0.05

Fig. 3 Serum concentrations of hsCRP, PINP, and RANKL/OPG

ratio (median values and 75 % CI) at baseline (empty circle), 24 h

(filled square), 48 h (empty triangle), and 96 h (filled triangle).

Change in hsCRP versus change in PINP, r = 0.68, p \ 0.001.

Change in hsCRP versus change in RANKL/OPG ratio, r = 0.25,

p = 0.042
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administration of an antisclerostin antibody increases bone

formation in mice treated with GCs [37]. It was suggested

that transient reductions in sclerostin levels with daily

injections of PTH could contribute to the antiapoptotic

signaling triggered by this regimen [38]. Conversely,

sclerostin stimulates apoptosis of cultured human osteo-

blastic cells [39], and transgenic mice overexpressing scle-

rostin exhibit low bone mass. In this study, the significant

drop in serum sclerostin was associated with a decrease,

rather than an increase, in markers of bone formation,

reflecting a GC-induced apoptosis of osteocytes [6, 40]. This

is in good agreement with decreased circulating sclerostin

levels in patients with endogenous hypercortisolism, which

increase during biochemical remission of the disease [41].

The modest increase in serum bCTX peaking at 24–48 h of

GC treatment is consistent with previous reports [16, 19].

Simultaneously, we observed only a trend to increase in serum

sRANKL, which is reminiscent of the poor and nonconsistent

association between circulating OPG and RANKL with bio-

chemical markers of bone turnover and BMD [42], although

when measured in the bone marrow high correlations can be

observed [43]. Also, lack of sensitivity of currently available

assays may impair correlation analysis with conventional

bone marker measurements. Although GCs stimulate

RANKL synthesis and reduce osteoclast death by apoptosis

[6], the ability of osteoclasts to resorb bone is impaired due to

cytoskeletal abnormalities that prevent osteoclasts from

anchoring efficiently bone and developing an adequate brush

border. The response of osteoclasts to macrophage colony-

stimulating factor, a cytokine produced by osteoblasts, is

specifically impaired [7].

In this study, a significant positive correlation was

observed between increase in serum bCTX and Dkk-1,

another Wnt inhibitor. Although Dkk-1 disrupts the Wnt

cascade by binding to Wnt coreceptors LRP5 and LRP6,

resulting in the inhibition of osteoblast differentiation [44],

it could lead to increased osteoclastic activity and overall

bone turnover through enhanced osteoblast-dependent

osteoclastogenesis by upregulating RANKL and/or down-

regulating OPG [45]. Expression of Dkk-1 in human

osteoblasts and osteocytes is enhanced by GCs and may

lead to enhanced osteoblast-dependent osteoclastogenesis

[46], osteoblast apoptosis, and bone mass loss [47, 48].

Dickkopf-1 is highly expressed in osteocytes as well as

in several other cell types. Despite this, serum concentra-

tions of Dkk-1 are assumed to reflect expression of Dkk-1

in the bone microenvironment and predict the extent of

some bone diseases [49, 50]. In a cohort study in post-

menopausal women with established osteoporosis, serum

Dkk-1 levels were significantly higher in osteoporotic

women compared with controls [51].

Despite an initial significant negative correlation between

hsCRP and PINP values, administration of GCs was

associated with a significant drop in both serum hsCRP and

PINP concentrations. The positive correlation between

hsCRP and the sRANKL/OPG ratio after GC administration

was driven mainly by the drop in serum OPG concentrations.

Thus, in this study, the reduced inflammation was not asso-

ciated with reduction in sRANKL and serum CTX but,

rather, was associated with decreased serum concentrations

of markers synthesized by osteoblasts and osteocytes (PINP,

OC, OPG, and sclerostin). The results are in good agreement

with negative effects of GCs on bone remodeling; however,

they do not support a causal relationship between CRP, a

sensitive marker of chronic, low-grade systemic inflamma-

tion, and the response of bone turnover markers to GC.

Several limitations of the study must be taken into

account. First, due to the pilot observational design of the

study and the small number of subjects, the conclusions

must be interpreted with caution. The relationship between

hsCRP and PINP in non-steroid-treated patients with dis-

eases has not been studied previously and requires confir-

mation by a larger study. Long-term blood sampling and

BMD measurements would be required to study changes

and differences in the markers between different dosages of

GCs. Second, it is unclear to what extent serum concen-

trations of sclerostin and RANKL correlate with local

cytokine production or action within the bone microenvi-

ronment. In addition, we did not measure inflammatory

cytokines, such as IL-1, IL-6, and TNF-a. Third, our group

of adult patients suffering from various medical patholo-

gies requiring systemic steroid therapy was heterogeneous

in terms of age, menopausal status, inflammatory activity

of the primary disease, and vitamin D serum concentra-

tions. The latter reflects real clinical practice where initi-

ation of GC therapy cannot be held off until vitamin D

saturation. Three of the patients were treated with hydro-

chloroquine, a known inhibitor of 25-(OH)D-1a-hydroxy-

lase which could result in low serum 1,25(OH)2D levels

with consequent effects on osteoblasts. However, exclud-

ing these patients did not modify the results significantly

(data not shown). The number of subjects in this study was

too small to allow a search for differences among sub-

groups and perhaps to see an expected correlation between

25(OH)D levels and PTH. We acknowledge that, for eth-

ical reasons, each patient could not be used as his or her

own control. This cannot be substituted with the current

control group. Therefore, the changes in the markers after

administration of GCs were compared with the baseline

values, and the control group was used to document the

reproducibility of the measurements in healthy adults.

In conclusion, medium-dose, short-term oral GC regimens

cause an immediate decrease of the biochemical markers of

osteoblast and osteocyte activity (PINP, OC, OPG, and

sclerostin) and a moderate increase of the biochemical mar-

ker of bone resorption (bCTX). Other randomized studies are
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warranted to test the markers and mediators of the effects of

GCs on bone to identify high–fracture risk patients and to

implement preventive therapy before rapid bone loss occurs.
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