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Abstract Candidate osteoporosis gene variants were

examined for associations with fracture risk and bone min-

eral density (BMD). A total of 9704 white women were

recruited at four U.S. clinical centers and enrolled into the

Study of Osteoporotic Fractures, a longitudinal cohort study.

Genotyping of 31 polymorphisms from 18 candidate osteo-

porosis genes was performed in 6752 women. Incident

radiographic fractures were identified at the third and eighth

examinations compared with the baseline examination.

BMD was measured at the total hip by dual-energy X-ray

absorptiometry. Analyses were adjusted for age, clinic site,

and self-reported ethnicity. During a mean follow-up of

14.5 years, a total of 849 hip, 658 vertebral, and 2496 non-

hip/nonvertebral fractures occurred in 6752 women. Women

carrying the ALOX15_G48924T T/T genotype had a higher

rate of hip fracture (hazard ratio [HR] = 1.33;95% confi-

dence interval [95% CI] = 1.00–1.77) compared with the G/

G genotype. Compared with those carrying the PRL_T228C

T/T genotype, women with either the C/C (HR = 0.80; 95%

CI = 0.67–0.95) or C/T (HR = 0.81; 95% CI = 0.68–0.97)
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genotype had a lower rate of nonvertebral/nonhip fractures.

Women carrying the BMP2_A125611G G/G genotype had a

higher rate of vertebral fracture (odds ratio [OR] = 1.51;

95% CI = 1.03–2.23) compared with the A/A genotype.

Women with the ESR1_C1335G G/G genotype had a higher

rate of vertebral fracture (OR = 1.64; 95% CI = 1.07–2.50)

compared with the C/C genotype. Compared with those with

the MMP2_C595T C/C genotype, women with the C/T

(OR = 0.79; 95% CI = 0.65–0.96) or T/T (OR = 0.44;

95% CI = 0.27–0.72) genotype had a lower rate of vertebral

fracture. In conclusion, polymorphisms in several candidate

genes were associated with hip, vertebral, and nonhip/non-

vertebral fractures but not with total hip BMD in this large

population based cohort study.

Keywords Genetics � Polymorphism � Osteoporosis �
BMD � Fracture

Osteoporosis is a disorder characterized by low bone mass

and increased risk of fracture. Many factors influence the

risk of osteoporosis, including diet, physical activity,

medication use, coexisting diseases, and a family history of

the disorder. Research into the genetic basis of osteoporosis

has been motivated by evidence that bone traits tend to be

highly heritable. Whereas genetic factors explain 50% to

80% [1–4] of the biological variation in bone density and

other bone phenotypes, these factors are not sufficient to

explain fracture risk [5]. Deng et al. [5] report that the

genetic correlation between bone density and fracture is not

significant and that most genes found to be relevant to bone

density may not be important for hip fracture.

Osteoporosis, like other genetically complex diseases, is

the product of multiple genetic and environmental factors,

and their interactions [6, 7]. To date, several approaches

have been attempted to identify osteoporosis-related genes,

among them linkage analysis in families and candidate

gene association analysis in populations and case–control

collections. Genes hypothesized to play a role in osteopo-

rosis include those involved in bone formation and

remodeling (e.g., LRP5), those involved in hormone sig-

naling (e.g., VDR and ESR1), and those that code for bone-

structure proteins (e.g., COL1A1). However, many of the

reported allelic associations with osteoporosis have not

been replicated when tested in other cohorts. The incon-

sistent results may be due in part to the lack of statistical

power to detect subtle genetic effects and the different

approaches for identifying genes and gene variants as well

as differences in study design. In addition, the preference

for reporting positive associations and for underreporting

of negative results may introduce bias in the genetic epi-

demiology literature [8].

DNA samples from individuals in the Study of Osteo-

porotic Fractures (SOF) cohort have been used to evaluate

the relationship between allelic variants in several candi-

date genes and osteoporosis risk. SOF is a multicenter

cohort study that was initiated in 1986 to determine risk

factors for osteoporotic fractures in elderly women [9]. As

a source of DNA samples for an osteoporosis genetic

marker screen, SOF has many advantages. Of the approx-

imately 7000 prospectively recruited white women who

provided samples with adequate consent for participation

in genetic studies, over 800 have had incident hip fractures,

over 600 have had incident vertebral fractures, and virtu-

ally all had bone mineral density (BMD) measurements at

the hip. As such, SOF is the largest and best-characterized

U.S. cohort available for studying the genetics of osteo-

porosis in primarily white women of European ancestry.

Associations between allelic variants within the VDR [10,

11], IL6 [12], TNFa [13], NOS3 [14], and OPG [15] genes

and fracture risk or BMD have been reported in SOF. Here,

we present the results of a genetic association study cov-

ering 31 polymorphisms in 18 candidate genes that was

performed with the SOF cohort to identify genetic risk

factors for osteoporosis.

Materials and Methods

Subjects

SOF is a longitudinal epidemiologic study of 9704 women

aged 65–99 (mean 71.7, standard deviation 5.3) years

recruited from four study centers located in Baltimore,

Maryland; Minneapolis, Minnesota; Portland, Oregon; and

the Monongahela Valley near Pittsburgh, Pennsylvania.

The baseline SOF examinations were conducted from 1986

to 1988 [16]. SOF was originally designed to investigate

risk factors for osteoporosis and osteoporotic fractures.

Black women were initially excluded from SOF because of

their low risk of fractures [17]. Also excluded were women

with bilateral hip replacement or those unable to walk

without assistance. All participants were community

dwellers at baseline. Since then, follow-up examinations

have taken place approximately every 2 years. The insti-

tutional review boards on human research approved the

study at each institution, and all the women provided

written informed consent.

Genotyping

Buffy coat or whole blood specimens were collected from a

total of 6975 participants at either visit 2 (1989–1990) or

visit 6 (1997–1998). In collaboration with Roche Molecu-

lar Sciences, the SOF DNA was purified, assayed, stored,
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and cataloged. The present analysis was completed by

using DNA extracted from either buffy coat or whole blood

samples. Among the 6975 participants who provided

samples, genotyping was performed in 6752 women who

provided adequate consent for participation in genetic

studies and had sufficient DNA available. Genotyping of

the 31 polymorphisms in 18 genes (Table 1) was per-

formed by Roche Molecular Systems (RMS) in Alameda,

California, in 2004–2005. Candidate osteoporosis genes

were selected at the time on the basis of the hypotheses that

they were involved in bone formation and remodeling; that

they were involved in hormone signaling; or that they

encoded bone-structure proteins. We selected single

nucleotide polymorphisms (SNPs) that were available at

the time we initiated the project on the basis of potential

function or previous publication in association studies of

osteoporosis. Not all candidate SNPs were compatible with

the genotyping platform, and we report results for those

that were successfully genotyped.

The candidate gene polymorphisms were genotyped in

the context of a multiplex polymerase chain reaction (PCR)

amplification followed by allele-specific SNP detection

with immobilized oligonucleotide probes in linear arrays,

as previously described [18]. Primers were modified at the

50 phosphate by conjugation with biotin. A total of 10 to

50 ng of purified human genomic DNA was amplified in a

reaction volume of 50 lL with AmpliTaq Gold DNA

polymerase with a GeneAmp PCR System 9600 thermal

Table 1 Candidate genes and polymorphisms

Gene SNP position RS no. Gene name OMIM

accession no.

ALOX15 G48924T rs7220870 ARACHIDONATE 15-LIPOXYGENASE 152392*

G49010C rs2664593

C51425T rs11078528

A57901G rs743646

BMP2 C117863T rs1980499 BONE MORPHOGENETIC PROTEIN 2 112261*

A125611G rs235764

G149529A rs235739

C167584T rs996544

CALCR C1654T rs1801197 CALCITONIN RECEPTOR 114131*

CASR C3403G rs1801726 CALCIUM-SENSING RECEPTOR 601199*

CBFA1 A529 Ga NA CORE BINDING FACTOR 1 600211*

COL1A1 G296T rs1107946 COLLAGEN, TYPE I, ALPHA-1 120150*

G2046T rs1800012

COMT G1947A rs4680 CATECHOL-O-METHYLTRANSFERASE 116790*

CYP1A1 A6570G rs1048943 CYTOCHROME P450, SUBFAMILY I, POLYPEPTIDE 1 108330*

ESR1 T938C rs2234693 ESTROGEN RECEPTOR 1 133430*

A984G rs9340799

C1335G rs1801132

FRZB1 A757G rs9288087 FRIZZLED-RELATED PROTEIN 605083*

G19524A rs2242070

C26794G rs7775

GSTP A2627G rs1695 GLUTATHIONE S-TRANSFERASE, PI 134660*

LRP5 G1980A rs2277268 LOW DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN 5 603506*

MMP1 135792 (-/G) rs1799750 MATRIX METALLOPROTEINASE 1 120353*

MMP2 C595T rs243865 MATRIX METALLOPROTEINASE 2 120360*

A1829G rs2287074

MMP13 A326G rs2252070 MATRIX METALLOPROTEINASE 13 600108*

MTHFR C677T rs1801133 5,10-METHYLENETETRAHYDROFOLATE REDUCTASE 607093*

PPAR C34G rs1801282 PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR, GAMMA 601487*

PRL T228C rs7739889 PROLACTIN 176760*

G1627T rs1341239

NA, not available
a CBFA1_A529G probes target an A/G variant at base 929 in NM_004348.3
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cycler (PE Biosystems, Foster City, CA) with the following

cycling profile: an initial hold at 94�C for 7 minutes, then

33 two-step amplification cycles of 15 seconds at 95�C for

denaturation and 60 seconds at 60�C for annealing/exten-

sion, and a final 5-minute product extension step at 68�C.

Chromogenic detection of allelic variants following strin-

gent hybridization of the biotinylated PCR products to the

immobilized sequence-specific probes was performed on a

Profiblot II T24 (Tecan, Research Triangle Park, NC).

Roche Molecular Sciences in-house software was used to

scan the linear arrays on an Epson Perfection 1670 scanner

(Epson, Long Beach, CA) and to assign genotypes.

Fracture Ascertainment

Details of the method for identifying fractures have been

previously published [19–21]. Briefly, participants were

contacted every 4 months by postcard or telephone to ask

whether they had experienced a fracture. More than 95% of

these contracts were completed. All fractures are adjudi-

cated by radiographic report, and a detailed description of

the implementation and accuracy of SOF fracture data has

been previously reported [22]. Fractures that occurred

because of major trauma such as motor vehicle accidents

were excluded. Vertebral fractures were defined by mor-

phometry by lateral spine radiography collected at the first,

third, and eighth clinic examinations. Incident radiographic

fractures were identified on follow-up radiographs at the

third and eighth examinations compared with the baseline

examination. Sample sizes for incident vertebral fractures

are lower than for other fractures as a result of deaths,

terminations, and loss to follow-up between examinations 3

and 8. All nonvertebral and nonhip fractures were analyzed

as a group, and hip and vertebral fractures were analyzed

separately.

Bone Density Measurements

Hip BMD were measured by dual-energy X-ray absorpti-

ometry (QDR 1000; Hologic, Bedford, MA) at the second

visit. Details of these methods and quality control proce-

dures have been reported elsewhere [23–25]. Details of the

densitometry and quality control methods utilized in SOF

have been outlined elsewhere [24, 26–28].

Statistical Analysis

Hardy-Weinberg equilibrium of the candidate gene poly-

morphisms was assessed by the v2 goodness-of-fit statistic.

We analyzed BMD by genotype with analysis of variance.

To determine the relationship between genotype and the

incidence of hip and nonspine, nonhip fractures, we used

Cox proportional hazard models to estimate hazard ratios

(HRs) and 95% confidence intervals (95% CIs). Logistic

regression was used to estimate odds ratios (ORs) and 95%

CIs to determine the relationship between genotype and

risk of vertebral fracture. The wild-type genotype served as

the referent group in these analyses. All analyses were

adjusted for age, clinic site, and self-reported ethnicity

(northern, central, and southern European). The Bonferroni

method was used to calculate the corrected P values for

multiple testing. Statistical analysis was performed with the

statistical software program SAS version 9.1 (SAS Insti-

tute, Cary, NC).

Results

HRs and ORs for the polymorphisms within selected can-

didate genes are listed in Table 2, and all genotypes were

in Hardy-Weinberg equilibrium. Five SNPs showed a

nominal association with some form of fracture, although

no SNPs reached statistical significance after adjusting for

multiple testing by the Bonferroni correction with

a = 0.0004. The CBFA1_A529G polymorphism was

monomorphic for the A/A genotype in this population.

Hip Fracture

During a mean follow-up of 14.5 years, a total of 849 hip

fractures occurred among the approximately 6600 women

with no history of hip fracture. Women with the ALOX15_

G48924T T/T genotype had a 33% higher rate of hip

fracture, compared with women with the G/G genotype

(HR = 1.33; 95% CI = 1.00–1.77).

Nonvertebral and Nonhip Fracture

During the same 14.5-year follow-up, a total of 2496 non-

vertebral and nonhip fractures occurred among approximately

6000 women. Compared with women carrying the PRL_

T228C T/T genotype, women with either the C/C genotype

(HR = 0.80; 95% CI = 0.67–0.95) or the C/T genotype

(HR = 0.81; 95% CI = 0.68–0.97) had an approximately

20% lower rate of nonvertebral and nonhip fractures.

Incident Radiographic Vertebral Fracture

A total of 658 incident vertebral fractures occurred among

the approximately 2500 women who had undergone

assessment at visits 3 or 8. Women with the

BMP2_A125611G G/G genotype had a 51% higher rate of

vertebral fracture, compared with women with the A/A

genotype (OR = 1.51; 95% CI = 1.03–2.23). Women with

the ESR1_C1335G G/G genotype had a 64% higher rate of

vertebral fracture compared with women with the C/C
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Table 2 Associations with fractures and total hip bone mineral densitya

Gene/polymorphism Hip fracture Nonvertebral, nonhip fracture Vertebral fracture Total hip BMD (g/cm2)
HR (95% CI) HR (95% CI) OR (95% CI) Mean (95% CI)

Total no. 6575 6068 2475 6515

No. of fractures 849 2496 658

ALOX15_G48924T GG 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.76)

GT 1.03 (0.9–1.19) 1.02 (0.93–1.11) 1.01 (0.83–1.24) 0.76 (0.76–0.77)

TT 1.33 (1.00–1.77) 1.02 (0.84–1.23) 0.78 (0.49–1.25) 0.75 (0.74–0.77)

ALOX15_G49010C GG 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.76)

GC 1.06 (0.92–1.23) 1.00 (0.92–1.09) 0.91 (0.75–1.12) 0.76 (0.76–0.77)

CC 1.25 (0.93–1.68) 0.98 (0.81–1.19) 0.72 (0.44–1.17) 0.75 (0.74–0.77)

ALOX15_C51425T CC 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.76)

CT 1.06 (0.92–1.22) 0.94 (0.86–1.02) 0.92 (0.75–1.13) 0.76 (0.76–0.76)

TT 0.92 (0.70–1.19) 1.00 (0.86–1.16) 0.98 (0.69–1.39) 0.76 (0.75–0.77)

ALOX15_A57901G AA 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.76)

AG 1.10 (0.93–1.29) 1.01 (0.91–1.11) 0.93 (0.73–1.17) 0.76 (0.76–0.77)

GG 0.62 (0.29–1.31) 0.93 (0.65–1.34) 0.62 (0.23–1.66) 0.76 (0.74–0.79)

BMP2_C117863T CC 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.77)

CT 0.84 (0.71–0.98) 0.98 (0.89–1.08) 1.05 (0.83–1.33) 0.76 (0.75–0.76)

TT 0.78 (0.65–0.94) 0.96 (0.86–1.08) 0.91 (0.69–1.20) 0.76 (0.75–0.77)

BMP2_A125611G AA 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.75 (0.74–0.76)

AG 0.78 (0.60–1.00) 0.93 (0.80–1.08) 1.33 (0.90–1.97) 0.76 (0.76–0.77)

GG 0.98 (0.77–1.26) 0.96 (0.83–1.12) 1.51 (1.03–2.23) 0.76 (0.75–0.76)

BMP2_G149529A GG 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.77)

GA 1.05 (0.84–1.31) 1.01 (0.88–1.15) 0.87 (0.63–1.19) 0.76 (0.75–0.76)

AA 0.93 (0.74–1.17) 0.99 (0.86–1.13) 0.89 (0.65–1.23) 0.76 (0.75–0.76)

BMP2_C167584T CC 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.76–0.76)

CT 0.94 (0.77–1.15) 1.06 (0.94–1.19) 1.03 (0.77–1.37) 0.75 (0.75–0.76)

TT 0.63 (0.20–1.96) 1.15 (0.68–1.95) 2.13 (0.75–6.02) 0.77 (0.73–0.82)

CALCR_C1654T CC 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.77)

CT 1.05 (0.78–1.42) 1.01 (0.85–1.21) 1.11 (0.73–1.68) 0.76 (0.75–0.76)

TT 1.00 (0.75–1.33) 1.00 (0.84–1.19) 0.93 (0.62–1.40) 0.76 (0.76–0.76)

CASR_C3403G CC 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.76–0.76)

CG 0.85 (0.65–1.10) 0.97 (0.83–1.12) 1.12 (0.79–1.60) 0.76 (0.75–0.77)

GG 0.31 (0.04–2.19) 1.53 (0.87–2.70) 1.38 (0.32–5.91) 0.75 (0.7–0.8)

COL1A1_G296T GG 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.76–0.76)

GT 0.91 (0.77–1.07) 0.98 (0.89–1.07) 1.07 (0.85–1.33) 0.76 (0.75–0.76)

TT 0.98 (0.63–1.53) 0.90 (0.67–1.21) 1.56 (0.82–2.97) 0.76 (0.74–0.78)

COL1A1_G2046T GG 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.76–0.76)

GT 1.07 (0.93–1.24) 1.05 (0.96–1.14) 1.09 (0.89–1.34) 0.76 (0.75–0.76)

TT 1.03 (0.71–1.51) 1.15 (0.93–1.42) 0.94 (0.56–1.58) 0.76 (0.74–0.77)

COMT_G1947A GG 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.77)

GA 1.26 (1.05–1.51) 1.00 (0.9–1.11) 1.18 (0.92–1.52) 0.76 (0.75–0.76)

AA 1.17 (0.96–1.44) 0.98 (0.87–1.10) 1.09 (0.83–1.44) 0.76 (0.75–0.77)

CYP1A1_A6570G AA 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.76–0.76)

AG 0.91 (0.68–1.22) 1.02 (0.87–1.21) 0.97 (0.65–1.44) 0.75 (0.74–0.77)

GG 1.40 (0.58–3.38) 0.76 (0.36–1.59) 1.42 (0.26–7.92) 0.79 (0.75–0.84)

ESR1_T938C TT 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.76)

TC 1.00 (0.85–1.17) 1.01 (0.92–1.11) 1.18 (0.94–1.48) 0.76 (0.76–0.76)

CC 0.96 (0.79–1.17) 0.93 (0.83–1.05) 1.11 (0.84–1.46) 0.76 (0.75–0.77)

ESR1_A984G AA 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.76)

AG 1.14 (0.99–1.32) 0.93 (0.86–1.02) 1.21 (0.99–1.48) 0.76 (0.75–0.76)

GG 1.01 (0.80–1.26) 0.91 (0.79–1.04) 1.10 (0.80–1.51) 0.76 (0.75–0.77)
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Table 2 continued

Gene/polymorphism Hip fracture Nonvertebral, nonhip fracture Vertebral fracture Total hip BMD (g/cm2)
HR (95% CI) HR (95% CI) OR (95% CI) Mean (95% CI)

ESR1_C1335G CC 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.76–0.76)

CG 0.93 (0.81–1.08) 1.00 (0.91–1.09) 1.16 (0.95–1.42) 0.76 (0.75–0.76)

GG 1.23 (0.91–1.64) 1.06 (0.88–1.28) 1.64 (1.07–2.50) 0.77 (0.76–0.79)

FRZB1_A–757G AA 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.77)

AG 0.89 (0.66–1.20) 0.92 (0.77–1.11) 0.74 (0.5–1.09) 0.76 (0.76–0.77)

GG 0.94 (0.71–1.26) 1.01 (0.84–1.20) 0.70 (0.48–1.03) 0.76 (0.75–0.76)

FRZB1_G19524A GG 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.76)

GA 0.96 (0.83–1.11) 0.95 (0.87–1.03) 1.13 (0.92–1.38) 0.76 (0.76–0.77)

AA 1.01 (0.76–1.35) 0.97 (0.82–1.16) 1.44 (0.99–2.09) 0.76 (0.75–0.77)

FRZB1_C26794G CC 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.76–0.76)

CG 0.95 (0.78–1.15) 0.96 (0.86–1.07) 0.79 (0.60–1.04) 0.76 (0.75–0.77)

GG 1.05 (0.44–2.54) 0.98 (0.56–1.73) 1.78 (0.48–6.52) 0.74 (0.7–0.78)

GSTP_A2627G AA 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.76)

AG 0.92 (0.80–1.07) 0.96 (0.88–1.04) 0.96 (0.78–1.17) 0.76 (0.76–0.76)

GG 0.89 (0.71–1.12) 1.04 (0.91–1.19) 1.05 (0.77–1.43) 0.76 (0.75–0.77)

LRP5_G1980A GG 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.76–0.76)

GA 1.05 (0.86–1.28) 1.07 (0.95–1.21) 1.17 (0.87–1.56) 0.76 (0.75–0.76)

AA 0.69 (0.22–2.14) 0.98 (0.54–1.78) 2.04 (0.53–7.96) 0.76 (0.71–0.8)

MMP1_135792 (-/G) 1G/1G 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.76)

1G/2G 0.94 (0.80–1.10) 0.99 (0.9–1.09) 1.02 (0.82–1.28) 0.76 (0.76–0.77)

2G/2G 1.03 (0.85–1.25) 1.03 (0.92–1.15) 1.25 (0.96–1.64) 0.76 (0.75–0.76)

MMP2_C595T CC 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.76)

CT 0.98 (0.85–1.14) 1.00 (0.92–1.09) 0.79 (0.65–0.96) 0.76 (0.76–0.77)

TT 1.20 (0.92–1.56) 0.89 (0.74–1.07) 0.44 (0.27–0.72) 0.76 (0.75–0.78)

MMP2_A1829G AA 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.77)

AG 0.92 (0.77–1.10) 1.02 (0.92–1.14) 1.21 (0.94–1.57) 0.76 (0.75–0.76)

GG 0.93 (0.77–1.13) 1.04 (0.93–1.17) 1.24 (0.94–1.64) 0.76 (0.75–0.76)

MMP13_A326G AA 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.76–0.77)

AG 1.01 (0.87–1.17) 1.05 (0.96–1.14) 1.16 (0.95–1.41) 0.76 (0.75–0.76)

GG 1.21 (0.97–1.50) 1.07 (0.93–1.22) 0.87 (0.62–1.22) 0.75 (0.74–0.76)

MTHFR_C677T CC 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.76–0.77)

CT 0.96 (0.83–1.11) 1.00 (0.92–1.09) 0.97 (0.80–1.19) 0.76 (0.75–0.76)

TT 1.09 (0.88–1.36) 1.07 (0.94–1.22) 0.94 (0.68–1.29) 0.75 (0.75–0.76)

PPARc_C34G CC 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.76)

CG 0.80 (0.67–0.95) 1.06 (0.97–1.17) 0.82 (0.66–1.04) 0.76 (0.76–0.77)

GG 1.21 (0.75–1.97) 1.29 (0.97–1.73) 0.92 (0.44–1.92) 0.76 (0.73–0.78)

PRL_T228C TT 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.75 (0.74–0.77)

TC 0.85 (0.63–1.15) 0.81 (0.68–0.97) 0.74 (0.48–1.15) 0.76 (0.76–0.77)

CC 0.87 (0.65–1.16) 0.80 (0.67–0.95) 0.78 (0.51–1.19) 0.76 (0.75–0.76)

PRL_G1627T GG 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 0.76 (0.75–0.76)

GT 0.89 (0.77–1.03) 1.03 (0.94–1.13) 0.84 (0.68–1.03) 0.76 (0.76–0.76)

TT 0.99 (0.81–1.21) 1.10 (0.97–1.24) 1.10 (0.83–1.46) 0.76 (0.75–0.76)

BMD, bone mineral density; HR, hazard ratio; 95% CI, 98% confidence interval
a All analyses adjusted for age, clinic site, and self-reported ethnicity (northern, central, and southern European)

Bold values are statistically significant results
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genotype (OR = 1.64; 95% CI = 1.07–2.50). Women with

the MMP2_C595T C/T genotype had a 21% lower rate of

vertebral fracture (OR = 0.79; 95% CI = 0.65–0.96)

compared with women with the C/C genotype, while

women with the T/T genotype had a 56% lower rate of

vertebral fracture (OR = 0.44; 95% CI = 0.27–0.72).

From the approximately 6500 participants who had a total

hip BMD measurement, there was no significant association

between the previously unreported candidate genes and total

hip BMD (Table 2). For example, the strongest association

with BMD was found for the CYP1A1_A6570G polymor-

phism (Table 2). The CYP1A1_A6570G A/A and G/G

genotypes were associated with mean BMD measures of

0.76 g/cm2 (95% CI = 0.76–0.76 g/cm2) and 0.79 g/cm2

(95% CI = 0.75–0.84 g/cm2), respectively.

Discussion

We analyzed 31 polymorphisms in 18 candidate genes

within the SOF cohort to identify genetic risk factors for

osteoporosis. It was of particular interest that women with

the ALOX15_G48924T T/T genotype had a 33% higher

rate of hip fracture in this study. This polymorphism was

the only one with an allelic association with hip fracture in

this study. ALOX15 and ALOX12 are contiguous genes

located within the 17p13 region of the human genome,

which contains a quantitative trait locus that affects BMD

in the hip, spine [29], and wrist [30]. However, previous

studies have found inconsistent associations between SNPs

in ALOX15 and BMD or fracture data [31–34]. The

ALOX15_G48924T SNP is located within the 50 flanking

region (-272 bp) of ALOX15. This polymorphism is of

interest because a C-to-T substitution at ALOX15 position

-292 was shown to create a novel transcription factor

binding site for SPI1 [35]. SPI1 selectively binds to the -

292 T allele, and transcription assays in primary human

macrophages showed that -292 C/T heterozygous indi-

viduals expressed three times more ALOX15 mRNA than

-292 C/C individuals [35]. Higher ALOX15 mRNA levels

were also observed in monocytes from heterozygous -292

C/T carriers [36]. The ALOX15_G48924T SNP (G-272T)

examined herein may be in linkage disequilibrium with the

functional C-292T polymorphism, leading to differential

ALOX15 expression and increased risk of fracture for the

variant allele. Alternately, G-272T may itself be functional.

Consistent with our findings in the female SOF cohort,

there were significant associations between SNPs within

the 50 flanking region of ALOX15 and BMD in Japanese

women in two different studies [32–34]. By contrast, two

studies did not observe associations between 50-flanking

ALOX15 SNPs and BMD in Chinese women [33] or BMD

and fracture in postmenopausal white women [31]. Taken

together, the results of genetic association studies per-

formed in this and two other female populations indicate

that genetic variation within the 50 promoter region of

ALOX15 may contribute to osteoporosis-related traits.

Measuring associations between 50-flanking ALOX15

SNPs and BMD and fracture in emerging genome-wide

association study data sets may help confirm these

associations.

Prolactin is a peptide hormone that when present at high

levels is associated with decreased levels of estrogen and

testosterone. Prolactin may also have direct effects on

osteoblast function and bone formation [37–39]. In this

study, women carrying one or two copies of the PRL_T228C

C allele had a *20% lower rate of nonvertebral and nonhip

fractures. The function of the intronic T228C polymor-

phisms is currently unknown. High prolactin levels have

been associated with osteopenia, decreased bone density,

and increased osteoporosis risk, possibly as a result of a

reduction in estrogen levels [40, 41]. In addition, long-term

administration of raloxifene, which has been shown to

decrease fracture risk in postmenopausal women with oste-

oporosis, decreases serum prolactin levels [42].

Bone morphogenetic protein 2 is a growth factor

belonging to the transforming growth factor beta super-

family that plays a role in osteoblast differentiation. The

gene for bone morphogenetic protein 2 (BMP2) was

identified as an osteoporosis candidate locus by genome-

wide linkage mapping in human populations [43]. To date,

two BMP2 SNPs have been associated with fracture [43]

and BMD [44]; however, the associations are not consistent

[43, 45]. In the present study, women with the intronic

BMP2_A125611G G/G genotype had a 51% higher risk of

vertebral fracture. The function of the BMP2_A125611G

polymorphism is unknown, and it is possible that this SNP

is functional or in linkage disequilibrium with a functional

variant.

MMP-2 is a determinant of bone remodeling and miner-

alization and plays a crucial role in forming and maintaining

the osteocytic canalicular network [46]. Serum concentra-

tions of MMP-2 have been related to markers of bone

turnover including bone alkaline phosphatase, osteocalcin,

and cross-linked N-telopeptides of type I collagen [47]. A

previous study also found that serum MMP-2 levels may also

increase with increasing bone turnover [48]. In the present

study, women with one copy of the MMP2_C595T T allele

(located in the 50 promoter at position -1586) had a 21%

lower adjusted rate of vertebral fracture, and women with

two copies had a 56% lower adjusted rate.

Several studies have investigated the association between

estrogen receptor alpha (ESR1) gene variants and osteopo-

rosis [49–51]. In the present study, neither the PvuII

(rs2234693) nor the XbaI (rs9340799) polymorphisms were

associated with hip or nonvertebral/nonhip fracture risk.
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Women with the ESR1_C1335G G/G genotype had a 64%

higher rate of vertebral fracture, compared with women with

the C/C genotype. The ESR1_C1335G variant codes for a

synonymous P325P substitution in exon 4. A previous study

of late postmenopausal women found that mean femoral

neck BMD, but not lumbar spine BMD, was significantly

lower in the homozygous G/G women compared with the

homozygous C/C women [52]. Another study found that

after 6 months of treatment with raloxifene, subjects with C/

C or C/G genotype of P325P mutation had significantly

lower total cholesterol and low-density lipoprotein choles-

terol concentrations, and higher decreases of total

cholesterol when compared with those with the G/G geno-

type [53]. Our results and those of Jurada et al. [52] suggest

that the codon 325 G/G genotype is associated with increased

risk of vertebral fracture and lower femoral neck BMD.

There were no significant genetic associations with total

hip BMD. The strongest association with BMD was found

for the CYP1A1_A6570G polymorphism with a 4% increase

in BMD for the G/G genotype compared with the A/A

genotype. The inconsistency of genetic associations with

fracture and BMD and across fracture types is consistent with

studies in mice, which indicate that there are skeletal-site-

specific genetic loci for bone mass and strength [54–57].

Previous findings have demonstrated that a wide array of

skeletal phenotypes were polygenic with complex segrega-

tion patterns [57]. Beamer et al. [55] showed that several

quantitative trait loci were responsible for both femoral and

vertebral measures of BMD, whereas other quantitative trait

loci were unique to femurs or vertebrae. Unique genetic

factors contributing to trabecular and cortical bone mass

have also been identified [54]. Another possibility is that the

fracture findings are possibly spurious as a result of the

multiple comparisons that were made.

Although this study found several positive genetic asso-

ciations with osteoporotic outcomes, most of the

investigated polymorphisms were not associated with frac-

ture risk or BMD, and none of the previously unreported

polymorphisms were consistently significantly associated

with multiple fracture types or BMD sites. Previously

reported associations between polymorphisms in COL1A1

[58–64], LRP5 [65–71], CASR [72], CALCR [73], and

MTHFR [74–81] and BMD or fracture were not replicated in

this study. Inconsistencies between this and previous studies

may be due in part to differences in study size, specific SNPs

assayed, sex-specific effects, ethnic background, and men-

opausal status, all of which influence genetic associations

with BMD and fracture risk. Several previous studies [58–

61, 66, 67, 72, 73, 77, 79] had small sample sizes (\300

participants), which may have led to spurious associations.

For several genes, we examined different SNPs than those

previously reported [63, 65–67, 73]. Two of the previous

studies only found associations in men [65, 67] or

premenopausal women [72]. Several studies were conducted

on nonwhite participants [67, 68, 76, 79].

This study is limited in making conclusions regarding

whether the examined genes play an important role in frac-

ture risk or BMD because of the limited number of

polymorphisms per gene studied in this population. Even

though the selected polymorphisms based on prior investi-

gation seemed to be promising, no single SNP can explain

the variation of an entire gene. Although the SOF cohort is a

well-characterized and appropriate cohort to use for osteo-

porosis-related studies, particularly within the population of

elderly white women, results from a single population likely

cannot be generalized to all possible populations. Finally,

interactions between environmental factors and other genes

may have obscured important subgroup associations with the

candidate gene polymorphisms.

In the past decades, several approaches have been

attempted to identify osteoporosis genes; however, the

genes contributing to osteoporosis risk remain poorly

defined. As with most complex diseases, it is generally

assumed that many gene variants are responsible, with each

contributing a subtle effect. Inconsistent results may be due

to a lack of statistical power to detect the subtle effects of

the responsible gene variants, a lack of standardized

methods and approaches to identify the variants, or the

selection of the wrong candidate genes. Recently the con-

sortium approach to genetic studies, as exemplified for

osteoporosis by the ‘‘genetic markers for osteoporosis’’

(GENOMOS) consortium [51, 64, 69, 82, 83], has reme-

died some of the most important pitfalls of candidate gene

studies by standardizing phenotypes and genotypes,

increasing sample sizes, improving power, and reducing

false discovery rates. In addition, replication has become

well established as the gold standard in genetic association

studies to overcome problems with multiple testing and

false-positive discoveries. The increasing use of genome-

wide screening approaches, which exacerbate the discovery

of false-positive findings, requires well-conducted repli-

cation studies in a variety of populations to confirm true

novel genetic associations and increase generalizability of

findings to more than one population. Making genotype

data available from phenotypically well-characterized

individual studies (such as those reported here) not only

provides an opportunity for future confirmation of genome-

wide association study results for specific genes, but also

contributes to future meta-analyses. In addition, disclosure

of negative as well as positive associations is essential to

minimize the risk of publication bias. Ioannidis [8, 84]

argues that the large majority of molecular epidemiology

results should be null and that scientific journals should

publish all studies with null results, provided study limi-

tations are acknowledged. Rebbeck et al. [85] provide a

framework for prioritizing the publication of reports that
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are likely to provide more meaningful information about

disease etiology.
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