
Digital Object Identifier (DOI) 10.1007/s002229900040
Invent. math. 139, 525–539 (2000)

 Springer-Verlag 2000

Non-abelian Sylow subgroups of finite groups
of even order

Naoki Chigira1,Nobuo Iiyori 2,Hiroyoshi Yamaki3,?

1 Department of Mathematical Sciences, Muroran Institute of Technology, Hokkaido
050-8585 Japan (e-mail: chigira@muroran-it.ac.jp)

2 Department of Mathematics, Yamaguchi University, Yamaguchi 753-8513 Japan
(e-mail: iiyori@po.yb.cc.yamaguchi-u.ac.jp)

3 Department of Mathematics, Kumamoto University, Kumamoto 860-8555 Japan
(e-mail: yamaki@gpo.kumamoto-u.ac.jp)

Oblatum 4-II-1999 & 9-VIII-1999 / Published online: 18 October 1999

1. Introduction

The purpose of this paper is to prove:

Main Theorem. Every non-abelian Sylow subgroup of a finite group of
even order contains a non-trivial element which commutes with an involu-
tion.

Our main theorem announced in [4] is closely related to the prime graphs
of finite groups. LetG be a finite group andΓ(G) the prime graph ofG.
Γ(G) is the graph such that the vertex set is the set of prime divisors of|G|,
denoted byπ(G), and two distinct verticesp andr are joined by an edge
if and only if there exists an element of orderpr in G. Let n(Γ(G)) be
the number of connected components ofΓ(G) anddG(p, r) the distance
between two verticesp andr of Γ(G), that is, the length of the shortest path
betweenp andr . We definedG(p, r) = ∞ if there is no path betweenp
andr . It has been proved thatn(Γ(G)) ≤ 6 in [17], [12], [15].

Theorem 1. Let G be a finite group of even order andp be a prime divisor
of |G|. If dG(2, p) ≥ 2, then Sylowp-subgroups ofG are abelian.

Theorem 1 is a restatement of our main theorem in terms of the prime
graphΓ(G) of G.

Corollary 1. LetG be a finite group of even order andp be a prime divisor
of |G|. If ∆ is a connected component ofΓ(G)− {p} not containing2, then
Sylowr -subgroups ofG are abelian forr ∈ ∆.
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There is a certain relation between a subgraphΓ(G)− {p} of Γ(G) and
Brauer characters ofp-modular representations ofG (See [3]). As for the
distancedG(2, p) we have:

Theorem 2. Let G be a finite group of even order andp be an odd prime
divisor of |G|. Then we have:

dG(2, p) =


1
2
3
∞

Corollary 2. Let G be a finite non-abelian simple group andp be an odd
prime divisor of|G|. Then we have:

dG(2, p) =


1
2
∞

We have a theorem of Gruenberg-Kegel type (See Lemma 5).

Theorem 3. LetG be a finite group of even order. Suppose thatdG (2,p) ≥ 2
for some primep ∈ π(G). Then one of the following holds:

(i) G is solvable,
(ii) G has a chain of normal subgroupsG ⊇ H ⊇ K such thatG/H and

K are solvable andH/K is a non-abelian simple group.

The significance of the prime graphs of finite groups can be found in [2],
[7], [8], [9], [10], [11], [18], [19]. Theorems 1, 2 and 3 are the consequences
of the classification of finite simple groups (See [2], [9], [12]) which at least
for the moment is not established beyond any doubt although the proof has
been announced and advertised since 1981.

2. Preliminaries

The purpose of this section is to provide several lemmas which will be
applied in the proof of our theorems. The following lemma is straightforward
by the definition. However it is important when we apply mathematical
induction.

Lemma 1. Let G be a finite group andH a subgroup ofG.

(i) If p, r ∈ π(H), thendG(p, r) ≤ dH(p, r).
(ii) If H G G and p, r ∈ π(G/H), thendG(p, r) ≤ dG/H(p, r).
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Proof. (i) Straightforward. (ii) Suppose thatdG/H(p, r) = 1. Then there
exists an elementxH of order pr in G/H. It follows that xpr ∈ H and
some power ofx is of orderpr in G. This yieldsdG(p, r) = 1. Repeat this
argument and we havedG(p, r) ≤ dG/H(p, r).

Lemma 2. Suppose thatN G G.

(i) If dG(p, r) = 1 for p, r ∈ π(G)− π(N), thendG/N(p, r) = 1.
(ii) Suppose thatdG(p, r) = 2 for p, r ∈ π(G) − π(N), i.e., there exists

q ∈ π(G) such thatdG(p,q) = 1anddG(q, r) = 1. If q ∈ π(G)−π(N),
thendG/N(p, r) = 2.

Proof. (i) There exists a elementg ∈ G such thato(g) = pr. ThengN has
order pr in G/N. (ii) follows from (i).

The following is also important.

Lemma 3. Let G be a non-solvable group, andπ a connected component
of Γ(G) not containing2. ThenG contains a nilpotent Hallπ-subgroup.

Proof. See [17].

Lemma 4. Let G be a finite non-solvable almost simple group such that
N ⊆ G ⊆ Aut(N) for a non-abelian simple groupN. Let p be an odd
prime inπ(G/N). ThendG(2, p) = 1.

Proof. If N is an alternating group or one of 26 sporadic simple groups,
then(G : N) = 1, 2 or 4. We can assume thatN is a simple group of Lie
type. The outer automorphism group is a semidirect product (in this order)
of group of orderd (diagonal automorphisms),f (field automorphisms)
andg (graph automorphisms modulo field automorphisms) except that for
B2(2 f ), G2(3 f ), F4(2 f ) the extraordinary graph automorphism squares to
the generating field automorphism. Letx ∈ G−N with xp ∈ N. If pdivides
d or g, then we see thatp divides |N| and thatdN(2, p) = 1. This yields
that if dN(2, p) ≥ 2 or p does not divide|N|, then p divides f/( f,dg). In
this case, there exists a field automorphismy such thatN〈x〉 ' N〈y〉. Since
field automorphisms centralize a group of Lie type over the prime field, we
havedG(2, p) = 1. This completes the proof (See [14]).

A finite groupG is said to be a 2-Frobenius group if and only if there
exists a chainG ⊃ H ⊃ K ⊃ 1 of normal subgroups ofG such that
H and G/K are Frobenius groups with Frobenius kernelsK and H/K ,
respectively. SinceH/K is cyclic of odd order, a 2-Frobenius group is
always solvable. Next lemma essentially due to Gruenberg and Kegel (See
[11], [17]) is fundamental important when we study finite groups with
disconnected prime graphs.

Lemma 5. Let G be a finite group withn(Γ(G)) ≥ 2. Then we have two
possibilities.
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(i) G is a Frobenius group or a2-Frobenius group.
(ii) G has a chainG ⊇ M ⊇ N ⊇ 1 of normal subgroups such thatN

is a nilpotentπ-group, M/N is a non-abelian simple group andG/M
is a solvableπ-group whereπ is the connected component ofΓ(G)
containing2.

Proof. Suppose thatG is neither a Frobenius group nor a 2-Frobenius
group. By Gruenberg-Kegel’s theorem [17, Theorem A],G has a chain
G ⊇ M ⊇ N ⊇ 1 of normal subgroups such thatN is a nilpotentπ-
subgroup,M/N is a non-abelian simple group withn(Γ(G)) ≥ 2 andG/M
is a π-separable group. Sincen(Γ(G)) ≥ 2, we haveCG/N(M/N) = 1̄.
This yields thatG/N is an almost simple group withn(Γ(G)) ≥ 2. Since
Schreier conjuecture holds true, we see thatG/M is a solvableπ-group by
Lemma 4.

By Lemma 5 if G is a solvable group withn(Γ(G)) ≥ 2, thenG is
a Frobenius group or a 2-Frobenius group, andn(Γ(G)) = 2.

Lemma 6. LetG be a finite group andN a normal subgroup ofG. Suppose
that G/N is isomorphic to the direct product of more than one non-abelian
simple group. ThendG(2, p) = 1 for p ∈ π(G)− {2}.
Proof. By our assumptionΓ(G/N) is a complete graph and 2∈ π(G/N).
We can assume that there exists a primep in π(N) − π(G/N). Let P ∈
Sylp(G). It follows thatG = NG(P)N by the Frattini argument. LetQ ∈
Sylq(NG(P)) whereq ∈ π(G/N). If dG(p,q) 6= 1, thenPQ is a Frobenius
group with kernelP. ThusQ is cyclic or a generalized quaternion group.
This is not the case sinceG/N is isomorphic to the direct product of more
than one non-abelian simple group. NowdG(p,q) = 1 for all q ∈ π(G/N).

Lemma 7. Let G be a finite group andN a minimal characteristic sub-
group. Suppose thatN is isomorphic to a direct product of more than one
non-abelian simple group. ThendG(2, p) = 1 for p ∈ π(G)− {2}.
Proof. By our assumptionΓ(N) is a complete graph and 2∈ π(N). Since
CG(N) is also a characteristic subgroup,CG(N) ∩ N = 1. This yields that
dCG(N)N(2, t) = 1 for t ∈ π(CG(N)N) − {2}. Let N = S1 × · · · × Sr
whereSi ' S, a non-abelian simple group andr ≥ 2. G acts transitively on
{S1, . . . , Sr } by conjugation. LetC1 be the stabilizer ofS1. ThenC1/CG(S1)
is isomorphic to a subgroup ofAut(S1). Let p ∈ π(C1/CG(S1)) − π(S).
It follows that dC1(2, p) = 1 by Lemma 4. Assume that there existsq ∈
π(G)−π(C1). Let y be aq-element ofG andx an involution inS1. Since the
involution xxyxy2 · · · xyq−1

commutes withy, dG(2,q) = 1. This complete
the proof.

Lemma 8. Let G be a finite group. Suppose thatG has a chain of normal
subgroupsH1 ⊇ H2 ⊇ K1 ⊇ K2 such thatG/H1, H2/K1 and K2 are
solvable, andH1/H2 and K1/K2 are non-abelian simple groups. Then
dG(2, p) = 1 for p ∈ π(G)− {2}.
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Proof. Put Ḡ = G/K2, H̄i = Hi/K2 for i = 1,2 and K̄1 = K1/K2.
SinceK̄1 is a non-abelian simple group and the Schreier conjecture holds
true, Ḡ/K̄1CḠ(K̄1) is solvable. By Lemma 4, we havedḠ(2, p) = 1 for
p ∈ π(Ḡ/K̄1CḠ(K̄1)). SinceCḠ(K̄1) ∩ K̄1 = 1̄ andCḠ(K̄1) is of even
order,dḠ(2, p) = 1 for p ∈ π(Ḡ)− {2}. Let Q ∈ Sylq(K2) for odd prime
q ∈ π(K2). Since Sylow 2-subgroups ofNG(Q) are neither cyclic nor
generalized quaternion, we havedG(2,q) = 1. The proof is complete.

3. A minimal counter example to Theorem 1

The purpose of this section is to prove that a counter example of possible
minimal order to Theorem 1 is a non-abelian simple group.

Proposition 1. Let G be a solvable group of even order andp be a prime
divisor of |G|. If dG(2, p) ≥ 2, then Sylowp-subgroups ofG are abelian.

Proof. There exists a Hall{2, p}-subgroupH of G. Note that a Sylowp-
subgroup ofH is a Sylowp-subgroup ofG andn(Γ(H)) = 2. By Lemma 5,
H is a Frobenius group or a 2-Frobenius group. IfH is a Frobenius group,
then H = NL, whereN is Frobenius kernel ofH and L is a Frobenius
complement ofH. If p divides |N|, then N is a Sylow p-subgroup ofH
andL is a 2-group. It follows thatN has a fixed point free automorphism
of order 2. This yields thatN is abelian. Ifp divides|L|, thenL is a Sylow
p-subgroup ofH. SinceL is a Frobenius complement,L is cyclic. If H
is a 2-Frobenius group,H has normal subgroupsM and N such thatM is
a Frobenius group with Frobenius kernelN andH/N is a Frobenius group
with Frobenius kernelM/N. It follows thatM/N is isomorphic to a Sylow
p-subgroup ofH. This implies that Sylowp-subgroups ofH are cyclic.
This completes the proof.

Proposition 2. LetG be a minimal counter example to Theorem 1. ThenG
is a non-solvable simple group.

Proof. By Proposition 1,G is non-solvable. LetP be a non-abelian Sylowp-
subgroup ofG such thatdG(2, p) ≥ 2. TakeN a minimal normal subgroup
of G. Suppose thatN ' Zt×· · ·× Zt for some primet. SinceG/N is non-
solvable,|G/N| is divisible by 2. Ift 6= p, then P̄ ∈ Sylp(G/N) is abelian
by the choice ofG becausedG/N(2, p) ≥ dG(2, p) ≥ 2. SinceP̄ ' P, P is
abelian, a contradiction. We havet = p. If p does not divide|G/N|, then
N is a Sylowp-subgroup ofG, a contradiction becauseN is abelian. This
implies thatp divides|G/N|. TakeQ a Sylow 2-subgroup ofG. ThenNQ
is a Frobenius group with Frobenius kernelN. SinceG is non-solvable,
Q must be a generalized quaternion group. By Brauer-Suzuki’s theorem
[13, pp.102],|Z(G/O(G))| = 2. Namely, we havedG(2, r) ≤ 1 for any
prime r dividing |G/O(G)|. This yields thatP ⊆ O(G). By the Frattini



530 N. Chigira et al.

argument, we haveG = NG(P)O(G). This implies that|NG(P)| is divisible
by 2. TakeQ ∈ Syl2(NG(P)). ThenPQ is a Frobenius group with Frobenius
kernelP. This is a contradiction sinceP has a fixed point free automorphism
of order 2.

We haveN ' S× · · · × S (n times) for a non-abelian simple groupS.
Suppose thatp does not divideN. Take Q ∈ Syl2(N). By the Frattini
argument, we haveG = NG(Q)N. There exists an elementg ∈ G such that
Pg ⊂ NG(Q). SinceQ Pg is a Frobenius group with Frobenius kernelQ,
we see thatPg is cyclic, a contradiction. This yields thatp divides|N| and
n = 1, i.e., N is a non-abelian simple group. Suppose thatp does not divide
|G/N|. ThenP ∈ Sylp(N). If N is a proper subgroup ofG, thenP is abelian
by the choice ofG sincedN(2, p) ≥ dG(2, p) ≥ 2. This yields thatG = N
is non-abelian simple. Suppose thatp divides |G/N|. Then both 2 andp
do not divide|CG(N)| since 2 andp divide |N|. This yields that 2p divides
|G/CG(N)|. If CG(N) 6= 1, then P̄ ∈ Sylp(G/CG(N)) is abelian by the
choice ofG sincedG/CG(N)(2, p) ≥ dG(2, p) ≥ 2. This is a contradiction.
This yields thatCG(N) = 1. Hence we haveN ⊆ G ⊆ Aut(N) for some
non-abelian simple groupN.

By Lemma 4 we see that a counter example of possible minimal order
to Theorem 1 is a non-abelian simple group.

4. A minimal counter example to Theorem 2

The purpose of this section is to prove that a counter example of possible
minimal order to Theorem 2 is a non-abelian simple group.

Proposition 3. Let G be a solvable group. ThendG(p,q) ≤ 3 or ∞ for
any p, q ∈ π(G).
Proof. Suppose thatdG(p,q) = 4 for somep, q ∈ π(G). There existsr ,
s, t ∈ π(G) with dG(p, r) = 1, dG(p, s) = 2, dG(p, t) = 3, dG(r, s) = 1,
dG(r, t) = 2, dG(r,q) = 3, dG(s, t) = 1, dG(s,q) = 2 anddG(t,q) = 1.
Take Hall {p, s,q}-subgroupH of G. Then we haven(Γ(H)) = 3. This
contradicts Lemma 5.

Proposition 4. LetG be a minimal counter example to Theorem 2. ThenG
is a non-solvable simple group.

Proof. By Proposition 3,G is non-solvable. There exist primesq, r , s,
p ∈ π(G) with dG(2,q) = 1, dG(2, r) = 2, dG(2, s) = 3, dG(2, p) = 4,
dG(q, r) = 1, dG(q, s) = 2, dG(q, p) = 3, dG(r, s) = 1, dG(r, p) = 2
anddG(s, p) = 1. Take a minimal normal subgroupN of G. Suppose that
N ' Zt × · · · × Zt (n times) for some primet. If dG(2, t) ≥ 2, then
NU is a Frobenius group with kernelN, whereU ∈ Syl2(G). SinceG
is non-solvable,U is a generalized quaternion group. By Brauer-Suzuki’s
theorem, we have|Z(G/O(G))| = 2 and therefore Sylowr -subgroups,
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Sylow s-subgroups and Sylowp-subgroups are contained inO(G). Take
H a Hall {r, s, p}-subgroup ofO(G). By the Frattini argument,NG(H)
contains a Sylow 2-subgroupUg (g ∈ G) of G. ThenHUg is a Frobenius
group with kernelH. This is a contradiction sinceH is nilpotent and
dH(r, p) ≥ 2. If dG(2, t) = 1 or t = 2, thendG/N(r, s) = 1, dG/N(r, p) = 2
anddG/N(s, p) = 1 by Lemma 2. By the choice ofG, dG/N(2, p) = ∞.
This yields that{r, s, p} is contained in a componentπ of Γ(G/N) not
containing 2. By Lemma 3, there exists a nilpotent Hallπ-subgroup of
G/N, a contradiction sincedG/N(r, p) = 2.

We may assume thatN ' S×· · ·×S(n times) for some non-abelian sim-
ple groupS. Suppose thatn ≥ 2. Thenr , sandp do not divide|N|. We have
dG/N(r, s) = 1, dG/N(r, p) = 2 anddG/N(s, p) = 1 by Lemma 2. IfG/N is
non-solvable, then we have a contradiction by the choice ofG and Lemma 3.
We may assume thatG/N is solvable. By the Frattini argument, we have
G = NG(U)N for U ∈ Syl2(N). SinceNG(U)/NG(U) ∩ N is solvable and
r , s and p do not divide|N|, NG(U) contains a Hall{r, s, p}-subgroupH
of G. ThenUH is a Frobenius group with kernelU, a contradiction since
dH(r, p) ≥ 2. This yields thatn = 1.

Suppose thatCG(N) 6= 1. We see thatr , s andp do not divide|CG(N)|.
We can get a contradiction by an argument similar to the above paragraph.
This implies thatG is almost simple.

By Lemma 4 we see that a counter example of possible minimal order
to Theorem 2 is a non-abelian simple group.

5. Simple groups

The purpose of this section is to verify Theorems 1 and 2 for finite non-
abelian simple groups.

(1) LetG be one of the 26 sporadic simple groups. IfdG(2, p) ≥ 2, then
dG(2, p) = 2 or dG(2, p) = ∞ by [5]. FurthermoredG(2, p) = 2 if and
only if p = 5, G = M23 or p = 13, G = F3 or p = 29, G = F1. In the
cases Sylowp-subgroups ofG are abelian. Thus Theorems 1 and 2 hold
true forG.

(2) LetG be the alternating group onn-letters. If 8≥ n ≥ 5, then Sylow
subgroups of odd order are abelian and it is easy to verify Theorem 2.
Assume thatn ≥ 9 and p ∈ π(G). If p ≤ n − 4, thendG(2, p) = 1.
If p = n − 3, then Sylowp-subgroups ofG are cyclic of orderp and
dG(2, p) = 2. If p ≥ n − 2, then Sylowp-subgroups ofG are cyclic
of order p anddG(2, p) = ∞. Thus Theorems 1 and 2 hold true for the
alternating groups.

For a positive integerk let π(k) be the set of all prime divisors ofk. Let
π0 = {p ∈ π(G)|dG(2, p) ≤ 1}. Then we do not have to think about primes
in π0 in order to verify Theorems 1 and 2 for the simple groups of Lie type.
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The centralizers of involutions in simple groups of Lie type can be found in
[1], [17], [12] and [15].

(3) Let G = PSL(n,q). Then|G| = qn(n−1)/2
n−1∏
i=1
(qi+1 − 1)d−1, d =

(n,q− 1).
Suppose thatq ≡ 0 (mod 2). Let I j be the j × j identity matrix. Put

t′k =
(

Ik 0 0
0 In−2k 0
Ik 0 Ik

)

Thent′k(r ≥ k ≥ 1) wherer = [n/2], are representatives of the conjugacy
classes of involutions inSL(n,q). The centralizer oft′k in SL(n,q) is the
set of all matrices of the form(

A 0 0
H B 0
K L A

)

where (detA)2detB = 1 and A is an k × k nonsingular matrix. Denote
tk the homomorphic image oft′k in PSL(n,q). Then tk (r ≥ k ≥ 1) are
representatives of the conjugacy classes of involutions inPSL(n,q). Let
Ck = CG(tk). Then

π(Ck) = π
(

2
n−2k∏
i=1

(qi − 1)/(q− 1)d
)

and

π0 = π
( r∏

k=1

|Ck|
)
= π

(
2

n−2∏
i=1

(qi − 1)
)

Suppose thatn ≥ 4. Then the only factor of|G| to be considered is
(qn−1 − 1)(qn − 1). There are maximal toriT(An−2) of order(qn−1−1)d−1

and T(An−1) of order (qn − 1)/(q − 1)d. Let p ∈ π(T(X)) − π0 where
X = An−1 or An−2. Note that(qn−1,qn−1−1) = q−1 andπ(q−1) ⊆ π0.
Let P be a Sylowp-subgroup ofT(X). ThenP is a Sylowp-subgroup ofG.
SinceP is abelian, Theorems 1 and 2 hold true forG = PSL(n,q), n ≥ 4.

Suppose thatn = 3. Then Sylow subgroups ofG of odd order are
abelian. We have verified Theorem 1 forG = PSL(3,q). Since |G| =
q3(q2− 1)(q3− 1)d−1 and there are three classes of maximal tori of orders

(q− 1)2d−1, (q2− 1)d−1, (q2+ q+ 1)d−1,

we have verified Theorem 2.
It is trivial that Theorems 1 and 2 hold true forn = 2.
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Suppose thatq ≡ 1 (mod 2). If n = 2, then Sylow subgroups of odd
order are abelian. Assumen > 2. Let t be an element inG such that the
inverse image inSL(n,q) is: (−I2 0

0 In−2

)
.

It is evident thatCG(t) contains a subgroup isomorphic to

(SLn−2(q)× SL2(q))/Z(SLn(q)).

Assume thatdG(2, p) ≥ 2. Thenp divides(qn − 1)(qn−1 − 1) and p does
not divideq(qn−1−m − 1) for 1 ≤ m ≤ n− 2. Now we can apply the same
arguments as the caseq ≡ 0 (mod 2).

(4) Let G = PSU(n,q). Then|G| = qn(n−1)/2
n−1∏
i=1
(qi+1 − (−1)i+1)d−1,

d = (n,q+ 1).
Suppose thatq ≡ 0 (mod 2). Letr = [n/2] be the number of conjugacy

classes of involutions andtk (r ≥ k ≥ 1) the representatives of the conjugacy
classes of involutions. PutCk = CG(tk) (r ≥ k ≥ 1). Then

π(Ck) = π
(

2
k∏

i=1

(qi − (−1)i )
n−2k∏
i=1

(qi − (−1)i )/(q+ 1)d
)
.

Suppose thatn ≥ 4. Sinceπ0 = π(
r∏

k=1
|Ck|) = π(2

n−2∏
i=1
(qi − (−1)i )), we

have to think about the foctors(qn− (−1)n)(qn−1− (−1)n−1) of |G|. There
are maximal toriT( 2An−2) of order(qn−1 − (−1)n−1)/d andT( 2An−1) of
order(qn − (−1)n)/(q+ 1)d in G. It follows that

π
(
T( 2An−2)

) ∩ π(T( 2An−1)
) ⊆ π(q+ 1) ⊆ π0.

and Sylowp-subgroups ofG are abelian forp ∈ π(G)− π0.
Suppose thatn = 3. Note that Sylow subgroups of odd order ofG

are abelian. SinceG contains a maximal torus of order(q2 − 1)d−1, it
follows that dG(2, r) = 2 for r ∈ π(q − 1) and dG(2, r) = ∞ for r ∈
π((q2− q+ 1)d−1).

This verifies Theorems 1 and 2 forPSU(n,q) for q ≡ 0 (mod 2).
By the similar arguments Theorems 1 and 2 hold true forq ≡ 1 (mod 2).

(5) Let G = PSp(2n,q), q ≡ 0 (mod 2). Then|G| = qn2
n∏

i=1
(q2i − 1).

There arer = n + [n/2] conjugacy classes of involutions. Lettk(r ≥
k ≥ 1) be their representatives and putCk = CG(tk). It follows thatπ0 =
π(

r∏
k=1
|Ck|) = π(2

n−1∏
i=1
(q2i − 1)). The factors of|G| to be considered are
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(qn + 1)(qn − 1). There are maximal toriT(Cn) and T(An−1) of orders
qn + 1 andqn − 1, respectively. It follows that Theorems 1 and 2 hold true
in the case.

Suppose thatq ≡ 1 (mod 2). Let V be a 2n-dimensional vector space
over the field ofq-elements. LetP be a parabolic subspace ofV. Then there
exists an involutiont in Sp(V) of the form:(−I P 0

0 I P⊥

)
whereI P (resp. I P⊥) is the identity transformation onP (resp. P⊥). It follows
thatCSp(V)(t) contains a subgroup isomorphic toSp(2,q)× Sp(2n− 2,q).
Hence ifdG(2, p) ≥ 2, p divides(q2n−1) andp does not divides(q2s−1)q
for 1 ≤ s ≤ l − 1. Since there exist toriT(Cn) andT(An−1) whose orders
are(qn + 1)/2 and(qn − 1)/2, respectively, Sylowp-subgroups ofG are
abelian fordG(2, p) ≥ 2. It follows that Theorems 1 and 2 hold true in the
case.

(6) LetG = PΩ2n(+1,q), q ≡ 0 (mod 2). Then|G| = qn(n−1)(qn − 1)
n−1∏
i=1
(q2i − 1)d−1 whered = (4,qn−1). Let tk(r ≥ k ≥ 1) be the representa-

tives of the conjugacy classes of involutions andCk = CG(tk)(r ≥ k ≥ 1). It

follows thatr = n+ (−1)n andπ0 = π(
r∏

k=1
|Ck|) = π(2

n−2∏
i=1
(q2i −1)). Thus

the factors of|G| which we have to think about are(qn−1 − 1)(qn−1 + 1)
(qn − 1). There are maximal toriT(An−1), T(Dn) and T(An−2) of orders
qn − 1, (qn−1 + 1)(q+ 1) and(qn−1 − 1)(q− 1) respectively. Noting that
(qn−1 − 1,qn − 1) = q− 1 and

π(qn − 1) ∩ π(qn−1+ 1) ⊆ π(q+ 1) ⊆ π0,

we have Theorems 1 and 2.
Similar arguments can be applied to the caseq ≡ 1 (mod 2).
Let G = PΩ2n(−1,q), q ≡ 0 (mod 2). Then |G| = qn(n−1)(qn + 1)

n−1∏
i=1
(q2i − 1)d−1 whered = (4,qn + 1) andπ0 = π(2

n−2∏
i=1
(q2i − 1)). The

factors of|G|which we have to think about are(qn−1−1)(qn−1+1)(qn+1).
There are maximal toriT(Cn), T( 2Dn) and T( 2An−2) of ordersqn + 1,
(qn−1+ 1)(q− 1) and(qn−1− 1)(q+ 1) respectively. By the same way as
above Theorems 1 and 2 hold true.

Similar arguments can be applied to the caseq ≡ 1 (mod 2).

(7) Let G = PΩ2n+1(q), q ≡ 1 (mod 2). Since

π(Ω2n(+1,q)) ∪ π(Ω2n(−1,q)) = π(Ω2n+1(q))

andG contains subgroups isomorphic toΩ2n(+1,q) andΩ2n(−1,q), (6)
implies that Theorems 1 and 2 hold true forPΩ2n+1(q).
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(8) Let G = 2B2(q), q = 22m+1. Then the centralizer of any involution
is a 2-group and Sylow subgroups of odd order are abelian. Theorems 1
and 2 hold true.

(9) Let G = G2(q). Then |G| = q6(q6 − 1)(q2 − 1). Suppose that
q ≡ 0 (mod 2). There are two conjugacy classes of involutions andπ0 =
π(2(q2−1)). There are maximal toriT(A2) andT(G2) of ordersq2+q+1
andq2 − q+ 1. The results follow immediately. Forq ≡ 1 (mod 2) since
π0 = π(2(q2− 1)) we can verify Theorems 1 and 2 by the same way.

(10) LetG = 2G2(q), q = 32m+1. It follows that|G| = (q3+1)q3(q−1).
Since the centralizer of an involution containsPSL(2,q),π(q(q2−1)) ⊆ π0.
G contains cyclic subgroups of orderq2 + √3q + 1 andq2 − √3q + 1
which are self-centralizing. ThusdG(2, p) ≥ 2 yieldsdG(2, p) = ∞ for
p ∈ π(G). Theorems 1 and 2 hold true.

(11) Let G = 3D4(q). It follows that |G| = q12(q8 + q4 + 1)(q6 − 1)
(q2− 1). Suppose thatq ≡ 0 (mod 2). Since the centralizer of an involution
involvesSL(2,q3),π(2(q6−1)) ⊆ π0. Thus the only factor of|G|we have to
think about isq4−q2+1. There is a maximal torus of orderq4−q2+1 which
is an isolated subgroup inG (See [12], [15]). It follows thatdG(2, p) = 1
or∞. Theorems 1 and 2 hold true for3D4(q).

Forq ≡ 1 (mod 2) we can verify Theorems 1 and 2 by the same way.

(12) LetG = F4(q). It follows that|G| = q24(q2− 1)(q6 − 1)(q8− 1)
(q12− 1). Suppose thatq ≡ 0 (mod 2). There is an involutiont such that
|CG(t)| = q24(q2 − 1)(q4 − 1)(q6 − 1). Thusπ0 ⊇ π((q6 − 1)(q2 + 1)).
The only factor of|G| to be considered is(q4 + 1)(q4 − q2 + 1). There
are isolated tori of orders(q4 + 1) and(q4 − q2 + 1) in G. It follows that
dG(2, p) = 1 or∞ for p ∈ π(G). Theorems 1 and 2 hold true forF4(q),
q ≡ 0 (mod 2).

Forq ≡ 1 (mod 2) we can verify Theorems 1 and 2 by the same way.

(13) Let G = 2F4(q), q = 22n+1. Then |G| = q12(q6 + 1)(q4 − 1)
(q3+ 1)(q−1) andπ0 = π((2(q4−1)). Forr ∈ π(q2−q+1), dG(3, r) = 1
since an element of order 3 inG centralizesSU(3,q). PSU(3,q) has
a maximal torus of order(q2 − q + 1)/3. ThusdG(2, r) = 2 for r ∈
π(q2 − q + 1) − π0. For r ∈ π(q4 − q2 + 1), dG(2, r) = ∞ and Sylow
r -subgroups ofG are abelian sinceq4 − q2 + 1 is the product of orders of
two maximal tori of coprime order.

Let G = 2F4(2)′. Then|G| = 211 ·33 ·52 ·13. It follows thatdG(2,3) =
dG(2,5) = 1 anddG(2,13) = ∞. Theorems 1 and 2 hold true forG.

(14) LetG = E6(q). It follows that|G| = q36(q12−1)(q9−1) (q8− 1)
(q6− 1)(q5− 1)(q2 − 1)d−1 whered = (3,q− 1).

Suppose thatq ≡ 0 (mod 2). Thenπ0 = π(2
6∏

i=1
(qi − 1)d−1). Thus the

factors of|G| to be considered are(q4−q2+1)(q4+1)(q6+q3+1)d−1. There
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are maximal toriT(D5), T(E6) andT(E6(a1)) of orders(q4+1)(q2−1)d−1,
(q4−q2+1)(q2+q+ 1)d−1 and(q6+q3+1)d−1, respectively. Note that

π(q4+ 1) ∩ π(q4− q2+ 1) ⊆ π0

π(q4+ 1) ∩ π(q6+ q2+ 1) ⊆ π0

π(q4− q2+ 1) ∩ π(q4− q2+ 1) ⊆ π0.

Theorems 1 and 2 follow immediately.
By the same way as above Theorems 1 and 2 hold true forq ≡ 1

(mod 2).

(15) LetG = 2E6(q). It is |G| = q36(q12−1)(q9+1)(q8−1) (q6− 1)
(q5+ 1)(q2− 1)d−1 whered = (3,q+ 1)

Suppose thatq ≡ 0 (mod 2). It follows thatπ0 = π(2(q4−1) (q5+ 1)
(q6− 1)). Thus the factors of|G| to be considered are(q4 − q2 + 1)
(q4+ 1) (q6− q3+ 1)d−1. There are maximal toriT( 2D5), T( 2E6) and
T( 2E6(a1)) of orders(q4+ 1)(q2 − 1)d−1, (q4 − q2 + 1)(q2 − q+ 1)d−1

and(q6− q3+ 1)d−1, respectively. Since

π(q4+ 1) ∩ π(q4− q2+ 1) ⊆ π0

π(q4+ 1) ∩ π(q6− q2+ 1) ⊆ π0

π(q4− q2+ 1) ∩ π(q4− q2+ 1) ⊆ π0,

the results follow immediately.
By the same way Theorems 1 and 2 hold true forq ≡ 1 (mod 2).

(16) LetG = E7(q). It follows that|G| = q63(q18−1)(q14−1) (q12− 1)
(q10− 1)(q8− 1)(q6− 1)(q2 − 1).

Suppose thatq ≡ 0 (mod 2). It follows thatπ0 = π(2(
6∏

i=1
(q2i − 1)).

Thus the only factors of|G| to be considered is

(q7− 1)(q6+ q3+ 1)(q6 − q3+ 1)(q7+ 1)/(q2− 1).

There are maximal toriT(A6), T(E6(a1)), T(E7) andT(E7(a1)) of orders
q7− 1, (q6+ q3+ 1)(q− 1), (q6− q3+ 1)(q+ 1) andq7+ 1 respectively.
If q = 2, then

|G| = 263 · 311 · 52 · 73 · 11 · 13 · 17 · 19 · 31 · 43 · 73 · 127.

SincedG(2,3) = dG(2,7) = 1 anddG(2,19) = dG(2,43) = 2, Theo-
rems 1 and 2 follow forE7(2). Assume thatq> 2. We note that
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π(q6+ q3+ 1) ∩ π(q7+ 1) ⊆ π0

π(q6+ q3+ 1) ∩ π(q7− 1) ⊆ π0

π(q6− q3+ 1) ∩ π(q7− 1/q− 1) ⊆ π0

π(q6− q3+ 1) ∩ π(q7+ 1/q+ 1) ⊆ π0.

Let X be one of the admissible diagramsA6, E6(a1), E7, E7(a1) and p ∈
π(T(X)) − π0. Let P be a Sylowp-subgroup ofT(X). Then P is abelian
and P is a Sylow p-subgroup ofG. This verifies Theorems 1 and 2 for
G = E7(q), q ≡ 0 (mod 2).

Forq ≡ 1 (mod 2) we can verify Theorems 1 and 2 by the same way.

(17) Let G = E8(q), q ≡ 1 (mod 2). There are two classes of involu-
tions inG anddG(2, p) = 1 for p which divides

q(q2− 1)(q4− 1)(q6 − 1)(q8− 1)(q10− 1)(q12− 1)(q14− 1)(q18− 1).

There are maximal toriT(E8), T(E8(a1)) andT(E8(a5)) of orders(q10−
q5+ 1)/(q2− q+ 1), (q12+ 1)/(q4+ 1) and(q10+ q5+ 1)/(q2+ q+ 1)
respectively. They are cyclic. It follows that ifdG(2, p) ≥ 2, thenp divides

|T(E8)||T(E8(a1))||T(E8(a5))|.
This implies that Sylowp-subgroups ofG are abelian ifdG(2, p) ≥ 2.

Forq ≡ 0 (mod 2) we can verify Theorems 1 and 2 by the same way.

We have verified Theorems 1 and 2 for all the non-abelian simple groups.
This completes the proofs of Theorems 1 and 2.

The observations above yield the following:

Theorem 4. Let G be a simple group of Lie type andT a maximal torus.
Let p ∈ π(T)−π0, whereπ0 = {p ∈ π(G)|dG(2, p) ≤ 1}. ThenT contains
a Sylowp-subgroup ofG.

Theorem 4 is a corollary of Theorem 1. Actually we proved Theorem 4
for specified tori ofG when we gave the proof of Theorem 1.

Remark 1.Suzuki [16] determined the structure of (CIT)-groups. A (CIT)-
group is a finite group of even order in which the centralizer of every in-
volution is a 2-group. His theorem implies that ifp is an odd prime, then
a Sylow p-subgroup of a (CIT)-group is always abelian. This means that
if a finite groupG of even order contains a non-abelian Sylowp-subgroup
for odd primep, thenG is not a (CIT)-group. Suzuki’s theorem, however,
appears not to give us any information as to whether any non-abelian Sylow
p-subgroup of a finite group of even order always contains a non-trivial
element which commutes with an involution. Our main theorem guaran-
tees the existence of such a non-trivial element in any non-abelian Sylow
p-subgroup. Thus our maim theorem is a far reaching generalization of [16].
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Remark 2.Let G be a finite group of even order. In terms of the prime graph
Γ(G) of G Suzuki [16] proved that ifdG(2, p) = ∞ for all p ∈ π(G)−{2},
then Sylowp-subgroups ofG are abelian.

Remark 3.There is an example fordG(2, p) = 3. Let G = Sz(29) : 3, the
extension of Suzuki’s simple groupSz(29) by the field automorphism of
order 3. ThendG(2,37) = dG(2,109) = dG(2,73) = 3 anddG(37,109) =
dG(37,73) = dG(73,109) = 4.

Fig. 1.Γ(Sz(29) : 3)

2 3 5 109

7

73

13

37

Also there is a solvable groupX with dX(2, p) = 3 for somep ∈ π(X).

6. The proof of Theorem 3

We will give the proof of Theorem 3. LetG be a finite group of even order
such thatdG(2, p) ≥ 2 for some primep ∈ π(G). Let

G = G0 ⊃ G1 ⊃ · · · ⊃ Gs−1 ⊃ Gs = 1

be a series of characteristic subgroups ofG such thatGi is a maximal
characteristic subgroup ofGi−1 for i = 1, . . . , s. SinceGi−1/Gi is a mini-
mal characteristic subgroup inG/Gi , Lemmas 6 and 7 yield thatGi−1/Gi
is a non-abelian simple group or an abelian group. If the chain has two
non-abelian simple factors, we have a contradiction by Lemma 8. If the
chain has more than two non-abelian simple factors, then there existsi such
thatGi−1/Gi is a non-abelian simple group andG/Gi has two non-abelian
simple factors. Lemma 8 yieldsdG/Gi (2, p) = 1 for p ∈ π(G/Gi ) − {2}.
The groupGi−1 has more than two non-abelian simple factors. By the in-
duction on the number of non-abelian simple factors of the chain, we can
complete the proof.

Remark 4.By Fisman [6] we can know the simple factorH/K of G.
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