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1. Introduction

The purpose of this paper is to prove:

Main Theorem. Every non-abelian Sylow subgroup of a finite group of
even order contains a non-trivial element which commutes with an involu-
tion.

Our main theorem announced in [4] is closely related to the prime graphs
of finite groups. LetG be a finite group and(G) the prime graph ofs.
I'(G) is the graph such that the vertex set is the set of prime divisgfs|of
denoted byr(G), and two distinct verticep andr are joined by an edge
if and only if there exists an element of ordpr in G. Let n(I(G)) be
the number of connected components/@G) anddg(p, r) the distance
between two verticep andr of I(G), that is, the length of the shortest path
betweenp andr. We definedg (p, r) = oo if there is no path betweep
andr. It has been proved tha(1(G)) < 6 in [17], [12], [15].

Theorem 1. LetG be a finite group of even order armbe a prime divisor
of |G|. If dg (2, p) > 2, then Sylowp-subgroups of5 are abelian.

Theorem 1 is a restatement of our main theorem in terms of the prime
graphI(G) of G.

Corollary 1. LetG be afinite group of even order ampbe a prime divisor
of |G|. If A is a connected componentBfG) — { p} not containing2, then
Sylowr -subgroups ofs are abelian forr € A.

* The third author was supported in part by Grant-in-Aid for Scientific Research
(No0.8304003, N0.08640051), Ministry of Education, Science, Sports and Culture, Japan.
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There is a certain relation between a subgrap®B) — {p} of I'(G) and
Brauer characters gf-modular representations & (See [3]). As for the
distancedg (2, p) we have:

Theorem 2. Let G be a finite group of even order arlbe an odd prime
divisor of |G|. Then we have:

dG (2’ p) =

wWN -

o0

Corollary 2. Let G be a finite non-abelian simple group amdbe an odd
prime divisor of|G|. Then we have:

1
de(2,p) =14 2

(0.¢]

We have a theorem of Gruenberg-Kegel type (See Lemma 5).

Theorem 3. LetG be afinite group of even order. Suppose that2, p) > 2
for some primep € 7(G). Then one of the following holds:

(i) Gissolvable,
(i) G has a chain of normal subgrougsd > H 2 K such thatG/H and
K are solvable andH/K is a non-abelian simple group.

The significance of the prime graphs of finite groups can be found in [2],
[71, 18], [9], [10], [11], [18], [19]. Theorems 1, 2 and 3 are the consequences
of the classification of finite simple groups (See [2], [9], [12]) which at least
for the moment is not established beyond any doubt although the proof has
been announced and advertised since 1981.

2. Preliminaries

The purpose of this section is to provide several lemmas which will be
appliedinthe proof of our theorems. The following lemmais straightforward
by the definition. However it is important when we apply mathematical
induction.

Lemma 1. Let G be a finite group andd a subgroup ofG.

(i) If p,r e x(H),thendg(p,r) < du(p,r).
(i) If H<Gandp,r € n(G/H), thendg(p,r) < dg/n(p,1).
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Proof. (i) Straightforward. (ii) Suppose thaks,+(p,r) = 1. Then there
exists an elementH of order pr in G/H. It follows thatxP € H and
some power ok is of orderpr in G. This yieldsdg(p, r) = 1. Repeat this
argument and we hawis (p, r) < dg/n(p, ).

Lemma 2. Suppose thalN < G.

(i) Ifdg(p,r)=1for p,r € n(G) — n(N), thendg,n(p,r) = 1.

(iiy Suppose thatg(p,r) = 2for p,r € 7(G) — 7(N), i.e., there exists
g € n(G)suchthatgs (p, q) = landdg(q,r) = 1.1fq € 7(G)—m(N),
thendG/N(p, r =2

Proof. (i) There exists a elemegte G such thab(g) = pr. ThengN has
orderpr in G/N. (i) follows from (i).

The following is also important.

Lemma 3. Let G be a non-solvable group, anda connected component
of I'(G) not containing2. ThenG contains a nilpotent Haliz-subgroup.

Proof. See [17].

Lemma 4. Let G be a finite non-solvable almost simple group such that
N € G C Aut(N) for a non-abelian simple group. Let p be an odd
prime in7(G/N). Thendg (2, p) = 1.

Proof. If N is an alternating group or one of 26 sporadic simple groups,
then(G : N) = 1, 2 or 4. We can assume thidtis a simple group of Lie
type. The outer automorphism group is a semidirect product (in this order)
of group of orderd (diagonal automorphisms);, (field automorphisms)
andg (graph automorphisms modulo field automorphisms) except that for
B2(2"), Go(3"), F4(2") the extraordinary graph automorphism squares to
the generating field automorphism. be€ G — N with xP € N. If pdivides

d or g, then we see thap divides|N| and thatdy (2, p) = 1. This yields

that if dy(2, p) > 2 or p does not dividgN|, then p divides f/(f, dg). In

this case, there exists a field automorphigsuch thatN(x) >~ N({y). Since

field automorphisms centralize a group of Lie type over the prime field, we
havedgs (2, p) = 1. This completes the proof (See [14]).

A finite group G is said to be a 2-Frobenius group if and only if there
exists a chainG > H > K O 1 of normal subgroups o6 such that
H and G/K are Frobenius groups with Frobenius kernklsand H/K,
respectively. SinceH/K is cyclic of odd order, a 2-Frobenius group is
always solvable. Next lemma essentially due to Gruenberg and Kegel (See
[11], [17]) is fundamental important when we study finite groups with
disconnected prime graphs.

Lemma 5. Let G be a finite group witm(7(G)) > 2. Then we have two
possibilities.
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() G is a Frobenius group or &-Frobenius group.

(i) G hasachainG 2 M 2 N 2 1 of normal subgroups such th&t
is a nilpotentz-group, M/N is a non-abelian simple group ar@d/M
is a solvablerr-group wherer is the connected component BfG)
containing?2.

Proof. Suppose thaG is neither a Frobenius group nor a 2-Frobenius
group. By Gruenberg-Kegel's theorem [17, Theorem &]has a chain

G 2 M 2 N D2 1 of normal subgroups such that is a nilpotentsn-
subgroupM/ N is a non-abelian simple group witi7(G)) > 2 andG/M

is a-separable group. Sinag/(G)) > 2, we haveCg,n(M/N) = 1.
This yields thatG/N is an almost simple group with(/(G)) > 2. Since
Schreier conjuecture holds true, we see tBaM is a solvabler-group by
Lemma 4.

By Lemma 5 if G is a solvable group witm(7(G)) > 2, thenG is
a Frobenius group or a 2-Frobenius group, aoB(G)) = 2.

Lemma 6. LetG be a finite group andN a normal subgroup o&. Suppose
that G/N is isomorphic to the direct product of more than one non-abelian
simple group. Thedg (2, p) = 1for p € 7(G) — {2}.

Proof. By our assumptiorl(G/N) is a complete graph and@ 7(G/N).
We can assume that there exists a pri;mg 7(N) — 7(G/N). Let P €
Syly(G). It follows thatG = Ng(P)N by the Frattini argument. LeQ €
SyL(Ng(P)) whereq € 7(G/N). If dg(p, ) # 1, thenPQ is a Frobenius
group with kernelP. ThusQ is cyclic or a generalized quaternion group.
This is not the case singg/N is isomorphic to the direct product of more
than one non-abelian simple group. Ndw(p, q) = 1 forallq € 7(G/N).

Lemma 7. Let G be a finite group andN a minimal characteristic sub-
group. Suppose thall is isomorphic to a direct product of more than one
non-abelian simple group. Thely (2, p) = 1for p € 7(G) — {2}.

Proof. By our assumptiorf(N) is a complete graph and& 7(N). Since
Cc(N) is also a characteristic subgroufg (N) NN = 1. This yields that
ng(N)N(Zs t) = 1fort € n(Co(N)N) — {2}. Let N = § x --- x §
where§ ~ S, a non-abelian simple group ang 2. G acts transitively on
{S, ..., §} by conjugation. LeC; be the stabilizer 0§,. ThenC,/Cg(S))
is isomorphic to a subgroup dAut(S)). Let p € 7(C1/Cs(S)) — n(S).
It follows thatdc, (2, p) = 1 by Lemma 4. Assume that there exists:
7(G)—m(C,). Letybe ag-element ofG andx an involution inS,. Since the
involution xx¥x¥* - - - x¥** commutes withy, dg (2, ) = 1. This complete
the proof.

Lemma 8. Let G be a finite group. Suppose th@thas a chain of normal
subgroupsH; 2 H, 2 K; D K; such thatG/H;, Hy/K; and K, are
solvable, andH;/H, and K1/K, are non-abelian simple groups. Then
ds(2, p) = 1for p e n(G) — {2}.
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Proof. PutG = G/K,, Hi = Hi/K, fori = 1,2 andK; = Ky/Ko.
SinceK; is a non-abelian simple group and the Schreier conjecture holds
true, G/K1Cs (K1) is solvable. By Lemma 4, we haw (2, p) = 1 for

p € 7(G/K1Cgs(Kp)). SinceCs(Ky) N Ky = 1 andCs(Ky) is of even
order,ds(2, p) = 1forp e 7(G) — {2}. LetQ e Sy, (K>) for odd prime

g € n(Ky). Since Sylow 2-subgroups dflg(Q) are neither cyclic nor
generalized quaternion, we haske(2, ) = 1. The proof is complete.

3. A minimal counter example to Theorem 1

The purpose of this section is to prove that a counter example of possible
minimal order to Theorem 1 is a hon-abelian simple group.

Proposition 1. Let G be a solvable group of even order apde a prime
divisor of |G|. If dg (2, p) > 2, then Sylowp-subgroups ofs are abelian.

Proof. There exists a Halj2, p}-subgroupH of G. Note that a Sylowp-
subgroup oH is a Sylowp-subgroup ofs andn(/(H)) = 2. By Lemma 5,
H is a Frobenius group or a 2-Frobenius grougHIfs a Frobenius group,
thenH = NL, whereN is Frobenius kernel oH andL is a Frobenius
complement ofH. If p divides|N|, thenN is a Sylow p-subgroup ofH
andL is a 2-group. It follows thalN has a fixed point free automorphism
of order 2. This yields thal is abelian. Ifp divides|L|, thenL is a Sylow
p-subgroup ofH. Sincel is a Frobenius complemert, is cyclic. If H
is a 2-Frobenius groug; has normal subgroupel and N such thatM is
a Frobenius group with Frobenius kerm¢landH/N is a Frobenius group
with Frobenius kerneM/N. It follows thatM/N is isomorphic to a Sylow
p-subgroup ofH. This implies that Sylowp-subgroups ofH are cyclic.
This completes the proof.

Proposition 2. LetG be a minimal counter example to Theorem 1. T@en
is a non-solvable simple group.

Proof. By Proposition 1 is non-solvable. LeP be a non-abelian Sylow
subgroup ofG such thatdg (2, p) > 2. TakeN a minimal normal subgroup
of G. Suppose thall >~ Z; x - - - x Z; for some prime. SinceG/N is non-
solvable,|G/N]| is divisible by 2. Ift # p, thenP € Syl,(G/N) is abelian
by the choice ofs becauselsn(2, p) > d(2, p) > 2. SinceP ~ P, Pis
abelian, a contradiction. We have= p. If p does not dividgG/N|, then
N is a Sylow p-subgroup ofG, a contradiction becaudg is abelian. This
implies thatp divides|G/N|. TakeQ a Sylow 2-subgroup d&. ThenNQ
is a Frobenius group with Frobenius kerri¢l SinceG is non-solvable,
Q must be a generalized quaternion group. By Brauer-Suzuki’'s theorem
[13, pp.102],| Z(G/O(G))| = 2. Namely, we havels (2, r) < 1 for any
primer dividing |G/O(G)|. This yields thatP € O(G). By the Frattini
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argument, we hav® = Ng (P)O(G). This implies thatNg (P)| is divisible
by 2. TakeQ € Syb(Ng(P)). ThenPQis a Frobenius group with Frobenius
kernelP. Thisis a contradiction sinde has a fixed point free automorphism
of order 2.

We haveN >~ Sx --- x S(n times) for a non-abelian simple gro
Suppose thap does not divideN. Take Q € Syb(N). By the Frattini
argument, we have = Ng(Q)N. There exists an elemegte G such that
PY9 c Ng(Q). SinceQ P9 is a Frobenius group with Frobenius kerrig)
we see thaP9 is cyclic, a contradiction. This yields thatdivides|N| and
n=1,i.e, Nis anon-abelian simple group. Suppose indbes not divide
IG/N|. ThenP € Syl,(N). If N is a proper subgroup @, thenP is abelian
by the choice ofz sincedy (2, p) > dg(2, p) > 2. ThisyieldsthaG = N
is non-abelian simple. Suppose thatlivides |G/N|. Then both 2 ang
do not divide|Cg(N)| since 2 andp divide |N|. This yields that  divides
|IG/Cs(N)|. If Ca(N) # 1, thenP € Syl,(G/Cs(N)) is abelian by the
choice ofG sincedg /co (v (2, pP) = dg(2, p) > 2. This is a contradiction.
This yields thatCg(N) = 1. Hence we havé&l € G C Aut(N) for some
non-abelian simple groul.

By Lemma 4 we see that a counter example of possible minimal order
to Theorem 1 is a non-abelian simple group.

4. A minimal counter example to Theorem 2

The purpose of this section is to prove that a counter example of possible
minimal order to Theorem 2 is a non-abelian simple group.

Proposition 3. Let G be a solvable group. Thets(p, q) < 3 or oo for
anyp, g € 7(G).

Proof. Suppose thatls(p, ) = 4 for somep, q € #(G). There exists,
s, t € m(G) with dg(p,r) = 1,ds(p,s) = 2,ds(p,t) = 3,ds(r,s) = 1,
do(r,t) = 2,dg(r,q) = 3,dg(s,t) = 1,dg(s, ) = 2 anddg(t,q) = 1.
Take Hall{p, s, q}-subgroupH of G. Then we havean(I{H)) = 3. This
contradicts Lemma 5.

Proposition 4. LetG be a minimal counter example to Theorem 2. T@en
is a non-solvable simple group.

Proof. By Proposition 3,G is non-solvable. There exist primeg r, s,

pe 7(G) with dg (2, a =1, de(2,r) = 2,ds(2,9 = 3,ds(2, p) = 4,
dG(qa r) =1, dG(q’ S) = 2! dG(q’ p) = 31 dG(raS) =1, dG(ra p) =2
anddg (s, p) = 1. Take a minimal normal subgrouy of G. Suppose that

N ~ Z x --- x Z; (n times) for some primé. If dg(2,t) > 2, then
NU is a Frobenius group with kern@ll, whereU € Syb(G). SinceG

is non-solvablelU is a generalized quaternion group. By Brauer-Suzuki’'s
theorem, we havéZ(G/0O(G))| = 2 and therefore Sylow-subgroups,
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Sylow s-subgroups and Sylow-subgroups are contained @(G). Take
H a Hall {r, s, p}-subgroup ofO(G). By the Frattini argumentNg(H)

contains a Sylow 2-subgroug? (g € G) of G. ThenHUZY is a Frobenius
group with kernelH. This is a contradiction sincél is nilpotent and
du(r, p) > 2. 1fdg(2,t) = 1 ort = 2, thendg,n(r,s) = 1,dg/n(r, p) =2

anddg,n(s, p) = 1 by Lemma 2. By the choice d, dg/n(2, p) = 0.

This yields that{r, s, p} is contained in a component of I (G/N) not

containing 2. By Lemma 3, there exists a nilpotent Halsubgroup of
G/N, a contradiction sincég,n(r, p) = 2.

We may assume thét ~ Sx- - - x S(ntimes) for some non-abelian sim-
ple groupS. Suppose that > 2. Thenr, sandp do not divide|N|. We have
do/n(r,s) = 1,dg,n(r, p) = 2anddg,n(s, p) = L by Lemma 2. IIG/Nis
non-solvable, then we have a contradiction by the choi€@afd Lemma 3.
We may assume th& /N is solvable. By the Frattini argument, we have
G = Ng(U)N for U € Syb(N). SinceNg(U)/Ng(U) N N is solvable and
r, s and p do not divide[N|, Ng(U) contains a Hallr, s, p}-subgroupH
of G. ThenUH is a Frobenius group with kerné&l, a contradiction since
dy(r, p) > 2. This yields thah = 1.

Suppose thaEg(N) # 1. We see that, sand p do not divide|Cg (N)|.
We can get a contradiction by an argument similar to the above paragraph.
This implies thaiG is almost simple.

By Lemma 4 we see that a counter example of possible minimal order
to Theorem 2 is a non-abelian simple group.

5. Simple groups

The purpose of this section is to verify Theorems 1 and 2 for finite non-
abelian simple groups.

(1) LetG be one of the 26 sporadic simple groupsidi2, p) > 2, then
ds(2, pp = 2 ordg(2, p) = oo by [5]. Furthermoredg (2, p) = 2 if and
onlyif p=5,G = Myzorp=13,G=Fzorp=29G = Fy. Inthe
cases Sylowp-subgroups ofs are abelian. Thus Theorems 1 and 2 hold
true forG.

(2) Let G be the alternating group onletters. If 8> n > 5, then Sylow
subgroups of odd order are abelian and it is easy to verify Theorem 2.
Assume thain > 9 andp € 7(G). If p < n—4, thends(2, p) = 1.

If p = n— 3, then Sylowp-subgroups ofG are cyclic of orderp and
ds(2, pp = 2. If p > n — 2, then Sylowp-subgroups ofG are cyclic
of order p anddg (2, p) = oo. Thus Theorems 1 and 2 hold true for the
alternating groups.

For a positive integek let 7 (k) be the set of all prime divisors &t Let
o= {p € 7(G)|ds(2, p) < 1}. Then we do not have to think about primes
in 7rg in order to verify Theorems 1 and 2 for the simple groups of Lie type.
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The centralizers of involutions in simple groups of Lie type can be found in
[1], [17], [12] and [15].

n-1
(3) LetG = PSLn, ). Then|G| = "™ P2 [T (@ — 1d ™, d =
i=1

Suppose thag = 0 (mod 2. Let1; be thej x j identity matrix. Put

lk 0 O
Ik O I

Thent,(r > k > 1) wherer = [n/2], are representatives of the conjugacy
classes of involutions irBL(n, g). The centralizer of, in SL(n, g) is the
set of all matrices of the form

A 0 O
( H B 0)
K L A
where (detA?detB = 1 and A is ank x k nonsingular matrix. Denote
tx the homomorphic image df in PSL(n, ). Thenty (r > k > 1) are

representatives of the conjugacy classes of involutionBS$h(n, g). Let
Ck = Ca(ty). Then

n—2k

m(©o=(2]]@ - v/@-1d)

i=1

and

o = n(ﬁ|ck|) = n(2ﬁ<q‘ -1)

Suppose thath > 4. Then the only factor ofG| to be considered is

("1 — 1)(@" — 1). There are maximal tofii( A,_») of order(q"~* —1)d*

and T(An_1) of order (" — 1)/(q — 1)d. Let p € #(T(X)) — mg Where

X = A,_10r A,_». Note that(q"—1, "1 —1) = g—1 andr(q—1) < .

Let P be a Sylowp-subgroup off(X). ThenP is a Sylowp-subgroup ofG.

SinceP is abelian, Theorems 1 and 2 hold true &= PSL(n, ), n > 4.
Suppose thah = 3. Then Sylow subgroups d& of odd order are

abelian. We have verified Theorem 1 f&r = PSL(3, g). Since|G| =

q°(g? — 1)(g® — 1)d~* and there are three classes of maximal tori of orders

Q-4 (@P-D1dY @+qg+Dd?

we have verified Theorem 2.
Itis trivial that Theorems 1 and 2 hold true for= 2.
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Suppose that = 1 (mod 2. If n = 2, then Sylow subgroups of odd
order are abelian. Assunme> 2. Lett be an element &5 such that the
inverse image irSL(n, q) is:

(o 10)

It is evident thalCg (t) contains a subgroup isomorphic to

(Skn—2(q) x SL2(9))/ Z(SLa(Q)).

Assume thatlz (2, p) > 2. Thenp divides(g" — 1)(q"~* — 1) and p does
not divideq(gq"*~™ — 1) for 1 < m < n — 2. Now we can apply the same
arguments as the cage= 0 (mod 2.

n-1 .
(4) LetG = PSUnN, g). Then|G| = "™ Y/2 [T(g*! — (—1)'*1Hd L,
i—1

d=n,qg+1).

Suppose thag = 0 (mod 2. Letr = [n/2] be the number of conjugacy
classes of involutions artd(r > k > 1) the representatives of the conjugacy
classes of involutions. P@y = Cg(ty) (r > k> 1). Then

k n—2k
m(©o == (2] ] - 1) [T - ~1)/@+Dd).
i=1

i=1

Suppose that > 4. Sincerg = n(]‘[ ICk]) = (2 ]'[ g —(=D"), we

have to think about the foctorg” — (— 1) Yt — (- 1)n b of|G| There
are maximal toriT( 2A_») of order(q"* — (=1)" 1) /d and T(?A,_1) of
order(q" — (1) /(g + Ld in G. It follows that

7(T(*An—2) N7 (T(*An—) S 7@+ 1) € 7o

and Sylowp-subgroups ol are abelian fop € 7(G) — .

Suppose thah = 3. Note that Sylow subgroups of odd order Gf
are abelian. Sinc& contains a maximal torus of ordég® — 1)d—1, it
follows thatdg(2,r) = 2 forr € n(q — 1) anddg(2,r) = oo forr e
7((@> —q+ Dd™).

This verifies Theorems 1 and 2 f@SUnN, q) forq =0 (mod 2.

By the similar arguments Theorems 1 and 2 hold trugfer 1 (mod 2.

(5) LetG = PS,(2n,0), g = 0 (mod 2. Then|G| = ¢" l‘[(qz' -

There arer = n + [n/2] conjugacy classes of |nvolut|ons Letr >
k> 1) be thelr representatlves and it = Cg(ty). It follows thatg =

n(]‘[ ICk) = 7(2 ]‘[(qz' — 1)). The factors ofiG| to be considered are

i=1
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"+ (" — 1). There are maximal torf(C,) and T(A,_1) of orders
g" + 1 andq" — 1, respectively. It follows that Theorems 1 and 2 hold true
in the case.

Suppose thafj = 1 (mod 2. Let V be a 2-dimensional vector space
over the field ofg-elements. LeP be a parabolic subspaceVdf Then there
exists an involutiort in S,(V) of the form:

(5 2)

wherel p (resp | p.) is the identity transformation o (resp P+). It follows
thatCs, v (t) contains a subgroup isomorphic (2, q) x S,(2n — 2, g).
Hence ifdg (2, p) > 2, pdivides(g®" — 1) and p does not divide$g® — 1)q

for 1 < s < | — 1. Since there exist toii(C,,) and T(A,_1) whose orders
are(q" + 1)/2 and(q" — 1)/2, respectively, Sylowp-subgroups ofs are
abelian fordg (2, p) > 2. It follows that Theorems 1 and 2 hold true in the
case.

(6) LetG = P250(+1,0),q =0 (mod 2. Then|G| = "™V (q" — 1)
n-1
[1(g®* — Hd-twhered = (4, q"—1). Letty(r > k > 1) be the representa-
i=1
tives of the conjugacy classes of involutions &= Co(t)(r > k> 1). 1t

r n—-2 .
follows thatr = n+ (—=1)" andmy = (][] ICk|) = #(2 [] (g? — 1)). Thus
k=1 i

the factors of G| which we have to think about akg"* — 1)(g"* + 1)
(g™ — 1). There are maximal tofT(A,_1), T(Dn) and T(A,_») of orders
q"— 1, ("t +1(q+ 1 and(@"* — 1)(g — 1) respectively. Noting that
qt-1q9"-1)=q-1land

7@ - Na@t+1) S+l C o,

we have Theorems 1 and 2.
Similar arguments can be applied to the case 1 (mod 2.
Let G = P2,(—1,09), g = 0 (mod 2. Then|G| =q" "V (@" + 1)

n—1 n—-2
[1(@? — 1)d~* whered = (4,q" + 1) andmy = 7(2 [](g® — 1)). The
i=1 i=1
factors of| G| which we have to think about atg"*—1)(q" 1 +1)(q" +1).
There are maximal tori(C,), T( 2D,,) and T( ?A,_») of ordersq" + 1,
Q"'+ 1)(q— 1) and(g"* — 1)(q + 1) respectively. By the same way as
above Theorems 1 and 2 hold true.

Similar arguments can be applied to the case 1 (mod 2.

(7) LetG = P$25n41(0), g =1 (mod 2. Since
(8220 (+1, @) U (22n(—1, @) = 7(220+1(Q))

and G contains subgroups isomorphic @2p,(+1, q) and £2,,(—1, g), (6)
implies that Theorems 1 and 2 hold true 2. 1(Q).
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(8) LetG = 2By(q), g = 2°™1, Then the centralizer of any involution
is a 2-group and Sylow subgroups of odd order are abelian. Theorems 1
and 2 hold true.

(9) Let G = Gy(g). Then|G| = q°(q® — 1)(g®> — 1). Suppose that
g = 0 (mod 2. There are two conjugacy classes of involutions apé=
7(2(9° — 1)). There are maximal tofi(A;) andT(G,) of ordersg? +q+ 1
andg? — q + 1. The results follow immediately. For= 1 (mod 2 since
7o = 7(2(q? — 1)) we can verify Theorems 1 and 2 by the same way.

(10) LetG = 2G,(q), q = 3™, Itfollows that|G| = (q3+1)g3(q—1).
Since the centralizer of an involution contaPS (2, g), 7(q(q? —1)) < 7.
G contains cyclic subgroups of ordgf + /39 + 1 andg® — /3q + 1
which are self-centralizing. Thuds (2, p) > 2 yieldsdg (2, p) = oo for
p € 7(G). Theorems 1 and 2 hold true.

(11) LetG = 3Dy4(q). It follows that|G| = q*4(q® + g* + 1)(q® — 1)
(9° — 1). Supposethat = 0 (mod 2. Since the centralizer of an involution
involvesSL(2, g%), 7(2(q®—1)) € mo. Thus the only factor afG| we have to
think about isg* — g2+ 1. There is a maximal torus of ordgt—q?+1 which
is an isolated subgroup i@ (See [12], [15]). It follows thatlg (2, p) = 1
or co. Theorems 1 and 2 hold true foD4(q).

Forg =1 (mod 2 we can verify Theorems 1 and 2 by the same way.

(12) LetG = F4(q). It follows that|G| = g?*(9?> — 1)(g® — 1)(g® — 1)
(g*? — 1). Suppose thag = 0 (mod 2. There is an involutiorn such that
ICc(®] = g?*(@* — D(@* — 1)(q® — 1). Thusme 2 7((q° — )(g* + 1)).
The only factor of|G| to be considered isg* + 1)(q* — g°> + 1). There
are isolated tori of order&* + 1) and(g* — g? + 1) in G. It follows that
ds(2, p) = 1 oroo for p € n(G). Theorems 1 and 2 hold true fé(q),
g=0 (mod 2.

Forqg =1 (mod 2 we can verify Theorems 1 and 2 by the same way.

(13) LetG = 2F4(qg), g = 221 Then|G| = q*4(¢® + 1)(q* — 1)
(q® + 1)(g—1) andrg = 7((2(q*—1)). Forr € n(g?—qg+1),ds(3,1r) =1
since an element of order 3 i6G centralizesSU3, q). PSUS3, g) has
a maximal torus of orderq® — q + 1)/3. Thusdg(2,r) = 2 forr €
7(? — g+ 1) — m. Forr € 7(q* — g? 4+ 1), dg(2,r) = oo and Sylow
r-subgroups ofs are abelian sincg* — g% + 1 is the product of orders of
two maximal tori of coprime order.

LetG = ?F4(2)’. Then|G| = 211.33.52.13. It follows thatdg (2, 3) =
ds(2,5) = 1 anddg (2, 13) = co. Theorems 1 and 2 hold true f@.

(14) LetG = Eg(q). It follows that|G| = g%6(q*?— 1)(9°—1) (¢ — 1)
(@® — D(o° — 1)(g”> — Hd ' whered = (3,9 — 1).

6
Suppose thay = 0 (mod 2. Thenny = 7(2[](q" — 1)d~1). Thus the
i—1
factors of| G| to be considered atg* —g?+1)(q*+1)(q®+qg°+1)d~1. There
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are maximal toril( Ds), T(Eg) andT(Eg(ay)) of orders(gq*+1)(q> — 1)d 1,
@*—g?+ 1 (9*+q+ DHdtand(q® + g* + 1)d 1, respectively. Note that

@'+ DN’ —g*+1) S mo

@'+ Na@®+g*+1) C 7o

7@ - *+ DN —q*+1) Cmo.

Theorems 1 and 2 follow immediately.
By the same way as above Theorems 1 and 2 hold true fer 1
(mod 2.

(15) LetG = 2Eg(g). Itis |G| = ¢*%g™* - D (0°+ D(0® - 1) (° — 1)
(9° + 1)(g°> — 1)d~* whered = (3, + 1)

Suppose thag = 0 (mod 2. It follows thatry = 7(2(q* — 1) (q° + 1)
(q® — 1)). Thus the factors ofG| to be considered ar&y* — g° + 1)
q*+1) (q° — ¢+ 1)d~L. There are maximal tofT( 2Ds), T( 2Eg) and
T(?Es(a1) of orders(q* + 1)(q” — d %, (q* — ¢ + 1)(q* —q + 1yd™*
and(q® — g® + 1)d 1, respectively. Since

@'+ N’ —g*+1) Cmo

@'+ Na@®—g*+1) S mo

7@ - *+ D Nra@* —g*+1) C o,

the results follow immediately.
By the same way Theorems 1 and 2 hold truegfies 1 (mod 2.

(16) LetG = E(q). Itfollows that|G| = q®3(q*®—1)(q**—1) (g** — 1)
@0 —1)(@® - 1)(q® - (> - D).

6 )
Suppose that] = 0 (mod 2. It follows thatmy = 7(2(]](g% — 1)).
i=1
Thus the only factors diG| to be considered is
@ -+ + 1@ -+ @ + /(@ - 1.
There are maximal tofm(As), T(Es(a1)), T(E7) and T(E7(a1)) of orders
q’ -1, @+ +D@—-1),(@°—g*+ 1) (g+ 1) andg’ + 1 respectively.
If g =2, then
|G| =2%%.311.52.7%.11.13.17-19-31-43.73. 127

Sincedg(2,3) = dg(2,7) = 1 anddg(2,19) = dg(2,43) = 2, Theo-
rems 1 and 2 follow foiE;(2). Assume that] > 2. We note that
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7@+ P+ N +1) S o
r@+@+DNa@ -1 C o
7@ -+ Nn@ -1/9-1) Cmo
(@® - g*+1) Nnn@ +1/qg+1) C mo.

Let X be one of the admissible diagrams, Eg(a;), E7, E7(a1) andp €
m(T(X)) — mo. Let P be a Sylowp-subgroup ofT(X). ThenP is abelian
and P is a Sylow p-subgroup ofG. This verifies Theorems 1 and 2 for
G = E7(9),q=0 (mod 2.

Forg =1 (mod 2 we can verify Theorems 1 and 2 by the same way.

(17) LetG = Eg(g), g = 1 (mod 2. There are two classes of involu-
tions inG anddg (2, p) = 1 for p which divides

a@® — (" — D(@® — D(g® — (@' - 1(g** - D(g"* - D(g*® - D).

There are maximal tofT(Eg), T(Eg(a1)) and T(Eg(as)) of orders(q'® —
®+1/@-aq+D, @?+1/@" +1) and@°+q*+1)/(@+q+1)
respectively. They are cyclic. It follows thatd§ (2, p) > 2, thenp divides

IT(Eg)|IT(Eg(a1)) || T(Es(as)).

This implies that Sylowp-subgroups of5 are abelian itig (2, p) > 2.
Forq =0 (mod 2 we can verify Theorems 1 and 2 by the same way.

We have verified Theorems 1 and 2 for all the non-abelian simple groups.
This completes the proofs of Theorems 1 and 2.

The observations above yield the following:

Theorem 4. Let G be a simple group of Lie type arida maximal torus.
Letp € n(T) — mp, Wherenrg = {p € 7(G)|ds (2, p) < 1}. ThenT contains
a Sylowp-subgroup ofG.

Theorem 4 is a corollary of Theorem 1. Actually we proved Theorem 4
for specified tori ofG when we gave the proof of Theorem 1.

Remark 1.Suzuki [16] determined the structure &fI(T)-groups. ACIT)-

group is a finite group of even order in which the centralizer of every in-
volution is a 2-group. His theorem implies thatgfis an odd prime, then

a Sylow p-subgroup of aCIT)-group is always abelian. This means that

if a finite groupG of even order contains a non-abelian Sylpvgubgroup

for odd primep, thenG is not a CIT)-group. Suzuki’'s theorem, however,
appears not to give us any information as to whether any non-abelian Sylow
p-subgroup of a finite group of even order always contains a non-trivial
element which commutes with an involution. Our main theorem guaran-
tees the existence of such a non-trivial element in any non-abelian Sylow
p-subgroup. Thus our maim theorem is a far reaching generalization of [16].
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Remark 2.Let G be a finite group of even order. In terms of the prime graph
I'(G) of G Suzuki [16] proved that iflg (2, p) = oo forall p € n(G) — {2},
then Sylowp-subgroups ofs are abelian.

Remark 3.There is an example fals (2, p) = 3. LetG = S,(2°) : 3, the
extension of Suzuki's simple groug,(2°) by the field automorphism of
order 3. Thenlg (2, 37) = dg (2, 109 = dg (2, 73) = 3 anddg (37, 109 =
dg (37, 73) = d(73,109 = 4.

73

2 3 5 109

13

37
Fig. 1. I(Sz22% : 3)

Also there is a solvable grouy with dy (2, p) = 3 for somep € 7(X).

6. The proof of Theorem 3

We will give the proof of Theorem 3. L&b be a finite group of even order
such thatg (2, p) > 2 for some primep € 7(G). Let

GC=GyD0G1D:---0Gs1D0Gs=1

be a series of characteristic subgroupsGfsuch thatG; is a maximal
characteristic subgroup @;_, fori =1,...,s. SinceG;_;/G; is a mini-

mal characteristic subgroup &/G;, Lemmas 6 and 7 yield th&;_,/G;

is a non-abelian simple group or an abelian group. If the chain has two
non-abelian simple factors, we have a contradiction by Lemma 8. If the
chain has more than two non-abelian simple factors, then there iegisth
thatG;_1/G; is a non-abelian simple group a@y G; has two non-abelian
simple factors. Lemma 8 yielddg g, (2, p) = 1 for p € 7(G/Gj) — {2}.

The groupG;_; has more than two non-abelian simple factors. By the in-
duction on the number of non-abelian simple factors of the chain, we can
complete the proof.

Remark 4.By Fisman [6] we can know the simple factely K of G.
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