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Abstract. In this article we prove a Riemann Roch Theorem for a class
of holomorphic line bundles over Riemann surfaces of infinite genus. The
theorem shows that the space of holomorphic sections satisfying a pointwise
asymptotic growth condition has finite dimension and it provides a formula
for this dimension. The gluing functions describing the surface and the
transition functions defining the line bundle have to satisfy some asymptotic
bounds. The theorem applies to holomorphic line bundles associated to
divisors of infinite degree that assign one point to every handle on the
surface. Applications of this Riemann Roch Theorem to the description
of the Kadomcev Petviashvilli flow were provided in the author’s doctoral
thesis.

1 Introduction

Riemann surfaces of infinite genus arise naturally as spectral varieties of
various ordinary and partial linear differential equations in mathematical
physics such as Hill’s equation ([7], [8]) and the heat equation with a pe-
riodic potential, see [5], [2] and [1], Part III. There is a function theory of
these Riemann surfaces, culminating in infinite genus analogies of classical
theorems for compact Riemann surfaces, such as the Riemann Vanishing
Theorem and the Torelli Theorem ([1], Part II). This theory has various
applications in the examination of the Korteweg de Vries flow and the
Kadomcev Petviashvilli flow ([1], Part IV).

This article provides a contribution to this theory, the proof of a Riemann
Roch Theorem being applicable to the naturally defined Bloch bundles over
the surfaces mentioned above.
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One can build the Riemann surfaces of infinite genus under considera-
tion in the following way (see also [5] and [1], Part III): Take a complex
plane with infinitely many pairs of disjoint disks removed (coordinates
z0 = 1/z∞). The holes should only accumulate for|z0| → ∞. Then we
glue in handles, in coordinates described byzj z− j = t j , |z± j | < const, to
join corresponding holes together. The Riemann Roch Theorem requires
some asymptotic conditions on the widtht j of the handles, on the distribu-
tion of the holes and on the coordinate changes (Sect. 2.2). Finally a compact
piece of the resulting surface may be changed in an arbitrary way.

In applications, the handles arise from the perturbation of double point
singularitieszj z− j = 0. On the one hand the handles are usually asymp-
totically well–controlled up to error terms with known bounds, since the
curve under consideration is asymptotically close to an unperturbed curve,
which is a copy of the complex plane with infinitely many transverse self–
intersections. On the other hand, the compact piece is a domain where
perturbation theory only provides poor information.

The classical Riemann Roch Theorem states

r(D)− i(−D) = 1− genus(X)+ deg(D),

r(D) denoting the number of linearly independent meromorphic functions
on a compact Riemann surfaceX that are multiples of the divisorD, i(−D)
denoting the number of linearly independent meromorphic 1–forms onX
that are multiples of the divisor−D. Naively viewed, on a (noncompact)
surface of infinite genus with a divisor of infinite degree, both sides of the
Riemann Roch Formula become indeterminate: “∞−∞ = 1−∞+∞”.
However, when one imposes asymptotic growth conditions at infinity for
the meromorphic functions and 1-forms allowed, one gets a version of the
Riemann Roch Theorem for some infinite genus Riemann surfaces.

Here is a typical example on which the theorem applies: choose one
point qj in every handle, close to its center, outside the domain ofz0, and
fix an integerν, called “the order at infinity”. LetM denote the space of
meromorphic functionsf on the surface with poles at most of first order
allowed only at theqj and with f/z−ν∞ being bounded near infinity in the
domain ofz0. Similarly let N denote the space of holomorphic 1–forms
ω on the surface with zeroes prescribed at theqj and withω/(zν∞dz∞)
being bounded near infinity in the domain ofz0. Then the Riemann Roch
Theorem states thatM and N have finite dimension and it determines
dimM − dimN .

It is technically more convenient to work with sections in holomorphic
line bundles rather than meromorphic functions for several reasons: First,
the applications to the natural dual Bloch bundle of a spectral variety and
to theta bundles are described in a uniform way in the language of bundles.
Second, the symmetry between meromorphic functions and holomorphic
1–forms, which plays an important role in the proof, is seen more clearly
using bundles. Third, the theorem also applies to divisors with more than one
point per handle, if only the “net degree” per handle is +1, such as having
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two points with multiplicity+1 and one point with multiplicity−1 per
handle. This case arises when one examines the Jacobi group operation. It is
included naturally in the line bundle version of the Riemann Roch Theorem.
The presence of “net degree” +1 of the divisor per handle is reflected by
having nontrivial line bundle gluing functions (winding number 1) in the
handles, see hypothesis (L1) in Sect. 2.2.

The key to the proof of the theorem consists in showing that the Cauchy
Riemann operator∂ is a Fredholm operator between Hilbert spaces defined
by weightedL2 and Sobolev norms. This is done by constructing a quasi-
inverse as an integral operator with a kernel that approximates the Cauchy
kernel. The interpolation of the Cauchy kernel through handles is one im-
portant step; here the nontriviality of the line bundle transition functions
is essential. The compact piece, which is much less under control, may be
ignored first, later we examine the change of the index of∂ when gluing
the compact piece in. Finally we have to examine the relation betweenL2

bounds and pointwise bounds at infinity for holomorphic sections.
There exist some other Riemann Roch type theorems for infinite genus

Riemann surfaces: An early version for infinite genus surfaces but divisors of
finite degree was described by [14]; a version for infinite genus hyperelliptic
surfaces is included in [15], and recently a version for half form bundles
with Möbius functions as coordinate gluing functions was given by [17];
however, these results do not apply to the mentioned natural bundles.

The motivation for this work were applications of the Riemann Roch
Theorem to the inverse spectral theory of the 1+1 dimensional heat equation
and to the examination of the Kadomcev Petviashvilli flow. These appli-
cations are described in the author’s doctoral thesis [10] and will also be
described in a forthcoming article. This work grew out of part of the author’s
thesis under supervision of Horst Knörrer at the Swiss Federal Institute of
Technology (ETH), Zürich.

2 Statement and hypotheses of the theorem

2.1 Riemann Roch Theorem for infinite genus Riemann surfaces

Let a structure(X, L,U0, z0, ψ0A) be given, whereX is an infinite genus
Riemann surface,L is a holomorphic line bundle overX, z0 : U0→ C is
a coordinate function defined on an open subsetU0 ⊆ X andψ0A is a holo-
morphic basis section inL defined overU0. ψ0A will serve as a reference
section to measure the asymptotic behaviour of sections.U0 is called the
“regular piece”. LetĽ1,0 = Ľ⊗O1,0 denote the holomorphic line bundle of
1–forms of type 1,0 with coefficients in the dual ofL. We setz∞ := 1/z0.

We add one additional point∞ to X, the resulting set (which isnot
a Riemann surface) is calledX∞. Below we shall specify a topology onX∞
for a class of infinite genus Riemann surfacesX; it has the property that the
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complement of every neighbourhood of∞ only has connected components
being relatively compact inX.

To provide a quick impression of the theorem, the assertion is stated
first. The precise technical hypotheses are described in the next section.

Theorem 2.1 (Riemann Roch Theorem for infinite genus surfaces)As-
sume that(X, L,U0, z0, ψ0A) satisfies the hypotheses (X1-6) and (L1-2)
below. Takeν ∈ Z, called the order at infinity. LetM denote the space of
all global holomorphic sectionsf in L with f/(z−ν∞ ψ0A) being bounded
in a neighbourhood of∞. Similarly letN denote the space of all global
holomorphic sectionsω in Ľ1,0 with ω/(zν∞ψ

−1
0A ⊗ dz∞) being bounded in

a neighbourhood of∞. ThenM andN are both finite dimensional complex
vector spaces and the following relation holds:

Riemann Roch Formula:

dimM − dimN = 1+ ν − codeg(L, ψ0A)

The integercodeg(L, ψ0A), called the codegree of(L, ψ0A), which is our
substitute for the ill-defined expression “genus(X) − degree(L)”, will be
defined in Sect. 2.4.

2.2 Hypotheses on the Riemann surface and the line bundle

Here are the hypotheses of the Theorem:

Hypotheses for the surface.

(X1) Pieces of the surface.X \ U0 only has compact connected compo-
nents. These components are covered by relatively compact open sets
Uj = U− j , j ∈ J, called the “handles”, and one additional relatively
compact open setUc, called the “compact piece”.J denotes a count-
able index set with a fixpoint free involution− : J→ J. TheUj ,Uj ′,
j, j ′ ∈ J are disjoint for± j 6= j ′ and disjoint from the compact piece.
Uj ∩U0 consists of two connected componentsV± j .

(X2) Handle coordinates.Handles may be “nondegenerate” or “degen-
erate”. In the nondegenerate caseUj is connected and there are two
coordinate functionsz± j on Uj related byzj z− j = t j , 0 < t j < 1
being constants. In the degenerate caseUj consists of two simply
connected componentsD± j ⊇ V± j , and we have coordinate func-
tions z± j on D± j , their range containing the unit disk inC. Here we
setz± j = 0 on D∓ j and definet j = 0.
Hence in both caseszj z− j = t j . We assume that in both cases
the range(zj , z− j )[Uj ] contains the “model handle”{(z1, z2) ∈ C2:
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z1z2 = t j ; |z1|, |z2| < 1} and is contained in{(z1, z2) ∈ C2: z1z2 = t j ;
|z1|, |z2| < ε1} for some constantε1. The rangezj [Vj ] should con-
tain some annulus∆1(0) \∆ε(0) and be contained in some annulus
∆ε1(0) \ ∆ε2(0), the radii not depending onj , ε2

2 > supj t j . Here
∆r (s) denotes the open disk inC with radiusr centered ats.
A degenerate handle may be viewed as two disjoint disks arising from
the blow up of a double point singularity.
By shrinkingVj if necessary, we may assume further that forx, y ∈ Vj
there is a path inzj [Vj ] of lengthO(|zj (x)− zj (y)|) joining zj (x) and
zj (y); this is obvious whenzj [Vj ] is an annulus.

(X3) Coordinate on the regular piece.There is a coordinate functionz0
on U0. There are pairwise disjoint disks∆r j (sj ), j ∈ J, containing
z0[Vj ]. Their centers{sj : j ∈ J} are a discrete set inC. A setM ⊆ X
is relatively compact if and only ifM meets only finitely many handles
andz0[M ∩U0] is bounded.
Sometimes it will be inconvenient to have

0 ∈ z0[U0] or 0∈ ∆r j (sj ). (1)

This can be avoided by shrinking the regular piece, enlarging the
compact piece at the same time, or including some handles to the
compact piece, removing their indices fromJ.

(X4) Coordinate transitions. The derivativedzj/dz0 of the coordinate
transition has a holomorphic logarithm overVj . There is a bounded
family of weightsoj > 0, j ∈ J, and there are scaling constants
cj ∈ C∗ such that

sup
x,y∈Vj

x6=y

∣∣∣∣zj (x)− zj (y)

z0(x)− z0(y)
− cj

∣∣∣∣ ≤ |cj |O(oj ),

sup
x∈Vj

∣∣∣∣dzj

dz0
(x)− cj

∣∣∣∣ ≤ |cj |O(oj )

and supVj

∣∣∣∣d2z0

dz2
j

∣∣∣∣ ≤ |cj |−1O(oj ).

(X5) Parabolicity. For all N ⊂⊂ X andε > 0 there isχ ∈ C∞c (X, [0,1])
with χ|N = 1 and

∫
X dχ ∧ ∗dχ < ε.

In fact this is a consequence of an assumption that an exhaustion func-
tion h of finite charge onX exists, say with normalisation

∫
X |d ∗ dh|

≤ 1. To see this, letg : R → [0,1] be a smooth decreasing func-
tion with |g′| < ε and with χ := g ◦ h equal 1 onN and χ ∈
C∞c (X, [0,1]). Then

∫
X dχ∧∗dχ ≤ ε | ∫X dχ∧∗dh| = ε | ∫X χ d∗dh|

≤ ε ∫X |d∗dh| ≤ ε. (For details concerning these exhaustion functions
of finite charge see [1], part I.)

(X6) Bounds on the family of weights.α j := |cj ||sj |2 should be bounded
from below by a positive constant. We further assume thatt j ≤ O(o2

j )
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and
∑

j∈J(α j oj )
2 <∞. Further,ojα

2
j , |cj /c− j |, and|sj/s− j | ( j ∈ J)

should be bounded from above, and lim supj |r j /sj | < 1.

Hypotheses for the line bundle.

(L1) Bundle gluing functions in the handles.For nondegenerate handles
we assume that there are holomorphic basis sectionsψ jA in L over the
handlesUj = U− j with the following properties: On thej th handle
Uj

ψ− jA = −Qj

zj
ψ jA

holds, with constantsQj satisfying

Qj Q− j = t j , |Qj | ≤ O(oj ),

and|Qj /Q− j | being bounded from above and below by positive con-
stants. For degenerate handles we assume thatψ jA is a basis section
over Dj , but it is extended by 0 toD− j .

(L2) Bundle gluing functions between handles and the regular piece.On
Vj the bundle transition functionψ jA/ψ0A has a continuous logarithm.
It satisfies the following asymptotic bound:

sup
Vj

∣∣∣∣∣
(

gjAψ0A

ψ jA

)±1

− 1

∣∣∣∣∣ ≤ O(oj ) , sup
Vj

∣∣∣∣ d

dzj

gjAψ0A

ψ jA

∣∣∣∣ ≤ O(oj ).

HeregjA : Vj → C∗ should be holomorphic and satisfy the conditions
Ext-Disk(gjA) and Ext-Disk(1/gjA), defined by:

Ext-Disk( f ) :⇐⇒ f is a holomorphic (resp. meromorphic) function
at least defined overVj . f ◦ z−1

0 , i. e. f written in the coordinate
of the regular sheet, extends to a holomorphic (resp. meromorphic)
function on a simply connected domain inC. If f is only meromorphic,
the extension should not have any poles outside the original domain
z0[Vj ].
Intuitively Ext-Disk( f ) states that when the inner part of thej th handle
is removed and the remaining hole nearVj is filled with a disk thenf
extends to the disk. We assume

sup
j

supVj
|gjA|

inf Vj |gjA| <∞ and sup
j

supVj
|gjA|

inf V− j |g− jA| <∞ . (2)
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2.3 Example: Line bundles associated to divisors of infinite degree

Assume that the surfaceX satisfies (X1-6).
Here is an easy but typical example for line bundlesL overX that satisfy

the hypotheses (L1-2); it is a line bundle, which has a global sectionψ0A,
with one zero in each handle; the space of sections of this line bundle is
isomorphic to all meromorphic functions with a pole at the zeroes of the
global section:

Let J′ ⊆ J denote an index set listing every handle only once. Choose
one pointqj = q− j ∈ Uj \ U0, j ∈ J′, associated to every handle, with
|zj (qj )/

√
t j | being bounded from above and from below by positive con-

stants. LetQj := zj (qj ) denote the coordinates of these points. We examine
the divisorD =∑ j∈J′ qj of infinite degree. Intuitively, every handle (out-
side the compact piece) of the surfaceX has precisely one point of the
divisor associated to it, located not too far from its center. LetO(D) denote
the line bundle associated to the divisorD, i. e. sections inO(D) are mero-
morphic functions overX at most with poles of first order at theqj . In the
regular pieceU0 we prescribe the constant basis sectionψ0A := 1.

This example is realized in terms of gluing operations by choosing all
gjA = 1, and the transition functions are given by

ψ0A

ψ jA
= 1− Qj

zj
,

ψ jA

ψ0A
= 1+ Qj

zj − Qj
; (3)

so we have set

ψ jA = zj

zj − Qj
= − Q− j

z− j − Q− j

over Uj . Then obviously (L1-2) are satisfied; to see this one uses (3)
and inserts|Qj | ≤ const

√
t j ≤ O(oj ) by (X6) and infj∈J inf y∈Vj |zj (y)

− Qj | > 0.
The presence of one point of the divisor in every handle is reflected by

the nontriviality of the bundle transition functions in the handles.
Some side remarks on other examples: When(L1, ψ

(1)
0A), (L2, ψ

(2)
0A),

(L3, ψ
(3)
0A) satisfy the hypotheses (L1-2), then(L1 ⊗ L2 ⊗ Ľ3,

ψ
(1)
0Aψ

(2)
0A(ψ

(3)
0A)
−1) satisfies (L1-2) too. This shows that the class of line

bundles satisfying (L1-2) is large enough to allow a Jacobi group operation.
Thinking of Lk = O(Dk) with divisors Dk as above, the theorem is also
applicable to divisors with a bounded number of points per handle having
“net degree”+1 per handle.

2.4 Definitions

The statement of the Riemann Roch Theorem requires the notion of func-
tions to be bounded near infinity. The codegree remains to be defined, too.
Here are the relevant definitions:
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Definition 2.2 (Point at infinity; topology of the enlarged surface)We
endowX∞ = X ∪ {∞} with the following topology:
U ⊆ X∞ is open:⇐⇒
• if∞ /∈ U andU is open inX;
• or if∞ ∈ U, U \{∞} is open inX and there is a compact setK ⊂ X and

there are radiir1 > r2 > 0 with zj [Uj ∩ U0] ⊇ {z ∈ C | r1 < |z| < r2}
for all except possibly a finite number of handle indicesj , with the
following property:

∀x ∈ X \U : x ∈ K or
∃ j ∈ J : (x ∈ Uj and |zj (x)| < r1 and |z− j (x)| < r1) .

Intuitively this means thatU contains all points except possibly a compact
piece and the “inner part” of the handlesUj which are separated from the
outside ofUj by annuli with ratios of radii bounded (uniformly inj ) from
below.

Definition 2.3 (Codegree)Let L be a line bundle overX that satisfies the
hypotheses (L1-2). Associate toX a compactRiemann surfaceXbc by the
following procedure:

• Remove the inner partUj \ U0 of all handles except possibly a finite
number of them;
• glue disks to the remaining holes with the identity map as coordinate

transition fromz0 to the disk coordinate; this means that the regular
sheet is extended to include the “filled” holes;
• insert one new point∞ at infinity of the regular sheet, takingz∞ = 1/z0

as coordinate near∞.

We extend the basis sectionψ0A of L over the regular sheet in a trivial
manner to the filled holes, identifyingψ0A|Vj with the section1|Vj in the
trivial line bundle over the disk.

Similarly, over an open neighbourhoodU∞ of∞, we glue the trivial
line bundleU∞ × C to L over Xbc \ {∞} by identifying the unit section1
overU∞ \ {∞} withψ0A in L overU∞ \ {∞}. The resulting line bundle is
calledLbc(ψ0A) or – when there is no risk of confusion, which basis section
was taken near∞ – simplyLbc. We define the codegree ofL by:

codeg(L, ψ0A) := genus(Xbc)− deg(Lbc).

Here deg(Lbc) denotes the Chern number ofLbc, i. e. the degree of any
divisor defining the isomorphism class ofLbc.

To be sure that the the codegree is well defined, i. e. does not depend on the
choice of the handles which are included inXbc, if only these are sufficiently
many, we observe the following:

• On the one hand, for every additional nondegenerate handleUj that
is included inXbc, the genus ofXbc increases by 1, while degenerate
handles do not change the genus.
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• On the other hand, using the hypotheses (L1-2) for the transition func-
tions, we see that the Chern number ofLbc also increases by 1 when an
additional nondegenerate handleUj is included inXbc, while degener-
ate handles do not change the Chern number. The increase of the Chern
number by 1 reflects that we have the winding number 1 of the transition
functionψ jA/ψ− jA = const· zj , as described by (L1), around 0 over the
cycleaj = {x ∈ Uj : |zj (x)|2 = t j }.

2.5 Symmetry with respect to dualisation

As basis sections iňL1,0 we specifyψ jB = ψ−1
jA ⊗ dzj , ψ0B = ψ−1

0A ⊗ dz0.
Usingdz− j = −(t j /z2

j )dzj andQj Q− j = t j , we get the dualised versions
of the hypotheses (L1), (L2):

(L1∨) ψ− jB = Q− j

zj
ψ jB,

(L2∨)
ψ jB

ψ0B
= (1+ O(oj ))gjB with gjB = cj /gjA, and

sup
Vj

∣∣∣∣ d

dzj

gjBψ0B

ψ jB

∣∣∣∣ = sup
Vj

∣∣∣∣ d

dzj

(
ψ jA

gjAψ0A
· cj

dz0

dzj

)∣∣∣∣ (L2),(X4)= O(oj ) .

Using (X4) and the bound of|cj /c− j | in (X6) we have as well:

sup
j

supVj
|gjB|

inf V± j |g± jB| <∞.

Ext-Disk(g±1
jB ) holds, too. Hence the situation of the Riemann Roch Theorem

is indeed completely symmetric with respect to the exchangeL ↔ Ľ1,0,
A↔ B.

3 Proof of the Theorem

The proof of the Riemann Roch Theorem consists of several steps: In
Sect. 3.1 we show that it suffices to consider the orderν = −1 at infin-
ity. Next we concentrate on the Fredholm theory of the Cauchy Riemann
operator. To get appropriate weightedL2 and Sobolev norms on the space
of holomorphic sections, a volume form onX and Hermitian metrics onL
and related bundles are introduced in Sect. 3.2.1, but their explicit construc-
tion will be postponed to Sect. 3.3. We establish hypotheses on an integral
kernel which approximates the Cauchy kernel in Sect. 3.2.2. They will
guarantee that the corresponding integral operator is a Fredholm operator,
and we obtain conditions for the Cauchy Riemann operator to be invertible
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(Sect. 3.2.3). These conditions turn out to be fulfilled when a sufficiently
large compact piece is removed and is replaced by a disk. The explicit
construction of the integral kernel is given in Sect. 3.3.2. This requires the
introduction of an interpolation operator through handles, which allows us
to interpolate the Cauchy kernel on the regular sheet almost holomorphi-
cally through handles. The change of the index of the Cauchy Riemann
operator when the compact piece is removed and replaced by a simpler
piece is examined in Sect. 3.4. It allows us by cutting and gluing operations
to split the infinite genus Riemann surface that we started with into simpler
pieces. As the last step in the proof of the theorem, we derive pointwise
asymptotic bounds near infinity fromL2 bounds in Sect. 3.5.

3.1 Reducing the order at infinity toν = −1

The proof of the Riemann Roch Theorem is most easily given for the case
ν = −1. The following observation shows that we can reduce the general
case to this special situation:

On the left hand side of the Riemann Roch Formula, the replacement of
ν by−1 is compensated by the following redefinition of the basis sections:

ψ∼0A = ψ0A · zν+1
0 , (4)

ψ∼0B = ψ0B · z−(ν+1)
0 . (5)

We assume that the case (1) in (X3) is excluded. Then one uses the bounds
on |r j/sj | and on|sj /s− j | in (X6) to see

sup
j

sup
x,y∈U0∩U j

∣∣∣∣z0(x)

z0(y)

∣∣∣∣ <∞,
which implies the bound (2) for

g∼jA := z−(ν+1)
0 gjA = ψ jA

ψ∼0A

· (1+ O(oj )).

Thereforeg∼jA still fulfills (L2).
The right hand side of the Riemann Roch Formula is reduced to the case

ν = −1 by the following lemma:

Lemma 3.1 (Rescaling at infinity)

a) LetO((ν+1)∞)denote the holomorphic line bundle overXbc associated
to the divisor that assigns orderν + 1 to∞ but 0 to all other points.
ThenLbc(ψ

∼
0A)
∼= Lbc(ψ0A)⊗O((ν + 1)∞).

b) −codeg(L, zν+1
0 ψ0A ) = 1+ ν − codeg(L, ψ0A).
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Proof:

a) This can be read off immediately from the transition maps for the bundles
Lbc(ψ

∼
0A), Lbc(ψ0A) andO((ν+1)∞)near∞. Each row in the following

tabular shows which sections are glued together:

line bundle

(
section over
the regular sheet

) (
section overU∞
in the trivial line bundle

)
Lbc(ψ

∼
0A) (zν+1

0 ψ0A in L) (unit section 1)

Lbc(ψ
∼
0A) (ψ0A in L) (sectionzν+1∞ )

Lbc(ψ0A) (ψ0A in L) (unit section 1)

O((ν + 1)∞)
(

unit section 1
in the trivial line bundle

)
(sectionzν+1∞ )

b) This is an immediate consequence of a), when we use

deg[Lbc(ψ0A)⊗O((ν + 1)∞)] = ν + 1+ degLbc(ψ0A) .

ut

For the rest of the proof of the Riemann Roch Theorem, we assume that
ν = −1, writingψ0A instead ofψ∼0A.

3.2 Fredholm theory for the Cauchy–Riemann operator

In this section we establish quite general functional analytic considerations.

3.2.1 Basic notions

We endowL with a Hermitian metric| · |A. We fix a volume formΩ on
X with a finite total volume:

∫
X Ω < ∞; a specific choice ofΩ will be

given later. Associated withL, the following line bundles, endowed with
Hermitian metrics, will be important for us: the bundle of complex valued
p+ q–forms overX of the type(p,q) is denoted byE p,q, and for any line
bundleF we setF p,q = F ⊗ E p,q.

Line bundle E1,1 E1,0 E0,1 L Ľ1,0 Ľ1,1 L0,1

Hermitian
metric

|·|Ω |·|2 |·|2 |·|A |·|B |·|Ǎ |·|B̌
Norm on
global sections

— ‖·‖2 ‖·‖2 ‖·‖A ‖·‖B ‖·‖Ǎ ‖·‖B̌

L2− Hilbert
space

— L2(X,E1,0) L2(X,E0,1) A B Ǎ B̌
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The norms on global sections are obtained by integrating the squared Her-
mitian metrics with respect to the volume form, e. g.

‖ f ‖2
A =

∫
X
| f |2AΩ

A= { f | f is a global section inL, ‖ f ‖A <∞} .
Specific choices for the Hermitian metrics will be given in a later section;
the metrics should be mutually compatible in the following sense:

• |Ω|Ω = 1;
• |α|2 = |ᾱ|2, |αβ|Ω = |α|2|β|2, for α ∈ E1,0

x , β ∈ E0,1
x , αβ := α ∧ β ∈

E1,1
x ;

• |α|A|β|Ǎ = |αβ|Ω for α ∈ Lx, β ∈ Ľ1,1
x , αβ ∈ E1,1

x ;
• |α|B|β|B̌ = |αβ|Ω for α ∈ Ľ1,0

x , β ∈ L0,1
x , αβ ∈ E1,1

x ;
• |α|A|β|B = |αβ|2 for α ∈ Lx, β ∈ Ľ1,0

x , αβ ∈ E1,0
x .

By these compatibility relations for the various Hermitian metrics, we may
view (A, Ǎ) and also(B, B̌) as dual pairs of Hilbert spaces via the bilinear
forms

(α, β) 7→ 〈α, β〉 :=
∫

X
αβ ∈ C .

Finally, for f ∈ C∞c (X, L), let‖ f ‖2
V := ‖ f ‖2A+

∥∥∂ f
∥∥2

B̌
, with ∂ : C∞c (X, L)

→ C∞c (X, L0,1) denoting the Cauchy–Riemann operator. LetV be the
completion ofC∞c (X, L) with respect to the norm‖·‖V . Then the inclusion

mapi : C∞c (X, L)
⊆−→ A and the Cauchy–Riemann operator∂ obviously

extend to bounded linear operatorsi V : V → A and ∂V : V → B̌.

Lemma 3.2 (Properties of the inclusionV → A)

i) For every f ∈ V, ‖ f ‖2
V = ‖i V f ‖2

A +
∥∥∂V f

∥∥2

B̌
.

ii) i V is injective; its image is dense inA.

Proof:

i) This is obvious for f ∈ C∞c (X, L), which is dense inV, and both sides
are continuous functions off ∈ V.

ii) Let f ∈ ker(i V). ChooseC∞c (X, L) 3 fn
n→∞−→ f in V. Then∂ fn

n→∞−→
∂V f in B̌, therefore we have for all test sectionsg ∈ C∞c (X, Ľ1,0) ⊆ B:〈

g, ∂V f
〉 n→∞←−

∫
X

g∂ fn =
∫

X
fn ∂g= 〈∂g, fn

〉
.

Here, Stokes theorem is applicable sinceg is compactly supported.
Now ∂g ∈ C∞c (X, Ľ1,1) ⊆ Ǎ implies

∣∣〈∂g, fn
〉∣∣ ≤ ∥∥∂g

∥∥
Ǎ
‖ fn‖A

n→∞−→ 0,



A Riemann Roch Theorem for infinite genus Riemann surfaces 403

where we usedfn = i V fn
n→∞−→ i V f = 0 in A. Consequently〈

g, ∂V f
〉 = 0, and therefore∂V f = 0, sinceg ∈ C∞c (X, Ľ1,0)

dense⊆ B.
Together withi V f = 0 we get f = 0 by i). In addition, i V V ⊇
C∞c (X, L)

dense⊆ A , thereforei V V is dense inA. ut
We therefore viewV as a dense subset ofA via i V . The relation

∫
g∂ f =∫

f ∂g for g ∈ C∞c (X, Ľ1,0), f ∈ C∞c (X, L) together withg ∈ C∞c (X, Ľ1,0)
dense⊆ B imply:

Lemma 3.3 The dual operator∂
∨
V : B → V̌ of ∂V : V → B̌ equals the

bounded extension of the Cauchy–Riemann operator∂ : C∞c (X, Ľ1,0) →
C∞c (X, Ľ1,1). ut
It may be helpful to keep the following diagram in mind:

over L over L0,1

A
⊇←− V

∂V−→ B̌

× × ×
Ǎ

⊆−→ V̌
∂
∨
V←− B

over Ľ1,1 over Ľ1,0

3.2.2 Hypotheses on the integral kernel

Our next goal is to establish sufficient conditions for∂V to be a Fredholm op-
erator. As a quasiinverse, we use an integral operatorg 7→ ∫

y∈X g(y)K(·, y).
We first state some hypotheses on the integral kernelK ; in a second step,
we have to check that an integral kernel satisfying these hypotheses exists.

Hypotheses K

(K1) K is a section in the external tensor product bundleL⊗X×X Ľ1,0 (fibre
Lx ⊗ Ľ1,0

y over (x, y) ∈ X × X). K is defined andC∞ outside the
diagonal.

(K2) (K approximates the Cauchy kernel.)X can be covered with open
setsU which are domains of coordinatesz : U → C, and there are
basis sectionsω ◦ z ∈ O(U, L) so that

K − 1

2πi

1

z1− z2
ω(z1)⊗ ω−1(z2)dz2

has aC∞–extension toU ×U (including the diagonal). Herez1, z2 :
U × U → C denote the coordinates onU ×U, andω−1 ∈ O(U, Ľ)
is the basis section dual toω.
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To state the last hypotheses (K3-4) forK , we define Hermitian metrics on
the external tensor products:

| · |AB : L ⊗X×X Ľ1,0→ R ,
| · |B̌B : L0,1⊗X×X Ľ1,0→ R ,
| · |AǍ : L ⊗X×X Ľ1,1→ R

by

|α⊗ β|AB = |α|A|β|B , (α ∈ Lx, β ∈ Ľ1,0
y ) ,

|α⊗ β|B̌B = |α|B̌|β|B , (α ∈ L0,1
x , β ∈ Ľ1,0

y ) ,

|α⊗ β|AǍ = |α|A|β|Ǎ , (α ∈ Lx, β ∈ Ľ1,1
y ) .

Then we suppose

(K3) (Both L∞–L1–norms of K are finite.)

k1 := sup
x∈X

∫
y∈X
|K(x, y)|ABΩy <∞ ,

k2 := sup
y∈X

∫
x∈X
|K(x, y)|ABΩx <∞ .

(K4) (Finiteness of Hilbert–Schmidt norms)

h2
B :=

∫∫
x 6=y

|∂xK(x, y)|2
B̌B

ΩxΩy <∞ ,

h2
A :=

∫∫
x 6=y

|∂yK(x, y)|2
AǍ

ΩxΩy <∞ .

3.2.3 Consequences of the hypotheses K

As a first consequence, we get

Lemma 3.4 Kc : C∞c (X, L0,1) → C∞(X, L), g 7→ ∫
y∈X g(y)K(·, y) is

well defined.

Proof: g(y) ∈ L0,1
y , K(x, y) ∈ Lx ⊗ Ľ1,0

y impliesg(y)K(x, y) ∈ Lx ⊗ E1,1
y ,

therefore ∫
y∈X

g(y)K(x, y) ∈ Lx

is well defined. To check that it depends smoothly onx, it suffices to assume
that suppg is contained in the domainU of a coordinate, using a partition
of unity. The integral splits forx ∈ U into an integral with aC∞–kernel
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and a convolution integral with the Cauchy kernel because of (K2); and for
x /∈ suppg, the integral kernelK(x, y), y ∈ suppg, is C∞. ut
The next lemma follows from the standard argument that showsL2–operator
norms being bounded byL∞–L1–norms:

Lemma 3.5 (L2–operator norms)

a) Let F be a L ⊗X×X Ľ1,0–valued (resp.L ⊗X×X Ľ1,1–valued) integral
kernel with finiteL∞–L1–norms, i. e.

c1 = sup
x

∫
y
|F(x, y)|ACΩy <∞ ,

c2 = sup
y

∫
x
|F(x, y)|ACΩx <∞

with the notationC = B (resp.C = Ǎ). LetF : g 7→ ∫
y F(·, y)g(y) be

the corresponding integral operator,g being a square integrable section
in L0,1 (resp.L). Then theL2–operator norm ofF is bounded by

√
c1c2.

b) Kc extends to a bounded linear mapKA : B̌→ A. Its operator norm
is bounded by

√
k1k2. ut

Definition 3.6 (Deviation of K from holomorphy)

i) Let HB ∈ C∞(X×X, L0,1⊗ Ľ1,0) be the sectionHB(x, y) := ∂xK(x, y)
for x 6= y, using (K2) extended to the diagonal.

ii) Similarly let HA ∈ C∞(X × X, L ⊗ Ľ1,1) be given byHA(x, y) :=
−∂yK(x, y).

The hypothesis (K4) bounds the Hilbert–Schmidt norm of these two integral
kernels. Therefore we get

Lemma 3.7 (Hilbert–Schmidt property) The mapsHB : B̌→ B̌, g 7→∫
y g(y)HB(·, y) and HA : A→ A, g 7→ ∫

y g(y)HA(·, y) are well defined
Hilbert–Schmidt operators with the Hilbert–Schmidt norm‖HB‖HS = hB,
‖HA‖HS = hA.

Proof/Reference:g(y) ∈ L0,1
y , HB(x, y) ∈ L0,1

x ⊗ Ľ1,0
y impliesg(y)HB(x, y)

∈ L0,1
x ⊗E1,1

y and f(y) ∈ L y, HA(x, y) ∈ Lx⊗ Ľ1,1
y implies f(y)HA(x, y) ∈

Lx ⊗ E1,1
y . The Hilbert–Schmidt property ofHA andHB follows in case

of trivial line bundles and weight functions 1 for the Hermitian metrics
e. g. from [13], Theorem VI.23, and the proof is similar for arbitrary line
bundles. ut
Next we shall see thatKc is a quasiinverse of∂ up to a Hilbert–Schmidt
operator.
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Lemma 3.8 (A parametrix for the Cauchy–Riemann operator –C∞-
version)

i) For g ∈ C∞c (X, L0,1), f =Kcg ∈ C∞(X, L), we have

∂ f = g+HBg ∈ C∞c (X, L0,1) ⊆ B̌ .

ii) For f ∈ C∞c (X, L), g= ∂ f ∈ C∞c (X, L0,1), there holds

Kcg= f +HA f ∈ C∞(X, L) ∩ A .

Proof:

i) We may cutg into several pieces using a partition of unity; therefore we
assume w. l. o. g. that suppg is contained in the domain of a coordinate
function x : U → C. To calculate∂ f(x) we have to distinguish two
cases:
Case 1:If x /∈ suppg, we differentiate under the integral and get

∂ f(x) =
∫

y∈U
g(y)∂xK(x, y) = HBg(x) = g(x)+HBg(x) .

Case 2:If x ∈ U, we use that

K − 1

2πi

1

z1− z2
ω(z1)⊗ ω−1(z2)dz2

extends to aC∞–sectionK ′ over U × U by (K2), and HB(x, y) =
∂xK ′(x, y). Therefore

∂ f(x) = ∂x

∫
y∈U

g(y)
1

2πi

1

z(x)− z(y)
ω(z(x))⊗ ω−1(z(y))dz(y)+HBg(x)

holds. The first summand equalsg(x) since the Cauchy kernel is a fun-
damental solution of the Cauchy–Riemann operator.

ii) For every test sectionh ∈ C∞c (X, Ľ1,1) we have

〈h,Kcg〉 =
∫

x
h(x)

∫
y
(∂ f )(y)K(x, y)

=
∫

y
(∂ f )(y)

∫
x

h(x)K(x, y)

Stokes= −
∫

y
f(y)∂y

∫
x

h(x)K(x, y) .

Similarly as in i) we see that

∂y

∫
x
h(x)K(x, y) = −h(y)−

∫
x

h(x)HA(x, y) .



A Riemann Roch Theorem for infinite genus Riemann surfaces 407

(The first minus sign arises from the reversed roles ofz(x), z(y) in the
Cauchy kernel.) Therefore we get

〈h,Kcg〉 = 〈h, f 〉 +
∫

y
f(y)

∫
x

h(x)HA(x, y) = 〈h, f 〉 + 〈h,HA f 〉 ,

which implies the assertion, sinceh ∈ C∞c (X, Ľ1,1)
dense⊆ Ǎ. ut

Corollary 3.9 (Bounds for ∂Kc – C∞-version) For g ∈ C∞c (X, Ľ0,1),
f :=Kcg ∈ C∞(X, L) ∩ A we have

∥∥∂ f
∥∥

B̌
≤ (1+ hB) ‖g‖B̌.

Proof:
∥∥∂ f

∥∥
B̌
= ‖g+HBg‖B̌ ≤ ‖g‖B̌ + ‖HB‖HS‖g‖B̌. ut

Even though we know forg ∈ C∞c (X, L0,1) bothKcg ∈ C∞(X, L)∩ A
and∂Kcg ∈ B̌, we have not yet shownKcg ∈ V. To ensure this, we have
to approximateKcg by sections with compact support:

Lemma 3.10 (Extension of the integral operator toB̌)

i) g ∈ C∞c (X, L0,1) impliesKcg ∈ V.
ii) Kc : C∞c (X, L0,1)→ V extends to a bounded linear mapK : B̌→ V.

Proof:

i) For f =Kcg, we only have to show:

∀ε > 0 ∃h ∈ C∞c (X, L) : ‖ f − h‖2
A +

∥∥∂( f − h)
∥∥2

B̌
≤ ε .

ChooseN ⊂⊂ X large enough so that∫
Nc
| f |2AΩ ≤ ε

2
,

∫
Nc
|∂ f |2

B̌
Ω ≤ ε

8
, (6)

and by (X5) aχ : X→ [0,1], χ|N = 1,χ ∈ C∞c (X) in such a way that∥∥∂χ∥∥2

2 ≤
ε

R
, (7)

whereR := 8k2
1 supy∈X |g(y)|2B̌

(K3)
< ∞. We use a cutoff versionh := χ f

of f . Then‖ f − h‖2
A = ‖(1− χ) f ‖2

A ≤
∫

Nc | f |2AΩ ≤ ε
2 and∥∥∂( f − h)

∥∥2

B̌
=
∫

Nc

∣∣(−∂χ) f + (1− χ)∂ f
∣∣2
B̌
Ω

≤ 2
∫

Nc

(
|∂χ|22| f |2A + |∂ f |2

B̌

)
Ω

(6)≤ 2 sup
x∈Nc
| f(x)|2A

∫
Nc
|∂χ|22Ω+

ε

4
(7)≤ 2ε

R
sup
x∈Nc
| f(x)|2A +

ε

4
. (8)
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We estimate:

sup
x∈Nc
| f(x)|A ≤ sup

x∈X

∣∣∣∣ ∫
y∈X

g(y)K(x, y)

∣∣∣∣
A

≤ sup
x∈X

∫
y∈X
|g(y)|B̌|K(x, y)|ABΩy ≤ k1 sup

y∈X
|g(y)|B̌ =

(
R

8

) 1
2

.

If we insert this in (8), we get
∥∥∂( f − h)

∥∥2

B̌
≤ ε

4+ ε
4, therefore‖ f − h‖2

A+∥∥∂( f − h)
∥∥2

B̌
≤ ε.

ii) For g ∈ C∞c (X, L0,1) we getKcg ∈ C∞(X, L) ∩ V, therefore∂Kcg=
∂VKcg and

‖Kcg‖2
V = ‖Kcg‖2

A +
∥∥∂Kcg

∥∥2

B̌

3.9,3.5≤ k1k2 ‖g‖2
B̌
+ (1+ hB)

2 ‖g‖2
B̌
.

The assertion follows fromC∞c (X, L0,1)
dense⊆ B̌. ut

Lemma 3.8 and Lemma 3.10 imply

Corollary 3.11 ∂VK = idB̌ +HB. ut

Lemma 3.12 (Restriction to V) HA : A → A has a bounded restric-
tion HV : V → V, its operator norm satisfies‖HV‖ ≤ h, whereh :=
max{hA,hB}.
Proof: It suffices to show:∀ f ∈C∞c (X, L) : HA f ∈V, ‖HA f ‖V≤h ‖ f ‖V .
To see this, we calculate

HA f
3.8= Kc∂ f − f = K∂V f − f ∈ V ,

because of∂V : V → B̌ and K : B̌ → V. Moreover ‖HA f ‖2V 3.2=
‖HA f ‖2

A +
∥∥∂VHA f

∥∥2

B̌
. But ‖HA f ‖A

3.7≤ hA ‖ f ‖A and∥∥∂VHA f
∥∥2

B̌

3.8ii)= ∥∥∂V(K∂V − idV) f
∥∥

B̌

= ∥∥(∂VK − idB̌)∂V f
∥∥

B̌

3.11= ∥∥HB∂V f
∥∥

B̌

3.7≤ hB

∥∥∂V f
∥∥

B̌

together lead to‖HA f ‖2V ≤ h2
A ‖ f ‖2

A + h2
B

∥∥∂V f
∥∥2

B̌

3.2≤ h2 ‖ f ‖2V . ut

Lemma 3.13 K∂V = idV +HV .
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Proof: Both sides are bounded operatorsV → V, and for f ∈ C∞c (X, L)
dense⊆ V we getK∂V f = f +HV f by Lemma 3.8 ii). ut

Lemma 3.14 HV : V → V is a compact operator.

Proof: Let ( fn) be a bounded sequence inV.

∂VHV = ∂VK∂V − ∂V = HB∂V

is a compact operator since∂V is bounded andHB is compact as a conse-
quence of Lemma 3.7. We choose a subsequence (again called( fn)) such
that (∂VHV fn) converges inB̌. ( fn), viewed as a sequence inA ⊇ V, is
bounded andHA : A→ A is a compact operator by Lemma 3.7. Hence for
some subsequence (still called( fn)), (HA fn) converges inA. Using

‖HV( fn − fm)‖2
V = ‖HA( fn − fm)‖2

A +
∥∥∂VHV( fn − fm)

∥∥2

B̌
,

we find out that(HV fn) is a Cauchy sequence inV, therefore convergent.
ut

Summarising the above we end up with

Theorem 3.15 (Fredholm property for the Cauchy–Riemann operator)
The hypothesesK imply that∂V : V → B̌ is a Fredholm operator. It has
a quasiinverseK : B̌→ V such thatHV = K∂V − idV has the operator
norm‖HV‖ ≤ max{hA,hB} and is a compact operator,HB = ∂VK − idB̌
has the operator norm‖HB‖ = hB and is a Hilbert–Schmidt operator.ut

Corollary 3.16 (Invertibility of the Cauchy–Riemann operator) If in
additionhA < 1 andhB < 1, then∂V : V → B̌ has a bounded inverse.

Proof: The additional hypotheses guarantee the convergence of the von
Neumann series

(K∂V)
−1 =

∞∑
n=0

(−HV)
n and (∂VK)−1 =

∞∑
n=0

(−HB)
n ;

in this case∂V(K(∂VK)−1) = idB̌ and((K∂V)
−1K)∂V = idV . ut

Theorem 3.15 and Lemma 3.3 immediately imply:

Corollary 3.17 (Dualised Cauchy–Riemann operator)

i) ∂ : C∞c (X, Ľ1,0) → C∞c (X, Ľ1,1) extends to a bounded operator∂B :
B→ V̌.

ii) ∂B is the dual operator to∂V . In particular, it is a Fredholm operator.ut
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As a consequence, we remark:

Proposition 3.18 (Serre duality)

index(∂B : B→ V̌) = −index(∂V : V → B̌) .

There are canonical nondegenerate bilinear forms

(O(X, L) ∩ V)× coker∂B→ C ,
(O(X, Ľ1,0) ∩ B)× coker∂V → C .

Proof: By Weyl’s lemma, ker∂V ⊆ O(X, L) and ker∂B ⊆ O(X, Ľ1,0).
Since ∂B and ∂V are Fredholm operators, range∂B ⊆ V̌ is closed and
range∂V is closed too, soO(X, L) ∩ V = ker∂V

∼= (coker∂B)
∨ and

O(X, Ľ1,0) ∩ B = ker∂B
∼= (coker∂V)

∨. ut
This formulation of Serre duality does not look symmetric under the ex-
changeL ↔ Ľ1,0, A ↔ B, since we have a Sobolev spaceV on one
side, but aL2–Hilbert spaceB on the other side, and we have not proved
O(X, L) ∩ V = O(X, L) ∩ A in the preceding. Note that this equation
states that every holomorphicf ∈ A can be approximated inV by sections
with compact support. It will turn out to be a surprising consequence of the
Riemann–Roch Theorem.

3.3 Construction of a integral kernel

3.3.1 Specification of Hermitian metrics and a volume form

We now specify the Hermitian metrics| · |A and | · |B and the volume
form Ω. A change by bounded factors of the weights chosen is irrelevant
for our purposes, so we even defineΩ, | · |A and | · |B only modulo an
equivalence relation∼, where f ∼ g means thatfg and g

f are uniformly
bounded by a constant not depending on the index of a handle.

The definitions are given separately for the various pieces of the surface.
Of course, we can patch the pieces together by using a partition of unity.
We have to ensure the compatibility relations stated in Sect. 3.2.1.

• On the compact piece, choose any continuous volume formΩ and con-
tinuous Hermitian metrics| · |A, | · |B compatible withΩ. Two choices
surely agree modulo∼ on compact sets.
• On the regular sheet, we take, with the abbreviationd2z := d Rez∧

d Im z,

Ω ∼ (1+ |z0|4)−1d2z0

outside
a compact

piece∼ |z0|−4 d2z0 .
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This choice is motivated by the standard volume form on the Riemann
sphere. The choice ofΩ determines the Hermitian metric on one–forms:

|dz0|2 ∼ (1+ |z0|4) 1
2

outside
a compact

piece∼ |z0|2 .
We further take

|ψ0A|A ∼ (1+ |z0|4) 1
4

outside
a compact

piece∼ |z0| ,

|ψ0B|B ∼ (1+ |z0|4) 1
4

outside
a compact

piece∼ |z0| .
• On the j th handle, we take for nondegenerate handles

|ψ jA|A ∼ α jAmin
{

1,
|zj |
|Qj |

}
, (9)

|ψ jB|B ∼ α jBmin
{

1,
|zj |
|Q− j |

}
(10)

with constants

α jA = |gjA(Pj )sj | (X6),(2)∼ α− jA , (11)
α jB = |gjB(Pj )sj | ∼ α− jB , (12)

with any pointPj in Vj . They are related byα jAα jB
(L2∨)= |cj ||sj |2 = α j .

The bounds (2) in (L2) guarantee that the definition ofα jA and α jB
depends only up to bounded factors on the choice ofPj . To defineΩ
consistently with| · |A and| · |B we now have to take

Ω ∼ α−2
j min

{
1,
|zj |
|Qj |

}−4

d2zj , |dzj |2 ∼ α j min

{
1,
|zj |
|Qj |

}2

since we need|ψ jA|2A|ψ jB|2B = |dzj |22 ∼ |d2zj |Ω. We used|Qj | ∼
|Q− j | from (L1). For degenerate handles, we simply take|ψ jA|A ∼ α jA,
|ψ jA|A ∼ α jB, Ω ∼ α−2

j d2zj on Dj .

This finishes the choice of the volume form and the Hermitian metrics.

Remarks:The definition is indeed symmetric under the reversion of the
handles j ↔ − j . The different expressions forΩ, | · |A , | · |B given in
the regular sheet and the handles coincide in the common domainU0 ∩Uj
up to a bounded factor. This is a consequence of the bounds on the bundle
transition functions described in (L1-2).
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3.3.2 Construction of the integral kernelK

In this section we assume that the compact piece is empty; it will be glued
to the regular sheet in a later section.K will be defined by patching several
pieces together:

K(x, y) =
∑

a,b∈{0,h}
χa(x)χb(y)Kab(x, y)

with appropriately chosenKab. Here we choose once and for all aC∞–
partition of unity (χ0, χh = ∑

j∈J′ χ j ) compatible with the open cover
(U0,Uh = ⋃ j∈J U j ); J′ ⊆ J denotes an index set listing every handle only
once. More precisely,χ j = χ− j , suppχ j ⊆ Uj , is chosen asχ j = ρ(|zj |)
on Vj with a C∞–functionρ : R+ → [0,1] that equals 0 resp. 1 for small
resp. large arguments. We remark for repeated future use:

Lemma 3.19 (A bound for the cutoff functions)

supVj
|dχ j |2 ≤ sup|ρ′| supVj

|dzj |2 ≤ O(α j ) . ut
We now construct the piecesKab of K :

K00 is simply defined to be the Cauchy kernel

K00(x, y) := 1

2πi

ψ0A(x)ψ0B(y)

z0(x)− z0(y)
= 1

2πi

ψ0A(x)

ψ0A(y)

dz0(y)

z0(x)− z0(y)
.

We also define a Cauchy kernel in the handles (symmetric underj ↔− j ):
For x, y ∈ Uj (nondegenerate case) orx, y ∈ Dj (degenerate case) we set

Ch(x, y) := 1

2πi

ψ jA(x)

ψ jA(y)

dzj (y)

zj (x)− zj (y)

For x, y in different handles or (in the degenerate case)x ∈ Dj , y ∈ D− j
we takeCh(x, y) := 0. Unfortunately,Ch is not close enough toK00 to be
suitable directly asKhh, mainly for two reasons:

• In general,gjA is not a constant, giving rise to error terms larger than
O(oj ) from the basis changeψ0A ψ jA.
• |K00(x, y)|AB is not close to zero forx ∈ Vj , y ∈ V− j , while |Ch(x, y)|AB

is very small there.

However,Ch plays an essential role in the definition of the following “oper-
ation of interpolation through handles”I , which will allow us to interpolate
K00 betweenVj andV− j :

Definition 3.20 (Interpolation through handles) For meromorphic sec-
tions f in L over Vj ∪ V− j = U0 ∩ Uj with at most a finite number of
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poles of order at most1 and
∫

U0∩U j
| f |AΩ <∞we define the “interpolated

section” I f in L over the whole handleUj by

I f(x) = f(x)χ0(x)−
∫

z∈Vj∪V− j

f(z)Ch(x, z) ∧ dχ j (z)

+ 2πi
∑

z∈Vj∪V− j

χ j (z)(resz f )Ch(x, z) .

The analogous definition is taken to defineI f for sectionsf over Ľ1,0, with
reversed roles ofA ↔ B. The residue off is a well defined element of
(Ľ1,0

z )∨ = Lz⊗ (E1,0
z )∨, so(resz f )Ch(x, z) ∈ Lx, as required.

The following lemma states thatCh has finiteL∞–L1–norms, which shows
us thatI f is well defined.

Lemma 3.21 (Bounds forCh) The expressions

α j sup
x∈U j

∫
y∈U j

|Ch(x, y)|ABΩy and α j sup
y∈U j

∫
x∈U j

|Ch(x, y)|ABΩx

are uniformly bounded as functions ofj . In the case of degenerate handles,
Uj may be replaced byDj .

We only give theProof for nondegenerate handles. For degenerate handles
it is in fact simpler, since we can examineDj andD− j separately.

Because of symmetry, we may only consider the first expression. Fix
x ∈ Uj . Then

ε1 ≥ |zj (x)| ≥
√

t j or ε1 ≥ |z− j (x)| ≥
√

t j ,

by the symmetryj ↔ − j we may assume the first case. We also split the
y–integral into two pieces

W+ = {y ∈ Uj : ε1 ≥ |zj (y)| ≥
√

t j } and

W− = {y ∈ Uj : ε1 ≥ |z− j (y)| >
√

t j } :
The first piece is best estimated in the coordinatezj :∫

W+

|Ch(x, y)|ABΩy ∼
∫

W+

|ψ jA(x)|A|ψ jB(y)|B
|zj (x)− zj (y)| α−2

j d2zj (y)

≤ O(α−1
j )

2ε1∫
0

2πr dr

r
∼ α−1

j ,

where we used polar coordinates aroundzj (x) and

|ψ jA(x)|A ∼ α jA , |ψ jB(y)|B ∼ α jB .
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The second piece is better estimated in the coordinatez− j . The calculation is
almost the same: using polar coordinates again and because of|ψ− jA(x)|A ≤
O(α jA), |ψ− jB(y)|B ∼ α jB we get∫

W−

|Ch(x, y)|ABΩy ∼
∫

W−

|ψ− j A(x)|A|ψ− j B(y)|B
|z− j (x)− z− j (y)| α−2

j d2z− j (y)

≤ O(α−1
j )

2ε1∫
0

2πr dr

r
∼ α−1

j .

Summing up the two pieces, the assertion follows. ut
As a consequence of the preceding lemma, we get:

Lemma 3.22 (Bounds for the interpolation operator)

a) (L1–bound.)There is a constantM, independent ofj , such that

∫
U j

|I f |AΩ ≤ M

 ∫
U j∩U0

| f |AΩ+ α−1
j

∑
a∈U j∩U0

|resa f |B,dual

 .

Here| · |B,dual denotes the Hermitian metric on(Ľ1,0)∨ dual to | · |B.
b) (L∞–L1–bound for parameter dependent sections.)For a sufficiently

large constantM > 0 (independent ofj ) the following holds: assume
that f is a holomorphic section inL ⊗X×X Ľ1,0 over V± j ×U, U ⊆ X
open. Then for any positive measureΩ̃ onU:

sup
x∈U j

∫
y∈U
|I1 f(x, y)|ABΩ̃(y) ≤ M sup

x∈Vj∪V− j

∫
y∈U
| f(x, y)|ABΩ̃(y) .

Here I1 means that the interpolation operator is applied to the first
argument with fixed second argumenty.

b’) (Pointwise bound – simplified version ofb)) Let M be the constant
of b). If f is a holomorphic section inL over V± j , thensupU j

|I f |A ≤
M supVj∪V− j

| f |A.

c) (L2–bound.) There is a constantM, independent ofj , such that the
following holds: if f is a holomorphic section inL overVj ∪ V− j , then∫

U j

|I f |2AΩ ≤ M
∑
±

∫
V± j

| f |2AΩ .

In the case of degenerate handles we can simplify this by replacingUj
by Dj on the left hand side and

∑
±
∫

V± j
by
∫

Vj
on the right hand side.
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Proof:

a) We estimate the three terms in the definition ofI f :

For the first term:
∫
U j

| fχ0|AΩ ≤
∫

U j∩U0

| f |AΩ.

The second term is bounded by

∫
x∈U j

∣∣∣∣∣∣∣
∫

z∈V± j

f(z)Ch(x, z) ∧ dχ j (z)

∣∣∣∣∣∣∣
A

Ωx

≤
sup

z∈V± j

∫
x∈U j

|Ch(x, z)|ABΩx


 ∫

z∈V± j

| f(z)|AΩz

 sup
z∈V± j

|dχ j (z)|2 .

Inserting Lemma 3.19 and Lemma 3.21 we get

∫
x∈U j

∣∣∣∣∣∣∣
∫

z∈Vj∪V− j

f(z)Ch(x, z) ∧ dχ j (z)

∣∣∣∣∣∣∣
A

Ωx ≤ const
∫

z∈Vj∪V− j

| f(z)|AΩz .

Finally for the third term, using Lemma 3.21 again:

∫
x∈U j

∣∣∣∣∣χ j (x)
∑

z

(resz f )Ch(x, z)

∣∣∣∣∣
A

Ωx

≤
∑

z

|resz f |B,dual ·
∫

x∈U j

|Ch(x, z)|ABΩx

≤ const· α−1
j

∑
z

|resz f |B,dual.

Summing up the three terms, the result follows.
b) Similarly to a) we estimate the three terms in the definition ofI1 f :

First term:

sup
x∈U j

∫
y∈U
| f(x, y)χ0(x)|ABΩ̃(y) ≤ sup

x∈Vj∪V− j

∫
y∈U
| f(x, y)|ABΩ̃(y) .
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For the second summand, we get:

sup
x∈U j

∫
y∈U

∣∣∣∣∣∣∣
∫

z∈V± j

f(z, y)Ch(x, z) ∧ dχ j (z)

∣∣∣∣∣∣∣
AB

Ω̃(y)

≤
 sup

z∈V± j

∫
y∈U
| f(z, y)|ABΩ̃(y)


×
sup

x∈U j

∫
z∈V± j

|Ch(x, y)|ABΩz

 sup
z∈V± j

|dχ j (z)|2

3.21≤ const· sup
z∈V± j

∫
y∈U
| f(z, y)|ABΩ̃(y) .

The third term is missing sincef has no poles by assumption.

Summing up, we get the result b).
b’) This may be viewed as the special case of b) whenΩ̃ is supported in

one pointy; the one dimensional complex vector spaceĽ1,0
y may be

identified withC.
c) We omit the simpler case of degenerate handles.

For the first summand in the definition ofI f we again get:∫
U j

| fχ0|2AΩ ≤
∑
±

∫
V± j

| f |2AΩ .

The third summand in the definition ofI f vanishes again, and the second
summand is an evaluation of the integral operator with integral kernel
Fj (x, z) = Ch(x, z)∧ dχ j (z) to the sectionf . The twoL1–L∞–norms
of Fj are bounded by Lemma 3.19 and Lemma 3.21:

sup
j

sup
x∈U j

∫
y∈Vj∪V− j

|Ch(x, y) ∧ dχ j (y)|AǍΩy <∞ ,

sup
j

sup
y∈U j

∫
x∈Vj∪V− j

|Ch(x, y) ∧ dχ j (y)|AǍΩx <∞ .

Hence the result follows from Lemma 3.5 a). ut
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Next, we shall show thatI f is meromorphic – although it is defined by
using a partition of unity:

Let a1, . . . ,an be the poles off . First assume thatx ∈ Vj ∪ V− j . Cut
small disks∆k, (k = 1, . . . ,n) and∆x out aroundak, x respectively, and
call the resulting domain of integrationG = (Vj ∪ V− j ) \∆x \⋃k ∆k. By
Stokes theorem,∫
z∈G

f(z)Ch(x, z) ∧ dχ j (z) = (13)

= −
∫

z∈G

dz( f(z)Ch(x, z)χ j (z))

= −
∑
±

∫
z∈∂V± j

f(z)Ch(x, z)χ j (z)+
∫

z∈∂∆x∪⋃k ∂∆k

f(z)Ch(x, z)χ j (z)

radii→0−→ −
∑
±

∫
z∈

inner boundary
of V± j

f(z)Ch(x, z)

+2πi
∑

k

χ j (ak)(resak f )Ch(x,ak)− f(x)χ j (x) ,

where we used resxCh(x, ·) = −1/(2πi) ∈ Ex
∼= Lx⊗ Ľ x. Of course the last

term− f(x)χ j (x) is missing in the remaining case thatx ∈ Uj \ (Vj ∪V− j ).
This leads to:

Lemma 3.23 (Contour integral form of the interpolation operator)

a) The interpolation operator may be expressed by

I f(x) =
∑
±

∫
z∈

inner boundary
of V± j

f(z)Ch(x, z)+
{

0 if x /∈ V± j ,

f(x) if x ∈ V± j .

ConsequentlyI f is a meromorphic function andI f − f is holomorphic.
b) If f extends to a holomorphic section on the whole handleUj , then

I f = f .

Proof:

a) This is an immediate consequence of the above calculation and of

χ0 = 0 overUj \ (Vj ∪ V− j ) .

b) We use a) and Cauchy’s formula: The integrals over the inner boundary
of V± j in a) cancel. ut
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We are going to justify the name “interpolation off through the handle”
for I f for sectionsf that extend to disks as stated by Ext-Disk(f/ψ0A):

We replace all handles by degenerate handles with affine linear transition
functions, just as in the definition of the codegree. LetD0

± j denote the two
connected components of the degenerate handle replacingUj . We glue the
trivial line bundle overD0

± j to the line bundleL over U0 by identifying
the unit section 1=: ψ0

jA in the trivial line bundle overD0
± j with gjAψ0A

overV± j . Let C0 denote the analogue toCh over the modified surface, i. e.

C0(x, y) = 1

2πi

ψ0
jA(x)

ψ0
jA(y)

dz0(y)

z0(x)− z0(y)
if x, y ∈ D0

j , (14)

C0(x, y) = 0 for x, y in different connected components. The postulate (L2)
guarantees that Ext-Disk(g±1

jA ) holds for every handle. LetI 0 f denoteI f
for the modified surface. Here is Lemma 3.23b) for the modification:

Lemma 3.24 Ext-Disk( f/ψ0A) H⇒ I 0 f = f . ut
As a consequence we conclude:

Lemma 3.25 (Interpolation through handles – Bounds for the error
term) Ext-Disk( f/ψ0A) implies

sup
V± j

|I f − f |A ≤ O(oj )α
2
j

 ∫
Vj∪V− j

| f |AΩ+ α−1
j

∑
z

|resz f |B,dual

 .

A similar estimate holds fořL1,0–valued sections with reversed roles of
A↔ B.

Proof:

|I f(x)− f(x)|A = |I f(x)− I 0 f(x)|A =
=
∣∣∣∣− ∫

z

f(z)(Ch(x, z)− C0(x, z)) ∧ dχ j (z)

+ 2πi
∑

z

χ j (z)resz f (Ch(x, z)− C0(x, z))

∣∣∣∣
A

≤ sup
z
|Ch(x, z)− C0(x, z)|AB

×
sup

z
|dχ j |2

∫
Vj∪V− j

| f |AΩ+ 2π
∑

z

|resz f |B,dual


Using Lemma 3.19 the result follows from the following lemma. ut
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Lemma 3.26 (Coordinate change for the Cauchy kernel)

sup
(Vj∪V− j )2

|Ch − C0|AB = α j O(oj ) .

Proof: Let x, y ∈ (Vj ∪ V− j )
2. We have two cases to distinguish.

Case 1:x, y belong to different components, sayx ∈ Vj , y ∈ V− j . Then

|Ch(x, y)− C0(x, y)|AB = |Ch(x, y)|AB = |ψ jA(x)|A|ψ jB(y)|B
|zj (x)− zj (y)|

≤ const1α j
|zj (y)|
|Q− j | ≤ const2α j

|t j |
|Q− j | ∼ α j

√
t j = α j O(oj ) .

We used (9), (10), (X2) and that|zj (x)− zj (y)| can be bounded from below
by a positive constant not depending onj . The boundedness of|zj (x)−zj (y)|
follows from the inequalityε2

2 > supj t j in (X2).

Remark:This harmless looking estimate is the crucial point where the
nontriviality of the transition functions for the basis sections enters: it is
essential that|ψ jB|B is very small overV− j .

Case 2:x, y belong to the same component, sayx, y ∈ Vj . Then writing
s := ψ0

0A/ψ jA, we get

|Ch(x, y)− C0(x, y)|AB = (15)

=
∣∣∣∣∣ 1

zj (x)− zj (y)
− s(x)

s(y)

dz0
dzj
(y)

z0(x)− z0(y)

∣∣∣∣∣ |ψ jA(x)|A|ψ jB(y)|B

∼ α j

∣∣∣∣∣ 1− s(x)
s(y)

zj (x)− zj (y)
+ s(x)

s(y)

(
1

zj (x)− zj (y)
−

dz0
dzj
(y)

z0(x)− z0(y)

)∣∣∣∣∣ .
To estimate the first summand in the last sum, we note∣∣∣∣s(x)s(y)

− 1

∣∣∣∣= ∣∣∣∣exp

(∫ x

y

ds

s

)
− 1

∣∣∣∣ (L2)≤ exp

(∫ x

y
(1+ O(oj ))

∣∣∣∣ ds

dzj

∣∣∣∣ |dzj |
)
− 1

(L2),(X2)= exp
[
O(oj )|zj (x)− zj (y)|

]− 1= O(oj )|zj (x)− zj (y)| .
Here we have used that|zj (x)− zj (y)| is bounded, so the Taylor expansion
of exp is justified; the boundedness is a consequence of (X2). This implies
the desired estimate for the first summand in (15):∣∣∣∣ 1

zj (x)− zj (y)
·
(

1− s(x)

s(y)

)∣∣∣∣ = O(oj ) .
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To estimate the second summand in (15), we note that Taylor expansion
with Lagrange error terms yields:

∣∣∣∣∣ 1

zj (x)− zj (y)
−

dz0
dzj
(y)

z0(x)− z0(y)

∣∣∣∣∣ =
∣∣∣∣ y∫

x
(zj (t)− zj (x))

d2z0

dz2
j
(t)dzj (t)

∣∣∣∣
|zj (x)− zj (y)||z0(x)− z0(y)|

≤
O(|zj (y)− zj (x)|) supVj

∣∣∣∣d2z0

dz2
j

∣∣∣∣
|z0(x)− z0(y)|

(X4)≤
(

cj · sup
Vj

∣∣∣∣∣d2z0

dz2
j

∣∣∣∣∣
)
(X4)≤ O(oj ) .

Together withs(x)/s(y) = 1+ O(oj ) we get the desired boundO(oj ) for
the second summand in (15). ut

Now we have prepared all the tools to define the missing pieces of the
integral kernelK :

Kh0 = I1K00, K0h = I2K00, Khh = I1I2(K00− C0)+ Ch.

Here the notationI1 andI2 means that the interpolation operatorI is applied
to the first or second argument respectively.

Remark:The reason for not definingKhh simply to beI1I2K00 is that the
interpolation operator cannot produce poles in the interiorUj \ V± j of
every handle. Consequently the poles of the Cauchy kernelKhh in Uj \ V± j
have to be modelled separately: we therefore useCh. Related to this ob-
servation is the following fact: although Ext-Disk(K00(x, ·)/ψ0B) and Ext-
Disk(K00(·, y)/ψ0A) are true for everyx, y ∈ V± j , Ext-Disk(I2K00(·, y)/
ψ0A) does not hold fory ∈ Uj \ V± j sinceI2K00(·, y) has a pole aty. The
situation for K00 − C0 is different, as Ext-Disk(I2(K00 − C0)(·, y)/ψ0A)
is valid, simply becauseK00− C0 extends to aholomorphicsection over
(D0
± j )

2.

3.3.3 Verification of the hypotheses K

We first show that the total volume ofX is finite.

Lemma 3.27 (Volume of the handles; total volume)

a)
∫
U j

Ω ∼
∑
±

∫
V± j

Ω, i. e. only a bounded fraction of the volume of any

handle is not included in the regular sheet.

b)
∫
Vj

Ω ∼ α−2
j

c)
∫
X

Ω <∞
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Proof: We prove a) and b) simultaneously; the calculation is best done in
polar coordinates forz± j :

∫
U j

Ω ∼ 2α−2
j

const∫
√

t j

2πr

r
dr ∼ α−2

j ,

∫
Vj

Ω ∼ α−2
j

const2∫
const1

2πr

r
dr ∼ α−2

j .

To prove c), we use a) to get

∑
j

∫
U j

Ω ≤ const
∑

j

∫
V± j

Ω ≤ const
∫
U0

Ω ≤ const
∫

z∈C

d2z

1+ |z|4 <∞ ,

hence
∫

X Ω ≤ ∫
U0

Ω +∑ j

∫
U j

Ω < ∞. Recall that we have transiently
assumed the compact piece of the surface to be empty. ut

We state the main result of this section.

Proposition 3.28 Suppose that the compact piece of the surface is empty.
Then the hypotheses (X) and (L) imply the statements (K1-4) on the integral
kernelK .

Proof:

(K1) By construction, allKab are sections in the external tensor product
L⊗X×X Ľ1,0. SinceK00 only has a pole on the diagonal,Kh0 = I1K00
andK0h = I2K00 are holomorphic outside the diagonal, too, because
of Lemma 3.23. AsK00 − C0 is holomorphic, I1I2(K00 − C0) is
holomorphic onU2

h = (
⋃

j∈J U j )
2, that is whyKhh = I1I2(K00−C0)

+Ch has the same singular part asCh. When we patch the four pieces
together, (K1) follows.

(K2) It suffices to check that theKab are of the form

Kab = (C∞–section)+ 1

2πi

1

z(x)− z(y)

ωx

ωy
dz(y) (16)

near the diagonal for some local coordinatez and some local basis
sectionω. This is obvious forK00, hence the statement follows for
K0h and Kh0 since K0h − K00 and Kh0 − K00 are holomorphic in
U0 × (U0 ∩ Uh) resp.(U0 ∩ Uh) × U0. (16) is obvious forKhh too
whenI1I2(K00−C0) plays the role of the first summand in (16) while
Ch plays the role of the second one.
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We prepare the proof of (K3) and (K4) with some lemmas:

Lemma 3.29 (L∞–L1–norm for the Cauchy kernel on the regular sheet)

a) supx∈U0

∫
y∈U0

|K00(x, y)|ABΩy and

supy∈U0

∫
x∈U0

|K00(x, y)|ABΩx are finite.

b) supj α j supy∈U0

∫
x∈Vj

|K00(x, y)|ABΩx and

supj α j supx∈U0

∫
y∈Vj

|K00(x, y)|ABΩx are finite.

Proof:

a) We interpretK00 geometrically over the regular sheet: Recall that we
have chosen the orderν = −1 at infinity for the weight functions in the
definition of | · |A and | · |B. During this proof, we identify the regular
sheetU0 with a subset of the Riemann sphereP1 by the identification
x ≡ (z0(x) : 1). Then the volume formΩ is identified (up to a bounded
factor) with the standard volume form onP1. Next we identify bothL|U0

and Ľ1,0|U0 with the tautological bundle

{((x1 : x2), (λx1, λx2)) ∈ P1× C2 | (x1, x2) ∈ C2 \ {0}, λ ∈ C}
overP1 restricted toU0; the vector space operations in the fibres refer
to the second component(λx1, λx2). The tautological bundle may be
viewed as thedisjoint union of all one-dimensional subspaces ofC2;
these subspaces are indexed by the projective spaceP1. The identification
is described by

λψ0A(x) ≡ ((z0(x) : 1), (λz0(x), λ)) ,
λψ0B(x) ≡ ((z0(x) : 1), (λz0(x), λ)) .

With this identification| · |A and| · |B have just become (modulo∼) the
standard Euclidean norm:

|ψ0A|A ∼ |ψ0B|B ∼ (1+ |z0|4) 1
4 ∼ |(z0,1)| ,

andK00 becomes

K00((x1 : x2), (y1 : y2)) = 1
x1
x2
− y1

y2

(
x1
x2

1

)
⊗
(

y1
y2

1

)
=

(
x1

x2

)
⊗
(

y1

y2

)
∣∣∣∣∣ x1 y1

x2 y2

∣∣∣∣∣
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which is – after extension toP1 × P1 – clearly invariant under the
canonical operation ofSU(2). The Euclidean norms in the fibre and
the standard volume form are invariant under the action ofSU(2) too.
Consequently – since the action ofSU(2) onP1 is transitive – the integral∫

x∈P1

|K00(x, y)|ABΩx

does not depend ony (up to a bounded factor). The only singularity at
x = y is integrable, implying finiteness of the integral.

b) The calculation is best done using the geometric interpretation of a)
again. We first note thatVj is contained in a diskDj ⊆ P1 with total
volume

∫
D j

Ω ∼ α−2
j . We now apply an action of an elementg ∈ SU(2)

to transformDj into a diskD′j centered at(0 : 1) ∈ P1 with a radiusRj :

D′j = {(z : 1) ∈ P1 | |z| < Rj } .

The invariance of the volume
∫

D j
Ω ∼ ∫

D′j
Ω shows R2

j = O(α−2
j ).

We remark that the sequence(Rj ) is bounded. The transformed integral
can now easily be estimated: letz = z0(gy) denote the transformed
coordinate ofy. Then∫

x∈D j

|K00(x, y)|ABΩx ∼
∫

x∈D′j

|K00(x, y)|ABΩx

∼
∫

x∈C|x|<Rj

1

|x − z|(1+ |z|
2)

1
2 (1+ |x|2) 1

2
d2x

1+ |x|4

Rj bounded∼
∫

x∈C|x|<Rj

(1+ |z|2) 1
2

|x − z| d2x . (17)

We distinguish two cases:
– If |z| ≤ 2Rj then the last integral is bounded by

√
1+ 4R2

j

3Rj∫
0

2πr

r
dr = O(Rj ) = O(α−1

j ) .

Here we use polar coordinates with centerz.
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– In the case|z| > 2Rj , we use polar coordinates with center 0 to
bound (17) by

Rj∫
0

√
1+ |z|2
|z|/2 2πr dr ≤ 4π

√
1

(2Rj )2
+ 1

Rj∫
0

r dr

= O(Rj ) = O(α−1
j ) .

Hence the first statement of b) is proved, and the second one has the
same proof when we use the symmetryA↔ B. ut

Corollary 3.30 The following expressions are finite:

sup
j
α j sup

x∈Vj

∫
y∈Vj

|C0(x, y)|ABΩy and sup
j
α j sup

y∈Vj

∫
x∈Vj

|C0(x, y)|ABΩy .

Proof: This is an immediate consequence of the previous lemma and the
fact that

|C0(x, y)|AB

|K00(x, y)|AB
=
∣∣∣∣gjA(x)

gjA(y)

∣∣∣∣
is bounded as was stated in (L2). ut

The next lemma provides bounds for the differences between different
piecesKab on their common domain:

Lemma 3.31 (Bounds for the differences of the pieces forK )

a) sup
Vj×U0

|K00− K0h|AB = O(oj )α j ,

b) sup
U0×Vj

|K00− Kh0|AB = O(oj )α j ,

c) sup
Vj×Uh

|Khh− K0h|AB = O(oj )α j ,

d) sup
Uh×Vj

|Khh− Kh0|AB = O(oj )α j .

Proof: Because of the symmetryA↔ B it suffices to prove a) and d).

a) Using Ext-Disk(K00(·, y)/ψ0A) for y ∈ U0 and the fact thatK00(·, y)
has at most a pole of first order aty with residue 1

2πi ∈ (Ľ1,0
y )
∨ ⊗ Ľ1,0

y ,
we get uniformly iny:

sup
Vj

|K00(·, y)− Kh0(·, y)|AB = sup
Vj

|K00(·, y)− I1K00(·, y)|AB

3.25= O(oj )α
2
j

∫
V± j

|K00(·, y)|ABΩ+ α−1
j

 3.29= O(oj )α j .
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d) We express

Khh− Kh0 = (I2I1(K00− C0)− I1(K00− C0)) − I1(C0− Ch) .
(18)

Here we use thatI1 andI2 commute and thatI1Ch = Ch, which follows
from Lemma 3.23 applied toICh(·, y), y ∈ Vj ; the integral over the
inner boundary ofV± j vanishes there, sinceCh(·, y) is holomorphic in
Uh except of the pole iny.
We estimate the first term in (18): using Ext-Disk(I1(K00−C0)(x, ·)/ψ0B),
we get with the notationVh =⋃ j∈J Vj :

sup
Uh×Vj

|I2I1(K00− C0)− I1(K00− C0)|AB

3.25≤ O(oj )α
2
j sup

x∈Uh

∫
y∈V± j

|I1(K00− C0)(x, y)|ABΩy

3.22b)≤ O(oj )α
2
j sup

x∈Vh

∫
y∈V± j

|(K00− C0)(x, y)|ABΩy .

Lemma 3.29 b) and Corollary 3.30 show thatO(α−1
j ) is an upper bound

for the last supremum, hence

sup
Uh×Vj

|I2I1(K00− C0)− I1(K00− C0)|AB ≤ α j O(oj ) .

The second term in (18) remains to be bound:

sup
Uh×Vj

|I1(C0− Ch)|AB
3.22b′)≤ M sup

Vh×Vj

|C0− Ch|AB
3.26≤ α j O(oj ) .

The result is gained by summing up the two terms. ut

We are now ready to prove (K3): We only estimate the first normk1, the
estimate fork2 is similar.

sup
x∈X

∫
y∈X

|K(x, y)|ABΩy ≤
∑

a,b∈{0,h}
sup
x∈Ua

∫
y∈Ub

|Kab(x, y)|ABΩy .

We shall show that every summand is finite:
Fora= b= 0 this is the statement of Lemma 3.29 a).
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For a = h, b = 0 we get (subtractingCh if necessary to remove the
pole)

sup
x∈Uh

∫
y∈U0

|Kh0(x, y)|ABΩy

(I1Ch=Ch)≤ sup
x∈Uh

∫
y∈Vh

[|(I1(K00− Ch))(x, y)|AB+ |Ch(x, y)|AB] Ωy

+ sup
x∈Uh

∫
y∈U0\Vh

|I1K00(x, y)|ABΩy

3.22b)≤ M sup
x∈Vh

∫
y∈Vh

|(K00− Ch)(x, y)|ABΩy

+ sup
x∈Uh

∫
y∈Vh

|Ch(x, y)|ABΩy

+M sup
x∈Vh

∫
y∈U0\Vh

|K00(x, y)|ABΩy
3.29,3.21
< ∞ .

Recall thatCh(x, y) vanishes forx, y in different handles and thatα−1
j is

bounded by (X6).
Fora= 0, b= h:

sup
x∈U0

∫
y∈Uh

|I2K00(x, y)|ABΩy

3.22a)≤ M

sup
x∈U0

∫
y∈Vh

|K00(x, y)|ABΩy+ O(1)

 3.29
< ∞ .

For a= b= h:

sup
x∈Uh

∫
y∈Uh

|Khh(x, y)|ABΩy ≤

≤ sup
x∈Uh

∫
y∈Uh

|I1I2(K00− C0)(x, y)|ABΩy+ sup
x∈Uh

∫
y∈Uh

|Ch(x, y)|ABΩy <∞ .

We used Lemma 3.22 a) and b) to remove the interpolation operators in the
last step, and then Lemma 3.29 a) and Lemma 3.21.

The proof of (K3) is finished. ut
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We finally are going to prove (K4): With the symmetryA ↔ B in
mind, we restrict ourselves to prove that the first Hilbert–Schmidt norm
hB is finite; the proof forhA is similar. Kab being holomorphic outside the
diagonal, we get forx 6= y:

∂xK(x, y) =
∑
a,b

(∂xχa(x))χb(y)Kab(x, y)

=
∑

b

(∂xχ0(x))χb(y) [K0b(x, y)− Khb(x, y)]

which vanishes ifx /∈ Vh. Forx ∈ Vj , y ∈ Ub one estimates uniformly inx
andy:

|∂xK(x, y)|B̌B ≤
∑

b

|∂xχ0(x)|2χb(y)|(K0b− Khb)(x, y)|AB

3.31≤ |∂χ0(x)|2O(oj )α j ≤ O(oj )α
2
j .

Hence, using that∂1K is supported inVh × X,

h2
b ≤

∑
j

 ∫
x∈Vj

Ω


 ∫

y∈X

Ω

 [O(oj )α
2
j ]2

3.27≤
∑

j

α−2
j (O(oj )α

2
j )

2

which is finite by (X6).
Now the proof of (K4) and also of Proposition 3.28 is finished. ut

Remark:If a sufficiently large but finite number of handles is removed and
replaced by two disks each (as described in the definition of Ext-Disk), then
h2

B can be made arbitrarily small. This is necessary to make Corollary 3.16
applicable.

To summarize, we have proved so far that the Cauchy Riemann operator∂V
is bounded with a bounded inverse when the compact piece and a sufficiently
large but finite set of handles is replaced by disks.

3.4 Gluing in the compact piece: exchange lemma

We want to compare the indices of the Cauchy–Riemann operator on four
surfacesXac, Xad, Xbc, Xbd endowed with holomorphic line bundlesLac,
Lad, Lbc, Lbd. The four surfaces are defined as follows:
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• X = Xac is the surface we started with. We view it as being obtained by
gluing two piecesXa andXc together:
– The pieceXa just consists of the union of the regular sheet with the

handles “near infinity”; only a compact subset is removed.
– The pieceXc is the compact piece of the heat curve.

• When we fill the hole in the regular sheet where the compact piece can
be glued in by a pieceXd of the complex plane – just by extending the
coordinatez0 – we call the resulting surfaceXad = Xa ∪ Xd.
• We may also remove all the handles fromXa, fill the resulting holes

with disks and insert one additional point∞ at infinity, just as it was
described in the definition of the codegree. The resulting surface, which
may be viewed as a neighbourhood of∞ = (1 : 0) in P1, is calledXb.
When the compact pieceXc is glued toXb, the compact Riemann surface
Xbc comes out.
• Finally we may also glueXb to Xd; the resulting surface is just the

standard Riemann sphereXbd = P1.

We identify all the intersectionsXa ∩ Xc ≡ Xa ∩ Xd ≡ Xb ∩ Xc ≡
Xb ∩ Xd =: U. Over Xi , i = a,b, c,d we prescribe holomorphic line
bundles:

• La = L|Xa over Xa,
• Lc = L|Xc over Xc,
• trivial line bundlesLb = Xb × C, Ld = Xd × C over Xb respectively

Xd.

We identifyLa|U ≡ Lb|U ≡ Lc|U ≡ Ld|U via (La)x = (Lc)x 3 ψ0A(x) ≡
(x,1) ∈ (Lb)x, (Ld)x. We now chooseC∞–partitions of unity overXac, Xad,
Xbc, Xbd, adapted to the coveringXkl = Xk∪Xl (k = a,b; l = c,d). Let the
partition of unity be given byχk overXk, k = a,b, c,d, extended by 0 toXkl
(k = a,b) respectivelyXlk (k = c,d). Just to simplify the notation below,
we include an additional constantπ2 : χk + χl = π/2 over Xkl, χk = π/2
over Xk \U.

We want to compare the Cauchy–Riemann–operators overXac

•∪ Xbd

and Xad

•∪ Xbc, although these are different surfaces. The method works
quite generally: we relate the four surfaces by a “twisting operator”J,
defined by

J : C∞c (Xac, Lac)⊕ C∞c (Xbd, Lbd)→ C∞c (Xad, Lad)⊕ C∞c (Xbc, Lbc)

J =
(

sinχa − sinχd

sinχc sinχb

)
. (19)

Here sinχa is viewed as a multiplication operator

C∞c (Xac, Lac)
· sinχa−→ C∞c (Xa, La)

⊆−→ C∞c (Xad, Lad) ,
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analogously for the other matrix elements ofJ. J is invertible; its inverse
is given by the matrix of multiplication operators

J−1 =
(

sinχa sinχc

− sinχd sinχb

)
.

We keep in mind that the pointwise evaluation of the matrixJ overU just
leads to the rotation matrix(

cosχc − sinχc

sinχc cosχc

)
,

which gives us the intuitive picture behindJ: over the bundleL|U ⊕ L|U
of rank 2,J provides a “twisting by 90 degree”.

We observe that the following diagram1 commutes:

C∞c (Xac,Lac)⊕C∞c (Xbd,Lbd)

 ∂ 0

0 ∂


−−−−→ C∞c

(
Xac,L

0,1
ac

)
⊕C∞c

(
Xbd,L

0,1
bd

)
J

y J

y

C∞c (Xad,Lad)⊕C∞c (Xbc,Lbc)

 ∂ (∂χc)

(−∂χc) ∂


−−−−−−−−−→ C∞c

(
Xad,L

0,1
ad

)
⊕C∞c

(
Xbc,L

0,1
bc

)
Here the matrix elements∂χc are supported inU. They are viewed as
multiplication operators: Take aφ ∈ C∞c (U,R) which equals 1 in a neigh-
bourhood of the support of∂χc. Then we factor multiplication with∂χc
as

C∞c (Xad, Lad)
·φ−→ C∞c (U, L|U)
·(∂χc)−→ C∞c (U, L0,1|U) ↪→ C∞c (Xbc, L0,1

bc ) ,

C∞c (Xbc, Lbc)
·φ−→ C∞c (U, L|U)
·(∂χc)−→ C∞c (U, L0,1|U) ↪→ C∞c (Xad, L0,1

ad ) .

By completion, we now pass from theC∞c –theory to the Hilbert space /
Fredholm theory: just as in Sect. 3.2.1 choose Hermitian metrics overLa,
Lb, Lc, Ld that coincide overL (all four metrics called| · |A). Similarly we
choose metrics overL0,1

a , L0,1
b , L0,1

c , L0,1
d (called| · |B̌), so that these metrics

1 By a slight abuse of notation we call the vertical map at the rightJ again, since it is
given by the same matrix (19).
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coincide with the one chosen earlier over the surfaceXac. The volume forms
compatible with these choices are again calledΩ. Just as in Sect. 3.2.1, we
define the Hilbert spacesAkl , B̌kl, Vkl to be the completion ofC∞c (Xkl, Lkl),

C∞c (Xkl, L0,1
kl ), C

∞
c (Xkl, Lkl) with respect to the normss 7→

(∫
Xkl
|s|2AΩ

) 1
2
,

ω 7→
(∫

Xkl
|ω|2

B̌
Ω
) 1

2
, s 7→

(∫
Xkl
|s|2AΩ+ ∫Xkl

|∂s|2
B̌
Ω
) 1

2
respectively. We

denote the completion of the Cauchy–Riemann operators by∂ kl : Vkl → B̌kl.
Using Theorem 3.15 and the fact thatXbc is a compactRiemann surface
without boundary we conclude that(

∂ad 0

0 ∂bc

)
: Vad⊕ Vbc→ B̌ad⊕ B̌bc

is a Fredholm operator.
Next, we want to show that the nondiagonal terms(∂χc) form only

a compactperturbation. The key to this fact is the following lemma.

Lemma 3.32 (Compactness of the inclusion map)Let VU ⊂ Vkl be the
closure ofC∞c (U, L) ⊂ C∞c (Xkl, Lkl) in Vkl, U ⊂⊂ Xkl . Then the inclusion
mapiU : VU ↪→ Akl is compact.

Proof/Reference:We coverU with a finite number of coordinate domains
Un, 1≤ n ≤ N. CuttingiU into N pieces supported inUn using a partition
of unity, we see, that it suffices to show that every inclusion mapiUn :
VUn → Akl is compact. Now the problem is local; but the weight functions
for the Hermitian metrics are locally bounded from above and from below
by positive constants. The assertion follows e. g. from Theorem 10.1.10
in [4]. ut

As a consequence, we get the promised result:

Lemma 3.33 (Compactness of the perturbation)The following multipli-
cation operator is compact:(

0 (∂χc)

(−∂χc) 0

)
: Vad⊕ Vbc→ B̌ad⊕ B̌bc

Proof: We factor(∂χc) : Vk′l ′ → B̌kl into Vk′l ′
·φ−→ VU

iU
↪→ Akl

·(∂χc)−→ B̌kl.
The second map is compact, the first and the third map are bounded since
φ and∂χc are compactly supported; hence the composition is compact.ut

Let us harvest the result of this section:

Proposition 3.34 (Exchange lemma)All operators ∂kl : Vkl → B̌kl
(k = a,b; l = c,d) are Fredholm operators. The following relation holds:

index∂ac+ index∂bd = index∂ad+ index∂bc .
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Proof: We have(
∂ac 0

0 ∂bd

)
= J−1 ◦

[(
∂ad 0

0 ∂bc

)
+
(

0 (∂χc)

(−∂χc) 0

)]
◦ J ,

where we have called the completion ofJ againJ. HereJ : Vac⊕ Vbd→
Vad⊕ Vbc andJ : B̌ac⊕ B̌bd→ B̌ad⊕ B̌bc are bounded and invertible,(

∂ad 0

0 ∂bc

)
is a Fredholm operator and(

0 (∂χc)

(−∂χc) 0

)
is a compact perturbation. Since perturbations of Fredholm operators by
compact operators are again Fredholm operators with unchanged index (see
e. g. [12], Chapter VII, Cor. 1 to Thm. 2 and Cor. to Thm. 4), it follows that(

∂ac 0

0 ∂bd

)
is a Fredholm operator and that

index

(
∂ad 0

0 ∂bc

)
= index

(
∂ac 0

0 ∂bd

)
.

ut
Corollary 3.35 (Index version of the Riemann Roch Theorem)If the
compact pieceXc is chosen sufficiently large then

index∂ac = index∂bc− 1= −codeg(L, ψ0A) .

Proof: Remember that we still assume orderν = −1 at infinity. We show
that index∂bd = 1, index∂ad = 0 andindex∂bc = 1− codeg(L, ψ0A).

• Xbd = P1, andLbd is a trivial line bundle overP1, henceindex∂bd = 1 by
the classical Riemann–Roch Theorem (or simply by elementary function
theory on the Riemann sphere).
• For a compact piece chosen sufficiently large, we know by the previous

sections that∂ad is invertible, henceindex∂ad = 0.
• For the line bundleLbc over thecompactRiemann surfaceXbd, the

classical Riemann–Roch Theorem tells us

index∂bc = 1− genus(Xbc)+ deg(Lbc) = 1− codeg(L, ψ0A).

Using the previous proposition the result follows. ut
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3.5 Limit at infinity of square integrable sections

Technically, we have used so far the condition of having finite weighted
L2-norms for global holomorphic sections. But the Riemann Roch Theo-
rem 2.1 for infinite genus Riemann surfaces imposed pointwise bounds in
a neighbourhood of infinity for these holomorphic sections. The goal of
the section is to show that these two concepts are equivalent. Using the
symmetryA↔ B, L ↔ Ľ1,0, we restrict our examinations to the case of
L, | · |A.

The next lemma shows that square integrability of global holomorphic
sections can be decided in the regular sheet:

Lemma 3.36 (Reduction to the regular sheet;V∩O = A∩O) For every
global holomorphic sectionf in L over X the following statements are
equivalent:

a)
∫

U0
| f |2AΩ <∞; U0 can be replaced by any neighbourhood of infinity,

b)
∫

X | f |2AΩ <∞, i. e. f ∈ A,
c) f ∈ V.

Proof: b)⇒a) is trivial. a)⇒b): We do the proof forU0 only; for an arbitrary
neighbourhood of∞ it is similar: We first estimate the totalL2–norm over
the handles in terms of the totalL2–norm over the regular sheet: Sincef is
holomorphic in the handles,I f = f by Lemma 3.23. Hence we get with
the help of Lemma 3.22 c):∑

j∈J

∫
U j

| f |2AΩ ≤ const1
∑

j

∫
V± j

| f |2AΩ ≤ const1

∫
U0

| f |2AΩ .

It remains to estimate the totalL2–norm over the compact pieceUc in terms
of the totalL2–norm over the regular sheet, i. e. we have to show:∫

Uc\U0

| f |2AΩ ≤ const2

∫
U0∩Uc

| f |2AΩ ≤ const2

∫
U0

| f |2AΩ .

SinceX is noncompact we know thatL is a trivial holomorphic line bundle
(see e. g. [3], Satz 30.4). (Of course we expect any basis section to raise fast at
infinity.) We are only interested in the relatively compact domainUc, hence
we may reduce our considerations to the case ofC–valued holomorphic
functions f , | · |A ∼ | · | over Uc. As a consequence of the maximum
principle and of Cauchy’s integral formula, we can estimate the sup–norm
(and therefore also theL2–norm) of f |(Uc \ U0) in terms of theL2–norm
of f |(Uc∩U0) in this case, using thatUc \U0 is a relatively compact subset
of Uc.

Summarising the considerations, we get an estimate∫
X

| f |2AΩ ≤ const
∫
U0

| f |2AΩ .
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c)⇒b) is trivial again. b)⇒c): This is the most interesting statement
of the lemma: it states that every square integrable global holomorphic
section inL can be approximated in the‖·‖V–norm by smooth sections
with compact support.

Instead of proving this directly, we note that it is an easy consequence
of the parts of the Riemann–Roch theorem which are already proved:

We already know

dim ker(∂ : V → B̌)− dim coker(∂ : V → B̌) = −codeg(L, ψ0A) ,

writing ∂ now for all Cauchy Riemann operators irrespective of their domain.
SetM := { f ∈ A | f is holomorphic}, N := {ω ∈ B | ω is holomorphic}.
Then ker(∂ : V → B̌) = M ∩ V, and using Lemma 3.3 we know

coker(∂ : V → B̌)∨ ∼= ker(∂ : B→ V̌) = N .

Consequently

dim(M ∩ V)− dim N = −codeg(L, ψ0A) . (20)

We consider the dual situation,A↔ B: similarly to the definition ofV, let
W be the completion ofC∞c (X, Ľ1,0) with respect to the norm

‖·‖W : ω 7→
(
‖ω‖2

B +
∥∥∂ω∥∥2

Ǎ

) 1
2
.

Dual to (20), we get

dim(N ∩W)− dim M = −codeg(Ľ1,0, ψ0B) . (21)

Adding (20) and (21) yields

codim(M ∩ V,M)+ codim(N ∩W, N)

= codeg(L, ψ0A)+ codeg(Ľ1,0, ψ0B) . (22)

The right hand side vanishes: With the notations from Definition 2.3 and
with Lbc(ψ0A)⊗ Ľ1,0

bc (ψ
−1
0A dz0) ∼= E1,0(dz0) we obtain

codeg(L, ψ0A)+ codeg(Ľ1,0, ψ0B) =
= 2 genus(Xbc)− degLbc(ψ0A)− degĽ1,0

bc (ψ
−1
0A dz0)

= degE1,0(dz∞)+ 2− degLbc(ψ0A)− degĽ1,0
bc (ψ

−1
0A dz0)

= degE1,0(dz∞)+ 2− degE1,0(dz0) = 0 .

We made use of the degree of any canonical divisor on the compact Riemann
surfaceXbc being degE1,0(dz∞) = 2 genus(Xbc) − 2 and ofdz0/dz∞ =
−z−2∞ having order−2 at infinity.
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Hence both codimensions on the left hand side of (22) vanish. This
meansM ∩ V = M, N ∩W = N. This finishes the proof of b)⇒c). ut

Finally we examine the pointwise behaviour at∞ of square integrable
holomorphic sections inL. We formulate the result for any orderν at∞,
for future references slightly more general than needed here:

Proposition 3.37 (limit at infinity) Let the Hermitian metric|·|A be defined
using the orderν ∈ Z at infinity, i. e.|ψ0A|A ∼ |z0|−ν near infinity. Let f∞
be a L–valued holomorphic section defined over an open neighbourhood
U∞ of ∞ and let f j , j ∈ J, be L–valued holomorphic sections defined
over the handlesUj . Assume thatsupU∞∩U j

| f∞ − f j |A ≤ O(α−1
j ) and∫

U∞ | f∞|2AΩ <∞. Thenlim P→∞ f∞/(zν0ψ0A)(P) ∈ C exists.

One case of special interest isf∞ = f j on U∞ ∩Uj :

Corollary 3.38 (L2–bound ⇐⇒ pointwise bound near∞) A global
holomorphic sectionf in L is square integrable (using| · |A with the order
ν at∞) if and only if it is bounded near infinity in the regular sheet:

lim supP→∞
∣∣ f/(zν0ψ0A)

∣∣ <∞.

Proof of the Corollary:We observe that| f/(zν0ψ0A)| ∼ | f |A, which holds
for taking an orderν ∈ Z at infinity in the definition of| · |A. Then “⇐” is
a consequence of Lemma 3.36, while “⇒′′ follows from Proposition 3.37.

ut
Proof of Proposition 3.37:Here is the strategy for the proof: first we reduce
the problem to the Riemann sphere by removing once more all the handles
Uj and filling the resulting holes with disks. The sectionf∞ is interpolated
“almost holomorphically” through the disks using the “disk–version”I 0

of the interpolation operator, which was introduced before Lemma 3.24.
Finally the limit at∞ is examined on the Riemann sphere.

By shrinking the regular piece if necessary we may assume without
loss of generality thatU∞ contains the regular pieceU0. Note that this
redefinitionU0,new= U0 ∩ U∞ of the regular piece depends onU∞, hence
all the cutoff functionsχ0, (χ j ) j∈J depend on the choice ofU∞, too.

We view the regular sheetU0 again both as a subset of the Riemann
sphereP1 (just as in the proof of Lemma 3.29) and as a subset of the
Riemann surfaceX. The disks that are glued toVj are denoted byD0

j ⊆ P1
again.

We define the interpolated versionf of f∞ onU∞ ∪⋃ j D0
j by

f = χ0 f∞ +
∑

j

χ j I
0 f j . (23)
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Then f is holomorphic outside the intersectionsVj . It is square integrable
because ∫

U∞∪⋃ j D0
j

| f |2A Ω ≤ 2
∫

U∞

| f∞|2A Ω+ 2
∑

j

∫
D0

j

∣∣I 0 f j

∣∣2
A
Ω (24)

L.3.22c)≤ 2
∫

U∞

| f∞|2A Ω+ 2M
∑

j

∫
Vj

∣∣ f j

∣∣2
A
Ω

which is finite as∫
V± j

| f j |2AΩ ≤ 2
∫

V± j

(| f∞|2A + | f∞ − f j |2A)Ω ≤
∫

V± j

(2| f∞|2A + O(α−2
j ))Ω

is summable overj . OnVj the deviation off from holomorphy is bounded:

sup
Vj

|∂ f |B̌ = sup
Vj

|(∂χ j )( f∞ − I 0 f j )|B̌
≤ sup

Vj

|∂χ j |2(| f∞ − f j |A + | f j − I 0 f j |A)

For the first summand on the right hand side we have supj supVj
|∂χ j |2| f∞−

f j |A < ∞ by Lemma 3.19 and the hypothesis on| f∞ − f j |A. To esti-
mate the second summand, we note thatI f j = f j by Lemma 3.23 and
that I 0 f j/(z

ν+1
0 ψ0A) satisfies the condition Ext-Disk in (L2). Consequently

Lemma 3.25 and Lemma 3.27b) yield

sup
Vj

|I 0 f j − f j |A ≤ O(oj )α
2
j

∫
Vj∪V− j

| f j |AΩ ≤ O(oj )α j

 ∫
Vj∪V− j

| f j |2AΩ


1
2

≤ O(oj )α j .

We end up with the estimate

sup
Vj

|∂ f |B̌ ≤ O(1)+ α2
j O(oj )

(X6)≤ O(1). (25)

In some punctured neighbourhoodU∗ of∞ in P1 we write (24) and (25) in
the coordinatez∞ = 1/z0 and useF := f/(zν0ψ0A), | f |A ∼ |F|and|∂ f |B̌ ∼|∂F/∂z∞| |zν0ψ0A|A|dz∞|2 ∼ |∂F/∂z∞|. This yields

∫
U∗ |F|2 d2z∞ < ∞

and supU∗ |∂F/∂z∞| < ∞. The statement of Proposition 3.37 then is an
immediate consequence of the following Lemma. ut
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Lemma 3.39 LetU ⊆ C be an open neighbourhood of0, U∗ = U \{0}. As-
sume thatF : U∗ → C isC1 and that

∫
U∗ |F(z)|2 d2zandsupz∈U∗ |∂F(z)/∂z|

are finite. Thenlimz→0 F(z) ∈ C exists.

Proof: We may suppose thatU is bounded. DefineG : U → C by convo-
lution of ∂F

∂z with the Cauchy kernel:

G(w) = 1

2πi

∫
U∗

1

z−w
∂

∂z
F(z)dz∧ dz .

Then ∂G/∂z = ∂F/∂z on U∗. ∂F/∂z being bounded and1
z−w being lo-

cally integrable implies thatG is a continuous function even at 0.F − G
is holomorphic onU∗ and square integrable near 0, hence it extends to
a holomorphic function onU. Consequently limz→0 F(z) = limz→0(F(z)−
G(z))+ limz→0 G(z) exists. ut

To summarize, we have shown that the pointwise asymptotic bound
f ∈M for holomorphic sectionsf ∈ O(X, L) used in the Riemann Roch
Theorem is equivalent to theL2-condition f ∈ A. By symmetryA↔ B,
L ↔ Ľ1,0 we conclude

ω ∈ N ⇔ ω ∈ O(X, Ľ1,0) andω ∈ B.

Hence the index version 3.35 of the Riemann Roch Theorem is equivalent
to the infinite genus Riemann Roch Theorem 2.1. This finishes the proof of
the theorem.

We remark that as a byproduct of Proposition 3.37 we obtain that the
limit at infinity of f/(z−ν∞ ψ0A) exists for f ∈M.
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