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Abstract. In this article we prove a Riemann Roch Theorem for a class
of holomorphic line bundles over Riemann surfaces of infinite genus. The
theorem shows that the space of holomorphic sections satisfying a pointwise
asymptotic growth condition has finite dimension and it provides a formula
for this dimension. The gluing functions describing the surface and the
transition functions defining the line bundle have to satisfy some asymptotic
bounds. The theorem applies to holomorphic line bundles associated to
divisors of infinite degree that assign one point to every handle on the
surface. Applications of this Riemann Roch Theorem to the description
of the Kadomcev Petviashvilli flow were provided in the author's doctoral
thesis.

1 Introduction

Riemann surfaces of infinite genus arise naturally as spectral varieties of
various ordinary and partial linear differential equations in mathematical
physics such as Hill's equation ([7], [8]) and the heat equation with a pe-
riodic potential, see [5], [2] and [1], Part lll. There is a function theory of
these Riemann surfaces, culminating in infinite genus analogies of classical
theorems for compact Riemann surfaces, such as the Riemann Vanishing
Theorem and the Torelli Theorem ([1], Part 1l). This theory has various
applications in the examination of the Korteweg de Vries flow and the
Kadomcev Petviashvilli flow ([1], Part IV).

This article provides a contribution to this theory, the proof of a Riemann
Roch Theorem being applicable to the naturally defined Bloch bundles over
the surfaces mentioned above.

* Present addressEurandom, P.O.Box 513, 5600 MB Eindhoven, The Netherlands
(e-mail:merkl@eurandom.tue.nl )
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One can build the Riemann surfaces of infinite genus under considera-
tion in the following way (see also [5] and [1], Part 1ll): Take a complex
plane with infinitely many pairs of disjoint disks removed (coordinates
Zo = 1/z..). The holes should only accumulate fiag| — oo. Then we
glue in handles, in coordinates describedzby_; = t;, |z4;| < const, to
join corresponding holes together. The Riemann Roch Theorem requires
some asymptotic conditions on the widftof the handles, on the distribu-
tion of the holes and on the coordinate changes (Sect. 2.2). Finally a compact
piece of the resulting surface may be changed in an arbitrary way.

In applications, the handles arise from the perturbation of double point
singularitiesz;z_; = 0. On the one hand the handles are usually asymp-
totically well—-controlled up to error terms with known bounds, since the
curve under consideration is asymptotically close to an unperturbed curve,
which is a copy of the complex plane with infinitely many transverse self—
intersections. On the other hand, the compact piece is a domain where
perturbation theory only provides poor information.

The classical Riemann Roch Theorem states

r(D) —i(—=D) = 1— genusX) +degD),

r(D) denoting the number of linearly independent meromorphic functions
on a compact Riemann surfagehat are multiples of the divisdD, i(— D)
denoting the number of linearly independent meromorphic 1-formX on
that are multiples of the divisor D. Naively viewed, on a (noncompact)
surface of infinite genus with a divisor of infinite degree, both sides of the
Riemann Roch Formula become indeterminate: = co = 1 — co 4 c0”.
However, when one imposes asymptotic growth conditions at infinity for
the meromorphic functions and 1-forms allowed, one gets a version of the
Riemann Roch Theorem for some infinite genus Riemann surfaces.

Here is a typical example on which the theorem applies: choose one
point g; in every handle, close to its center, outside the domaimy,cdnd
fix an integerv, called “the order at infinity”. LetM denote the space of
meromorphic functions on the surface with poles at most of first order
allowed only at theg; and with f/z2” being bounded near infinity in the
domain ofzy. Similarly let &/ denote the space of holomorphic 1-forms
o on the surface with zeroes prescribed at ¢theand with w/(z},dz.,)
being bounded near infinity in the domain zf Then the Riemann Roch
Theorem states thatt and ./ have finite dimension and it determines
dimM — dim .

It is technically more convenient to work with sections in holomorphic
line bundles rather than meromorphic functions for several reasons: First,
the applications to the natural dual Bloch bundle of a spectral variety and
to theta bundles are described in a uniform way in the language of bundles.
Second, the symmetry between meromorphic functions and holomorphic
1-forms, which plays an important role in the proof, is seen more clearly
using bundles. Third, the theorem also applies to divisors with more than one
point per handle, if only the “net degree” per handle is +1, such as having
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two points with multiplicity +1 and one point with multiplicity—1 per
handle. This case arises when one examines the Jacobi group operation. Itis
included naturally in the line bundle version of the Riemann Roch Theorem.
The presence of “net degree” +1 of the divisor per handle is reflected by
having nontrivial line bundle gluing functions (winding number 1) in the
handles, see hypothesis (L1) in Sect. 2.2.

The key to the proof of the theorem consists in showing that the Cauchy
Riemann operato is a Fredholm operator between Hilbert spaces defined
by weightedL? and Sobolev norms. This is done by constructing a quasi-
inverse as an integral operator with a kernel that approximates the Cauchy
kernel. The interpolation of the Cauchy kernel through handles is one im-
portant step; here the nontriviality of the line bundle transition functions
is essential. The compact piece, which is much less under control, may be
ignored first, later we examine the change of the inde® wfhen gluing
the compact piece in. Finally we have to examine the relation betiéen
bounds and pointwise bounds at infinity for holomorphic sections.

There exist some other Riemann Roch type theorems for infinite genus
Riemann surfaces: An early version for infinite genus surfaces but divisors of
finite degree was described by [14]; a version for infinite genus hyperelliptic
surfaces is included in [15], and recently a version for half form bundles
with Mobius functions as coordinate gluing functions was given by [17];
however, these results do not apply to the mentioned natural bundles.

The motivation for this work were applications of the Riemann Roch
Theorem to the inverse spectral theory of the 1+1 dimensional heat equation
and to the examination of the Kadomcev Petviashvilli flow. These appli-
cations are described in the author’s doctoral thesis [10] and will also be
described in a forthcoming article. This work grew out of part of the author’s
thesis under supervision of Horst Knorrer at the Swiss Federal Institute of
Technology (ETH), Zrich.

2 Statement and hypotheses of the theorem
2.1 Riemann Roch Theorem for infinite genus Riemann surfaces

Let a structure X, L, Ug, Zo, Y¥oa) be given, whereX is an infinite genus

Riemann surfacel,. is a holomorphic line bundle oveX, z; : Ug — C is

a coordinate function defined on an open subkeC X andyg, is a holo-

morphic basis section ibh defined ovelJy. s Will serve as a reference

section to measure the asymptotic behaviour of sectidpss called the

“regular piece”. Let.1? = [ @ 9% denote the holomorphic line bundle of

1-forms of type 1,0 with coefficients in the duallof We setz., := 1/z.
We add one additional poirto to X, the resulting set (which isot

a Riemann surface) is calletr. Below we shall specify a topology ox™

for a class of infinite genus Riemann surfaest has the property that the
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complement of every neighbourhoodaf only has connected components
being relatively compact iX.

To provide a quick impression of the theorem, the assertion is stated
first. The precise technical hypotheses are described in the next section.

Theorem 2.1 (Riemann Roch Theorem for infinite genus surface%)s-
sume that(X, L, Ug, Zo, ¥oa) satisfies the hypotheses (X1-6) and (L1-2)
below. Takev € Z, called the order at infinity. Lei( denote the space of
all global holomorphic sectiond in L with f/(z;'v0a) being bounded
in a neighbourhood ofo. Similarly let.&' denote the space of all global
holomorphic sections in L% with w/ (2%, ¥o4 ® dz.,) being bounded in

a neighbourhood ofo. ThenM and.V are both finite dimensional complex
vector spaces and the following relation holds:

Riemann Roch Formula:

dimM —dimw =1+ v — codedL, ¥oa)

The integercodedL, ¥oa), called the codegree @t, yoa), which is our
substitute for the ill-defined expressiogenugX) — degre€l)”, will be
defined in Sect. 2.4.

2.2 Hypotheses on the Riemann surface and the line bundle

Here are the hypotheses of the Theorem:

Hypotheses for the surface.

(X1) Pieces of the surfaceX \ Ug only has compact connected compo-
nents. These components are covered by relatively compact open sets
U; =U_j, j € J, called the “handles”, and one additional relatively
compact open séi,, called the “compact piecel denotes a count-
able index set with a fixpoint free involution : J — J. TheU;, U;/,

i, i’ € Jaredisjoint fortj # j’ and disjoint from the compact piece.
U; N'Ug consists of two connected componewts .

(X2) Handle coordinates.Handles may be “nondegenerate” or “degen-
erate”. In the nondegenerate casgis connected and there are two
coordinate functiongy; onU; related byzjz_; =t;,0<t; <1
being constants. In the degenerate ddseconsists of two simply
connected componenf3.; 2 V., and we have coordinate func-
tionsz.; on D, their range containing the unit disk @. Here we
setz,; = 0 onD; and defind; = 0.

Hence in both caseg;z_; = t;. We assume that in both cases
the range(z;, z_;)[U;] contains the “model handl€(z;, z,) € C2:
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(X3)

(X4)

(X5)

(X6)

212, = tj; |z1], |z2| < 1} and is contained if(z;, z2) € C% 212, = t;;
|z1], |22 < €1} for some constand;. The rangez;[V;] should con-
tain some annulua;(0) \ A.(0) and be contained in some annulus
A, (0) \ A, (0), the radii not depending of, €3 > sup tj. Here

A (s) denotes the open disk i@ with radiusr centered as.

A degenerate handle may be viewed as two disjoint disks arising from
the blow up of a double point singularity.

By shrinkingV; if necessary, we may assume further thatfoy € V;
there is a path ia;[V;] of lengthO(| z; (X) — z; (y)]) joining z; (x) and
z;(y); this is obvious whez;[V;] is an annulus.

Coordinate on the regular piece.There is a coordinate functiar

on Uo. There are pairwise disjoint disks, (s), j € J, containing
Zo[Vj]. Their centergs; : j € J} are adiscrete setid. AsetM C X

is relatively compact if and only i meets only finitely many handles
andzg[M N Ug] is bounded.

Sometimes it will be inconvenient to have

0€ z[Uo] or 0e A (sp). D)

This can be avoided by shrinking the regular piece, enlarging the
compact piece at the same time, or including some handles to the
compact piece, removing their indices fram

Coordinate transitions. The derivativedz;/dz, of the coordinate
transition has a holomorphic logarithm ovwé. There is a bounded
family of weightso; > 0, j € J, and there are scaling constants

¢; € C* such that

Z;(x) — zj(y)
sup |[————— —¢j| < |cj|O(0y),
oo |20 — 2oty ~ 1] =
X2y
d .
sup| () — ¢ | = I¢;10(0))
XeV;j
and sup, ‘LZ—ZZJZO < |¢j|710(0)).

Parabolicity. For allN cC X ande > O there isy € C°(X, [0, 1])
with x[N =1 and/, dx A xdy < e.

In fact this is a consequence of an assumption that an exhaustion func-
tion h of finite charge orX exists, say with normalisatiofi, |d « dh|

< 1. To see this, legy : R — [0, 1] be a smooth decreasing func-
tion with |g'| < ¢ and withy := go h equal 1 onN and x €
CX(X,[0,1]). Then(, dx Axdy < €| [, dxAxdh| = €] [, x dxdh|

< e [, |d«dh| < €. (For details concerning these exhaustion functions
of finite charge see [1], part 1.)

Bounds on the family of weights«; := |cj||sj|? should be bounded
from below by a positive constant. We further assumetthat O(oJ?)
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and)_;;(j0j)? < oo. Furtheroja?, [cj/c_j|, and|s;/s_j| (j € J)
should be bounded from above, and lim sjrp/sj| < 1.

Hypotheses for the line bundle.

(L1) Bundle gluing functions in the handles.For nondegenerate handles
we assume that there are holomorphic basis secttgns L over the
handlesU; = U_; with the following properties: On th¢" handle
Uj

holds, with constant®); satisfying
QiQ-j =t [Qjl =0O(o)),

and|Q;/Q_;| being bounded from above and below by positive con-
stants. For degenerate handles we assume/tiaais a basis section
overDj, but it is extended by 0 t®_;.

(L2) Bundle gluing functions between handles and the regular piec@n
V; the bundle transition functiotrja /¥oa has a continuous logarithm.
It satisfies the following asymptotic bound:

<91A¢0A)jEl 3
Via

d gjavoa
dZJ' lﬁjA

sup
Vj

< 0O(0j), sup
Vj

< O(0j).

Heregja : Vj — C* should be holomorphic and satisfy the conditions
Ext-Disk(@ja) and Ext-Disk(¥gja), defined by:

Ext-Disk( f) :<= f is a holomorphic (resp. meromorphic) function
at least defined ovev,. f o 5%, i. e. f written in the coordinate

of the regular sheet, extends to a holomorphic (resp. meromorphic)
function on a simply connected domairnif f is only meromorphic,

the extension should not have any poles outside the original domain
Zo[ Vil

Intuitively Ext-Disk(f) states that when the inner part of tfighandle
is removed and the remaining hole n&aiis filled with a disk thenf
extends to the disk. We assume

supy, |gjal supy, |gjal
_ and sup: <
i infy; |gjal i Infy_; |g-jal

)
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2.3 Example: Line bundles associated to divisors of infinite degree

Assume that the surface satisfies (X1-6).

Here is an easy but typical example for line bundlesver X that satisfy
the hypotheses (L1-2); it is a line bundle, which has a global segtian
with one zero in each handle; the space of sections of this line bundle is
isomorphic to all meromorphic functions with a pole at the zeroes of the
global section:

Let J € J denote an index set listing every handle only once. Choose
one pointg; = g-j € Uj \ Up, j € J, associated to every handle, with
1zj(0;)//Tj| being bounded from above and from below by positive con-
stants. LeQ; := z;(q;) denote the coordinates of these points. We examine
the divisorD = ZjEJ, q; of infinite degree. Intuitively, every handle (out-
side the compact piece) of the surfakehas precisely one point of the
divisor associated to it, located not too far from its center.@ @) denote
the line bundle associated to the dividoyi. e. sections i (D) are mero-
morphic functions oveX at most with poles of first order at tlag. In the
regular piecdJy we prescribe the constant basis sectign := 1.

This example is realized in terms of gluing operations by choosing all
gja = 1, and the transition functions are given by

@21_&’ %:14_ Qj :
Via z; VoA zj — Qj

so we have set

®3)

zi Q.
zj — Qj Zj— Q-
over U;. Then obviously (L1-2) are satisfied; to see this one uses (3)
and inserts Q;| < const/fj < O(0j) by (X6) and infic;infycy, |Zj(y)
- QJ| > 0.

The presence of one point of the divisor in every handle is reflected by
the nontriviality of the bundle transition functions in the handles.

Some side remarks on other examples: Wk, /%), (L2, ¥ia),
(Ls, v\2) satisfy the hypotheses (L1-2), theil; ® L, ® Ls,
YA A WS 1) satisfies (L1-2) too. This shows that the class of line
bundles satisfying (L1-2) is large enough to allow a Jacobi group operation.
Thinking of Ly = @ (Dy) with divisors Dy as above, the theorem is also
applicable to divisors with a bounded number of points per handle having
“net degree™1 per handle.

Via =

2.4 Definitions

The statement of the Riemann Roch Theorem requires the notion of func-
tions to be bounded near infinity. The codegree remains to be defined, too.
Here are the relevant definitions:
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Definition 2.2 (Point at infinity; topology of the enlarged surface)We
endowX* = X U {oo} with the following topology:
U C X% is open:<—

e if co ¢ U andU is open inX;

e Orifoo € U,U\ {oo}isopeninX and there is a compact skt ¢ X and
there are radiir; > r, > Owith z;[U; NUpgl 2 {ze C |11 < |Z] < 13}
for all except possibly a finite number of handle indigeswith the
following property:

Vxe X\U:xeKor
Jdj e J: (xeUjand|z;(X)| <riand|z_j(X)| <Tr1) .

Intuitively this means that) contains all points except possibly a compact
piece and the “inner part” of the handlgs which are separated from the
outside ofU; by annuli with ratios of radii bounded (uniformly ijj from
below.

Definition 2.3 (Codegree)Let L be a line bundle oveK that satisfies the
hypotheses (L1-2). Associate Xoa compactRiemann surfac& by the
following procedure:

e Remove the inner pat; \ Ug of all handles except possibly a finite
number of them;

e glue disks to the remaining holes with the identity map as coordinate
transition fromzy to the disk coordinate; this means that the regular
sheet is extended to include the “filled” holes;

e insert one new pointo at infinity of the regular sheet, takimg, = 1/z
as coordinate neato.

We extend the basis sectigia of L over the regular sheet in a trivial
manner to the filled holes, identifyingoa|V; with the sectiorl|V; in the
trivial line bundle over the disk.

Similarly, over an open neighbourhoddl,, of co, we glue the trivial
line bundleU,, x C to L over Xp \ {oo} by identifying the unit sectioh
overU \ {oo} with ¥ga in L overUy, \ {oo}. The resulting line bundle is
called Ly(0a) Or —when there is no risk of confusion, which basis section
was taken neaso — simplyL .. We define the codegree lotby:

codedL, Yoa) := genugXpc) — dedgLpc).

Here deg Ly, denotes the Chern number bfy, i. e. the degree of any
divisor defining the isomorphism classlaf..

To be sure that the the codegree is well defined, i. e. does not depend on the
choice of the handles which are includedg, if only these are sufficiently
many, we observe the following:

e On the one hand, for every additional nondegenerate hamdiat
is included inXy, the genus ofXy. increases by 1, while degenerate
handles do not change the genus.
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e On the other hand, using the hypotheses (L1-2) for the transition func-
tions, we see that the Chern numbelLgf also increases by 1 when an
additional nondegenerate handllg is included inXpc, while degener-
ate handles do not change the Chern number. The increase of the Chern
number by 1 reflects that we have the winding number 1 of the transition
functionyja/¥_ja = const z;, as described by (L1), around O over the
cyclea; = {x e Uj : |z;(x)|2 =t;}.

2.5 Symmetry with respect to dualisation

As basis sections ib'° we specifyyjs = 1//j_/3il' ® dzj, Yo = Yoa ® dz.

Usingdz_; = —(tj/zjz) dz; andQ;Q_; = t;, we get the dualised versions
of the hypotheses (L1), (L2):
Q_.
(L1Y) v_js = TJWJB,
i

(L2Y) % = (14 O(0j))gjg With gjg = Cj/gja, and

0B
d Via dZo)

sup|—  Ci—

P dz (QJAWOA Vdz

Vj

d gjsvos

(L2),(X4)
= O(Oj) .
de lﬁjB

sup
Vj

Using (X4) and the bound dt; /c_;| in (X6) we have as well:

supy, [gjel
i infy,; |9+jsl

Ext-Disk(ngl) holds, too. Hence the situation of the Riemann Roch Theorem

is indeed completely symmetric with respect to the exchdnge L0,
A < B.

3 Proof of the Theorem

The proof of the Riemann Roch Theorem consists of several steps: In
Sect. 3.1 we show that it suffices to consider the order —1 at infin-

ity. Next we concentrate on the Fredholm theory of the Cauchy Riemann
operator. To get appropriate weighted and Sobolev norms on the space

of holomorphic sections, a volume form ¢hand Hermitian metrics oh

and related bundles are introduced in Sect. 3.2.1, but their explicit construc-
tion will be postponed to Sect. 3.3. We establish hypotheses on an integral
kernel which approximates the Cauchy kernel in Sect. 3.2.2. They will
guarantee that the corresponding integral operator is a Fredholm operator,
and we obtain conditions for the Cauchy Riemann operator to be invertible
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(Sect. 3.2.3). These conditions turn out to be fulfilled when a sufficiently
large compact piece is removed and is replaced by a disk. The explicit
construction of the integral kernel is given in Sect. 3.3.2. This requires the
introduction of an interpolation operator through handles, which allows us
to interpolate the Cauchy kernel on the regular sheet almost holomorphi-
cally through handles. The change of the index of the Cauchy Riemann
operator when the compact piece is removed and replaced by a simpler
piece is examined in Sect. 3.4. It allows us by cutting and gluing operations
to split the infinite genus Riemann surface that we started with into simpler
pieces. As the last step in the proof of the theorem, we derive pointwise
asymptotic bounds near infinity froir? bounds in Sect. 3.5.

3.1 Reducing the order at infinity io= —1

The proof of the Riemann Roch Theorem is most easily given for the case
v = —1. The following observation shows that we can reduce the general
case to this special situation:

On the left hand side of the Riemann Roch Formula, the replacement of
v by —1 is compensated by the following redefinition of the basis sections:

Yon = Yoa- 25, 4)
Vos = Vos - 25"V . %)

We assume that the case (1) in (X3) is excluded. Then one uses the bounds
on|rj/sj| and on|s;/s_;| in (X6) to see

Zo(X)
sup su —| < o0,
ij,yEU()ng ZO(Y)
which implies the bound (2) for
~ . —wn,  _ Via .
Oja:=2 gia=——"-(1+ 0(0))).
Yon

Thereforeg;, still fulfills (L2).
The right hand side of the Riemann Roch Formula is reduced to the case
v = —1 by the following lemma:

Lemma 3.1 (Rescaling at infinity)

a) Let®((v+1)o0) denote the holomorphic line bundle ov&s, associated
to the divisor that assigns order+ 1 to oo but O to all other points.
ThenLpce(¥pa) = Loc(Poa) ® O((v + 1)00).

b) —codedL, z5 yoa ) = 1+ v — codedL, Yon).
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Proof:

401

a) Thiscan be read offimmediately from the transition maps for the bundles
Lbc(¥oa)s Lbc(¥oa) @andO ((v+1)oo) nearco. Each row in the following
tabular shows which sections are glued together:

. section over
line bundle
the regular she

J

section ovel
in the trivial line bundl

)

Loc(¥gn) (25 Yoain L)
Lbc(¥on) (Yoa in L)
Lbc(¥oa) (Yoa in L)

O((v + 1)o0) (unlt section 1

in the trivial line bundle)

(unit section 1)
(sectionz’}1)
(unit section 1)

H 1
(sectionzit)

b) This is an immediate consequence of a), when we use

deg[Loc(Yoa) ® O((v + 1)oo)] = v + 1+ degLpc(Yon) -

O

For the rest of the proof of the Riemann Roch Theorem, we assume that

v = —1, writing Yo instead ofyg,.

3.2 Fredholm theory for the Cauchy—Riemann operator

In this section we establish quite general functional analytic considerations.

3.2.1 Basic notions

We endowL with a Hermitian metrid - |o. We fix a volume formQ on

X with a finite total volume:fX Q < oo; a specific choice of2 will be
given later. Associated with, the following line bundles, endowed with
Hermitian metrics, will be important for us: the bundle of complex valued
p + g—forms overX of the type(p, q) is denoted by¢ P-4, and for any line

bundleF we setFP9 = F @ &P4,

space

Line bundle gLl gLo0 g01 L [10 | [L1 ] o1

Hermitian

metric o 2 12 Fla | e | g | g

;gggf;gcﬂons — 1115 115 Fla | Il | 5 | Il
2 H v o

L< — Hilbert _ L2(X, €19 | L2(X, €01 A B A B
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The norms on global sections are obtained by integrating the squared Her-
mitian metrics with respect to the volume form, e. g.

||f||i=f Ry
X

A= {f | fisaglobal sectionit, |||, < oo} .

Specific choices for the Hermitian metrics will be given in a later section;

the metrics should be mutually compatible in the following sense:

o lal, = |al2, laBla = |al2lBl2, fora € €10, B e €2, aB :=an B e
gLt

o lalalBls=leBlafora e Ly, pelit apcel?h

o lalg|Blg = laBlofora € [} B e LIt ap € &1L,

o lafalBle =laBl2fora e Ly, p e L}l apc&ll.

By these compatibility relations for the various Hermitian metrics, we may

view (A, A) and alsa(B, B) as dual pairs of Hilbert spaces via the bilinear
forms

@ B) = (@ f) :=/Xaﬂe<C.

Finally, for f € (X, L), let|| f1 := || fI5+]af Hzé,withﬁ D CR(X, L)
— CX(X, L%1) denoting the Cauchy-Riemann operator. Mebe the
completion ofC® (X, L) with respect to the norrit-||y,. Then the inclusion

mapi : @°(X, L) —> A and the Cauchy—Riemann operafoobviously
extend to bounded linear operatoys: V— A and dy :V — B.

Lemma 3.2 (Properties of the inclusionv — A)
. . = 2
i) Foreveryf eV, |f§=IlivflZ+]ovf|s
i) 1y Is injective; its image is dense .

Proof:

i) Thisis obvious forf € C°(X, L), which is dense itV, and both sides
are continuous functions df € V.

ii) Let f e ker(iy). ChooseC®(X, L) 5 f, =3 fin V. Thendf, —>
dy f in B, therefore we have for all test sectiopg (X, L9 C B:

(g,5Vf>“<i°/ggfn:f 239 = (30, o) .
X X

Here, Stokes theorem is applicable singeés compactly supported.

n—o00

Now dg € C°(X, L) < Aimplies |(3g, fo)| < |ag| 41l falla — O,
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n—oo .

where we usedf, = ivf, — iyf = 0 in A Consequently
_ _ . d

(9.9v f) =0, and therefore), f = 0, sinceg € (X, L9 egnseB.

Together withiy f = 0 we getf = 0 by i). In addition,iyV D

dense . . .
CX(X,L) <€ A, thereforeyV is dense inA. O

We therefore view as a dense subsetAfviaiy. The relation/ ga f =
[ fagforg e (X, L19), f € X (X, L) together withg € €2°(X, L10)
d
egnseB imply:
Lemma 3.3 The dual operatod,, : B — V of 3y : V — B equals the
bounded extension of the Cauchy—Riemann oper@toe®(X, L10) —
CX(X, L1Y). O

It may be helpful to keep the following diagram in mind:

overL overL%1

2 v ~
A «<— V— B
X X

=V

v c v dy
A — V «— B
over[ 11 over [ 10

3.2.2 Hypotheses on the integral kernel

Our next goal is to establish sufficient conditionsdorto be a Fredholm op-
erator. As a quasiinverse, we use an integral opegater fyex gyKE, y).

We first state some hypotheses on the integral kdfneh a second step,
we have to check that an integral kernel satisfying these hypotheses exists.

Hypotheses K

(K1) K isa section in the external tensor product buridiex x L -° (fibre
Ly ® L}%over(x,y) € X x X). K is defined and®> outside the
diagonal.

(K2) (K approximates the Cauchy kernel.)X can be covered with open
setsU which are domains of coordinates U — C, and there are
basis sectiona& o z € O (U, L) so that

1
27i 21— 2o
has ac*—extension tdJ x U (including the diagonal). Herz, z; :

U x U — C denote the coordinates dhx U, andw! € O (U, [)
is the basis section dual ta

w(z1) ® 0 H(2) dz
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To state the last hypotheses (K3-4) #r we define Hermitian metrics on
the external tensor products:

|- lag: L ®xxx [Y0— R,
| lgg: L' ®xxx [0 >R,
| lai: L®xxx LM —>R
by
le ® Blag = lelalBle . (@€ Ly, Bel}),
la ® Blgg = lalglBle, (@e Ll Be t;,o) ’
0 ® Blag = lelalBlg . (@ely, Bell?.
Then we suppose
(K3) (Both L>®~L-norms of K are finite.)

ki := sup [K(X, ¥) a2y < 00,
xeX JyeX

kz := sup [K(X, ¥)|ag2x < 00
yeX JxeX

(K4) (Finiteness of Hilbert—Schmidt norms)

h2 = // 0K (X, V)3, QxQy < 00,
XY

h3 = /f 0y K (X, Y)[3 422y < 00 .
XY

3.2.3 Consequences of the hypotheses K
As a first consequence, we get

Lemma 3.4 K. : C(X,L%) — e>(X,L), g — fyex g(Y)K(,y) is
well defined.

Proof: g(y) Lg’,’l, KX, y) e Ly ® Ii%;o impliesg(y)K(x, y) € Ly ® &L%,
therefore

g(YK(X,y) € Lx
yeX
is well defined. To check that it depends smoothlykoih suffices to assume
that supm is contained in the domaid of a coordinate, using a partition
of unity. The integral splits fox € U into an integral with a®*°—kernel
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and a convolution integral with the Cauchy kernel because of (K2); and for
X ¢ suppg, the integral kerneK(x, y), y € suppg, is C*°. O

The next lemma follows from the standard argument that shdwsperator
norms being bounded Hy>*—L'-norms:

Lemma 3.5 (L2—operator norms)

a) LetF be alL ®xxx L1—valued (respL ®xxx L!—valued) integral
kernel with finiteL *°—L1—norms, i. e.

c1=supf|F<x, Y lacSy < 00,

X y

C = SUP/ [F(X, ¥)|acf2x < 00
y X

with the notationC = B (resp.C = A). LetF : g fy F(-, y)g(y) be
the corresponding integral operatag,being a square integrable section
in L% (resp.L). Then theL2—operator norm off is bounded by/c;C;.

b) X extends to a bounded linear map, : B — A. Its operator norm
is bounded by/kiks. O

Definition 3.6 (Deviation of K from holomorphy)

) LetHg € C(X x X, Lo ® L9 be the sectiomg(x, y) := 9,K(X, Y)
for x # vy, using (K2) extended to the diagonal.

i) Similarly let Ha € (X x X,L ® LX) be given byHa(x,y) :=
—dyK(X, y).

The hypothesis (K4) bounds the Hilbert—Schmidt norm of these two integral
kernels. Therefore we get

Lemma 3.7 (Hilbert-Schmidt property) The maps#s : B — B, g —
fy g(y)He(-,y) and #a : A — A g+ fy g(y)Ha(:, y) are well defined
Hilbert—Schmidt operators with the Hilbert—Schmidt noftis||,s = hg,
| #allns = ha.

Proof/Referenceg(y) € L%, Hg(x, y) € L2'® LL%impliesg(y) Hg(x, y)
e L¥'@eltandf(y) € Ly, Ha(x. ) € Ly® LL* implies f(y)Ha(x. y) €
Ly ® 8y11 The Hilbert—Schmidt property of¢s and #g follows in case
of trivial line bundles and weight functions 1 for the Hermitian metrics

e. g. from [13], Theorem VI.23, and the proof is similar for arbitrary line
bundles. O

Next we shall see thak. is a quasiinverse af up to a Hilbert—Schmidt
operator.
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Lemma 3.8 (A parametrix for the Cauchy—Riemann operator —C*°-
version)

) For g e C(X, L%, f = Kc.ge C®(X, L), we have
9f =g+ Hege C(X, L%H C B.

i) For f € G(X,L),g=0f € (X, L%}, there holds
Keg=f+Haf € C(X,L)NA.

Proof:

i) We may cutg into several pieces using a partition of unity; therefore we
assume Ww. |. 0. g. that suggs contained in the domain of a coordinate
functionx : U — C. To calculated f(x) we have to distinguish two
cases:

Case 1if x ¢ suppg, we differentiate under the integral and get
af0) = | 9(y)axK(x,y) = Heg(X) = g(X) + Hag(X) .
yeU
Case 2iIf x € U, we use that
1
27i Z, — 2

extends to a®>*—sectionK’ over U x U by (K2), andHg(x,y) =
0xK’(X, y). Therefore

w(z1) ® 0 1(2) dz

o 11 .
d f(x) = ox g(y)Z_nimw(z(x)) ® o (2(y)) dz(y) + HBY(X)
yeU

holds. The first summand equaéx) since the Cauchy kernel is a fun-
damental solution of the Cauchy—Riemann operator.

i)y For every test sectioh € €2°(X, L) we have
(h, Kog) = / h(x) / FHHKK Y)
x y
= /(5f)(Y)/h(X)K(X, y)
y X

sigkes_ / ()3, / hOOK(X, ) .
y X

Similarly as in i) we see that

dy f h()K(x, y) = —h(y) — / hOOHA(X, ) .
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(The first minus sign arises from the reversed roleg(®f, z(y) in the
Cauchy kernel.) Therefore we get

(h, %) = (h. ) +/ f(y)/h(x)HA<x, y) = (h, )+ (h, #af) .
y X

. . . . . o dense
which implies the assertion, sinbec C°(X, L1Y) < A o

Corollary 3.9 (Bounds for 3.K; — C*-version) For g € C (X, [01)
f = Kcge (X, L) N Awe have|d f Hé < (@ +hg) gl
Proof: |3 f | 5 = g+ #&9llg < lI9lls + [ #allusllglls- O

Even though we know fog € C°(X, L%Y) bothK.g € @*(X,L)N A
andd.X.g € B, we have not yet showsk.g € V. To ensure this, we have
to approximateX.g by sections with compact support:

Lemma 3.10 (Extension of the integral operator toB)

) ge XX, L%) impliesX.g e V.

i) Ke:CX(X, L% — V extends to a bounded linear mép: B — V.
Proof:

i) For f = K.g, we only have to show:

Ve>03he (X, L): If —hiZ+[acf —h|% <e.

ChooseN cc X large enough so that

€ €

flaQ < = 2%
NCI A2 =3, Ncla E2=3- (6)
and by (X5) ax : X — [0, 1], xIN = 1, x € €°(X) in such a way that
= 2 €
[l = & - @)

whereR := 8kZ sup,. |g(y)|2é ¥ 5. We use a cutoff version := x f
of f. Then||f —h|Z = lI(1 -0 fl4 < [\ | fIA2 < $ and

act _h)||§:/NC|(_5X)f L - paff
<2 [ (BrBItR+E13)e
<2 (xit+10fi)

(6) — €
< 2 sup| f(x)li/ 101582 + 2
NC

XxeN¢

(7 2¢ €
< = sup|f(X)|Z+ = .
R SWRIT0IaT 7

(8)



408 F. Merkl

We estimate:
sup| f(X)[a < sup gYKX,y)
xeN¢ xeX | JyeX A

1
R\ 2
< sup [9(Y) gl K(X, Y)| a2y < kysuplg(y)|g = (g) .

xeX JyeX yeX

Ifwe insertthisin (8), we gafa(f — h)||zé < £+<, thereforg| f — h[53+
= 2
fict — ] <e. )
i) Forge eX(X, L% we getK.g e C*(X, L) NV, therefored X.g =
v K0 and

_ > 39,35
1Kl = IKQlR + 0Ky = kike Ilgllzé + (1+hg)? ||gI|2E3; :

%

. dense
The assertion follows fron®°(X, L%Y) < B. ]

Lemma 3.8 and Lemma 3.10 imply

Corollary 3.11 9y X = idg + Hs. o

Lemma 3.12 (Restriction toV) #, : A — A has a bounded restric-
tion #y : V — V, its operator norm satisfie# | < h, whereh :=
max{ha, hg}.

Proof: It suffices to showy f e C°(X, L) : Haf eV, [[Haflly <h|fly.
To see this, we calculate

Hat LKA — f=Koyf—feV,

w
N

because offy : V — B and X : B — V. Moreover | #af|?
_ 2 3.7
I HAT %+ || ovHaf |5 ButlHaflla < hallflla and

[Bveat g 2 [3y(xBy ~idv) ] g
= |@vX —idg)dy f Hé

Bty 15 = he [3v 1

— 3.2
together lead tjJ¢a f (15 < h% [ f1I5 +hZ [0y f HZB < h?|f|2. o

Lemma 3.13 X dy = idy + H .
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Proof: Both sides are bounded operatdfs— V, and for f € C°(X, L)
d _

egnsev we getKay f = f + F6, f by Lemma 3.8 ii). O
Lemma 3.14 #y : V — V is a compact operator.

Proof: Let (f,,) be a bounded sequence\in
Iy Hy = 0y Kdy — dy = Hgdy

is a compact operator sindg is bounded and# is compact as a conse-
guence of Lemma 3.7. We choose a subsequence (again ¢&{lgduch
that (9y #Hy f,) converges inB. (f,), viewed as a sequence M2 V,is
bounded and¢s : A — Ais a compact operator by Lemma 3.7. Hence for
some subsequence (still callet})), (#a fn) converges iMA. Using

— 2
Iy (fo = f)II§ = I HACf — T) 14 + [Ov Ity (fo = f) |5

we find out that(##\, f,,) is a Cauchy sequence \h, therefore convergent.
]

Summarising the above we end up with

Theorem 3.15 (Fredholm property for the Cauchy—Riemann operator)
The hypothesek imply thatdy : V — B is a Fredholm operator. It has
a quasiinversex : B — V such that#, = Kdy — idy has the operator
norm || #Hyv| < maxha, hg} and is a compact operatofitg = dy K — idg
has the operator normi#g|| = hg and is a Hilbert—Schmidt operator.c0

Corollary 3.16 (Invertibility of the Cauchy—Riemann operator) If in
additionh, < 1andhg < 1, thendy : V — B has a bounded inverse.

Proof: The additional hypotheses guarantee the convergence of the von
Neumann series

(Ko) =D (=3)" and @yK) =) (—Hs)";
n=0 n=0

in this casey (K (v K) 1) = idg and ((Kdyv)1K)dy = idy. O
Theorem 3.15 and Lemma 3.3 immediately imply:

Corollary 3.17 (Dualised Cauchy—Riemann operator)

) 3 CX(X, L1 — (X, L+ extends to a bounded operatd
B— V. _
i) dg is the dual operator t@y. In particular, it is a Fredholm operator
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As a consequence, we remark:

Proposition 3.18 (Serre duality)
index(@g : B — V) = —index(@y : V — B).
There are canonical nondegenerate bilinear forms

(O(X,L)NV) x cokerdg — C ,
(O(X, L*% N B) x cokerdy — C .

Proof: By Weyl's lemma, kefy € O(X, L) and kedg € O(X, L19).
Since g and 3y are Fredholm operators, range < V is closed and
rangedy is closed too, sa(X,L) NV = kerdy = (cokerdg)” and
O(X, [19 N B = kerdg = (cokerdy)". O

This formulation of Serre duality does not look symmetric under the ex-

changeL < L% A « B, since we have a Sobolev spadeon one
side, but aL?>—Hilbert spaceB on the other side, and we have not proved
OX,L)y NV = O(X,L) N Ain the preceding. Note that this equation
states that every holomorphice A can be approximated ¥ by sections
with compact support. It will turn out to be a surprising consequence of the
Riemann—Roch Theorem.

3.3 Construction of a integral kernel

3.3.1 Specification of Hermitian metrics and a volume form

We now specify the Hermitian metrids- |4 and | - |g and the volume
form Q. A change by bounded factors of the weights chosen is irrelevant
for our purposes, so we even defif®e | - | and| - |g only modulo an
equivalence relation-, where f ~ g means tha% and% are uniformly

bounded by a constant not depending on the index of a handle.

The definitions are given separately for the various pieces of the surface.
Of course, we can patch the pieces together by using a partition of unity.
We have to ensure the compatibility relations stated in Sect. 3.2.1.

e On the compact piece, choose any continuous volume formnd con-
tinuous Hermitian metrics- |, | - |g compatible with2. Two choices
surely agree moduler on compact sets.

e On the regular sheet, we take, with the abbreviatién := d Rez A
dimz,

outside
a compact
piece
~

Q~ (1+ |20 Td?z |2o) ™ d?20 .
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This choice is motivated by the standard volume form on the Riemann
sphere. The choice ¢t determines the Hermitian metric on one—forms:

outside
a compact
piece 2

dzol2 ~ (142092 =7 |z

We further take

outside
a compact
piece

1
[Yoala ~ (L4 |z0hd '~ |z,

outside
a compact
piece

1
[Vosle ~ (L+|20|H7 '~ |zo] .

e Onthej™ handle, we take for nondegenerate handles

. |Zj|
[Viala ~ a; mln{l,— , 9)
JAIA JA |Qj|
. |Zj|
[¥igle ~ ajgmin 1, —— (10)
Q-
with constants
(X6),(2)
ajp = 19ja(P)sj|  ~  a_ja, (11)
ajg = [0 (Pj)sj| ~ a_jg , (12)

with any pointP; in V;j. They are related byjaajs (k2" Icillsi|? = «;j.

The bounds (2) in (L2) guarantee that the definitionegf and «jg
depends only up to bounded factors on the choic®;ofTo define2
consistently with - |5 and| - |g we now have to take

PN A1 1zl
Q’vozj minqyl, — d<z;, |dzjl; ~ajmingl, ——
1Qjl 1Qjl

since we needyjala|visl3d = |dzj|3 ~ |d?zj|q. We used|Qj| ~
|Q_;| from (L1). For degenerate handles, we simply tRkg|a ~ oja,
[Wijala ~ ajg, @ ~ o ?d?z; on D;.

This finishes the choice of the volume form and the Hermitian metrics.

Remarks:The definition is indeed symmetric under the reversion of the
handlesj < —j. The different expressions fae, | - |a , | - |s given in

the regular sheet and the handles coincide in the common ddvgairl ;

up to a bounded factor. This is a consequence of the bounds on the bundle
transition functions described in (L1-2).
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3.3.2 Construction of the integral kernKl

In this section we assume that the compact piece is empty; it will be glued
to the regular sheet in a later sectighwill be defined by patching several
pieces together:

Ky = D xa(0xo(y)Kan(X, Y)
a,be{0,h}

with appropriately choseik,,. Here we choose once and for allca®—
partition of unity (xo, xn = Zjd, xj) compatible with the open cover
(Uo, Un = Uy Uj); I’ € J denotes an index set listing every handle only
once. More preciselyyj = x—j, suppxj < Uj, is chosen ag; = p(|z;)

on V; with a @*—functionp : R* — [0, 1] that equals O resp. 1 for small
resp. large arguments. We remark for repeated future use:

Lemma 3.19 (A bound for the cutoff functions)
sup, |dx;l2 < suplp’l sup,, 1dzj|2 < O(;) . O

We now construct the piecds,, of K:
Koo is simply defined to be the Cauchy kernel

:il//OA(X)‘/fOB(y) :il/fOA(X) dzy(y)
27 2o(X) — Zo(y) 27t Yoaly) Zo(X) — Zo(Y)

Koo(X, Y) :

We also define a Cauchy kernel in the handles (symmetric under—j):
Forx, y € U; (nondegenerate case)xry € D; (degenerate case) we set

1 ya0  dz(y)
2l Yia(y) zj(X) — Zj(y)
For x, y in different handles or (in the degenerate case) D, y € D_;

we takeCy (X, y) := 0. Unfortunately,Cy, is not close enough t&qg to be
suitable directly a¥n, mainly for two reasons:

Ch(x, y) :=

e In general,g;a is not a constant, giving rise to error terms larger than
O(0j) from the basis changgoa ~ ¥ja.

e |Koo(X, y)|agisnotcloseto zerofox € Vj,y € V_j, while |Cn(X, Y)|aB
is very small there.

However,Cy, plays an essential role in the definition of the following “oper-
ation of interpolation through handles; which will allow us to interpolate
Koo betweenV; andV_;:

Definition 3.20 (Interpolation through handles) For meromorphic sec-
tions f in L overV; U V_; = Ug N U; with at most a finite number of
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poles of order at mogtandfUoﬁuj | f1AQ2 < oo we define the “interpolated
section” I f in L over the whole handl&; by

100 = f(X) x0(X) — / f(2)Cn(x, 2) A dy;(2)
zeVjUV_j
+2mi Y x(@(resFCh(x. 2) .

zeVjuUV_j

The analogous definition is taken to defirfefor sectionsf overL 10, with
reversed roles ofA <~ B. The residue off is a well defined element of

(LI = L, ® (619, so(res f)Ch(x, 2) € Ly, as required.

The following lemma states th&, has finiteL *°~L-norms, which shows
us thatl f is well defined.

Lemma 3.21 (Bounds forC;,) The expressions
«j sup ICh(X, YAy and oj sup ICh(X, V)| ABS2x
XeU; yeU;j yeU; xeUj

are uniformly bounded as functions jpfln the case of degenerate handles,
U; may be replaced bi;.

We only give theProof for nondegenerate handles. For degenerate handles
it is in fact simpler, since we can examig andD_; separately.

Because of symmetry, we may only consider the first expression. Fix
x € U;. Then

e >1zi(0| =/ or e >z (0 =/t

by the symmetryj <~ —j we may assume the first case. We also split the
y—integral into two pieces

W, ={yeUj:e>Iz(yl >4} and
sz{YEUj2612|Z,j(y)|>\/E} :
The first piece is best estimated in the coordirzgte

flCh(X, Y)|ABQy’\“/ |1//jA(X)|A|1//jB(Y)|Baj_2dzzj(y)
W, W,

1Zj(X) — Zj(Y)|

where we used polar coordinates arounck) and

WVia(X)|a ~aja, ViV ~ajp .
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The second piece is better estimated in the coordingteT he calculation is
almost the same: using polar coordinates again and becauge gtx)| o <
O(aja), 1V—js(Y)|B ~ ajg We get

/|Ch(x, Y)|ABQy'\“f ll/f*jA(X)lAW/*jB(y)lBaj_zdzz,j(y)
W

1Z_j(X) —z_j(y)|

W_

2¢1

2mr dr
< oy [ FLE ot
0

r

Summing up the two pieces, the assertion follows. O
As a consequence of the preceding lemma, we get:

Lemma 3.22 (Bounds for the interpolation operator)

a) (L'-bound.)There is a constan¥1, independent of, such that

/l'flAQSM / 1FlaQ+e" > [resiflsaua

Uj U;NUo acUjNUp

Here| - | qua denotes the Hermitian metric aiL>%)" dual to| - |g.

b) (L*°-L'—bound for parameter dependent sections ffor a sufficiently
large constantM > O (independent of) the following holds: assume
that f is a holomorphic section ib ®x,.x L0 overVyj x U,U C X
open. Then for any positive measifteon U:

sup [ [1f(x, y)[as(y) <M sup [ [f(x, Y)]asR(Y) .
XeU; XeVjUV_j
yeU yeU
Here I; means that the interpolation operator is applied to the first
argument with fixed second argument
b’) (Pointwise bound — simplified version ofb)) Let M be the constant
of b). If f is a holomorphic section i overV,;, thensuij [1fla <

M supyuv_; | fla.
c) (L°-bound.) There is a constanM, independent of, such that the
following holds: if f is a holomorphic section ih overV; U V_j, then

/||f|§\s2§|v|2f|f|§\sz.
Uj iV:tj

In the case of degenerate handles we can simplify this by replaging
by Dj on the left hand side an}", /,, by /, on the right hand side.
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Proof:

a) We estimate the three terms in the definition bf

For the first termf [ fxolaf2 < / | f|AL2.
Uj U;jnUo
The second term is bounded by

/ f f(2)Ch (X, 2) Adyj(2)| S

XeUj |zeVx;j

A
< | sup /|Ch(X, )| aBS2x /lf(Z)lAQz sup |dx;j (2)2 -

ZeV4j zeVyj
XeU; €V j

Inserting Lemma 3.19 and Lemma 3.21 we get

f f f(z2)Ch(X,2) Adxj(2)| Qx < const / | 1(2)| a2 .

xeUj |zeVjUV_j A zeVjuV_j

Finally for the third term, using Lemma 3.21 again:

/

xeUj

Qx
A

X (%) Y _(res )Ch(x, 2)

§Z|re§f|B,dual‘ f ICh(X, 2)| ABS2x
Z

XeU;

< const: aj‘l Z Ires f|g.duat
z

Summing up the three terms, the result follows.
b) Similarly to a) we estimate the three terms in the definitioh, ¢f

First term:
sup [ (X, Yxo(¥)|as(y) < sup | (X, V)| aB2(Y) -
XEUj XEVJ‘UV,J'

yeU yeU
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For the second summand, we get:

sup / H(z Y)Cn(x. 2 Adx; @] S(y)

yeU |zeVyj AB

< | sup / 112, )| as2(y)
yeU

zeVyj

X SUP/ ICh(X, Y)|aBR22 | Sup [dx;(2)]2

xeUj zeVyj
zeVyj

3.21 ~
< const- sup | |f(z, y)|asR2(Y) .
ZeVij
yeU

The third term is missing sincé has no poles by assumption.

Summing up, we get the result b).

b) This may be viewed as the special case of b) wieeis supported in
one pointy; the one dimensional complex vector spalgﬁp may be
identified withC.

c) We omit the simpler case of degenerate handles.

For the first summand in the definition bf we again get:
[1eia=Y [ifze.
Uj + Vij

The third summand in the definition bf vanishes again, and the second
summand is an evaluation of the integral operator with integral kernel
Fj (X, 20 = Cn(X, 2) A dy;(2) to the sectionf. The twoL1-L>°—norms

of F; are bounded by Lemma 3.19 and Lemma 3.21:

supsup ICh0 Y) A it () gy < 09,
: Xeu'yevjuv,J
supsup [Ch(X, ¥) A dxj (W asRx < 00 .
j yeUj
XeVjuV_j

Hence the result follows from Lemma 3.5 a). O
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Next, we shall show thakf is meromorphic — although it is defined by
using a partition of unity:

Letay, ..., a, be the poles off. First assume that € V; U V_;. Cut
small disksAy, (k = 1, ..., n)and A, out arounday, x respectively, and
call the resulting domain of integratid® = (V; U V_j) \ Ax \ Uy Ak. By
Stokes theorem,

/ f(2)Ch(X, 2) Adyj(2) = (13)
zeG
- f d(F(2)Ch(x. Dx; ()
zeG
— _Z f f(2)Ch(x, 2)xj(2) + f f(2Cn(X, 2 x;(2)
+ zeivy; 2€9AxUUy 9k
rai“;‘)_z f f(2)Ch(x, 2)
* inner égundary
OfVij

+27i Y (@0 (res, FCh(x, &) — F0x; (0 .
k

where we used rg€h (X, -) = —1/(2ni) € & = Ly® L. Of course the last
term— f(x) x; (X) is missing in the remaining case that U; \ (V; UV_)).
This leads to:

Lemma 3.23 (Contour integral form of the interpolation operator)
a) The interpolation operator may be expressed by

0 ifxé¢Vy,
10 =>" f f(2)Ch(x, 2) + . # Va
" f(x) if x e Vyj .
inner lz)gundary
of V:Ej

Consequently f is a meromorphic function anif — f is holomorphic.
b) If f extends to a holomorphic section on the whole harndilethen
If = f.

Proof:
a) This is an immediate consequence of the above calculation and of
xo=0 overU;\ (V;UV_)).

b) We use a) and Cauchy’s formula: The integrals over the inner boundary
of V. in a) cancel. i



418 F. Merkl

We are going to justify the name “interpolation 6fthrough the handle”
for | f for sectionsf that extend to disks as stated by Ext-Digki{oa):

We replace all handles by degenerate handles with affine linear transition
functions, just as in the definition of the codegree. D@ﬁ denote the two
connected components of the degenerate handle repldginge glue the
trivial line bundle overDSEj to the line bundleL over Uy by identifying

the unit section 1=: v, in the trivial line bundle oveDg’Ej with gjavoa
overVy;. LetCo denote the analogue @, over the modified surface, i. e.

1 Y0 dz(y) . o
Co(X, y) = — fx,ye DO, 14
o(X, y) anﬁgomuy—mw)' X,y € (14)

Co(x, y) = Oforx, yindifferent connected components. The postulate (L2)
guarantees that Ext-Disigfl) holds for every handle. Let’ f denotel f
for the modified surface. Here is Lemma 3.23b) for the modification:

Lemma 3.24 Ext-Disk( f/yoa) = 1°f = f. i

As a consequence we conclude:

Lemma 3.25 (Interpolation through handles — Bounds for the error
term) Ext-Disk( f/vga) implies

SUpII — fla < 00)a? | [ 171a2 40" Y Ires Flou
Vij z
VjuV_j

A similar estimate holds for 1-°~valued sections with reversed roles of
A < B.

Proof:
() — F)|a = [1T(X) — 1°f(X)|a =
=Mfﬂmqma—%mmAWﬂ)

z

+ 27 Z X (Dres T (Ch(x, 2) — Co(x, 2))

A
< sup|Ch(X, 2) — Co(X, 2)|aB
VA

x| supidrsl [ 1f1a2+ 27 Y Ires Fleaa
z

VjUV_j z

Using Lemma 3.19 the result follows from the following lemma. O
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Lemma 3.26 (Coordinate change for the Cauchy kernel)

sup |Ch — Colas = aj O(0;j) .
(VJ'UV,J')2

Proof: Letx, y € (Vj U V_j)2. We have two cases to distinguish.
Case 1:x, y belong to different components, say V;, y € V_;. Then

W;A(X)lAWJB(y)lB
[2;(X) — Z;(y)|

ICh(X, Y) = Co(X, V)aB = ICh(X, Y)|aB

Z.
< consio; e conspa; t ‘| ~ aj,/tj = aj O(0)) .

We used (9), (10), (X2) and thi; (x) — z; (y)| can be bounded from below
by a positive constant not dependingjoi he boundedness [ (x)—z; (y)|

follows from the inequality3 > sup tj in (X2).

Remark: This harmless looking estimate is the crucial point where the
nontriviality of the transition functions for the basis sections enters: it is
essential thalyjg|g is very small ovel._;.

Case 2:x, y belong to the same component, say < Vj. Then writing
S:= Yoa/¥ia, We get

ICh(X. Y) — Co(X. Y) g = (15)
1200 —z(y) Sy 2000 — 2oy | A IAIVIBLY B
N 1-— % L) S(X) 1 dzJ (y) ‘
Zj(X) — z;(y) s(y) \ zj(X) — z;(y) ZO(X) Zo(y)

To estimate the first summand in the last sum, we note
s(y)

S(X) X ds (L2) ds
‘ p(/——l_ —||dz]|) -
y S dZJ'
(L2).(X2)

— 1= < exp(/ 1+ O(0))) ‘
y
=" exp[O(0))|zj(x) — Zj()|] — 1 = O©0))]Z;(X) — Z;(y)| -

Here we have used thig; (x) — z;(y)| is bounded, so the Taylor expansion
of exp is justified; the boundedness is a consequence of (X2). This implies
the desired estimate for the first summand in (15):

. (1 S(X))‘ = 0(0)) .
Z;(x) — zj(y) s(y)
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To estimate the second summand in (15), we note that Taylor expansion
with Lagrange error terms yields:

Yy 2
[z — 2j(0) TR (1) dz, <t)‘
X ]

1 2o |
Zi(¥) —zj(y) 2000 —Zo(Y) | 12j(X) — Zj(N1Zo(X) — Zo(Y)]
O(Izj(y) — z(X)]) sup, _2220 X Pzo\ 0
< | ¢ -sup|—= < 0O(0j) .
|20(X) — 2o(Y)| v, | dZ
Together withs(x) /s(y) = 1 4 O(0;) we get the desired boun@(o;) for
the second summand in (15). O

Now we have prepared all the tools to define the missing pieces of the
integral kernekK:

Kho = 11Koo,  Kon = 12Koo,  Knnh = 1112(Kgg — Co) + Cp.

Here the notatiot; andl, means that the interpolation operatas applied
to the first or second argument respectively.

Remark:The reason for not defininn, simply to bel;1,Kqg is that the
interpolation operator cannot produce poles in the intedon, V. of
every handle. Consequently the poles of the Cauchy kétpein U; \ Vy;
have to be modelled separately: we therefore QgeRelated to this ob-
servation is the following fact: although Ext-Disk{o(X, -)/v¥os) and Ext-
Disk(Koo(, Y)/v¥0oa) are true for every,, y € Vi, Ext-Disk(I2Koo(-, ¥)/
Yoa) does not hold foly € U; \ V. sincel;Koo(-, y) has a pole ay. The
situation for Koo — Cy is different, as Ext-DisKG (Koo — Co) (-, ¥) /¥oa)
is \éalig, simply becaus&yy — Cp extends to dolomorphicsection over
(D22

3.3.3 Verification of the hypotheses K
We first show that the total volume &fis finite.

Lemma 3.27 (Volume of the handles; total volume)

a) /Q ~ Z / Q, i. e. only a bounded fraction of the volume of any

handle is not mcluded in the regular sheet.
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Proof: We prove a) and b) simultaneously; the calculation is best done in
polar coordinates foz..;:

const consp

2 2
/Q 201 /irdFNa f Na_zfirdFNaz

consf

To prove c), we use a) to get

d?z
Z/Q<constZ/Q<const/Q<const/ Tz =

! UJ ! Vij zeC

hencef, @ = [, @+ X Jy, @ < oo. Recall that we have transiently
assumed the compact piece of the surface to be empty. O

We state the main result of this section.

Proposition 3.28 Suppose that the compact piece of the surface is empty.
Then the hypotheses (X) and (L) imply the statements (K1-4) on the integral
kernelK.

Proof:

(K1) By construction, allK,, are sections in the external tensor product
L ®xxx L10. SinceKgg only has a pole on the diagon#l,o = 11 Koo
andKq, = 1,Kgg are holomorphic outside the diagonal, too, because
of Lemma 3.23. AsKpg — Cp is holomorphic,l115,(Kgg — Cp) is
holomorphic orJ? = (Ujes Uj)?, thatis whyKnp = 1112(Kgo— Co)

+ Ch has the same singular part@s When we patch the four pieces
together, (K1) follows.

(K2) It suffices to check that thiK,, are of the form

Kap = (C™—section + Zm o dzy)  (16)

near the diagonal for some local coordinatand some local basis
sectionw. This is obvious forKqe, hence the statement follows for
Kon and Ky since Kgn, — Kgg and Ko — Kgg are holomorphic in
Ug x (Ug N'Up) resp.(Ug N Up) x Ug. (16) is obvious forKyy too
whenl1,(Kgg— Cp) plays the role of the first summand in (16) while
Ch plays the role of the second one.
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We prepare the proof of (K3) and (K4) with some lemmas:

Lemma 3.29 (°°—L'—norm for the Cauchy kernel on the regular sheet)
a) sup.y, J IKoo(X, y)lasf2yand
yeUo

SURcu, {J |[Koo(X, ¥)| a2« are finite.
XeUp

b) sup ajsup.y, | [Koo(X, y)asS2x and

XeV;j

Sup @ SURcy, [ 1Koo(X, Y)|aS2x are finite.
yeV;j

Proof:

a) We interpretKoo geometrically over the regular sheet: Recall that we
have chosen the order= —1 at infinity for the weight functions in the
definition of | - | and| - |g. During this proof, we identify the regular
sheetUy with a subset of the Riemann sphédte by the identification
X = (2o(X) : 1). Then the volume forn®2 is identified (up to a bounded
factor) with the standard volume form &. Next we identify both. [Uq

and L 1-%|U, with the tautological bundle
{(( 1 X2), (hxa, A%2)) € Py x C? | (x4, %2) € C?\ {0}, & € C)

overP; restricted toUp; the vector space operations in the fibres refer
to the second componenixy, AXp). The tautological bundle may be
viewed as thealisjoint union of all one-dimensional subspaces@;
these subspaces are indexed by the projective $hade identification
is described by

Apoa(X¥) = ((zo(X) = 1), (Azo(X), 1)) ,

Apos(X) = ((Zo(X) : 1), (AZo(X), 1)) .
With this identification| - |4 and| - |g have just become (modute) the
standard Euclidean norm:

1
[oala ~ [Yosls ~ (14 |20|H7 ~ |(z0, D] ,

andKgg becomes

-t

KOO((Xl : XZ)’ (yl : yZ)) = X _ N 1 1
X1 Y1

X2 Y2
X2 Y2
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which is — after extension t#®, x P, — clearly invariant under the
canonical operation 08U(2). The Euclidean norms in the fibre and
the standard volume form are invariant under the actioBdf2) too.
Consequently — since the action®Ifl(2) onP; is transitive — the integral

f |Koo(X, )| aBS2x

XE]P’l

does not depend oy (up to a bounded factor). The only singularity at
X = yis integrable, implying finiteness of the integral.

b) The calculation is best done using the geometric interpretation of a)
again. We first note tha¥; is contained in a dislD; < P; with total

volumefDj Q~ aj_z. We now apply an action of an elemant SU(2)
to transformD into a diskD); centered at0 : 1) € P, with a radiusR;:

Dj={z:1) ePy|lzl <Ry} .

The invariance of the volumg,, @ ~ [, Q shows RZ = O(a; .
J

We remark that the sequen@®;) is bounded. The transformed integral
can now easily be estimated: let= zy(gy) denote the transformed
coordinate ofy. Then

/lKoo(X,y)lABQXN / |Koo(X, ¥)|aBS2x

xeDj xeD)]

1 1 1
~ 1+ 12921+ |x]%)?
f A R D
|X>|(iCRj
R;j bounded 1+ |z|2)% 2

- (17)

xeC

[X|<R;

We distinguish two cases:
— If |z| < 2R; then the last integral is bounded by

3R;

21
,/1+4R12/ Trdr = O(R)) = O(ej ) .
0

Here we use polar coordinates with cerger
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— In the casgz| > 2R;, we use polar coordinates with center O to
bound (17) by

V14122
/ 212 Y 2ardr < (2R1)2+1/rdr

= O(R)) = O(ajfl) .
Hence the first statement of b) is proved, and the second one has the
same proof when we use the symmefry> B. O

Corollary 3.30 The following expressions are finite:

SUIOOtJ sup | [Co(X, y)|asf2y and SUIOOtJ sup [ [Co(X, Y)|asS2y -

XeVj yeV;j
yeV; XeVj

Proof: This is an immediate consequence of the previous lemma and the
fact that

ICo(X, )| aB _19iA
[Koo(X, Y)|aB [ Gjaly)
is bounded as was stated in (L2). ]

The next lemma provides bounds for the differences between different
piecesK g, on their common domain:

Lemma 3.31 (Bounds for the differences of the pieces fd()
a) sup |Koo — Konlas = O(0j)aj,
VjxUg

b) sup [Koo — Kholae = O(0j)aj,
Uox Vj

c) sup [Khh — Konlas = O(0))ej,
VjxUn

d) sup [Khh — Kholag = O(0)e;j.
UpxVj

Proof: Because of the symmeti <> B it suffices to prove a) and d).

a) Using Ext-DiskKoo(-, ¥)/¥oa) for y € Up and the fact thaKog(-, ¥)

has at most a pole of first order awith residue,t € (L1%)Y ® L1°,
we get uniformly iny:

S\‘/Jpl Koo(:, ¥) — Kho(-, V) ag = S\l/Jpl Koo(:, ¥) — 11Koo(:, Y)| aB
i i

2 0(0))a? / Kool Ylas® + o | 22 O(0p)a; .
ViJ
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d) We express

Khh — Kho = (I211(Kgp — Cp) — 11(Kgo — Cp)) — 11(Co — Cy) .
(18)

Here we use that; andl, commute and that;C,, = Cy, which follows

from Lemma 3.23 applied tdCy(-, y), y € Vj; the integral over the
inner boundary ol ; vanishes there, sindén(-, y) is holomorphic in
U except of the pole iry.

We estimate the firsttermin (18): usmg Ext-Disk(Koo—Co) (X, -)/¥oB),

we get with the notatiov, = (J;_; V;

sup |l211(Kgo — Cp) — 11(Kog — Co)laB

Unh xVj
3.25
< 0(01)01 sup [11(Koo — Co) (X, ¥) | aBS2y
xeUp
yeVyj
3.22h)
< 0(01)01 sup [(Koo — Co) (X, ¥)|aBL2y .
X€Vh
yeVyj

Lemma 3.29 b) and Corollary 3.30 show ti@t 1y is an upper bound
for the last supremum, hence

USU\? [1211(Kgo — Co) — 11(Koo — Co)|aB < aj O(0j) .
hxVj

The second term in (18) remains to be bound:

3.220) 3.26
sup [11(Co —Ch)lae = M sup |Co— Chlag = aj O(0j) .
Un xVj Vh xVj

The result is gained by summing up the two terms. O

We are now ready to prove (K3): We only estimate the first nkynthe
estimate fok, is similar.

sup | KX, Y)aeRy < > sup | [Kan(X, Y)|asSy -

xeX xeU
yex a,be{0,h} ayeUb

We shall show that every summand is finite:
Fora = b = 0 this is the statement of Lemma 3.29 a).
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Fora = h, b = 0 we get (subtracting;, if necessary to remove the
pole)

sup [Kho(X, )| aBS2y

xeUp
yeUo
(11Ch=Ch)

< sup [ [1(J1(Koo— Ch))(X, Y)aB + ICh(X, Y)|aB] Ry

U
xe hyevh
+ sup [11Koo(X, )| ABS2y
xeUp
yeUp\Vh
3.22)

<  Msup | [(Koo— Ch)(X,y)IasS2y

XeVh
Y€Vh

+sup [ [Ch(X, Y)|aBSR2y

xeUp
yeVh
329,321
+M sup |Koo(X, Y)[aBRy < ©00.
XeVh

yeUo\Vh

Recall thatCy, (%, y) vanishes foix, y in different handles and thaijl is
bounded by (X6).
Fora=0,b=nh:

sup [12Koo(X, ¥)[aBS2y

xeUg

yeUn
3.22a) 3.29
< M| sup f |Koo(X, V) agRy + O(1) | < oo.
xeUg
y€Vh
Fora=b=nh:

sup |Khn(X, ¥)|aBS2y <
xeUp
yeUn

< sup [ [l112(Kgo— Co)(X, Y)|asRy + sup [ [Ch(X, ¥)|aBS2y < 00 .
xeUp xeUp
yeUn yeUn

We used Lemma 3.22 a) and b) to remove the interpolation operators in the
last step, and then Lemma 3.29 a) and Lemma 3.21.
The proof of (K3) is finished. O
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We finally are going to prove (K4): With the symmetd < B in
mind, we restrict ourselves to prove that the first Hilbert—-Schmidt norm
hg is finite; the proof forh 4 is similar. K4, being holomorphic outside the
diagonal, we get for # v:

KOG Y) = (0xxa(0) x6(Y) Kan(X, )
ab

= Y @xx000) x6(Y) [Koo(X, ¥) = Kn(X, )]
b

which vanishes ik ¢ V. Forx € Vj, y € U, one estimates uniformly ir
andy:

|axK (X, Y] gg < Z 3% X0 2xb(Y) | (Kob — Knb) (X, V)| aB
b

331 _ 5
< 10x0(X¥)[20(0))aj < O(0j)erj .

Hence, using that; K is supported itvi, x X,

ho < > /sz /sz [0(0))e?]?
j

XeVj yeX

3.27
< Y 2(0(0)a})’
i

which is finite by (X6).
Now the proof of (K4) and also of Proposition 3.28 is finished. 0O

Remark:lf a sufficiently large but finite number of handles is removed and
replaced by two disks each (as described in the definition of Ext-Disk), then
hZ can be made arbitrarily small. This is necessary to make Corollary 3.16
applicable.

To summarize, we have proved so far that the Cauchy Riemann opayator
is bounded with a bounded inverse when the compact piece and a sufficiently
large but finite set of handles is replaced by disks.

3.4 Gluing in the compact piece: exchange lemma

We want to compare the indices of the Cauchy—Riemann operator on four
surfacesXae, Xad» Xpe: Xbg €ndowed with holomorphic line bundlés,,
Lad, Lbe, Log. The four surfaces are defined as follows:
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e X = Xgcis the surface we started with. We view it as being obtained by
gluing two piecesX, and X, together:

— The pieceX, just consists of the union of the regular sheet with the
handles “near infinity”; only a compact subset is removed.
— The pieceX. is the compact piece of the heat curve.

¢ When we fill the hole in the regular sheet where the compact piece can
be glued in by a piec&y of the complex plane — just by extending the
coordinatezy — we call the resulting surfacé,q = Xa U Xg.

e We may also remove all the handles frofy, fill the resulting holes
with disks and insert one additional poist at infinity, just as it was
described in the definition of the codegree. The resulting surface, which
may be viewed as a neighbourhoodoof= (1 : 0) in P4, is called Xp.
When the compact piecé. is glued toX,, the compact Riemann surface
Xpe COMeS out.

e Finally we may also glueX, to Xg; the resulting surface is just the
standard Riemann sphekgy = P;.

We identify all the intersectionXg N Xc = Xa N Xg = Xp N X =
Xp N Xg =: U. Over X;, i = a,b,c,d we prescribe holomorphic line
bundles:

o L= L|X;overXs,

o L.=L|X.o0verX,

e trivial line bundlesLy, = Xy x C, Lq = Xg4 x C over X, respectively
Xg.

We identifyL U = Lp|U = LJU = Lg|U via(La)x = (Lo)x 3 Yoa(X) =
(X, 1) € (Lp)x, (Lg)x. We now choos€>°—patrtitions of unity oveX ¢, Xaq,
Xbe, Xpd, adapted to the coveringy = XkU X, (k = a, b;| = ¢, d). Letthe
partition of unity be given byy over Xy, k = a, b, ¢, d, extended by 0 t&Xy
(k = a, b) respectivelyXjk (k = c, d). Just to simplify the notation below,
we include an additional constagt xx + x = m/2 over Xy, xk = 7/2
over Xi \ U.

We want to compare the Cauchy—Riemann—operators Ny@f) Xpd

and Xgq U Xpe, although these are different surfaces. The method works
quite generally: we relate the four surfaces by a “twisting operafor’
defined by

J 1 C(Xae Lao) @ C7(Xpds Lbg) = C°(Xad, Lad) ® C°(Xpe, Lie)
Siny, —sin
J= ( Xa Xd) ' (19)

sinye Sinyp

Here siny, is viewed as a multiplication operator

-Sinya

@go(xac, La) — @go(xa, La) _g) @go(xad, Lag) ,
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analogously for the other matrix elementsJfJ is invertible; its inverse
is given by the matrix of multiplication operators

J1_ SiN xa SiN ¢ .
—Sinxq SiN xp
We keep in mind that the pointwise evaluation of the madriaverU just
leads to the rotation matrix

COSxc — SiNxc
sinye cosxc/
which gives us the intuitive picture behind over the bundleL|U ¢ L |U

of rank 2,J provides a “twisting by 90 degree”.
We observe that the following diagramommutes:

)

C (Xac. Lac) ®CE (Xbd: Lbd) —_— ee° (Xac! '—g'cl)fwgo (de., Lﬁal)
| |
I W
El (5)((:)
(—0xc) @

CE (Xad, La) BCE (X, Lp) ——————> €2°(Xaa L3 ) ®CE(Xoo. L {7 )

Here the matrix element8y. are supported irJ. They are viewed as
multiplication operators: Take@ e C°(U, R) which equals 1 in a neigh-

bourhood of the support dfx.. Then we factor multiplication witfd .
as

00 ¢ 00
ec (Xad, I—ad) — ec (Ua L|U)

-(@xc) 00 00
8 e2(U, LOYU) = € (Xpe LED) |
00 ¢ 00
GC (XbCa LbC) — ec (Ua L|U)
'(5)((:)

ez, LYYU) < e (Xag, LI .

By completion, we now pass from theZ°—theory to the Hilbert space /
Fredholm theory: just as in Sect. 3.2.1 choose Hermitian metricsloyer
Ly, L¢, Lg that coincide ovet (all four metrics called - | ). Similarly we

choose metrics overd?, L)%, LO2, L5 (called| - |), so that these metrics

1 By a slight abuse of notation we call the vertical map at the ribjagain, since it is
given by the same matrix (19).
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coincide with the one chosen earlier over the surfdge The volume forms
compatible with these choices are again cafledust as in Sect. 3.2.1, we

define the Hilbert spacesy, By, Vi to be the completion a®2°(Xy, L),
1
CX(Xu, LY, €2 (Xy, Li) with respect to the normes— (kal |s|i§2)2,

1

1
2 — 2 .
® - (ka| |a)|2é§2> S (ka| S22 + fy, |as|239) respectively. We

denote the completion of the Cauchy—Riemann operatoig by, — By.
Using Theorem 3.15 and the fact thd. is acompactRiemann surface
without boundary we conclude that

gad 0 % v
— : Vad ® Vioc — Bag @ Bic
0 8bC

is a Fredholm operator. B
Next, we want to show that the nondiagonal tertig.) form only
acompactperturbation. The key to this fact is the following lemma.

Lemma 3.32 (Compactness of the inclusion map)et Vi; C Vi be the
closure ofc*(U, L) € C°(Xk, Lw) in Vg, U CC Xy. Then the inclusion
mapiy : Vu < Ay is compact.

Proof/ReferenceWWe coverU with a finite number of coordinate domains
Un, 1 < n < N. Cuttingiy into N pieces supported id, using a partition

of unity, we see, that it suffices to show that every inclusion map

Vu, — Aw is compact. Now the problem is local; but the weight functions
for the Hermitian metrics are locally bounded from above and from below
by positive constants. The assertion follows e. g. from Theorem 10.1.10
in [4]. ]

As a consequence, we get the promised result:

Lemma 3.33 (Compactness of the perturbationYhe following multipli-
cation operator is compact:

0 @ . .
( — ( XC))3Vad69Vbc_> Bad @ Boe
(=0xc) O

Proof: We factor(dxc) : Vier — By into Vi N Vu 5N Ay £x) By.

The second map is compact, the first and the third map are bounded since
¢ andd . are compactly supported; hence the composition is compact.

Let us harvest the result of this section:

Proposition 3.34 (Exchange lemma)All operators 8,q : Vi — By
(k =a, b; I = c, d) are Fredholm operators. The following relation holds:

iNdeXd,c + iNdexdpg = iNdexdag + iNdexadp. .
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Proof: We have

(o)l (20 0))
0 0Opg 0 9nc (=dxc) O

where we have called the completionbhgainJ. HereJ : Vac ® Vg —
Vadg @ Voc andJ : Bae @ Bog — Bag @ By are bounded and invertible,

5ad 0
0 5bc
is a Fredholm operator and

( 0 (5xc))
(_5Xc) 0

is a compact perturbation. Since perturbations of Fredholm operators by
compact operators are again Fredholm operators with unchanged index (see
e. g.[12], Chapter VII, Cor. 1 to Thm. 2 and Cor. to Thm. 4), it follows that

0 dpg

is a Fredholm operator and that
dad O dac O
index [ “* ) =index( "*_ ).
0 Ope 0 Obg

Corollary 3.35 (Index version of the Riemann Roch Theorem)f the
compact pieceX. is chosen sufficiently large then

indexdac = indexdy. — 1 = —codeg(L, Yop) .

Proof: Remember that we still assume ordex —1 at infinity. We show
thatindexdpq = 1, indexdag = 0 andindexdp. = 1 — codeg(L, ¥oa).

e Xpg = IP1, andLpqis atrivial line bundle oveP, , henceéndexdpq = 1 by
the classical Riemann—Roch Theorem (or simply by elementary function
theory on the Riemann sphere).

e For a compact piece chosen sufficiently large, we know by the previous
sections thab,g is invertible, hencéndexd,g = 0.

e For the line bundleLy. over thecompactRiemann surfacexXyq, the
classical Riemann—Roch Theorem tells us

indexdp. = 1 — genugXye) + degLpe) = 1 — codedL, Yon).
Using the previous proposition the result follows. O

0
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3.5 Limit at infinity of square integrable sections

Technically, we have used so far the condition of having finite weighted
L,-norms for global holomorphic sections. But the Riemann Roch Theo-
rem 2.1 for infinite genus Riemann surfaces imposed pointwise bounds in
a neighbourhood of infinity for these holomorphic sections. The goal of
the section is to show that these two concepts are equivalent. Using the
symmetryA < B, L < L 10 we restrict our examinations to the case of
L! | . |A-

The next lemma shows that square integrability of global holomorphic
sections can be decided in the regular sheet:

Lemma 3.36 (Reduction to the regular sheety N9 = AN ©) For every
global holomorphic sectiorf in L over X the following statements are
equivalent:

a) fUO | 1292 < oo; Ug can be replaced by any neighbourhood of infinity,

b) [\ IfI3Q2 < oc0,i.e. f e A

c) feV.
Proof: b)=a) is trivial. aj=-b): We do the proof folJy only; for an arbitrary
neighbourhood ofo it is similar: We first estimate the total>—norm over
the handles in terms of the totaf—norm over the regular sheet: Sintés
holomorphic in the handles,f = f by Lemma 3.23. Hence we get with
the help of Lemma 3.22 c):

f|f|AQ<cons§Z/|f|AS2<con51f|f|AS2

It remains to estimate the tothF—norm over the compact pietk in terms
of the totalL?>~norm over the regular sheet, i. e. we have to show:

/|f|AQ<cons§ / |f|AQ<conStg/|f|A

Uc\Uo UoNU¢

JeJ

SinceX is noncompact we know thatis a trivial holomorphic line bundle
(seee.q.[3], Satz 30.4). (Of course we expect any basis section to raise fast at
infinity.) We are only interested in the relatively compact domainhence
we may reduce our considerations to the cas€-efalued holomorphic
functions f, | - |a ~ | - | over U.. As a consequence of the maximum
principle and of Cauchy’s integral formula, we can estimate the sup—norm
(and therefore also thie?—norm) of f |(U. \ Up) in terms of theL?>—norm
of f|(U.NUp) in this case, using that. \ Ug is a relatively compact subset
of Ue.

Summarising the considerations, we get an estimate

/|f|AQ<const | f129
Uo
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c)=b) is trivial again. b}>c): This is the most interesting statement
of the lemma: it states that every square integrable global holomorphic
section inL can be approximated in the|y,—norm by smooth sections
with compact support.

Instead of proving this directly, we note that it is an easy consequence
of the parts of the Riemann—Roch theorem which are already proved:

We already know

dimken@ : V — B) — dimcokexd : V — B) = —codedL, ¥p) ,

writing 8 now for all Cauchy Riemann operators irrespective of their domain.
SetM := {f € A| f is holomorphi¢, N := {w € B | wis holomorphig.
Thenkefd : V — B) = M NV, and using Lemma 3.3 we know

cokerd@:V — B)Y = ker(@: B— V) =N..
Consequently
dim(M NV) —dimN = —codedL, v¥oa) . (20)

We consider the dual situatiol, <> B: similarly to the definition oV, let
W be the completion o®2°(X, L% with respect to the norm

1

s @ (ol + [30]) "
Dual to (20), we get
dim(N N'W) —dimM = —coded L*°, yg) . (21)
Adding (20) and (21) yields
codim(M NV, M) 4+ codim(N N'W, N)
= codedL, ¥oa) + codeg(L*°, yop) . (22)
The right hand side vanishes: With the notations from Definition 2.3 and
with Lpc(on) ® Ll (Woh dzo) = €1°(dzo) we obtain
codedL, ¥oa) + coded >, yog) =
= 2genusXpe) — deglpc(toa) — degly (¥oa d2o)

= deg€™°(dz.) + 2 — degLpc(Yon) — degli; (Voa d20)
= degé!%(dz) + 2 — degél®(dz) = 0.
We made use of the degree of any canonical divisor on the compact Riemann

surfaceXp being deg??(dz,) = 2genugXp) — 2 and ofdz/dz, =
—z22 having order—2 at infinity.
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Hence both codimensions on the left hand side of (22) vanish. This
meansM NV = M, NN W = N. This finishes the proof of b}c). O

Finally we examine the pointwise behaviourcatof square integrable
holomorphic sections i.. We formulate the result for any orderat oo,
for future references slightly more general than needed here:

Proposition 3.37 (limitatinfinity) Letthe Hermitian metri¢: | o be defined
using the ordew € Z at infinity, i. e.[voala ~ |20|~" near infinity. Letf,

be aL—valued holomorphic section defined over an open neighbourhood
U, of oo and let fj, j € J, be L—valued holomorphic sections defined

over the handled);. Assume thasup, ny; | fo — fjla = O(ajl) and
Juo | foola$2 < 00. Thenlimp_, » foo/(Z510a)(P) € C exists.

One case of special interestfg = fj onU, N U;:

Corollary 3.38 (L°>-bound <<= pointwise bound nearoc) A global
holomorphic sectiorf in L is square integrable (using | with the order
v at oo) if and only if it is bounded near infinity in the regular sheet:

lim supe_ . | f/(Zg¥on)| < 0.

Proof of the Corollary:We observe thaltf/(zyyoa)| ~ | f|a, which holds

for taking an ordew € Z at infinity in the definition of| - |a. Then “<"is

a consequence of Lemma 3.36, white-” follows from Proposition 3.37.
]

Proof of Proposition 3.37Here is the strategy for the proof: first we reduce
the problem to the Riemann sphere by removing once more all the handles
U; and filling the resulting holes with disks. The sectiby is interpolated
“almost holomorphically” through the disks using the “disk—versidf”

of the interpolation operator, which was introduced before Lemma 3.24.
Finally the limit atoo is examined on the Riemann sphere.

By shrinking the regular piece if necessary we may assume without
loss of generality thal,, contains the regular pieddy. Note that this
redefinitionUg new = U N U, Of the regular piece depends bl,, hence
all the cutoff functionsyo, (x;j)jcs depend on the choice &f,, too.

We view the regular sheéiy again both as a subset of the Riemann
spherelP; (just as in the proof of Lemma 3.29) and as a subset of the
Riemann surfac&. The disks that are glued ¥ are denoted bjD? cP,
again.

We define the interpolated versidnof f,, onU,, U Uj D‘J? by

f=xofw+ > xi1%f; . (23)
j
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Then f is holomorphic outside the intersectioWs. It is square integrable
because

/ f2Q < 2f|foo|§\sz+2zf||°fj|isz (24)
Uso

UseUU; DY ! Do

|_.3._<22c)2/|fm|iQ+2MZ/|fi|iQ
Use .

JVJ'

which is finite as
f Il < 2f<l foolf + oo = 102 = [ @ fcli + O )R
Vij Vij .

Vij

is summable ovej. OnV; the deviation off from holomorphy is bounded:

supld flg = supl(@x;)(feo — 125
Vi Vi
< svup|5x,-|z<|foo — fila+1f; —1°F;]a)
j

For the first summand on the right hand side we havgesaum,j 19x;12] foo—
fila < oo by Lemma 3.19 and the hypothesis pfy, — fj|a. To esti-
mate the second summand, we note thigt = f; by Lemma 3.23 and

that1°f;/(zg o) satisfies the condition Ext-Disk in (L2). Consequently
Lemma 3.25 and Lemma 3.27b) yield

sup|1%f; — fj|a < O(0)a? / | ;1a2 < O(0))q; /|f,-|2,;sz
Vi VjUV_j VjUV_j

< O(Oj)aj .

We end up with the estimate

_ 5 (X6)
sup|d flz < O(1) + @jO(0)) < O(1). (25)
V.

J

In some punctured neighbourhobid of co in P; we write (24) and (25) in
the coordinate,, = 1/zpand usé := f/(zyoa),|fla ~ |Flandd f|s ~
|0F/0Zx| |Z5oal aldZwl2 ~ |8F/0Z]. This yields [, [F|?d°z, < oo
and sup. |0F/dZx| < oo. The statement of Proposition 3.37 then is an
immediate consequence of the following Lemma. O
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Lemma 3.39 LetU < C be an open neighbourhood@fU* = U \ {0}. As-
sumethaf : U* — CisC'andthatf,,. |F(2)|? d*zandsup,.. |dF(2)/0Z|
are finite. Therdim,_.o F(2) € C exists.

Proof: We may suppose thét is bounded. Defin& : U — C by convo-
lution of 2 with the Cauchy kernel:

1 1 0 -
G(U)) = z—m/ Z_wa—zF(Z)dZ/\dZ.
U*

ThenoG/dz = 9F/0z on U*. d9F/dz being bounded anq}—w being lo-
cally integrable implies tha® is a continuous function even at B.— G
is holomorphic onU* and square integrable near 0, hence it extends to
a holomorphic function old. Consequently lig, o F(z) = lim,_.q(F(2) —
G(2)) + lim,_,o G(2) exists. ]

To summarize, we have shown that the pointwise asymptotic bound
f € M for holomorphic sections € @ (X, L) used in the Riemann Roch
Theorem is equivalent to the?-condition f € A. By symmetryA < B,

L < LL%we conclude
weN & weOX LY andw € B.

Hence the index version 3.35 of the Riemann Roch Theorem is equivalent
to the infinite genus Riemann Roch Theorem 2.1. This finishes the proof of
the theorem.

We remark that as a byproduct of Proposition 3.37 we obtain that the
limit at infinity of f/(z;yoa) exists forf € M.
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