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Introduction

Let G be a real semisimple Lie group and let, with the usual notations
(described in detail in Sect. 2),MAN be a minimal parabolic subgroup. Any
finite dimensional irreducible representation(ρ,V) of MAN is determined
by an irreducible representationδ of M and a characterν of A; there is
a corresponding homogeneous vector bundleG ×MAN V over G/MAN.
The principal series of representations ofG operates on the sections of
such bundles. TheG-equivariant linear operators from one such bundle to
another are the intertwining operators for the principal series. In the present
paper we determine all those intertwining operators which can be written
as differential operators of order one.

The result is stated in Theorem 2.2; it amounts to the following. Take
any irreducible representationδ of M and decompose its tensor product
with the natural representation ofM on a simple root spacegλ of the Lie
algebra ofG into irreducible representations (δ j ,Vj ). Let G×MAN V be the
bundle determined byδ and the characterν of A, G ×MAN Vj the bundle
determined byδ j andν + λ. A necessary and sufficient condition for the
existence of aG-equivariant first order differential operator fromG×MAN V
to G×MAN Vj is then written down as an explicit linear condition onν. The
operator itself is also explicitly written down, and this construction gives all
G-equivariant first order operators.

For the caseG = SO0(n + 1,1) this is an old result of Fegan [F]. In
this caseG/MAN is the unit sphereSn = {x ∈ Rn+1| |x| = 1} andG is the
group of conformal transformations ofSn . The exterior derivatived mapping
k-forms to(k+ 1)-forms is an obvious example of equivariant differential
operators; there are of course many others. There is one among them with
great importance for the theory of quasiconformal mappings, the Ahlfors
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operator. In the above general construction it is obtained by taking forδ
the (complexification of) the standard representation ofM = SO(n) onRn,
and forδ j the representation on traceless symmetric matrices. The study of
this operator leads, in [R], to the result that quasiconformal deformations
of Sn considered as the boundary of real hyperbolic space can be extended
to quasiconformal deformations of real hyperbolic space itself. Extending
Fegan’s results step by step over the past several years we found, somewhat
to our surprise, that they remain true for all semisimple groups. This is due
to the fact that the analysis can be split into two parts. The first is a reduction
to the real rank one case, which is based on Araki’s work [A]. What remains
for the second part are the simple groups of real rank one, which can be
handled by a case-by-case analysis.

It should be mentioned that while our result is quite satisfying from the
point of view of the theory of the principal series, it is less so from the
point of view of geometry. In fact, many bundles of geometric interest (cf.
e.g. [KR]) arise from non-irreducible and not fully reducible representations
of MAN, and these are not included in our result. It seems that it would
be quite difficult to make a meaningful general statement including all the
non-irreducible cases; at any rate there is an open problem here.

We learned from B. Ørsted that he had discovered our Theorem 2.2
independently. His methods are rather different from ours. Furthermore, the
referee informs us, that Zelobenko [Z] has constructed related operators.
The construction is based on the theory of Verma modules and their duals.

The first section of the present paper contains generalities about equiv-
ariant differential operators. We need some statements that are more general
than those in the literature (e.g. in [Wa]), therefore we give a concise self-
contained treatment. The second section contains the main result, Theo-
rem 2.2, and its proof except for the essential technical fact formulated as
Theorem 2.1. The proof of this result, which uses the rank one reduction
and a careful analysis of the groupM is given in Sect. 3.

Acknowledgements.We are grateful to M. Cowling, O. Mathieu and J.A. Wolf for some
useful discussions.

1. Equivariant differential operators on homogeneous vector bundles

In this section,G denotes a Lie group with Lie algebrag and H a closed
subgroup. The homogeneous vector bundlesG×H V overG/H arise from
finite dimensional representationsρ of H on a vector spaceV. The space
G ×H V is the quotient space ofG × V under the equivalence relation
(g, υ) ∼ (gh, ρ(h−1)υ) and the map(g, υ) → gH induces a projection
p : G ×H V → G/H. The groupG acts onG ×H V by left translation.
This action is denoted byτ.

Given local trivializationsUo × V aroundo = eH andUg × V around
go= gH, τg induces a mapping again denoted byτg from a neighbourhood
of {o} × V in Uo× V to Ug× V.
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If s : G/H → G×H V is a section, then its liftfs : G→ V is defined
by

fs(g) = τ−1
g s(go).

The lifts of the smooth sections make up the spaceC∞(G,V)H of C∞-
functions f : G→ V satisfying

f(gh) = ρ(h−1) f(g)

for all g ∈ G, h ∈ H. The action ofG onC∞(G,V)H is by left translation.
Conversely, to any functionf ∈ C∞(G,V)H there corresponds the

sectionsf : G/H → G×H V given by

sf (gH) = (g, f(g)).

The left invariant first order differential operators onG are given by the Lie
algebra vectorsX ∈ g

X f(g) = d
dt

∣∣
t=0

f(gexptX)

and the left invariant differential operators of arbitrary order are obtained by
extending this definition to the universal enveloping algebraU of g. More
generally, the left invariant differential operatorsC∞(G,V1)→ C∞(G,V2)
are given byU⊗Hom(V1,V2) ∼= U⊗ V∗1 ⊗ V2; the elementU ⊗ υ∗1 ⊗ υ2
maps f ∈ C∞(G,V1) to (U〈 f, υ∗1〉)υ2 ∈ C∞(G,V2). In the following
the equivariant differential operators from smooth sections ofG ×H V1 to
smooth sections ofG×H V2 will be described. They turn out to be the left
invariant differential operators which mapC∞(G,V1)

H → C∞(G,V2)
H .

Let U(h) be the universal enveloping algebra ofh and letY → Y′ be
its principal anti-automorphism (i.e. the one determined byY → −Y for
elementsY ∈ h). Given a representationρ of H on a vector spaceV1, it
induces a representationρ∗ of h and ofU(h) on V1.

Let J denote the linear span of the elements

UY⊗ L −U ⊗ (L ◦ ρ∗(Y′))
whereU ∈ U,Y ∈ U(h) and L ∈ Hom(V1,V2) with V2 a fixed vector
space. We write

U⊗U(h) Hom(V1,V2) = (U⊗Hom(V1,V2))/J.

(This is just the standard notion of tensor product of a left and a right
U(h)-module.)

Let q be a subspace ofg complementary toh. Let Y1, . . . ,Yq be a basis
of q, for a multi-indexα = (α1, . . . , αq) of natural numbers we writeYα for
Yα1

1 . . .Y
αq
q [andY(α) for the symmetrized product, i.e. for the coefficient

of tα in (
∑

t j Yj )
α1+...+αq wheret1, . . . , tq stand for real numbers.]
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Proposition 1.1.U⊗U(h) Hom(V1,V2) can be identified with the space of
G-left invariant differential operators from theC∞-sections ofG×H V1 to
C∞(G,V2). Having chosenq and its basis{Yj }, every element ofU⊗U(h)
Hom(V1,V2) can uniquely be written in the “normal form”∑

α

Yα ⊗ Lα

with Lα ∈ Hom(V1,V2).

Proof. Let X1, . . . , Xh be a basis ofh. By the Poincaŕe–Birkhoff–Witt
theorem, in a self-explanatory notation, all elements ofU⊗ Hom(V1,V2)
can be written as finite sums

∑
α,β YαXβ ⊗ Lαβ.

Using the definition ofJ, the factorXβ can be shifted to the other side
of the tensor product, proving the existence of the normal form. [Since the
Yα can be written as linear combinations of theY(α), this statement also
applies to the other kind of normal form.]

Next we show that the action ofU⊗U(h) Hom(V1,V2) on C∞(G,V1)
H

is well-defined: By linearity for this we must see only that the elements of
J act trivially onC∞(G,V1)

H . Sinceh generatesU(h), it suffices to verify
this for elements of the formUY⊗ L with Y ∈ h. Now

(UY⊗ L ) f(g) = L d
dt

∣∣
o
(U f )(gexptY) = L d

dt

∣∣
o
ρ(exp−tY)(U f )(g)

= Lρ∗(Y′)(U f )(g) = (U ⊗ L ◦ ρ∗(Y′)) f(g)

proving our statement.
The action ofU ⊗U(h) Hom(V1,V2) on sections is defined by transfer

to the lifted sections. This is indeed an action by differential operators. In
fact, an operator on sections is by definition a differential operator if, in the
neighbourhood of any point, in terms of some (hence any) local trivialization
of the bundle, it is a (linear) differential operator. In terms of a local cross-
section, e.g.r : gexpt1Y1 . . . exptqYq · o→ gexpt1Y1 . . . exptqYq of G/H
in a neighbourhood ofg · o, there is a natural local trivialization in which
a sections of the bundle becomes exactlyfs ◦ r . From this our statement is
easy to see.

We see that to each element ofU⊗U(h) Hom(V1,V2) there corresponds
aG-left invariant differential operator. To see that the correspondence is one-
to-one, suppose we have an element such that the corresponding operator
is 0. We may assume that this element is given in normal form

∑
Lα⊗Yα.

Now the essential fact is that using a local trivialization, as above, every
V1-valued function on a neighbourhood of (say)o occurs as the (restriction
of the) lift of some bundle section. Therefore ifLα 6= 0 for someα = αo,
we can easily construct a sections such thatYα fs = 0 for all α 6= α but
Lαo(Y

αo fs)(e) 6= 0. With this argument we have also shown the uniqueness
of the normal form.
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Finally, to see that all equivariant differential operators arise from our
construction, suppose thatD is such an operator. Then writingD in terms
of our local cross section, we have ate an expression of the form

D̃s(e) =
∑
α

Lα
∂|α|

∂tα

∣∣∣∣
o

fs(expt1Y1 . . .exptnYn) =
∑
α

Lα(Y
α fs)(e).

This is then valid also for allG-translates ofs, which shows thatD arises
from the element

∑
Yα ⊗ Lα. ut

Suppose we have two representationsρ1 and ρ2 of H on the vector
spacesV1,V2. Then H acts naturally onHom(V1,V2) by h ∈ H sending
any elementL to ρ2(h) ◦ L ◦ ρ1(h−1). H also acts onU, by the adjoint
representation. The tensor product action clearly leaves the subspaceJ
invariant, hence we have anH-action onU⊗U(h) Hom(V1,V2). We denote
the subset ofH-invariant elements by(U⊗U(h) Hom(V1,V2))

H .

Proposition 1.2. Given two homogeneous vector bundlesG ×H V1 and
G ×H V2 over G/H, the space ofG-equivariant differential from the first
one into the second one is isomorphic to(U⊗U(h) Hom(V1,V2))

H .

Proof. From our earlier remarks it is clear that aG-equivariant differential
operator from the sections ofG×H V1 to the sections ofG×H V2 is the same
thing as an equivariant differential operator fromG ×H V1 to C∞(G,V2)
whose image is contained inC∞(G,V2)

H . So, by Proposition 1.1, we
will be finished if we can show that an element ofU⊗Hom(V1,V2) maps
C∞(G,V1)

H into C∞(G,V2)
H if and only if it is H-invariant moduloJ.

Let X ∈ g, L ∈ Hom(V1,V2), and suppose thatf is in C∞(G,V1)
H .

Then, forg ∈ G, h ∈ H,

(X ⊗ L ) f(gh) = L d
dt

∣∣
o

f(ghexptX) = L d
dt

∣∣
o
ρ1(h

−1) f(gexptAd(h)X)

= (Ad(h)X⊗ Lρ1(h
−1)) f(g).

This will be equal toρ2(h−1)(X⊗ L ) f(g) for all f and allg,h, if and only
if X⊗L is invariant under the action ofH modulo the kernel of the action of
U⊗ Hom(V1,V2), which we know to be equal toJ. The same statement is
then true for any element ofU in place ofX, and for any linear combination
of terms of the formX⊗ L. ut
Remarks.If H is compact the subspaceJ has anH-invariant comple-
ment, and therefore every equivariant operator can be representated by an
H-invariant element ofU⊗ Hom(V1,V2).

In the general case, for an algebraically given element, even when it is
in normal form, it may be difficult to determine whether it isH-invariant
moduloJ. Nevertheless, our results can be quite useful. For example, if we
know thatD is an equivariant operator of the type considered in Proposi-
tion 1.2., and we want to find its algebraic expression, it is enough to find
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an elementD̂ of U ⊗ Hom(V1,V2) such that(D̂ fs)(e) = fDs(e) for all
sectionss of G ×H V1. Then D̂ is automaticallyH−invariant moduloJ
without any need of further proof.

For instance, the operatord from functions to 1-forms onG/H is equiv-
ariant by general principles. The cotangent bundle is naturally identified
with G ×H (g/h)∗. Let {Yj } be a basis ofg/h and{Y∗j } the dual basis. It

is clear that writingd̂ = ∑
j Yj ⊗ Y∗j the effect ofd and of d̂ at the base

point is the same. Hencêd is H-invariant moduloJ (which is of course also
rather easy to verify directly).

These remarks allow a slight simplification in the proofs in Sect. 4
of [KR]: When finding the “algebraic versions” of the operators discussed
there, it is not necessary to give direct proofs of theirH-invariance.

2. The first order differential operators on the maximal boundaries of
symmetric spaces

In the following G will be a connected real simple Lie group with finite
center andK a maximal compact subgroup ofG. Our results are actually true
more generally, with rather obvious modifications of the proofs: It would
be enough to assume thatG is semisimple, or even only that it is reductive
and contained in the class considered in [Wo]. We make our more stringent
hypothesis in order to be more concise and to concentrate on the essential
points. Letg= k + p be a Cartan decomposition of the Lie algebrag of G,
with Cartan involutionϑ and let us denote byB the Killing form. Choose
a maximal abelian subalgebraa ⊂ p and introduce an ordering in the dual
a∗ of a. If

∑
is the set of non vanishing restricted roots ofg with respect to

a then the Lie algebra decomposes as

g= go+
∑
λ∈Σ

gλ

with

gλ = {X ∈ g : [H, X] = λ(H )X for all H ∈ a}.
The subspace

n =
∑
λ∈Σ+

gλ

(with Σ+ the positive roots) is a nilpotent subalgebra ofg, and the Lie
algebrag has the Iwasawa decomposition

g= k + a+ n.
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If m denotes the centralizer ofa in k and

n =
∑
λ<0

gλ =
∑
λ>0

ϑgλ

then the root decomposition can be written in the form

g= m+ a+ n+ n.

The groupsA andN are the analytic subgroups ofG with Lie algebraa and
n respectively.M is the centralizer ofA in K , its Lie algebra ism.

The subgroupMAN is a minimal parabolic subgroup andG/MAN
is the maximal boundary of the symmetric spaceG/K . In this section
we will describe the invariant first order differential operators between
vector bundlesG×MAN V over the boundary under the assumption that the
representationsρ of MAN on the finite dimensional complex vector spaces
V are irreducible (henceM-irreducible, with scalarA- and trivialN-action).

Recall that a rootλ ∈ Σ is called simple, if it is positive and if it cannot
be represented as a sum of two positive roots. The real rank one subalgebra
generated bygλ andϑ will be denoted bygλ andHλ will be the element in
a defined by

B(H, Hλ) = λ(H ) for all H ∈ a.

Let (δ,V) be a complex irreducible unitary representation ofM and denote
by (Adgλ,M,g

C
λ ) the complexification of the adjoint representation restricted

to M on the root spacegλ. If no misunderstanding is possible we will
suppress the indexM and just write Adgλ . The tensor product(Adgλ,M ⊗ δ,
gC
λ ⊗ V) decomposes as a direct sum of irreducible representations

Adgλ,M ⊗ δ = ⊕l mlδl

gC
λ ⊗ V = ⊕ Vml

l

with multiplicities ml . The projection operator fromgC
λ ⊗ V ontoVml

l will
be denoted byprδl .

Theorem 2.1.The multiplicitiesml which occur in the decomposition of

Adgλ ⊗ δ = ⊕lmlδl

over M are one provided(V, δ) is an irreducible representation andλ is
a simple restricted root.

The proof of this theorem will be given in Sect. 3.
The groupMAN is the semidirect product ofMA with the nilpotent

group N and M commutes withA. If (ρ,V) is an irreducible complex
representation ofMAN, then its restriction toN is trivial and its restriction
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to M (denoted byδ) is still irreducible. OnA the representation has to be
scalar

ρ(a) = aµ I a ∈ A.

Hereaµ stands for expµ(H ) whena = expH andµ is a linear function
ona. The irreducible complex representation(ρ,V) of MAN is completely
determined by the pair(δ, µ): aµ is a character ofA and (δ,V) is an
irreducible complex representation ofM.

Choose a basis{ek} of V and let{e∗k} be the dual basis. Also choose
an orthonormal basis{Yj } of g−λ with respect to the positive definite form
(. , .) = −B(. , ϑ .). Then{ϑYj } will be an orthonormal basis ingλ.

For an irreducible unitaryM-representation the Casimir operatorCδ =
−∑k(δ∗Zk)

2 with {Zk} an orthonormal basis ofm acts as a scalar

Cδ = c(δ)Iδ.

The constantc(δ) depends on the choice of the scalar product in the Lie
algebram of the compact groupM. The standard choice would be the
Killing form of m. However in the present context the scalar product is
the restriction of−Bg(., ϑ.) to m and as suchCδ is the “relative” Casimir
operator.

Theorem 2.2.Assume thatλ is a simple restricted root, thatρ = (δ, µ)
is an irreducible complex MAN-representation onV and that(δl ,Vl) is an
irreducible component in the decomposition of (Adgλ ⊗ δ,gλ⊗ V) over M.
If the representation ofMAN on Vl is (δl , µ+ λ) and if the characterµ of
A satisfies

2µ(Hλ) = c(δ)+ c(Adgλ)− c(δl)

then

∇µ,δl :=
∑
j,k

Yj ⊗ e∗k ⊗ prδl (ϑYj ⊗ ek)

is aG-equivariant operatorC∞(G,V)MAN→ C∞(G,Vl)
MAN. Conversely,

any first order equivariant differential operatorD : C∞(G,V)MAN →
C∞(G,W)MAN with irreducible actions ofMAN on V and W is of the
formU ◦ ∇µ,δl with U a MAN-equivariant mappingVl → W.

The proof of this theorem will occupy the remainder of this section. It
is based on two auxiliary results.

Proposition 2.3.If λ ∈ Σ+ is a positive root which is not simple, then there
exists a simple rootµ > 0 such that[Z,Y] 6= 0 whenever0 6= Z ∈ gµ and
0 6= Y ∈ g−λ.

Proof. Representλ > 0 in the formλ = ∑
µ simplecµµ with cµ ≥ 0. The

Killing form B restricted toa is positive definite. Let〈. , .〉 be the dual scalar
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product ona∗ such that〈µ, λ〉 = B(Hλ, Hµ). It is invariant under linear
automorphisms preservingΣ.

From

0< 〈λ, λ〉 =
∑

µ simple

cµ〈µ, λ〉

it follows that〈µ, λ〉 > 0 for at least one simple rootµ. Consequentlyλ−µ
is a root (see [H] p. 457). Furthermoreλ + µ is not a root except possibly
if the root system isG2. This is clear ifλ is a multiple ofµ. Otherwise,
consider theµ-string of rootsλ+ kµ, p≤ k ≤ q. It satisfies ([H] p. 457).

p+ q = −2
〈λ,µ〉
〈µ,µ〉 := −aλµ < 0

and hencep+ q can only be−3,−2 or−1.
If λ+ µ were a root, thenq ≥ 1 and consequently

p= −q− aλµ ≤ −2.

This would give a chain of lengthq − p+ 1 ≥ 4. The classification of
root systems shows, thatG2 is the only root system with a chain of (non
proportional) roots which is of length 4. Otherwise only chains of length
≤ 3 can occur. Henceλ+ µ is not a root except possibly in the caseG2.

In all these cases, the Jacobi identity together with

[Z, ϑZ] = B(Z, ϑZ)Hµ Z ∈ gµ

([H], p. 407) show that for 06= Z ∈ gµ, 0 6= Y ∈ g−λ

[[Z,Y], ϑZ] = [[Z, ϑZ],Y] + [Z, [Y, ϑZ]]
= B(Z, ϑZ)λ(Hµ)Y
6= 0

since〈λ,µ〉 > 0, and[Y, ϑZ] = 0.
The only symmetric space with restricted root systemG2 is G/K where

G is the normal real form of the complex semisimple group of typeG2.
Since it is a normal real form, theR-subspacea is a real form of a complex
Cartan subalgebrah of g, and each restricted root space is a real form of
an h-root space, so has real dimension 1. Ifλ − µ is a root, then ([H],
theorem 4.3 (iv), p. 168)

[gµ,g−λ] = gµ−λ 6= 0.

This proves the proposition. ut
Proposition 2.4. Let {X1, . . . , Xn} be an orthonormal basis of the root
spacegλ, define the mappingsEij ∈ Hom(gλ,gλ) by:

Xi 7→ X j

Xk 7→ 0 k 6= i .
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If {Z1, . . . , Zm} is a basis form, which is orthonormal with respect to the
positive definite form(. , .) = −B(. , ϑ .), then∑

i 6= j

[ϑXi , X j ] ⊗ Eij =
m∑

k=1

Zk ⊗ adgλZk.

Proof. After identifying m with its dual under the positive definite form
(. , .) = −B(. , ϑ.), the elements ofm ⊗ Hom(gλ,gλ) can be regarded as
elements ofHom(m,Hom(gλ,gλ)). To show the equality it suffices to apply
both sides toZ ∈ m. The right hand side sendsZ to adgλ Z (the mapping
adZ restricted to the subspacegλ):∑

k

(Z, Zk)adgλZk = adgλ

(∑
k

(Z, Zk)Zk

)
= adgλ Z.

The left hand side sendsZ to∑
i 6= j

−B(Z, ϑ[ϑXi , X j ])Eij =
∑
i 6= j

−B([Z, Xi ], ϑX j )Eij

=
∑
i 6= j

(adgλZ(Xi ), X j )Eij .

Now, adgλ Z is skew symmetric sinceM acts ongλ by orthogonal transform-
ations. Therefore the last sum is equal to∑

i, j

(adgλZ(Xi ), X j )Eij = adgλZ.

ut
Proof of the theorem.Suppose thatD 6= 0 is a first order equivariant dif-
ferential operatorD : C∞(G,V)MAN −→ C∞(G,W)MAN. It has a normal
form

D =
∑

j

Yj ⊗ L j + Lo

with {Yj } an orthonormal basis ofn, which is chosen so that eachYj belongs
to someg−λ. The correspondingλ ∈ Σ+ will be denoted byλ( j). Under
the identification ofHom(V,W) with V∗ ⊗W the mapsL j take the form

L j =
∑

k

e∗k ⊗ f jk f jk ∈ W.

IntroduceU : Hom(n,V) −→ W by

U : ϑYj ⊗ ek −→ f jk
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so that

D = U ◦ ∇ + Lo

with ∇ =∑ jk Yj ⊗ e∗k ⊗ (ϑYj ⊗ ek). Thus the operatorD can be factored
through the gradient∇.

Let us first consider the action ofa ∈ A. On the vector spacesV andW,
the action is scalar. It is determined by charactersµ andν and we will write
aµ for the action onV, aν on W. Similarly, the action on the root spaces
g−λ will be written asa−λ.

a · D = a ·
∑

jk

Yj ⊗ e∗k ⊗ f jk +
∑

k

I ⊗ e∗k ⊗ fok


= a−µaν

∑
jk

a−λ( j)Yj ⊗ e∗k ⊗ f jk + a−µaν
∑

k

I ⊗ e∗k ⊗ fok.

The operatorD− a · D is in normal form. It vanishes modulo the kernel of
the action ofU⊗V∗ ⊗W if and only if it vanishes, and this happens in two
cases

1) eitherν = µ and f jk = 0 unlessj = 0; in this caseD is a zero order
operator,D = Lo.

2) orν = µ+ λ for some rootλ and f jk = 0 unlessλ( j) = λ; in this case
there is no zero order term; the differential operator isD = U ◦∇λ with
∇λ the gradient restricted to the root spaceg−λ (the expression for∇λ
contains only a basis{Yj } of g−λ).

We discard the first case as trivial and next study theM-invariance of
operators of the formD = U ◦ ∇λ with g−λ a fixed root space. Ifδ is the
representation ofM on V, σ its representation onW, then

m ·U = σ(m) ◦U ◦ δ(m−1)

whereas clearly

m · ∇ = ∇ and m · ∇λ = ∇λ.
Altogether

mD=
∑

jk

Yj ⊗ e∗k ⊗ σ(m) ◦U ◦ δ(m−1)(ϑYj ⊗ ek)

and as beforeD−m · D is in normal form. It vanishes if and only if

σ(m) ◦U ◦ δ(m−1)(ϑYj ⊗ ek) = ϑYj ⊗ ek for all j, k.

This characterizes theM-intertwining operatorsU : V → W.
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Finally, consider theN-invariance for the operatorsD = U ◦ ∇λ. The
groupN being connected it suffices to consider the infinitesimal action byn.
Since the simple root spaces generate all ofn, it remains to verify that

(ϑYi) · D =
∑
λ( j)=λ

∑
k

[ϑYi ,Yj ] ⊗ e∗k ⊗U(ϑYj ⊗ ek) = 0

for all ϑYi in simple root spaces.
We now apply Proposition 2.3. Ifλ is not simple, then there exists

a simple rootµ such that[Z,Yj ] 6= 0 for all Z ∈ gµ, Z 6= 0. Setting
Z = ϑYi ∈ gµ, the[ϑYi ,Yj ] are linearly independent (for fixedi ) and it is
impossible that(ϑYi ) · D = 0 mod the kernel of the action ofU⊗V∗ ⊗W.
The operatorU ◦ ∇λ can therefore only be equivariant ifλ is a simple root.

Assuming thatλ is a simple root it follows that[ϑYi ,Yj ] ∈ a+m and
that the bracket vanishes unlessλ(i) = λ. Consequently

(ϑYi ) · D ≡
∑
λ( j)=λ

∑
k

I ⊗ ρ∨∗ ([ϑYi ,Yj ])e∗k ⊗U(ϑYi ⊗ ek)

modulo the kernel.
The condition forN-invariance becomes∑

ijk

Yi ⊗ ρ∨∗ ([ϑYi ,Yj ])e∗k ⊗U(ϑYj ⊗ ek) = 0

with summation over indicesi, j such thatλ(i) = λ( j) = λ. This tensor
product can be interpreted as a linear transformationA : gλ⊗ V → gλ⊗ V
followed byU. SettingEij = Yi ⊗ϑYj with the interpretation thatEij is the
linear transformationgλ → gλ mappingϑYi to ϑYj andϑYk to 0 for k 6= i ,
we obtainA as a tensor product of mappings:

A =
∑

ij

ρ∗[ϑYi ,Yj ] ⊗ Eij .

Recall then ([H], p. 407) that

[ϑYi ,Yi ] = B(Yi, ϑYi )Hλ = −Hλ ∈ a

and

[ϑYi ,Yj ] ∈ m for i 6= j.

This leads to an expression

A=
∑
i= j

ρ∗(−Hλ)⊗ Eij +
∑
i 6= j

δ∗[ϑYi ,Yj ] ⊗ Eij
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to which Proposition 2.4 applies:

A=
∑

i

µ(−Hλ)Igλ ⊗ Eii +
∑

k

δ∗Zk ⊗ adgλZk

= −µ(Hλ)Igλ ⊗ IV +
∑

k

(δ∗ ⊗ adgλ)(Zk ⊗ Zk).

As explained at the beginning of this section, for an irreducibleM-repre-
sentation the Casimir operatorCδ = −∑k(δ∗Z

2
k) acts as a scalar:

Cδ = c(δ)Iδ.

Upon decomposingδ ⊗ Adgλ = ⊕lδl , V ⊗ gC
λ = ⊕Vl , (the multiplicities

are one according to Theorem 2.1) the Casimir operatorCδ⊗Adgλ
is given by

⊕l c(δl)IVl . On the other hand

−
∑

k

((δ⊗ Adgλ)∗Zk)
2 = −

∑
k

(δ∗Zk ⊗ Iλ + I ⊗ adgλZk)
2

= −
∑

k

{
(δ∗Zk)

2⊗ I + I ⊗ (adgλZk)
2+ 2δ∗Zk ⊗ adgλZk

}
= Cδ ⊗ I + I ⊗ CAdgλ

− 2
∑

k

(δ∗ ⊗ adgλ)(Zk ⊗ Zk)

= (c(δ)+ c(Adgλ))IV ⊗ Igλ − 2δ∗ ⊗ adgλ ·
(∑

k

Zk ⊗ Zk

)
.

From this it follows that

−
∑

k

(δ∗ ⊗ adgλ)(Zk ⊗ Zk) = ⊕l
1

2
(c(δl)− c(δ)− c(Adgλ))IVl

and finally the condition forN-invariance becomes

U◦
∑

ij

ρ∗([ϑYi ,Yj ])⊗ Eij

= U ◦ ⊕l(−µ(Hλ)− 1

2
(c(δl)− c(δ)− c(Adgλ)))IVl

= 0.

If µ(Hλ) 6= 1
2(c(δ)+c(Adgλ)−c(δl)) thenU must vanish onVl . Furthermore,

U is anM-intertwining homomorphism onto the irreducible representation
spaceW with M-representationσ . The only situation in whichU does not
vanish identically is thatσ ∼ δl and

2µ(Hλ) = c(δ)+ c(Adgλ)− c(σ).

In this caseU factors overprδl . This proves the theorem. ut
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3. Real rank one reduction and the groupM

As before, let

g= m+ a+
∑
λ∈Σ

gλ

be the root space decomposition of the simple (real) Lie algebrag.

Proposition 3.1.Forλ ∈ Σ+ an indivisible restricted root letgλ denote the
subalgebra ofg generated bygλ andg−λ. Thengλ is a simple Lie algebra
of real rank one. The Cartan decomposition ofgλ with respect toϑ|gλ is

gλ = (k ∩ gλ)+ (p ∩ gλ) := kλ + pλ

andaλ = RHλ with Hλ determined byB(Hλ, H ) = λ(H ) for all H ∈ a is
a maximal abelian subspace ofpλ. The root space decomposition ofgλ is

gλ = g−2λ + g−λ + gλo + gλ + g2λ

with gλo = aλ + mλ, mλ = [gλ,g−λ] ∩ m (whereg−2λ,g2λ have to be
omitted if 2λ is not a restricted root).
(See e.g.[H], p. 407–409).

Proposition 3.2.[C]

mλ = span{[X, ϑY] : X,Y ∈ gλ, (X,Y) = 0}.

Proof. Let mo denotespan{[X, ϑY] : X,Y ∈ gλ, (X,Y) = 0}. Then
[ϑX,Y] = ϑ[X, ϑY] ∈ mo andmo+ aλ is bothspan{[X, ϑY] : X,Y ∈ gλ}
andspan{[ϑX,Y] : X,Y ∈ gλ}.

Now mo+ aλ is an ideal inmλ + aλ since for anyM ∈ mλ

[M, [X, ϑY]] = [[M, X], ϑY] + [X, ϑ[M,Y]] ∈ mo+ aλ.

Further, [g−2λ,g2λ] ⊂ mo + aλ since, if Z, Z′ ∈ g2λ, then there exist
X,Y ∈ gλ with Z = [X,Y] and

[Z, ϑZ′] = [[X,Y], ϑZ′] = [[X, ϑZ′],Y] + [X, [Y, ϑZ′]] ∈ mo+ a.

It follows thatg−2λ + g−λ +mo+ a+ gλ + g2λ is an ideal ingλ, hence all
of gλ and consequentlymλ = mo. ut
Corollary. mλ is an ideal inm.

Proof.For Z ∈ m andX,Y ∈ gλ

[Z, [X, ϑY]] = [[Z, X], ϑY] + [X, [Z, ϑY]] ⊂ mλ + aλ.
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But if X ⊥ Y, then the left hand side is inm and hence

[Z,mλ] ⊂ mλ

for all Z ∈ m. ut
The groupM is compact and hence reductive. Its Lie algebra decomposes

into the direct sum

m = z+ [m,m]
of its centerz and the semisimple ideal[m,m] ([Hu], p. 102). This decom-
position is orthogonal with respect to the scalar product(. , .) = −B(. , ϑ.)
defined via the Killing formB of g. In fact, for Z ∈ z andX,Y ∈ m

(Z, [X,Y]) = −B(Z, [X,Y]) = B([X, Z],Y) = B(0,Y) = 0.

The semisimple ideal[m,m] decomposes into an orthogonal sum of simple
idealsm j

[m,m] = ⊕n
j=1m j

([Hu], p. 23) and them j are uniquely determined. Orthogonality follows
from the relation

B(Zi , Zj ) = B([Xi ,Yi ], Zj ) = −B(Yi , [Xi , Zj ])
= −B(Yi ,0) = 0

with Zj ∈ m j and Zi ∈ mi with Zi of the form Zi = [Xi ,Yi ] sincemi is
simple.

The following proposition is well known.

Proposition 3.3.Any ideal inm is of the form

z′ + ⊕ j∈Jm j

for some index setJ ⊂ {1. . . . ,n} and some subspacez′ ⊂ z.

Proposition 3.4.Let mα,mλ be the subalgebras of the real rank one alge-
brasgα,gλ which were defined above (withα, λ indivisible restricted roots).
Then thead-action ofmα on gλ is trivial if and only if mα is orthogonal
to mλ.

The ad-action ofmα ongλ is trivial if and only if [U,W] = 0 for all W ∈ gλ
and for allU ∈ mα. The element[U,W] lies in gλ, hence it vanishes if and
only if

B([U,W], ϑZ) = B(U, [W, ϑZ]) = 0

for all U ∈ mα andW, Z ∈ gλ.
Since span{[W, ϑZ] : W, Z ∈ gλ} = mλ + aλ, this condition is satisfied

if and only if mα is orthogonal tomλ.



386 A. Koŕanyi, H.M. Reimann

If the ad-action ofmα is trivial on gλ, thena fortiori it is trivial on gλ.
Conversely, the ad-action ofmα will be trivial on g−λ if it is trivial on gλ.
The algebragλ being generated bygλ andg−λ, the ad-action ofmα will then
also be trivial ongλ. ut

The orthogonality relationmα ⊥ mλ implies thatmα∩mλ = 0, because
the Killing form B restricted tom is strictly negative definite,m being
a compactly embedded subalgebra ofg ([H], Prop. 6.8, p. 133).

Lemma 3.5.SupposeG = G1·G2 is a commutative product of subgroups in
the sense that eachg ∈ G can be written asg= g1g2 with gi ∈ Gi i = 1,2
and all elements ofG1 and G2 mutually commute. Then every irreducible
(complex) unitary representation(δ,V) of G is of the formδ(g1 g2) =
δ1(g1) ⊗ δ2(g2), V = V1 ⊗ V2, with irreducible unitary representations
(δi ,Vi ) of Gi (i = 1,2), such that for allg ∈ G1 ∩ G2

δ j (g) = χ(g)IVj j = 1,2

with some (scalar) characterχ of G1 ∩ G2.

The lemma is a consequence of Schur’s lemma (see e.g. [W], where
essentially the same result is attributed to Burnside, or [B], p. 22). ut

If G is a connected semisimple Lie group with finite center and Iwasawa
decompositionG = K AN then by a result of Satake [S] the centralizerM
of A in K decomposes as a commutative product

M = Z1 M0

with M0 the identity component ofM andZ1 finite. Letgλ = g−2λ+g−λ+
gλ0 + gλ + g2λ be a real rank one subalgebra ofg as in Proposition 3.1 and
let Gλ, Kλ and Aλ denote the analytic subgroups ofG with Lie algebras
gλ, kλ andaλ. The centralizer ofAλ in Kλ is denoted byMλ, its identity
component byMλ

0. Except in the casegλ ∼= sl(2,R), the quotientKλ/Mλ is
a sphere of dimension≥ 2, so is simply connected, and thereforeMλ = Mλ

0.

Proposition 3.6.There exists a subgroupM′ of M0 such that

M0 = M′Mλ
0 (commutative product)

and Adgλ(M
′) = {I }.

The proof is based on the fact that adgλ(m
λ) consists of all derivations

of mλ = gλ + g2λ, which are skew-symmetric with respect to the Killing
form (see [CDKR2], Lemma 4.3).

Now adgλ(m) also consists of skew-symmetric derivations ofmλ. It
follows that

m = mλ ⊕m′
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with m′ the kernel of the representation adgλ of m. M0 is then the com-
mutative product ofMλ

0 with M′, the analytic group with Lie algebram′.
Furthermore Adgλ(M

′) = {I }. This proves the proposition. ut
As a consequence

M = Z1M0 = Z1M′Mλ
0

= M′′Mλ
0 = Mλ

0 M′′ with M′′ = Z1M′.

It is proved in [S] that anyz1 ∈ Z1 is of the formz1 = expiH with some
H ∈ a. In particular

Ad(z1) = ead(iH )

Adgλ(z1) = eiλ(H ) Igλ.

Since Ad(z1) is a real linear transformation ofgwe must haveeiλ(H ) ∈ R,
i.e.= ±I . Together with the above proposition this shows that Adgλ(M

′′) =
{±I }.

For m′′ ∈ M′′ we write Adgλ(m
′′) = χ(m′′)Igλ. Thenχ is a character

of M′′.

Proposition 3.7.SupposeG is a connected Lie group of real rank one. Let
g, k,a,m, K, A,M as above, andgλ be the root space for the (unique!)
indivisible positive root. Letδ be any complex irreducible representation of
M andτ be the representation ofM given by the adjoint action ofM ongC

λ .
Then the tensor productτ⊗δ decomposes into irreducible components with
multiplicity one.

Proof. From classification ([H], p. 513, or [CDKR1] for a more direct ap-
proach) we know that there are only the following four possibilities forg:

(i) so(n+ 1,1),
(ii) su(n+ 1,1),

(iii) sp(n+ 1,1),
(iv) f4(−20)

(in Helgason’s notation). Assumingn ≥ 1 in each case, this is a list
without repetitions. The correspondingm′s areso(n), su(n)+ R, sp(n)+
sp(1), so(7).

The adjoint action ofM on gλ is
(i) the natural action ofSO(n) on Rn,

(ii) the natural action ofU(n) on Cn,
(iii) the action ofSp(n)× Sp(1) on Hn, one factor acting on the left, the

other on the right,
(iv) the 8-dimensional spin-representation ofSpin(7).

In case (ii), the complexificationτ of this representation splits asτ = τ0⊕τ0,
the natural representation ofU(n) on Cn and its complex conjugate. This
leads to a generalization of the classical decompositiond = ∂ + ∂ of the
outer derivatived. In the other casesτ remains irreducible.
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As explained before Proposition 3.6,M is connected in all cases, except
possibly wheng= so(2,1). Wheng= so(2,1), τ is a scalar representation,
and therefore our Proposition is trivial; we exclude this case in what follows.
Then the representationδ is entirely determined by its highest weight. We
may, and we will, regardδ as well asτ as a representation of the universal
covering groupM̃ of M.

For case (i) withn even and for case (iv) the Proposition can be proved
as follows. In [Bou] Ch. VIII, §13 the fundamental representations of the
classical groups are concretely described and their highest weights identified
(cf. also [Si] sec. IX.8 for the same results). The list on p. 129 of [Bou] then
shows thatτ is a minuscule representation (note the misprint in [Bou]: the
minuscule weights forBl andCl are interchanged). It is well known that
for anyρ the tensor product with a minuscule representation decomposes
with multiplicity one. The components will be exactly the representations
whose highest weight are that ofδ plus a weight ofτ, whenever this sum is
dominant. (For a proof in print cf. the argument in Lemma 11 of [Ma].)

A small modification of this argument works also for cases (ii) and (iii).
In case (iii),M̃ is a product, soδ = (δ′, δ′′) with δ′ andδ′′ being irreducible
representations ofSp(n) resp.Sp(1), andδ acts on the tensor product of the
two representation spaces in the natural way.

Similarly τ = (τ ′, τ ′′) and [Bou] Ch. VIII, §13 shows thatτ, τ ′ are
minuscule weights forSp(n) resp.Sp(1). So τ ⊗ δ = (τ ′ ⊗ δ′, τ ′′ ⊗ δ′′)
with both terms between the parentheses decomposing with multiplicity
one. Henceτ ⊗ δ also decomposes with multiplicity one.

In case (ii) we havẽM = SU(n)×R and we can again writeρ = (ρ′, ρ′′),
τ0 = (τ ′0, τ ′′0 ) whereρ′′ andτ ′′0 are now unitary characters ofR. We have

τ ⊗ δ = (τ0⊕ τ0)⊗ δ = (τ ′0⊗ δ′, τ ′′0 ⊗ δ′′)⊕ (τ ′0⊗ δ′, τ ′′0 ⊗ δ′′).
Again τ ′0 and τ ′0 are minuscule, so the first components decompose with
multiplicity one. Sinceτ ′′0 is not trivial, the (one-dimensional) representa-
tions τ ′′0 ⊗ δ′′ andτ ′′0 ⊗ δ′′ are different. Hence the final decomposition of
τ ⊗ δ is still of multiplicity one.

There remains case (i) withn odd; hereτ is not minuscule, so the above
arguments don’t work. This case is covered by Theorem 3.4 of [F] for which
Fegan gives a sketchy proof. Another, perhaps simpler way to deal with it
is to apply the result of Exercise 9 on p. 142 of [Hu]. We omit the details.

ut
Remark.In the caseg = so(n + 1,1) Fegan [F] notes that for anyδ, each
irreducible component ofτ⊗ δ gives a different scalar value for the Casimir
operator. This allows him to state his Theorem 1.1 in a little stronger form
than our Theorem 2.2, namely he does not have to assume that the target
bundle of D is associated to an irreducible representation. For generalg
of rank one such a sharpening is not possible as one can show with easy
counterexamples wheng= su(n+ 1,1).
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Proof of Theorem 2.1.If (δ,V) is an unitary (complex) representation of
M = M′′Mλ

0 then by Lemma 3.7,V = V ′′ ⊗ Vλ
0 and there are irreducible

unitary representationsδ′′ andδλ of M′′ andMλ
0 respectively such that

δ(m′′mλ) = δ′′(m′′)⊗ δλ(mλ).

If Adgλ ,g
C
λ ) is the complexification of the adjoint representation restricted

to M on the root spacegλ, then

Adgλ(m
λm′′)⊗ δ(mλm′′) = χ(m′′)Adgλ(m

λ)⊗ δλ(mλ)⊗ δ′′(m′′).
The real rank-one result from Proposition 3.7 then gives

Adgλ ⊗ δ(mλm′′) = (⊕lδ
λ
l (m

λ))⊗ χ(m′′)δ′′(m′′)
with multiplicities one. The representationχ(m′′)δ′′(m′′) of M′′ is irre-
ducible. It follows that for alll

δλl (m
λ)⊗ χ(m′′)δ′′(m′′)

is an irreducible representation ofM. For differentl , these representations
are inequivalent. Adgλ ⊗ δ is their direct sum. ut
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