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Abstract. We prove a modified version of Ravenel's telescope conjecture.
Itis shown that every smashing subcategory of the stable homotopy category
is generated by a set of maps between finite spectra. This result is based on
a new characterization of smashing subcategories, which leads in addition
to a classification of these subcategories in terms of the category of finite
spectra. The approach presented here is purely algebraic; it is based on
an analysis of pure-injective objects in a compactly generated triangulated
category, and covers therefore also situations arising in algebraic geometry
and representation theory.

Introduction

Smashing subcategories naturally arise in the stable homotopy catgégory
from localization functord: 8 — 4§ which induce for every spectrur

a natural isomorphis(X) >~ X A I(S) between the localization of and

the smash product oK with the localization of the sphere spectrusn

In fact, a localization functor has this property if and only if it preserves
arbitrary coproducts ir§. Therefore one calls a full subcategofy of §
smashingif & = {X € 8 | [(X) = 0} for some localization functor

I: § — & which preserves coproducts. In this paper we study smashing
subcategories from an algebraic point of view. The main result is a new
characterization of smashing subcategories which leads to a classification
in terms of certain ideals in the category of finite spectra. One motivation for
this work is the telescope conjecture of Ravenel and Bousfield which states
that every smashing subcategory is generated by finite spectra. The approach
presented here is purely algebraic and covers therefore also situations arising
in algebraic geometry and representation theory where one studies certain
triangulated categories having a number of formal properties in common
with the stable homotopy category.
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Let € be a compactly generated triangulated category, for example the
stable homotopy category. Thasis a triangulated category with arbitrary
coproducts, an@ is generated by a set of compact objects (an obfantC
is compactif the representable functor Hai, —) preserves coproducts).
Recall that a full triangulated subcatega® of € is localizing if B is
closed under taking coproducts. We say that a localizing subcategory
is strictly localizingif the inclusion functor8 — € has a right adjoint,
and 8 is calledsmashingf there exists a right adjoint for the inclusion
B — € which preserves coproducts. Note that a full subcateg®rig
strictly localizing if and only if there exists a localization functor® — €
such that8 = {X € ¢ | I(X) = 0}, and 8 is smashing if and only if the
corresponding localization functor preserves coproducts.

Theorem A. Let B be a localizing subcategory @f, and denote by the
ideal of maps between compact objectsCirwhich factor through some
object in8B. Then the following conditions are equivalent:

(1) 8B is smashing;

(2) an objectX in € belongs taB if and only if every mac — X from
a compact objecC factors through amag — D in 7J;

(3) an objectX in € satisfieHom(B, X)=0if and only ifHom(J, X)=0.

Let us mention an immediate consequence: The smashing subcategories
of € form a set of cardinality at most 2vherex denotes the cardinality
of the set of isomorphism classes of maps between compact obje€ts in
For example, the stable homotopy category has precis&lysashing
subcategories because, in this case- Xy, and arithmetic localization
gives rise to a smashing subcategory for every set of primes.

Given any clasg of maps inCG, we say that a localizing subcategory
B is generatedby J if B is the smallest localizing subcategory®fsuch
that every map iry factors through some object iB. For exampleB is
generated by a class= {idy, | i € |} of identity maps if and only ifB is
the smallest localizing subcategory containixgfor alli € 1.

Corollary. Every smashing subcategory is generated by a set of maps
between compact objects.

The statement of the corollary is a modified version of the following
“telescope conjecture” which is based on conjectures of Ravenel [23, 1.33]
and Bousfield [6, 3.4] for the stable homotopy category:

Every smashing subcategory is generated by a set of identity maps between
compact objects.

In this generality, the conjecture is known to be false. In fact, Keller
gives an example of a smashing subcategory which contains no non-zero
compact object [14]. Despite some efforts of Ravenel [24], the conjecture
remains open for the stable homotopy category.

The characterization of smashing subcategories leads to a classification
in terms of certain ideals which we now explain. We denotepyhe full
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triangulated subcategory of compact object® iand call an idedl of maps
in Cq exactif there exists an exact functdr: C; — D into a triangulated
categoryD such thath = {¢ € Gy | f(¢) = 0}.

Theorem B. Let € be a compactly generated triangulated category and
suppose that every cohomological func@jp — Ab is isomorphic to
Hom(—, X)|e, for some objecKX in €. Then the maps

B +— {¢p € Cy| ¢ factors through an object ilB} and

J = {X e C|every map C— X, C e @, factors through a map

C— Din7J}

induce mutually inverse bijections between the set of smashing subcate-
gories ofC and the set of exact ideals ®y.

Note that the additional assumption énin the preceding theorem is
automatically satisfied if there are at most countably many isomorphism
classes of maps between compact object®;irin particular the stable
homotopy category has this property [21]. The classification of smashing
subcategories has the following consequence.

Corollary. Alocalizing subcategoryB of C is smashing if and only i3 is
generated by a class of maps between compact obje€tdvioreover, given
any classy of maps between compact object®inthere exists a localizing
subcategory o€ which is generated by.

The preceding corollary amounts to a classical result of Bousfield and
Ravenel ifJ is a class of identity maps. In fact, they showed for the stable
homotopy category that every class of compact objects generates alocalizing
subcategory which is smashing [6,23]. Howevef i§ a class of arbitrary
maps inC, it is not clear that there exists a localizing subcategory which is
generated by.

Our analysis of smashing subcategories is based on the concept of purity
for compactly generated triangulated categories. Let us call atnap Y
in @ apure monomorphisrii the induced map HoC, X) — Hom(C, Y)
is a monomorphism for all compact obje@s An object X is calledpure-
injective if every pure monomorphisnX — Y splits. These definitions
are motivated by analogous concepts for the category of modules over
aring [7]. In this context one frequently studies the indecomposable pure-
injective modules; they form the Ziegler spectrum of the ring [28]. We shall
see that the isomorphism classes of indecomposable pure-injective objects
in ¢ form a set which we denote by $p

Theorem C. Let 8 be a smashing subcategory ®f and letU be the set
of objectsY in SpC such thatHom(8B, Y) = 0. Then the following holds
for any objectX in C:

(1) X e 8 ifand only ifHom(X, U) = 0;
(2) Hom(8, X) = 0if and only if there is a pure monomorphisk —
[Tic; YiwithY; e Uforalli.



102 H. Krause

We obtain the following consequence if we @it= 0.

Corollary. Every objecXin ¢ admits a pure monomorphiskh— [];, i
with Y; € Sp¢ for all i. In particular, Hom(X,Y) = Ofor all Y € SpC
impliesX = 0.

The concept of purity is closely related to the occurence of phantom
maps. Recall that a majg — Y is a phantom magpf the induced map
Hom(C, X) — Hom(C,Y) is zero for all compact object€. From the
existence of pure-injective envelopes@rwe derive for every objecX the
existence of a universal phantom map endingXirand a universal pure
monomorphism starting iix.

Theorem D. For every objectX in C there exists, up to isomorphism,
a unique triangle

X % x L xr L xqa
having the following properties:

(Al) amapy: Y — Xisaphantom map if and onlydffactors throughy;
(A2) every endomorphisig of X’ satisfyinge = « o ¢ is an isomorphism.

The same triangle is characterized, up to isomorphism, by the following
properties:

(B1) a map¢: X — Y is a pure monomorphism if and onlygffactors
throughe;
(B2) every endomorphisihof X" satisfying8 = ¢ o g is an isomorphism.

Our main tool in this paper is a functdr: ¢ — M into a module
category.M which has the following universal property:

(1) h: ¢ — M is a cohomological functor into an abeli&B 5 category
which preserves coproducts;

(2) any functoth’: ¢ — M’ as in (1) has a unique factorizatibh= f oh
such thatf : M — M’ is exact and preserves coproducts.

In Section 1 of this paper we exploit the fact theinduces an equivalence
between the full subcategory of pure-injective objectCirand the full
subcategory of injective objects is(. We continue in Section 2 with the
problem of extending cohomological functors. For instance, we prove the
following result wherey denotes the full triangulated subcategory which
is formed by the compact objects

Theorem E. Every cohomological functof : Gg — » into an abelian
AB 5 categoryA extends, up to isomorphism, uniquely to a cohomological
functor f': ¢ — A which preserves coproducts. MoreoverdAfis the
category of abelian groups, thefi preserves products if and only ff ~
Hom(X, —) for some compact obje¢t in C.

In Section 3 we derive from the universal properthofC — M a strong
relation between localizing subcategoriegtiand localizing subcategories
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in M. This interplay between triangulated and module categories is crucial
for our characterization of smashing subcategories. The final Section 4 is
devoted to the proofs for the main results of this paper.

Acknowledgementl would like to thank Dan Christensen and Bernhard Keller for a number
of helpful comments concerning the material of this paper. Thanks also to Amnon Neeman
for pointing out a mistake in a preliminary version of this paper. In addition, | am grateful
to an anonymous referee for numerous suggestions.

1. Purity

1.1. Pure-exactness.Let C be a triangulated category [26,27] and suppose
that arbitrary coproducts exist i@@. An object X in € is calledcompact

if for every family (Yj)ic; in € the canonical mag [; Hom(X,Y;) —
Hom(X, [ [; Yi) is anisomorphism. We denote I8y the full subcategory of
compact objects i® and observe thak, is a triangulated subcategory ©f
Following [20], the categorg is calledcompactly generateprovided that

the isomorphism classes of objectginform a set, and HolE, X) = 0 for

all Cin Gy implies X = 0 for every objectX in ¢. Examples of compactly
generated triangulated categories arise in stable homotopy theory, algebraic
geometry, and representation theory.

Definition 1.1. Let C be a compactly generated triangulated category.

(1) AmapX — Y in € is said to be goure monomorphisrif the induced
mapHom(C, X) — Hom(C, Y) is a monomorphism for all compact
objectsCin C.

(2) An objectX in € is called pure-injectiveif every pure monomorphism
¢: X — Y splits, i.e. there exista mafy: Y — X such thatp’ o ¢ =
idx.

(3) Atriangle X — Y — Z — X[1] is called pure-exacif the induced
sequencdd — Hom(C, X) — Hom(C,Y) — Hom(C, Z) — Ois
exact for all compact objec§S in C.

The preceding definition is motivated by analogous definitions for the
category of modules over a ring [7]. However, contrary to the concept for
modules, a pure monomorphismanis usually not a monomorphism in the
categorical sense. For the sake of completeness we include the following
definition.

Definition 1.2. Let C be a compactly generated triangulated category.

(1) AmapY — Zin € is said to be gure epimorphisnf the induced map
Hom(C, Y) — Hom(C, Z) is an epimorphism for all compact objects
Cince.

(2) An objectZ in € is called pure-projectivef every pure epimorphism
Y Y — Zsplits, i.e. there existamap': Z — Y such thaty oy’ =
idz.
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The concept of purity is closely related to the occurence of phantom
maps. Recall that a maf — Y is a phantom mapprovided that the
induced map HorC, X) — Hom(C, Y) is zero for all compact objects
inC.

Lemma 1.3. For a triangle X Ly Lz X X[1] the following are
equivalent:

(1) ¢ is a phantom map;

(2) ¥ is a pure monomorphism;

(3) x is a pure epimorphism;

(4) the shifted triangleY — Z — X[1] — Y[1] is pure-exact.

Proof. Clear, since the induced sequence HEMX) — Hom(C,Y) —
Hom(C, Z) — Hom(C, X[1]) is exact for evenC € Co. O

Lemma 1.4. The following conditions are equivalent for an objécin C:

(1) X s pure-injective;

(2) ifp: Y — Xis a phantom map, thep = 0;

(3) if¢: V — Wis apure monomorphism, then every map> X factors
through¢.

Proof. (1) < (2) follows immediately from the preceding lemma, and the
direction (3)= (1) is also clear. To prove (B (3), let¢: V — W be

a pure monomorphism and lgt: V — X be a map withX pure-injective.
We obtain a commutative diagram

U— V-2 wW— U

Lo

| L
U— X— Y — U[]1]

such that both rows are triangles. The nihp> V is a phantom map since
¢ is a pure monomorphism, and it follows tHat— X is a phantom map.
Therefore the maX — Y is a pure monomorphism which splits singe
is pure-injective. It follows thaty factors throughp. O

1.2. Modules. Let € be any additive category. &-moduleis by definition

an additive functoc®? — Ab into the categonAb of abelian groups, and
we denote fore-modulesM and N by Hom(M, N) the class of natural
transformationsM — N. A sequencel — M — N of maps between
C-modules iexactif the sequencé (X) — M(X) — N(X) is exact for all
Xin €. A ¢-moduleM isfinitely generatedf there exists an exact sequence
Hom(—, X) — M — OforsomeXin ¢, andM isfinitely presented there
exists an exact sequence Hem X) — Hom(—,Y) - M — 0 with X
andY in C. Note that HoniM, N) is a set for every finitely generatezh
moduleM by Yoneda's lemma. The finitely present€dmodules form an
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additive category with cokernels which we denote by r@odt is well-
known that mod® is abelian if and only if every may — Z in € has
aweak kernelX — Y, i.e. the sequence Hgm, X) — Hom(—,Y) —
Hom(—, Z) is exact. In particular, mo@ is abelian ifC is triangulated.
Suppose now that is skeletally small. Then th€-modules form to-
gether with the natural transformations an abelian category which we de-
note by ModC. Note that Mod® has arbitrary products and coproducts
which are defined pointwise. For examplg]; Mi)(X) = []; M;i(X) for
a family (Mj)i¢; in Mod € and X in ¢. We denote for ever) in € by
Hyx = Hom(—, X) the corresponding representable functor and recall that
Hom(Hy, M) >~ M(X) for every moduleM by Yoneda’s lemma. It follows
that Hy is a projective object in Mo@. We shall also need to use the fact
that Modc is aGrothendieck categorywhich as far as we are concerned
means that it has injective envelopes [9].
Our main tool for studying a compactly generated triangulated category
C is therestricted Yoneda functor

he: € — Mod Gy, X+ Hyx =Hom(—, X)|@O.

1.3. Brown representability. Recall that a (covariant) functdr: ¢ — 4
from a triangulated categor@ into an abelian categoryt is cohomo-
logical if for every triangleX — Y — Z — X[1] in € the sequence
f(X) - f(Y) —> f(2) — f(X[1])) is exact. Examples of cohomolog-
ical functors are the representable functors H¥m-): ¢ — Ab and
Hom(—, X): €°°? — Ab for any X in C. The Brown representability theo-
rem characterizes the representable cohomological fun€trs> Ab for

a compactly generated triangulated categ®ry

Theorem (Brown). Let f: C°° — Ab be a cohomological functor such
that the canonical mag(] [; Xi) — []; f(Xi) is an isomorphism for every
family (Xj)ijc; of objects inC. Thenf ~ Hom(—, X) for some objecX
inC.

Proof. See Theorem 3.1 in [20]. O

The existence of arbitrary products ¢his a well-known consequence
of the Brown representability theorem.

Lemma 1.5. The categon® has arbitrary products.

Proof. Let (X)ic; be afamily of objects ir® and letf = [[; Hom(—, X).
Clearly, f is a cohomological functor which sends coproducts to products.
Thus f >~ Hom(—, X) by the Brown representability theorem, and it is
easily checked thaX = []; Xi in C. O
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1.4. Pure-injectives. Our analysis of pure-injective objects in a compactly
generated triangulated categatyis based on some properties of the re-
stricted Yoneda functone: ¢ — Mod Gy. We need two lemmas. Recall
that a moduleM is fp-injectiveif Ext'(N, M) = 0 for every finitely pre-
sented modulé.

Lemma 1.6. TheCy-moduleHy is fp-injective for everyX in C.
Proof. A finitely presented®-moduleN has a projective presentation
HA—> HB—) HC—) N— O

coming from a triangleA — B — C — A[1l] in € with objects inCg.
Thus one can compute Bxs the cohomology of the complex

Hom(Hc, Hx) — Hom(Hg, Hx) — Hom(Ha, Hx).

Thisis, however, isomorphicto Hof@, X) — Hom(B, X) — Hom(A, X),
so it is exact. Therefore EXtN, Hyx) = 0 andHy is fp-injective. O

Lemma 1.7. Let M be an injectiveCy-module. Then there exists, up to
isomorphism, a unique obje¢ in € such thatM =~ Hy. Moreover,he
induces an isomorphistdom(Y, X) — Hom(Hy, Hy) for all Y in C.

Proof. Let f = Hom(—, M) o he. Thenf is a cohomological functor since
he is cohomological and Hof-, M) is exact. Moreoverhe preserves
coproducts and Hot-, M) induces an isomorphism Hafn[; Ni, M) ~
[T Hom(N;, M) for every family (Ni)ic; of Co-modules. Therefore =~
Hom(—, X) for some objecK in € by the Brown representability theorem.
The induced map HotX, X) ~ f(X) = Hom(Hx, M) sendsdy to a map
¢: Hx — M which is an isomorphism since

Hx(C) = Hom(C, X) >~ Hom(Hc, M) >~ M(C)

for every compact obje@@ by Yoneda’s lemma. Theinvergel: M — Hy
induces an isomorphism

Hom(Y, X) ~ Hom(Hy, M) ~ Hom(Hy, Hy)
which is precisely the map induced hy. This finishes the proof. ]

The following theorem collects a number of characterizing properties of
pure-injective objects. We denote for every obj¥cand every set by X'
the product and bXV the coproduct of cartl copies ofX.

Theorem 1.8. The following conditions are equivalent for an objedn C:

(1) X'is pure-injective;

(2) Hx = Hom(—, X)|e, is an injectiveCo-module;

(3) the mapHom(Y, X) — Hom(Hy, Hx), ¢ — Hom(—, ¢)|e,, iS an
isomorphism for allY in C;
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(4) if¢p: Y — Xis aphantom map, thep = 0,
(5) for every setl the summation maX(" — X factors through the
canonical mapX” — X',

Proof. (1) = (2) Let Hx — M be an injective envelope in Mag}. It
follows from Lemma 1.7 thaM ~ Hy for some objecY in ¢, and the map
Hx — M =~ Hy is of the formH, for someg¢: X — Y. Clearly,¢ is a pure
monomorphism, ang splits sinceX is pure-injective. Thusy is a direct
summand oMM and therefore injective.

(2)= (3) Use Lemma 1.7.

(3)= (4) If ¢: Y — X is a phantom map, then Ham, ¢)|c, = O.
Thus it follows from (3) thap = O.

(4)= (1) Use Lemma 1.4.

(2) = (5) Suppose thaM = Hy is an injectiveGy-module. It fol-
lows that the summation mall’ — M factors through the canonical
monomorphisnM — M'. The corresponding mady: — Hy is of the
form H, for some magp: X' — X by Lemma 1.7, and it follows that the
composition ofp with XV — X' is the summation map.

(5) = (2) M = Hy is an fp-injectiveCy-module by Lemma 1.6 which
is injective if the summation mam"’ — M factors through the canonical
monomorphismM"’ — M' for every setl by [17, Theorem 2.6]. i

We discuss a number of consequences.

Corollary 1.9. The restricted Yoneda funct@ — Mod Gy induces an
equivalence between the full subcategory of pure-injective objec¢tsim
the full subcategory of injective objectsod Cy.

Proof. The restricted Yoneda functor sends pure-injectives to injectives by
Theorem 1.8, and it is fully faithful and dense by Lemma 1.7. O

Recall that an objecK in any additive category immxdecomposablé
X # 0 and every decompositiod = X; [ [ Xz implies X; = 0 or X, = 0.
The isomorphism classes of indecomposable injective objects in@ylod
form a set since every indecomposable inject®gemodule arises as an
injective envelope of a finitely generat&j-module. It follows that the
indecomposable pure-injective objects@nform a set which we denote
by Spe.

Corollary 1.10. Every objectX in ¢ admits a pure monomorphisix —
[lic; Yi with Y; e Spe for all i. In particular, Hom(X, Y) = 0 for all
Y € Spe impliesX = 0.

Proof. We observe first that the indecomposable injecigenodules co-
generate Mod,. In fact, one could take the injective envelopes of all simple
modules. To see this, observe that every non-zero maddubas a finitely
generated non-zero submodullewhich has a maximal submodulé by
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Zorn's lemma. This gives a non-zero map fravhto the injective enve-
lope of U/V. Now let X be an object in® and choose a monomorphism
Hx — M in Mod &g such thatM = [, M; is a product of indecomposable
injective Gp-modules. It follows from Lemma 1.7 that this map comes from
a pure monomorphisnX — [, Yi with M; ~ Hy, for all i, and eacly;

is indecomposable pure-injective by Corollary 1.9. O

Remark 1.11.The set S carries two natural topologies. A subdétof

Spe is Ziegler-closedif and only if U = {X € SpC |Hom(¢, X) =0
forall ¢ € 7} for some classy of maps inCp; see [15, Lemma 4.1].

A subselU of Spe is Zariski-operif and only if there exists some cla3®f
maps inCy such thatd = {X € SpC | Hom(¢, X) = 0 for some¢p € J};
see[9, Chap. VI]. We refer to [18] for a detailed discussion of both topologies
in the context of modules over a ring.

Amap¢: X — Y in C is said to be gure-injective envelopef X
if Y is pure-injective and a compositiof o ¢ with a mapy: Y — Zis
a pure-monomorphism if and onlyf is a pure monomorphism.

Lemma 1.12. The following are equivalent for a pure monomorphism
¢: X—=>YinC:

(1) ¢ is a pure-injective envelope of;

(2) Y is pure-injective and every endomorphignof Y satisfyingy o¢ = ¢
is an isomorphism;

(3) Hy: Hx — Hy is an injective envelope iMod Co.

Proof. Straightforward. O

Corollary 1.13. Every objectX in ¢ admits a pure-injective envelope
¢: X > Y. If ¢ X — Y is another pure-injective envelope, then there
exists an isomorphisntr: Y — Y’ such thatp’ = i o ¢.

Proof. The assertion is a consequence of Theorem 1.8 and the existence of
injective envelopes in Mo@. O

We are now in a position to prove Theorem D. In fact, the existence of
a universal phantom may¥’ — X ending in a fixed objecK follows from
the existence of a pure-injective enveloge— X”. We recall Theorem D
for the convenience of the reader.

Theorem 1.14. For every objectX in € there exists, up to isomorphism,
a unique triangle

X % x L xr s X
having the following properties:

(A1) amapey: Y— Xisaphantom map if and onlydffactors throughy;
(A2) every endomorphisi of X’ satisfyinge = « o ¢ is an isomorphism.
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The same triangle is characterized, up to isomorphism, by the following
properties:

(B1) amapg¢: X — Y is a pure monomorphism if and onlygffactors
throughe;
(B2) every endomorphisigof X" satisfying8 = ¢ o 8 is an isomorphism.

Proof. Let X be an object in® and complete the pure-injective envelope
B: X — X" to atriangle

X =% X Loxr s .

The mapw is a phantom map by Lemma 1.3 singés a pure monomor-
phism, and the property (4) in Theorem 1.8 implies twas a universal
phantom map ending iX since X” is pure-injective. On the other hand,

B is a universal pure monomorphism startingdrby Lemma 1.4 since”

is pure-injective. This establishes (A1) and (B1). Condition (B2) is an im-
mediate consequence of Lemma 1.12, and (A2) then follows from (B2). Itis
easily checked that each pair of conditions characterizes the above triangle,
and therefore the proof is complete. O

It is interesting to observe that the full subcategory of pure-injective
objects inC is completely determined by the full subcateg@gof compact
objects inC.

Corollary 1.15. Let ¢ and O be compactly generated triangulated cate-
gories, and suppose that there exists an equivalenc€, — Dy between
the full subcategories of compact objects@irand D. Then f induces an
equivalence between the full subcategories of pure-injective objeats in
andD.

Proof. The functorhe: ¢ — Mod g induces an equivalence between
the full subcategory of pure-injectives i® and the full subcategory of
injective Co-modules by Corollary 1.9. The assertion now follows since an
equivalencef : Gy — D induces an equivalence M@ — Mod Dy. 0O

1.5. Pure-injective modules. The concept of purity has been studied ex-
tensively by algebraists. Pure-exactness and pure-injectivity for modules
over a ring have been introduced by Cohn [7], and we refer to [13] for
a modern treatment of this subject.

Let us recall briefly the relevant definitions. Lat be an associative
ring with identity. We consider the category Madof (right) A-modules.
A sequence B> X — Y — Z — 0 of maps in ModA is pure-exacif the
induced sequence 8> Hom(C, X) — Hom(C,Y) — Hom(C, Z) - O
is exact for all finitely presented-modulesC. The mapX — Y in such
a sequence is calledpure monomorphisnNote that any pure-exact se-
guence is automatically an exact sequence in the usual sense. A module
is pure-injectiveif every pure monomorphisiX — Y splits.
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Suppose now that is aquasi-Frobenius ringi.e. projective and injec-
tive A-modules coincide. In this case thable categoriod A is triangu-
lated; e.g. see [12]. Recall that the objects in Modre those of Mod\,
and for two A-modules X, Y one defines HoitX, Y) to be Hom(X,Y)
modulo the subgroup of maps which factor through a projedtivaodule.
Note that the projection functor Mol — Mod A preserves products and
coproducts. Thus Mod has arbitrary coproducts, and it is not difficult to
check that an objecX in Mod A is compact if and only iiX ~ Y in Mod A
for some finitely presented-moduleY. Therefore_Mod\ is compactly
generated.

Proposition 1.16. A A-moduleX is pure-injective if and only iK is a pure-
injective object inMod A.

Proof. We use the following characterization of pure-injectivity far
modules which is due to Jensen and Lenzing [13, Proposition 7.32F A
moduleX is pure-injective if and only if for every setthe summation map
o : X — X factors through the canonical map X" — X'. We now
combine this characterization with the characterization of pure-injectivity
in Mod A from Theorem 1.8. Thus any pure-injectisemodule is a pure-
injective object in ModA. To prove the converse, &t be a pure-injective
object in ModA and fix a setl. Thus there exists a map: X' — X in
Mod A such thatr;, — ¢ o ¢, factors through a projectiva-moduleP, i.e.
o) —¢ot = Boaforsome map: X" — P. The mapx factors through
the monomorphisny sinceP is injective, i.ea = o’ o) for some magy/,
and therefore

or=Boat+goy=(od +¢)ou.
Thuso, factors through,, and this finishes the proof. O

For some further discussion of the relation between pure-injectives in
Mod A and_ ModA we refer to [16,5].

2. Cohomological and exact functors

2.1. Extending functors. Let € be any triangulated category. We recall
the following well-known property of the Yoneda functor ¢ — mod¢,
X = Hom(—, X).

Lemma 2.1. Every additive functorf: ¢ — » into an abelian cate-
gory A extends, up to isomorphism, uniquely to a right exact functor
f’: mod€ — « such thatf = f’o h. The functorf’ is exact if and
only if f is a cohomological functor.

Proof. Any finitely presented®-moduleM has a projective presentation

Hom(—, X) "5 Hom(—, V) "5 Hom(—, Z) — M — 0
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coming from a triangle
X -2y Loz 5 ox

in C. We obtain aright exact functdr: modC — « if we definef’'(M) =
Coker f(y). Clearly, f = f’ o h holds by construction. Exactness 6f
implies that f is cohomological, sincé is cohomological. Suppose now
that f is cohomological. Taking projective presentations of the modules in
an exact sequence& M; — M, — M3z — 0 in modC as above, one
obtains the following commutative diagram:

0 0 0 0
f(X) — fY) —  f(Z) — f'(My)—0
f(X]_]_[ Xg) — f(Y]_L[Y3) —> f(Z]_]_[ Zg) —> f/(Mz) — 0

f(Xs) —>  f(Ys) —  f(Zs) —> f'(Ms) —> 0

~ v ~ ~

0 0 0 0

The rows are exact sinckis cohomological, and therefore the exactness of
thefirstthree columns implies the exactness of the sequereefO(M;) —
f'(My) — f’(M3) — 0. Thusf’ is exact and this finishes the proof. O

Recall that an abelian categosy satisfiesGrothendieck’sAB 5 con-
dition if A has arbitrary coproducts and taking filtered colimits preserves
exactness. For example, any module category i&B5 category. Sup-
pose now tha€ is a skeletally small triangulated category and consider the
Yoneda functoh: ¢ — ModC.

Lemma 2.2. Every additive functorf: ¢ — A into an abelianAB5
categoryA extends, up to isomorphism, uniquely to a right exact functor
f’: ModC — A which preserves coproducts and satisffes: f'oh. The
functor f’ is exact if and only iff is a cohomological functor.

Proof. Any ¢-moduleM has a projective presentation

Hom(—.gy
[ [Hom(—, x) "= ] [Hom(—, ¥}) — M — 0
| j

which is given by a family of mapg;; : X; — Y; in C. We obtain a func-
tor f': ModC — & if we define f’(M) as the cokernel of the map
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(f(e)): L f(X) — ]_[J- f(Yj) in 4. It is easily checked thaf’ pre-
serves colimits, and that = f’ o h. The restrictionf’|no4c IS exact if
and only if f is cohomological by the preceding lemma. Now observe that

any exact sequence-6 L % M % N = 0inMode can be written as

a filtered colimit of exact sequences9 L; A M; % N; — 0in modcC.
To see this, writep as a filtered colimit of mapg;: L; — M; in mod¢C.
Denoting byy;: M; — N; the cokernel of eacky, we obtain a filtered
system of exact sequences—8 L; A M; Ll Ni — 0 in modC with
colimit 0 > L % M % N = 0. Itfollows that f is exact if and only iff
is cohomological sincet is anAB 5 category. O

We are now in a position to prove the first part of Theorem E. To this end
suppose tha® is compactly generated and consider the restricted Yoneda
functorhe: € — Mod Gy.

Proposition 2.3. Let € be a compactly generated triangulated category.
Then every cohomological functdr: Co — » into an abelianAB 5 cat-
egory 4 extends, up to isomorphism, uniquely to a cohomological functor
f’: ¢ — A which preserves coproducts.

Proof. We denote byf*: Mod Gy — + the exact colimit preserving func-
tor which extends, and definef” = f*ohe. Clearly, f’ is conomological,
preserves coproducts, and|e, = f. Suppose there is another functor
f”. ¢ — A with these properties. We construct a natural transformation
n: f — f” as follows. If X is coproduct of compact objects @, then
we obtain a unique isomorphistyy: f'(X) — f”(X) since f’ and f”
preserve coproducts. Now let = Xy be an arbitrary object i®. We can
choose pure-exact triangle§,1 — P — Xj — Xj;1[1] with P, being

a coproduct of compact objects foe= 0, 1, and we obtain a sequence of
mapsP; — Py — Xin € such thatHp, — Hp, = Hx — 0is exact. This
gives a commutative diagram

f'(P) — f'(P) — f'(X) — 0

Py NPy

f"(P) — f"(Po) — 17(X)

where the upper row is exact siné¢é is exact. Thus there is a unique map
nx: f'(X) — f”(X) since the compositiof?;, — Py — X is zero. Now
let B be the full subcategory formed by the obje&tsn € such thatyy is

an isomorphism. ClearlyB containsCo, and it is triangulated sincé” and

f” are cohomological. Furthermorg is closed under taking coproducts
since f’ and f” preserve coproducts. Th& = € by [20, Lemma 3.2], and
thereforen: f' — f” is an isomorphism. O

The following consequence generalizes a result from [8].
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Corollary 2.4. LetC be a compactly generated triangulated category and
let f: ¢ — A be a cohomological functor into an abeliahB 5 cate-
gory 4. Suppose also that preserves coproducts. Then there exists, up to
isomorphism, a unique exact functdéf: ModCy — A which preserves
coproducts and satisfiek= f’ o he.

Proof. Let f': ModCGy — A be the colimit preserving functor extending
f|e, Which exists by Lemma 2.2. We hafe~ f’ o he by the preceding
theorem since both functors are cohomological and preserve coproducts.
This gives the unigeness df. m]

Corollary 2.5. The following are equivalent for a map: X — Y in
a compactly generated triangulated categ@ry

(1) ¢ is a phantom map;

(2) f(¢) = 0Ofor every cohomological functof: ¢ — 4 into an abelian
AB 5 categoryA which preserves coproducts;

(3) the induced mapiom(Y, Q) — Hom(X, Q) is zero for everyinde-
composablepure-injective objecQ in C.

Proof. The equivalence (1) (2) is an immediate consequence of Corol-
lary 2.4. The equivalence (& (3) follows from the fact thap is a phantom

map if and only if the map) in a triangleX Ly L zX X[1] is a pure
monomorphism. In addition, one uses the existence of a pure monomor-
phismY — []i., Z into a product of indecomposable pure-injectives
which has been established in Corollary 1.10. O

2.2. Adjoint functors. We study pairs of adjoint functors between com-
pactly generated triangulated categories. This is based on properties of
adjoint functors between module categories. We start with some notation.
Let f: ¢ — D be an additive functor between skeletally small additive cat-
egories. Then we denote y: ModD — Mod G, X — Xo f the corres-
ponding restriction functor, ant*: Mod ¢ — Mod D denotes the unique
functor which preserves colimits and sends HemX) to Hom(—, f(X))

for every X in €. Applying Yoneda’'s lemma, we get for evek/in ¢ and
everyD-moduleM a functorial isomorphism

Hom( f*(Hom(—, X)), M) >~ M(f(X))
= f.(M)(X) ~ Hom(Hom(—, X), f.(M))

which shows thaff * is a left adjoint forf.,.
Proposition 2.6. Let f: ¢ — D be an exact functor between compactly

generated triangulated categories. Suppose also thateserves coprod-
ucts, and that the right adjoirg: £ — € of f preserves coproducts.
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(1) finduces afunctoify: Cog — Dy which makes the following diagrams
commutative:

c -5 9 2 5 ¢

b b
ModCo "% ModD,  Mod Do "% Mod e,
(2) The functorg fg)* and ( fp), are both exact.
(3) The functorg sends pure-exact triangles to pure-exact triangles, and
pure-injectives to pure-injectives.

Proof. The existence of the right adjoirg: H — € is an immediate
consequence of the Brown representability theorem, since for every ébject
in O there exists a unique obje¢t= g(X) in € such that Hon—, X)o f ~
Hom(—,Y).

(1) Given a compact objeetin C, it is well-known thatf(X) is compact
sinceg preserves coproducts. This follows from the following sequence of
canonical isomorphisms for every family;)ic, of objects inD:

| [Hom(f(X), ¥i) =~ | [ Hom(X, g(¥) =~ Hom(X, | [ a(¥))
~ Hom(X, g(] [ Yi)) = Hom(f(X). ] [ Y0).

Therefore f induces a functorfy: g — Do. The compositiorhy o f

is a cohomological functor which preserves coproducts. Thus there exists
aunique exact functof’ : Mod Gy — Mod D, commuting with coproducts

and satisfyindhp o f = f’ohe by Corollary 2.4. We claim thatfo)* = f'.

In fact, both functors are right exact, preserve coproducts, and coincide
on the full subcategory of finitely generated projective objects in Kgd

The assertion follows since every objdét in Mod Gy has a projective
presentation

UHxi@)UHyj—)M—)O
i j

with X; andY; in Co for alli andj.
To provehe o g = (fg). o hgp, observe that for everg in G and X in
D we have

(he 0 9)(X)(C) = Hom(C, g(X)) = Hom(f(C), X) = Hx(f(C))
=((fo). o hp)(X)(C).

(2) The exactness dffg)* has already been noticed, and the restriction
(fo)4 is automatically exact.

(3) The first assertion follows directly from the adjointness formula and
the fact thatf preserves compactness. The second assertion follows from
the characterization of pure-injectivity in part (5) of Theorem 1.8, and the
fact thatg preserves products and coproducts. O
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2.3. Flat modules. Let € be a skeletally small additive category. Recall
that there exists gensor product

ModC x ModG%® —s Ab, (M, N) - M ®¢ N

where for anyC-module M, the tensor functoM ®. — is determined by
the fact that it preserves colimits ail @ e Hom(X, —) >~ M(X) for all X
in C. Observe that the existence of such a tensor product is an immediate
consequence of Lemma 2.2. @module M is flat if the tensor functor
M ®0 — exact, and we denote by Flatthe full subcategory of fla€-
modules. Recall that @-module M is flat if and only if M is a filtered
colimit of representable functors [22, Theorem 3.2]. Therefore @ list
equivalent to the category ofd-objectsoverC in the sense of Grothendieck
and Verdier [11]. In particular, Fla® is a category with filtered colimits,
and every functorf: ¢ — D into a category®D with filtered colimits
extends uniquely to a functdr’: FlatC — D preserving filtered colimits
and satisfyingf’(Hom(—, X)) = f(X) for all X in C.

Suppose now that is triangulated. Then we have the following char-
acterization of flat®-modules which has been observed independently by
Beligiannis [3].

Lemma 2.7. The following are equivalent for an additive functor
M: C°P — Ab:

(1) Mis aflatG-module;
(2) M is a cohomological functor;
(3) M is a fp-injectiveC-module.

Proof. (1)< (2) M isflatifand only if the restrictiotM ® ¢ — | modeor IS €Xact
since every exact sequence in M@ can be written as a filtered colimit
of exact sequences in madP. ThusM is flat if and only if M ®¢e —|eop
is a cohomological functor by Lemma 2.1. The assertion now follows since
M>~M Qe —|eor.

(2) & (3) Use the argument from the proof of Lemma 1.6. ]

We combine the preceding lemma with our results about cohomologi-
cal functors on compactly generated triangulated categories. Note that the
following theorem generalizes a result of Christensen and Strickland in [8].

Theorem 2.8. LetC© be a compactly generated triangulated category. Then
the following categories are pairwise equivalent:

(1) the category of cohomological functo®s — Ab which preserve co-
products;

(2) the category of cohomological functaeg — Ab;

(3) the category of ind-objects ovae)°P.

Proof. Combine Proposition 2.3 and Lemma 2.7. O
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The finitely presented modules over a ringare characterized by the
fact that the corresponding tensor functighk ®,, — preserves arbitrary
products ofA°P-modules. In fact, it is sufficient to assume thdt®, —
preserves products of finitely generated projective modules; e.g. see [25,
Lemma 1.13.2]. This result generalizes to rings with several objects and
leads to a characterization of cohomological functérs— Ab which
preserve products; it is the second part of Theorem E.

Proposition 2.9. Let € be a compactly generated triangulated category.
Then the following are equivalent for a conomological functorC¢ — Ab
which preserves coproducts:

(1) (I Xi) = [T; f(Xi) for every family(X;)ic; of objects inC;
(2) f(IT; Xi) = [T; f(X;) for every family(X;);c; of compact objects ie?;
(3) f >~ Hom(C, —) for some compact obje@ in C.

Proof. The directions (1= (2) and (3)= (1) are clear. Therefore sup-
pose thatf preserves products of compact objects. The fun€textends
uniquely to a colimit preserving functof’: ModCy — Ab by Corol-
lary 2.4. We havel’ >~ —®¢e, M for M = f|e, andM is flat by Lemma 2.7.
Moreover, M is finitely presented sincé’ preserves products of finitely
generated projectiv€y-modules. Any flat module is finitely presented if
and only if itis finitely generated projective (e.g. see [25, Corollary 1.11.5]),
and thereforeM >~ Hom(C, —) for someC in CGq. We obtain

f(Y) = f'(Hy) ~ Hy ®, Hom(C, —) >~ Hy(C) = Hom(C, Y)

for everyY in ¢, and thereforef ~ Hom(C, —). ]

2.4. Pure-semisimplicity. A compactly generated triangulated categ@ry

is pure-semisimplé every pure monomorphism i@ splits; equivalently if
every object inC is pure-injective. Our aim is a characterization of pure-
semisimplicity, using the fact that this property is equivalent to a number of
familiar properties of the module category M@gl For instance, Bass has
characterized the rings for which every flat module is projective. This can be
generalized to rings with several objects and then describes when every flat
Co-module is a projectiv€g,-module, see [13, Theorem B.12]. On the other
hand, noetherian rings can be characterized by the fact that every fp-injective
module is injective. Moreover, Matlis showed that a ring is noetherian
if and only if every injective module is a coproduct of indecomposable
modules. These results generalize to rings with several objects as well, see
[13, Theorem B.17]. We obtain therefore the following characterization
of pure-semisimplicity, since the restricted Yoneda funetor~ Mod Cq
identifies every object i@ with a Gp-module which is flat and fp-injective

by Lemma 1.6 and Lemma 2.7.
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Theorem 2.10. The following are equivalent for a compactly generated
triangulated categong:

(1) € is pure-semisimple;

(2) every object ir€ is a coproduct of indecomposable objects with local
endomorphism rings;

(3) every compact object is a finite coproduct of indecomposable objects
with local endomorphism rings, and, given a sequence

X1 2 X, 2 x5 B

of non-isomorphisms between indecomposable compact objects, the
compositionp, o ... o ¢, o ¢ is zero forn sufficiently large;

(4) the restricted Yoneda functbg : € — Mod Cp, X = Hom(—, X)|e,,
is fully faithful;

(5) € has filtered colimits.

This characterization, and indeed a host of other equivalent statements
have been obtained independently by Beligiannis in [4].

3. Localization

3.1. Cohomological ideals.Let C be an additive category. AdealJ in C
consists of subgrouds( X, Y) in Hom(X, Y) for every pair of objects, Y
in @ such that for aly in 3(X, Y) and all maps: X' — Xandg: Y — Y’
in C the compositiors o ¢ o o belongs tdi(X’, Y').

Definition 3.1. An idealJ in a triangulated category is calledcohomo-
logical if there exists a cohomological functdr: € — A into an abelian
categoryA such thaty = {¢ € C | f(¢) = 0}.

Given an ideall in G, we denote bys5 the full subcategory of objects
M in mod¢C such thatVl >~ Im Hy for someg in J. If C is skeletally small,
then 75 denotes the full subcategory of filtered coIimiLs) vy in Mod €
such thatM; belongs tod5 for all i. Recall that a full subcategory of
an abelian category is aSerre subcategorgrovided that for every exact
sequence 6> X' - X — X” — 0in +4 the objectX belongs toS if and
only if X" andX” belong tos.

Lemma 3.2. LetJ be a cohomological ideal in a triangulated categaty

(1) 45 is a Serre subcategory afiodC.
(2) If C is skeletally small, thefis is a Serre subcategory dod C.

Proof. (1) Let f: ¢ — A be a cohomological functor such that=
{¢p € ¢ | f(¢) = 0}, and denote byf’: modC — A the exact functor
extendingf which exists by Lemma 2.1. The full subcategdry= {M €
modeC | f'(M) = 0} is a Serre subcategory of maédsince f’ is exact.
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Now observe that every finitely presentédmodule M with projective
presentatiorHx — Hy — M — 0 is isomorphic to InH, where¢ is the

map occuring in the trianglX — Y Lz X[1]. Given an arbitrary
map¢ in C, we havef(¢) = 0 if and only if f(Im H,) = 0, and therefore
85 = 4. Thus4; is a Serre subcategory of méd

(2) See [15, Theorem 2.8]. O

Let f: ¢ — D be an additive functor between additive categories. We
denote byf*: modC — modD the unique right exact functor which sends
Hom(—, X)toHom(—, f(X)) forall Xin C. If ¢ andD are skeletally small,
then f* extends uniquely to a colimit preserving functor M®d- Mod D
which we also denote by*.

Lemma 3.3. Let f: ¢ — D be an exact functor between triangulated
categories. Theld = {¢ € C | f(¢) = 0} is a cohomological ideal ir€.
Moreover, the following holds:

Q) 83 ={M e mode | f*(M) = 0}.
(2) If ¢ andD are skeletally small, thei; = {M € Mod € | f*(M) = 0}.

Proof. Let f': ¢ — mod®D be the composition off with the Yoneda
functor® — mod®D. This functor is cohomological, ant(¢) = 0 if and
only if f'(¢) = O for every mapp € € since the Yoneda functor is faithful.
ThusJ is a cohomological ideal.

(1) The functor f*: modC — mod®D is the unigue exact functor
extendingf’. Therefore$y = {M € modC | f*(M) = 0} by the argument
given in the proof of Lemma 3.2.

(2) We denote byr the full subcategory of2-modulesM such that
f*(M) = 0. It follows from (1) that75 C T since f* preserves filtered co-
limits. To prove the other inclusion, we use the right adjdint Mod D —
ModC, M +— Mo f for f*. We denote by: ModC€ — Mod € the functor
which is obtained from the functorial exact sequence

0— t(M) — M 2% (f, o £5)(M).

Note thatt induces a right adjoint for the inclusion — Mod € since
f*(um) is anisomorphism for alM. Moreovert preserves filtered colimits
since f* and f,. have this property. Now ld#1 € modC, and writet(M) =
Ii_)m M; as a filtered colimit of finitely generated submodules. For,ale
haveM; € 7 since7 is closed under taking submodules, aide modC
sinceC has weak kernels and therefore finitely generated submodules of
finitely presented modules are again finitely presented. It followstthvat
is a filtered colimit of modules i = 7 N modC. Given any modulévi

in 7, we can writeM = lim M; as a filtered colimit of finitely presented
modules. Thud = t(Ii_m) i)~ I|L>n t(M;) is a filtered colimit of modules
in 8, and7 C 75 follows since$ = 485 by (1). O
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3.2. Localization for triangulated categories. Let € be a compactly gen-
erated triangulated category. Recall that a full triangulated subcategjory
of € is localizing if 8 is closed under taking coproducts. Theotient
categoryC/ 8 is, by definition, the category of fractior®[X 1] (in the
sense of [10]) with respect to the clagsof mapsY — Z which admit
atriangleX - Y — Z — X[1] with X in 8. Thus the corresponding
quotient functor® — @[=71] is the universal functor which inverts every
map inX. Note thatC[ = 1] is alarge category which means that the maps
between fixed objects are not assumed to form a set. Let us mention a few
basic facts about the formation of the quotient categép\8 which we
shall use frequently without further reference.

Lemma 3.4. The quotient functorf : ¢ — €/8 has the following prop-
erties:

(1) The triangulation of® induces a triangulation fo©/8 and f is an
exact functor.

(2) LetX be an object in®. Thenf(X) = 0if and only if X € 8.

(3) Lety be a map inC. Then f(¢) = 0 if and only if¢ factors through
some object irB.

Proof. See [27, Corollaire 2.2.11]. O

The following lemma characterizes the existence of a right adjoint for
the quotient functo®® — C/B.

Lemma 3.5. Let B be a localizing subcategory of a compactly generated
triangulated categorn®. Then the following are equivalent:

(1) the maps between fixed objectsing form a set;
(2) the quotient functorf : ¢ — €/8 has a right adjointy: ¢/8 — C;
(3) the inclusion functo8 — € has a right adjointe: ¢ — B.

Moreover, in this case there is for every objectn € a triangle

(@o HOO[-1] 2 e(X) 25 X 25 (go H(X)
which is functorial inX.

A localizing subcategoryB which satisfies the equivalent conditions of
the preceding lemma admitsl@calization functorC — € which is, by
definition, the composition of the quotient func®r— € /8 with a right
adjointC/8 — C. To prove Lemma 3.5 we shall need the following lemma
aboutC[X 1.

Lemma 3.6. Let € be any category with coproducts. Suppose thas
aclass of maps i@ which admits a calculus of left fractions]If; o; € X for
every family(oi)i¢, in X, then the quotient categoy] = 1] has coproducts
and the quotient functo® — C[X 1] preserves coproducts.
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Proof. Recall from [10] that the objects i®[X~'] are those ofe, and
that the mapsX — Y in G[=~1] are equivalence classes left fractions

X % 7 Z Ywitho € £. Now let (X;)ic; be a family of objects in
C[=~1]. We claim that the coprodudt[; X in € is also a coproduct in
C[X~1]. Thus we need to show that for every obj¥ctthe canonical map
o: Hom([[; Xi,Y) — []; Hom(X;,Y) between Hom-sets e[x1] is
bijective.

To check surjectivity, letX; A Zi < Y)i be a family of left fractions.
We obtain a commutative diagram

]_[| éi ]_[I Oi

[iXi— 1 Z LL
|
[
Z <«— Y

whereny: [[;Y — Y is the summation map and € X. It is easily
checked that

Xi—>Z2<Y~5z 2y
for all i € I, and thereforex sends][; Xi — Z < Y to the family
Pi Oi
(Xi = Zi < Yiiel.

To check injectivity, lef] [, X; % 772 ¥ and 11 X & % 7277 Ype
left fraction such that

XA z7Zv~x Azl
for alli. We may assume th&¥ = Z = Z” ando’ = o = ¢” since we can
choose maps’: Z — Zandt”: 2" — Zwitht' oo’ = 1t" 00" € X.
Thus there are mapgi: Z — Z; with j o ¢ = Yj o ¢’ andyyj oo € X
for all i. Eachy; belongs to thesaturation® of X which is the class of all
maps inC which become an isomorphism ®[X~!]. Note that a map
in @ belongs tox if and only if there are maps’ anda” such thaix o o’
anda” o « belong tox. ThereforeX is also closed under taking coproducts.
Moreover, T admits a calculus of left fractions, and we obtain therefore
a commutative diagram

X —1[z>2% z &Y

lun |

Z — 7%
with € . Thust o 0 € %, and we have

]_[X,—>Z<—Y L[X|—>Z<—Y)
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sincenz o [[; ¢ = ¢' andnz o [[i ¢ = ¢'. Thereforex is also injective,
and this completes the proof. ]

Proof of Lemma 3.5(1) = (2) The quotient functor preserves coproducts
by Lemma 3.6, sinc& is closed under taking coproducts. Given an objéct
in G/ 8, the composition Hof-, X) o f is a cohomological functor which
sends coproducts to products. Thus there eXdgts ¢ with Hom(—, X) o
f >~ Hom(—, Y) by the Brown representability theorem. We guK) =Y,
and it is easily checked that this gives a right adjgnt¢/8 — ¢ for f.
(2)= (1) Let X = f(X') andY be objects i /8. Then HontX, Y) ~
Hom(X’, g(Y)) sincegis aright adjoint off . Thus the maps between objects
in ¢/B form a set.
(2) = (3) Suppose that has a right adjoing. Completing the canonical
mapyx: X — (go f)(X) to a triangle

(go HX)[-1] — Y — X 5 (go )(X)

for every X in C gives a functore: ¢ — B if we pute(X) = Y. In fact,
f(yx) is an isomorphism and thereforfg€Y) = 0 which impliesY € 8.
GivenY’ € B, one applies HorgY’, —) to the above triangle and gets an
isomorphism HortlY’, Y) — Hom(Y’, X). Thuseis a right adjoint for the
inclusion8 — C.

(3) = (2) Suppose that the inclusio® — € has a right adjoing,
and letX = f(X’) be an object in®/8. Completing the canonical map
Bx : e(X) — X' to atriangle

Y[—1] —> e(X) 2% X' — v

gives a functog: C¢/8B — C if we putg(X) = Y. It is not hard to check
that this defines a right adjoint for the quotient funofor~ C/8, but we
leave the details to the reader.
The last assertion is an immediate consequence of the construction given
in (2) = (3). ]

We continue with two lemmas which collect some basic properties of the
quotient functor and its right adjoint, assuming that it exists. The notation
of Lemma 3.5 remains fixed.

Lemma 3.7. The natural transformatioide — go f induces a functorial
isomorphismHom((g o f)(X),Y) — Hom(X,Y) for all X andY such that
Hom(&8,Y) =0.

Proof. Apply Hom(—, Y) to the triangle in Lemma 3.5. O

Given any classB of objects inC, we say that an object in € is
B-local if Hom(X, Y) = 0 for all X in 8. The full subcategory af3-local
objects is denoted b@~. The definition ofJ-local objects for a clas§ of
maps inC is analogous.
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Lemma 3.8. The functorg induces an equivalence betwe@h8 and B8+.

Proof. An inverse is the composition of the inclusig®* — € with the
guotient functor® — €/8; use Lemma 3.5. O

3.3. Cohomological ideals and localization.Let ¢ be a compactly gen-
erated triangulated category. Given an idgah Gy, we define a full sub-
categoryC; as follows:

Cy={X e C| everymapC — X, C € @, factors through a map
C— Din7J}.

Given a full additive subcategoeg of C, we define an idedl 3 as follows:
Jg = {¢ € Co | ¢ factors through an object i3 }.

We are interested in properties of the categ®syand collect them in two
technical lemmas.

Lemma 3.9. LetJ be an ideal inGy and X € €. ThenX € G5 if and only
if Hx € Tj.

Proof. Suppose first thatly € 75. ThusHy = Il_)m Im Hy, with ¢; € J for
alli. Now let¢: C — X be any map wittC € ¢y. We have HontC, X) =

Hx(C) = I|_m> Im Hy, (C) and obtain therefore a factorizati@ — C; A

D; — X of ¢ for somei. The compositiorC — C; % D; belongs taJ
since¢; € J, and this impliesxX € C5.

To prove the converse, suppose tat C5. Every module is a filtered
colimit of finitely presented ones. More preciselyyx = limic; Mj where
I denotes the filtered category of maps M; — Hyx with_M € modCy.
We claim that the full subcategory of mapsu;: Mj — Xx with M; € $5
is cofinal i.e., for everyi € | there exists a map: M; — M; for some
J € J such thatu; = uj o v. To prove this claim, let: C; — D; be
a map inCy with M; ~ Im Hy, which exists by the argument given in the
proof of Lemma 3.2. We get a factorizatidy, — Hp, — Hx of y; since
Hyx is fp-injective by Lemma 1.6, and the corresponding nigp— X
has a factorizatiorD; — E — X for somev: Di — E in J since
X € Cy. Thusy; factors through the map Itd, — Hx with Im H,, € §5.
Thereforel is cofinal inl, and the inclusiod — | induces anisomorphism
Ii_)m icaM;j >~ I@) ier Mj >~ Hyx which provesHy € 75. O

Lemma 3.10. LetJ be a cohomological ideal iy such thatp[n] € J for
all g € Jandn € Z.

(1) G5 is alocalizing subcategory .
(2) f 3 = Je,), then the inclusionC; — € has a right adjoint and
(Cy*+ =T+
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Proof. (1) Clearly,C; is closed under the shift i@ sinceJ is closed under

the shift. Now letX 5 Y % z % X[1] be a triangle ir@ with X, Y € €5.
We need to show thaZ € C5. We apply the description a®5 given in
Lemma 3.9. The triangle induces an exact sequeneelin H;, — H; —
Im H, — 0in ModC. The categoryr; is a Serre subcategory of M@
by Lemma 3.2 sincd is cohomological, and therefotd, belongs to77.
ThusZ € @5. Furthermore5 is closed under taking coproducts because
75 has this property, and we conclude ti@atis localizing.

(2) In order to show that the inclusio®; — € has a right adjoint,
it is by Lemma 3.5 sufficient to show that for two objectsandY in C
the mapsX — Y in C/C5 form a set. In fact, it is sufficient to check this
for all X € GCopandY € € sinceCy generates®. To prove this claim, we
consider the exact quotient funcigpr Mod Gy — Mod Cy/ 75 with respect
to the Serre subcategofiy and observe that the maps in M@gl/ 75 form
a set [9, Proposition 111.8]. The composition gfwith the Yoneda functor
h: ¢ — Mod Gy annihilates®y by Lemma 3.9, and therefor h induces
a cohomological functoh’: ¢/C5 — Mod Cy/T5 making the following
diagram of functors commutative:

e — C/C;

Iy I

Mod Co —> Mod Co/ T4

We claim thah’ induces an injective map HogX, Y) — Hom(h'(X), h'(Y))
forall X € Gy andY e €. To this end choose amap X — Y in C/C5

which is by definition a left fractionX i’> Z < Y, and assume that
h'(«) = 0. It follows thatq(Hg) = 0 sinceq(H,) is an isomorphism, and
therefore ImH, € 75 sinceq is exact. Thus InH, is a filtered colimit of
objects in85. An argument similar to that given in the proof of Lemma 3.9
shows that the map: X — Z factors through a mag: X — X' in7J
since X € Cy. Thus¢ factors through an object i@y by our assumption
onJ, and thereforee = 0. We conclude that the maps between fixed objects
in G/C5 form a set, and therefore the inclusiés — € has a right adjoint.

It remains to show thatCy)+ = J+. Clearly, (Gy)* < J* since every
map inJ factors through an object i@;. To prove the other inclusion, let
B = @G5 and consider for any object in € the triangle

(o HOOI-11 2 e(X) 25 X 2% (go H(X)
as in Lemma 3.5. Now suppose that HGmX) = 0. Every mapp: C —

e(X) with C in Gq has a factorizatiorC D& e(X) with ¢/ € 7,
and thereforefy o ¢ = 0. Thus¢ factors throughay. The same ar-
gument shows thap” factors throughay, and thereforep = 0 since
Hom(¢',(go f)(X)[—1]) = 0 by Lemma 3.7. We conclude thatX) = 0
and therefore Hoig5, X) = 0. O
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3.4. Approximations. We need to recall the following definition from [2].
Let Y be a class of objects in a catego® Then a mapX — Y is

a left Y-approximationof X if Y belongs toY and if the induced map
Hom(Y, Y) — Hom(X,Y’) is surjective for everyy’ in Y. For example,

if we view Y as a full subcategory @@ and assume the existence of a left
adjoint f: ¢ — Y for the inclusionyY — ¢, then the canonical map
X — f(X) is a left Y-approximation for everyX in €. In general, a left
Y-approximation is far from being unique.

Suppose now thdtis a class of maps in a triangulated categ@rguch
that their isomorphism classes form a set. Recall fHatlenotes the full
subcategory of objectX in € satisfying Honi¢, X) = 0 for all¢ € 7. We
construct for any objecX in € a left J--approximationyy 5. : X — Xju.

To this end we define inductively mapg: X, — Xq;1 for everyn > 0.

By definition, setX, = X. Let ¥, be a representative set of non-zero maps
¥ C — X, which factor through some map — D in J. We obtainy,, if

we complete the canonical miﬂ)wepn C — X, to atriangle

[]C— X0 = Xnn — ([ ] O111.
Yew, YeWn

We denote byX5: the homotopy colimit hocolinX,, of the sequence
X = Xo —% X —2 Xp —25 ... .

More precisely X5 is obtained from the triangle
[ [ Xn % ] [ X0 — hocolimXy — (] [ XI11.
n n n

We denote byy 5. : X — X5 the canonical map frorKg into hocolimX,,

but this map is only unique up to a non-unique isomorphism since the
construction involves the completion of various maps to triangles. Given
any mapy : X — Y in G, we obtain a sequence of commuting diagrams

X 29 Xo % Xy -5 X, 2
J,‘// ll//o l‘/fl l‘/fz
Y Love By, By, B

and we denote by/yi: X51 — Y51 @ map which makes the following
diagram commutative

11, Xn ld—¢ I Xn — hocolimX, — ([ [,, Xn)[1]

l]_[‘//n luwn lwﬂ l(u¢n)[l]
11 Ya £ 1 Ya — hocolimYy —> (][, Ya)Id]

Note that the mapy. is not unique.
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Proposition 3.11. Let ¢ be a triangulated category and suppose that
is a class of maps between compact objectirsuch that their iso-
morphism classes form a set. Then the map.: X — Xy is a left

J+-approximation.

Proof. We need to show thaX. is J-local. To this end letp: C — D
be a map inJ. The canonical map§,: X, — hocolimX, induce an
isomorphism

Ii_)m Hom(D, X,) — Hom(D, hocolim X;)

sinceD is compact; e.g. see [19, Lemma 1.5]. Therefore any thap —
X451 has a factorizationy = &, o ¢’ for somen € N. The construction of
an impliesay, o ¥’ o ¢ = 0, and therefore) o ¢ = 0. ThusX;. is J-local.
We haveYy. = Y for everyJ-local objectY, and therefore every map
¥: X — Y with Y € 3+ factors throughyy 51 via 51 : X0 — Yy =Y
Thusyy 5. is a left3+-approximation. i

We include the following lemma for later reference.

Lemma 3.12. Let f: ¢ — D be an exact functor between triangulated
categories which preserves coproducts. SupposeZtiaia class of maps
in C such that their isomorphism classes form a sef(If) = 0O, then the
map f(yx 31): f(X) = f(X51) is a split monomorphism.

Proof. The construction of eacdls, implies that f(«;) is a split monomor-
phism for everyn. It follows thatid ;x, factors throughf(hocolimXp) =~
hocolim f(X,). O

4. Smashing subcategories

4.1. A characterization of smashing subcategoriesLet ¢ be a com-
pactly generated triangulated category and supposefhata localizing
subcategory of®. We denote byD = €/8 the quotient category and

f: ¢ — ¢/8B denotes the corresponding quotient functor. A right adjoint
of f isdenoted byg: ¢/8 — €, provided it exists. Recall tha is smash-

ing if the inclusion® — € has a right adjoint which preserves coproducts.
Note that this is equivalent to the fact that the quotient functor has a right
adjoint which preserves coproducts.

Lemma4.1. Let 8 be a smashing subcategory of a compactly generated
triangulated categon®. ThenC /8B is a compactly generated triangulated
category.

Proof. ¢/8 has coproducts by Lemma 3.6, and the argument in the proof of
Proposition 2.6 shows thdtCq) C Do. Suppose now that Hof®, X) =0
forall D in Do and someX in . Then Hon(C, g(X)) ~Hom(f(C), X) =0

for all C in Gy, and thereforeX = 0, sinceC is compactly generated arnd

is faithful by Lemma 3.8. Thu€ /8 is compactly generated. O
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We are now in a position to prove the characterization of smashing
subcategories which is stated in Theorem A. We reformulate this theorem
as follows.

Theorem 4.2. Let B be a localizing subcategory of a compactly generated
triangulated category, and denote by the ideal of maps between compact
objects inC which factor through some object 8. Then the following
conditions are equivalent:

(1) &8 issmashing;
(2) B=0Cy

(2) 8 c ey

(3) Jt=8"%

(3) 7t c st

Proof. (1) = (2) We know from the preceding lemma that = C/8B is

a compactly generated triangulated category. We have therefore by Propo-
sition 2.6 an induced functdify)*: Mod Gy — Mod Dg such that( fo)* o

he = hg o f. An objectX in € belongs taB if and only if (fg)*(Hyx) =0
sincehp(Y) = 0 if and only if Y = 0. ThereforeB = ¢; by Lemma 3.3

and Lemma 3.9.

(2) = (3) Itis clear that3* > B8*. The condition (2’) implies that
J = J(e,), and thereforé! = (C5)* by Lemma 3.10. Using again (2'), we
have(Cy)* € 8+ and this implieg+ C 8+.

(3) = (2) Let X be an object inC and supposeX ¢ Cj. It fol-
lows from Lemma 3.9 thaHy ¢ 73, and we find a maximal subobject
T € Hyx with T € 75 sinceT5 is a Serre subcategory of M@ which
is closed under taking coproducts by Lemma 3.2. Choosing an injective
envelopeHy/T — M, we have HomHy, M) # 0 and Hong73, M) = 0
by construction. Applying Lemma 1.7, we find an obj&cin € such that
Hy ~ M and HontX, Y) >~ Hom(Hyx, M) # 0. Moreover, HoniJ, Y) = 0
since Honi73, M) = 0. Assuming (3’), it follows thatX ¢ 8. Thus (2')
holds.

(2) = (1) The condition (2) implies thaf = J¢,), and therefor§+ =
(Cy)* by Lemma 3.10. We claim thaB = C5. To this end letX € ¢5 and
consider theJ+-approximationyy 5. : X — Xy from Proposition 3.11.
We haveyy 5. = 0 sinceJ* = (C3)*, and the quotient functof : ¢ —
C/8B sendsyy 51 to a split monomorphism by Lemma 3.12. ThigX) = 0
and thereforeX belongs to8B. We conclude from Lemma 3.5 that the
inclusion 8 — C has a right adjoint, and it remains to show that this
right adjoint preserves coproducts. To this end consider the right adjoint
g: C/8 — C of the quotient functor which identifie8 /8 with 8+ by
Lemma 3.8. Now le(X;)ic; be a family of objects in8+. Using (3), we
have HonJ, X;j) = 0O for all i, and therefore How, [ [; X;) = 0 since
J belongs toCy. Thus] [; X; belongs toB+*. It follows thatg preserves
coproducts and therefot8 is smashing. O
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Remark 4.3.Localizations in® and ModCy are closely related. In fact, 8

is a smashing subcategory®jfthen one can use Proposition 2.6 to show that
fog ~idyp implies(fo)*o(fo). = idmod.n, for & = €/B. Therefore( fo)*
induces an equivalence Ma@/75 — Mod(C/B)o where ModCy/T5
denotes the quotient category with respect to the localizing subcategory
75 = {M € Mod Gy | (fg)*(M) = 0}; e.g. see [9, Proposition Ill.5]. This
leads to the following commutative diagram:

8— € - ¢/8

| | |
! i

75— Mod ¢; — Mod Co/ T3

| L

Mod ¢, ™% Mod(e/8)o

Note that the compositio® /8 — Mod Cy/T5 — Mod(C/B), is just the
restricted Yoneda functdve, .

We proceed with the proof of Theorem C which we recall for the con-
venience of the reader.

Theorem 4.4. Let B be a smashing subcategory of a compactly generated
triangulated category, and letU be the set of objectg in SpC such that
Hom(8, Y) = 0. Then the following holds for any objektin C:

(1) X e B ifand only ifHom(X, U) = 0;
(2) Hom(8B, X) = 0 if and only if there is a pure monomorphisk —
[Tic; Yi withY; e Uforall i.

Proof. We identify D = ¢/8 via g with the full subcategory of objects
X in € such that HomB, X) = 0. This is possible by Lemma 3.8. In
particular, this identifies S@ with U = {X € SpC | Hom(8B, X) = 0}
sinceg preserves pure-injectivity by Proposition 2.6.

(1) Clearly,X € 8 implies Hom(X, U) =0. Conversely, HorgX, U)=0
implies Hom((g o f)(X),U) = 0 by Lemma 3.7, and this implies
(go f)(X) = 0 sinceU cogenerate® by Corollary 1.10. Thud(X) =0
sinceg is faithful, and thereforeX belongs taB.

(2) Suppose first that Ho®B, X) = 0. We apply Corollary 1.10 and
get a pure monomorphistX — [],Y; in O with Y; € U for all i. The
inclusionD — C preserves pure monomorphisms by Proposition 2.6, and
this proves one direction. Now suppose that we have a pure monomorphism
X — Y in € with Hom(8, Y) = 0. It follows from part (3) in Theorem 4.2
that Hom( B, X) = 0, and therefore the proof of Theorem 4.4 is complete.

]

Let 8 be a localizing subcategory of a triangulated categeryRe-
call that a mapX — Y in € is a B-localization of X if Y is 8B-local
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and the induced map HaM, Y') — Hom(X, Y’) is bijective for every
B-local objectY’. Let us describe an explicit construction of tk®-
localization provided thaB is smashing. We use the |éft -approximation
YxgL: X — Xgu with respect to an idedl in Gy which has been con-
structed in Proposition 3.11. Recall from [2] that a mapX — Y is
left minimal if every endomorphism) of Y such thatyp = i o ¢ is an
isomorphism.

Theorem 4.5. Let B be a smashing subcategory of a compactly generated
triangulated category® and letJ = J g be the corresponding ideal i@.
Then the lefG+-approximationyy 5. : X — X5 of an objectX in € has

a decomposition

@y X — X =YY

such thaty’ is left minimal andy” = 0. In this case, the map’: X — Y’
is a B-localization ofX.

Proof. TheJ+-approximatioryy 5. : X— X;. is also aB+-approximation
sinceJt = B8+ by Theorem 4.2. There exists&localizationyy: X — Y
of X by Lemma 3.5. We obtain therefore maps Y — X5. and
B: X5 — Y such thatyy 51 = a o yx andyx = B o yx ;.. We have
B o a = idy sinceyy is aB-localization of X, and this gives a decompos-
ition yx 51 = (', ¥”) such thaty’ is isomorphic toyx andy” = 0. This
finishes the proof. m]

There are examples where the [Bft-approximationyy 5. : X — Xj.
is different from theB-localization of X. Take for instance a smashing
subcategoryB # 0 with 8 N G = 0.

4.2. The modified telescope conjecture We are now in a position to prove
the corollary of Theorem A; it will be an immediate consequence of the
following proposition.

Proposition 4.6. Let 8 be a smashing subcategory of a compactly gener-
ated triangulated categorg@ and letJ gz be the corresponding ideal i@.
Suppose thaf : ¢ — D is an exact functor into a triangulated category
D which preserves coproducts. Théflig) = 0if and only if f(8) = 0.

Proof. LetJ = Jg. Clearly, f(8) = 0implies f(J) = 0. Suppose now that
f(J) = 0. Let X be an object inB and letyy 5. : X — X5. be the lefty*-
approximation from Proposition 3.11. Theorem 4.2 impligs = J+ and
thereforeyy 5. = 0 sinceX;. belongs taJ+. On the other handf(yx 51)
is a split monomorphism by Lemma 3.12. Thi(sX) = 0. O

Corollary 4.7. Let8 be a smashing subcategory of a compactly generated
triangulated category®. ThenB is generated by the corresponding ideal
J = Jg in Co. More precisely,
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(1) B is alocalizing subcategory @ and every map ii¥ factors through
some object inB;

(2) if 8’is any localizing subcategory 6fsuch that every map imfactors
through some object iB’, thenB C B'.

Proof. (1) follows immediately from the definitions & andJ. To prove (2),

let B’ be a localizing subcategory @ such that every map ifi factors
through some object iB’, and denote by : ¢ — €/8’ the corresponding
quotient functor. Note that preserves coproducts by Lemma 3.6. Clearly,
f(3) = 0 and thereforef(8) = 0 by the preceding proposition. Thus
B C B O

4.3. A classification of smashing subcategoriesin this section we con-
sider a compactly generated triangulated cate@gosych that the following
additional property holds:

(B) Every cohomological functag,” — Ab of the form Hont f(-), f(C))
(where f: G — D is any exact functor into a triangulated category
D andC is any object inCy) is isomorphic to Hom—, X)|¢, for some
objectXin C.

This condition is a weak form of Brown representability. For example, (B)
holds for the stable homotopy category [1]. More generally, (B) holds if
the categoryCy has a countable skeleton [21]. Our aim in this section is
a classification of the smashing subcategorig®.dfo this end we introduce
the following class of ideals for a triangulated category.

Definition 4.8. An ideal3J in a triangulated categon is called exactif
there exists an exact functdr: ¢ — D into a triangulated categoryD
such thaty = {¢ € C | f(¢) = 0}.

The following result gives a classification of smashing subcategories.

Theorem 4.9. Let € be a compactly generated triangulated category and
suppose thafB) holds. Then the maps
B +— {¢ € Cg| ¢ factors through an object ilB} and
J = {X e C|every map C— X, C € @, factors through a map
C— Din7J}
induce mutually inverse bijections between the set of smashing subcate-
gories ofC and the set of exact ideals @y.

The proof of this theorem is based on the following lemma.

Lemma 4.10. Let C be a compactly generated triangulated category and
suppose thafB) holds. IfJ is an exact ideal ir®, thenJ = Jc,).

Proof. Let f: G — Do be an exact functor such that= {¢ € Cq |
f(p) = 0}). We may assume thaD, is a skeletally small triangulated
category by taking the full subcategory formed by the objects in the image
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of f. Adding successively new objects arising from the completion of maps
to triangles gives a full triangulated subcategory which needs to be skeletally
small sinceC is skeletally small. Now observe that the inclusigp,) € J

is obvious from the definitions. To prove the other inclusion, we use the pair
of adjoint functorsf*: Mod Gy — Mod Dg and f,.: Mod Dy — Mod Cg
which have already been introduced. lgetC — D be a map irJ and
consider the canonical map Hp — (f.o f*)(Hp). Using our assumption

on C, there exists an object in € such that(f, o f*)(Hp) ~ Hyx since

(fo o f*)(Hp) ~ Hom(f(—), f(D)). We obtain a map/: D — X with

w = Hy and consider the corresponding triangle

X[-1] % V -5 D % X
in € which induces an exact sequence

HD[_]_] lEL)] HX[—l] —> HV —> HD i) HX
in Mod Gq. The mapsf*(u) and f*(u[—1]) are isomorphisms, and there-
fore f*(Hy) = 0 since f* is exact. ThusV € G5 by Lemma 3.3 and
Lemma 3.9. Now observe thét, o H, = u o Hy = 0 since the following
diagram is commutative

Hc — (f.o %) (He)
lH¢ l(f*Of*)(Hdﬂ
Hpo - (f, o f*)(Hp)

and(f.o f*)(Hg) = f.(H4) = 0by our assumption ap. Thusyogp =0
sinceC is compact, and therefokg factors throughv which is an object
in C3. We conclude thall € J e,y and this finishes the proof. m]

We are now in a position to give the proof of the theorem which states
the classification of the smashing subcategories of a compactly generated
triangulated categorg.

Proof of Theorem 4.9Let 8 be a smashing subcategory ®fand denote
by f: ¢ — ¢/8 the corresponding quotient functor. It is clear that
is an exact ideal iy sinceJg = {¢p € Gy | f(¢) = 0}. Suppose now
thatJ is an exact ideal i©. We haveJ = J ¢, by the preceding lemma,
and a combination of Lemma 3.10 and Theorem 4.2 then showg&4hat
a smashing subcategory 6f Given a smashing subcategaBj, we have
Ca,) = B by Theorem 4.2. Conversel§,e,, = J holds for every exact
ideal in Gy by Lemma 4.10. Thus the ma@ — Jg andJ — C5 are
mutually inverse, and therefore the proof is complete. O

We continue with a number of applications of the above theorem. In
fact, we are interested in the interplay between ideal8ymand localizing
subcategories ak. The following lemma will be useful.
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Lemma 4.11. Let(Jj)ic; be afamily of exact ideals. Thén,_, J; is exact.

Proof. Suppose that each is given by some exact functdy: Gy — D;.
The intersectiord = ();, J; is again exact Sincg = {¢ € Co | f(¢) = 0}
where f denotes the exact funct@ — [[; Di, X — (fi(X))i. O

Recall that a lattice isompletef every subset has a least upper bound
and a greatest lower bound.

Corollary 4.12. Let ¢ be a compactly generated triangulated category
and suppose thaiB) holds. Then the smashing subcategorieedbrm
a partially ordered set which is a complete lattice.

Proof. Theorem 4.9 translates the assertion of this corollary into a statement
about the lattice of ideals i®y. Clearly, the cardinality of this lattice is
bounded by 2 wherex denotes the cardinality of the set of isomorphism
classes of maps i@y. The exact ideals i@, form a complete lattice by the
preceding lemma, and this finishes the proof. ]

Given a localizing subcategor$ of G, it is not clear that the maps
between fixed objects in the quotient categryB form a set. Therefore
one calls a categorarge to point out that the maps between fixed objects
are not assumed to form a set.

Lemma 4.13. Let B be a skeletally small subcategory of a large triangu-
lated categoryC. Then there exists a skeletally small triangulated subcate-
gory of @ which containsB.

Proof. We construct inductively a chaii; € ¢, € C3 C ... of classes

of maps inC and a chainB = By € B; C B, C ... of skeletally small

subcategories af as follows: Letn > 1 and assume thag,_, is already

defined. Let®, be a class of maps i@ satisfying the following conditions:
oif p € By_1 andr € Z, theng[r] € Cy;

it X 2 v % zX X[1] is a triangle inC with ¢ € B,_1, then

/(/fv X S @n;
o if there is a commutative diagram

X —Y — Z— X[1]

L

X —Y — 7 — X[1]

in B,_1 such that the rows are triangles@n then there isa mag — Z’
in G, making the diagram commutative;

o if there is a set of maps iB,_; satisfying the assumptions of the
octahedral axiom, then there are mapgjrsuch that the octahedral axiom
holds.

We may assume that the isomorphism classes of may, iform a set
since Bn_1 is skeletally small. Now defing,, to be the smallest additive
subcategory o containingCy. It is easily checked thaB., = .y 8Bn
is a skeletally small triangulated subcategoryCoivhich containsB. O
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Corollary 4.14. LetC be a compactly generated triangulated category and
suppose thatB) holds. Suppose also th& is a localizing subcategory and
denote byJ g the ideal of maps between compact object® wwhich factor
through some object iB. Then there exists a unique smashing subcategory
B’ of € such thati g = Jg. Moreover,8’ C B.

Proof. LetJ = Jg and letf: ¢ — C/&8B be the quotient functor corres-
ponding toB. Clearly,J = {¢ € Co | f(¢) = 0} and we claim thall is an
exactideal irCy. By Lemma 4.13, there exists a skeletally small triangulated
subcategoryD of ¢ /8 containing the image of, and we obtain therefore

an exact functorf’: g — D, X +— f(X)withT ={¢ € Co | f'(¢p) = O}.
Thus7J is an exact ideal, and there exists a unique smashing subcategory
B’ = €3 such thatig = J by Theorem 4.9. Finallyf(J) = 0 implies

f(8") = 0 by Proposition 4.6, and therefo® < B. O

The preceding corollary suggests the following definition.

Definition 4.15. A localizing subcategornB of a triangulated category
is said to begeneratedy a classJ of maps inC if the following holds:

(1) every map iry factors through some object i8;
(2) if 8’ is a localizing subcategory @ such that every map i factors
through some object iB’, thenB C B'.

For example B is generated by a class= {idy, | i € |1} of identity
maps if and only if8 is the smallest localizing subcategory containing
X foralli € |. A classical result of Bousfield and Ravenel for the stable
homotopy category says that every class of identity maps of compact objects
generates a localizing subcategory which is smashing [6,23]. This can be
generalized as follows.

Corollary 4.16. LetC be a compactly generated triangulated category and
suppose thatB) holds. Then a localizing subcatega of € is smashing

if and only if B is generated by a class of maps between compact objects
in C. Moreover, given any class of maps between compact objectsein
there exists a localizing subcategory®fwhich is generated by.

Proof. It has been shown in Corollary 4.7 that a smashing subcategory is
generated by a class of mapgdn To prove the converse, suppose tias
generated by a classof maps inGy. We haved C Jg and we may assume
thatJ = Jg. By Corollary 4.14, there exists a smashing subcateg®ry
withJg = JandB’ € 8. Onthe other handB C B’ sincesB is generated

by 7, and thereforeB is smashing. Suppose now tligits any class of maps

in Gy and letJ be the intersection of all exact ideals® containingJ. Itis

an immediate consequence of the preceding corollaryGhéat a localizing
subcategory which is generated Joy O
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