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Abstract. We prove a modified version of Ravenel’s telescope conjecture.
It is shown that every smashing subcategory of the stable homotopy category
is generated by a set of maps between finite spectra. This result is based on
a new characterization of smashing subcategories, which leads in addition
to a classification of these subcategories in terms of the category of finite
spectra. The approach presented here is purely algebraic; it is based on
an analysis of pure-injective objects in a compactly generated triangulated
category, and covers therefore also situations arising in algebraic geometry
and representation theory.

Introduction

Smashing subcategories naturally arise in the stable homotopy categoryS
from localization functorsl : S → S which induce for every spectrumX
a natural isomorphisml(X) ' X ∧ l(S) between the localization ofX and
the smash product ofX with the localization of the sphere spectrumS.
In fact, a localization functor has this property if and only if it preserves
arbitrary coproducts inS. Therefore one calls a full subcategoryR of S
smashingif R = {X ∈ S | l(X) = 0} for some localization functor
l : S → S which preserves coproducts. In this paper we study smashing
subcategories from an algebraic point of view. The main result is a new
characterization of smashing subcategories which leads to a classification
in terms of certain ideals in the category of finite spectra. One motivation for
this work is the telescope conjecture of Ravenel and Bousfield which states
that every smashing subcategory is generated by finite spectra. The approach
presented here is purely algebraic and covers therefore also situations arising
in algebraic geometry and representation theory where one studies certain
triangulated categories having a number of formal properties in common
with the stable homotopy category.
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Let C be a compactly generated triangulated category, for example the
stable homotopy category. ThusC is a triangulated category with arbitrary
coproducts, andC is generated by a set of compact objects (an objectX in C
is compactif the representable functor Hom(X,−) preserves coproducts).
Recall that a full triangulated subcategoryB of C is localizing if B is
closed under taking coproducts. We say that a localizing subcategoryB
is strictly localizing if the inclusion functorB → C has a right adjoint,
andB is calledsmashingif there exists a right adjoint for the inclusion
B → C which preserves coproducts. Note that a full subcategoryB is
strictly localizing if and only if there exists a localization functorl : C→ C
such thatB = {X ∈ C | l(X) = 0}, andB is smashing if and only if the
corresponding localization functor preserves coproducts.

Theorem A. Let B be a localizing subcategory ofC, and denote byI the
ideal of maps between compact objects inC which factor through some
object inB. Then the following conditions are equivalent:

(1) B is smashing;
(2) an objectX in C belongs toB if and only if every mapC → X from

a compact objectC factors through a mapC→ D in I;
(3) an objectX in C satisfiesHom(B, X)=0 if and only ifHom(I, X)=0.

Let us mention an immediate consequence: The smashing subcategories
of C form a set of cardinality at most 2κ whereκ denotes the cardinality
of the set of isomorphism classes of maps between compact objects inC.
For example, the stable homotopy category has precisely 2ℵ0 smashing
subcategories because, in this caseκ = ℵ0, and arithmetic localization
gives rise to a smashing subcategory for every set of primes.

Given any classI of maps inC, we say that a localizing subcategory
B is generatedby I if B is the smallest localizing subcategory ofC such
that every map inI factors through some object inB. For example,B is
generated by a classI = {idXi | i ∈ I } of identity maps if and only ifB is
the smallest localizing subcategory containingXi for all i ∈ I .

Corollary. Every smashing subcategory is generated by a set of maps
between compact objects.

The statement of the corollary is a modified version of the following
“telescope conjecture” which is based on conjectures of Ravenel [23, 1.33]
and Bousfield [6, 3.4] for the stable homotopy category:

Every smashing subcategory is generated by a set of identity maps between
compact objects.

In this generality, the conjecture is known to be false. In fact, Keller
gives an example of a smashing subcategory which contains no non-zero
compact object [14]. Despite some efforts of Ravenel [24], the conjecture
remains open for the stable homotopy category.

The characterization of smashing subcategories leads to a classification
in terms of certain ideals which we now explain. We denote byC0 the full
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triangulated subcategory of compact objects inC and call an idealI of maps
in C0 exactif there exists an exact functorf : C0→ D into a triangulated
categoryD such thatI = {φ ∈ C0 | f(φ) = 0}.
Theorem B. Let C be a compactly generated triangulated category and
suppose that every cohomological functorC

op
0 → Ab is isomorphic to

Hom(−, X)|C0 for some objectX in C. Then the maps
B 7→ {φ ∈ C0| φ factors through an ob ject inB} and
I 7→ {X ∈ C | every map C→ X,C ∈ C0, factors through a map

C→ D in I}
induce mutually inverse bijections between the set of smashing subcate-
gories ofC and the set of exact ideals inC0.

Note that the additional assumption onC in the preceding theorem is
automatically satisfied if there are at most countably many isomorphism
classes of maps between compact objects inC; in particular the stable
homotopy category has this property [21]. The classification of smashing
subcategories has the following consequence.

Corollary. A localizing subcategoryB of C is smashing if and only ifB is
generated by a class of maps between compact objects inC. Moreover, given
any classI of maps between compact objects inC, there exists a localizing
subcategory ofC which is generated byI.

The preceding corollary amounts to a classical result of Bousfield and
Ravenel ifI is a class of identity maps. In fact, they showed for the stable
homotopy category that every class of compact objects generates a localizing
subcategory which is smashing [6,23]. However, ifI is a class of arbitrary
maps inC, it is not clear that there exists a localizing subcategory which is
generated byI.

Our analysis of smashing subcategories is based on the concept of purity
for compactly generated triangulated categories. Let us call a mapX→ Y
in C a pure monomorphismif the induced map Hom(C, X)→ Hom(C,Y)
is a monomorphism for all compact objectsC. An objectX is calledpure-
injective if every pure monomorphismX → Y splits. These definitions
are motivated by analogous concepts for the category of modules over
a ring [7]. In this context one frequently studies the indecomposable pure-
injective modules; they form the Ziegler spectrum of the ring [28]. We shall
see that the isomorphism classes of indecomposable pure-injective objects
in C form a set which we denote by SpC.

Theorem C. Let B be a smashing subcategory ofC, and letU be the set
of objectsY in SpC such thatHom(B,Y) = 0. Then the following holds
for any objectX in C:

(1) X ∈ B if and only ifHom(X,U) = 0;
(2) Hom(B, X) = 0 if and only if there is a pure monomorphismX →∏

i∈I Yi with Yi ∈ U for all i .
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We obtain the following consequence if we putB = 0.

Corollary. Every objectX in C admits a pure monomorphismX →∏
i∈I Yi

with Yi ∈ SpC for all i . In particular, Hom(X,Y) = 0 for all Y ∈ SpC
impliesX = 0.

The concept of purity is closely related to the occurence of phantom
maps. Recall that a mapX → Y is a phantom mapif the induced map
Hom(C, X) → Hom(C,Y) is zero for all compact objectsC. From the
existence of pure-injective envelopes inC we derive for every objectX the
existence of a universal phantom map ending inX and a universal pure
monomorphism starting inX.

Theorem D. For every objectX in C there exists, up to isomorphism,
a unique triangle

X′ α−→ X
β−→ X′′

γ−→ X′[1]
having the following properties:

(A1) a mapφ : Y→ X is a phantom map if and only ifφ factors throughα;
(A2) every endomorphismφ of X′ satisfyingα = α Bφ is an isomorphism.

The same triangle is characterized, up to isomorphism, by the following
properties:

(B1) a mapφ : X → Y is a pure monomorphism if and only ifβ factors
throughφ;

(B2) every endomorphismφ of X′′ satisfyingβ = φ Bβ is an isomorphism.

Our main tool in this paper is a functorh : C → M into a module
categoryM which has the following universal property:

(1) h : C → M is a cohomological functor into an abelianAB 5 category
which preserves coproducts;

(2) any functorh′ : C →M′ as in (1) has a unique factorizationh′ = f Bh
such thatf : M→M′ is exact and preserves coproducts.

In Section 1 of this paper we exploit the fact thath induces an equivalence
between the full subcategory of pure-injective objects inC and the full
subcategory of injective objects inM. We continue in Section 2 with the
problem of extending cohomological functors. For instance, we prove the
following result whereC0 denotes the full triangulated subcategory which
is formed by the compact objects inC.

Theorem E. Every cohomological functorf : C0 → A into an abelian
AB 5 categoryA extends, up to isomorphism, uniquely to a cohomological
functor f ′ : C → A which preserves coproducts. Moreover, ifA is the
category of abelian groups, thenf ′ preserves products if and only iff ′ '
Hom(X,−) for some compact objectX in C.

In Section 3 we derive from the universal property ofh : C →M a strong
relation between localizing subcategories inC and localizing subcategories
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in M. This interplay between triangulated and module categories is crucial
for our characterization of smashing subcategories. The final Section 4 is
devoted to the proofs for the main results of this paper.

Acknowledgement.I would like to thank Dan Christensen and Bernhard Keller for a number
of helpful comments concerning the material of this paper. Thanks also to Amnon Neeman
for pointing out a mistake in a preliminary version of this paper. In addition, I am grateful
to an anonymous referee for numerous suggestions.

1. Purity

1.1. Pure-exactness.LetC be a triangulated category [26,27] and suppose
that arbitrary coproducts exist inC. An object X in C is calledcompact
if for every family (Yi )i∈I in C the canonical map

∐
i Hom(X,Yi ) →

Hom(X,
∐

i Yi ) is an isomorphism. We denote byC0 the full subcategory of
compact objects inC and observe thatC0 is a triangulated subcategory ofC.
Following [20], the categoryC is calledcompactly generatedprovided that
the isomorphism classes of objects inC0 form a set, and Hom(C, X) = 0 for
all C in C0 implies X = 0 for every objectX in C. Examples of compactly
generated triangulated categories arise in stable homotopy theory, algebraic
geometry, and representation theory.

Definition 1.1. LetC be a compactly generated triangulated category.

(1) A mapX→ Y in C is said to be apure monomorphismif the induced
mapHom(C, X) → Hom(C,Y) is a monomorphism for all compact
objectsC in C.

(2) An objectX in C is calledpure-injectiveif every pure monomorphism
φ : X→ Y splits, i.e. there exist a mapφ′ : Y→ X such thatφ′ B φ =
idX.

(3) A triangle X → Y → Z → X[1] is calledpure-exactif the induced
sequence0 → Hom(C, X) → Hom(C,Y) → Hom(C, Z) → 0 is
exact for all compact objectsC in C.

The preceding definition is motivated by analogous definitions for the
category of modules over a ring [7]. However, contrary to the concept for
modules, a pure monomorphism inC is usually not a monomorphism in the
categorical sense. For the sake of completeness we include the following
definition.

Definition 1.2. LetC be a compactly generated triangulated category.

(1) A mapY→ Z in C is said to be apure epimorphismif the induced map
Hom(C,Y)→ Hom(C, Z) is an epimorphism for all compact objects
C in C.

(2) An objectZ in C is calledpure-projectiveif every pure epimorphism
ψ : Y→ Z splits, i.e. there exist a mapψ′ : Z→ Y such thatψ Bψ′ =
idZ.
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The concept of purity is closely related to the occurence of phantom
maps. Recall that a mapX → Y is a phantom mapprovided that the
induced map Hom(C, X)→ Hom(C,Y) is zero for all compact objectsC
in C.

Lemma 1.3. For a triangle X
φ→ Y

ψ→ Z
χ→ X[1] the following are

equivalent:

(1) φ is a phantom map;
(2) ψ is a pure monomorphism;
(3) χ is a pure epimorphism;
(4) the shifted triangleY→ Z→ X[1] → Y[1] is pure-exact.

Proof. Clear, since the induced sequence Hom(C, X) → Hom(C,Y) →
Hom(C, Z)→ Hom(C, X[1]) is exact for everyC ∈ C0. ut
Lemma 1.4. The following conditions are equivalent for an objectX in C:

(1) X is pure-injective;
(2) if φ : Y→ X is a phantom map, thenφ = 0;
(3) if φ : V → W is a pure monomorphism, then every mapV → X factors

throughφ.

Proof. (1)⇔ (2) follows immediately from the preceding lemma, and the
direction (3)⇒ (1) is also clear. To prove (1)⇒ (3), let φ : V → W be
a pure monomorphism and letψ : V → X be a map withX pure-injective.
We obtain a commutative diagram

U −→ V
φ−→ W −→ U[1]∥∥∥ yψ y ∥∥∥

U −→ X −→ Y −→ U[1]
such that both rows are triangles. The mapU → V is a phantom map since
φ is a pure monomorphism, and it follows thatU → X is a phantom map.
Therefore the mapX → Y is a pure monomorphism which splits sinceX
is pure-injective. It follows thatψ factors throughφ. ut

1.2. Modules. Let C be any additive category. AC-moduleis by definition
an additive functorCop→ Ab into the categoryAb of abelian groups, and
we denote forC-modulesM and N by Hom(M, N) the class of natural
transformationsM → N. A sequenceL → M → N of maps between
C-modules isexactif the sequenceL(X)→ M(X)→ N(X) is exact for all
X in C. A C-moduleM is finitely generatedif there exists an exact sequence
Hom(−, X)→ M→ 0 for someX in C, andM is finitely presentedif there
exists an exact sequence Hom(−, X) → Hom(−,Y) → M → 0 with X
andY in C. Note that Hom(M, N) is a set for every finitely generatedC-
moduleM by Yoneda’s lemma. The finitely presentedC-modules form an
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additive category with cokernels which we denote by modC. It is well-
known that modC is abelian if and only if every mapY → Z in C has
a weak kernelX → Y, i.e. the sequence Hom(−, X) → Hom(−,Y) →
Hom(−, Z) is exact. In particular, modC is abelian ifC is triangulated.

Suppose now thatC is skeletally small. Then theC-modules form to-
gether with the natural transformations an abelian category which we de-
note by ModC. Note that ModC has arbitrary products and coproducts
which are defined pointwise. For example,(

∏
i Mi )(X) = ∏

i Mi (X) for
a family (Mi )i∈I in ModC and X in C. We denote for everyX in C by
HX = Hom(−, X) the corresponding representable functor and recall that
Hom(HX,M) ' M(X) for every moduleM by Yoneda’s lemma. It follows
that HX is a projective object in ModC. We shall also need to use the fact
that ModC is a Grothendieck category, which as far as we are concerned
means that it has injective envelopes [9].

Our main tool for studying a compactly generated triangulated category
C is therestricted Yoneda functor

hC : C −→ ModC0, X 7→ HX = Hom(−, X)|C0.

1.3. Brown representability. Recall that a (covariant) functorf : C → A
from a triangulated categoryC into an abelian categoryA is cohomo-
logical if for every triangle X → Y → Z → X[1] in C the sequence
f(X) → f(Y) → f(Z) → f(X[1]) is exact. Examples of cohomolog-
ical functors are the representable functors Hom(X,−) : C → Ab and
Hom(−, X) : Cop→ Ab for any X in C. The Brown representability theo-
rem characterizes the representable cohomological functorsCop→ Ab for
a compactly generated triangulated categoryC.

Theorem (Brown). Let f : Cop → Ab be a cohomological functor such
that the canonical mapf(

∐
i Xi )→∏

i f(Xi ) is an isomorphism for every
family (Xi )i∈I of objects inC. Then f ' Hom(−, X) for some objectX
in C.

Proof. See Theorem 3.1 in [20]. ut
The existence of arbitrary products inC is a well-known consequence

of the Brown representability theorem.

Lemma 1.5. The categoryC has arbitrary products.

Proof. Let (Xi )i∈I be a family of objects inC and let f = ∏i Hom(−, Xi ).
Clearly, f is a cohomological functor which sends coproducts to products.
Thus f ' Hom(−, X) by the Brown representability theorem, and it is
easily checked thatX =∏i Xi in C. ut
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1.4. Pure-injectives. Our analysis of pure-injective objects in a compactly
generated triangulated categoryC is based on some properties of the re-
stricted Yoneda functorhC : C → ModC0. We need two lemmas. Recall
that a moduleM is fp-injective if Ext1(N,M) = 0 for every finitely pre-
sented moduleN.

Lemma 1.6. TheC0-moduleHX is fp-injective for everyX in C.

Proof. A finitely presentedC0-moduleN has a projective presentation

HA −→ HB −→ HC −→ N −→ 0

coming from a triangleA → B → C → A[1] in C with objects inC0.
Thus one can compute Ext1 as the cohomology of the complex

Hom(HC, HX) −→ Hom(HB, HX) −→ Hom(HA, HX).

This is, however, isomorphic to Hom(C, X)→ Hom(B, X)→ Hom(A, X),
so it is exact. Therefore Ext1(N, HX) = 0 andHX is fp-injective. ut
Lemma 1.7. Let M be an injectiveC0-module. Then there exists, up to
isomorphism, a unique objectX in C such thatM ' HX. Moreover,hC

induces an isomorphismHom(Y, X)→ Hom(HY, HX) for all Y in C.

Proof. Let f = Hom(−,M) BhC . Then f is a cohomological functor since
hC is cohomological and Hom(−,M) is exact. Moreover,hC preserves
coproducts and Hom(−,M) induces an isomorphism Hom(

∐
i Ni ,M) '∏

i Hom(Ni ,M) for every family (Ni )i∈I of C0-modules. Thereforef '
Hom(−, X) for some objectX in C by the Brown representability theorem.
The induced map Hom(X, X) ' f(X) = Hom(HX,M) sendsidX to a map
φ : HX → M which is an isomorphism since

HX(C) = Hom(C, X) ' Hom(HC,M) ' M(C)

for every compact objectC by Yoneda’s lemma. The inverseφ−1 : M→ HX
induces an isomorphism

Hom(Y, X) ' Hom(HY,M) ' Hom(HY, HX)

which is precisely the map induced byhC . This finishes the proof. ut
The following theorem collects a number of characterizing properties of

pure-injective objects. We denote for every objectX and every setI by XI

the product and byX(I) the coproduct of cardI copies ofX.

Theorem 1.8. The following conditions are equivalent for an objectX in C:

(1) X is pure-injective;
(2) HX = Hom(−, X)|C0 is an injectiveC0-module;
(3) the mapHom(Y, X) → Hom(HY, HX), φ 7→ Hom(−, φ)|C0, is an

isomorphism for allY in C;
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(4) if φ : Y→ X is a phantom map, thenφ = 0;
(5) for every setI the summation mapX(I) → X factors through the

canonical mapX(I) → XI .

Proof. (1) ⇒ (2) Let HX → M be an injective envelope in ModC0. It
follows from Lemma 1.7 thatM ' HY for some objectY in C, and the map
HX → M ' HY is of the formHφ for someφ : X→ Y. Clearly,φ is a pure
monomorphism, andφ splits sinceX is pure-injective. ThusHX is a direct
summand ofM and therefore injective.

(2)⇒ (3) Use Lemma 1.7.
(3)⇒ (4) If φ : Y → X is a phantom map, then Hom(−, φ)|C0 = 0.

Thus it follows from (3) thatφ = 0.
(4)⇒ (1) Use Lemma 1.4.
(2) ⇒ (5) Suppose thatM = HX is an injectiveC0-module. It fol-

lows that the summation mapM(I) → M factors through the canonical
monomorphismM(I) → MI . The corresponding mapHXI → HX is of the
form Hφ for some mapφ : XI → X by Lemma 1.7, and it follows that the
composition ofφ with X(I) → XI is the summation map.

(5)⇒ (2) M = HX is an fp-injectiveC0-module by Lemma 1.6 which
is injective if the summation mapM(I)→ M factors through the canonical
monomorphismM(I)→ MI for every setI by [17, Theorem 2.6]. ut

We discuss a number of consequences.

Corollary 1.9. The restricted Yoneda functorC → ModC0 induces an
equivalence between the full subcategory of pure-injective objects inC and
the full subcategory of injective objects inModC0.

Proof. The restricted Yoneda functor sends pure-injectives to injectives by
Theorem 1.8, and it is fully faithful and dense by Lemma 1.7. ut

Recall that an objectX in any additive category isindecomposableif
X 6= 0 and every decompositionX = X1

∐
X2 implies X1 = 0 or X2 = 0.

The isomorphism classes of indecomposable injective objects in ModC0
form a set since every indecomposable injectiveC0-module arises as an
injective envelope of a finitely generatedC0-module. It follows that the
indecomposable pure-injective objects inC form a set which we denote
by SpC.

Corollary 1.10. Every objectX in C admits a pure monomorphismX →∏
i∈I Yi with Yi ∈ SpC for all i . In particular, Hom(X,Y) = 0 for all

Y ∈ SpC impliesX = 0.

Proof. We observe first that the indecomposable injectiveC0-modules co-
generate ModC0. In fact, one could take the injective envelopes of all simple
modules. To see this, observe that every non-zero moduleM has a finitely
generated non-zero submoduleU which has a maximal submoduleV by
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Zorn’s lemma. This gives a non-zero map fromM to the injective enve-
lope of U/V. Now let X be an object inC and choose a monomorphism
HX → M in ModC0 such thatM = ∏i Mi is a product of indecomposable
injectiveC0-modules. It follows from Lemma 1.7 that this map comes from
a pure monomorphismX → ∏

i∈I Yi with Mi ' HYi for all i , and eachYi
is indecomposable pure-injective by Corollary 1.9. ut
Remark 1.11.The set SpC carries two natural topologies. A subsetU of
SpC is Ziegler-closedif and only if U = {X ∈ SpC |Hom(φ, X) = 0
for all φ ∈ I} for some classI of maps inC0; see [15, Lemma 4.1].
A subsetU of SpC is Zariski-openif and only if there exists some classI of
maps inC0 such thatU = {X ∈ SpC | Hom(φ, X) = 0 for someφ ∈ I};
see [9, Chap. VI]. We refer to [18] for a detailed discussion of both topologies
in the context of modules over a ring.

A map φ : X → Y in C is said to be apure-injective envelopeof X
if Y is pure-injective and a compositionψ B φ with a mapψ : Y → Z is
a pure-monomorphism if and only ifψ is a pure monomorphism.

Lemma 1.12. The following are equivalent for a pure monomorphism
φ : X→ Y in C:

(1) φ is a pure-injective envelope ofX;
(2) Y is pure-injective and every endomorphismψ ofY satisfyingψBφ = φ

is an isomorphism;
(3) Hφ : HX → HY is an injective envelope inModC0.

Proof. Straightforward. ut
Corollary 1.13. Every objectX in C admits a pure-injective envelope
φ : X → Y. If φ′ : X → Y′ is another pure-injective envelope, then there
exists an isomorphismψ : Y→ Y′ such thatφ′ = ψ B φ.

Proof. The assertion is a consequence of Theorem 1.8 and the existence of
injective envelopes in ModC0. ut

We are now in a position to prove Theorem D. In fact, the existence of
a universal phantom mapX′ → X ending in a fixed objectX follows from
the existence of a pure-injective envelopeX → X′′. We recall Theorem D
for the convenience of the reader.

Theorem 1.14. For every objectX in C there exists, up to isomorphism,
a unique triangle

X′ α−→ X
β−→ X′′

γ−→ X′[1]
having the following properties:

(A1) a mapφ : Y→X is a phantom map if and only ifφ factors throughα;
(A2) every endomorphismφ of X′ satisfyingα = α Bφ is an isomorphism.
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The same triangle is characterized, up to isomorphism, by the following
properties:

(B1) a mapφ : X → Y is a pure monomorphism if and only ifβ factors
throughφ;

(B2) every endomorphismφ of X′′ satisfyingβ = φ Bβ is an isomorphism.

Proof. Let X be an object inC and complete the pure-injective envelope
β : X→ X′′ to a triangle

X′ α−→ X
β−→ X′′

γ−→ X′[1].
The mapα is a phantom map by Lemma 1.3 sinceβ is a pure monomor-
phism, and the property (4) in Theorem 1.8 implies thatα is a universal
phantom map ending inX since X′′ is pure-injective. On the other hand,
β is a universal pure monomorphism starting inX by Lemma 1.4 sinceX′′
is pure-injective. This establishes (A1) and (B1). Condition (B2) is an im-
mediate consequence of Lemma 1.12, and (A2) then follows from (B2). It is
easily checked that each pair of conditions characterizes the above triangle,
and therefore the proof is complete. ut

It is interesting to observe that the full subcategory of pure-injective
objects inC is completely determined by the full subcategoryC0 of compact
objects inC.

Corollary 1.15. Let C and D be compactly generated triangulated cate-
gories, and suppose that there exists an equivalencef : C0→ D0 between
the full subcategories of compact objects inC andD. Then f induces an
equivalence between the full subcategories of pure-injective objects inC
andD.

Proof. The functorhC : C → ModC0 induces an equivalence between
the full subcategory of pure-injectives inC and the full subcategory of
injectiveC0-modules by Corollary 1.9. The assertion now follows since an
equivalencef : C0→ D0 induces an equivalence ModC0→ ModD0. ut

1.5. Pure-injective modules. The concept of purity has been studied ex-
tensively by algebraists. Pure-exactness and pure-injectivity for modules
over a ring have been introduced by Cohn [7], and we refer to [13] for
a modern treatment of this subject.

Let us recall briefly the relevant definitions. LetΛ be an associative
ring with identity. We consider the category ModΛ of (right) Λ-modules.
A sequence 0→ X→ Y→ Z→ 0 of maps in ModΛ is pure-exactif the
induced sequence 0→ Hom(C, X) → Hom(C,Y) → Hom(C, Z)→ 0
is exact for all finitely presentedΛ-modulesC. The mapX → Y in such
a sequence is called apure monomorphism. Note that any pure-exact se-
quence is automatically an exact sequence in the usual sense. A moduleX
is pure-injectiveif every pure monomorphismX→ Y splits.
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Suppose now thatΛ is aquasi-Frobenius ring, i.e. projective and injec-
tive Λ-modules coincide. In this case thestable categoryModΛ is triangu-
lated; e.g. see [12]. Recall that the objects in ModΛ are those of ModΛ,
and for twoΛ-modulesX,Y one defines Hom(X,Y) to be Hom(X,Y)
modulo the subgroup of maps which factor through a projectiveΛ-module.
Note that the projection functor ModΛ→ ModΛ preserves products and
coproducts. Thus ModΛ has arbitrary coproducts, and it is not difficult to
check that an objectX in ModΛ is compact if and only ifX ' Y in ModΛ
for some finitely presentedΛ-moduleY. Therefore ModΛ is compactly
generated.

Proposition 1.16. AΛ-moduleX is pure-injective if and only ifX is a pure-
injective object inModΛ.

Proof. We use the following characterization of pure-injectivity forΛ-
modules which is due to Jensen and Lenzing [13, Proposition 7.32]: AΛ-
moduleX is pure-injective if and only if for every setI the summation map
σI : X(I) → X factors through the canonical mapιI : X(I) → XI . We now
combine this characterization with the characterization of pure-injectivity
in ModΛ from Theorem 1.8. Thus any pure-injectiveΛ-module is a pure-
injective object in ModΛ. To prove the converse, letX be a pure-injective
object in ModΛ and fix a setI . Thus there exists a mapφ : XI → X in
ModΛ such thatσI − φ B ιI factors through a projectiveΛ-moduleP, i.e.
σI − φ B ιI = β B α for some mapα : X(I) → P. The mapα factors through
the monomorphismιI sinceP is injective, i.e.α = α′ B ιI for some mapα′,
and therefore

σI = β B α+ φ B ιI = (β B α′ + φ) B ιI .
ThusσI factors throughιI , and this finishes the proof. ut

For some further discussion of the relation between pure-injectives in
ModΛ and ModΛ we refer to [16,5].

2. Cohomological and exact functors

2.1. Extending functors. Let C be any triangulated category. We recall
the following well-known property of the Yoneda functorh : C → modC,
X 7→ Hom(−, X).

Lemma 2.1. Every additive functorf : C → A into an abelian cate-
gory A extends, up to isomorphism, uniquely to a right exact functor
f ′ : modC → A such that f = f ′ B h. The functor f ′ is exact if and
only if f is a cohomological functor.

Proof. Any finitely presentedC-moduleM has a projective presentation

Hom(−, X)
Hom(−,φ)−→ Hom(−,Y) Hom(−,ψ)−→ Hom(−, Z) −→ M −→ 0
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coming from a triangle

X
φ−→ Y

ψ−→ Z
χ−→ X[1]

in C. We obtain a right exact functorf ′ : modC → A if we define f ′(M) =
Coker f(ψ). Clearly, f = f ′ B h holds by construction. Exactness off ′
implies that f is cohomological, sinceh is cohomological. Suppose now
that f is cohomological. Taking projective presentations of the modules in
an exact sequence 0→ M1 → M2 → M3 → 0 in modC as above, one
obtains the following commutative diagram:

0 0 0 0y y y y
f(X1) −→ f(Y1) −→ f(Z1) −→ f ′(M1) −→ 0y y y y

f(X1
∐

X3) −→ f(Y1
∐

Y3) −→ f(Z1
∐

Z3) −→ f ′(M2) −→ 0y y y y
f(X3) −→ f(Y3) −→ f(Z3) −→ f ′(M3) −→ 0y y y y

0 0 0 0

The rows are exact sincef is cohomological, and therefore the exactness of
the first three columns implies the exactness of the sequence 0→ f ′(M1)→
f ′(M2)→ f ′(M3)→ 0. Thus f ′ is exact and this finishes the proof. ut

Recall that an abelian categoryA satisfiesGrothendieck’sAB 5 con-
dition if A has arbitrary coproducts and taking filtered colimits preserves
exactness. For example, any module category is anAB 5 category. Sup-
pose now thatC is a skeletally small triangulated category and consider the
Yoneda functorh : C→ ModC.

Lemma 2.2. Every additive functorf : C → A into an abelianAB 5
categoryA extends, up to isomorphism, uniquely to a right exact functor
f ′ : ModC → A which preserves coproducts and satisfiesf = f ′ Bh. The
functor f ′ is exact if and only iff is a cohomological functor.

Proof. Any C-moduleM has a projective presentation∐
i

Hom(−, Xi )
(Hom(−,φij ))−→

∐
j

Hom(−,Yj ) −→ M −→ 0

which is given by a family of mapsφij : Xi → Yj in C. We obtain a func-
tor f ′ : ModC → A if we define f ′(M) as the cokernel of the map
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( f(φij )) : ∐i f(Xi ) → ∐
j f(Yj ) in A. It is easily checked thatf ′ pre-

serves colimits, and thatf = f ′ B h. The restriction f ′|modC is exact if
and only if f is cohomological by the preceding lemma. Now observe that

any exact sequence 0→ L
φ→ M

ψ→ N → 0 in ModC can be written as

a filtered colimit of exact sequences 0→ Li
φi→ Mi

ψi→ Ni → 0 in modC.
To see this, writeφ as a filtered colimit of mapsφ′i : L ′i → Mi in modC.
Denoting byψi : Mi → Ni the cokernel of eachφ′i , we obtain a filtered

system of exact sequences 0→ Li
φi→ Mi

ψi→ Ni → 0 in modC with

colimit 0→ L
φ→ M

ψ→ N→ 0. It follows that f ′ is exact if and only iff
is cohomological sinceA is anAB 5 category. ut

We are now in a position to prove the first part of Theorem E. To this end
suppose thatC is compactly generated and consider the restricted Yoneda
functorhC : C→ ModC0.

Proposition 2.3. Let C be a compactly generated triangulated category.
Then every cohomological functorf : C0 → A into an abelianAB 5 cat-
egoryA extends, up to isomorphism, uniquely to a cohomological functor
f ′ : C → A which preserves coproducts.

Proof. We denote byf ∗ : ModC0→ A the exact colimit preserving func-
tor which extendsf , and definef ′ = f ∗ BhC . Clearly, f ′ is cohomological,
preserves coproducts, andf ′|C0 = f . Suppose there is another functor
f ′′ : C → A with these properties. We construct a natural transformation
η : f ′ → f ′′ as follows. If X is coproduct of compact objects inC, then
we obtain a unique isomorphismηX : f ′(X) → f ′′(X) since f ′ and f ′′
preserve coproducts. Now letX = X0 be an arbitrary object inC. We can
choose pure-exact trianglesXi+1 → Pi → Xi → Xi+1[1] with Pi being
a coproduct of compact objects fori = 0,1, and we obtain a sequence of
mapsP1→ P0→ X in C such thatHP1 → HP0 → HX → 0 is exact. This
gives a commutative diagram

f ′(P1) −→ f ′(P0) −→ f ′(X) −→ 0yηP1

yηP0

f ′′(P1) −→ f ′′(P0) −→ f ′′(X)

where the upper row is exact sincef ∗ is exact. Thus there is a unique map
ηX : f ′(X) → f ′′(X) since the compositionP1 → P0 → X is zero. Now
let B be the full subcategory formed by the objectsX in C such thatηX is
an isomorphism. Clearly,B containsC0, and it is triangulated sincef ′ and
f ′′ are cohomological. Furthermore,B is closed under taking coproducts
since f ′ and f ′′ preserve coproducts. ThusB = C by [20, Lemma 3.2], and
thereforeη : f ′ → f ′′ is an isomorphism. ut

The following consequence generalizes a result from [8].
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Corollary 2.4. LetC be a compactly generated triangulated category and
let f : C → A be a cohomological functor into an abelianAB 5 cate-
goryA. Suppose also thatf preserves coproducts. Then there exists, up to
isomorphism, a unique exact functorf ′ : ModC0 → A which preserves
coproducts and satisfiesf = f ′ B hC .

Proof. Let f ′ : ModC0 → A be the colimit preserving functor extending
f |C0 which exists by Lemma 2.2. We havef ' f ′ B hC by the preceding
theorem since both functors are cohomological and preserve coproducts.
This gives the uniqeness off ′. ut
Corollary 2.5. The following are equivalent for a mapφ : X → Y in
a compactly generated triangulated categoryC:

(1) φ is a phantom map;
(2) f(φ) = 0 for every cohomological functorf : C → A into an abelian

AB 5 categoryA which preserves coproducts;
(3) the induced mapHom(Y,Q) → Hom(X,Q) is zero for every(inde-

composable) pure-injective objectQ in C.

Proof. The equivalence (1)⇔ (2) is an immediate consequence of Corol-
lary 2.4. The equivalence (1)⇔ (3) follows from the fact thatφ is a phantom

map if and only if the mapψ in a triangleX
φ→ Y

ψ→ Z
χ→ X[1] is a pure

monomorphism. In addition, one uses the existence of a pure monomor-
phism Y → ∏

i∈I Zi into a product of indecomposable pure-injectives
which has been established in Corollary 1.10. ut

2.2. Adjoint functors. We study pairs of adjoint functors between com-
pactly generated triangulated categories. This is based on properties of
adjoint functors between module categories. We start with some notation.
Let f : C→ D be an additive functor between skeletally small additive cat-
egories. Then we denote byf∗ : ModD → ModC, X 7→ X B f the corres-
ponding restriction functor, andf ∗ : ModC→ ModD denotes the unique
functor which preserves colimits and sends Hom(−, X) to Hom(−, f(X))
for everyX in C. Applying Yoneda’s lemma, we get for everyX in C and
everyD-moduleM a functorial isomorphism

Hom( f ∗(Hom(−, X)),M) ' M( f(X))
= f∗(M)(X) ' Hom(Hom(−, X), f∗(M))

which shows thatf ∗ is a left adjoint for f∗.

Proposition 2.6. Let f : C → D be an exact functor between compactly
generated triangulated categories. Suppose also thatf preserves coprod-
ucts, and that the right adjointg: D → C of f preserves coproducts.
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(1) f induces a functorf0 : C0→ D0 which makes the following diagrams
commutative:

C
f−→ D D

g−→ CyhC

yhD

yhD

yhC

ModC0
( f0)

∗−→ ModD0 ModD0
( f0)∗−→ ModC0

(2) The functors( f0)
∗ and( f0)∗ are both exact.

(3) The functorg sends pure-exact triangles to pure-exact triangles, and
pure-injectives to pure-injectives.

Proof. The existence of the right adjointg: D → C is an immediate
consequence of the Brown representability theorem, since for every objectX
in D there exists a unique objectY = g(X) in C such that Hom(−, X)B f '
Hom(−,Y).

(1) Given a compact objectX in C, it is well-known thatf(X) is compact
sinceg preserves coproducts. This follows from the following sequence of
canonical isomorphisms for every family(Yi )i∈I of objects inD:∐

i

Hom( f(X),Yi ) '
∐

i

Hom(X, g(Yi )) ' Hom(X,
∐

i

g(Yi ))

' Hom(X, g(
∐

i

Yi )) ' Hom( f(X),
∐

i

Yi ).

Therefore f induces a functorf0 : C0 → D0. The compositionhD B f
is a cohomological functor which preserves coproducts. Thus there exists
a unique exact functorf ′ : ModC0→ ModD0 commuting with coproducts
and satisfyinghD B f = f ′ BhC by Corollary 2.4. We claim that( f0)

∗ = f ′.
In fact, both functors are right exact, preserve coproducts, and coincide
on the full subcategory of finitely generated projective objects in ModC0.
The assertion follows since every objectM in ModC0 has a projective
presentation ∐

i

HXi

(φij )−→
∐

j

HYj −→ M→ 0

with Xi andYj in C0 for all i and j .
To provehC B g = ( f0)∗ B hD , observe that for everyC in C0 andX in

D we have

(hC B g)(X)(C) = Hom(C, g(X)) 'Hom( f(C), X) = HX( f(C))
=(( f0)∗ B hD)(X)(C).

(2) The exactness of( f0)
∗ has already been noticed, and the restriction

( f0)∗ is automatically exact.
(3) The first assertion follows directly from the adjointness formula and

the fact thatf preserves compactness. The second assertion follows from
the characterization of pure-injectivity in part (5) of Theorem 1.8, and the
fact thatg preserves products and coproducts. ut
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2.3. Flat modules. Let C be a skeletally small additive category. Recall
that there exists atensor product

ModC ×ModCop−→ Ab, (M, N)→ M ⊗C N

where for anyC-moduleM, the tensor functorM ⊗C − is determined by
the fact that it preserves colimits andM ⊗C Hom(X,−) ' M(X) for all X
in C. Observe that the existence of such a tensor product is an immediate
consequence of Lemma 2.2. AC-module M is flat if the tensor functor
M ⊗C − exact, and we denote by FlatC the full subcategory of flatC-
modules. Recall that aC-module M is flat if and only if M is a filtered
colimit of representable functors [22, Theorem 3.2]. Therefore FlatC is
equivalent to the category ofind-objectsoverC in the sense of Grothendieck
and Verdier [11]. In particular, FlatC is a category with filtered colimits,
and every functorf : C → D into a categoryD with filtered colimits
extends uniquely to a functorf ′ : FlatC → D preserving filtered colimits
and satisfyingf ′(Hom(−, X)) = f(X) for all X in C.

Suppose now thatC is triangulated. Then we have the following char-
acterization of flatC-modules which has been observed independently by
Beligiannis [3].

Lemma 2.7. The following are equivalent for an additive functor
M : Cop→ Ab:

(1) M is a flatC-module;
(2) M is a cohomological functor;
(3) M is a fp-injectiveC-module.

Proof. (1)⇔ (2) M is flat if and only if the restrictionM⊗C−|modCop is exact
since every exact sequence in ModCop can be written as a filtered colimit
of exact sequences in modCop. ThusM is flat if and only if M ⊗C −|Cop

is a cohomological functor by Lemma 2.1. The assertion now follows since
M ' M ⊗C −|Cop.

(2)⇔ (3) Use the argument from the proof of Lemma 1.6. ut
We combine the preceding lemma with our results about cohomologi-

cal functors on compactly generated triangulated categories. Note that the
following theorem generalizes a result of Christensen and Strickland in [8].

Theorem 2.8. LetC be a compactly generated triangulated category. Then
the following categories are pairwise equivalent:

(1) the category of cohomological functorsC → Ab which preserve co-
products;

(2) the category of cohomological functorsC0→ Ab;
(3) the category of ind-objects over(C0)

op.

Proof. Combine Proposition 2.3 and Lemma 2.7. ut
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The finitely presented modules over a ringΛ are characterized by the
fact that the corresponding tensor functorM ⊗Λ − preserves arbitrary
products ofΛop-modules. In fact, it is sufficient to assume thatM ⊗Λ −
preserves products of finitely generated projective modules; e.g. see [25,
Lemma I.13.2]. This result generalizes to rings with several objects and
leads to a characterization of cohomological functorsC → Ab which
preserve products; it is the second part of Theorem E.

Proposition 2.9. Let C be a compactly generated triangulated category.
Then the following are equivalent for a cohomological functorf : C → Ab
which preserves coproducts:

(1) f(
∏

i Xi ) '∏i f(Xi ) for every family(Xi )i∈I of objects inC;
(2) f(

∏
i Xi ) '∏i f(Xi ) for every family(Xi )i∈I of compact objects inC;

(3) f ' Hom(C,−) for some compact objectC in C.

Proof. The directions (1)⇒ (2) and (3)⇒ (1) are clear. Therefore sup-
pose thatf preserves products of compact objects. The functorf extends
uniquely to a colimit preserving functorf ′ : ModC0 → Ab by Corol-
lary 2.4. We havef ′ ' −⊗C0 M for M = f |C0 andM is flat by Lemma 2.7.
Moreover, M is finitely presented sincef ′ preserves products of finitely
generated projectiveC0-modules. Any flat module is finitely presented if
and only if it is finitely generated projective (e.g. see [25, Corollary I.11.5]),
and thereforeM ' Hom(C,−) for someC in C0. We obtain

f(Y) = f ′(HY) ' HY ⊗C0 Hom(C,−) ' HY(C) = Hom(C,Y)

for everyY in C, and thereforef ' Hom(C,−). ut

2.4. Pure-semisimplicity. A compactly generated triangulated categoryC
is pure-semisimpleif every pure monomorphism inC splits; equivalently if
every object inC is pure-injective. Our aim is a characterization of pure-
semisimplicity, using the fact that this property is equivalent to a number of
familiar properties of the module category ModC0. For instance, Bass has
characterized the rings for which every flat module is projective. This can be
generalized to rings with several objects and then describes when every flat
C0-module is a projectiveC0-module, see [13, Theorem B.12]. On the other
hand, noetherian rings can be characterized by the fact that every fp-injective
module is injective. Moreover, Matlis showed that a ring is noetherian
if and only if every injective module is a coproduct of indecomposable
modules. These results generalize to rings with several objects as well, see
[13, Theorem B.17]. We obtain therefore the following characterization
of pure-semisimplicity, since the restricted Yoneda functorC → ModC0
identifies every object inC with aC0-module which is flat and fp-injective
by Lemma 1.6 and Lemma 2.7.
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Theorem 2.10. The following are equivalent for a compactly generated
triangulated categoryC:

(1) C is pure-semisimple;
(2) every object inC is a coproduct of indecomposable objects with local

endomorphism rings;
(3) every compact object is a finite coproduct of indecomposable objects

with local endomorphism rings, and, given a sequence

X1
φ1−→ X2

φ2−→ X3
φ3−→ . . .

of non-isomorphisms between indecomposable compact objects, the
compositionφn B . . . B φ2 B φ1 is zero forn sufficiently large;

(4) the restricted Yoneda functorhC : C→ ModC0, X 7→ Hom(−, X)|C0,
is fully faithful;

(5) C has filtered colimits.

This characterization, and indeed a host of other equivalent statements
have been obtained independently by Beligiannis in [4].

3. Localization

3.1. Cohomological ideals.Let C be an additive category. AnidealI in C
consists of subgroupsI(X,Y) in Hom(X,Y) for every pair of objectsX,Y
in C such that for allφ in I(X,Y) and all mapsα : X′ → X andβ : Y→ Y′
in C the compositionβ B φ B α belongs toI(X′,Y′).

Definition 3.1. An idealI in a triangulated categoryC is calledcohomo-
logical if there exists a cohomological functorf : C → A into an abelian
categoryA such thatI = {φ ∈ C | f(φ) = 0}.

Given an idealI in C, we denote bySI the full subcategory of objects
M in modC such thatM ' Im Hφ for someφ in I. If C is skeletally small,
thenTI denotes the full subcategory of filtered colimits lim−→Mi in ModC
such thatMi belongs toSI for all i . Recall that a full subcategoryS of
an abelian categoryA is aSerre subcategoryprovided that for every exact
sequence 0→ X′ → X→ X′′ → 0 in A the objectX belongs toS if and
only if X′ andX′′ belong toS.

Lemma 3.2. LetI be a cohomological ideal in a triangulated categoryC.

(1) SI is a Serre subcategory ofmodC.
(2) If C is skeletally small, thenTI is a Serre subcategory ofModC.

Proof. (1) Let f : C → A be a cohomological functor such thatI =
{φ ∈ C | f(φ) = 0}, and denote byf ′ : modC → A the exact functor
extending f which exists by Lemma 2.1. The full subcategoryS = {M ∈
modC | f ′(M) = 0} is a Serre subcategory of modC since f ′ is exact.
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Now observe that every finitely presentedC-module M with projective
presentationHX → HY → M → 0 is isomorphic to ImHφ whereφ is the

map occuring in the triangleX → Y
φ→ Z → X[1]. Given an arbitrary

mapφ in C, we havef(φ) = 0 if and only if f(Im Hφ) = 0, and therefore
SI = S. ThusSI is a Serre subcategory of modC.

(2) See [15, Theorem 2.8]. ut
Let f : C → D be an additive functor between additive categories. We

denote byf ∗ : modC→ modD the unique right exact functor which sends
Hom(−, X) to Hom(−, f(X)) for all X in C. If C andD are skeletally small,
then f ∗ extends uniquely to a colimit preserving functor ModC → ModD
which we also denote byf ∗.

Lemma 3.3. Let f : C → D be an exact functor between triangulated
categories. ThenI = {φ ∈ C | f(φ) = 0} is a cohomological ideal inC.
Moreover, the following holds:

(1) SI = {M ∈ modC | f ∗(M) = 0}.
(2) If C andD are skeletally small, thenTI = {M ∈ ModC | f ∗(M) = 0}.
Proof. Let f ′ : C → modD be the composition off with the Yoneda
functorD → modD. This functor is cohomological, andf(φ) = 0 if and
only if f ′(φ) = 0 for every mapφ ∈ C since the Yoneda functor is faithful.
ThusI is a cohomological ideal.

(1) The functor f ∗ : modC → modD is the unique exact functor
extending f ′. ThereforeSI = {M ∈ modC | f ∗(M) = 0} by the argument
given in the proof of Lemma 3.2.

(2) We denote byT the full subcategory ofC-modulesM such that
f ∗(M) = 0. It follows from (1) thatTI ⊆ T since f ∗ preserves filtered co-
limits. To prove the other inclusion, we use the right adjointf∗ : ModD →
ModC, M 7→ M B f for f ∗. We denote byt : ModC → ModC the functor
which is obtained from the functorial exact sequence

0−→ t(M) −→ M
µM−→ ( f∗ B f ∗)(M).

Note thatt induces a right adjoint for the inclusionT → ModC since
f ∗(µM) is an isomorphism for allM. Moreover,t preserves filtered colimits
since f ∗ and f∗ have this property. Now letM ∈ modC, and writet(M) =
lim−→Mi as a filtered colimit of finitely generated submodules. For alli , we
haveMi ∈ T sinceT is closed under taking submodules, andMi ∈ modC
sinceC has weak kernels and therefore finitely generated submodules of
finitely presented modules are again finitely presented. It follows thatt(M)
is a filtered colimit of modules inS = T ∩ modC. Given any moduleM
in T , we can writeM = lim−→Mi as a filtered colimit of finitely presented
modules. ThusM = t(lim−→Mi ) ' lim−→ t(Mi ) is a filtered colimit of modules
in S, andT ⊆ TI follows sinceS = SI by (1). ut
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3.2. Localization for triangulated categories. Let C be a compactly gen-
erated triangulated category. Recall that a full triangulated subcategoryB
of C is localizing if B is closed under taking coproducts. Thequotient
categoryC/B is, by definition, the category of fractionsC[Σ−1] (in the
sense of [10]) with respect to the classΣ of mapsY → Z which admit
a triangleX → Y → Z → X[1] with X in B. Thus the corresponding
quotient functorC → C[Σ−1] is the universal functor which inverts every
map inΣ. Note thatC[Σ−1] is a large category which means that the maps
between fixed objects are not assumed to form a set. Let us mention a few
basic facts about the formation of the quotient categoryC/B which we
shall use frequently without further reference.

Lemma 3.4. The quotient functorf : C → C/B has the following prop-
erties:

(1) The triangulation ofC induces a triangulation forC/B and f is an
exact functor.

(2) Let X be an object inC. Then f(X) = 0 if and only if X ∈ B.
(3) Letφ be a map inC. Then f(φ) = 0 if and only ifφ factors through

some object inB.

Proof. See [27, Corollaire 2.2.11]. ut
The following lemma characterizes the existence of a right adjoint for

the quotient functorC→ C/B.

Lemma 3.5. Let B be a localizing subcategory of a compactly generated
triangulated categoryC. Then the following are equivalent:

(1) the maps between fixed objects inC/B form a set;
(2) the quotient functorf : C → C/B has a right adjointg: C/B → C;
(3) the inclusion functorB → C has a right adjointe: C → B.

Moreover, in this case there is for every objectX in C a triangle

(g B f)(X)[−1] αX−→ e(X)
βX−→ X

γX−→ (g B f)(X)

which is functorial inX.

A localizing subcategoryB which satisfies the equivalent conditions of
the preceding lemma admits alocalization functorC → C which is, by
definition, the composition of the quotient functorC → C/B with a right
adjointC/B → C. To prove Lemma 3.5 we shall need the following lemma
aboutC[Σ−1].
Lemma 3.6. Let C be any category with coproducts. Suppose thatΣ is
a class of maps inC which admits a calculus of left fractions. If

∐
i σi ∈ Σ for

every family(σi )i∈I in Σ, then the quotient categoryC[Σ−1] has coproducts
and the quotient functorC → C[Σ−1] preserves coproducts.
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Proof. Recall from [10] that the objects inC[Σ−1] are those ofC, and
that the mapsX → Y in C[Σ−1] are equivalence classes ofleft fractions

X
φ→ Z

σ← Y with σ ∈ Σ. Now let (Xi )i∈I be a family of objects in
C[Σ−1]. We claim that the coproduct

∐
i Xi in C is also a coproduct in

C[Σ−1]. Thus we need to show that for every objectY, the canonical map
α : Hom(

∐
i Xi ,Y) → ∏

i Hom(Xi ,Y) between Hom-sets inC[Σ−1] is
bijective.

To check surjectivity, let(Xi
φi→ Zi

σi← Y)i∈I be a family of left fractions.
We obtain a commutative diagram∐

i Xi

∐
i φi−→∐

i Zi

∐
i σi←−∐i Yy yπY

Z
σ←− Y

whereπY : ∐i Y → Y is the summation map andσ ∈ Σ. It is easily
checked that

(Xi → Z
σ← Y) ∼ (Xi

φi→ Zi
σi← Y)

for all i ∈ I , and thereforeα sends
∐

i Xi → Z
σ← Y to the family

(Xi
φi→ Zi

σi← Yi )i∈I .

To check injectivity, let
∐

i Xi
φ′→ Z′ σ ′← Y and

∐
i Xi

φ′′→ Z′′ σ
′′← Y be

left fraction such that

(Xi
φ′i→ Z′ σ

′← Y) ∼ (Xi
φ′′i→ Z′′ σ

′′← Y)

for all i . We may assume thatZ′ = Z = Z′′ andσ ′ = σ = σ ′′ since we can
choose mapsτ ′ : Z′ → Z andτ ′′ : Z′′ → Z with τ ′ B σ ′ = τ ′′ B σ ′′ ∈ Σ.
Thus there are mapsψi : Z → Zi with ψi B φ′i = ψi B φ′′i andψi B σ ∈ Σ

for all i . Eachψi belongs to thesaturationΣ of Σ which is the class of all
maps inC which become an isomorphism inC[Σ−1]. Note that a mapα
in C belongs toΣ if and only if there are mapsα′ andα′′ such thatα B α′
andα′′ Bα belong toΣ. ThereforeΣ is also closed under taking coproducts.
Moreover,Σ admits a calculus of left fractions, and we obtain therefore
a commutative diagram∐

i Xi −→ ∐
i Z

πZ−→ Z
σ←− Yy∐i ψi

yτ∐
i Zi −→ Z∗

with τ ∈ Σ. Thusτ B σ ∈ Σ, and we have(∐
i

Xi
φ′→ Z

σ← Y
) ∼ (∐

i

Xi
φ′′→ Z

σ← Y
)
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sinceπZ B∐i φ
′
i = φ′ andπZ B∐i φ

′′
i = φ′. Thereforeα is also injective,

and this completes the proof. ut

Proof of Lemma 3.5.(1)⇒ (2) The quotient functor preserves coproducts
by Lemma 3.6, sinceΣ is closed under taking coproducts. Given an objectX
in C/B, the composition Hom(−, X) B f is a cohomological functor which
sends coproducts to products. Thus there existsY in C with Hom(−, X) B
f ' Hom(−,Y) by the Brown representability theorem. We putg(X) = Y,
and it is easily checked that this gives a right adjointg: C/B→ C for f .

(2)⇒ (1) Let X = f(X′) andY be objects inC/B. Then Hom(X,Y) '
Hom(X′, g(Y)) sinceg is a right adjoint off . Thus the maps between objects
in C/B form a set.

(2)⇒ (3) Suppose thatf has a right adjointg. Completing the canonical
mapγX : X→ (g B f)(X) to a triangle

(g B f)(X)[−1] −→ Y −→ X
γX−→ (g B f)(X)

for every X in C gives a functore: C → B if we put e(X) = Y. In fact,
f(γX) is an isomorphism and thereforef(Y) = 0 which impliesY ∈ B.
Given Y′ ∈ B, one applies Hom(Y′,−) to the above triangle and gets an
isomorphism Hom(Y′,Y)→ Hom(Y′, X). Thuse is a right adjoint for the
inclusionB → C.

(3) ⇒ (2) Suppose that the inclusionB → C has a right adjointe,
and let X = f(X′) be an object inC/B. Completing the canonical map
βX′ : e(X′)→ X′ to a triangle

Y[−1] −→ e(X′)
βX′−→ X′ −→ Y

gives a functorg: C/B → C if we put g(X) = Y. It is not hard to check
that this defines a right adjoint for the quotient functorC → C/B, but we
leave the details to the reader.

The last assertion is an immediate consequence of the construction given
in (2)⇒ (3). ut

We continue with two lemmas which collect some basic properties of the
quotient functor and its right adjoint, assuming that it exists. The notation
of Lemma 3.5 remains fixed.

Lemma 3.7. The natural transformationidC → gB f induces a functorial
isomorphismHom((g B f)(X),Y)→ Hom(X,Y) for all X andY such that
Hom(B,Y) = 0.

Proof. Apply Hom(−,Y) to the triangle in Lemma 3.5. ut
Given any classB of objects inC, we say that an objectY in C is

B-local if Hom(X,Y) = 0 for all X in B. The full subcategory ofB-local
objects is denoted byB⊥. The definition ofI-local objects for a classI of
maps inC is analogous.
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Lemma 3.8. The functorg induces an equivalence betweenC/B andB⊥.

Proof. An inverse is the composition of the inclusionB⊥ → C with the
quotient functorC → C/B; use Lemma 3.5. ut

3.3. Cohomological ideals and localization.Let C be a compactly gen-
erated triangulated category. Given an idealI in C0, we define a full sub-
categoryCI as follows:

CI = {X ∈ C | every mapC→ X,C ∈ C0, factors through a map
C→ D in I}.

Given a full additive subcategoryB of C, we define an idealIB as follows:

IB = {φ ∈ C0 | φ factors through an object inB}.
We are interested in properties of the categoryCI and collect them in two
technical lemmas.

Lemma 3.9. LetI be an ideal inC0 and X ∈ C. ThenX ∈ CI if and only
if HX ∈ TI.

Proof. Suppose first thatHX ∈ TI. ThusHX = lim−→ Im Hφi with φi ∈ I for
all i . Now letφ : C→ X be any map withC ∈ C0. We have Hom(C, X) =
HX(C) = lim−→ Im Hφi (C) and obtain therefore a factorizationC → Ci

φi→
Di → X of φ for somei . The compositionC → Ci

φi→ Di belongs toI
sinceφi ∈ I, and this impliesX ∈ CI.

To prove the converse, suppose thatX ∈ CI. Every module is a filtered
colimit of finitely presented ones. More precisely,HX = lim−→ i∈I Mi where
I denotes the filtered category of mapsµi : Mi → HX with Mi ∈ modC0.
We claim that the full subcategoryJ of mapsµi : Mi → XX with Mi ∈ SI
is cofinal, i.e., for everyi ∈ I there exists a mapν : Mi → Mj for some
j ∈ J such thatµi = µ j B ν. To prove this claim, letφi : Ci → Di be
a map inC0 with Mi ' Im Hφi which exists by the argument given in the
proof of Lemma 3.2. We get a factorizationMi → HDi → HX of µi since
HX is fp-injective by Lemma 1.6, and the corresponding mapDi → X
has a factorizationDi → E → X for someψ : Di → E in I since
X ∈ CI. Thusµi factors through the map ImHψ → HX with Im Hψ ∈ SI.
ThereforeJ is cofinal inI , and the inclusionJ→ I induces an isomorphism
lim−→ i∈J Mi ' lim−→ i∈I Mi ' HX which provesHX ∈ TI. ut
Lemma 3.10. LetI be a cohomological ideal inC0 such thatφ[n] ∈ I for
all φ ∈ I andn ∈ Z.

(1) CI is a localizing subcategory ofC.
(2) If I = I(CI), then the inclusionCI → C has a right adjoint and

(CI)
⊥ = I⊥.
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Proof. (1) Clearly,CI is closed under the shift inC sinceI is closed under

the shift. Now letX
φ→ Y

ψ→ Z
χ→ X[1] be a triangle inC with X,Y ∈ CI.

We need to show thatZ ∈ CI. We apply the description ofCI given in
Lemma 3.9. The triangle induces an exact sequence 0→ Im Hψ → HZ →
Im Hχ → 0 in ModC0. The categoryTI is a Serre subcategory of ModC0
by Lemma 3.2 sinceI is cohomological, and thereforeHZ belongs toTI.
Thus Z ∈ CI. Furthermore,CI is closed under taking coproducts because
TI has this property, and we conclude thatCI is localizing.

(2) In order to show that the inclusionCI → C has a right adjoint,
it is by Lemma 3.5 sufficient to show that for two objectsX andY in C
the mapsX → Y in C/CI form a set. In fact, it is sufficient to check this
for all X ∈ C0 andY ∈ C sinceC0 generatesC. To prove this claim, we
consider the exact quotient functorq : ModC0→ ModC0/TI with respect
to the Serre subcategoryTI and observe that the maps in ModC0/TI form
a set [9, Proposition III.8]. The composition ofq with the Yoneda functor
h : C → ModC0 annihilatesCI by Lemma 3.9, and thereforeq B h induces
a cohomological functorh′ : C/CI → ModC0/TI making the following
diagram of functors commutative:

C −→ C/CIyh

yh′

ModC0
q−→ ModC0/TI

We claim thath′ induces an injective map Hom(X,Y)→ Hom(h′(X),h′(Y))
for all X ∈ C0 andY ∈ C. To this end choose a mapα : X → Y in C/CI

which is by definition a left fractionX
φ→ Z

σ← Y, and assume that
h′(α) = 0. It follows thatq(Hφ) = 0 sinceq(Hσ ) is an isomorphism, and
therefore ImHφ ∈ TI sinceq is exact. Thus ImHφ is a filtered colimit of
objects inSI. An argument similar to that given in the proof of Lemma 3.9
shows that the mapφ : X → Z factors through a mapψ : X → X′ in I
sinceX ∈ C0. Thusφ factors through an object inCI by our assumption
onI, and thereforeα = 0. We conclude that the maps between fixed objects
in C/CI form a set, and therefore the inclusionCI→ C has a right adjoint.

It remains to show that(CI)
⊥ = I⊥. Clearly,(CI)

⊥ ⊆ I⊥ since every
map inI factors through an object inCI. To prove the other inclusion, let
B = CI and consider for any objectX in C the triangle

(g B f)(X)[−1] αX−→ e(X)
βX−→ X

γX−→ (g B f)(X)

as in Lemma 3.5. Now suppose that Hom(I, X) = 0. Every mapφ : C→
e(X) with C in C0 has a factorizationC

φ′→ D
φ′′→ e(X) with φ′ ∈ I,

and thereforeβX B φ = 0. Thusφ factors throughαX. The same ar-
gument shows thatφ′′ factors throughαX, and thereforeφ = 0 since
Hom(φ′,(g B f)(X)[−1]) = 0 by Lemma 3.7. We conclude thate(X) = 0
and therefore Hom(CI, X) = 0. ut
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3.4. Approximations. We need to recall the following definition from [2].
Let Y be a class of objects in a categoryC. Then a mapX → Y is
a left Y-approximationof X if Y belongs toY and if the induced map
Hom(Y,Y′) → Hom(X,Y′) is surjective for everyY′ in Y. For example,
if we view Y as a full subcategory ofC and assume the existence of a left
adjoint f : C → Y for the inclusionY → C, then the canonical map
X → f(X) is a left Y-approximation for everyX in C. In general, a left
Y-approximation is far from being unique.

Suppose now thatI is a class of maps in a triangulated categoryC such
that their isomorphism classes form a set. Recall thatI⊥ denotes the full
subcategory of objectsX in C satisfying Hom(φ, X) = 0 for all φ ∈ I. We
construct for any objectX in C a leftI⊥-approximationγX,I⊥ : X→ XI⊥ .
To this end we define inductively mapsαn : Xn → Xn+1 for everyn ≥ 0.
By definition, setX0 = X. Let Ψn be a representative set of non-zero maps
ψ : C→ Xn which factor through some mapC→ D in I. We obtainαn if
we complete the canonical map

∐
ψ∈Ψn

C→ Xn to a triangle∐
ψ∈Ψn

C −→ Xn
αn−→ Xn+1 −→ (

∐
ψ∈Ψn

C)[1].

We denote byXI⊥ the homotopy colimit hocolimXn of the sequence

X = X0
α0−→ X1

α1−→ X2
α2−→ . . . .

More precisely,XI⊥ is obtained from the triangle∐
n

Xn
id−α−→

∐
n

Xn −→ hocolimXn −→ (
∐

n

Xn)[1].

We denote byγX,I⊥ : X→ XI⊥ the canonical map fromX0 into hocolimXn,
but this map is only unique up to a non-unique isomorphism since the
construction involves the completion of various maps to triangles. Given
any mapψ : X→ Y in C, we obtain a sequence of commuting diagrams

X
id−→ X0

α0−→ X1
α1−→ X2

α2−→ . . .yψ yψ0

yψ1

yψ2

Y
id−→ Y0

β0−→ Y1
β1−→ Y2

β2−→ . . .

and we denote byψI⊥ : XI⊥ → YI⊥ a map which makes the following
diagram commutative∐

n Xn
id−α−→∐

Xn −→ hocolimXn −→ (
∐

n Xn)[1]y∐ψn

y∐ψn

yψ
I⊥

y(∐ψn)[1]∐
n Yn

id−β−→ ∐
Yn −→ hocolimYn −→ (

∐
n Yn)[1]

Note that the mapψI⊥ is not unique.
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Proposition 3.11. Let C be a triangulated category and suppose thatI
is a class of maps between compact objects inC such that their iso-
morphism classes form a set. Then the mapγX,I⊥ : X → XI⊥ is a left
I⊥-approximation.

Proof. We need to show thatXI⊥ is I-local. To this end letφ : C → D
be a map inI. The canonical mapsξn : Xn → hocolimXn induce an
isomorphism

lim−→Hom(D, Xn) −→ Hom(D,hocolimXn)

sinceD is compact; e.g. see [19, Lemma 1.5]. Therefore any mapψ : D→
XI⊥ has a factorizationψ = ξn B ψ′ for somen ∈ N. The construction of
αn impliesαn B ψ′ B φ = 0, and thereforeψ B φ = 0. ThusXI⊥ is I-local.
We haveYI⊥ = Y for every I-local objectY, and therefore every map
ψ : X→ Y with Y ∈ I⊥ factors throughγX,I⊥ viaψI⊥ : XI⊥ → YI⊥ = Y.
ThusγX,I⊥ is a leftI⊥-approximation. ut

We include the following lemma for later reference.

Lemma 3.12. Let f : C → D be an exact functor between triangulated
categories which preserves coproducts. Suppose thatI is a class of maps
in C such that their isomorphism classes form a set. Iff(I) = 0, then the
map f(γX,I⊥) : f(X)→ f(XI⊥) is a split monomorphism.

Proof. The construction of eachαn implies that f(αn) is a split monomor-
phism for everyn. It follows that id f(X) factors throughf(hocolimXn) '
hocolim f(Xn). ut

4. Smashing subcategories

4.1. A characterization of smashing subcategories.Let C be a com-
pactly generated triangulated category and suppose thatB is a localizing
subcategory ofC. We denote byD = C/B the quotient category and
f : C → C/B denotes the corresponding quotient functor. A right adjoint
of f is denoted byg: C/B→ C, provided it exists. Recall thatB is smash-
ing if the inclusionB → C has a right adjoint which preserves coproducts.
Note that this is equivalent to the fact that the quotient functor has a right
adjoint which preserves coproducts.

Lemma 4.1. Let B be a smashing subcategory of a compactly generated
triangulated categoryC. ThenC/B is a compactly generated triangulated
category.

Proof. C/B has coproducts by Lemma 3.6, and the argument in the proof of
Proposition 2.6 shows thatf(C0) ⊆ D0. Suppose now that Hom(D, X) = 0
for all D in D0 and someX in D. Then Hom(C, g(X))'Hom( f(C), X) = 0
for all C in C0, and thereforeX = 0, sinceC is compactly generated andg
is faithful by Lemma 3.8. ThusC/B is compactly generated. ut
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We are now in a position to prove the characterization of smashing
subcategories which is stated in Theorem A. We reformulate this theorem
as follows.

Theorem 4.2. LetB be a localizing subcategory of a compactly generated
triangulated categoryC, and denote byI the ideal of maps between compact
objects inC which factor through some object inB. Then the following
conditions are equivalent:

(1) B is smashing;
(2) B = CI;
(2’) B ⊆ CI;
(3) I⊥ = B⊥;
(3’) I⊥ ⊆ B⊥.

Proof. (1)⇒ (2) We know from the preceding lemma thatD = C/B is
a compactly generated triangulated category. We have therefore by Propo-
sition 2.6 an induced functor( f0)

∗ : ModC0→ ModD0 such that( f0)
∗ B

hC = hD B f . An objectX in C belongs toB if and only if ( f0)
∗(HX) = 0

sincehD(Y) = 0 if and only if Y = 0. ThereforeB = CI by Lemma 3.3
and Lemma 3.9.

(2’) ⇒ (3) It is clear thatI⊥ ⊇ B⊥. The condition (2’) implies that
I = I(CI), and thereforeI⊥ = (CI)

⊥ by Lemma 3.10. Using again (2’), we
have(CI)

⊥ ⊆ B⊥ and this impliesI⊥ ⊆ B⊥.
(3’) ⇒ (2’) Let X be an object inC and supposeX 6∈ CI. It fol-

lows from Lemma 3.9 thatHX 6∈ TI, and we find a maximal subobject
T ⊆ HX with T ∈ TI sinceTI is a Serre subcategory of ModC0 which
is closed under taking coproducts by Lemma 3.2. Choosing an injective
envelopeHX/T → M, we have Hom(HX,M) 6= 0 and Hom(TI,M) = 0
by construction. Applying Lemma 1.7, we find an objectY in C such that
HY ' M and Hom(X,Y) ' Hom(HX,M) 6= 0. Moreover, Hom(I,Y) = 0
since Hom(TI,M) = 0. Assuming (3’), it follows thatX 6∈ B. Thus (2’)
holds.

(2’)⇒ (1) The condition (2’) implies thatI = I(CI), and thereforeI⊥ =
(CI)

⊥ by Lemma 3.10. We claim thatB = CI. To this end letX ∈ CI and
consider theI⊥-approximationγX,I⊥ : X → XI⊥ from Proposition 3.11.
We haveγX,I⊥ = 0 sinceI⊥ = (CI)

⊥, and the quotient functorf : C →
C/B sendsγX,I⊥ to a split monomorphism by Lemma 3.12. Thusf(X) = 0
and thereforeX belongs toB. We conclude from Lemma 3.5 that the
inclusion B → C has a right adjoint, and it remains to show that this
right adjoint preserves coproducts. To this end consider the right adjoint
g: C/B → C of the quotient functor which identifiesC/B with B⊥ by
Lemma 3.8. Now let(Xi )i∈I be a family of objects inB⊥. Using (3), we
have Hom(I, Xi ) = 0 for all i , and therefore Hom(I,

∐
i Xi ) = 0 since

I belongs toC0. Thus
∐

i Xi belongs toB⊥. It follows that g preserves
coproducts and thereforeB is smashing. ut
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Remark 4.3.Localizations inC and ModC0 are closely related. In fact, ifB
is a smashing subcategory ofC, then one can use Proposition 2.6 to show that
f Bg' idD implies( f0)

∗ B( f0)∗ ' idModD0 for D = C/B. Therefore( f0)
∗

induces an equivalence ModC0/TI → Mod(C/B)0 where ModC0/TI
denotes the quotient category with respect to the localizing subcategory
TI = {M ∈ ModC0 | ( f0)

∗(M) = 0}; e.g. see [9, Proposition III.5]. This
leads to the following commutative diagram:

B −→ C
f−→ C/By yhC

y
TI −→ ModC0 −→ ModC0/TI∥∥∥ yo

ModC0
( f0)

∗−→ Mod(C/B)0

Note that the compositionC/B → ModC0/TI→ Mod(C/B)0 is just the
restricted Yoneda functorhC/B.

We proceed with the proof of Theorem C which we recall for the con-
venience of the reader.

Theorem 4.4. LetB be a smashing subcategory of a compactly generated
triangulated categoryC, and letU be the set of objectsY in SpC such that
Hom(B,Y) = 0. Then the following holds for any objectX in C:

(1) X ∈ B if and only ifHom(X,U) = 0;
(2) Hom(B, X) = 0 if and only if there is a pure monomorphismX →∏

i∈I Yi with Yi ∈ U for all i .

Proof. We identify D = C/B via g with the full subcategory of objects
X in C such that Hom(B, X) = 0. This is possible by Lemma 3.8. In
particular, this identifies SpD with U = {X ∈ SpC | Hom(B, X) = 0}
sinceg preserves pure-injectivity by Proposition 2.6.

(1) Clearly,X∈B implies Hom(X,U)=0. Conversely, Hom(X,U)=0
implies Hom((g B f)(X),U) = 0 by Lemma 3.7, and this implies
(g B f)(X) = 0 sinceU cogeneratesD by Corollary 1.10. Thusf(X) = 0
sinceg is faithful, and thereforeX belongs toB.

(2) Suppose first that Hom(B, X) = 0. We apply Corollary 1.10 and
get a pure monomorphismX → ∏

i Yi in D with Yi ∈ U for all i . The
inclusionD → C preserves pure monomorphisms by Proposition 2.6, and
this proves one direction. Now suppose that we have a pure monomorphism
X→ Y in C with Hom(B,Y) = 0. It follows from part (3) in Theorem 4.2
that Hom(B, X) = 0, and therefore the proof of Theorem 4.4 is complete.

ut
Let B be a localizing subcategory of a triangulated categoryC. Re-

call that a mapX → Y in C is a B-localization of X if Y is B-local
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and the induced map Hom(Y,Y′) → Hom(X,Y′) is bijective for every
B-local object Y′. Let us describe an explicit construction of theB-
localization provided thatB is smashing. We use the leftI⊥-approximation
γX,I⊥ : X → XI⊥ with respect to an idealI in C0 which has been con-
structed in Proposition 3.11. Recall from [2] that a mapφ : X → Y is
left minimal if every endomorphismψ of Y such thatφ = ψ B φ is an
isomorphism.

Theorem 4.5. LetB be a smashing subcategory of a compactly generated
triangulated categoryC and letI = IB be the corresponding ideal inC0.
Then the leftI⊥-approximationγX,I⊥ : X → XI⊥ of an objectX in C has
a decomposition

(γ ′, γ ′′) : X −→ XI⊥ = Y′
∐

Y′′

such thatγ ′ is left minimal andγ ′′ = 0. In this case, the mapγ ′ : X→ Y′
is aB-localization ofX.

Proof. TheI⊥-approximationγX,I⊥ : X→XI⊥ is also aB⊥-approximation
sinceI⊥ = B⊥ by Theorem 4.2. There exists aB-localizationγX : X→ Y
of X by Lemma 3.5. We obtain therefore mapsα : Y → XI⊥ and
β : XI⊥ → Y such thatγX,I⊥ = α B γX and γX = β B γX,I⊥ . We have
β B α = idY sinceγX is aB-localization ofX, and this gives a decompos-
ition γX,I⊥ = (γ ′, γ ′′) such thatγ ′ is isomorphic toγX andγ ′′ = 0. This
finishes the proof. ut

There are examples where the leftI⊥-approximationγX,I⊥ : X→ XI⊥
is different from theB-localization of X. Take for instance a smashing
subcategoryB 6= 0 with B ∩ C0 = 0.

4.2. The modified telescope conjecture.We are now in a position to prove
the corollary of Theorem A; it will be an immediate consequence of the
following proposition.

Proposition 4.6. Let B be a smashing subcategory of a compactly gener-
ated triangulated categoryC and letIB be the corresponding ideal inC0.
Suppose thatf : C → D is an exact functor into a triangulated category
D which preserves coproducts. Thenf(IB) = 0 if and only if f(B) = 0.

Proof. LetI = IB . Clearly, f(B) = 0 implies f(I) = 0. Suppose now that
f(I) = 0. Let X be an object inB and letγX,I⊥ : X→ XI⊥ be the leftI⊥-
approximation from Proposition 3.11. Theorem 4.2 impliesB⊥ = I⊥ and
thereforeγX,I⊥ = 0 sinceXI⊥ belongs toI⊥. On the other hand,f(γX,I⊥)
is a split monomorphism by Lemma 3.12. Thusf(X) = 0. ut
Corollary 4.7. LetB be a smashing subcategory of a compactly generated
triangulated categoryC. ThenB is generated by the corresponding ideal
I = IB in C0. More precisely,
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(1) B is a localizing subcategory ofC and every map inI factors through
some object inB;

(2) if B ′ is any localizing subcategory ofC such that every map inI factors
through some object inB ′, thenB ⊆ B ′.

Proof. (1) follows immediately from the definitions ofB andI. To prove (2),
let B ′ be a localizing subcategory ofC such that every map inI factors
through some object inB ′, and denote byf : C→ C/B ′ the corresponding
quotient functor. Note thatf preserves coproducts by Lemma 3.6. Clearly,
f(I) = 0 and thereforef(B) = 0 by the preceding proposition. Thus
B ⊆ B ′. ut

4.3. A classification of smashing subcategories.In this section we con-
sider a compactly generated triangulated categoryC such that the following
additional property holds:

(B) Every cohomological functorCop
0 → Ab of the form Hom( f(−), f(C))

(where f : C0 → D is any exact functor into a triangulated category
D andC is any object inC0) is isomorphic to Hom(−, X)|C0 for some
objectX in C.

This condition is a weak form of Brown representability. For example, (B)
holds for the stable homotopy category [1]. More generally, (B) holds if
the categoryC0 has a countable skeleton [21]. Our aim in this section is
a classification of the smashing subcategories ofC. To this end we introduce
the following class of ideals for a triangulated category.

Definition 4.8. An idealI in a triangulated categoryC is calledexactif
there exists an exact functorf : C → D into a triangulated categoryD
such thatI = {φ ∈ C | f(φ) = 0}.

The following result gives a classification of smashing subcategories.

Theorem 4.9. Let C be a compactly generated triangulated category and
suppose that(B) holds. Then the maps

B 7→ {φ ∈ C0| φ factors through an ob ject inB} and
I 7→ {X ∈ C | every map C→ X,C ∈ C0, factors through a map

C→ D in I}
induce mutually inverse bijections between the set of smashing subcate-
gories ofC and the set of exact ideals inC0.

The proof of this theorem is based on the following lemma.

Lemma 4.10. Let C be a compactly generated triangulated category and
suppose that(B) holds. IfI is an exact ideal inC0, thenI = I(CI).
Proof. Let f : C0 → D0 be an exact functor such thatI = {φ ∈ C0 |
f(φ) = 0}. We may assume thatD0 is a skeletally small triangulated
category by taking the full subcategory formed by the objects in the image
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of f . Adding successively new objects arising from the completion of maps
to triangles gives a full triangulated subcategory which needs to be skeletally
small sinceC0 is skeletally small. Now observe that the inclusionI(CI) ⊆ I
is obvious from the definitions. To prove the other inclusion, we use the pair
of adjoint functorsf ∗ : ModC0→ ModD0 and f∗ : ModD0 → ModC0
which have already been introduced. Letφ : C → D be a map inI and
consider the canonical mapµ : HD→ ( f∗B f ∗)(HD). Using our assumption
on C, there exists an objectX in C such that( f∗ B f ∗)(HD) ' HX since
( f∗ B f ∗)(HD) ' Hom( f(−), f(D)). We obtain a mapψ : D → X with
µ = Hψ and consider the corresponding triangle

X[−1] σ−→ V
τ−→ D

ψ−→ X

in C which induces an exact sequence

HD[−1]
µ[−1]−→ HX[−1] −→ HV −→ HD

µ−→ HX

in ModC0. The mapsf ∗(µ) and f ∗(µ[−1]) are isomorphisms, and there-
fore f ∗(HV) = 0 since f ∗ is exact. ThusV ∈ CI by Lemma 3.3 and
Lemma 3.9. Now observe thatHψ B Hφ = µ B Hφ = 0 since the following
diagram is commutative

HC −→ ( f∗ B f ∗)(HC)yHφ

y( f∗B f ∗)(Hφ)

HD
µ−→ ( f∗ B f ∗)(HD)

and( f∗ B f ∗)(Hφ) = f∗(H f(φ)) = 0 by our assumption onφ. Thusψ Bφ = 0
sinceC is compact, and thereforeφ factors throughV which is an object
in CI. We conclude thatI ⊆ I(CI) and this finishes the proof. ut

We are now in a position to give the proof of the theorem which states
the classification of the smashing subcategories of a compactly generated
triangulated categoryC.

Proof of Theorem 4.9.Let B be a smashing subcategory ofC and denote
by f : C → C/B the corresponding quotient functor. It is clear thatIB

is an exact ideal inC0 sinceIB = {φ ∈ C0 | f(φ) = 0}. Suppose now
thatI is an exact ideal inC0. We haveI = I(CI) by the preceding lemma,
and a combination of Lemma 3.10 and Theorem 4.2 then shows thatCI is
a smashing subcategory ofC. Given a smashing subcategoryB, we have
C(IB) = B by Theorem 4.2. Conversely,I(CI) = I holds for every exact
ideal in C0 by Lemma 4.10. Thus the mapsB 7→ IB andI 7→ CI are
mutually inverse, and therefore the proof is complete. ut

We continue with a number of applications of the above theorem. In
fact, we are interested in the interplay between ideals inC0 and localizing
subcategories ofC. The following lemma will be useful.
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Lemma 4.11. Let(Ii )i∈I be a family of exact ideals. Then
⋂

i∈I Ii is exact.

Proof. Suppose that eachIi is given by some exact functorfi : C0→ Di .
The intersectionI =⋂i∈I Ii is again exact sinceI = {φ ∈ C0 | f(φ) = 0}
where f denotes the exact functorC0→∏

i Di , X 7→ ( fi (X))i . ut
Recall that a lattice iscompleteif every subset has a least upper bound

and a greatest lower bound.

Corollary 4.12. Let C be a compactly generated triangulated category
and suppose that(B) holds. Then the smashing subcategories ofC form
a partially ordered set which is a complete lattice.

Proof. Theorem 4.9 translates the assertion of this corollary into a statement
about the lattice of ideals inC0. Clearly, the cardinality of this lattice is
bounded by 2κ whereκ denotes the cardinality of the set of isomorphism
classes of maps inC0. The exact ideals inC0 form a complete lattice by the
preceding lemma, and this finishes the proof. ut

Given a localizing subcategoryB of C, it is not clear that the maps
between fixed objects in the quotient categoryC/B form a set. Therefore
one calls a categorylarge to point out that the maps between fixed objects
are not assumed to form a set.

Lemma 4.13. Let B be a skeletally small subcategory of a large triangu-
lated categoryC. Then there exists a skeletally small triangulated subcate-
gory ofC which containsB.

Proof. We construct inductively a chainC1 ⊆ C2 ⊆ C3 ⊆ . . . of classes
of maps inC and a chainB = B0 ⊆ B1 ⊆ B2 ⊆ . . . of skeletally small
subcategories ofC as follows: Letn ≥ 1 and assume thatBn−1 is already
defined. LetCn be a class of maps inC satisfying the following conditions:
• if φ ∈ Bn−1 andr ∈ Z, thenφ[r ] ∈ Cn;

• if X
φ→ Y

ψ→ Z
χ→ X[1] is a triangle inC with φ ∈ Bn−1, then

ψ,χ ∈ Cn;
• if there is a commutative diagram

X −→ Y −→ Z −→ X[1]yα yβ yα[1]
X′ −→ Y′ −→ Z′ −→ X′[1]

in Bn−1 such that the rows are triangles inC, then there is a mapZ→ Z′
in Cn making the diagram commutative;
• if there is a set of maps inBn−1 satisfying the assumptions of the

octahedral axiom, then there are maps inCn such that the octahedral axiom
holds.
We may assume that the isomorphism classes of maps inCn form a set
sinceBn−1 is skeletally small. Now defineBn to be the smallest additive
subcategory ofC containingCn. It is easily checked thatB∞ = ⋃n∈N Bn
is a skeletally small triangulated subcategory ofC which containsB. ut
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Corollary 4.14. LetC be a compactly generated triangulated category and
suppose that(B) holds. Suppose also thatB is a localizing subcategory and
denote byIB the ideal of maps between compact objects inC which factor
through some object inB. Then there exists a unique smashing subcategory
B ′ of C such thatIB ′ = IB . Moreover,B ′ ⊆ B.

Proof. Let I = IB and let f : C → C/B be the quotient functor corres-
ponding toB. Clearly,I = {φ ∈ C0 | f(φ) = 0} and we claim thatI is an
exact ideal inC0. By Lemma 4.13, there exists a skeletally small triangulated
subcategoryD of C/B containing the image off , and we obtain therefore
an exact functorf ′ : C0→ D, X 7→ f(X) with I = {φ ∈ C0 | f ′(φ) = 0}.
ThusI is an exact ideal, and there exists a unique smashing subcategory
B ′ = CI such thatIB ′ = I by Theorem 4.9. Finallyf(I) = 0 implies
f(B ′) = 0 by Proposition 4.6, and thereforeB ′ ⊆ B. ut

The preceding corollary suggests the following definition.

Definition 4.15. A localizing subcategoryB of a triangulated categoryC
is said to begeneratedby a classI of maps inC if the following holds:

(1) every map inI factors through some object inB;
(2) if B ′ is a localizing subcategory ofC such that every map inI factors

through some object inB ′, thenB ⊆ B ′.

For example,B is generated by a classI = {idXi | i ∈ I } of identity
maps if and only ifB is the smallest localizing subcategory containing
Xi for all i ∈ I . A classical result of Bousfield and Ravenel for the stable
homotopy category says that every class of identity maps of compact objects
generates a localizing subcategory which is smashing [6,23]. This can be
generalized as follows.

Corollary 4.16. LetC be a compactly generated triangulated category and
suppose that(B) holds. Then a localizing subcategoryB of C is smashing
if and only ifB is generated by a class of maps between compact objects
in C. Moreover, given any classI of maps between compact objects inC,
there exists a localizing subcategory ofC which is generated byI.

Proof. It has been shown in Corollary 4.7 that a smashing subcategory is
generated by a class of maps inC0. To prove the converse, suppose thatB is
generated by a classI of maps inC0. We haveI ⊆ IB and we may assume
that I = IB . By Corollary 4.14, there exists a smashing subcategoryB ′
with IB ′ = I andB ′ ⊆ B. On the other hand,B ⊆ B ′ sinceB is generated
by I, and thereforeB is smashing. Suppose now thatI is any class of maps
in C0 and letJ be the intersection of all exact ideals inC0 containingI. It is
an immediate consequence of the preceding corollary thatCJ is a localizing
subcategory which is generated byI. ut
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