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Abstract. We show that any degree at least g monomial in descendant or
tautological classes vanishes on Mg,n when g ≥ 2. This generalizes a result
of Looijenga and proves a version of Getzler’s conjecture. The method we
use is the study of the relative Gromov-Witten invariants of P1 relative to
two points combined with the degeneration formulas of [IP1].

Let Mg,n be the Deligne-Mumford compactification of the moduli space
Mg,n of genus g smooth curves with n (distinct) marked points. (In this
paper we work in the category of analytic orbifolds.) Let Li → Mg,n be
the relative cotangent bundle at the marked point xi ; the fiber of Li over
(Σ, x1, . . . , xn) is the cotangent space to Σ at xi . The first Chern class of
this bundle is denoted ψi = c1(Li) and is sometimes called a (gravitational)
descendant. If π : Mg,n+1 → Mg,n is the map that forgets the last marked
point then κa = π∗(ψa+1

n+1) is called a tautological class (or Mumford-Morita-
Miller class); since κa ∈ H2a(Mg,n) we define its degree to be a, while the
degree of each ψi equals 1.

In [L2] Looijenga proved that in the Chow group A∗(Cn
g ) a product of

descendant classes of degree at least g + n − 1 vanishes, where Cn
g is the

moduli space of smooth genus g curves with n (not necessarily distinct)
points. In particular, in Mg,0 any degree g − 1 monomial in tautological
classes vanishes. However, with the above definition of tautological classes,
this not true anymore in Mg,n, for n ≥ 1 (for example in M2,1 κ1 = ψ1 	= 0).

In this paper, we obtain the following generalization of Looijenga’s
result:

Theorem 0.1. When g ≥ 2, any product of degree at least g (or at least
g − 1 when n = 0) of descendant or tautological classes vanishes when
restricted to H∗(Mg,n,Q).

� partially supported by the N.S.F. and a Sloan Research Fellowship



628 E.-N. Ionel

Note that when g ≤ 1, is has been known for a long time that ψ j and κa
with a ≥ 1 vanish on Mg,n.

The proof of Theorem 0.1 is a simple consequence of the degeneration
formula for relative Gromov-Witten invariants (cf. [IP1]). The idea is to start
with the moduli space Yd,g,n of degree d holomorphic maps from a smooth
genus g surface with n marked points into P1 which have a fixed ramifica-
tion pattern over k marked points in the target P1. In Sect. 1 we describe
the structure of Yd,g,n and that of its compactification Yd,g,n. The relatively
stable map compactification Yd,g,n is closely related to both the space of ad-
missible covers (introduced by Harris-Mumford in [HMu]) and the space of
twisted covers (recently defined by Abramovich-Vistoli in [AV]). Moreover,
it comes with two natural maps st and q that record respectively the domain
and the target of the cover. One of the key ideas of the paper is then to pull
back by q known relations in the cohomology of the target and then push
them forward by st to get relations in the cohomology of the domain. So we
need to know that the space Yd,g,n carries a fundamental class (overQ). The
discussion in Sect. 1 shows this assertion, so in particular st∗Yd,g,n defines
a cycle in Mg,n; the codimension of this cycle is at most g when Yd,g,n is a
2-point ramification cycle (i.e. all but two of the branch points are simple).

We next choose the degree d and a 2-point ramification cycle so that
the stabilization map st : Yd,g,n → Mg,n has finite, nonzero degree. Theo-
rem 2.2 then shows that any product of descendants on the domain is a linear
combination of (generalized) 2-point ramification cycles on Mg,n. There
are three main ingredients in its proof. We first relate the relative cotangent
bundle of the domain to the pull back via q of the relative cotangent bundle
of the target. Next, it is known that when genus is zero then (nontrivial)
products of descendants are Poincare dual to boundary cycles D in M0,k
(see for example [K]). This relates a product of descendants on the domain
to cycles of type st∗q∗D, and the degeneration formula (1.23) completes the
proof of Theorem 2.2.

Corollary 2.5 then implies that the Poincare dual of any degree m product
of descendant and tautological classes can be written as a linear combination
generalized 2-point ramification cycles of codimension m. But the codimen-
sion of a 2-point ramification cycle is at most g; Proposition 2.8 proves that
the cycles of codimension exactly g vanish on Mg,n, thus finishing the proof
of Theorem 0.1. All degenerations used in this paper are in fact linear equiv-
alences, so an algebraic-geometric proof of the degeneration formula (1.23)
would in fact give not only the vanishing in cohomology, but also in the
Chow ring, as in Looijenga’s Theorem.

From Theorem 2.2 we see that the 2-point ramification cycles on Mg,n
generate a subring that contains the descendant and tautological classes.
In fact, we believe that this subring is not larger then the one generated
by descendant, tautological classes and their pullbacks by the attaching
maps of the boundary strata of Mg,n . At least when restricted to Mg,n,
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the arguments in Sect. 7 of [Mu] easily extend to show that any 2-point
ramification constraint can be expressed as a polynomial in descendants
and tautological classes. It is not clear at this moment how to generalize this
argument to the compactification Mg,n .

On the other hand, when the genus is low (g ≤ 5) one can prove that
all 2-point ramification constraints appearing in Theorem 2.2 are in fact
polynomials in only descendant and tautological classes supported on the
boundary. Moreover, the coefficients of this polynomial can be determined
by keeping track of the coefficients in (1.23). Relations expressing products
of descendant classes as polynomials in descendant and tautological classes
supported on the boundary are known as topological recursive relations
(TRR). The g = 0 and g = 1 TRR’s were known classically. In genus 2,
Mumford ([Mu] §8) derived a formula for ψ2

1 and Getzler ([G]) for ψ1ψ2.
In the same recent paper [G], Getzler made the conjecture that for any genus
g there are degree g TRR’s.

When the genus is 3 for example, Theorem 0.1 implies the following
new relations (modulo boundary terms): ψ2

1ψ2 = ψ1ψ2ψ3 = 0 (as Getzler
conjectured), plus the unexpected relation κ1ψ1ψ2 = 0. Unfortunately, if we
keep track of the boundary terms, the number of terms in the TRR increases
very fast as the genus grows. The genus 0 and genus 1 TRR’s have 1 and 2
terms respectively, but the genus 2 TRR in [G] has 18 boundary terms. We
leave the actual TRR formulas in low genus (3 ≤ g ≤ 5) for another paper.

Note that the degree g is the lowest degree in which one could hope that
some monomial in descendants would vanish on Mg,n. The reason is that
the class ψ2 . . . ψnλgλg−1 vanishes on ∂Mg,n (cf [Fa], where λi = ci(E)
are the Chern classes of the Hodge bundle), while Faber’s conjecture ([Fa]),
which also agrees with Virasoro predictions (see [GP]) gives

ψ
a1
1 ψ

a2+1
2 . . . ψan+1

n λgλg−1 = (2g − 3 + n)!
(2a1 − 1)!!(2a2 + 1)!! . . . (2an + 1)!!
· |B2g|
22gg(2g − 1)! 	= 0

when
n∑

i=1
ai = g − 1. On the other hand, for large genus, there are most

likely lower degree (homogeneous) polynomials in descendants which van-
ish on Mg,n .

While this paper was under revision, the author heard a conjecture made
by Graber and Vakil [V]. They essentially conjectured that in the Chow
group any degree m monomial in κ and ψ classes on Mg,n is pulled back
from the strata with at least m+1−g genus 0 components. In the cohomology
ring, this conjecture follows immediately from the results of this paper, and
was added as the final Proposition 2.9. As mentioned above, an algebraic-
geometrical proof of the degeneration formula (1.23) would also give the
result in the Chow group.
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1. The space of relatively stable covers

We start by defining a space of degree d ≥ 1, Euler characteristic χ covers
of P1 with prescribed ramification pattern over several points of P1. The
ramification indices at each point p ∈ P1 will be encoded by an ordered
sequence of positive multiplicities I = (s1, . . . , s�). For any such I , we
define

�(I ) = � deg I =
�∑

i=1

si |I | =
�∏

i=1

si .

We also allow some of the points in the inverse image of p to be marked
points on the domain.

Definition 1.1. Consider I1, . . . , Ik ordered sequences of multiplicities with
deg (I j) = d ≥ 1 for all j, and let N1, . . . , Nk be an ordered partition
of the set {x1, . . . , xn} (where some of the N j ’s might be empty). For all
j = 1, . . . , k assume that 0 ≤ �(N j) ≤ �(I j), where �(N j) denotes the
cardinality of N j . We define

Ξd,χ

 k∏
j=1

bI j (N j )

 (1.1)

to be the infinite dimensional manifold consisting of data ( f,Σ, J, x1,
. . . , xn; p1, . . . , pk) such that:

(i) J is a complex structure on Σ, a smooth two dimensional real manifold
(not necessarily connected) with Euler characteristic χ;

(ii) x1, . . . xn and p1, . . . , pk are distinct points on Σ and respectively P1;
(iii) f : (Σ, J)→ P1 is a degree d holomorphic map, which has moreover

positive degree on each component of Σ;
(iv) for each j = 1, . . . , k, there exist distinct points (xnij )i=�(N j )+1,...,�(I j )

on Σ, distinct from x1, . . . , xn such that

f −1(pj) =
�(I j )∑
i=1

sij xnij

(i.e. f is ramified at xnij of index sij ), where I j = (sij )i=1,...,�(I j ) and
N j = (xnij )i=1,...,�(N j ).

By convention, the space (1.1) is empty when �(N j) > �(I j) or deg I j 	= d.

We say that bI j (N j ) describes the ramification pattern of f over the point
pj ∈ P1. Note that when deg I j > �(I j) the point pj is a branch point of
multiplicity deg I j −�(I j). For example b2,1d−2(x1)means that x1 is a simple
ramification point while b1d (x1, x2)means that x1 and x2 are conjugate points
of the cover.
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In this context, we can think of bI j (N j) as imposing a (deg I j − �(I j)+
�(N j))-dimensional condition on a generic degree d covering map f :
(Σ, x1, . . . , xn) → (P1, p1, . . . , pk). In particular, we usually work with
ramification patterns bI j (N j) that satisfy deg I j − �(I j)+ �(N j ) ≥ 1.

The space (1.1) has several components, depending on the topological
type of the domain Σ; the component corresponding to a fixed Σ will be
denoted by

Ξd,Σ

 k∏
j=1

bI j (N j)


Definition 1.2. The groups Diff(Σ) of diffeomorphisms of Σ and Aut(P1) =
PGL(2,C) of automorphisms of P1 act on Ξd,Σ

(
k∏

j=1
bj(N j)

)
by

(g, h) · ( f,Σ, J, x1, . . . , xn, p1, . . . , pk) = (h ◦ f ◦ g,Σ, g∗ J, g−1(x1),

. . . , g−1(xn), h(p1),. . . , h(pk))

where g ∈ Diff(Σ) and h ∈ Aut(P1). Consider the two quotients

X̂d,Σ

 k∏
j=1

bI j (N j)

 = Ξd,Σ

 k∏
j=1

bI j (N j)

/Diff(Σ)

and

Xd,Σ

 k∏
j=1

bI j (N j)

 = Ξd,Σ

 k∏
j=1

bI j (N j)

/Diff(Σ)× Aut(P1). (1.2)

The latter is called the moduli space of smooth degree d covers of P1 by Σ
with ramification pattern bI j (N j ) at points p j ∈ P1 for j = 1, . . . , k. The
corresponding union of spaces Xd,Σ over different topological types Σ with
the same Euler characteristic χ is denoted by

Xd,χ

 k∏
j=1

bI j (N j)

 .
An element f ∈ Xd,χ is an equivalence class of triples consisting of

a smooth domain C=(Σ, j, x1,. . ., xn), the (marked) target (P1, p1,. . ., pk)
and the covering map. The groups Diff (Σ) and Aut(P1) have induced actions
on the domain and respectively the target. Therefore the space Xd,χ comes
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with two natural projections

M0,k
q←−−− Xd,χ

(
k∏

j=1
bI j (N j)

)
st−−−→ M̃χ,n (1.3)

defined by q( f ) = (P1, p1, . . . , pk) and st( f ) = C, where M̃χ,n is the
moduli space of complex structures with n marked points on a possibly
disconnected curve with Euler characteristic χ. In fact, after choosing some
ordering the m components of Σ we see that

M̃χ,n =
∞⊔

m=1

( ⊔
Mg1,n1 × . . .× Mgm ,nm

)
/Sm

where the second union is over all gi , ni and distributions of the n marked

points on the m components such that
m∑

i=1
(2gi − 2) = χ,

m∑
i=1

ni = n; the

symmetric group Sm acts by permuting the m components.
Restricting to a fiber of q in the fibration (1.3) gives us a corresponding

moduli space of covers with prescribed ramification pattern at k fixed points
in P1, denoted

Xd,Σ

 k∏
j=1

BI j (N j )

 .
The k points are suppressed in the notation for convenience.

Remark 1.3. Since the degree of the covering map f is required to be
positive on each component of Σ and the group Diff(Σ) acts on Ξd,Σ with

finite stabilizers then X̂d,Σ

(
k∏

j=1
bI j (N j)

)
has a natural orbifold structure

of dimension

dim X̂d,Σ

 k∏
j=1

bI j (N j )

 = 2d − χ(Σ)+ k + n

−
k∑

j=1

(deg(I j)− �(I j)+ �(N j))

= 2d − χ(Σ)−
k∑

j=1

(deg(I j)− �(I j))+ k.
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When moreover k ≥ 3 then Aut(P1) also acts with finite stabilizers, so in this

case the quotient Xd,Σ

(
k∏

j=1
bI j (N j)

)
is naturally an orbifold of dimension

dim Xd,Σ

 k∏
j=1

bI j (N j )

 = 2d − χ(Σ)−
k∑

j=1

(deg(I j)− �(I j))+ k − 3.

When k ≤ 2, Aut(P1) has a 3− k dimensional subgroup which acts trivially
and so Xd,Σ still has an orbifold structure, but of dimension 2d − χ(Σ) −

k∑
j=1
(deg(I j)− �(I j)).

Similarly, when 2g − 2 + n ≥ 1, the moduli space Mg,n has an orbifold
structure of dimension 3g − 3 + n (obtained by adding Pyrm structures
as described in [L1]), while when 2g − 2 + n ≤ 0 it has a (nonstandard)
orbifold structure of dimension g. For this paper we take M0,n = M0,3 = pt
when n ≤ 2 and similarly M1,0 = M1,1.

The space Xd,χ also comes with a collection of intrinsic line bundles.
Denote by Lxi → M̃χ,n and L p j → M0,k+r the relative cotangent bundles
at the marked points xi and pj respectively. Next, let Lxi → Xd,g be the
relative cotangent bundle to the (unstabilized) domain C at the marked point
xi and Lp j = q∗L pi → Xd,g be the relative cotangent bundle to the target
P1 at pj . The fiber at f ∈ Xd,g of Lxi is T ∗

xi
C while that of Lp j is T ∗

p j
P1. To

eliminate the possibility of confusion, throughout this paper x will denote
a marked point of the domain and p will denote a marked point of the target.

We next want to compactify Xd,χ so that the maps in the diagram
(1.3) extend continuously and so that st∗Xd,χ defines a cycle in M̃χ,n .
For that, we use the relatively stable maps compactification of the space of
smooth holomorphic maps into P1 relative to the collection of marked points
{p1, . . . , pk} in the (target) P1 (cf. Sect. 6 of [IP2]). This compactification
is similar in spirit to the usual ‘stable maps into P1’ compactification (as
described for example in [P]) but it is much finer. The difference is that not
only the domain can bubble (or equivalently gets rescaled) when for example
two marked points start colliding, but also the target P1 gets rescaled around
pj when a ghost component (i.e. collapsed component) starts forming or
the points pj get too close to each other.

The strata in the usual stable map compactification that have ghost
components not only have the wrong dimension, but more importantly, if
the ghost component is sent to p, the ramification constraint above the
point p becomes undefined. Making the target bubble yields in the limit
a holomorphic map to a degenerate P1, but without any ghost components
over p.
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More precisely, consider a sequence ( fn) of smooth degree d stable holo-
morphic maps to P1 that have a fixed ramification pattern bI (N) above p.
Suppose that their usual stable map limit f has some ghost components C2
over p. Let f1 : C1 → P1 be the restriction of f to the other components
of C and let bS be its ramification pattern above p = p0 (in general S 	= I ).
After rescaling the target P1 around p (and passing to a subsequence) we
obtain in the limit a second nontrivial cover f2 : C2 → P1 that has the
same ramification pattern bS over p∞, and fewer (if any) ghost components
over p. If f2 still has ghost components over p, we continue rescaling.
Otherwise, f2 has the ramification pattern bI (N) over p and all together the
limit map is a degree d cover

f = f1 ∪ f2 : C1 ∪
y1
i =y2

i
i=1,...,�

C2 → P1 ∪
p0=p∞

(P1, p) (1.4)

of a degenerate P1 (with an ordinary double point). The cover f has no ghost
components over p or the nodal point p0 = p∞, and f −1

1 (p0) = ∑
si y1

i ,
f −1
2 (p∞) =∑

si y2
i so f1, f2 have the same ramification pattern bS over the

node p0 = p∞.

To have a good compactification of Xd,χ

(
k∏

j=1
bI j (N j)

)
we must use

the rescaling process around at least all the points pj for j = 1, . . . , k,
so that the limit map still satisfies the ramification constraints bI j (N j ) at
the points pj . However, things become simpler to describe if there are no
other branch points. For the rest of this paper we restrict our attention to the
moduli space of stable maps where all the branch points are marked:

Definition 1.4. Define a moduli space of possibly disconnected smooth
covers

Zd,χ

 k∏
j=1

bI j (N j )

 def= Xd,χ

 k∏
j=1

bI j (N j ) (b2,1d−2)r

 (1.5)

where the last r branch points are simple and ordered, with r given by

r = 2d + χ −
k∑

j=1

(deg I j − �(I j)). (1.6)

When χ = 2 − 2g let

Yd,g

 k∏
j=1

bI j (N j)

 ⊂ Zd,χ

 k∏
j=1

bI j (N j)

 (1.7)

denote the subspace of connected covers.
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Recall from Definition 1.2 that an element f of the space Xd,χ is a triple
consisting of a marked domain, marked target and a degree d covering map
with a specified ramification pattern at marked points in the target. All the
images of marked points in the domain are marked; some of the preimages
of the marked points of the target might also marked. However, there are
possibly many unmarked ramified points mapping to marked or unmarked
points of the target. An element f of the space Zd,χ has the extra property
that all its branch points are marked in the target, and in particular the
ramification pattern of f is completely determined.

Moreover, when k+r ≥ 3 the space Zd,χ

(
k∏

j=1
bI j (N j)

)
has a canonical

orbifold structure of dimension

dim Zd,χ

 k∏
j=1

bI j (N j)

 = 2d − χ −
k∑

j=1

(deg(I j)− �(I j))+ k − 3

= r + k − 3. (1.8)

When k+r ≤ 2 Lemma 1.5 below shows that the space Zd,χ

(
k∏

j=1
bI j (N j )

)
is 0-dimensional.

Lemma 1.5. Consider the space Y = Yd,g

(
k∏

j=1
bI j (N j )

)
and let r be as in

Definition 1.4 while n =
k∑

j=1
�(N j). If 2g+n ≥ 3 then k+ r ≥ 3. Moreover,

if k+r ≤ 2, then Y consists of only one element; the domain of this cover is
an unstable g = 0 curve and the covering is totally ramified at two points.

Proof. When k = 2 relation (1.6) becomes r = 2g − 2 + �(I1) + �(I2).
So r > 0 unless g = 0 and �(I j) = 1. Similarly, when k = 1 then
r = d+2g−2+�(I1) > 1 unless g = 0 and d+�(I1) ≤ 3. Since �(I1) ≤ d
then �(I1) = 1 and d ≤ 2. Finally, when k = 0 then r = d + 2g − 2. Since
there is no d = 1 holomorphic cover of S2 by a smooth T 2 then r > 2 unless
g = 0 and d ≤ 2.

Note that since �(N j) ≤ �(I j) then n ≤ 2 in all above cases. ��
This lemma motivates the following:

Definition 1.6. If k + r ≤ 2, the unique element of the space

Yd,g

(
k∏

j=1
bI j (N j )

)
described in Lemma 1.5 will be called a trivial cover.

The advantage of working with the space Zd,χ is that after ‘marking’
the location of all the branch points in the target (which in particular means
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rescaling any time two of them come close to each other) the limit map has
no ghost components at all and the double points of the domain occur only
above the double points of the target. This is because whenever we start with
a sequence of smooth maps there cannot be any ghost components forming
or double points appearing unless some branch points ran into each other in
the target. Therefore in this case the limit can be thought as an admissible
cover of an element of M0,k+r (as described for example on pp. 180–186
of [HMo]):

Definition 1.7. Assume k+r ≥ 3. The compactification Zd,χ

(
k∏

j=1
bI j (N j)

)
of the space (1.5) consists of stable maps f : C → A such that:

(i) the domain C is a possibly disconnected curve with Euler characteristic
χ and marked points x1, . . . , xn so st(C) ∈ M̃χ,n;

(ii) the target A ∈ M0,k+r is a stable genus 0 curve with marked points
p1, . . . , pk+r ;

(iii) over the smooth part of A the curve C is smooth and f is a degree d
cover which has ramification pattern bIi (Ni) over pi for 1 ≤ i ≤ k,
is simply branched over the rest of pi , k + 1 ≤ i ≤ k + r and has no
other branch points;

(iv) the inverse image of each node of A consists of nodes of C with
matching ramification patterns. More precisely, if A1, A2 are the two
components of A joined at the node q1 = q2 let Ci = f −1(Ai) and
f −1(A1 ∪

q1=q2
A2) = C1 ∪

y1
i =y2

i
i=1,...,�

C2. Then the multiplicity si of f1 = f |C1

at y1
i equals that of f2 = f |C2 at y2

i .

Let Yd,g

(
k∏

j=1
bI j (N j)

)
⊂ Zd,χ

(
k∏

j=1
bI j (N j )

)
denote the correspon-

ding compactification of the space of connected covers (1.7).

An element f of Zd,χ is an equivalence class of triples consisting of the
(marked) domain and target plus the covering map. Thus (1.3) extends to

L p j

��

Lp j

������������
Lxi

������������
Lxi

��
M0,k+r Zd,χ

(
k∏

j=1
bI j (N j)

)
�� q ��st

M̃χ,n

(1.9)

where Lxi → Zd,χ and Lp j → Zd,χ are the relative cotangent bundles to
the (unstabilized) domain C at xi and respectively to the target A at pj . Note
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that in the setup above q∗L p j = Lp j but in general st∗Lxi 	= Lxi . This is
because A is a stable curve, but C might have unstable components, which
get collapsed under the stabilization map.

Moreover, the compactification Yd,g has a natural stratification which
comes from the standard stratification of M0,k+r combined with data of
the covering map which includes the ramification multiplicity at each
node of C and the degree of f on each component of C. Each (open)
stratum of the compactification is a smooth orbifold of (complex) di-
mension dim Yd,g − #{double points of A}. We will show below that the

space Yd,g

(
k∏

j=1
bI j (N j )

)
(as well as its cousin Zd,χ) carries a fundamen-

tal class (over Q) of dimension max(k + r − 3, 0), which we will call
a ramification class. In particular, the image under the stabilization map

st : Yd,g

(
k∏

j=1
bI j (N j)

)
→ Mg,n defines a cycle

st∗Yd,g

 k∏
j=1

bI j (N j )


on Mg,n called a ramification cycle. We can think of this cycle as a condition
on a curve C ∈ Mg,n, in which case it will be called a ramification constraint.
Note that if for some j we have deg(I j) − �(I j) + �(N j) = 0 then the
corresponding ramification cycle vanishes in Mg,n by dimensional reasons.

Moreover, suppose M j ⊂ N j for all j = 1, . . . , k, M = k�
j=1

M j and let

ρ, π denote the projections that forget those marked points which are not
in M:

Yd,g

(
k∏

j=1
bI j (N j)

)
ρ−−−→ Yd,g

(
k∏

j=1
bI j (M j)

)
�stn

�stm

Mg,n
π−−−→ Mg,m

(1.10)

where m = �(M). Then ρ is a finite covering map so the image under π∗ of
a ramification cycle in Mg,n is a multiple of a ramification cycle in Mg,m .

Given a space Zd,χ

(
k∏

j=1
bI j (N j)

)
we can decompose each cover into

connected components. In particular, for each connected component of the
cover we can forget the marking of those points pj , j = k + 1, . . . , k + r
of the target over which that component is unramified. This defines a map
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u which fits in the diagram

Zd,χ

(
k∏

j=1
bI j (N j )

)
u−−−→ ⊔

m

(⊔ m∏
a=1

Yda,ga

(
k∏

j=1
bI j,a (N j,a)

))/
Sm�st

�∏ st

M̃χ,n
=−−−→ ⊔

m

(⊔ m∏
a=1

Mga,na

)/
Sm

(1.11)

where in the upper right hand side of the diagram the second union is over

all (a) degrees da ≥ 1 with
m∑

a=1
da = d; (b) genera ga with

m∑
a=1
(2−2ga) = χ;

(c) partitions (I j,a)
m
a=1 of I j for each j = 1, . . . , k; (d) partitions (N j,a)

m
a=1

of N j for each j = 1, . . . , k and (e) all possible distribution of the r simple
branch points on the connected components. As before, the symmetric group
Sm acts by permuting the m domain components.

We will be mostly interested in those ramification cycles with compli-
cated ramification patterns only over two points.

Definition 1.8. When k = 2 the cycle

st∗Yd,g

(
bI1(N1)bI2(N2)

)
on Mg,n is called a 2-point ramification cycle.

For a 2-point ramification cycle st∗Yd,g

(
bI1(N1)bI2(N2)

)
relation (1.6) be-

comes

r = 2g − 2 + �(I1)+ �(I2).

So r = 0 only for a trivial cover (see Definition 1.6). For a non-trivial cover,
r ≥ 1 and

dim st∗Yd,g

(
bI1(N1)bI2(N2)

) = 2g − 3 + �(I1)+ �(I2) = r − 1. (1.12)

If moreover 2g + n ≥ 3 then the codimension of st∗Yd,g

(
bI1(N1)bI2(N2)

)
in Mg,n (which equals the dimension of the constraint it imposes) is

codim st∗Yd,g

(
bI1(N1)bI2(N2)

) = g + n − �(I1)− �(I2)

= g −
2∑

j=1

(�(I j)− �(N j )). (1.13)

In particular, in genus 0

st∗Yd,0

(
bI1(N1)bI2(N2)

) = 0 if �(I1)+ �(I2) > n ≥ 3.
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More generally, when 2g + n ≥ 3 relation (1.13) combined with the in-
equalities �(I j) ≥ �(N j) and �(I j) ≥ 1 implies that

codim st∗Yd,g

(
bI1(N1)bI2(N2)

) ≤ min(g, g + n − 2). (1.14)

For a trivial cover

st∗Yd,0 (bd(N1)bd(N2)) = 1

d
[M0,n] ∈ H0(M0,n) ∼= Q. (1.15)

This follows from the diagram

Yd,0(bd(x1)bd(x2)b1d (x3))
ρ−−−→ Yd,0(bd(N1)bd(N2))�st1

�st

M0,3
=−−−→ M0,n

after noting that the maps ρ and st1 have degrees d and 1 respectively.

Remark 1.9. Consider the diagram (1.11) when k = 2, and fix both a topo-
logical type for the domains of the covers in the moduli space Zd,χ =
Zd,χ

(
bI1(N1)bI2(N2)

)
as well as a particular distribution of the degree and

of the branching constraints on each component of the domain. This data
picks up a certain component C of the moduli space Zd,χ which is mapped by

u to a quotient by the symmetric group of one of the components
m∏

a=1
Yda,ga

.

As usual, let r be the number (1.6) of simple branch points for Zd,χ and
suppose that, on C, ra of them land on the component of the cover which lies

in Yda,ga
. In particular, r =

m∑
a=1

ra. But Zd,χ has dimension max(r − 1, 0)

while the dimension of
m∏

a=1
Yda,ga

is only
m∑

a=1
max(ra −1, 0). Diagram (1.11)

then implies that st∗(C) = 0 unless the covers in C are trivial on all but
at most one of their connected components (see Definition 1.6). Moreover,
if C is a component of Zd,χ where all but at most one of the connected
components of each cover are trivial, then the restriction of the map u to
C is an isomorphism. Therefore, the cycle st∗Zd,χ is a linear combination
of products of 2-point ramification cycles; in each product, all but at most
one of the factors comes from a trivial cover (see equation (1.15) for the
contribution of a trivial cover).

Next we describe in more detail how the strata of Zd,χ fit together.
We start with the set-theoretical picture. First notice that there is another
(coarser) stratification of Zd,χ that records a stratification of M0,k+r to-
gether with the ramification pattern bS over the nodes of A and the Euler
characteristics of the preimages of the components of A. Take for example
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an (open) stratum where A has only 2 components A1 and A2, joined at the
double point q1 = q2. Assume moreover that the first k1 of the points pi are
on A1, the next k2 = k − k1 on A2, while the remaining r simple branch
points are distributed in all possible ways on the two components. Denote
the closure of this stratum in M0,k+r by DΓ where Γ is the dual graph which
has 2 vertices Ai joined by an edge corresponding to the node q1 = q2 and
tails (half edges) p1, . . . , pk1 on A1 and pk1+1, . . . , pk on A2; sometimes
we denote this stratum by (p1, . . . , pk1 | pk1+1, . . . , pk).

Using the notation from Definition 1.7, given f ∈ Zd,χ we start by
choosing an ordering of the � double points of C that lie above the node
q1 = q2. We then get an ordered sequence S of multiplicities, two smooth
curves C1, C2 and two stable maps fi = f |Ci , fi : Ci → Ai such that

(a) the curve Ci is in M̃χi ,ni+�(S), where its last �(S) marked points are
yi

1, . . . , yi
�;

(b) C = C1 ∪
y1
i =y2

i
i=1,...,�

C2 so in particular χ = χ1+χ2 −2�(S) and n = n1+n2;

(c) f1 ∈Zd,χ1

(
k1∏

j=1
bI j (N j )bS(M1)

)
and f2 ∈Zd,χ2

(
bS(M2)

k∏
j=k1+1

bI j (N j)

)
where Mi = (yi

1, . . . , yi
�).

Consider the attaching map that (pairwise) identifies the last �(S) points of
C1 and C2

ξ : M̃χ1,n1+�(S) × M̃χ2,n2+�(S) → M̃χ,n

given by (C1,C2) �→ C1 ∪
y1
i =y2

i
i=1,...,�

C2. Then all together, the data above gives

a parameterization F of a stratum of Zd,χ . More precisely, F fits in the
diagram

Zd,χ1

(
k1∏

j=1
bI j (N j)bS

)
×Zd,χ2

(
bS

k∏
j=k1+1

bI j (N j )

)
F−−−→ Zd,χ�st×st

�st

M̃χ1,n1+�(S) × M̃χ2,n2+�(S)
ξ−−−→ M̃χ,n

(1.16)

where to define F we used the attaching map ξ to identify the corresponding
points in the inverse image of f1 and f2 over bS (and thus also their images q1
and q2). As before, these points over bS are considered marked and ordered,
even though they do not appear in the notation. The parameterization F
is a local embedding, but not necessarily injective, as the ordering of the
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� = �(S) double points of C is not part of the original data. To keep notation
simple, we will denote by

Zd,χ1

 k1∏
j=1

bI j (N j) bS

 ×
ξ

Zd,χ2

bS

k∏
j=k1+1

bI j (N j )

 (1.17)

the pushforward by F of the fundamental class of the domain of the para-
meterization (1.16).

The inverse image of the stratum DΓ = (p1, . . . , pk1 | pk1+1, . . . , pk)

of M0,k+r under q can then be parameterized by

F :
⊔
χi ,S

Zχ1,d

 k1∏
j=1

bI j (N j ) bS

 × Zχ2,d

bS

k∏
j=k1+1

bI j (N j )


−→ q−1(DΓ) (1.18)

where the union is over all χ1, χ2, ordered sequences S of degree d with
χ = χ1 + χ2 − 2�(S) and all possible distributions of the r simple branch
points. As the target of a sequence of stable maps in Zd,χ degenerates into
an element of DΓ, the limit is an element of q−1(DΓ). Going backwards,
we next need to understand all possible smoothings of elements of q−1(DΓ)
into elements of Zd,χ.

Recall that an element of Zd,χ is a triple consisting of domain, target
and a covering map. We start by looking at smoothings of the domain and
of the target. In the setup above, the normal direction to DΓ inside M0,k+r
is parameterized by the line bundle L∗

q1
⊗L∗

q2
whose fiber at A1 ∪

q1=q2
A2 is

Tq1 A1 ⊗ Tq2 A2. Similarly, the normal bundle of the �-nodal stratum in M̃χ,n

is
�⊕

i=1
L∗

y1
i
⊗ L∗

y2
i
, whose fiber at C = C1 ∪

y1
i =y2

i
i=1,...,�

C2 is
�⊕

i=1
Ty1

i
C1 ⊗ Ty2

i
C2.

However, for a fixed smoothing Aλ of A not all smoothings Cµ of C give
rise to a stable map f : Cµ → Aλ; here λ ∈ Tq1 A1 ⊗ Tq2 A2 and µ =
(µ1, . . . , µ�) with µi ∈ Ty1

i
C1 ⊗ Ty2

i
C2. This can be best seen in local

coordinates zm,i at yi
m and wi at qi . In these coordinates

wi = fi(zm,i) = am,i · (zi)
sm + higher order (1.19)

while the smoothings of C and A are given by zm,1·zm,2 = µm , m = 1, . . . , �
and w1 ·w2 = λ. Therefore f : C → A can be extended to a smooth cover
fµ,λ : Cµ → Aλ only when

λ = am,1 am,2 µ
sm
m for all m = 1, . . . , �

to highest order. For example this fact is proven (in a more general setting)
using PDE methods in [IP2]. It was also stated in the original Harris-
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Mumford paper [HMu]. Moreover, in the algebraic-geometrical setting, the
deformation argument of Caporaso and Harris [CH] could be extended to
this case. After all, in [CH] they have studied stable maps into P2 with
prescribed contact constraints along a line L , and the case above is simply
a dimensional reduction where the pair (P2, L) gets replaced by (P1, p).

Summarizing, given a pair ( f1, f2) in the domain of the parameterization
(1.16), equation (1.19) defines a canonical section

σq : Zd,χ1(. . . bS)×Zd,χ2(bS . . . )

−→
�⊕

i=1

(
Lxni

⊗ Lyni

)si ⊗ (
L∗

q1
⊗ L∗

q2

)
(1.20)

given by σq = (a1, . . . , a�) with am = a1
m · a2

m . For a fixed smoothing
of the target λ ∈ L∗

q1
⊗ L∗

q2
the possible smoothings of the domain µ =

(µ1, . . . , µ�) correspond to solutions of the equations

λ = a1µ
s1
1 = · · · = a�µ

s�
� . (1.21)

There are |S| = ∏
si many such solutions, differing by roots of unity.

This describes the local model in the normal direction to a stratum param-
eterized by Zd,χ1(. . . bS)×Zd,χ2(bS . . . ) inside the compactification Zd,χ .
Moreover, this shows that as cycles, the pullback of DΓ is

q∗(DΓ) =
⊔
χi ,S

|S|
�(S)! Zχ1,d

 k1∏
j=1

bI j (N j ) bS


×
ξ

Zχ2,d

bS

k∏
j=k1+1

bI j (N j )

 (1.22)

where the union is over all χ1, χ2, ordered sequences S of degree d with
χ = χ1 + χ2 − 2�(S) and all possible distributions of the r simple branch
points. The 1

�(S)! weight comes from the fact that the ordering of the �(S)

double points of C is not part of the original data of an element in Zd,χ .

Remark 1.10. Note that the solution space to the equations (1.21) has several
branches intersecting at the origin (which corresponds to the boundary
stratum) so the compactification Zd,χ described in Definition 1.7 is not in
general an orbifold. However, it can be desingularized by including as part
of the data besides the triple f : C → A a choice of roots of unity for the
leading term section (1.20). This desingularized compactification becomes
then a version of the space of twisted covers defined in [AV]. In any event, we
will only use the fact that (each component of) Zd,χ carries a fundamental
class (with rational coefficients) and so st∗[Zd,χ] defines a class on M̃χ,n .

As a particular case of (1.22) we get the following
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Theorem 1.11. Let q : Zd,χ

(
k∏

j=1
bI j (N j )

)
→ M0,k+r be as in (1.9) and

let DΓ be the codimension one stratum of M0,k+r where the first k1 points
are on a bubble, the next k2 = k − k1 points are on a different bubble and
the remaining r points are distributed all possible ways. Then as cycles in
Mχ,n

st∗q∗(DΓ) =
∑ |S|

�(S)! st∗

 Zχ1,d

 k1∏
j=1

bI j (N j) bS


×
ξ

Zχ2,d

bS

k∏
j=k1+1

bI j (N j)

  (1.23)

where the sum is over all χ1, χ2, ordered sequences S of degree d with
χ = χ1 + χ2 − 2�(S) and all possible distributions of the r simple branch
points.

When q is restricted to the space Yd,g of connected covers then we get

cycles in Mg,n and in the sum above we keep only those configurations of
domains C1, C2 whose image under the attaching map ξ is connected.

Note that the equal sign in (1.23) is only an equality in homology,
because the proof in [IP2] (which is done in the symplectic category) only
shows that the compactification Zχ,n is diffeomorphic to the local model
(1.21). However, an algebraic-geometrical proof of the local model (1.21)
would give the equality in the Chow ring.

Example 1.12. Suppose k = 2, k1 = k2 = 1 and 2g + n ≥ 3. The right
hand side of (1.23), when restricted to connected genus g covers, involves
terms of type

Zχ1,d
(
bI1(N1) bS

) ×
ξ

Zχ2,d
(
bS bI2(N2)

)
. (1.24)

The pushforward by st of such term, using relation (1.17) and diagram
(1.16), is equal to

ξ∗
(
st∗Zχ1,d

(
bI1(N1) bS

) × st∗Zχ2,d
(
bS bI2(N2)

))
.

By Remark 1.9, each component of st∗Zχi ,d is a multiple of a product of
2-point ramification cycles; the factors in the product correspond to (un-
stabilized) domain components. Moreover, the discussion following Defi-
nition 1.8 implies that on all genus 0 components the 2-point ramification
cycles either vanish or else are multiples of the fundamental class. Suppose
we fix a topological type of the (unstabilized) domain, and a fixed distribu-
tion of the ramification patterns on each component of the domain. Then the
pushforward by st of the corresponding component of (1.24) equals a ratio-
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nal multiple of products of 2-point ramification cycles on the components
of the stabilized domain. More precisely, suppose the stabilized domain
consists of components of genus ga with na special points labeled by Ma,
all glued together according to the dual graph via the attaching map

ξ :
h∏

a=1

Mga,na → Mg,n. (1.25)

By convention, when the dual graph has no edges (i.e. stabilized domain is
smooth), the attaching map is the identity. Then the component of the right
hand side of (1.23) corresponding to the attaching map (1.25) is a linear
combination (with rational coefficients) of terms of type

ξ∗

(
h∏

a=1

st∗Yda,ga

(
bIa1(Na1) bIa2(Na2)

)) ∈ H∗(Mg,n) (1.26)

where Na1 � Na2 = Ma. Note that the term (1.26) vanishes unless on all
genus 0 components �(Na1) = �(Ia1) and �(Na2) = �(Ia2) (see relation
(1.13)). Moreover, since all terms in (1.23) are codimension one, then only
terms of type (1.26) for which the domain has at most one node can appear
(with nonzero coefficient) in the right hand side of (1.23).

Definition 1.13. Consider ramification cycles Ca =st∗Yda,ga

(
ka∏

i=1
bIai (Nai)

)
on Mga,na where 2ga + na ≥ 3. For each attaching map ξ as in (1.25) the

cycle ξ∗
(

h∏
a=1

Ca

)
is called a generalized ramification cycle on Mg,n. In

particular, such a cycle for which ka = 2 for all a = 1, . . . , h will be called
a generalized 2-point ramification cycle.

With this definition, Theorem 1.11 implies in particular that when DΓ is
a codimension one boundary stratum of M0,r+k , then st∗q∗DΓ is a linear
combination of codimension one generalized 2-point ramification cycles.

Definition 1.14. Let Θ be a linear combination of generalized ramification
cycles on Mg,n. Those terms of Θ which are constructed using the attaching
map of a boundary stratum of Mg,n will be called lower order terms. The
sum of the other terms forms the symbol of Θ. By convention, if all the
terms are lower order, we take the symbol to be 0.

Remark 1.15. For M ⊂ {x1, . . . , xn} consider the map π : Mg,n → Mg,m
that forgets the marked points which are not in M. Suppose C is a generalized
ramification cycle on Mg,n. Since the attaching maps commute with the
forgetful maps, diagram (1.10) implies that π∗C is a (rational) multiple of
a generalized ramification cycle on Mg,m . Note that even if C is nonzero,
π∗C might vanish (by dimensional reasons for example).
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Remark 1.16. Theorem 1.23 generalizes to higher codimensional boundary
strata in M0,k+r . In particular, let D denote the codimension m−1 boundary
strata of M0,2+r consisting of linear chains of m P1’s such that p1 is on the
first bubble, p2 on the last bubble and the other r points pj , j = 3, . . . , r+2
are distributed in some fixed way on the m components. Then

q−1(D) ⊂ Zd,χ(bI1(N1)bI2(N2))

is similarly parameterized by a disjoint union of spaces

Zd,χ1(bI1(N1)bS1)×
ξ1

Zd,χ2(bS1bS2)×
ξ2

. . . ×
ξm−1

Zd,χm (bSm−1bI2(N2)) (1.27)

where each attaching map ξi identifies the corresponding points over bSi for
i = 1, . . . ,m − 1. So st∗q∗(D) can also be written as a linear combination
of generalized 2-point ramification cycles of codimension m − 1.

Next, fix a moduli space Yd,g

(
k∏

j=1
bI j (N j )

)
such that 2g + n ≥ 3 (so

in particular k + r ≥ 3 by Lemma 1.5). Assume in what follows that the
point xi has prescribed ramification index si and image pj . We can consider

the ‘universal family’ Yd,g

(
b1d(x0)

k∏
j=1

bI j (N j)

)
obtained by adding extra

marked points x0 to the domain and p0 to the target, together with the
diagram

Mg,n+1
stn+1←−−− Yd,g

(
b1d (x0)

k∏
j=1

bI j (N j )

)
qn+1−−−→ M0,k+r+1

xi

��π1

�π0 p j

��π2

Mg,n
stn←−−− Yd,g

(
k∏

j=1
bI j (N j )

)
qn−−−→ M0,k+r

(1.28)

where π0 is the map that forgets both the marked point x0 on the domain and
its image p0 on the target. The images of the canonical sections xi , pj are
the strata D0,i ⊂ Mg,n+1 and respectively D0, j ⊂ M0,r+1 where x0 and xi
and respectively p0 and pj are the only marked points on a genus 0 bubble.

The covers in the preimage q−1
n+1(D0, j) ⊂ Yd,g

(
b1d (x0)

k∏
j=1

bI j (N j )

)
have a very special form. Because on the genus 0 bubble containing p0
and pj there are no other branch points, then over this component the
cover consists of �(I j) spheres totally ramified above pj and p∞ (p∞ is the
double point of the target where the bubble is attached). Only the sphere
that contains x0 is nontrivial, the rest are trivial covers (see Definition 1.6).
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When the point x0 is on the same bubble as the point xi we denote the
corresponding canonical section by

σi : Yd,g

 k∏
j=1

bI j (N j)

→ Yd,g

b1d(x0)

k∏
j=1

bI j (N j )

 (1.29)

and let Σi denote its image. Then stn+1 ◦σi = xi ◦stn and qn+1 ◦σi = pj ◦qn
with the notations of (1.28). In particular, this discussion shows that

π∗
1 stn∗Yd,g

 k∏
j=1

bI j (N j )

 = stn+1∗Yd,g

b1d(x0)

k∏
j=1

bI j (N j )

 . (1.30)

Moreover,

Lemma 1.17. Consider the space Yd,g = Yd,g

(
k∏

j=1
bI j (N j)

)
where all the

preimages of all the marked points of the target (including all branch points)
are marked. Suppose moreover that xi is a marked point in the domain with
image p j and ramification index si . If Lxi → Mg,n and L p j → M0,r are the
relative cotangent bundles to the domain and respectively the target then
over Yd,g we have

st∗Lsi
xi

= q∗L p j . (1.31)

Proof. Since Lxi = x∗
i O(−D0,i) and L p j = p∗

jO(−D0,i) then

st∗n Lxi = st∗n x∗
i O(−D0,i) = σ∗

i st∗n+1O(−D0,i)

q∗
n L p j = q∗

n p∗
jO(−D0, j) = σ∗

i q∗
n+1O(−D0, j).

But all the points over pj are marked so all the covers in q−1
n+1(D0, j) have

domains with x0 and at least one of the other points over pj on the same
bubble. Moreover, the only instance where x0 and xi are the only two marked
points on a genus 0 bubble are those covers in Σi . Then (1.23) implies that

q∗
n+1O(−D0, j) = O(−siΣi) along Σi

where si is the ramification index of point xi . The condition that all the
preimages of all the marked points of the target (including all branch points)
are marked implies in particular that all the domains of the covers are stable
curves and therefore

st∗n+1O(−D0,i) = O(−Σi) along Σi.

Combining the last four displayed equations we then get (1.31). ��
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2. Polynomials in descendants

In this section we describe how to express a product ofψi = c1(Lxi ) classes
on Mg,n (or more precisely the intersection product of their Poincare duals)
as a linear combination of generalized ramification cycles.

The basic idea is simple: to begin with we choose a 2-point ramification
cycle Yd,g so that the map st : Yd,g → Mg,n is of finite (nonzero) degree.
Then we use equation (1.31) to relate st∗Lxi → Yd,g to the pull back q∗L p j

of the relative cotangent bundle L p j to the target P1 at pj , the image of xi
under the covering map. But we know that the Poincare dual of c1(L p j ) is
a codimension 1 boundary cycle DΓ in M0,r . Then Theorem 1.11 implies
that the Poincare dual of ψi is linear combination of generalized 2-point
ramification cycles on Mg,n.

In what follows the descendant on the target c1(L p j ) will be denoted by
ψ̃ j to avoid confusing it with the descendant on the domain ψ j = c1(Lx j ).
Also, in the rest of the paper, we will often add or forget marked points.
Note to begin with that if π0 : Mg,n+1 → Mg,n is the map that forgets the
marked point x0 then

ψi = π∗
0ψi + Di,0 (2.32)

where Di,0 is the boundary strata in Mg,n+1 consisting of domains where
xi and x0 are the only points on a g = 0 bubble. Similarly, for tautological
classes we have

κi = π∗
0κi + ψi

0. (2.33)

Moreover, if ξ is the attaching map (1.25) of a boundary stratum of Mg,n
then the pullback by ξ of the relative cotangent bundle to xi is the relative
cotangent bundle to xi , so

ξ∗ψ1 = ψ1. (2.34)

Example 2.1. Let us illustrate the procedure described at the beginning
of this section on the following example: when g = 1 it is known that
ψ1 = δ0/12 in M1,1, where δ0 is the boundary stratum which corresponds
to a nodal sphere. To see this, we start by writing any element in M1,1 as
a degree 2 cover of P1 branched at 4 points such that the marked point x1
is one of the branch points. As long as the branch points are not ordered,
such a cover is unique. Fix now an ordering of the other 3 branch points and
let Y2,1(b2(x1)b2b2b2) denote the corresponding space of covers. Then the
stabilization map st : Y2,1(b2(x1)b2b2b2)→ M1,1 is a degree 3! cover so

st∗
(
st∗ψ1 ∩ [Y2,1(b2(x1)b2b2b2) ]

) = 6ψ1 ∩ [M1,1]. (2.35)
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Next, relation (1.31) gives 2st∗ψ1 = q∗ψ̃1 on Y2,1. On the other hand, on
M0,4 ψ̃1 is Poincare dual to the boundary stratum DΓ which consists of
p1, p2 on one bubble and p3, p4 on the other so

2Y2,1(b2(ψ1)b2b2b2) = q∗(DΓ). (2.36)

Now use the degeneration formula (1.23). Since the degree is 2 and total
genus is 1, the only term that can appear is S = (1, 1) with genus 0 on both
sides, i.e.

st∗q∗(DΓ) = 1

2
st∗
(

Y2,0(b2(x1)b2b1,1)×
ξ

Y2,0(b1,1b2b2)

)
.

But there is only one genus 0 degree two map, and under the stabilization
map the component on the right gets collapsed to a point, while the one on
the left is mapped to 2δ0 = [pt] ∈ H0(M1,1). Therefore

st∗q∗(DΓ) = δ0. (2.37)

Combining (2.35), (2.36) and (2.37) gives the relation ψ1 = δ0/12.

More generally,

Theorem 2.2. Assume g ≥ 1, n ≥ 1 and n+g ≥ 3. Then the Poincare dual
of any degree m monomial in descendant classes on Mg,n can be written
as a linear combination of generalized 2-point ramification cycles on Mg,n,
coming from a cover of degree at most d = g + n − 1. The nonzero terms
appearing in the symbol are codimension m cycles of type

st∗Ya,g(bI1(N1)bI2(N2))

where a ≤ d, N1 � N2 = {x1, . . . , xn} and �(I1)+ �(I2) = g + n − m.

Note that �(N j) ≤ �(I j) so adding we get n ≤ g + n − m. In particular,
the Theorem implies that when m ≥ g + 1 or m ≥ g + n − 1 there are no
nonzero terms in the symbol, and so the degree m monomial in descendant
classes vanishes when restricted to Mg,n.

Moreover, a closer analysis of the proof of Theorem 2.2 shows that the
terms appearing in the symbol have either �(I1) = 1 or �(I2) = 1. But since
this is irrelevant for this paper, we leave the details to the reader.

Proof of Theorem 2.2. Consider the ramification cycle (as defined in Sect. 1)

Yd,g,n = Yd,g(b1d(N)bd)

where N = (x1, x2, . . . , xn). Under the assumptions of the Theorem, when
d = g + n − 1 Lemma 2.3 below shows that st : Yd,g,n → Mg,n is map of
finite, nonzero degree deg(st) 	= 0.
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Now let ψm1
1 . . . ψmn

n be a monomial on Mg,n of degree m =∑
m j ≥ 0.

The Poincare dual of st∗
(
ψ

m1
1 . . . ψmn

n

)
in Yd,g(b1d(N) bd ) is

st∗
(
ψ

m1
1 . . . ψmn

n

) ∩ [Yd,g(b1d(N) bd )]
so the Poincare dual of ψm1

1 . . . ψmn
n is given by

PD
(
ψ

m1
1 . . . ψmn

n

) = (deg(st))−1 (2.38)

·st∗
(
st∗
(
ψ

m1
1 . . . ψmn

n

) ∩ [Yd,g(b1d(N) bd )]
)
.

The theorem then follows by induction on the degree m of the monomial
ψ

m1
1 . . . ψmn

n . The case m = 0 comes directly from relation (2.38). Now
suppose the result is true for m − 1, so we need to prove it for m. Consider
a monomial ψm1

1 . . . ψmn
n of degree m ≥ 1. Without loss of generality we

may assume that m1 ≥ 1. Then relation (2.38) implies

PD
(
ψ

m1
1 . . . ψmn

n

) = (deg(st))−1 ψ1 (2.39)

∩ st∗
(

st∗
(
ψ

m1−1
1 . . . ψmn

n

) ∩ [Yd,g(b1d(N) bd )]
)
.

By induction, st∗
(

st∗(ψm1−1
1 . . . ψmn

n ) ∩ [Yd,g(b1d (N) bd )]
)

= (deg st) ·
ψ

m1−1
1 . . . ψmn

n is a linear combination of generalized 2-point ramification
cycles. Thus the cycle (2.39) is a linear combination of terms of type

ψ1 ∩ ξ∗
(

m∏
a=1

st∗Yda,ga

(
bIa1(Na1)bIa2(Na2)

))

= ξ∗

(
ξ∗ψ1 ∩

m∏
a=1

st∗Yda,ga

(
bIa1(Na1)bIa2(Na2)

))
.

Using relation (2.34) and applying Lemma 2.4 to the factor containing the
marked point x1 then completes the inductive step. ��
Lemma 2.3. Let d = g + n − 1. Then the degree of the map

st : Yd,g(b1d(N)bd)→ Mg,n

is nonzero as long as g ≥ 1, n ≥ 1 and g + n ≥ 3. Moreover, the degree of
st vanishes when g = 0 or n = 0 or g = n = 1.

Proof. We begin by noting that when d = g + n − 1, dimension count
shows that the domain and target of the map st have the same dimension.
The vanishing part of the lemma follows immediately after noting that when
g = 0 the domain of st is empty (since �(N) > d), while when n = 0 or
g = n = 1 the fiber of st is one dimensional.

For d = g ≥ 2 Mumford proved in §7 of [Mu] that the degree of the
stabilization map st : Yd,g(bd)→ Mg,0 is nonzero. In particular, this implies
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that the degree of the map st : Yd,g(bdb1d (x1))→ Mg,1 is nonzero as well,
because once we write a general Riemann surface as an element of Yd,g(bd),
adding a general marked point x1 gives an element of Yd,g(bdb1d(x1)). This
proves the lemma in the case n = 1 and g ≥ 2.

The case when n ≥ 2 and g ≥ 1 follows by methods similar to those of
Sect. 5 of [HMu]. More precisely, fix a general (smooth) genus g Riemann
surface C with n marked points xi , i = 1, . . . , n. It is enough to show that
we can find g points y0, . . . , yg−1 on C such that

n∑
i=1

xi +
g−1∑
i=1

yi ∼ dy0.

Then as long as g ≥ 1 and n ≥ 2, a dimension count shows that the
points y0, . . . , yg−1 are distinct and distinct from the points x1, . . . , xn , thus
producing the required degree d cover. To show existence, let J(C) be the
Jacobian of C, u : C → J(C) be the Abel-Jacobi map, and Cd = Symd(C).
Consider the maps v : C → J(C) and w : Cg−1 → J(C) given by

v(y) = u(dy) = du(y) and w(D) = u(D) + u(
n∑

i=1
xi). We need to show

that the intersection between the image of v and that of w is nonempty. But
the image of w is a translate of the Θ divisor and moreover v∗w∗[Cg−1] =
v∗([Θ]) = dg 	= 0. ��

Lemma 2.4. Fix a 2-point ramification cycle st∗Yd,g(bI (N)bJ (M)) on

Mg,n where N � M = {x1, . . . , xn}. Then the cycle

ψ1 ∩ st∗Yd,g(bI (N)bJ (M)) = st∗
(
st∗ψ1 ∩ Yd,g(bI (N)bJ (M))

)
can be written as a linear combination of generalized 2-point ramification
cycles; its symbol consists of terms of type

st∗Ya,g(bI1(N1)bJ1(M1))

where a ≤ d, N1 � M1 = {x1, . . . , xn} and �(I1)+�(J1) = �(I )+�(J)−1.

Proof. The result is trivially true when r = 0, i.e. Yd,g(bI (N)bJ (M)) is
zero dimensional (see Lemma 1.5). So we may assume r > 0.

The first step is to replace st∗ψ1 by a multiple of q∗ψ̃1, where ψ̃1 =
c1(L p1) is the first Chern class of the relative cotangent bundle to the
target P1 at p1. For that, we temporarily mark the location of the other
�(I ) − �(N) points in the preimage of p1, �(J) − �(M) points in the
preimage of p2 and each of the d − 1 points in the preimage of each of the
other r = 2g − 2 + n − �(I )− �(J) simple branch points. All together, we
add b = r(d − 2) + 2g − 2 extra marked points, getting a corresponding
2-point cycle Yd,g,n+b in which all the preimages of all the branch points
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are marked. Consider the diagram

Mg,n+b

��
πb

Yd,g,n+b
�� stb

��
ρb

��

q

���������

Mg,n Yd,g,n
�� st ��q

M0,2+r

(2.40)

where Yd,g,n = Yd,g(bI (N) bJ (M)). Then ρb : Yd,g,n+b → Yd,g,n has finite
nonzero degree deg ρb given by (�(I )−�(N))!·(�(J)−�(M))!·(d−1)!r 	= 0,
so

(deg ρb) · st∗ψ1 = ρb∗ ρ∗b st∗ψ1 = ρb∗ st∗b π
∗
bψ1.

Moreover, the stabilization map stb : Yd,g,n+b → Mg,n+b does not collapse
any components of the domain. Therefore, the relative cotangent bundle
Lx1 → Yd,g,n+b to the domain is equal to the pullback by stb of Lx1 →
Mg,n+b. Using formula (2.32) repeatedly and pulling back by stb gives then
the relation

st∗b π
∗
bψ1 = c1(Lx1)− st∗b D1

on Yd,g,n+b, where D1 =∑
L

D1,L and D1,L is the boundary strata in Mg,n+b

where the marked point x1 and a subset L of the b new marked points are
the only points on a genus 0 bubble.

Now on Yd,g,n+b all the preimages of the marked points of the target are
marked so the relation (1.31) implies that Ls1

x1
= q∗L p1 so

c1(Lx1) =
1

s1
· q∗(c1(L p1)) =

1

s1
· q∗(ψ̃1).

Combining the last three displayed equations we get

ψ1 ∩ Yd,g,n(bI (x1)bJ(M)) = 1

s1 deg(ρb)
· st∗q∗(ψ̃1)

− 1

deg(ρb)
· ρb∗st∗b D1. (2.41)

Next, we use the fact that in M0,2+r we have r · ψ̃1 = D where D =
r+2∑
j=3

DΓ j

and DΓ j is the boundary strata that has the marked point p1 on a bubble and
p2, pj on a different bubble, while the remaining r − 1 branch points are
distributed all possible ways. Note that in D the strata which has a bubble
containing p1 and precisely r1 of the points pj with j ≥ 3 appears with
coefficient r2 = r − r1. Applying the degeneration formula (1.23) for each
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j and summing then gives

st∗q∗(ψ̃1) = 1

r
st∗q∗(D) (2.42)

=
∑ |S|

�(S)! ·
r2

r
· st∗

(
Zd,χ1(bI (N)bS)×

ξ
Zd,χ2(bSbJ(M))

)
where the sum is over all χ1, χ2, r1, r2, ordered sequences S such that
deg S = d, χ1 +χ2 − 2�(S) = 2g − 2, r1 + r2 = r, over all possible identi-
fications that lead to a connected domain and over all possible distributions
of the r simple branch points such that r1 are on the left component. In any
case, this shows that the first term on the right hand side of equation (2.41)
is a linear combination of generalized 2-point ramification cycles.

On the other hand ρb∗st∗b D1 is also equal to a linear combination of
similar generalized 2-point ramification cycles. This is because stb doesn’t
collapse any components, so st∗b D1 consists of stable maps in Yd,g,n+b whose
domain is an element of D1. In particular, the target of these maps must be
a bubble tree with p1 on one side and p2 on the other.

Using (2.41) and (2.42) we then conclude that on st∗Yd,g(bI (N)bJ (M)),
ψ1 can be written as a linear combination of the generalized 2-point ram-
ification classes. The statement about the structure of the symbol follows
immediately by a dimension count. ��

Because of Remark 1.15, an immediate consequence of Theorem 2.2 is
the following:

Corollary 2.5. Assume g ≥ 2, g + n ≥ 3 and let Πk : Mg,n → Mg,n−k be
a forgetful map. Then the Poincare dual of the class Πk∗

(
ψ

m1
1 . . . ψmn

n

)
on

Mg,n−k can be written as linear combination of generalized 2-point ramifi-

cation cycles on Mg,n−k whose symbol consists of codimension
n∑

j=1
m j − k

terms of type

st∗Ya,g(bI1(N1)bI2(N2))

where a ≤ d, N1 �N2 = {x1, . . . , xn−k} and �(I1)+�(I2) = g+n−
n∑

j=1
m j.

Note that since �(N j) ≤ �(I j) then in particular the symbol vanishes when
n∑

j=1
m j > g + k.

Remark 2.6. If one is interested not only in the shape of the symbol, but in
the actual formula then it is convenient to start with a cover of degree as
small as possible, so there would be fewer terms to consider. In this context,
one can use the fact that any complex structure can be written as a degree
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d =
[

g+1
2

]
+ 1 cover of P1 to adapt the proof of Theorem 2.2 to get the

following:

Proposition 2.7. Any polynomial in descendant classes on Mg,n can be
written as a linear combination of generalized ramification constraints

coming from covers of degree at most
[

g+1
2

]
+ 1.

For example, when g is odd, one would start with the space Yg,d

(
n∏

i=1
b1d (xi)

)
for which the degree of the stabilization map is nonzero, while when g is

even, one would use instead the space Yg,d

(
b2,1d−2(x1)

n∏
i=2

b1d(xi)

)
. Then

one uses the fact that in M0,r+n the Poincare dual of any monomial in des-
cendant classes ψ̃ j can be expressed as a linear combination of boundary
strata corresponding to linear chains of P1’s. In the end, after using Re-
mark 1.16, one would get generalized ramification cycles with at most two
complicated branch points on each component of the target (but not techni-
cally 2-point ramification cycles, because of the presence of constraints of
type b1d (xi)).

2.1. Proof of Theorem 0.1

Suppose we start with a degree m monomial in ψ and κ classes on Mg,n.
Then using the formulas (2.32) and (2.33) we can express any such poly-
nomial as a linear combination of terms of type

Πk∗
(
ψ

m1
1 . . . ψ

mn+k
n+k

)
for some k’s, where Πk : Mg,n+k → Mg,n is the map that forgets the last k

marked points, and
n+k∑
j=1

m j = m + k. For example,

κaκb = Π2∗
(
ψa+1

1 ψb+1
2

)− Π1∗
(
ψa+b+1

1

)
.

It is therefore enough to prove Theorem 0.1 for classes of type

Πk∗
(
ψ

m1
1 . . . ψ

mn+k
n+k

) ∈ Hm−k(Mg,n) (2.43)

where m =
n+k∑
i=1

mi ≥ g + k. We actually prove that the Poincare dual of

such class can be written as a linear combination of generalized ramification
cycles with vanishing symbol on Mg,n, i.e. all terms are coming from the
boundary ∂Mg,n.
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Corollary 2.5, with n replaced by n + k, implies that the Poincare dual
of the class (2.43) can be written as a linear combination of generalized
ramification cycles whose symbol consists of terms of type

Ya,g(bI1(N1)bI2(N2))

with a ≤ d, N1 � N2 = {x1, . . . , xn} and �(I1) + �(I2) = g + n + k − m.
When m ≥ g + k we have

n = �(N1)+ �(N2) ≤ �(I1)+ �(I2) = g + n + k − m ≤ n,

so all terms in the symbol vanish unless �(N j) = �(I j) for j = 1, 2 and
m = g + k.

When n ≤ 1 there are no such terms since �(I j) ≥ 1, so the symbol
vanishes. Moreover, note that when n = 0 even for m = g + k − 1 a simi-
lar string of inequalities shows that the symbol also vanishes, implying
Looijenga’s result [L2] (in cohomology).

When n ≥ 2, Proposition 2.8 below completes the proof of Theorem 0.1.
��

Proposition 2.8. Suppose g ≥ 1 and �(Ii) = �(Ni) for i = 1, 2. Then the
codimension g cycle on Mg,n

C = st∗Yd,g(bI1(N1)bI2(N2))

can be written as a linear combination of generalized ramification cycles

of type ξ∗(
h∏

a=1
π∗

aCa) where ξ :
h∏

a=1
Mga,na → Mg,n is the attaching map

of some boundary strata of Mg,n, πa : Mga,na → Mga,ma is a forgetful
map (this includes the identity map in the case ma = na) and Ca is a 2-
point ramification cycle on Mga,ma coming from a degree da ≤ d cover. In
particular, the symbol of this linear combination vanishes.

Proof. We prove the statement by induction on both the degree d and the
number of marked points n. It is enough to prove that the cycle C can be

written as a linear combination of cycles of type ξ∗(
h∏

a=1
π∗

aCa) which either

come from the boundary or else have only one component (i.e. h = 1) and
for this component either d1 < d or m1 < n1 = n.

Assume x1 ∈ N1 and let N ′
1 = N1 \ {x1}. Consider the cycle

Yd,g(BI1(N
′
1)B1d(x1)B2,1d−2 BI2(N2))

which corresponds to fixing the location of the marked points p1, . . . , p4
on the target (while the remaining r − 1 simple branch points of the
target are allowed to move). But on M0,3+r the divisor corresponding
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to fixing the location of p1, . . . , p4 is linearly equivalent to the bound-
ary stratum D = (p1 p2|p3 p4) where p1, p2 are on a bubble and p3, p4
are on a different bubble. For simplicity we denote q∗(p1 p2|p3 p4) =
Yd,g(bI1(N

′
1)b1d (x1) | b2,1d−2bI2(N2)). Since the stratum (p1 p2|p3 p4) is

linearly equivalent to the stratum (p1 p3|p2 p4) then

st∗Yd,g(bI1(N
′
1)b1d (x1) | b2,1d−2bI2(N2))

= st∗Yd,g(bI1(N
′
1)b2,1d−2 | b1d(x1)bI2(N2)) (2.44)

as codimension g cycles in Mg,n. But the degeneration formula (1.23)
implies that both sides of (2.44) are linear combination of pushforwards by
st of terms of type

Zd,χ1(bI1(N
′
1)b1d(x1)bS)×

ξ
Zd,χ2(bSb2,1d−2bI2(N2)) and (2.45)

Zd,χ1(bI1(N
′
1)b2,1d−2bS)×

ξ
Zd,χ2(bSb1d(x1)bI2(N2)) (2.46)

respectively. We need to show that the only term not lying in the boundary
of Mg,n and with d1 = d, m1 = n1 is the term C; moreover C should
appear in (2.44) with nonzero coefficient. Let C ′ be such a term appearing
after stabilization in the symbol of (2.45) or (2.46). This means that before
stabilization we have a degree d genus g component on one side and all the
components on the other side are genus 0 totally ramified over the node of
the target; otherwise collapsing them would produce a double point of the
(stabilized) domain. Moreover, before stabilization we can have at most one
marked point on each genus 0 component (since when g ≥ 1 the strata of
Mg,n having stable g = 0 components are in the boundary).

Suppose first that C ′ appears in the symbol of (2.45). We have two cases
to consider:

(a) the genus g component is on the left. But since �(I2) = �(N2) the genus
0 component on the right which contains the simple ramification point
cannot be totally ramified over p4 so will have to contain two of the
marked points in N2, contradiction.

(b) the genus g component is on the right. Since �(I1) = �(N ′
1) + 1 there

can be at most one genus 0 component which is not totally ramified
over p1 (otherwise two of the points in N ′

1 would be on the same genus
0 component). But one of the genus 0 components must also contain x1,
so the only possibility is if all genus 0 components were totally ramified
over p1 and moreover x1 would be on the only genus 0 component
not containing a point from N ′

1. After pushing forward by st∗ this term
contributes

s1st∗(bI1(N1)bI2(N2)) = s1C

to the right hand side of (2.44), where s1 is the multiplicity of x1 in I1.
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Next suppose that C ′ appears in the symbol of (2.46). We also have two
cases to consider:

(a) the genus g component is on the left. Since �(I2) = �(N2) then each
genus 0 component on the right has at least one of the marked points
of N2. But one of these genus 0 components must also have x1, contra-
diction.

(b) the genus g component is on the right. Since �(I1) = �(N ′
1)+1 there can

be at most one genus 0 component which is not totally ramified over p1,
and this component can have at most 2 points over p1 (otherwise two
of the points in N ′

1 would land on the same genus 0 component). This
genus 0 component must contain the simple ramification point and only
one of the points xa ∈ N ′

1, the other point over p1 being unmarked.
The order of ramification over the node of the target of this component
must then be equal to the sum of the multiplicities of the points over p1.
Denote by Î the sequence obtained from I1 by erasing the multiplicity
corresponding to x1 and adding it to the multiplicity corresponding
to xa. After collapsing the genus 0 components this term is equal to
a multiple of

st∗Yd,g

(
bÎ (N

′
1)b1d(x1)bI2(N2)

)
where �( Î ) = �(N ′

1). By relation (1.30) this term is equal to
π∗

1 st∗Yd,g

(
bÎ (N

′
1)bI2(N2)

)
where π1 is the map that forgets the marked

point x1. Therefore it is pulled back from a moduli space with fewer
marked points.

This concludes the inductive step and with it the proof of Proposition 2.8.
��

We finish this paper by proving the following result, which was recently
conjectured by Graber and Vakil [V] for the Chow group.

Proposition 2.9. The Poincare dual of any degree m monomial in descen-
dant or tautological classes on Mg,n can be written as a linear combination
of classes coming from the strata of Mg,n which have at least m + 1 − g
genus 0 components.

Proof. The result is already known in genus 0 or 1, so we prove it for
g ≥ 2. As in the proof of Theorem 0.1, Corollary 2.5 implies that the
Poincare dual of any degree m monomial in ψ and κ classes can be written
as a linear combination of codimension m generalized 2-point ramification

cycles. Each such generalized 2-point ramification cycle is of type ξ∗(
m∏

a=1
Ca)

where ξ :
m∏

a=1
Mga,ma → Mg,n is the attaching map of some stratum of Mg,n

(including possibly the top stratum) and each Ca is a 2-point ramification
cycle of type Ca = st∗Yda,ga

(bIa1(Na1)bIa2(Na2)). The codimension of such
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Ca is at most ga by relation (1.14). But by induction (on the dimension of
the moduli space Mg,n) we can prove that any 2-point ramification cycle
C = st∗Yd,g(bI1(N1)bI2(N2)) can be written as a linear combination of
generalized 2-point ramification cycles of type

ξ∗

(
m∏

a=1

Ca

)
, where Ca = π∗

a st∗Yda,ga
(bIa1(Na1)bIa2(Na2)) (2.47)

where moreover codim Ca ≤ ga − 1 on all ga ≥ 1 components. This is
because either C already has codimension less then g or else Proposition 2.8
shows that it can be written as a linear combination of generalized ramifi-
cation cycles of type (2.47) coming from a boundary strata (in which case
each Ca comes from a lower dimensional moduli space).

Therefore the Poincare dual of any degree m monomial in κ and ψ
classes can be written as a linear combination of codimension m generalized
ramification cycles of type (2.47) for which codim Ca ≤ ga−1 on all ga ≥ 1
components. Fix such a codimension m generalized ramification cycle. We
only need to show that the domain of the corresponding attaching map ξ
has at least m + 1 − g genus 0 components. Let k be the number of double
points and � be the number of genus 0 components of the corresponding
stratum of Mg,n. Then

m = k +
m∑

a=1

codim Ca ≤ k +
∑
ga≥1

(ga − 1)

= k +
m∑

a=1

(ga − 1)+ � = g − 1 + �

where the last equality follows from the Euler characteristic relation 2−2g =
m∑

a=1
(2 − 2ga)− 2k. Therefore � ≥ m + 1 − g. ��
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