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1. Introduction

Synge’s theorem is one of the few known obstructions for positive sectional
curvature. It states that an orientable even dimensional compact Riemannian
manifold of positive sectional curvature is simply connected, and that an odd
dimensional compact Riemannian manifold of positive sectional curvature
is orientable. As an immediate consequence of this theorem, RPn × RPm

does not admit a metric with positive sectional curvature. This fact in turn
is often quoted as an indication for the generalized

Hopf conjecture. Sn×Sm does not admit a Riemannian metric with positive
sectional curvature.

Hopf originally only asked this in the case n = m = 2. This conjecture
is one among very few that indicate what kind of general obstructions one
should expect for positive sectional curvature. The reason for this dilemma
is closely related to the lack of examples. In fact in dimensions above 24
the known examples are diffeomorphic to locally rank 1 symmetric spaces,
i.e., quotients of Sn, CPn, HPn and CaP2 by a finite group.

The first Riemannian manifolds that are not diffeomorphic to locally
rank one symmetric spaces were found by Berger [1961]. He found two
homogeneous examples; one in dimension 7 and one in dimension 13. Wal-
lach [1972] and Bérard Bergery [1976] classified all simply connected
homogeneous spaces with positive curvature in even and odd dimensions.

Eschenburg [1984] found the first examples of manifolds with positive
sectional curvature that are not homotopically equivalent to homogeneous
spaces. He found one such example in dimension six and an infinite family
in dimension seven. Later on Bazaikin [1996] found a similar family in
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dimension 13. The examples of Bazaikin and Eschenburg are so called
biquotients, i.e., they are given as orbit spaces G//H where G is a compact
Lie group and H is a closed subgroup of G×G for which the natural action
of H on G is free.

The first indication that one might find new examples among biquotients
was given much earlier by Gromoll und Meyer [1974]. They found a seven
dimensional biquotient (Σ, g) which is homeomorphic but not diffeomor-
phic to S7. The sectional curvature of (Σ, g) is only nonnegative, but there
is a point p ∈ Σ such that all planes at p have positive curvature. Gromoll
und Meyer [1974] mention the following conjecture without saying that
they support it.

Deformation conjecture. Suppose(M, g) is a complete Riemannian mani-
fold with nonnegative sectional curvature and suppose that there is one point
p ∈ M such that all planes based at p have positive curvature. Then M
admits a metric with positive sectional curvature.

There are several indications for this conjecture: Aubin [1970] and
Ehrlich [1976] proved the analogous statements for scalar and Ricci cur-
vature. Strake [1986] showed that the statement is true provided that the
points at which zero curvature planes occur are contained in a convex set.
According to Perelman’s [1994] proof of the soul conjecture, a noncom-
pact manifold M satisfying the hypothesis of the deformation conjecture
is diffeomorphic to Rn. In particular, M admits then a metric with positive
sectional curvature.

However, the following theorem provides counterexamples.

Theorem 1. Each of the following compact manifolds admits a Riemannian
metric g with positive sectional curvature on an open and dense set of points.

a) The projective tangent bundles PRTRPn, PCTCPn and PHTHPn of
RP

n, CPn andHPn, respectively. The corresponding dimensions are
2n− 1, 4n− 2 and8n− 4.

b) The biquotientSO(2)\SO(2n+ 1)/ SO(2n − 1) of dimension4n − 2,
n ≥ 2.

c) The(4n− 1)–dimensional manifold M4n−1
kl := U(n+ 1)/Hkl with

Hkl :=

 zk

zl

A

 ∣∣∣ z ∈ S1, A ∈ U(n− 1)

 ,

provided that(k, l ) is a pair of integers satisfying k· l < 0, n ≥ 2.
d) The biquotientSp(1)\Sp(n+1)/Sp(1) ·Sp(n−1) of dimension8n−4.

Furthermore, PKTKP2/S3, i.e., a quotient of PKTKP2 by a free action of the
symmetric groupS3, admits a metric with nonnegative sectional curvature
and positive curvature at one point,K ∈ {C,H, Ca}.
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The odd dimensional manifold PRTRP2n+1 is not orientable. Thus, by
Synge’s theorem, it does not admit a metric with positive sectional curva-
ture. Furthermore, the fundamental groups of the even dimensional mani-
folds PCTCP2/S3, PHTHP2/S3 and PCaTCaP2/S3 are isomorphic to S3.
Again by Synge’s theorem, these manifolds do not admit metrics of positive
sectional curvature either. This proves

Corollary 2. The deformation conjecture is wrong in dimensions4n + 1,
n ≥ 1, as well as in dimensions6, 12 and24.

Since the projective tangent bundles of RP3 and RP7 are trivial, we
deduce

Corollary 3. The manifoldsRP3 × RP2 andRP7 × RP6 as well as their
universal coversS3 × S2 andS7 × S6 admit metrics with positive sectional
curvature on open dense sets.

One could ask whether the deformation conjecture is true for simply
connected manifolds. Although this problem remains unsettled, it is clear
that a positive answer would provide a counterexample to the generalized
Hopf conjecture.

The manifold M4n−1
kl in the series c) is simply connected. Using the

Gysin sequence of the fibration S1 → M4n−1
kl → PCTCPn, it is easy to

check that the order of H2n
(
M4n−1

kl ,Z
)

is given by

qk,l = kn + kn−1l + · · · + kln−1 + l n = kn+1−ln+1

k−l

provided that k and l are relatively prime and qk,l 
= 0; the case of qk,l = 0
can only occur for (n, k, l ) = (2m+ 1, 1,−1) and H4m+2

(
M8m+3

1,−1 ,Z
) ∼= Z.

Corollary 4. There are infinitely many different homotopy types of simply
connected(4n−1)–dimensional manifolds with positive sectional curvature
on open dense sets, n≥ 3.

Remark 5.It is worth noticing that in low dimensions, i.e., for small n, the
above examples a) – d) are already well known, although we endow these
examples with different metrics.

1. Wallach [1972] showed that the flags, i.e., the projective tangent bun-
dles of CP2, HP2 and CaP2, admit homogeneous metrics with positive
sectional curvature.

2. For n = 2 the series in c) represents the well-known Aloff Wallach series.
Aloff and Wallach [1975] showed that M7

kl admits a homogeneous metric
of positive sectional curvature unless k · l · (k+ l ) = 0. Notice that our
construction provides a metric on M7

1,−1
∼= M7

10 with positive sectional
curvature on an open dense set. The integral cohomology ring of this
manifold coincides with the integral cohomology ring of S2 × S5.
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3. Eschenburg [1984] showed that for n = 2 the biquotient in d) admits
a metric with nonnegative sectional curvature and positive curvature at
one point. This manifold has the same cohomology ring as PHTHP2 but
a different homotopy type.

4. Petersen and Wilhelm [1999] constructed a metric with positive sectional
curvature on an open dense set on the unit tangent bundle T1

S
4 of S4

and on a six dimensional quotient of T1
S

4. Notice that T1
S

4 is the
universal cover of PRTRP4. The six dimensional quotient corresponds
to the example b) with n = 2.

For many of the examples in the theorem no obstruction to positive cur-
vature applies and it would be interesting to know whether in some of the
cases one can deform the metric into a metric with positive sectional curva-
ture everywhere. Of course, it would also be interesting to find topological
constraints explaining the existence of zero curvature planes. In either case
a description of the points at which zero curvature planes occur might be
a first step:

Proposition 6. Consider the unit tangent bundle T1
S

n of Sn as a submani-
fold of TRn+1 = Rn+1×Rn+1, n ≥ 3. The metric g of PRTRPn of Theorem 1
induces naturally a metriĉg on its universal cover T1Sn. With respect to this
metric the points in T1Sn at which zero curvature planes occur are given by{

(p, v) ∈ T1
S

n
∣∣ p⊥ e1

}
∪

{
(p, v) ∈ T1

S
n
∣∣ v ⊥ e1

}
where e1 is the first vector of the canonical basis ofRn+1. Moreover, if
O(n) ⊂ O(n+1) denotes the subgroup that fixes e1, then the natural action
of O(n) on T1

S
n is isometric with respect tôg.

Both sets in the above proposition are diffeomorphic to Sn−1 ×Sn−1 and
they intersect in a copy of T1

S
n−1 endowed with a homogeneous metric.

For a description of the zero curvatures of PCTCPn and PHTHPn, see
Proposition 6.4.

Open problems. The class of examples of manifolds with nonnegative
sectional curvature is huge compared to the known examples of manifolds
with positive sectional curvature. It is the author’s belief that it might be
fruitful to have a class in between these two well studied classes, one that
is more rigid than nonnegative sectional curvature but has a larger class
of examples than the known examples of manifolds with positive sectional
curvature.

By Theorem 1 the class of manifolds with positive sectional curvature
is strictly smaller than the class of manifolds with positive sectional curva-
ture on an open dense set. Since a manifold in the latter class has a finite
fundamental group, this class in turn is strictly contained in the class of
manifolds of nonnegative sectional curvature. But for simply connected
manifolds the problem whether these inclusions are strict remains open. In
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the even dimensional case a good candidate for an obstruction might be the
Euler-characteristic. Recall that one of the oldest conjectures in Rieman-
nian geometry, the ’other’ Hopf conjecture, asks whether a compact even
dimensional Riemannian manifold M with sec(M) > 0 (resp. sec(M) ≥ 0)
fulfills χ(M) > 0 (resp. χ(M) ≥ 0). This imposes the following

Question 1.Does a compact even dimensional manifold M with positive
sectional curvature on an open dense set satisfy χ(M) > 0?

A positive answer would imply that an upper curvature bound of such
a manifold yields via the Chern–Gauss–Bonnet formula a lower volume
bound which in turn gives in presence of an upper diameter bound a lower
bound for the injectivity radius. One could consider this as a substitute for
Klingenberg’s injectivity radius estimate, and in particular it would follow
that these manifolds are subject to the same type of finiteness results as
manifolds of positive sectional curvature.

Notice that an affirmative answer would also imply that in contrast to
S

3×S2 the manifold S3×S3 does not admit a metric with positive sectional
curvature on an open dense set.

One might hope that a study of the zero curvature planes in the examples
yields some idea towards obstructions for positive sectional curvature, or
possibly for constructing manifolds with positive sectional curvature.

Question 2.Suppose (Mn, g) is a compact Riemannian manifold with non-
negative sectional curvature and suppose there is an open set U ⊂ M
diffeomorphic to Rn such that Mn \ U has positive sectional curvature.
Does M admit a metric with positive sectional curvature?

In most examples of Theorem 1 the hypothesis of this question is not
satisfied. However, the Gromoll Meyer sphere (Σ7, g) satisfies the hypoth-
esis.

According to Hamilton [1982], the deformation conjecture is true in
dimension three and our counterexamples start in dimension 5. So it is
natural to ask.

Question 3.Is the deformation conjecture true in dimension four?

Petersen and Wilhelm [1999] introduced the concept of quasi-positive sec-
tional curvature. A complete Riemannian manifold is said to have quasi-
positive sectional curvature if it has nonnegative sectional curvature and
positive curvature at one point. They proposed that this class of manifolds
deserves more attention. One of the problems they suggest to consider is

Question 4.Does a Riemannian manifold of quasi-positive sectional cur-
vature admit a metric with positive sectional curvature on an open dense
set?

Wilhelm [1999] showed that for the Gromoll Meyer sphere (Σ7, g) the
answer is yes. However, for the manifolds PKTKP2/S3

(
K ∈ {C,H, Ca})

the answer is not known.
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It is my pleasure to thank Wolfgang Ziller for many useful discussions
and comments. I am also indebted to the referee for suggesting several
improvements.

2. Organization of the paper

The main idea for the proof of Theorem 1 relies on a basic observation
which assigns to every biquotient a natural enlarged class of metrics. In this
enlarged class of metrics one has a better chance to realize given curvature
properties. We explain this basic observation in Sect. 3. In Sect. 4 we recall
the concept of a normal biquotient and show that every zero curvature plane
in such a manifold comes from a totally geodesic immersed flat.

Next we present the general idea for the proof of the theorem in the
simplest and perhaps most interesting special case PRTRP3 ∼= RP3 ×RP2,
see Sect. 5. In particular, we will give a precise description of the zero
curvature planes in this example.

In the proof of Theorem 1 a) we can make use of the large isometry
groups and totally geodesic submanifolds to give a precise description of
the points at which zero curvature planes occur, see Proposition 6.4. In fact
by combing this rich structure with only one minor calculation we reduce the
problem to the case of n = 3, i.e., it then remains to be seen that PRTRP3,
PCTCP3 and PHTHP3 have positive curvature on open dense sets. This in
turn also requires only a fairly small amount of calculation. Once part a) is
established part b) and c) follow easily, see Sect. 7 and Sect. 8.

However, this sort of dimension reduction does not work for the series d)
of the theorem. Here the isometry group is too small to be of any use. Instead
we use a different technique, which might be useful in other contexts as well.
We introduce a simple method which produces a polynomial equation for
the points at which zero curvature planes occur. In general it is by no means
clear that the equation is not satisfied at every point, but verifying for a point
that the equation is not satisfied turns out to be a problem of linear algebra,
see Sect. 9 for details.

Finally, we describe the construction for PKTKP3/S3 (K ∈ {C,H, Ca})
in Sect. 10. It is worth noticing that in these examples there are open subsets
of points at which zero curvature planes occur.

3. Normalized description of biquotients

Let G be a compact Lie group and H ⊂ G × G a compact subgroup such
that the natural action of H on G given by

(h1, h2) � g := h1gh−1
2 for all (h1, h2) ∈ H, g ∈ G

is effectively free, i.e., an element h ∈ H has a fix point if and only if h is
in the kernel of the action. The orbit space of this action G//H has then the



Positive sectional curvature almost everywhere 123

natural structure of a manifold. Any left invariant metric g on G for which
the above action is isometric induces a metric on G//H, i.e., the metric
that turns the projection pr : G → G//H into a Riemannian submersion. Of
course, the same is valid for any right invariant metric on G invariant under
the action of H.

So there are two natural families of metrics on the quotient. Of course
one can consider instead the cone of metrics generated by these two families.
However, it is more general and easier to make use of the following

Proposition 3.1. LetH ⊂ G×G be as above, and let�G ⊂ G×G denote
the diagonal subgroup. Then the action of�G× H on G× G given by

(a, h) � (c, d) = a · (c, d) · h−1 for a ∈ �G, h ∈ H

is effectively free, the biquotient�G\G×G/H is canonically diffeomorphic
to G//H, and the class of left invariantAdH–invariant metrics onG× G in-
duces a cone of metrics on the quotient containing the two original families.

At first sight one might think that one can iterate this process and get
even a larger class of metrics on the biquotient. However, iterating does not
increase the family of natural metrics any further.

Proof. The canonical diffeomorphism is induced by the map

G× G → G, (a, b) �→ a−1b.

Consider all left invariant AdH–invariant product metrics g1 × g2 on G×G.
Furthermore, we consider the subfamily of metrics for which gi is a biin-
variant metric on G, i = 1, 2. This first family of metrics induces a cone
of metrics on G//H and it is straightforward to check that the two subcones
corresponding to the two subfamilies coincide with the two orginal families
of metrics on G//H. ��

4. Zero curvature planes in normal biquotients

A normal biquotient (M, g) is a Riemannian manifold that can be described
as a biquotient G//H such that the metric g on M is induced by a biinvariant
metric 〈·, ·〉 on G. Since a Lie group endowed with a biinvariant metric has
nonnegative curvature and since by O’Neill’s formula Riemannian submer-
sions are curvature nondecreasing, it follows that every normal biquotient
has nonnegative sectional curvature. The main objective of this section is to
prove

Proposition 4.1. Let M be a normal biquotient. Suppose thatσ ⊂ TpM is
a plane satisfyingsec(σ) = 0. Then the mapexp : σ → M, v �→ exp(v) is
a totally geodesic isometric immersion.
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Proof. By the previous section we may restrict ourselves to biquotients that
are given in the normalized description:

(B, g) := �G
∖(

G× G, 〈·, ·〉)/H

where 〈·, ·〉 denotes a biinvariant metric on G×G. Recall that by definition
of g the projection pr : (G × G, 〈·, ·〉) → (B, g) is a Riemannian submer-
sion. Let σ ⊂ TB be a plane with curvature 0, and let σ̂ ⊂ T(a,b)G × G be
a horizontal lift of σ . Since Riemannian submersions are curvature nonde-
creasing and

(
G× G, 〈·, ·〉) has nonnegative sectional curvature, it follows

that sec(σ̂) = 0. Taking into account that
(
G×G, 〈·, ·〉) is a symmetric space,

we see that expσ̂ : σ̂ → G×G is a totally geodesic immersion. Furthermore
we can find left invariant vectorfields X, Y such that for all p ∈ exp(σ̂) the
vectors X|p, Y|p form a basis of the tangent space of exp(σ̂). As T(a,b) exp(σ̂)
is perpendicular to the orbit of H, Tp exp(σ̂) is perpendicular to the orbit of
H for all p ∈ exp(σ̂).

On the other hand we can also find right invariant vectorfields V, W
such that V|p, W|p form a basis of Tp exp(σ̂) for all p ∈ exp(σ̂). This
implies similarly that exp(σ̂) intersects the orbits of �G perpendicularly
everywhere.

In summary we can say that the totally geodesic immersed flat exp(σ̂)
is everywhere horizontal. Since horizontal geodesics in G × G project to
geodesics in B, we deduce that exp|σ : σ → M is a totally geodesic immer-
sion. ��
Remark 4.2.The proof shows that every horizontal zero curvature plane in(
G×G, 〈·, ·〉) projects to a zero curvature plane of the quotient. A fact which

also follows from the curvature formula for biquotients in [Eschenburg,
1984].

All the Riemannian manifolds of Theorem 1 are normal biquotients.
This fact is not immediately clear from the construction used in the proof
of Theorem 1, but it will follow from

Lemma 4.3. Let G be a compact Lie group,K ⊂ G a Lie subgroup and
consider the corresponding Lie algebrask ⊂ g. Furthermore let P: g→ k
denote the orthogonal projection with respect to a biinvariant metric〈·, ·〉.
We define a new left invariant metric by

g(v,w) = 〈
(1− P)v, (1− P)w

〉+ t
〈
Pv, Pw

〉
for all v,w ∈ g

and for some t∈ (0, 1). Suppose that for a compact subgroupH ⊂ G×K ⊂
G × G the natural action ofH on G is effectively free. Then(G, g)//H is
a normal biquotient.

Proof of Lemma 4.3.Let 〈·, ·〉 also denote the induced biinvariant metric on
K ⊂ (

G, 〈·, ·〉). Choose a λ ∈ (0,∞) such that t = λ
1+λ

. It is straightforward
to check that (G, g)//H is isometric to the normal biquotient

H
∖(

G, 〈·, ·〉)× (K, λ〈·, ·〉)/{(a, a) | a ∈ K
}
,

compare [Wilking, 1999] for a similar argument. ��
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The left invariant metric considered in Lemma 4.3 has particularly good
curvature properties if k ⊂ g is a symmetric pair.

Lemma 4.4 (Eschenburg, 1984, Satz 231). Letk ⊂ g be a symmetric pair
of compact type, and letK ⊂ G denote the corresponding groups. We endow
G with a left invariant metric g metric which is obtained from a biinvariant
metric〈·, ·〉 by

g(v,w) := 〈
(1− P)v,w

〉+ t
〈
Pv,w

〉
for all v,w ∈ g,

where t∈ (0, 1) and P: g→ k is the orthogonal projection. Then two linear
independent vectorsv,w ∈ g span a zero curvature plane with respect to g
if and only if

[v,w] = [
(1− P)v, (1− P)w

] = [
Pv, Pw

] = 0.

In the special case of a rank 1 symmetric pairk ⊂ g the vectors(1 − P)v
and(1− P)w are linear dependent.

5. The construction for PRTRP3

The main purpose of this section is to give a simple description of the
construction of the metric g in the special case PRTRP3 ∼= RP3 × RP2.
Moreover we will describe the zero curvature planes of

(
PRTRP3, g

)
. We

will use this special case later in order to describe the points at which zero
curvature planes exist on

(
PRTRPn, g

)
.

Consider, Sp(1) = S3 ⊂ H with the biinvariant metric of constant
curvature 1, and let 〈·, ·〉 denote the induced product metric on S3 × S3. We
define a new left invariant metric g on S3 × S3 by means of

g(x, y) = 〈
x, y

〉− 1
2

〈
Px, Py

〉
for all x, y ∈ sp(1)⊕ sp(1),

where P : sp(1)⊕ sp(1) →�sp(1) denotes the orthogonal projection onto
the diagonal subalgebra �sp(1) ⊂ sp(1)⊕ sp(1).

It is an immediate consequence of Lemma 4.4 that a plane σ ⊂
sp(1) ⊕ sp(1) has curvature zero with respect to g if and only if σ is
of the form

σ = span
R

{
(v, 0), (0, v)

}
for some v ∈ sp(1)− {0}.

Clearly, right–translations by elements of the subgroup

H := {
(abeiϕ, aeiϕ) | ϕ ∈ R, b ∈ {1,−1}, a ∈ {1, j }} ⊂ S3 × S3

are isometries. The action of S3 × S3 on S3 induces a transitive action
on the projective tangentbundle of RP3 ∼= S3/ ± 1. Since H occurs as
isotropy group of the latter action, the quotient S3 × S3/H is diffeomorphic
to PRTRP3 ∼= RP3 × RP2.
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Following our normalized description we can define a metric g on
PRTRP3 as the orbit metric on the space

�(S3 × S3)
∖((

S3 × S3, g
)× (S3 × S3, g

))/{1} × H.

The group D := {
(a, a) | a ∈ Sp(1)

}
acts on the first factor of

(
S3×S3, g

)2

by right multiplication. This action is isometric and induces an isometric
action on

(
PRTRP3, g

)
. The element (−1,−1) is in the kernel of the latter

action.
Notice that each orbit of the group �(S3 × S3) intersects a point of

the form
(
ā, b̄, 1, 1

)
in
(
S3
)4

. In order to describe the horizontal vectors

at
(
ā, b̄, 1, 1

)
, it is useful to consider the self adjoint endomorphism G of

sp(1)⊕ sp(1) that is characterized by〈
x, Gy

〉 = g(x, y) for all x, y ∈ sp(1)⊕ sp(1).

The horizontal vectors at
(
ā, b̄, 1, 1

)
are then given by{(

G−1
(−Ada v,−Adb w

)
, G−1

(
v,w

)) ∣∣∣ v,w ∈ sp(1), 〈v +w, i 〉 = 0
}
.

Suppose there exists a horizontal zero curvature plane σ at
(
ā, b̄, 1, 1

)
.

Using the characterization of zero curvature planes, we see that there is
a basis

b1 :=
(

G−1
(−Ada v, 0

)
, G−1

(
v, 0

))
,

b2 :=
(

G−1
(
0,−Adb v

)
, G−1

(
0, v

))
of σ such that Ada v and Adb v are linear dependent. Furthermore v ⊥ i . The
fact that Ada v and Adb v are linear dependent leaves only two possibilities:
Case 1.Ada v = Adb v. This implies that v = Adāb v. Thus the imaginary
part of āband of v are linear dependent. Because of v ⊥ i we deduce āb⊥ i .
Case 2.Ada v = −Adb v. This implies v = −Adāb v. In other words āb
anti-commutes with v and hence āb⊥ 1.

In summary we can say that an orbit at which a zero curvature plane
occurs can be represented by a point in the following set{

(a, b, 1, 1) | ab̄⊥ i or ab̄⊥ 1
}
.

For a point in PRTRP3 represented by (a, b, 1, 1) with ab̄⊥ i and ab̄ 
= ±1
there is precisely one horizontal plane with zero curvature corresponding
to Case 1. The analogous statement holds if ab̄ ⊥ 1 but ab̄ 
= ±i . If
ab̄ ∈ {±1,±i }, then there is an one parameter family of zero curvature
planes.
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We define S1 (respectively Si ) as the set of orbits in PRTRP3 represented
by (a, b, 1, 1) with ab̄⊥ 1 (respectively ab̄⊥ i ). The submanifolds S1 and
Si are both diffeomorphic to RP2 × RP2.

The amount of the zero curvature planes at each point in S1 ∪ Si is
enforced by the isometric action of D/± (1, 1) ∼= SO(3) on

(
PRTRP3, g

)
.

The induced actions of SO(3) on S1 and Si are of cohomogeneity one.
They are equivalent to the diagonal action of SO(3) on RP2 × RP2; in
particular there is one two dimensional singular orbit and one exceptional
three dimensional orbit. The set of points in S1 (resp. Si ) at which an one
parameter family of zero curvature planes occurs is given by the singular
orbit of the SO(3)-action. The singular orbits in S1 and Si are diffeomorphic
to RP2. The three dimensional exceptional orbit is given by the intersection
S1 ∩ Si and it is diffeomorphic to SO(3)/(Z/2Z)2.

Modulo isometries S1 (resp. Si ) contains precisely one totally geodesic
torus. The torus is vertizontal with respect to the projection S1 → S1/ SO(3).

The natural actions of SO(3) on the Grassmannians of S1 and Si induce
cohomogeneity one actions on the two families of zero curvature planes.
The principal isotropy groups of these actions are of order 2 whereas the
isotropy groups of the exceptional orbits are isomorphic to

(
Z/2Z

)2
.

6. The series PRTRPn, PCTCPn and PHTHPn

In this section we construct the metrics on PRTRPn, PCTCPn

and PHTHPn. Before we characterize the points at which zero curvature
planes occur we will show

Proposition 6.1. The manifolds PRTRPn, PCTCPn and PHTHPn endowed
with the metric of Theorem 1 admit an isometric cohomogeneity two action
of O(n), U(n) andSp(1) · Sp(n) respectively. The natural inclusions in the
following diagram are totally geodesic embeddings.

PRTRP2 ⊂ PCTCP2 ⊂ PHTHP2

∩ ∩ ∩
...

...
...

∩ ∩ ∩
PRTRPn ⊂ PCTCPn ⊂ PHTHPn.

Proof of Proposition 6.1.Consider the symmetric pair Sp(1) · Sp(n) ⊂
Sp(n+1) of Lie groups and the corresponding pair sp(1)⊕sp(n) ⊂ sp(n+1)
of Lie algebras. Let 〈·, ·〉 denote the biinvariant metric on Sp(n+ 1) given
by

〈X, Y〉 = −Real
(
trace(XY)

)
for all X, Y ∈ sp(n+ 1),

P : sp(n+ 1) → sp(1)⊕ sp(n) the orthogonal projection, and let

(1− P) : sp(n+ 1) → (
sp(1)⊕ sp(n)

)⊥
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be the projection onto the orthogonal complement of sp(1) ⊕ sp(n). We
define a new left invariant metric g on Sp(n+ 1) by

g(X, Y) = 〈
(1− P)X, (1− P)Y

〉+ 1
2

〈
PX, PY

〉
for all X, Y ∈ sp(n+ 1).

Put

HH :=
{(

a
b

C

) ∣∣∣∣ a, b ∈ Sp(1), C ∈ Sp(n− 1)

}
⊂ Sp(1) · Sp(n).

Following our general description of Sect. 3 we define a metric on

PHTHPn = Sp(n+ 1)/HH

as the induced metric on the orbit space

�Sp(n+ 1)
∖(

Sp(n+ 1), g
)× (Sp(n+ 1), g

)/{1} × HH.

Notice that the action of Sp(1) · Sp(n) from the right on the first factor
of Sp(n+ 1)2 is isometric and accordingly induces an isometric action on(
PHTHPn, g

)
.

It is straightforward to check that a connected component of the fix point
set of the isometry

diag(1, . . . , 1,−1) ∈ Sp(1) · Sp(n) ⊂ Sp(n+ 1)

is isometric to
(
PHTHPn−1, g

)
. As claimed in Proposition 6.1, we see that

the natural inclusions
(
PHTHP2, g

) ⊂ · · · ⊂ (
PHTHPn, g

)
are totally

geodesic embeddings. The fix point set of the isometry

diag(i, . . . , i) ∈ Sp(1) · Sp(n) ⊂ Sp(n+ 1)

is isometric to(
PCTCPn, g

) := �U(n+ 1)
∖(

U(n+ 1), g
)× (U(n+ 1), g

)/{1} × HC

where g denotes the metric on U(n + 1) that is induced by the inclusion
U(n + 1) ⊂ (Sp(n+ 1), g) and HC := U(1)2 · U(n − 1). This shows that
the natural inclusion

(
PCTCPn, g

) ⊂ (
PHTHPn, g

)
is a totally geodesic

embedding.
Similarly, a connected component of the set fixed by each of the isome-

tries

diag(i, . . . , i), diag( j, . . . , j) ∈ Sp(1) · Sp(n) ⊂ Sp(n+ 1)

is isometric to(
PRTRPn, g

) := �O(n+ 1)
∖(

O(n+ 1), g
)× (O(n+ 1), g

)/{1} × HR,

where HR = O(1)2 · O(n− 1). Analogously it can be shown that the first
two columns in Proposition 6.1 form chains of totally geodesic embeddings.
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Notice that we can restrict the action of Sp(1) · Sp(n) on
(
PHTHPn, g

)
to

U(n) and O(n) in order to obtain isometric actions on
(
PCTCPn, g

)
and on(

PRTRPn, g
)
, respectively. Clearly the cohomogeneity of these actions is

two. In fact each orbit of these actions intersects the totally geodesic three
dimensional submanifold PRTRP2 perpendicularly in an orbit of the action
of O(2) on PRTRP2. ��
Lemma 6.2. LetK ∈ {R,C,H}.
a) There is a Riemannian submersion

s: (PKTKPn, g
) −→ (

KP
n, ḡ

)
for a suitable cohomogeneity one metricḡ onKPn.

b) Every planeσ in the tangent space of
(
PKTKPn, g

)
with sec(σ) = 0 is

a vertizontal plane with respect to s, that is,σ is spanned by a horizontal
and a vertical vector.

c) Let σ be as in b). There is an isometryι of
(
PKTKPn, g

)
such that

ι∗(σ) ⊂ TpPKTKP4 ⊂ TpPKTKPn with p ∈ PRTRP2 ⊂ PKTKP2 ⊂
PKTKPn.

d) Let p∈ PRTRP2 ⊂ PKTKPn be point at which a zero curvature plane
exists. Then there is a planeσ ⊂ TpPKTKP3 with sec(σ) = 0.

Proof. a).We consider first the case of K = H and put(
HP

n, ḡ
) := �Sp(n+ 1)

∖(
Sp(n+ 1), g

)2
/{1} × (Sp(1) · Sp(n)

)
.

The action of Sp(1)·Sp(n) from the right on the first factor of Sp(n+ 1)2

is isometric and induces an isometric cohomogeneity one action on
(
HP

n, ḡ
)
.

Since each fiber of the projection Sp(n+ 1)2 → PHTHPn is contained in
a fiber of the projection Sp(n+ 1)2 → HP

n, it follows that there is a Rie-
mannian submersion

s: (PHTHPn, g
) −→ (

HP
n, ḡ

)
and sis equivariant with respect to the Sp(1)·Sp(n)–actions on

(
PHTHPn, g

)
and

(
HP

n, ḡ
)
. Therefore the restriction of sto a fixed point set of an isometry

in Sp(1) ·Sp(n) is a Riemannian submersion onto its image. Hence s|PCTCPn

and s|PRTRPn are Riemannian submersions onto CPn and RPn, respectively.
b). It is sufficient to prove the statement for K = H. Suppose that

(X1, X2) and (Y1, Y2) are linear independent left invariant vectorfields of(
Sp(n+ 1), g

)2
with sec

(
span

(
(X1, X2), (Y1, Y2)

)) = 0. Suppose further-
more that both fields are horizontal at some point (A, B) ∈ Sp(n+ 1)2 with
respect to the projection

pr : (Sp(n+ 1), g
)2 −→ (

PHTHPn, g
)
.
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By Lemma 4.4 this implies that (1−P)X2 and (1−P)Y2 are linear dependent.
Thus we may assume X2 ∈ sp(1)⊕ sp(n). Since (X1, X2) and (Y1, Y2) are
horizontal at some point, it follows that X2 and Y2 are orthogonal to the Lie
algebra of HH. Furthermore, we infer from Lemma 4.4 that

[
PX2, PY2

] = 0.
Combining these facts we deduce that PX2 and PY2 are linear dependent.
Therefore without loss of generality Y2 ∈

(
sp(1)⊕ sp(n)

)⊥
.

But then (Y1,Y2)(A,B) is horizontal with respect to the projection
Sp(n + 1)2 → (HPn, ḡ) and (X1, X2)(A,B) is vertical with respect to this
projection. Evidently, the assertion follows.

c).This is an immediate consequence of the fact that every zero curvature
plane is vertizontal.

d). Let σ ⊂ TpPKTKP4 be a plane with sec(σ) = 0. Let v be a verti-
cal unit vector in σ with respect to s. There is an isometry ι of PKTKP4

such that ι∗(v) ∈ TpPKTKP3. Without loss of generality v ∈ TpPKTKP3.
Since PKTKP3 is a totally geodesic submanifold, it follows that the cur-
vature endomorphism R(·, v)v of TpPKTKP4 leaves the space TpPKTKP3

invariant.
Let w be a horizontal unit vector in σ . Notice that the orthogonal projec-

tion w′ of w to TpPKTKP3 fulfills R(w′, v)v = 0. If w′ 
= 0 we are done.
Thus we may assume w′ = 0. There is an isometry ῑ with ῑ(p) = p and
ῑ
(
PKTKP3

) ⊂ PKTKP4 intersects PKTKP3 perpendicularly in PKTKP2.
By assumption w ∈ T ῑ

(
PKTKP3

)
and as above we can now argue that v is

perpendicular to ῑ
(
PKTKP3

)
.

In particular, we may assume v,w ⊥ PKTKP2. Now we can find an
isometry ι̃ with ι̃∗(σ) ⊂ TpPRTRP4. In other words, without loss of gen-
erality K = R. Consider the projection pr : O(5)2 → PRTRP4. There are
matrices

A = (aij ) ∈ SO(3) =
{(

A
I

) ∣∣∣ A ∈ SO(3)

}
⊂ O(5),

X =


0 0 0 0 0
0 0 0 −x 0
0 0 0 0 0
0 x 0 0 0
0 0 0 0 0

 ∈ o(5) with x ∈ R

and

Y =


0 0 0 0 −y
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
y 0 0 0 0

 ∈ o(5) with y ∈ R
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such that the tangent vectors

v̂ = (−G−1 AdA−1 X, G−1 X
)
|(A,I )

, ŵ = (−G−1 AdA−1 Y, G−1Y
)
|(A,I )

in T(A,I ) O(5)2 are horizontal, pr∗(v̂) = v and pr∗(ŵ) = w; here G is
the selfadjoint endomorphism of sp(5) describing the change of the scalar
product from 〈·, ·〉 to g.

Since AdA−1 X and AdA−1 Y span a zero curvature plane, it follows that
the orthogonal projections of these vectors to o(4)⊥ are linear dependent.
But this implies a21 · a11 = 0, which in turn shows that we can find a plane
σ ′ ⊂ TpPRTRP3 with sec(σ ′) = 0. ��
Lemma 6.3. Let p∈ PRTRP2 ⊂ PHTHPn be point at which a plane with
zero curvature exists.

a) Then there is a planeσ ⊂ TpPCTCP3 with sec(σ) = 0.
b) Suppose that there is no zero curvature plane in TpPRTRP3. Then there

is a matrix A= (aij ) ∈ SO(3) with a2
31 = 1

2 and the image of(A, 1) ∈
O(3)2 under the natural projection

O(3)2 → PRTRP2

is p. Conversely, at all these points there are zero curvature planes in
PCTCP3.

Proof. a).By the previous lemma n = 3 without loss of generality. Consider
a plane σ ⊂ TpPHTHP3 with sec(σ) = 0. By Lemma 6.2 b) there is
a vertical unit vector v ∈ σ and a horizontal unit vector w ∈ σ . There are
matrices A= (aij ) ∈ SO(3) ⊂ Sp(4),

X =
0 0 0 0

0 0 −x̄1 −x̄2
0 x1 0 0
0 x2 0 0

 ∈ sp(4) with x1, x2 ∈ H

and

Y =
 0 0 −ȳ1 −ȳ2

0 0 0 0
y1 0 0 0
y2 0 0 0

 ∈ sp(4) with y1, y2 ∈ H

such that the tangent vectors

v̂ = (−G−1 AdA−1 X, G−1 X
)
|(A,I )

, ŵ = (−G−1 AdA−1 G−1Y, Y
)
|(A,I )

in T(A,I )Sp(4)2 are horizontal, pr∗(v̂) = v and pr∗(ŵ) = w. Notice that the
21 coefficient of Y is 0 as [X, Y] = 0.
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It is sufficient to consider the case of a21 ·a11 
= 0, because otherwise we
can find a plane σ ′ ⊂ TpPRTRP3 with sec(σ ′) = 0. If x2 and y2 are linear
independent, then the 41 coefficients of the matrices AdA−1 X and AdA−1 Y
are linear independent, too. But that is not possible as these vectors span
a zero curvature plane.

Thus x2 and y2 are linear dependent and because of [X, Y] = 0 the
same is true for x1 and y1. Clearly, we can conjugate X, Y with diagonal
matrices of the form diag

(
a, a, a, b

)
, a, b ∈ S3. Hence we may assume that

x2, y2 ∈ R and x1, y1 ∈ C. In other words, there is an isometry ι of PHTHP3

such that ι∗(σ) ⊂ TpPCTCP3.
b). We keep the above notation and continue to assume x2, y2 ∈ R and

x1, y1 ∈ C. Since AdA−1 X and AdA−1 Y span a zero curvature plane, it
follows that (1 − P) AdA−1 X and (1 − P) AdA−1 Y are linear dependent.
Thus we can find (λ,µ) ∈ R2 \ {0} with

(1− P) AdA−1

(
λX+ µY

) = 0.

Let X̄ and Ȳ denote the conjugate matrices. By assumption (X̄, Ȳ) 
= (X, Y).
Consider

Z := λX+ µY− λX̄ − µȲ =
 0 0 bi 0

0 0 ci 0
bi ci 0 0
0 0 0 0

 ∈ u(4)

with (b, c) ∈ R2 \ {0}. Using (1− P) AdA−1 Z = 0 we find(
a12a31 + a32a11 a22a31 + a32a21
a31a13 + a33a11 a23a31 + a33a21

)(b
c

)
= 0.

Consequently the determinant of the above 2 × 2-matrix is 0. Because of
A ∈ SO(3) the determinant is given by

a31
(
2a2

31 − 1
) = 0.

It is easy to see that in the case of a31 = 0 zero curvature does not occur
unless a21 · a11 = 0. Therefore a2

31 = 1
2 .

Suppose now conversely that a2
31 = 1

2 . Because of the isometric action
of SO(2) on PRTRP2 ⊂ PCTCP3 we may restrict ourselves to the case of
a32 = 0. Then the matrices

X :=


0 0 −a22i

√
2a21

0 0 0 0
−a22i 0 0 0
−√2a21 0 0 0

 ∈ u(4)
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and

Y :=


0 0 0 0
0 0 a12i −√2a11
0 a12i 0 0
0
√

2a11 0 0

 ∈ u(4)

commute and the tangent vectors

v̂ = (−G−1 AdA−1 X, G−1 X
)
|(A,I )

, ŵ = (−G−1 AdA−1 Y, G−1Y
)
|(A,I )

in T(A,I )U(4)2 span a horizontal zero curvature plane. ��

Proposition 6.4. LetKK,n denote the isometry group of
(
PKTKPn, g

)
. The

orbit spaces
(
PKTKPn, g

)
/KK,n, n ≥ 2, K ∈ {R,C,H}, are mutually iso-

metric. The boundary of the topological 2-manifold
(
PKTKPn, g

)
/KK,n is

given by a geodesic triangle with all angles being equal toπ/2. Further-
more, for n≥ 3 the points in

(
PKTKPn, g

)
, at which zero curvature planes

occur, map in the orbit space onto a set, which can be described as follows:

a) For K = R the set is given by the union of two sides of the boundary
triangle.

b) For K ∈ {C,H} the set consists of two sides of the boundary triangle
and of an open interval lying in the interior and joining the two sides.

Proof of Proposition 6.4.It is straightforward to check that the quotients

PHTHPn/Sp(1) · Sp(n), PCTCPn/U(n) and PRTRPn/O(n)

are mutually isometric and given by a topological 2-manifold whose bound-
ary is a geodesic triangle with all angles being equal to π/2.

Because of Lemma 6.2 d) the set of points at which zero curvature planes
occur maps in the quotient onto a set which does not depend on n ≥ 3. In
the case of K = R the description of the latter set follows from Sect. 5. In
the case of K ∈ {C,H} the description is a consequence of Lemma 6.3.

Using this description of the points at which zero curvature planes occur,
it is not hard to see that the actions of the isometry groups on

(
PRTRPn, g

)
,(

PCTCPn, g
)

and
(
PHTHPn, g

)
are orbit equivalent to the actions of O(n),

U(n) and Sp(1) · Sp(n), respectively. ��
Proof of Proposition 6.In the case of n = 3 the description follows
from Sect. 5. The general case follows from this special case and from
Lemma 6.2 d). ��
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7. The series SO(2)\SO(2n+ 1)/ SO(2n− 1)

By Proposition 6
(
T1
S

2n, ĝ
)

has positive sectional curvature on an open and
dense set. Furthermore the natural action of SO(2n) on T1

S
2n is isometric

with respect to ĝ. Choose an embedding SO(2) ⊂ SO(2n) such that R2n

splits into two dimensional equivalent subrepresentations of SO(2). Clearly
the action of SO(2) on T1

S
2n is isometric and free. Consequently we can

define

(B, g) := (
T1
S

2n, ĝ
)
/ SO(2) = SO(2)\SO(2n+ 1)/ SO(2n− 1).

Since
(
T1
S

2n, ĝ
)

has positive sectional curvature on an open dense set, the
same is valid for (B, g).

Remark 7.1.a) The cohomology ring of SO(2)\SO(2n+ 1)/ SO(2n− 1)
is the same as the cohomolgy ring of SO(2n+ 1)/ SO(2) · SO(2n− 1).
However the Pontrjagin classes are different.

b) If n = 2m is even the isometric action of SO(2) on T1S4m can be
extended to an isometric free action of SU(2). For that reason the 8m−4-
dimensional manifold SU(2)\SO(4m+ 1)/ SO(4m− 1) has positive
curvature on an open dense set as well.

8. The generalized Aloff Wallach examples

Let g denote the left invariant AdU(1)·U(n)–invariant metric on U(n+ 1) that
we have defined in Sect. 6, and let Hk,l be as in the theorem. Clearly, we
may replace (k, l ) by (−k,−l ) or by (l, k) without changing the topology
of the quotient. Thus we may assume k ≥ −l > 0. Put(

W4n−1
kl , g

) := �U(n+ 1)\(U(n+ 1), g
)× (U(n+ 1), g

)
/{1} × Hk,l .

Lemma 8.1. a) There is a Riemannian submersion

φ : (W4n−1
kl , g

) −→ (
PCTCPn, g

)
.

b) Suppose k> −l > 0. Then a planeσ ⊂ TW4n−1
kl has curvature0 if and

only if it is a horizontal plane such thatφ∗(σ) is a zero curvature plane
in PCTCPn.

c) If k = −l, then a plane with zero curvature is either horizontal or
vertizontal with respect toφ.

Proof. a).This is an immediate consequence of the fact that each fiber of
the projection

(
U(n + 1), g

)2 → (
W4n−1

kl , g
)

is contained in a fiber of the

projection
(
U(n+ 1), g

)2 → (
PCTCPn, g

)
.
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b). Let σ ⊂ T1,AU(n + 1)2 be a horizontal zero curvature plane with
respect to the projection

(
U(n + 1), g

)2 → (
W4n−1

kl , g
)
. Let σ2 be the

projection of σ on the second component of

T1,AU(n+ 1)2 = T1U(n+ 1)⊕ TAU(n+ 1).

By assumption sec(σ2) = 0 with respect to g and σ2 is perpendicular to the
Lie algebra hkl of Hkl . We can find a basis v,w of σ2 with v ∈ u(1)⊕ u(n)

and w ∈ (u(1)⊕ u(n)
)⊥

. In order to show that σ is horizontal with respect

to the projection
(
U(n + 1), g

)2 → (
PCTCPn, g

)
, it is sufficient to show

that the 11-coefficient of v is zero.
Let λ · i denote the 11-coefficient of v and assume, on the contrary that

λ > 0 (if λ < 0 we can pass from v to −v). The 22-coefficient of v is
then given by µ · i for some µ > λ. Because of v ∈ h⊥kl ∩

(
u(1) ⊕ u(n)

)
,

the matrix v has at most three non-vanishing eigenvalues. Using µ > λ we
see that λ · i is an eigenvalue with multiplicity one. On the other hand v
commutes with w 
= 0 and hence λ · i is an eigenvalue of v with multiplicity
at least two – a contradiction.

By Remark 4.2 σ projects to a zero curvature plane in (PCTCPn, g).
c.) We can carry out the same argument as in b). The difference is that

in the present situation we can only conclude λ = µ and not µ > λ. We
may assume λ 
= 0. Using that λ · i is an eigenvalue of v with multiplicity
at least two, it follows that all coefficients of v other than the 11 and the
22-coefficients of v are zero.

Consequently, v ∈ u(1) ⊕ u(1) ⊕ u(n − 1). This is equivalent to say-
ing that σ is vertizontal with respect to the projection

(
U(n + 1), g

)2 →(
PCTCPn, g

)
. ��

Proof of Theorem 1 c).If k > −l > 0, then Lemma 8.1 implies that a point
p ∈ W4n−1

kl at which a zero curvature plane occurs, projects to a point
p̄ ∈ PCTCPn at which a zero curvature plane occurs. Taking into account
that PCTCPn has positive curvature on an open dense set, it follows that
W4n−1

kl has positive curvature on an open dense set as well.
If (k, l ) = (1,−1), then by Lemma 8.1 c) it is sufficient to rule out

the possibility that vertizontal zero curvature planes in W4n−1
1,−1 occur on an

open set of points. Given a vertizontal zero curvature plane σ ⊂ TW4n−1
1,−1

one can find an isometry such that ι∗(σ) ⊂ TW7
1,−1 ⊂ TW4n−1

1,−1 . Since
the natural inclusion W7

1,−1 ⊂ W4n−1
1,−1 is a totally geodesic embedding, it

suffices to prove the statement for n = 2. This in turn is a straightforward
computation. ��

9. The series Sp(1)\Sp(n+ 1)/Sp(1) · Sp(n− 1)

Consider the biinvariant metric 〈·, ·〉 and the left invariant metric g on
Sp(n+ 1) defined in Sect. 6. Put
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Ki :=




a1
. . .

an+1−i
C

 ∣∣∣∣ a1, · · · , an+1−i ∈ Sp(1), C ∈ Sp(i)

 ,

and let Pi : sp(n+ 1) → ki denote the orthogonal projection onto the Lie
algebra of Ki . We set

gn(v,w) := 〈
v,w

〉− n∑
i=1

1

2i

〈
Piv, Piw

〉
.

Geometrically the metric gn can be described as follows: Put g0 = 〈·, ·〉 and
define gi+1 as the metric that is obtained from gi by scaling down the fibers
of the Riemannian submersion

(
Sp(n+ 1), gi

)→ (
Sp(n+ 1), gi

)
/Kn−i by

a factor
√

2. Or equivalently put
(
Sp(n + 1), gi+1

) := (
Sp(n + 1), gi

) ×(
Kn−i , gi

)
/�Kn−i .

Let Qi : sp(n+ 1) → k⊥i ∩ ki+1 denote the orthogonal projection. Using
the latter description of the metric gn, it is straightforward to check that if
v,w ∈ sp(n+ 1) span a zero curvature plane with respect to gn, then Qiv
and Qiw are linear dependent, i = 1, . . . , n. Put

D := {
diag(a, · · · , a) | a ∈ Sp(1)

}
,

H :=
{(

a
1

A

) ∣∣∣ a ∈ Sp(1), A ∈ Sp(n− 1)

}
,

and let d and h denote the Lie algebras of D and H, respectively. By Propo-
sition 3.1 we can define a metric on the biquotient B := D\Sp(n + 1)/H
by

(B, g) := �Sp(n+ 1)
∖(

Sp(n+ 1), gn
)× (Sp(n+ 1), g

)/
D× H.

Using the above description of the metric gn and iterating the argument in
the proof of Lemma 4.3 we see that (B, g) is a normal biquotient.

The isometry group of (B, g) is fairly small. Therefore a precise de-
scription of the points at which zero curvature planes occur seems to be
hard. In order to show that (B, g) has positive sectional curvature on an
open and dense set of points we apply a different strategy which can be
briefly outlined as follows: Let V denote the subspace of Λ2

(
h⊥
)

generated
by all oriented g-zero curvature planes in h⊥, and let W be the subspace
of Λ2

(
d⊥
)

generated by all oriented gn-zero curvature planes in d⊥. It
turns out that a necessary condition for a horizontal zero curvature plane at
(I, A) ∈ Sp(n+ 1)2 is ÂdA(V)∩W 
= 0, where ÂdA denotes the endomor-
phism of Λ2sp(n+ 1) induced by AdA. Furthermore it is easy to see that
the condition ÂdA(V)∩W 
= 0 is a polynomial equation in the coefficients
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of A. Consequently, if one is able to verify for one particular matrix A that
ÂdA(V) ∩W = 0, then it follows that the biquotient has positive curvature
on an open and dense set of points.

We observe that if a plane σ ⊂ h⊥ satisfies sec(σ) = 0 then σ has a basis
v,w with v ∈ sp(1)⊕ sp(n), w ∈ (sp(1)⊕ sp(n)

)⊥
such that [v,w] = 0.

Put

U1 :=
{(

0 0 −v∗
0 0 0
v 0 0

) ∣∣∣ v ∈ Hn−1

}
,

U2 :=
{(

0 0 0
0 0 −v∗
0 v 0

) ∣∣∣ v ∈ Hn−1

}
,

and let Wij denote the subspace of matrices in sp(n + 1) for which all
coefficients other that the (i, j) and the ( j, i)-coefficients are zero. Clearly

p := h⊥ = U1 ⊕U2 ⊕ W22 ⊕ W12.

By the above characterization of zero curvature planes, an oriented plane
σ ∈ Gr+

(
h⊥
) ⊂ Λ2

(
h⊥
)

with sec(σ) = 0 fulfills

σ ∈ U1 ⊗ (W22 ⊕U2) ⊂ Λ2
(
h
⊥).

The map Qi : sp(n+1)→ qi := k⊥i ∩ki+1 induces a map Q̂i : Λ2sp(n+1)
→ Λ2qi . Notice that all oriented gn-zero curvature planes are contained in
the kernel of Q̂i . Finally we put q := d⊥ and let

Ŝ: Λ2sp(n+ 1) −→ Λ2(d)⊕ d⊗ q
denote the orthogonal projection. The kernel of Ŝ is Λ2q. Furthermore Ŝ is
also the orthogonal projection with respect to 〈·, ·〉.
Lemma 9.1. a) Let A∈ Sp(n+ 1). If the linear map

ΦA : U1 ⊗ (W22 ⊕U2) −→ Λ2(d)⊕ (d⊗ q)⊕
n⊕

i=1

Λ2qi

given by

ΦA :=
(

Ŝ⊕ Q̂1 ⊕ · · · ⊕ Q̂n

)
◦ ÂdA|U1⊗(W22⊕U2)

is injective, then there are no zero curvature planes at(I, A) ∈ Sp(n+1)2

which are horizontal with respect to the projectionpr : Sp(n + 1)2 →
(B, g).

b) There is one matrix A∈ Sp(n + 1) such that the linear mapΦA is
injective.
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Notice that ΦA is injective if and only if det
(
Φ∗

AΦA

) 
= 0. Of course, the
quantity det

(
Φ∗

AΦA
)

is a polynomial in the coefficients of A. By part b)
of the lemma the polynomial equation det

(
Φ∗

AΦA
) = 0 defines a proper

subvariety of B. And by part a) every point at which a zero curvature plane
occurs is contained in this subvariety.

Proof of Lemma 9.1. a).We let Gn and G denote the endomorphisms of
sp(n+1) describing the change of the scalar product from 〈·, ·〉 to gn and g,
respectively. Suppose that the vectors(

G−1
n u1,−G−1u2

)
,
(
G−1

n v1,−G−1v2
) ∈ sp(n+ 1)2

span a zero curvature plane that is horizontal at (I, A). Then u1 = AdA u2
and v1 = AdA v2. Moreover σ = span

R
(u2, v2) ⊂ h⊥ is a zero curvature

plane and thus

σ ∈ U1 ⊗
(
W22 ⊕U2

)
.

Finally

G−1
n AdA(σ) = G−1

n span
R
(u1, v1) ∈ Λ2(q) = Ker(Ŝ)

is a zero curvature plane as well. Therefore AdA(σ) is in the kernel of Q̂i
for all i ∈ {1, . . . , n}. Consequently σ is in the kernel of ΦA.

b). Put

B :=


1
2

1√
2

1
2

− 1
2

1√
2
− 1

2

− 1√
2

0 1√
2

 and

A :=


1

. . .

1
B

 · · ·


B
1

. . .

1

 ∈ Sp(n+ 1),

where the right hand side in the definition of A consists of the product of
(n− 1) matrices. By abuse of notation we call the last of these factors B as
well.

Since A is in the centralizer of the group D, it follows that

Ker
(
Ŝ◦ ÂdA|U1⊗(U2⊕W22)

) = Ker
(
Ŝ|U1⊗(U2⊕W22)

) = U1 ⊗U2.

Put

U ′
1 := W⊥

31 ∩U1 and U ′
2 := W⊥

32 ∩U2.
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Using the identity

Qn ◦ AdA = AdAB−1 ◦Qn ◦ AdB

we see that Qn ◦ AdA|Ui , is injective, i = 1, 2,

V := Qn
(
AdA(U ′

1)
) = Qn

(
AdA(U ′

2)
)

and

qn = V ⊕ Qn
(
AdA(W31)

)⊕ Qn
(
AdA(W32)

)
.

Hence

Z := Ker
(
Q̂n ◦ ÂdA|U1⊗U2

) ⊂ U ′
1 ⊗U ′

2.

Let L̂ : Λ2sp(n+ 1) ⊂ Λ2sp(n) be the orthogonal projection. Taking into
account that Z is also the kernel of Q̂n◦ÂdB|U ′

1⊗U ′
2

we deduce that L̂ ◦ÂdB|Z
is injective and L̂

(
ÂdB(Z)

) ⊂ U ′
2 ⊗U3 ⊂ Λ2sp(n) where

U3 :=


0 0 0 0

0 0 0 0
0 0 0 −v∗
0 0 v 0

 ∣∣∣ v ∈ Hn−2

 .

By induction we may assume that the map(
Q̂n−1 ⊕ · · · ⊕ Q̂1

) ◦ ÂdAB−1|U ′
2⊗U3

is injective. Thus the result follows. ��

10. The metrics on PCTCP2/S3 ⊂ PHTHP2/S3 ⊂ PCaTCaP2/S3

Let Spin(9) ⊂ F4 be the symmetric pair corresponding to the Cayley plane,
and let 〈·, ·〉 denote a biinvariant metric on F4. We also consider the left
invariant metric g defined by

g(v,w) = 〈
w, v

〉− 1
2

〈
Pv, Pw

〉
for all v,w ∈ f4

where P : f4 → spin(9) denotes the orthogonal projection.
Recall that Spin(9) is the isotropy group of some point p ∈ CaP2.

We choose a line L ⊂ CaP2 with p ∈ L . The subgroup of all isometries
ι ∈ Spin(9) satisfying ι(L) = L is isomorphic to Spin(8) ⊂ Spin(9).
Clearly, F4/Spin(8) corresponds to the natural description of PCaTCaP2

as a homogeneous space. Wallach [1972] showed that
(
F4, g

)
/Spin(8) has

positive sectional curvature.
Let NCa be the normalizer of Spin(8) in F4. It is well known that

NCa/Spin(8) ∼= S3 and that the isotropy representation of NCa corresponding
to the homogeneous space

(
F4, 〈·, ·〉

)
/NCa is irreducible.
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In particular, the metric g is not AdNCa invariant. However, we can define
a metric on PCaTCaP2/S3 as the orbit metric of NCa\(F4, g). Since the ho-
rizontal distribution at the identity element coincides with the horizontal dis-
tribution with respect to the projection

(
F4, g

)→ (
F4, g

)
/Spin(8), it follows

that all sectional curvatures are positive at the orbit NCa ∈ NCa\
(
F4, g

)
. Fur-

thermore the sectional curvature is everywhere nonnegative as NCa\
(
F4, g

)
is a normal biquotient.

The group Spin(9) acts by isometries on NCa\
(
F4, g

)
. There are sub-

groups SU(2) ⊂ SU(3) ⊂ G2 ⊂ Spin(9) such that the fix point set of SU(2)
in PCaTCaP2/S3 is diffeomorphic to PHTHP2/S3 and the fix point set of
SU(3) is diffeomorphic to PCTCP2/S3. Equipped with the induced metrics
these manifolds have nonnegative sectional curvature and positive curvature
at one point, as well.

Remark 10.1.For the metric we constructed on PKTKP2/S3, the set of
points at which zero curvature planes occur contains an open subset, K ∈
{C,H, Ca}. On the universal cover the metric can be deformed into a metric
of positive sectional curvature, in fact there is a family (gλ)λ∈[0,1] of metrics
on PKTKP2 such that the gλ has positive sectional curvature for λ ∈ (0, 1]
and g0 is the pull back metric from PKTKP2/S3. It would be interesting
to understand by more direct means why such a deformation can not carry
over to the quotient PKTKP2/S3.

References

S. Aloff, N. Wallach, An infinite family of 7–manifolds admitting positively curved Rie-
mannian structures, Bull. Amer. Math. Soc. 81 (1975), 93–97

T. Aubin, Metriques riemanniennes et courbure, J. Differential Geometry 4 (1970), 383–424
Y.V. Bazaikin, On a certain family of closed 13–dimensional Riemannian manifolds of

positive curvature, Sib. Math. J. 37, No. 6 (1996), 1219–1237
L. Bérard Bergery, Sur certaines fibrations d’espaces homogènes riemanniens, Compositio
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