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1. Introduction

Synge'stheorem is one of the few known obstructions for positive sectional
curvature. It states that an orientable even dimensional compact Riemannian
manifold of positive sectional curvatureissimply connected, and that an odd
dimensional compact Riemannian manifold of positive sectional curvature
is orientable. As an immediate consequence of this theorem, RP" x RP™
does not admit a metric with positive sectional curvature. This fact in turn
is often quoted as an indication for the generalized

Hopf conjecture. S"xS™does notadmita Riemannian metric with positive
sectional curvature.

Hopf originaly only asked thisin the case n = m = 2. This conjecture
is one among very few that indicate what kind of general obstructions one
should expect for positive sectional curvature. The reason for this dilemma
is closely related to the lack of examples. In fact in dimensions above 24
the known examples are diffeomorphic to locally rank 1 symmetric spaces,
i.e.,, quotients of S", CP", HP" and CalP? by afinite group.

The first Riemannian manifolds that are not diffeomorphic to locally
rank one symmetric spaces were found by Berger [1961]. He found two
homogeneous examples; onein dimension 7 and onein dimension 13. Wal-
lach [1972] and Bérard Bergery [1976] classified all simply connected
homogeneous spaces with positive curvature in even and odd dimensions.

Eschenburg [1984] found the first examples of manifolds with positive
sectional curvature that are not homotopically equivalent to homogeneous
spaces. He found one such example in dimension six and an infinite family
in dimension seven. Later on Bazaikin [1996] found a similar family in
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dimension 13. The examples of Bazaikin and Eschenburg are so called
biquotients, i.e., they are given as orbit spaces G//H where G is a compact
Liegroup and H is aclosed subgroup of G x G for which the natural action
of Hon G isfree.

Thefirst indication that one might find new examples among biquotients
was given much earlier by Gromoll und Meyer [1974]. They found a seven
dimensiona biquotient (X, g) which is homeomorphic but not diffeomor-
phic to S’. The sectional curvature of (X, g) is only nonnegative, but there
isapoint p € X such that al planes a p have positive curvature. Gromoll
und Meyer [1974] mention the following conjecture without saying that
they support it.

Deformation conjecture. Supposé€M, g) is a complete Riemannian mani-
fold with nonnegative sectional curvature and suppose that there is one point
p € M such that all planes based at p have positive curvature. Then M
admits a metric with positive sectional curvature.

There are several indications for this conjecture: Aubin [1970] and
Ehrlich [1976] proved the analogous statements for scalar and Ricci cur-
vature. Strake [1986] showed that the statement is true provided that the
points at which zero curvature planes occur are contained in a convex set.
According to Perelman’s [1994] proof of the soul conjecture, a honcom-
pact manifold M satisfying the hypothesis of the deformation conjecture
is diffeomorphic to R". In particular, M admits then a metric with positive
sectional curvature.

However, the following theorem provides counterexamples.

Theorem 1. Each of the following compact manifolds admits a Riemannian
metric g with positive sectional curvature on an open and dense set of points.

a) The projective tangent bundles; PRP", P-TCP" and R;THP" of
RP", CP" and HP", respectively. The corresponding dimensions are
2n—1,4n — 2and8n — 4.

b) The biquotientSO(2)\ SO(2n + 1)/ SO(2n — 1) of dimensiordn — 2,
n> 2.

¢) The(4n — 1)—dimensional manifold §™* := U(n + 1)/Hy with

Zk
Hy = z )zesl,AeU(n—l) ,
A

provided that(k, I) is a pair of integers satisfyingd < 0, n > 2.
d) The biquotienp(1)\Sp(n+ 1)/Sp(1) - Sp(n — 1) of dimensior8n — 4.

Furthermore, R TKP?/Ss, i.e., a quotient of PTKP? by a free action of the
symmetric grousg, admits a metric with nonnegative sectional curvature
and positive curvature at one poiri, € {C, H, Ca}.
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The odd dimensional manifold P, TRP?™** is not orientable. Thus, by
Synge's theorem, it does not admit a metric with positive sectional curva-
ture. Furthermore, the fundamental groups of the even dimensiona mani-
folds Pc TCP?/S3, Py THP?/S; and P, T CalP?/S3 are isomorphic to Sa.
Again by Synge's theorem, these manifolds do not admit metrics of positive
sectional curvature either. This proves

Corollary 2. The deformation conjecture is wrong in dimensidns+ 1,
n > 1, as well as in dimensiorns 12 and 24.

Since the projective tangent bundles of RP? and RP’ are trivia, we
deduce

Corollary 3. The manifoldRP® x RP? and RP’ x RP® as well as their
universal covers® x S? andS’ x S® admit metrics with positive sectional
curvature on open dense sets.

One could ask whether the deformation conjecture is true for smply
connected manifolds. Although this problem remains unsettled, it is clear
that a positive answer would provide a counterexample to the generalized
Hopf conjecture.

The manifold M"* in the series ¢) is simply connected. Using the
Gysin sequence of the fibration S* — Mg"™! — P-TCP", it is easy to
check that the order of H?"(M"*, Z) is given by

kn+1_|n+1

Qo =K'+ K"+ KT N = e

provided that k and | are relatively prime and gy, # O; thecaseof g =0
can only occur for (n, k, 1) = (2m+1, 1, —1) and H*™2(M™3, 7) = Z.

Corollary 4. There are infinitely many different homotopy types of simply
connected4n— 1)—dimensional manifolds with positive sectional curvature
on open dense sets>n3.

Remark 5.1t is worth noticing that in low dimensions, i.e., for smal n, the
above examples @) — d) are aready well known, although we endow these
examples with different metrics.

1. Wallach [1972] showed that the flags, i.e., the projective tangent bun-
dles of CP?, HP? and CalP?, admit homogeneous metrics with positive
sectiona curvature.

2. Forn = 2theseriesinc) representsthewel l-known Aloff Wallach series.
Aloff and Wallach [1975] showed that M|, admits ahomogeneous metric
of positive sectional curvature unlessk -1 - (k+ 1) = 0. Notice that our
construction provides ametric on M{ _; = M{, with positive sectional
curvature on an open dense set. The integral cohomology ring of this

manifold coincides with the integral cohomology ring of S? x S°.
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3. Eschenburg [1984] showed that for n = 2 the biquotient in d) admits
ametric with nonnegative sectional curvature and positive curvature at
one point. Thismanifold has the same cohomology ring as Py THP? but
adifferent homotopy type.

4. Petersenand Wilhelm[1999] constructed ametric with positive sectional
curvature on an open dense set on the unit tangent bundle T1S* of S*
and on a six dimensional quotient of T1S*. Notice that TS* is the
universal cover of P TRP*. The six dimensional quotient corresponds
to the example b) withn = 2.

For many of the examples in the theorem no obstruction to positive cur-
vature applies and it would be interesting to know whether in some of the
cases one can deform the metric into a metric with positive sectiona curva-
ture everywhere. Of course, it would also be interesting to find topological
congtraints explaining the existence of zero curvature planes. In either case
a description of the points at which zero curvature planes occur might be
afirst step:

Proposition 6. Consider the unit tangent bundle'S" of S" as a submani-
fold of TR"! = R™1xR™?! n > 3. The metric g of PTRP" of Theorem 1
induces naturally a metri§y on its universal cover IS". With respect to this
metric the points in TS" at which zero curvature planes occur are given by

{(p, v) € TS | pJ_el} U {(p, v) e TS | vJ_el}

where g is the first vector of the canonical basis &ftl. Moreover, if
O(n) c O(n+ 1) denotes the subgroup that fixgs then the natural action
of O(n) on T!S" is isometric with respect tg.

Both setsin the above proposition are diffeomorphic to S"* x S"~* and
they intersect in a copy of T1S"! endowed with a homogeneous metric.
For a description of the zero curvatures of P-TCP" and Py THP", see
Proposition 6.4.

Open problems. The class of examples of manifolds with nonnegative
sectional curvature is huge compared to the known examples of manifolds
with positive sectional curvature. It is the author’s belief that it might be
fruitful to have a class in between these two well studied classes, one that
is more rigid than nonnegative sectiona curvature but has a larger class
of examples than the known examples of manifolds with positive sectional
curvature.

By Theorem 1 the class of manifolds with positive sectional curvature
is strictly smaller than the class of manifolds with positive sectional curva-
ture on an open dense set. Since a manifold in the latter class has a finite
fundamental group, this class in turn is strictly contained in the class of
manifolds of nonnegative sectional curvature. But for simply connected
manifolds the problem whether these inclusions are strict remains open. In



Positive sectional curvature almost everywhere 121

the even dimensional case agood candidate for an obstruction might be the
Euler-characteristic. Recall that one of the oldest conjectures in Rieman-
nian geometry, the 'other’ Hopf conjecture, asks whether a compact even
dimensiona Riemannian manifold M with sec(M) > 0 (resp. sec(M) > 0)
fulfills x(M) > 0 (resp. x(M) > 0). Thisimposes the following

Question 1.Does a compact even dimensional manifold M with positive
sectiona curvature on an open dense set satisfy (M) > 0?

A positive answer would imply that an upper curvature bound of such
a manifold yields via the Chern—Gauss-Bonnet formula a lower volume
bound which in turn givesin presence of an upper diameter bound a lower
bound for the injectivity radius. One could consider this as a substitute for
Klingenberg's injectivity radius estimate, and in particular it would follow
that these manifolds are subject to the same type of finiteness results as
manifolds of positive sectional curvature.

Notice that an affirmative answer would also imply that in contrast to
S® x S? the manifold S2 x S® does not admit ametric with positive sectional
curvature on an open dense set.

One might hope that astudy of the zero curvature planes in the examples
yields some idea towards obstructions for positive sectional curvature, or
possibly for constructing manifolds with positive sectional curvature.

Question 2.Suppose (M", g) isacompact Riemannian manifold with non-
negative sectional curvature and suppose there is an open set U ¢ M
diffeomorphic to R" such that M" \ U has positive sectional curvature.
Does M admit a metric with positive sectional curvature?

In most examples of Theorem 1 the hypothesis of this question is not
satisfied. However, the Gromoll Meyer sphere (X7, g) satisfies the hypoth-
esis.

According to Hamilton [1982], the deformation conjecture is true in
dimension three and our counterexamples start in dimension 5. So it is
natural to ask.

Question 3.1sthe deformation conjecture true in dimension four?

Petersen and Wilhelm [1999] introduced the concept of quasi-positive sec-
tional curvature. A complete Riemannian manifold is said to have quasi-
positive sectional curvature if it has nonnegative sectiona curvature and
positive curvature at one point. They proposed that this class of manifolds
deserves more attention. One of the problems they suggest to consider is

Question 4.Does a Riemannian manifold of quasi-positive sectional cur-
vature admit a metric with positive sectiona curvature on an open dense
set?

Wilhelm [1999] showed that for the Gromoll Meyer sphere (X7, g) the
answer is yes. However, for the manifolds Px TKIP?/S3 (K e {C, H, Ca})
the answer is not known.
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It is my pleasure to thank Wolfgang Ziller for many useful discussions
and comments. | am also indebted to the referee for suggesting severa
improvements.

2. Organization of the paper

The main idea for the proof of Theorem 1 relies on a basic observation
which assigns to every biquotient anatural enlarged class of metrics. Inthis
enlarged class of metrics one has a better chance to realize given curvature
properties. We explain this basic observation in Sect. 3. In Sect. 4 werecall
the concept of anormal biquotient and show that every zero curvature plane
in such amanifold comes from atotally geodesic immersed flat.

Next we present the general idea for the proof of the theorem in the
simplest and perhaps most interesting special case P TRP® = RP3 x RP?,
see Sect. 5. In particular, we will give a precise description of the zero
curvature planes in this example.

In the proof of Theorem 1 &) we can make use of the large isometry
groups and totally geodesic submanifolds to give a precise description of
the points at which zero curvature planes occur, see Proposition 6.4. In fact
by combing thisrich structure with only one minor calculation wereducethe
problem to the case of n = 3, i.e,, it then remains to be seen that P, TRPS,
P-TCP® and Py THP® have positive curvature on open dense sets. Thisin
turn also requires only afairly small amount of calculation. Once part @) is
established part b) and c) follow easily, see Sect. 7 and Sect. 8.

However, this sort of dimension reduction does not work for the series d)
of thetheorem. Heretheisometry group istoo small to be of any use. Instead
we use adifferent technique, which might be useful in other contextsaswell.
We introduce a simple method which produces a polynomia equation for
the points at which zero curvature planes occur. In general it isby no means
clear that the equation isnot satisfied at every point, but verifying for apoint
that the equation is not satisfied turns out to be a problem of linear algebra,
see Sect. 9 for details.

Finally, we describe the construction for Py TKP3/S3 (K € {C, H, Ca})
in Sect. 10. It isworth noticing that in these examples there are open subsets
of points at which zero curvature planes occur.

3. Normalized description of biquotients

Let G be a compact Lie group and H C G x G a compact subgroup such
that the natural action of H on G given by

(h1, h2) *x (= hlghz_l for all (hl, hz) €eH, geG

is effectively free, i.e., an element h € H has afix point if and only if h is
in the kernel of the action. The orbit space of this action G//H has then the
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natural structure of a manifold. Any left invariant metric g on G for which
the above action is isometric induces a metric on G//H, i.e., the metric
that turns the projection pr: G — G//H into a Riemannian submersion. Of
course, the sameisvalid for any right invariant metric on G invariant under
the action of H.

So there are two natural families of metrics on the quotient. Of course
one can consider instead the cone of metricsgenerated by these two families.
However, it is more general and easier to make use of the following

Proposition 3.1. LetH C G x G be as above, and l1&tG C G x G denote
the diagonal subgroup. Then the actionot x H onG x G given by

(a,h)yx(c,d)=a-(c,d)-h tforae AG, heH

is effectively free, the biquotieG\G x G/H is canonically diffeomorphic
to G//H, and the class of left invariamkdy—invariant metrics orG x G in-
duces a cone of metrics on the quotient containing the two original families.

At first sight one might think that one can iterate this process and get
even alarger class of metrics on the biquotient. However, iterating does not
increase the family of natural metrics any further.

Proof. The canonica diffeomorphism isinduced by the map
GxG—G, (ah—alh

Consider all left invariant Ady—invariant product metrics g; x g, on G x G.
Furthermore, we consider the subfamily of metrics for which g; is a biin-
variant metric on G, i = 1, 2. Thisfirst family of metrics induces a cone
of metricson G//H and it is straightforward to check that the two subcones
corresponding to the two subfamilies coincide with the two orginal families
of metricson G//H. O

4. Zero curvature planesin normal biquotients

A normal biquotient (M, g) isaRiemannian manifold that can be described
asabiquotient G //H such that the metric g on M isinduced by abiinvariant
metric (-, -) on G. Since a Lie group endowed with a biinvariant metric has
nonnegative curvature and since by O’ Neill’s formula Riemannian submer-
sions are curvature nondecreasing, it follows that every normal biquotient
has nonnegative sectional curvature. The main objective of this section isto
prove

Proposition 4.1. Let M be a normal biquotient. Suppose thatC T,M is
a plane satisfyingec(o) = 0. Then the magxp: 0 — M, v > exp(v) is
a totally geodesic isometric immersion.
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Proof. By the previous section we may restrict ourselves to biquotients that
are given in the normalized description:

(B,9) :=AG\(G x G, (-,-))/H

where (-, -) denotes a biinvariant metric on G x G. Recall that by definition
of g the projection pr: (G x G, (-, ')) — (B, g) is a Riemannian submer-
sion. Let o C TB be aplane with curvature O, and let 6 C T(anG x G be
a horizontal lift of 0. Since Riemannian submersions are curvature nonde-
creasing and (G x G, (-, -)) has nonnegative sectiona curvature, it follows
that sec(6) = 0. Takingintoaccount that (G x G, (-, -)) isasymmetric space,
weseethat exp, : 6 — G x G isatotally geodesic immersion. Furthermore
we can find left invariant vectorfields X, Y such that for al p € exp(6) the
vectors X, p, Y|p form abasis of thetangent space of exp(6). ASTa ) eXp(5)
is perpendicular to the orbit of H, T, exp(6) is perpendicular to the orbit of
Hfor al p € exp(6).

On the other hand we can aso find right invariant vectorfields V, W
such that Vj,, W, form a basis of Tyexp(6) for al p € exp(6). This
implies similarly that exp(6) intersects the orbits of AG perpendicularly
everywhere.

In summary we can say that the totally geodesic immersed flat exp(6)
is everywhere horizontal. Since horizontal geodesics in G x G project to
geodesicsin B, we deduce that exp, : o — M isatotaly geodesic immer-
sion. |

Remark 4.2.The proof shows that every horizontal zero curvature planein
(G x G, (-, -)) projectsto azero curvature plane of the quotient. A fact which
also follows from the curvature formula for biquotients in [Eschenburg,
1984].

All the Riemannian manifolds of Theorem 1 are normal biquotients.
This fact is not immediately clear from the construction used in the proof
of Theorem 1, but it will follow from

Lemma4.3. Let G be a compact Lie grougk C G a Lie subgroup and
consider the corresponding Lie algebras g. Furthermore let P g — ¢
denote the orthogonal projection with respect to a biinvariant metric.
We define a new left invariant metric by

g(v,w) = ((1 = P)v, 1 — Pw) +t(Pv, Pw) forallv,weg

and for some & (0, 1). Suppose that for a compact subgratij G x K C
G x G the natural action ofH on G is effectively free. The(G, g)//H is
a normal biquotient.

Proof of Lemma4.3.¢et (-, -) also denote theinduced biinvariant metric on

K C (G, (-,-)).Chooseax € (0, co) suchthatt = 7. Itisstraightforward

to check that (G, g)//H isisometric to the normal biquotient
compare [Wilking, 1999] for asimilar argument. O
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The left invariant metric considered in Lemma 4.3 has particularly good
curvature propertiesif ¢ C g isasymmetric pair.

Lemma4.4 (Eschenburg, 1984, Satz 231). Lett C g be a symmetric pair

of compact type, and l&t C G denote the corresponding groups. We endow
G with a left invariant metric g metric which is obtained from a biinvariant
metric (-, -) by

gv, w) := ((1 — Pyv, w> + t(Pv, w) forall v, w € g,

wherete (0, 1) and P: g — tisthe orthogonal projection. Thentwo linear
independent vectons w € g span a zero curvature plane with respect to g
if and only if

[v, w] =[(1 = P, (1— Pw] = [Pv, Pw] =0.

In the special case of a rank 1 symmetric paicC g the vector1 — P)v
and (1 — Pyw are linear dependent.

5. The construction for P; TRP®

The main purpose of this section is to give a simple description of the
construction of the metric g in the special case PRTRP® = RP® x RP?.
Moreover we will describe the zero curvature planes of (PRTRIP’3, g). We
will use this special case later in order to describe the points at which zero
curvature planes exist on (P TRP", ).

Consider, Sp(1) = S® ¢ H with the biinvariant metric of constant
curvature 1, and let (-, -) denote the induced product metric on S x S2. We
define anew left invariant metric g on S° x S by means of

g(x, y) = (%, y)— 3(Px Py} forallx,yesp(l)asp),

where P: sp(1) @ sp(1) — Asp(1) denotes the orthogonal projection onto
the diagonal subalgebra Asp(1) C sp(1) @ sp(d).

It is an immediate consequence of Lemma 4.4 that a plane o C
sp(1) @ sp(1) has curvature zero with respect to g if and only if o is
of the form

o = spang{(v,0), (0,v)} for somev € sp(1) — {O}.
Clearly, right—trand ations by elements of the subgroup
H:={(abé”, aé¥) |p e R, be {1, -1}, ae(l, j}} cs*x S®

are isometries. The action of S® x S® on S® induces a transitive action
on the projective tangentbundle of RP?® = S%/ 4+ 1. Since H occurs as
isotropy group of the latter action, the quotient S® x S/H is diffeomorphic
to Py TRP® = RP® x RP?.
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Following our normalized description we can define a metric g on
Pz TRP® as the orbit metric on the space

A(S® x 33)\((33 x §% g) x (8% x 8%, g))/{l}  H.

Thegroup D := {(a &) | a € Sp(1)} actson thefirst factor of (S3x S3, g)°
by right multiplication. This action is isometric and induces an isometric
action on (PRT]RIP’3, 0). The element (—1, —1) isin the kernel of the latter
action.

Notice that each orbit of the group A(S® x S®) intersects a point of

the form (&, b, 1, 1) in (83)4. In order to describe the horizontal vectors

at (& b, 1,1), it is useful to consider the self adjoint endomorphism G of
sp(1) @ sp(L) that is characterized by

(x,Gy)=g(x,y) foralx,yesp(l) @®sp).

The horizontal vectors at (4, b, 1, 1) are then given by
{(G‘l(— Ady v, = Adyw), G (v, w) ) | v, w € sp(D), o+ w, ) = o}.

Suppose there exists a horizontal zero curvature plane o at (& b, 1, 1).
Using the characterization of zero curvature planes, we see that there is
abass

by i= (G™}(~Ada,0), G1(1,0)),
by = (G™4(0. — Ady ), G(0,v) )

of o suchthat Ad, v and Ad, v arelinear dependent. Furthermorev 1 i. The
fact that Ad, v and Ady v are linear dependent leaves only two possihilities:
Case 1Ad;yv = Adyv. Thisimplies that v = Adg, v. Thus the imaginary
part of aband of v arelinear dependent. Becauseof v | i wededuceab L i.
Case 2Ad;v = —Adyv. Thisimplies v = — Adgp v. In other words ab
anti-commutes with v and hence ab L 1.

In summary we can say that an orbit at which a zero curvature plane
occurs can be represented by a point in the following set

{@b1,1)|abLi orabl1j.

For apoint in P TRP® represented by (a, b, 1, 1) withab L i andab # +1
there is precisely one horizontal plane with zero curvature corresponding
to Case 1. The analogous statement holds if ab L 1 but ab # +i. If
ab e {£1, 4i}, then there is an one parameter family of zero curvature
planes.
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Wedefine S; (respectively S) asthe set of orbitsin P TRP® represented
by (a, b, 1, 1) with ab L 1 (respectively ab L i). The submanifolds S, and
S are both diffeomorphic to RP? x RP?.

The amount of the zero curvature planes at each point in S U S is
enforced by the isometric action of D/ + (1, 1) = SO(3) on (PRT]R]P’3, g).
The induced actions of SO(3) on S; and S are of cohomogeneity one.
They are equivalent to the diagona action of SO(3) on RP? x RP?; in
particular there is one two dimensional singular orbit and one exceptional
three dimensional orbit. The set of pointsin S, (resp. §) at which an one
parameter family of zero curvature planes occurs is given by the singular
orbit of the SO(3)-action. Thesingular orbitsin S, and § are diffeomorphic
to RP2. The three dimensional exceptional orbit is given by the intersection
S N S and it is diffeomorphic to SO(3)/(Z/27,)2.

Modulo isometries S (resp. §) contains precisely one totally geodesic
torus. Thetorusisvertizontal withrespecttotheprojection S, — S/ SO(3).

The natural actions of SO(3) on the Grassmannians of S; and S induce
cohomogeneity one actions on the two families of zero curvature planes.
The principal isotropy groups of these actions are of order 2 whereas the

isotropy groups of the exceptional orbits are isomorphic to (Z/ ZZ)Z.

6. Theseries PRTRP", P-TCP" and Py THP"

In this section we construct the metrics on PRxTRP", P:TCP"
and Py THP". Before we characterize the points at which zero curvature
planes occur we will show

Proposition 6.1. The manifolds PTRP", P-TCP"and R; THP" endowed
with the metric of Theorem 1 admit an isometric cohomogeneity two action
of O(n), U(n) andSp(1) - Sp(n) respectively. The natural inclusions in the
following diagram are totally geodesic embeddings.

PeTRP? c P.TCP? c PyTHP?
N N N
N N N
PrTRP" Cc P.TCP" C Py THP".

Proof of Proposition 6.1Consider the symmetric pair Sp(1) - Sp(n) C
Sp(n+1) of Liegroupsand thecorresponding pair sp (1) @sp(n) C sp(n+1)
of Liealgebras. Let (-, -) denote the biinvariant metric on Sp(n + 1) given
by

(X,Y) = — Redl(trace(XY)) foral X,Y € sp(n+ 1),

P:sp(n+ 1) — sp(l) d sp(n) the orthogonal projection, and let
(1—P):sp(+1) — (sp(D) & sp(n))
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be the projection onto the orthogona complement of sp(1) @ sp(n). We
define anew left invariant metric g on Sp(n + 1) by
gX,Y)=(1—-PX, (1—PY)+i(PX PY) fordlX,Y espn+1).
Put

)

Following our general description of Sect. 3 we define ametric on

a,besp@),Cesp(n—1); C Sp(l) - Sp(n).

PHTH]P)n = Sp(n + 1)/HH
as the induced metric on the orbit space

ASp(n+ D\ (Sp(n+ 1), g) x (Sp(n+ 1), 9) /{1} x Hy.

Notice that the action of Sp(1) - Sp(n) from the right on the first factor
of Sp(n + 1)? isisometric and accordingly induces an isometric action on
(PyTHP", g).

It isstraightforward to check that aconnected component of the fix point
set of the isometry

diag(l,...,1,—-1) € Sp(1) - Sp(n) C Sp(n+ 1)

isisometric to (Py THP" ™, g). As claimed in Proposition 6.1, we see that

the natural inclusions (PyTHP? g) C --- C (PyTHP", g) are totally
geodesic embeddings. The fix point set of the isometry

diag(i, ... ,i) € Sp(1) - Sp(n) C Sp(n+ 1)
isisometric to
(PcTCP", g) := AU+ D\ (U(h+ 1), g) x (U(N+1),9)/{1} x He

where g denotes the metric on U(n + 1) that is induced by the inclusion
uin+1) c (Sp(n+ 1), g) and He := U(1)? - U(n — 1). This shows that
the natural inclusion (PcTCP", g) C (PsTHP", g) is atotally geodesic
embedding.

Similarly, a connected component of the set fixed by each of the isome-
tries

diag@, ..., i), diag(j,...,]) € Sp(1) - Sp(n) C Sp(n+ 1)
isisometric to
(PRT]R{IP”, g) = AO(n+ 1)\(O(n + 1), g) X (O(n +1), g)/{l} X Hg,

where Hg = O(1)2 - O(n — 1). Analogously it can be shown that the first
two columnsin Proposition 6.1 form chains of totally geodesic embeddings.
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Notice that we can restrict the action of Sp(1) - Sp(n) on (PyTHP", g) to
U(n) and O(n) in order to obtain isometric actions on (Pc TCP", g) and on
(PRT]R]P”, g), respectively. Clearly the cohomogeneity of these actions is
two. In fact each orbit of these actions intersects the totally geodesic three
dimensional submanifold P TRP? perpendicularly in an orbit of the action
of O(2) on Py TRP?. o

Lemma6.2. LetK € {R, C, H}.

a) There is a Riemannian submersion
s: (PcTKP", g) — (KP", 9)

for a suitable cohomogeneity one mefgion KP".

b) Every planes in the tangent space céPKTKIP”, g) with sec(o) = O'is
a vertizontal plane with respect to s, thatdsis spanned by a horizontal
and a vertical vector.

c) Leto be as in b). There is an isometryof (P<TKP", g) such that
(o) C ToPxTKP* C TP TKP" with p € PeTRP? C Py TKP? C
Pk TKP".

d) Let pe PrTRP? ¢ PxTKP" be point at which a zero curvature plane
exists. Then there is a plaec T, Px TKP® with sec(o) = 0.

Proof. a).We consider first the case of K = H and put

(HP", g) := ASp(n + )\ (Sp(n + 1), 9)°/{1} x (Sp(L) - Sp(M)).

Theaction of Sp(1)-Sp(n) fromtheright on thefirst factor of Sp(n + 1)2
isisometric andinducesanisometric cohomogeneity oneactionon (HP", g).
Since each fiber of the projection Sp(n + 1)> — Py THP" is contained in
afiber of the projection Sp(n + 1)2 — HP", it follows that there is a Rie-
mannian submersion

s: (PyTHP", g) — (HP", 9)

and sisequivariant with respect tothe Sp (1)-Sp(n)—actionson ( Py THP", g)
and (HP", g). Thereforetherestriction of sto afixed point set of anisometry
in Sp(1) - Sp(n) isaRiemannian submersion onto itsimage. Hence Sp.tcpn
and sp, Tren are Riemannian submersions onto CP" and RP", respectively.

b). It is sufficient to prove the statement for K = H. Suppose that
(X1, X2) and (Y1, Yo) are linear independent left invariant vectorfields of
(Sp(n+ 1), g)2 with sec(span((X1, X2), (Y1, Y2))) = 0. Suppose further-
more that both fields are horizontal at some point (A, B) € Sp(n+ 1) with
respect to the projection

pr: (Sp(n+1), g)°> — (P THP", ).



130 B. Wilking

By Lemmad4.4thisimpliesthat (1— P) X, and (1— P)Y, arelinear dependent.
Thus we may assume X, € sp(1) @ sp(n). Since (X1, Xz) and (Y, Yo) are
horizontal at some point, it followsthat X, and Y, are orthogonal tothe Lie
algebraof Hy. Furthermore, weinfer from Lemmad4.4 that [PXZ, PY;] = 0.
Combining these facts we deduce that PX, and PY, are linear dependent.

Therefore without loss of generality Y, € (sp(1) & 5p(n))l.

But then (Y1,Y2)ap) is horizontal with respect to the projection
Sp(n + 1) — (HP", @) and (X1, X2)a B, IS Vertical with respect to this
projection. Evidently, the assertion follows.

¢). Thisisanimmediate consequence of thefact that every zero curvature
plane is vertizontal.

d). Let o C TpPxTKP* be a plane with sec(o) = 0. Let v be a verti-
cal unit vector in o with r&sg)ect to s. There is an isometry « of Px TKP*
such that ¢, (v) € T,Px TKP°. Without loss of generdity v € TP TKPS.
Since PxTKP? is a totally geodesic submanifold, it follows that the cur-
vature endomorphism R(-, v)v of T, P« TKP* leaves the space T P TKP?
invariant.

Let w beahorizontal unit vector in o. Notice that the orthogonal projec-
tion w’ of w to TpPKTKIP3 fulfills R(w’, v)v = 0. If w’ # 0 we are done.
Thus we may assume w’ = 0. There is an isometry 7 with 7(p) = p and
1(PxTKP?) C PcTKP* intersects P< TKP? perpendicularly in Px TKP?.
By assumption w € T1(Px TKP?) and as above we can now argue that v is
perpendicular to 7( P TKP?).

In particular, we may assume v, w L Pg TKP2. Now we can find an
isometry 7 with 7, (o) C TpPRT]R]P’“. In other words, without loss of gen-
erality K = R. Consider the projection pr: O(5)?> — Py TRP*. There are
matrices

A= () € SO@) = {(A |) | AeSO<3>} c o),

000 O O
000 —x0

X=]1000 0 O]ecob withxeR
0x 0 0 O
000 O O

and

0000 -y
000O0 O

Y=]000O0 O |eco®B withyeR
0000 O
y 000 O
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such that the tangent vectors

i\) — (_G—l AdA—l X’ G_lx) ﬁ) = (—G_l AdA—l Y, G_lY)

I(A1)? [(AD)

in Tea1) O(5)% are horizontal, pr,(?) = v and pr, () = w; here G is
the selfadjoint endomorphism of sp(5) describing the change of the scalar
product from (-, -) to g.

Since Ad,-1 X and Ad,-1 Y span a zero curvature plane, it follows that
the orthogonal projections of these vectors to o(4)* are linear dependent.
But thisimplies ay; - a;; = 0, which in turn shows that we can find a plane
o' C TpPe TRP® with sec(o”’) = 0. o

Lemma6.3. Let pe PR TRP?> C Py THP" be point at which a plane with
zero curvature exists.

a) Then there isaplane C T, P-TCP? with sec(o) = 0.

b) Suppose that there is no zero curvature planeRgT RP3. Then there
is a matrix A= (a;j) € SO(3) with a%l = % and the image ofA, 1) <
O(3)? under the natural projection

0(3)? > PR TRP?

is p. C%nversely, at all these points there are zero curvature planes in
PcTCP .

Proof. a).Bythepreviouslemman = 3without lossof generality. Consider
aplane o C T,PyTHP? with sec(o) = 0. By Lemma 6.2 b) there is
avertica unit vector v € o and a horizontal unit vector w € o. There are
matrices A = (a;) € SO(3) C Sp(4),

00 O 0
0 0 —x —X .
X=1, % 01 02 € sp(4) withxy, Xo € H
0 x O 0
and
0 0 -1 =%
00 O 0 .
Y = vy 0 0 0 esp(d) withyy, yo € H
yo 0 0 0
such that the tangent vectors

b= (-G tAdp1 X, GTX) D= (-G tAdy1 G7Y,Y)

(A1)’ (A1)
in Tia1ySp(4)? are horizontal, pr,(?) = v and pr, (i) = w. Notice that the

)
21 coefficient of YisOas[X, Y] = 0.
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It is sufficient to consider the case of a,; - a1 # 0, because otherwise we
can find aplane o’ C T,Pe TRP® with sec(o’) = 0. If X, and y, are linear
independent, then the 41 coefficients of the matrices Ada-1 X and Ada-1 Y
are linear independent, too. But that is not possible as these vectors span
azero curvature plane.

Thus x, and y, are linear dependent and because of [X, Y] = O the
same is true for x; and y;. Clearly, we can conjugate X, Y with diagonal
matrices of the form diag(a, a, a, b), a, b € S3. Hence we may assume that
X2, Yo € Rand xy, y1 € C. Inother words, thereisan isometry : of Py THP®
such that ¢, (0) C T,PcTCP3.

b). We keep the above notation and continue to assume x,, y» € R and
X1, y1 € C. Since Ada-1 X and Ada-1Y span a zero curvature plane, it
follows that (1 — P)Ady-1 X and (1 — P)Adx-1 Y are linear dependent.
Thuswecan find (A, 1) € R?\ {0} with

(1— P)Adp-1(AX + pY) = 0.

Let X and Y denotethe conjugate matrices. By assumption (X, Y) # (X, Y).
Consider

O O hi O
Z =X+ pY —2X —uY = t?i Coi o 8 € u(4)
0000

with (b, ¢) € R?\ {0}. Using (1 — P) Ad-1 Z = Owefind

o8z + agodyn  @xodgzy + agdn (b) -0
8z1813 + agzay1 apzagy + agzaxy / \C )

Consequently the determinant of the above 2 x 2-matrix is 0. Because of
A € SO(3) the determinant is given by

ag1(2a5, — 1) = 0.

Itiseasy to seethat in the case of az; = 0 zero curvature does not occur
unless ay; - aj; = 0. Therefore a3, =
Suppose now conversely that a3, = % Because of the isometric action

of SO(2) on PxTRP? C P-TCP® we may restrict ourselves to the case of
az, = 0. Then the matrices

NI,

0 0 —axpi +2an

0 0O O 0
—a22i 0 0 0
—V2a,, 0 0 0

X:= € u(4)
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and

0 0 0 0

Y = 0 0 api —+/2an
~— 10 a12i 0 0
0 V2a;; O 0

e u(d)

commute and the tangent vectors

i\) — (_G—l AdAfl X’ G_lx) ﬁ) = (—G_l AdA—l Y, G_lY)

I(A1)? [(AD)

inTan U(4)? span a horizontal zero curvature plane. O

Proposition 6.4. LetKy , denote the isometry group P« TKP", g). The

orbit spaceg Pk TKP", g)/Kk.n, N > 2, K € {R, C, H}, are mutually iso-
metric. The boundary of the topological 2-manif¢lel TKP", g) /K  is
given by a geodesic triangle with all angles being equatt@. Further-
more, for n> 3the points in( P TKP", g), at which zero curvature planes
occur, map in the orbit space onto a set, which can be described as follows:

a) For K = R the set is given by the union of two sides of the boundary
triangle.

b) For K € {C, H} the set consists of two sides of the boundary triangle
and of an open interval lying in the interior and joining the two sides.

Proof of Proposition 6.4t is straightforward to check that the quotients
PuTHP"/Sp(1) - Sp(n), P:TCP"/U(n) and PxTRP"/O(n)

are mutually isometric and given by atopological 2-manifold whose bound-
ary isageodesic triangle with al angles being equal to /2.

Because of Lemma6.2 d) the set of points at which zero curvature planes
occur maps in the quotient onto a set which does not depend onn > 3. In
the case of K = R the description of the latter set follows from Sect. 5. In
the case of K € {C, H} the description is a consequence of Lemma6.3.

Using thisdescription of the points at which zero curvature planes occur,
itisnot hard to see that the actions of theisometry groupson (P TRP", g),
(PcTCP", g) and (Py THP", g) are orbit equivalent to the actions of O(n),
uU(n) and Sp(1) - Sp(n), respectively. O

Proof of Proposition 6.In the case of n = 3 the description follows
from Sect. 5. The genera case follows from this special case and from
Lemma6.2 d). O
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7. The series SO(2)\ SO(2n + 1)/ SO(2n — 1)

By Proposition 6 (T1S?", §) has positive sectional curvature on an open and
dense set. Furthermore the natura action of SO(2n) on T1S?" is isometric
with respect to §. Choose an embedding SO(2) ¢ SO(2n) such that R?"
splitsinto two dimensional equivalent subrepresentations of SO(2). Clearly
the action of SO(2) on T1S?" is isometric and free. Consequently we can
define

(B, @) := (T's™, §)/ SO(2) = SO(2)\ SO(2n + 1)/ SO(2n — 1).

Since (T!s?, §) has positive sectional curvature on an open dense set, the
sameisvalid for (B, g).

Remark 7.1.8) The cohomology ring of SO(2)\ SO(2n+ 1)/ SO(2n — 1)
is the same as the cohomolgy ring of SO(2n + 1)/ SO(2) - SO(2n — 1).
However the Pontrjagin classes are different.

b) If n = 2m is even the isometric action of SO(2) on T'S*™ can be
extended to an isometric free action of SU(2). For that reason the 8m—4-
dimensional manifold SU(2)\ SO(4m + 1)/ SO(4m — 1) has positive
curvature on an open dense set aswell.

8. Thegeneralized Aloff Wallach examples

Let g denote the left invariant Ady1).umn—invariant metric on U(n + 1) that
we have defined in Sect. 6, and let Hy, be as in the theorem. Clearly, we
may replace (k, ) by (—k, —I) or by (I, k) without changing the topology
of the quotient. Thuswe may assume k > —| > 0. Put

(W™, g) == AUM + D\(U + 1), 9) x (U + 1), 9) /(1) x H.
Lemma8.1. @ There is a Riemannian submersion
¢: (Wt g) — (PTCP", g).

b) Suppose k- —I > 0. Then a planer ¢ TW"* has curvature) if and
only if it is a horizontal plane such that, (o) is a zero curvature plane
in P@T(C]P’n.

c) If k = —I, then a plane with zero curvature is either horizontal or
vertizontal with respect t¢.

Proof. a).This is an immediate consequence of the fact that each fiber of
the projection (U(n + 1), g)2 — (W', g) is contained in afiber of the
projection (U(n + 1), g)2 — (PcTCP", g).
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b). Let o C Ty aU(n + 1)2 be a horizontal zero curvature plane with

respect to the projection (U(n + 1), g)2 — (Wg" % g). Let o, be the
projection of o on the second component of

TLaUN+1)2 = TyU(n 4+ 1) @ TaU(N + 1).

By assumption sec(o,) = 0 with respect to g and o, is perpendicular to the
Lie algebra hy of Hy. We can find abasis v, w of o, with v € u(1) & u(n)

andw € (u(1) @ u(n))L. In order to show that o is horizontal with respect

to the projection (U(n + 1), g)2 — (PcTCP", g), it is sufficient to show
that the 11-coefficient of v is zero.

Let 2 - i denote the 11-coefficient of v and assume, on the contrary that
A > 0 (if A < 0 we can pass from v to —v). The 22-coefficient of v is
then given by w - i for some 1 > A. Because of v € b N (u(1) & u(n)),
the matrix v has at most three non-vanishing eigenvalues. Using i > A we
see that A - i is an eigenvalue with multiplicity one. On the other hand v
commuteswith w # 0and hence A -i isan eigenvaue of v with multiplicity
at least two — a contradiction.

By Remark 4.2 o projects to a zero curvature planein (P TCP", g).

c.) We can carry out the same argument as in b). The difference is that
in the present situation we can only conclude A = w and not © > A. We
may assume A % 0. Using that A - i is an eigenvalue of v with multiplicity
at least two, it follows that all coefficients of v other than the 11 and the
22-coefficients of v are zero.

Consequently, v € u(l) & u(l) ® u(n — 1). Thisis equivalent to say-
ing that o is vertizontal with respect to the projection (U(n + 1), g)2 —
(PcTCP", g). ]

Proof of Theorem 1 c)f k > —I > 0, then Lemma8.1 impliesthat apoint
p € W;‘,”‘l at which a zero curvature plane occurs, projects to a point
p € PcTCP" a which a zero curvature plane occurs. Taking into account
that P TCP" has positive curvature on an open dense set, it follows that
W,"* has positive curvature on an open dense set as well.

If (k,1) = (1, —1), then by Lemma 8.1 ¢) it is sufficient to rule out
the possibility that vertizontal zero curvature planesin W4n occur on an

open set of points. Given a vertizontal zero curvature pl ane o C IW“L”_ll
one can find an isometry such that L*(O') C TW7 4 C IW“”‘l Since

the natural inclusion W/ _; C Wf” 1 isatotally geodesic embedding, it
suffices to prove the statement for n = 2. Thisin turn is a straightforward
computation. |

9. Theseries Sp(1)\Sp(n + 1)/Sp(1) - Sp(n — 1)

Consider the hiinvariant metric (-, -) and the left invariant metric g on
Sp(n + 1) defined in Sect. 6. Put
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a

al? R an+1—i S Sp(l)’ C S Sp(l) )

ant1-i
C

and let P, : sp(n + 1) — & denote the orthogonal projection onto the Lie
algebra of K;. We set

n

1
Gn(v.w) = (v, w) = Y =(Rv. Ru)

i=1

Geometrically the metric g, can be described asfollows: Put go = (-, -) and
define g1 asthe metric that is obtained from g; by scaling down the fibers
of the Riemannian submersion (Sp(n+ 1), i) — (Sp(n+1), gi)/Kn_i by
afactor /2. Or equivalently put (Sp(n + 1), gi41) := (Sp(n + 1), gi) x
(Kn=i, Gi)/ AKn_i.

Let Qi: sp(n+1) — & N, denote the orthogonal projection. Using
the latter description of the metric g,, it is straightforward to check that if
v, w € sp(n + 1) span a zero curvature plane with respect to gy, then Qv
and Q;w arelinear dependent, i = 1, ... ,n. Put

D := {diag(a,--- , & | ae Sp(D)},

a
H::{( 1 )‘aeSp(l), AeSpin—-1);,
A

and let 9 and h denote the Lie algebras of D and H, respectively. By Propo-
sition 3.1 we can define a metric on the biquotient B := D\Sp(n + 1)/H

by
(B, 9) := ASp(n+ D\ (Sp(n+ 1), gn) x (Sp(n+1),9) /D x H.

Using the above description of the metric g, and iterating the argument in
the proof of Lemma 4.3 we see that (B, g) isanormal biquotient.

The isometry group of (B, g) is fairly small. Therefore a precise de-
scription of the points at which zero curvature planes occur seems to be
hard. In order to show that (B, g) has positive sectional curvature on an
open and dense set of points we apply a different strategy which can be
briefly outlined as follows: Let V denote the subspace of A,(h*) generated
by al oriented g-zero curvature planes in h*, and let W be the subspace
of A,(d") generated by all oriented gy-zero curvature planes in o+. It
turns out that a necessary condition for a horizontal zero curvature plane at
(1, A € Sp(n+1)2isAda(V) NW # 0, where Ada denotes the endomor-
phism of Asp(n + 1) induced by Ada. Furthermore it is easy to see that
the condition Ada(V) NW # Oisapolynomia equation in the coefficients
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of A. Consequently, if oneis able to verify for one particular matrix A that
Ada(V) N W = 0, then it follows that the biquotient has positive curvature
on an open and dense set of points.

Weobservethat if aplaneo C h' satisfiessec(o) = Otheno hasabasis

v, wwithv € sp(1) ® sp(n), w € (sp(l) @ 5p(n))L such that [v, w] =

Put
00 —v
U1:={<0 0 0 )‘veH”‘lj,
v 0 O

0 0
U2:={<0 —v*) ‘veH”_l},
Ov O

and let Wj; denote the subspace of matrices in sp(n + 1) for which all
coefficients other that the (i, ) and the (j, i)-coefficients are zero. Clearly

pi=ht=U1 @ Uy ®Wo @ Wy

By the above characterization of zero curvature planes, an oriented plane
o € Gry(h*) C Az(h*) with sec(o) = O fulfills

[eoNe)

ocelU® WUy C AZ(hl)‘

Themap Q;: sp(n+1) — qi := &Nt inducesamap Q; : Azsp(n+1)
— A»qi. Notice that al oriented g,-zero curvature planes are contained in
the kernel of Q;. Finally we put g := o and let

S Awsp(n+1) — A BOR g

denote the orthogonal projection. The kernel of Sis Aq. Furthermore Sis
also the orthogonal projection with respect to (-, -).

Lemma9.l. @ Let Ae Sp(n+ 1). If the linear map

n
Dp: Up ® (Wo ® Up) — A20) © @@ q) © P Azgy
i=1

given by
(I)A = <é@ Ql P---P Qn) o A.aA|U1®(W22@U2)

is injective, then there are no zero curvature planed af) € Sp(n+1)2
which are horizontal with respect to the projectipn: Sp(n + 1) —
(B, 9).

b) There is one matrix Ac Sp(n + 1) such that the linear ma@, is
injective.
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Notice that ® A isinjective if and only if det(®3da) # 0. Of course, the
quantity det(®3®Pa) is a polynomia in the coefficients of A. By part b)
of the lemma the polynomial equation det(d)j;d) A) = 0O defines a proper
subvariety of B. And by part a) every point at which azero curvature plane
occurs is contained in this subvariety.

Proof of Lemma 9.1. a)Me let G,, and G denote the endomorphisms of
sp(n+ 1) describing the change of the scalar product from (-, -) to g, and g,
respectively. Suppose that the vectors

(Gplur, —G ™), (Gptur, —G 1) € sp(n + 1)

span a zero curvature plane that is horizontal at (1, A). Then u; = Ada Uy
and v; = Ada vp. Moreover o = spany(Up, v2) C ht is azero curvature
plane and thus

celU® (W22 ) Uz).
Finally
G, Ada(0) = Gl span (U, v1) € Ax(q) = Ker(S)

is a zero curvature plane as well. Therefore Ada(o) isin the kernel of O;
forali e {1,...,n}. Consequently o isinthe kernel of ® .
b). Put

1 1 1
2 2 2
1 1
B:= —? 7 —1§ and
% 0 %
1 B
N 1
A= . 1 . € Sp(n+1),
B 1

where the right hand side in the definition of A consists of the product of
(n— 1) matrices. By abuse of notation we call the last of these factors B as
well.

Since A isinthe centralizer of the group D, it follows that

Ker(So Adau;euewss) = Ker(Suewsews ) = Ui ® Us.
Put
U, :=W;;NnU; and Uj:=Wg N U
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Using the identity
Qn o AdA = AdAB—l OQn o AdB
we see that Q, o Ada,, isinjective, i =1, 2,

V := Qn(Ada(U7)) = Qn(Ada(U3))
and
dn =V @& Qn(Ada(Wa1)) & Qn(Ada(Wap)).
Hence
Z := Ker(Qn o Adau,eu,) C U ® Us.

Let L: Apsp(n+ 1) C Apsp(n) be the orthogonal projection. Taking into
account that Z isalso the kernel of O, oAdgu;eu, Wededuce that LoAdgz
isinjective and ﬁ(,&aB(Z)) C U; ® Uz C Aosp(n) where

000 O

000 O _
Uz := 000 —v ‘UEH”Z
00w

0
By induction we may assume that the map

(Qn—l DD Ql) o '&aAB*HUé@Ug

isinjective. Thus the result follows. O

10. Themetricson PcTCP?/S3 C Py THP?/S3 C PcaTCaP?/S3

Let Spin(9) C F4 bethe symmetric pair corresponding to the Cayley plane,
and let (-, -) denote a biinvariant metric on F4. We also consider the left
invariant metric g defined by

g(v, w) = <w v> — %(Pv Pw) foral v, w € 4

where P: §4 — spin(9) denotes the orthogonal projection.

Recall that Spin(9) is the isotropy group of some point p € CaP?.
We choose aline L ¢ CaP? with p € L. The subgroup of all isometries
t € Spin(9) satisfying «(L) = L is isomorphic to Spin(8) C Spin(9).
Clearly, F4/Spin(8) corresponds to the natura description of Pc,TCaP?
as a homogeneous space. Wallach [1972] showed that (F4, g)/Spin(8) has
positive sectional curvature.

Let Nca be the normalizer of Spin(8) in Fy4. It is well known that
Nca/Spin(8) = Sz and that theisotropy representation of Nc, corresponding
to the homogeneous space (F4, (-, -)) /Nca isirreducible.
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In particular, the metric g isnot Ady,, invariant. However, we can define
ametric on P, T CaP?/S3 as the orbit metric of Nea\ (F4, g). Since the ho-
rizontal distribution at theidentity element coincides with the horizontal dis-
tribution withrespect totheprojection (F4, g) — (Fa4. 9)/Spin(8), itfollows
that all sectional curvatures are positive at the orbit Nca € Nca\ (Fa, 9). Fur-

thermore the sectional curvature is everywhere nonnegative as Nca\ (Fa, 9)
isanormal biquotient.

The group Spin(9) acts by isometries on Nea\ (F4, g). There are sub-
groups SU(2) ¢ SU(3) C G, C Spin(9) such that thefix point set of SU(2)
in Pc,TCaP?/S; is diffeomorphic to Py THP?/S; and the fix point set of
SU(3) isdiffeomorphic to P TCP?/S;. Equipped with the induced metrics
these manifolds have nonnegative sectional curvature and positive curvature
at one point, aswell.

Remark 10.1.For the metric we constructed on Py TKP?/Ss, the set of
points at which zero curvature planes occur contains an open subset, K €
{C, H, Ca}. On theuniversal cover the metric can be deformed into ametric
of positive sectional curvature, in fact thereisafamily (g;);c(0,1; Of metrics
on Px TKP? such that the g, has positive sectional curvature for A € (0, 1]
and qp is the pull back metric from Px TKP?/Ss. It would be interesting
to understand by more direct means why such a deformation can not carry
over to the quotient Py TKP?/Ss.
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