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Introduction

The purpose of this note is to show how one can use multiplier ideals to
establish effective uniform bounds on the multiplicative behavior of certain
families of ideal sheaves on a smooth algebraic variety. In particular, we
prove a quick but rather surprising result concerning the symbolic powers
of radical ideals on such a variety.

Let X be a non-singular quasi-projective variety defined over the com-
plex numbers C, and let Z C X be a reduced subscheme of X.! Denote by

q= 1z € Oy

the ideal sheaf of Z, so that q is a sheaf of radical ideals. We shall be
concerned with the symbolic powers ™ of q. According to a well-known
theorem of Zariski and Nagata (see [5], Chap. 3.9) q"™ can be described as
the sheaf of all function germs vanishing to order > m at a general point of
each irreducible component of Z (or equivalently at every point of Z):

q" = { f€Ox|ordi(f) =mforallx € Z }.

Itis evident that ¢ C q“, but in general of course the inclusion is strict.
However Swanson [15] established (in a much less restrictive settingz) that
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I All of our results are local in nature, so there is no loss in taking X to be an affine
variety. In this case one can work with the coordinate ring C[X] of X in place of its structure
sheaf 0.

2 Swanson’s theorem holds in particular on any normal variety over a field of any charac-
teristic.
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there exists an integer k = k(Z) depending on Z such that
g% ™ < g™ forall m e N.

On geometric grounds this already seems rather striking since membership
in the symbolic power on the left is tested at general smooth points of Z,
whereas the actual power on the right reflects also its singular points. So
one’s first guess might be that the worse the singularities of Z, the larger
one will have to take the coefficient k(Z) to be. Surprisingly enough this is
not the case, and in fact one has a uniform statement depending only on the
codimension of Z:

Theorem A. Assume that every component of Z has codimension < e in X.
Then

q") C q" forall m € N.

In particular, if dim X = n then q"" C g™ for every radical ideal q € O
and every natural number m > 1. One can see the Theorem as providing
further confirmation of Huneke’s philosophy [8] that there are unexpected
uniform bounds lurking in commutative algebra.

Theorem A is a very simple application of the theory of multiplier ideals.
In commutative algebra these were introduced by Lipman [13] in connection
with the Briancon-Skoda theorem.? More general constructions, which we
use here, have in the meantime become extremely important in the study
of higher dimensional algebraic varieties (cf. [1], [2], [4], [14], [10], [12]).
In brief, we consider families a, = {a;} of ideals a; C Ox — such as the
symbolic powers q® = {q®} — satisfying the relations

ag -, < agqy, forall €,m > 1.

For each ¢ > 1 we associate to such a family an asymptotic multiplier ideal
J(lacll) € Ox which reflects the asymptotic behavior of all the ideals a
for p > 0. Using the subadditivity theorem of [3], we prove

Theorem B. If §(||a¢||) € b for some index € and some ideal b, then
e - b"
for everym > 1.

In the case of symbolic powers it is elementary to check that (||q“|)) < q,
so Theorem A follows from the “abstract” Theorem B. As another applica-
tion, we establish a result (Theorem 2.6) rendering effective and extending
in certain directions a theorem of Izumi [9], [7] dealing with ideals arising
from a valuation.

3 Lipman called them “adjoint ideals”, but “multiplier ideal” has become standard in
higher dimensional geometry. The name derives from their analytic construction, where
they arise as sheaves of multipliers (see [1]).
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We have been guided by the viewpoint that the families {a;} share some
of the behavior of the linear series |kD| associated to multiples of a divisor
D on a projective variety, and that one can try to adapt geometric tools
to the present setting. We hope that these and other ideas from higher
dimensional complex geometry will find further algebraic applications in
the future. Going in the other direction, Hochster and Huneke [6] have used
the theory of tight closure to reprove and generalize the results of the present
paper dealing with symbolic powers: in paticular they show that Theorem A
holds for any regular local ring containing a field, and they remove the
hypothesis that g be radical (see §3 for further discussion). This illustrates
once again the close but somewhat mysterious connections between tight
closure methods and the more geometric outlook appearing here.

Our exposition is organized into three sections. In the first, we con-
struct the multiplier ideals we use and establish their basic properties. The
applications are given in §2, and generalizations appear in §3.

We are grateful to Mel Hochster and Craig Huneke for valuable discus-
sions and encouragement, and to Jessica Sidman for some Macaulay scripts
related to Example 2.3. We also wish to record our debt to the work of Irena
Swanson and her collaborators, through which we learned of many of the
questions discussed here.

1. Graded families and multiplier ideals

In this section we construct the multiplier ideals we require, and give their
basic properties. Quick overviews of the general theory of multiplier ideals
appearin [4] and [3], § 1, and a survey of some of the applications in algebraic
geometry is given in [2]. The forthcoming book [11] will contain a detailed
exposition, which in the meantime can be found in the lecture notes [12].
In particular, [12] contains full proofs of all the facts about multiplier ideals
quoted in the following paragraphs.

Let X be a non-singular complex quasi-projective variety, and a C Oy
a non-zero ideal sheaf on X. A log resolution of a is a projective birational
map u : X' —> X, with X’ non-singular, such that a - Oy = Oy (—F)
for an effective Cartier divisor F on X with the property that the sum of F
and the exceptional divisor of u has simple normal crossing support. Such
resolutions can be construced by resolving the singularities of the blow-up
of a. We write Kx//x = Kx — u* Ky for the relative canonical divisor of
X' over X.

Given a rational number ¢ > 0, the multiplier ideal associated to ¢ and
a is defined by fixing a log resolution as above, and setting

J(X,c-a) = g(c-a) = M*(9X'(KX'/X—[CF])-

Here cF is viewed as an effective Q-divisor, and its integer part [c F'] is de-
fined by taking the integral part of the coefficient of each of its components.
The fact that (c - a) is indeed an ideal follows from the observation that
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J(c-a) € uOx(Kxx) = Ox. An important point is that this definition
is independent of the log resolution ft.

It follows immediately from the definition that if ¢ € N, then J(c - a) =
4(a‘). This being so, we sometimes prefer to use “exponential notation”
4 (a) for the multiplier ideal g (c - a) for an arbitrary rational number ¢ > 0.
Note that we are not trying to attach any actual meaning to the expression
c - aor a° when c is non-integral. Nonetheless, the possibility of being able
to work with rational coefficients is critical in applications.

As a variant, given ideals a, b € Oy, and rational numbers c, d > 0, we
define J((c-a) - (d-b)) (or (a - b%) in exponential notation) by taking
a common log resolution © : X’ —> X of a and b, with a - Oy =
Ox (—F)), b-Ox = Ox(—F,), and putting g (a‘ - b%) = M*Qx’(KX//X —
[cF) + sz]). It is sometimes useful also to adopt the convention that if
a = (0), then g(c-a) = (0) forall ¢ > 0.

The most important local property of multiplier ideals is the Restriction
Theorem, due in the algebro-geometric setting to Esnault and Viehweg.
Specifically, let Y € X be a smooth subvariety, and let a € O be an ideal
sheaf whose zeroes do not contain Y. Then ay = a - Oy is an ideal sheaf
on Y, and the result in question states that one has an inclusion:

ey) FY,c-ay) S §(X,c-a)-Oy

of ideal sheaves on Y. This is established by reducing to the case where
Y has codimension one, and applying vanishing theorems. The restriction
theorem leads in turn to the Subadditivity Theorem of [3], which states (in
exponential notation) that given ideals a,b € Oy and rational numbers
¢, d > 0, one has the inclusion:

2) F(a - b%) C g(a°) - (6.

To prove this, one first of all applies the Kiinneth formula to check that

(X xX, (pi'a)" (7'0)") = pi'9(X, a9 py g(X, b,

where p;, p» : X x X — X are the projections, where we are somewhat
abusively writing f~'o € @y for inverse image o - Oy of an ideal 0 C Oy
under a morphism f : V — W. Then one restricts to the diagonal. Note
for later reference that in “additive notation” (2) implies

3) Flem-a) S F(c- )"

for every integer m > 1.

Some of the most interesting applications of multiplier ideals (for in-
stance [14], [10]) depend on the fact that one can make asymptotic con-
structions. A natural algebraic setting for these is described in the following
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Definition 1.1. A graded family or graded system of ideals a, = {a;} is
a collection of ideal sheaves a;, € Ox (k > 1) satisfying

4 Qi -y S gy fO}’ all k, 0> 1.
To avoid unnecessary complications, we assume also that a; # (0) for
k> 0.

Note that if we set Ag = Oy, then condition (4) is equivalent to the
statement that @, ay is a graded @ x-algebra. The asymptotic constructions
that follow are particularly useful in case this algebra is not finitely generated
(or at least not known to be so).

Example 1.2. (i). Let (0) # a € Oy be a fixed ideal, and take a; = af to
be the k' power of a. Then the {a;} form a graded family. One should
view this as a trivial example.

(ii). Let D beadivisorona projective variety X. When H%(X, Ox (kD)) #0

let b, = b(|kD|) be the base-ideal of the complete linear series [kD],
and put by = (0) otherwise. Then b, = {b;} forms a graded family of
ideals.

(iii). Let (0) # q € Ox be a radical ideal. Then the symbolic powers {q*}
form a graded family of ideals that we denote by q®.

(iv). Letv:Y — X be a proper birational map, and let D be a non-zero
effective Cartier divisor on Y. Then we get a graded family of ideals
0, = {0} on X by putting 0, = v,Oy(—kD). Note that this includes
the symbolic powers q® in (iii) as a special case, as well as the graded
family of ideals associated to an m-valuation on X in the sense of [7].

(v). Let p(r) = Z;ﬁl %ti € C[[z]] be the power series of the function
¢’ — 1, and given f € C[x, y] define
v(f) = ord; f(z, p(®).

This is a valuation on C[x, y], and therefore the ideals
or =aer {f € Clx, y] | v(f) > k}
(which we may view as ideal sheaves on X = C?) form a graded
family. Explicitly,
o = (&, y— pe(v)),
where py (1) = Zle %ti is the k™ Taylor polynomial of ¢/ — 1.

(vi). Assume that X is affine (and as always non-singular), so that ideal
sheaves are identified with ideals in the coordinate ring C[X] of X.
Given any non-zero ideal a € C[X], set

a ={feC[X]|Df ea
V differential operators D on X of order < k }
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This determines a graded family a!*! which also reduces to the sym-
bolic powers {q¥} when a = q is radical.

(vii). Let a, = {a;} be a graded family, and b € Oy a fixed ideal. Then the
colon ideals

v o= (a : bk) =def {f€(9X|f'bk€ﬂk}
form a graded family.

We now construct the asymptotic multiplier ideal associated to a graded
family a,.

Lemma 1.3. Let a, = {a;} be a graded family of ideals, and fix £ € N plus
a rational number ¢ > 0. Then for all positive integers p,n > 1 one has

2(% “ap) S g(ﬁ “Qpne)-
Proof. Let u : X’ — X be a common log resolution of a,, and a,,,, with
ape - Ox = Ox/(=Fp) , apue - Ox = Ox(—Fpue).

Condition (4) implies that a;‘,e C apne, and hence —nF,p < —Fp, (i.e. the
difference nF,, — F,,, is effective). Therefore

Fpn@]a

and the statement follows. O

K =[5 Ful < K =[5

We assert next that the collection of multiplier ideals

520,

has a unique maximal element. In fact, the existence of one maximal element

follows from the ascending chain condition on ideals. On the other hand, if

J(% - aye) and F(% - age) are both maximal, then thanks to the Lemma they
P q

each coincide with (= - apg).

Definition 1.4. Given a graded family of ideals a, = {a;}, the asymptotic
multiplier ideal at level £ associated to ¢ > 0 and a,, written $(c - |la.||),
is the maxmial element of the collection of ideals appearing in (5). In other
words,

©)  c-lac) = gc(ﬁ ~ape) for sufficiently divisible p > 0.
O

Assuming as we are that a; # (0) for £ > 0, one can show that there
is an integer po = po(a., £) such that J(c- ||ac|]) = g(% - a,e) for all
p > po. We use this fact only to observe that one does not actually need the
divisibility condition in (6).
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Remark 1.5. Notethat §(c - ||a.||) depends not just on the particularideal a,,
but on all the ideals a,, for p > 0. The double vertical lines should serve
as a reminder of this point.

Example 1.6. (i). If ay = o is the trivial graded family consisting of
powers of a fixed ideal a, then g(c - |a¢]|) = J(c - a*) = g(ct - a).

(i1). When b, = b(lle) is the family of base ideals associated to a big
divisor D,then g (c - ||b¢||) = (c - ||€£D]) is the asymptotic multiplier
ideal constructed for instance in [10] and [11]. These ideals have
played an important role in recent work on linear series.

(iii). Let ¢ € Ox be a radical ideal. We denote the asymptotic multiplier
ideal at level £ associated to the symbolic powers q® = {q*} by
F(c - la1D. Thus g(c - 41D = F( - q7) for p > 0.

(iv). Consider the ideals oy < C[x, y] constructed in Example 1.2 (v)
associated to the valuation v( f) = ord, f(t, el — 1). Then J(||o¢]]) =
Clx, y] for every £. This can be checked directly using the observation
that each o contains a polynomial whose divisor is a smooth curve.
From a more sophisticated point of view, the triviality of the multiplier
ideal in question is implied by Theorem B plus the fact that the colength
of oy in C[x, y] grows linearly rather than quadratically in k.

For our purposes the essential properties of these multiplier ideals are
given by

Proposition 1.7. Let a, = {a;} be a graded family of ideals on the smooth
variety X, and fix £ > 1. Then:

(i) ac < F(llacl).
(ii). For every m > 1 one has the inclusion
Fllanel) < Flach™.

Proof. Since the relative canonical bundle Ky x is effective, it follows from
the definition that a € g(a) for any ideal a € Ox. Then using Lemma 1.3
we find that

a S ga) S (3 - ap).

Taking p > 0, this gives (i). For (ii), fix p > 0 and use the subadditivity
relation (3) to deduce:

Fllanel) = (5 - dpme)

= g(pm apm(f)
- g(me apm(f)m
= g (llacl)",

as asserted. O
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Remark 1.8. Note that it need not be true in general that 4 (a,,,) € J(ay)™.
This explains why it is crucial to pass to the asymptotic ideals.

2. Applications

Our concrete results follow from the following general statement — which
appears as Theorem B in the Introduction — concerning the multiplicative
behavior of graded families of ideals:

Theorem 2.1. Let a, = {a} be a graded family of ideals on a smooth
complexvariety X, and suppose that b C Oy is anideal such that §(||a;||) S b
Jfor some index £ € N. Then

Ame - b"
for every integer m > 1.

Proof. This is an immediate consequence of Proposition 1.7, which implies
that

ane S Fllamel) S FlaclD™.

The first application is to symbolic powers:*

Theorem 2.2. Let X be a smooth complex variety, and Z < X a reduced
subscheme all of whose irreducible components have codimension < e in X.
Put q = 17, and fix an integer £ > e. Then

gm0 (q(e+1_e))m
for every m > 1. In particular, taking £ = e one has
q") C q" forall m > 1.
Proof. 1t suffices by Theorem 2.1 to show that

() FAla < g+
But membership in the ideal on the right is tested locally at a general point of
each irreducible component of Z. So we can assume after shrinking X that Z
is smooth and irreducible, of codimension e, and in this case (*) is clear. For
then q¥ = ¢* for all k, and q is resolved by taking 1 : X’ = Blz(X) — X
to be the blow-up of X along gq. Writing E C X’ for the corresponding
exceptional divisor, one has

Ky x = (e— DE and q“- Ox = Ox(—LE).
Consequently

FUaD = 1Ox(Kxyx —LE) = mOx(—(+1—eE) =q*~,
as asserted. m|

4 See §3 for a more general statement.
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Example 2.3. The first non-trivial case of Theorem 2.2 is the following.
Let T C P? be a finite set of points, viewed as a reduced algebraic subset
of the plane, and let I € C[X, Y, Z] be the homogeneous ideal of 7. If
F € C[X, Y, Z] is a homogeneous polynomial having multiplicity > 2m at
every point of 7', then F' € I". (Apply Theorem 2.2 to the affine cone over
T in C3.) In spite of the very classical nature of this statement we do not
know a direct elementary proof.

Remark 2.4. The statement of Theorem 2.2 can fail on singular varieties.
For example Huneke points out that counter-examples arise already when
Z is a line on a quadric cone X in C*. However Hochster and Huneke [6]
give some statements valid also on singular ambient spaces.

Remark 2.5. Using familiar arguments, one can deduce from Theorem 2.2
that the corresponding statement holds for excellent regular local rings
containing a field of characteristic zero. However Hochster and Huneke [6]
have shown that in fact the analogue of (2.2) holds in any Noetherian regular
local ring containing a field. Therefore we do not dwell on the question
finding the most general situation in which the arguments of the present

paper apply.

We conclude with a result which renders effective and extends in certain
directions a formulation due to Hiibl and Swanson ([7], (1.4)) of a theorem
of Izumi [9]:

Theorem 2.6. Letv : Y —> X be aproper birational map between smooth
complex varieties. Let E C Y be a prime divisor, set

L = 1+0FdE(Ky/X)

and for k > 1 put o, = v,Oy(—kE). Fix an irreducible subvariety Z C X
such that Z C v(E) and denote by p = 1y the ideal of Z. Then

0un C 9" forall m > 1.

Remark 2.7. The result discussed in [7] — which holds in considerably more
general settings, but without the explicit determination of the coefficient ¢
of m — deals with the situation in which E maps to a point. It was in trying
to understand this result that we were led to the statements about symbolic
powers.

Proof of Theorem 2.6. We can assume without loss of generality that E is
v-exceptional and that Z = v(E), so that v,Oy(—E) = p. Applying (2.1)
to the graded family o, = {o;} (Example 1.2(iv)), it suffices to prove that
9 (|lo¢]l) < p. We suppose to this end that we’ve fixed a large integer p >> 0
such that the multiplier ideal g (|lo,|) = g(% - 0p¢) in question is computed
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on a log resolution u : X" — X of 0,, dominating v : ¥ — X. Then E
gives rise to a prime divisor on E’ on X’ — viz. the proper transform of E —
with

ordg (Kx//x) = ordp(Ky/x) = £ —1,

and one has oy = u,Ox (—kE’) for every k > 1.

Let F be the effective Cartier divisor on X’ defined in the usual way by
writing 0,0 - Oy = Ox/(—=F). Since 0,y = uOx (—plE’), we see that E’
appears with coefficient > pf in F. Consequently

OrdE’(KX’/X — [%F]) <-1)—-¢ = —1,
and therefore
Floel) = 1Ox (Kx/x — [%F]) C uOx(—E") = p,

as required. O

3. Generalizations

In the preprint [6], which appeared shortly after the first version of the
present paper, Hochster and Huneke use the theory of tight closure to extend
Theorem 2.2 to arbitrary Noetherian regular local rings containing a field.
They also observe that it is sufficient to assume that ¢ € Oy is unmixed.
In this section we indicate how one applies Theorem 2.1 to treat unmixed
ideals.

We start by recalling the definition of symbolic powers in this more
general setting. Assume for simplicity of exposition that the smooth complex
variety X is affine. Given an ideal ¢ € C[X], fix a primary decomposition

*) q=qN...N0q,

of q, and let ¥; = Zeroes(ﬁ) be the subvarieties of X corresponding
to the associated primes p; = ,/q; of q. Recall that q is unmixed if none
of the associated primes p; are embedded (or equivalently if there are no
inclusions among the Y;). In this case the symbolic powers q® < C[X]
of q are defined as follows. For each associated subvariety Y; of ¢, there is
a natural map ¢; : C[X] — Oy, X from the coordinate ring of X to the
local ring of X along Y;. We then set

h
q® = ﬂ o7 (q" - 9y, X).
i=

In other words, f € q if and only if there is an element s € C[X], not
lying in any of the associated primes p; of g, such that fs € gF.
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Theorem 2.2 then admits the following

Variant. Ler q C C[X] be an unmixed ideal, and assume that every asso-
ciated subvariety Y; of q has codimension < e in X. Then ¢ C q™ for all
natural numbers m > 1.

Sketch of Proof. The symbolic powers q® = {q®¥} again form a graded
family of ideals, so Theorem 2.1 will apply as soon as we establish that
9(119|l) € q. Referring to the primary decomposition (¥), it is enough to
show that

) 9(lq|) < q; foreach I <i < h.

For a given index i, inclusion in g; is tested at a generic point of ;. So having
fixed i we are free to replace X by any open subset meeting Y;. Therefore,
by definition of the symbolic powers, we may assume after localizing that
q® = q*. But in this case Z(|lq|) = ¢(q), and §(q°) < q < q; thanks
to a variant of a theorem of Skoda (cf. [12]). O

Remark 3.1. While there are certain similarities of spirit between the argu-
ments appearing here and those of Hochster and Huneke [6] — e.g. both
involve asymptotic constructions, and reduce to the situation in which
q® = g* — the precise connections between the two points of view
remain quite mysterious. In the hopes of understanding these connec-
tions more clearly, it is interesting to observe that the properties of mul-
tiplier ideals used here can be “axiomatized” as follows. Given a graded
family q, = {qx} what is required for the application to symbolic pow-
ers is the existence of ideals #(||q.|]) € Oy satisfying the following
properties:

(1). (g ) is a sheaf on X, i.e. it commutes with localization, and when
qr = a is the trivial family consisting of powers of a fixed ideal a,
then Skoda’s theorem

H(a") S a

holds;’
(). gm € H(||qnl) forall m;
(iii). One has the subadditivity relation:

Hqemll) S FH g’

In our setting, the required ideals are of course given by the asymptotic mul-
tiplier ideals 4 (||q., ||).- However the existence of such ideals # is a purely
algebraic question, and it would be very interesting to give a construction
e.g. using ideas from tight closure. The hope here is that such a construc-
tion might serve as a Rosetta stone to help in deciphering the connections
between the methods of the present note and the theory of tight closure.

O

3 One also could ask for more precise statements involving the codimensions of associated
primes of a.
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