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Abstract. In this paper we generalize and sharpen D. Sullivan’s loga-
rithm law for geodesics by specifying conditions on a sequence of subsets
{At | t ∈ N} of a homogeneous spaceG/Γ (G a semisimple Lie group,
Γ an irreducible lattice) and a sequence of elementsft of G under which
#{t ∈ N | ft x ∈ At} is infinite for a.e.x ∈ G/Γ. The main tool is exponen-
tial decay of correlation coefficients of smooth functions onG/Γ. Besides
the general (higher rank) version of Sullivan’s result, as a consequence we
obtain a new proof of the classical Khinchin-Groshev theorem on simul-
taneous Diophantine approximation, and settle a conjecture recently made
by M. Skriganov.

1. Introduction

1.1. This work has been motivated by the following two related results.
The first one is the Khinchin-Groshev theorem, one of the cornerstones of
metric theory of Diophantine approximation. We will denote byMm,n(R)
the space of real matrices withm rows andn columns, and by‖ · ‖ the norm
onRk, k ∈ N, given by‖x‖ = max1≤i≤k |xi |.
Theorem [G]. Let m, n be positive integers andψ : [1,∞) 7→ (0,∞)
a non-increasing continuous function. Then for almost every (resp. almost
no) A ∈ Mm,n(R) there are infinitely manyq ∈ Zn such that

(1.1) ‖Aq+ p‖m ≤ ψ(‖q‖n) for somep ∈ Zm ,

provided the integral
∫∞

1 ψ(x) dx diverges (resp. converges).
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1.2. The second motivation comes from the paper [Su] of D. Sullivan.
Let Hk+1 stand for thek+ 1-dimensional real hyperbolic space with cur-
vature−1. Take a discrete groupΓ of hyperbolic isometries ofHk+1 such
thatY = Hk+1/Γ is not compact and has finite volume. Fory ∈ Y, denote
by Sy(Y) the set of unit vectors tangent toY at y, and byS(Y) the unit tan-
gent bundle{(y, ξ) | y ∈ Y, ξ ∈ Sy(Y)} of Y. Finally, for (y, ξ) ∈ S(Y) let
γt(y, ξ) be the geodesic onY throughy in the direction ofξ. The following
theorem is essentially proved in [Su] (see Remark (1) in §9):

Theorem. For Y as above, fixy0 ∈ Y, and let{rt | t ∈ N} be an arbitrary
sequence of real numbers. Then for anyy ∈ Y and almost every (resp. almost
no) ξ ∈ Sy(Y) there are infinitely manyt ∈ N such that

(1.2) dist
(
y0, γt(y, ξ)

) ≥ rt ,

provided the series
∑∞

t=1 e−krt diverges (resp. converges).

1.3. A choice rt = 1
~

log t , where~ is arbitrarily close tok, yields the
following statement, which has been referred to as thelogarithm law for
geodesics:

Corollary. For Y as above, anyy ∈ Y and almost allξ ∈ Sy(Y),

(1.3) lim sup
t→∞

dist
(
y, γt(y, ξ)

)
log t

= 1/k .

1.4. It seems natural to ask whether one can generalize the statements
of Theorem 1.2 and Corollary 1.3 to other locally symmetric spaces of
noncompact type. On the other hand, Sullivan used a geometric proof of
the casem = n = 1 of Theorem 1.1 to prove Theorem 1.2; thus one
can ask whether there exists a connection between the general case of the
Khinchin-Groshev theorem and some higher rank analogue of Sullivan’s
result.

In this paper we answer both questions in the affirmative. In particular,
the following generalization of Sullivan’s results can be proved:

Theorem. For any noncompact irreducible1 locally symmetric spaceY of
noncompact type and finite volume there existsk = k(Y) > 0 such that
the following holds: ify0 ∈ Y and {rt | t ∈ N} is an arbitrary sequence
of positive numbers, then for anyy ∈ Y and almost every (resp. almost
no) ξ ∈ Sy(Y) there are infinitely manyt ∈ N such that(1.2) is satisfied,
provided the series

∑∞
t=1 e−krt diverges (resp. converges). Consequently,

(1.3)holds for anyy ∈ Y and almost allξ ∈ Sy(Y).

1 In fact the theorem is true for reducible spaces as well, see §10.2 for details.
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The constantk(Y) can be explicitly calculated in any given special case;
in fact,k(Y) = limr→∞− log

(
vol(A(r))

)
/r , where

(1.4) A(r)
def= {y ∈ Y | dist(y0, y) ≥ r } ,

and “vol” stands for a Riemannian volume. In other words, the series∑∞
t=1 e−krt is, up to a constant, the sum of volumes of setsA(rt). The

latter sets can be viewed as a “target shrinking to∞” (cf. [HV]), and Theo-
rems 1.2 and 1.4 say that if the shrinking is slow enough (read: the sum of
the volumes is infinite), then almost all geodesics approach infinity faster
than the setsA(rt).

This “shrinking target” phenomenon, being one of the main themes
of the present paper, deserves an additional discussion. Thus we have to
make a terminological digression. Let(X, µ) be a probability space and let
F = { ft | t ∈ N} be a sequence ofµ-preserving transformations ofX. Also
let B be a family of measurable subsets ofX.

1.5. Definition. Say thatB is a Borel-Cantelli family forF if for every
sequence{At | t ∈ N} of sets fromB one has

µ
({x ∈ X | ft(x) ∈ At for infinitely manyt ∈ N})

=
{

0 if
∑∞

t=1µ(At) <∞
1 if

∑∞
t=1µ(At) = ∞

Note that the statement on top is always true in view of the classical Borel-
Cantelli Lemma, see §2.3. An important special case isF = { f t | t ∈ N}
for a measure-preserving transformationf : X 7→ X. We will say thatB is
Borel-Cantelli for f if it is Borel-Cantelli for F as above.

It is easy to see thatf : X 7→ X is ergodic (resp. weakly mixing2)
iff every one-element (resp. finite) family of sets of positive measure is
Borel-Cantelli for f . On the other hand, if(X, µ) is nontrivial, then for
any sequence of transformationsF = { ft} one can construct a family (say,
At = ft(A) with 0 < µ(A) < 1) which is not Borel-Cantelli forF.
Therefore in order to describe Borel-Cantelli families of sets for a particular
sequence of maps, it is natural to specialize and impose certain regularity
restrictions on the sets considered.

An important example is given in the paper [P] of W. Philipp: there
X = [0,1], f is an expanding map ofX given by eitherx 7→ {θx}, θ > 1,
or by x 7→ { 1

x} ({·} stands for the fractional part), and it is proved that
the family of all intervals is Borel-Cantelli forf . This means that one can
take anyx0 ∈ [0,1] and consider a “target shrinking tox0”, i.e. a sequence
(x0 − rt, x0 + rt). Then almost all orbits{ f tx} get into infinitely many
such intervals wheneverrt decays slowly enough. This can be thought

2 This characterization of weak mixing was pointed out to us by Y. Guivarc’h and A. Raugi;
see also [CK].
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of as a quantitative strengthening of density of almost all orbits (cf. the
paper [Bos] for a similar approach to the rate of recurrence).

We postpone further discussion of this general set-up until §10.2, and
concentrate on “targets shrinking to infinity” in noncompact spaces. Our
goal is to state a result which will imply both Theorem 1.4 and Theorem 1.1.
For Y as in Theorem 1.4, letG be the connected component of the identity
in the isometry group of the universal cover ofY. ThenG is a connected
semisimple Lie group without compact factors, and the spaceY can be
identified with K\G/Γ, whereΓ is an irreducible lattice inG and K is
a maximal compact subgroup ofG. Instead of working withY, we choose
the homogeneous spaceX = G/Γ as our main object of investigation. Fix
a Cartan subalgebraa of the Lie algebra ofG. It is known [Ma] that the
geodesic flow on the unit tangent bundleS(Y)of Y can be realized via action
of one-parameter subgroups of the form{exp(tz)}, with z ∈ a, on the space
X (see §6 for details). In what follows, we will choose a maximal compact
subgroupK of G, endow X with a Riemannian metric by fixing a right
invariant Riemannian metric onG bi-invariant with respect toK , and letµ
be the normalized Haar measure onX.

Recall that the “neighborhoods of∞” of Theorem 1.4 are the com-
plementsA(r), see (1.4), of balls inY, and it follows from that theorem
that the family{A(r) | r > 0} is Borel-Cantelli for the time-one map of the
geodesic flow. To describe sequences of sets “shrinking to infinity” inX, we
will replace the distance function dist(y0, ·) by a function∆ on X satisfying
certain properties, and consider the family

B(∆)
def= {{x ∈ X | ∆(x) ≥ r } | r ∈ R}

of super-level sets of∆. To specify the class of functions∆ that we will
work with, we introduce the following

1.6. Definition. For a function∆ on X, define thetail distribution function
Φ∆ of ∆ by

Φ∆(z)
def= µ({x | ∆(x) ≥ z}) .

Now say that∆ is DL (an abbreviation for “distance-like”) if it is uniformly
continuous, andΦ∆ does not decrease very fast, more precisely, if

(DL) ∃ c, δ > 0 such thatΦ∆(z+ δ) ≥ c ·Φ∆(z) ∀z≥ 0 .

Fork > 0, we will also say that∆ is k-DL if it is uniformly continuous and
in addition

(k-DL) ∃C1,C2 > 0 such thatC1e−kz ≤ Φ∆(z) ≤ C2e
−kz ∀ z ∈ R .

It is clear that (k-DL) implies (DL). Note that DL functions onX exist
only whenX is not compact (see §4.3). The most important example (§5)
is the distance function onX. Thus the following theorem can be viewed as
a generalization of Theorem 1.4:
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1.7. Theorem. Let G be a connected semisimple Lie group without com-
pact factors,Γ an irreducible lattice inG, a a Cartan subalgebra of the Lie
algebra ofG, z a nonzero element ofa. Then:

(a) if ∆ is a DL function onX = G/Γ, the familyB(∆) is Borel-Cantelli
for exp(z);

(b) if ∆ is k-DL for somek > 0, then for almost allx ∈ X one has

(1.5) lim sup
t→+∞

∆
(

exp(tz)x
)

log t
= 1/k .

In particular, (1.3) can be derived from (1.5) by takingG = SOk+1,1(R)
and∆(x) = dist(x0, x) for fixed x0 ∈ G/Γ.

1.8. In fact, it is possible to derive a version of Theorem 1.7 for actions of
multi-parameter subgroups ofG. More generally, we will consider actions
of arbitrary countable sequences{ ft | t ∈ N} of elements ofG. To specify
a class of sequences good for our purposes, denote by‖g‖ the distance
betweeng ∈ G and the identity element ofG, and say that a sequence{ ft}
is ED (an abbreviation for “exponentially divergent”) if

(ED) sup
t∈N

∞∑
s=1

e−β‖ fs f−1
t ‖ <∞ ∀β > 0 .

In this setting we state the following general result:

Theorem. For G andΓ as in Theorem 1.7, letF = { ft | t ∈ N} be an ED
sequence of elements ofG and∆ a DL function onG/Γ. Then the family
B(∆) is Borel-Cantelli forF.

1.9. Clearly Theorem 1.7 is a special case of the above theorem: it is
easy to check (see §4.4) that the sequenceft = exp(tz), with z ∈ a r {0},
satisfies (ED). More generally, the following multi-parameter generalization
of Theorem 1.7 can be derived from Theorem 1.8:

Theorem. For G, Γ, X anda as in Theorem 1.7,
(a) if ∆ is a DL function onX, andt 7→ zt is a map fromN to a such

that

(1.6) inf
t1 6=t2
‖zt1 − zt2‖ > 0 ,

then the familyB(∆) is Borel-Cantelli for{exp(zt) | t ∈ N};
(b) if ∆ is k-DL for somek > 0, andd+ is a nonempty open cone in a

d-dimensional subalgebrad of a (1 ≤ d ≤ rankR(G)), then for almost all
x ∈ X one has

(1.7) lim sup
z∈d+, z→∞

∆
(

exp(z)x
)

log‖z‖ = d/k .
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1.10. From the above theorem one can get logarithm laws for flats in
locally symmetric spaces. Let the spaceY be as in Theorem 1.4. As usual,
by ad-dimensional flat inY (1 ≤ d ≤ rank(Y)) we mean the image ofRd

under a locally isometric embedding intoY. For y ∈ Y, denote bySd
y(Y)

the set of orthonormald-tuples of vectorsξi ∈ Sy(Y)which form a basis for
a tangent space to a flat passing throughy. The setSd

y(Y) is a real algebraic
variety coming with the natural measure class, which makes it possible to
talk about “almost all flats passing throughy”. If Eξ = (ξ1, . . . , ξd) ∈ Sd

y(Y),

we will denote byt = (t1, . . . , td) 7→ γt(y, Eξ) the embedding specified byEξ,

that is, we letγt(y, Eξ) def= expy(
∑

i ti ξi ) (a multi-dimensional analog of the
geodesic in the direction of a single vectorξ ∈ Sy(Y)).

Theorem. Let Y, y0 and k = k(Y) be as in Theorem 1.4. Take1 ≤
d ≤ rank(Y) and a nonempty open coned+ ⊂ Rd, and let t 7→ r t , t ∈
d+ ∩ Zd, be a real-valued function. Then for anyy ∈ Y and almost every
(resp. almost no)Eξ ∈ Sd

y(Y) there are infinitely manyt ∈ d+ ∩ Zd such

that dist
(
y0, γt(y, Eξ)

) ≥ r t , provided the series
∑

t∈d+∩Zd e−krt diverges

(resp. converges). Consequently, for anyy ∈ Y and almost allEξ ∈ Sd
y(Y)

one has

(1.8) lim sup
t∈d+, t→∞

dist
(
y, γt(y, Eξ)

)
log‖t‖ = d/k .

1.11. Another class of applications of Theorems 1.7 and 1.9 is given by
a modification of S.G. Dani’s [D, §2] correspondence between Diophantine
approximation of systems ofm linear forms inn variables and flows on the
space of lattices inRk, wherek = m+ n. Namely, considerG = SLk(R),
Γ = SLk(Z), and the function∆ on the spaceG/Γ of unimodular lattices
in Rk defined by

(1.9) ∆(Λ)
def= max

v∈Λr{0}
log

(
1
‖v‖
)
.

Denote also byft the element ofG of the form

(1.10) ft = diag(et/m, . . . ,et/m︸ ︷︷ ︸
m times

,e−t/n, . . . ,e−t/n︸ ︷︷ ︸
n times

) .

We will show in §8 that Theorem 1.1 follows from the fact that the family
B(∆) is Borel-Cantelli for f1. Using similar technique, one can also prove
a result that was, in somewhat weaker form, conjectured by M. Skriganov
in [Sk]:

Theorem. Let ψ : [1,∞) 7→ (0,∞) be a non-increasing continuous
function andk an integer greater than1. Then for almost every (resp. almost
no) unimodular latticeΛ in Rk there are infinitely manyv ∈ Λ such that

(1.11) Π(v) ≤ ‖v‖ · ψ(‖v‖)



Logarithm laws for flows on homogeneous spaces 457

(here and hereafter we use the notationΠ(v) def= ∏k
i=1 |vi | for v =

(v1, . . . , vk) ∈ Rk), provided the integral
∫∞

1 (log x)k−2ψ(x)dx diverges
(resp. converges).

In §9 we will explain why the above statement can be thought of as
a higher-dimensional multiplicative generalization of Khinchin’s Theorem,
and how one can derive it from Theorem 1.9 by considering the action of
the whole Cartan subgroup ofSLk(R) on the spaceSLk(R)/SLk(Z).

The paper is organized as follows. In §2 we work in a general setting
of a probability space(X, µ) and a sequence of nonnegative measurable
functionsH = {ht | t ∈ N} on X, and, following V. Sprinďzuk, write down
a condition (Lemma 2.6) which guarantees that for almost everyx ∈ X the
sum

∑∞
t=1 ht(x) is infinite. Then we throw in a measure preserving action

of F = { ft | t ∈ N} and apply the aforementioned results to thetwisted

sequenceH F def= { f −1
t ht}.

In §3 we restrict ourselves to flows onG/Γ and prove the following

1.12. Theorem. Let G be a connected semisimple center-free Lie group
without compact factors,Γ an irreducible lattice inG, and letρ0 stand for
the regular representation ofG on the subspace ofL2(G/Γ) orthogonal to
constant functions. Assume in addition thatG/Γ is not compact. Then the
restriction ofρ0 to any simple factor ofG is isolated (in the Fell topology)
from the trivial representation.

The latter condition is known (cf. [KM, §2.4]) to guarantee exponential
decay of correlation coefficients of smooth functions onG/Γ, see Corol-
lary 3.5. In the next section we use the fact that∆ is DL to approximate
characteristic functions of the sets{x ∈ G/Γ | ∆(x) ≥ rt} by smooth
functionsht. A quantitative strengthening of Theorem 1.8 is then proved
by deriving Sprinďzuk’s condition from estimates on decay of correlation
coefficients of functionsht. Theorem 1.9 (hence 1.7 as well) is also proved
in §4. After that we describe applications to geodesics and flats in locally
symmetric spaces (Theorems 1.4 and 1.10) and Diophantine approximation
(Theorems 1.1 and 1.11).

2. Borel-Cantelli-type results

2.1. Let (X, µ) be a probability space. We will use notationµ(h) =∫
X h dµ for an integrable functionh on X. Let us consider sequencesH =
{ht | t ∈ N} of nonnegative integrable3 functions onX, and, for N =

3 Throughout the sequel all the functionsht will be assumed measurable, integrable,
a.e. nonnegative and nonzero on a set of positive measure.
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1, . . . ,∞, denote

SH,N(x)
def=

N∑
t=1

ht(x) and EH,N
def=

N∑
t=1

µ(ht) = µ(SH,N) ;

this notation will be used throughout the paper. We will omit the index
H when it is clear from the context. A special case of such a sequence is
given by characteristic functionsht = 1At , whereA = {At | t ∈ N} is
a sequence of measurable subsets ofX. In this case we will put the index
A in place ofH in the above notation. We will say that a sequenceH
(resp.A) of functions (resp. sets) issummableif EH,∞ (resp. EA,∞) is
finite, andnonsummableotherwise.

Main example.If ∆ is any function onX and{rt | t ∈ N} a sequence of real
numbers, one can consider the sequence of super-level sets{x | ∆(x) ≥ rt}
of ∆; their measures are equal toΦ∆(rt), whereΦ∆ is the tail distribution
function (see §1.6) of∆.

2.2. Another main example. Let F = { ft | t ∈ N} be a sequence of
µ-preserving transformations ofX. Then given any sequenceH = {ht |
t ∈ N} of functions onX or a sequenceA = {At | t ∈ N} of subsets ofX,
one can considertwistedsequences

H F def= { f −1
t ht | t ∈ N} and AF def= { f −1

t At | t ∈ N} .
By F-invariance ofµ, EHF ,N is the same asEH,N for any N ∈ N; in
particular, the twisted sequence is summable if and only if the original
one is.

2.3. Given a sequenceA = {At | t ∈ N} and aµ-generic pointx ∈ X, one
may want to look at the asymptotics ofSA,N(x) = #{1 ≤ t ≤ N | x ∈ At}
in comparison with the sumEA,N of measures of the setsAt , 1≤ t ≤ N,
asN →∞. This is for example the subject of the classical Borel-Cantelli
Lemma. In general, for a sequenceH of functions onX, it is very easy to
estimate the ratio ofSH,N(x) andEH,N from above as follows:

Lemma (cf. [KS, part (i) of the Theorem]).Let (X, µ) be a probability
space,H a sequence of functions onX. Then

lim inf
N→∞

SH,N(x)

EH,N
<∞ for µ-a.e.x ∈ X .

In particular, if H is summable,SH,∞ is finite almost everywhere.

Proof. By the Fatou Lemma,

µ
(

lim inf
N→∞

SH,N

EH,N

)
≤ lim inf

N→∞
µ

(
SH,N

EH,N

)
= 1 .

ut
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One immediately recognizes the last assertion as the conclusion of the
easy part of the classical Borel-Cantelli Lemma. It takes care of the conver-
gence cases in all the Khinchin-type theorems stated in the introduction, as
well as of the upper estimates for the limits in logarithm laws (1.3), (1.5),
(1.7) and (1.8).

2.4. The corollary below will make the connection with logarithm laws
more transparent. We need the following terminology: a real-valued function
r(·) will be calledquasi-increasingif there exists a constantC such that

(2.1) r(t2) > r(t1)− C whenevert1 ≤ t2 < t1+ 1 .

Corollary. LetX be a metric space,µ a probability measure onX, d, k ∈ N,
d+ ⊂ Rd a nonempty open cone,z 7→ fz a continuous4 homomorphism
from d+ to the semigroup of all self-maps ofX, ∆ a k-DL function onX.
For somet0 ∈ R, let r : [t0,∞) 7→ R be a quasi-increasing function such
that the integral

(2.2)

∞∫
t0

td−1e−kr(t) dt

converges. Then forµ-almost allx ∈ X one has∆
(

fz(x)
)
< r(‖z‖) when-

everz ∈ d+ is far enough from0. Consequently,

(2.3) lim sup
z∈d+, z→∞

∆
(

fz(x)
)

log‖z‖ ≤
µ-a.e.

d/k .

Proof. Choose a latticeΣ in Rd; from (2.1) and the convergence of (2.2) it
follows that the series

(2.4)
∑

z∈d+∩Σ, ‖z‖≥t0

e−kr(‖z‖)

converges. Clearly for anyz ∈ d+ far enough from 0 one can findz′ ∈ d+∩Σ
such that

(2.5) ‖z‖ − 1≤ ‖z′‖ ≤ ‖z‖ ,
and‖z′ −z‖ is less than some uniform constantC1. Since the correspondence
z 7→ fz iscontinuous,forsomeC2 onethenhassupx∈X dist

(
fz(x), fz′(x)

)
< C2;

further, from the uniform continuity of∆ it follows that for someC3 one has

(2.6) sup
x∈X
|∆( fz(x)

)−∆
(

fz′(x)
)| < C3 .

4 Here by the distance between two mapsf1, f2 : X 7→ X we mean supx∈X distX
(

f1(x)−
f2(x)

)
.
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Now consider the sequence of setsA
def= {{x ∈ X | ∆(x) ≥ r(‖z‖) −

C− C3}
∣∣ z ∈ d+ ∩ Σ

}
, with C as in (2.1), andF = { fz | z ∈ d+ ∩ Σ}. It

follows from the convergence of (2.4) and∆ being DL thatA is summable.
Applying Lemma 2.3 to the twisted sequenceAF, one concludes that for
almost allx one has∆

(
fz′(x)

)
< r(‖z′‖)−C−C3 for z′ ∈ d+∩Σ with large

enough‖z′‖. In view of (2.1), (2.5) and (2.6), this implies that for almost
all x one has∆

(
fz(x)

)
< r(‖z‖) for all z ∈ d+ with large enough‖z‖. The

second part of the corollary is obtained by takingr(t) = d
~

log t with ~ < k.
The integral (2.2) obviously converges, therefore for almost allx one has
∆( fz(x))
log‖z‖ <

d
~

wheneverz ∈ d+ is far enough from 0, and (2.3) follows. ut

2.5. Example. TakeX = S(Y)as in §1.2,µ the Liouville measure onS(Y),
fix y0 ∈ Y and let∆

(
(y, ξ)

) = dist(y0, y). As mentioned in [Su, §9],∆ is
k-DL. From the above corollary (withd = 1 andd+ = R+) one concludes
that lim supt→∞

dist(y0,γt (y,ξ))
log t as t → ∞ is not greater than 1/k. To derive

the upper estimate for the limit in Corollary 1.3 from the above statement,
it suffices to observe that for any two pointsy1, y2 of Y:

• the functions dist(y1, ·) and dist(y2, ·) differ by at most dist(y1, y2), and
• for any geodesic rayγ starting fromy1 there is a geodesic ray starting

from y2 which stays at a bounded distance fromγ .

2.6. Let F be a sequence ofµ-preserving transformations ofX andB
a family of measurable subsets ofX. From Lemma 2.3 it is clear thatB is
Borel-Cantelli forF iff for any nonsummable sequenceA of sets fromB
one hasSAF ,∞ = ∞ for almost allx ∈ X. Therefore we are led to studying
asymptotical lower estimates forSH,N/EH,N, with H as in §2.1.

One can easily find many examples of sequencesH for which the above
ratio almost surely tends to zero asN→∞. It is also well known (see [Sp,
p. 317] for a historical overview) that the estimates we are after follow
from certain conditions on second moments of the functionsht. We will
employ a lemma which was abstracted by V. Sprindžuk from the works of
W. Schmidt (see also [P] for a related result).

Lemma ([Spr, Chapter I, Lemma 10]).For a sequenceH = {ht | t ∈ N}
of functions onX, assume that

(2.7) µ(ht) ≤ 1 for all t ∈ N
and

(SP) ∃C > 0 such that
∫
X

( N∑
t=M

ht(x)−
N∑

t=M
µ(ht)

)2
dµ

≤ C ·
N∑

t=M
µ(ht) ∀ N > M ≥ 1 .
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Then for any positiveε one has, asN→∞,

(2.8) SH,N(x) = EH,N + O
(

E1/2
H,N log3/2+ε EH,N

)
for µ-a.e.x ∈ X; in particular,

SH,N(x)

EH,N
→
a.e.

1 as N →∞ wheneverH is

nonsummable.

2.7. Remark. Note that the left hand side of (SP) is equal to

(2.9)
∫
X

( N∑
t=M

ht

)2

dµ−
( N∑

t=M

µ(ht)

)2

=
N∑

s,t=M

(
µ(hsht)− µ(hs)µ(ht)

)
.

This shows that (SP) will hold provided the correlation coefficients
|µ(hsht)− µ(hs)µ(ht)| become small for large values of|s− t|. Our plan
is to apply Lemma 2.6 to the twisted sequencesH F , where F is as in
Theorem 1.8 andH consists of smooth functions onG/Γ. The exponential
decay of correlations under theF-action, the main result of the next section,
will be enough to guarantee (SP).

2.8. We close the section with a partial converse to Corollary 2.4, which
we will use later for the derivation of logarithm laws.

Lemma. Let X, µ, d, k, d+, z 7→ fz, ∆ andt0 be as in Corollary 2.4, and
let r : [t0,∞) 7→ R be a quasi-increasing function such that the integral
(2.2)diverges. Assume that there exists a latticeΣ inRd such that the family

B(∆) of super-level sets of∆ is Borel-Cantelli forF
def= { fz | z ∈ d+ ∩Σ}.

Then forµ-almost allx ∈ X there existz ∈ d+ arbitrarily far from 0 such

that∆
(

fz(x)
) ≥ r(‖z‖) . Consequently,lim sup

z∈d+, z→∞
∆

(
fz(x)
)

log‖z‖ ≥
µ-a.e.

d/k .

Proof. From (2.1) and the divergence of (2.2) it follows that the series
(2.4) is divergent. In view of∆ being k-DL and by definition ofB(∆)
being Borel-Cantelli forF, one gets∆

(
fz(x)

) ≥ r(‖z‖) almost surely for
infinitely manyz ∈ d+ ∩ Σ, hence the first part of the lemma. The second
part is immediate by takingr(t) = d

k log t. ut

3. Isolation properties of representations and correlation decay

3.1. Let G be a locally compact second countable group. Recall that the
Fell topology on the set of (equivalence classes of) unitary representationsρ
of G in separable Hilbert spacesV is defined so that the sets{ρ ∣∣ ‖ρ(g)v−v‖
< ε‖v‖ ∀g ∈ K ∀v ∈ V}, whereε > 0 andK runs through all compact
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subsets ofG, constitute a basis of open neighborhoods of the trivial repre-
sentationIG of G. (See the Appendix and [M, Chapter III] for more detail.)
If (X, µ) is a probability space and(g, x) 7→ gx aµ-preserving action of
G on X, we will denote byL2

0(X, µ) the subspace ofL2(X, µ) orthogonal
to constant functions. Our proof of Theorem 1.12 will use the following
result, communicated by A. Furman and Y. Shalom, which will allow us to
pass from a space to its finite covering:

Lemma. Let (X1, µ1) and (X2, µ2) be probability spaces,G a locally
compact second countable group acting ergodically on both, and letπ :
X1 7→ X2 be a surjective measurableG-equivariant map such that for some
positivec< 1 one has

(3.1) cµ1(A) ≤ µ2
(
π(A)

) ≤ 1

c
µ1(A) for any A ⊂ X1 .

Denote byρi,0 the regular representation ofG on L2
0(Xi , µi ) (i = 1,2).

Thenρ1,0 is isolated fromIG iff so isρ2,0.

The proof of Furman and Shalom is based on the connection between
ρ0 being close toIG and existence of nontrivialG-invariant means on
L∞(X, µ) [FS, Theorem 1.8]. In the Appendix we give a more transparent
proof, based on the notion of asymptotically invariant sequences of subsets
of X. The argument goes back to J. Rosenblatt [Ro] and K. Schmidt [S] and
runs more or less in parallel to the proof given in [FS].

3.2. Let now G be a connected semisimple center-free Lie group with-
out compact factors,Γ an irreducible lattice inG, µ the normalized Haar
measure on the homogeneous spaceG/Γ. It is known (see [B, Lemma 3])
that the regular representationρ0 of G on L2

0(G/Γ, µ) is isolated fromIG.
The latter property is also known to be equivalent to the followingspectral
gap condition: there exist a positive lower bound for the spectrum of the
Laplacian1 on K\G/Γ, whereK is a maximal compact subgroup ofG.

If G is a direct product of simple groupsG1, . . . ,Gl , one can decompose
1 as a sum11 + · · · + 1l , where1i corresponds to coordinates coming
from Gi . Then a lower bound for the spectrum of1i amounts to the isolation
of ρ0|Gi from the trivial representationI |Gi of Gi . In the paper [KM] it
was implicitly conjectured that restrictionsρ0|Gi are isolated fromI |Gi .
Theorem 1.12 proves this conjecture in the non-uniform lattice case. The
main ingredient of the proof is an explicit bound for the bottom of spectra of
Laplacians given by M.-F. Vigneras in [V]. The reduction to the case where
these bounds are applicable is based on Lemma 3.1, the Arithmeticity
Theorem and the restriction technique of M. Burger and P. Sarnak. We now
present the

Proof of Theorem 1.12.If G is simple, the claim follows from [B, Lem-
ma 4.1]. Therefore we can assume that theR-rank of G is greater than 1.
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By Margulis’ Arithmeticity Theorem (see [Z, Theorem 6.1.2] or [M, Chap-
ter IX]), Γ is an arithmetic lattice inG. That is, there exists a semisimple
algebraicQ-groupG and a surjective homomorphismϕ : G(R)0 7→ G such
that:

(i) Kerϕ is compact, and
(ii) the subgroupsϕ

(
G(Z) ∩G(R)0

)
andΓ are commensurable.

Further, sinceΓ is non-uniform andG is center-free,G can be taken to
be connected and adjoint, and Kerϕ to be trivial (see [Z, Corollary 6.1.10]).
By (ii) above, the spacesG/Γ andG/ϕ

(
G(Z)

)
have a common finite cov-

ering. In view of Lemma 3.1, without loss of generality one can assume that
Γ = G(Z) andG = G(R).

Write G in the form Rk/Q G̃, wherek is a finite extension ofQ, G̃ is
an absolutelyk-simple k-group, andRk/Q stands for Weil’s restriction of
scalars functor (see [T2, 3.1.2]). Namely,G = ∏l

i=1 G̃σi , whereσ1, . . . , σl
are distinct imbeddings ofk into C. This way, factorsGi of G can be
identified withG̃σi (R) if σi is real, or withG̃σi (C) if σi is complex.

Since Γ is non-uniform, G̃ is isotropic overk (see [M, Theorem
I.3.2.4(b)]), therefore (see [T1, 3.1, Proposition 13] or [M, Proposition
I.1.6.3]) there exists ak-morphismα̃ : SL2 7→ G̃ with finite kernel. Denote
the α̃-image ofSL2 by H̃, and letH = Rk/Q H̃ and H = H(R). Clearly to
show thatρ0|Gi is isolated fromI |Gi , it will be enough to prove thatρ0|Hi is
isolated fromI |Hi , whereHi are almost simple factors ofH, isomorphic to
H̃σi (C) for complex imbeddingsσi and toH̃σi (R) for real ones.

We now use Theorem 1.1 from the paper [BS], which guarantees that
ρ0|H lies in the closure of theautomorphic spectrumof H (the latter
stands for irreducible components of representations ofH on all the spaces
L2(H/Λ) whereΛ is a congruence subgroup ofH(Z)). Denote byL the
algebraic groupRk/QSL2 and byα the isogenyL 7→ H induced byα̃.
Note that homogeneous spacesH/Λ can be identified withL(R)/α−1(Λ),
and preimages of congruence subgroups ofH(Z) are congruence subgroups
of L(Z). Therefore it suffices to check that nontrivial irreducible compo-
nents of regular representations of almostR-simple factors ofL(R) on
L2
(
L(R)/Λ

)
are uniformly isolated from the trivial representation for all

i = 1, . . . , r and all principal congruence subgroupsΛ of L(Z). The latter
statement is a reformulation of one of the corollaries in Section VI of the
paper [V], with the uniform bound for the first nonzero eigenvalue of the
corresponding Laplace operators being equal to 3/16 for real and 3/4 for
complex imbeddingsσi . ut
3.3. Remark. One can also prove Theorem 1.12 without using Lemma 3.1
by extending the result of Vigneras to arbitrary subgroups ofH(Z) rather
than congruence subgroups. For this one can use the centrality of the congru-
ence kernel for higher rank groups, see [R2], and the results of Y. Flicker [F]
on lifting of automorphic representations to metaplectic coverings ofGL2.
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This way it should be possible to get an explicit uniform (in allG andΓ)
bound for the neighborhood of the trivial representation which is disjoint
from all the restrictionsρ0|Gi .

3.4. We now turn to the paper [KM], where the well-known (from the
work of Harish Chandra, Howe, Cowling and Katok-Spatzier) connection
between isolation properties ofρ0 and exponential decay of its matrix coef-
ficients has been made explicit. LetG be a connected semisimple Lie group
with finite center,K its maximal compact subgroup. Take an orthonormal
basis{Xi } of the Lie algebra ofK , and denote byϒ the differential operator
1−∑dim(K)

i=1 X2
i (see [W, §4.4.2]).

Theorem (see [KM, Corollary 2.4.4] and a correction on p. 172).Let Π
be a family of unitary representations ofG such that the restriction ofΠ
to any simple factor ofG is isolated from the trivial representation. Then
there exist a universal constantB> 0, a positive integerl (dependent only
on G) andβ > 0 (dependent onΠ and on the choice of the bi-K-invariant
norm‖g‖ = dist(g,e) on G) such that for anyρ ∈ Π, anyC∞-vectorsv,
w in a representation space ofρ and anyg ∈ G one has

(3.2)
∣∣(ρ(g)v,w)∣∣ ≤ Be−β‖g‖‖ϒl(v)‖‖ϒl(w)‖ .

Combining Theorem 3.4 and Theorem 1.12, we obtain the following

3.5. Corollary. Let G be a connected semisimple center-free Lie group
without compact factors,Γ an irreducible non-uniform lattice inG, X =
G/Γ, µ the normalized Haar measure onX. Then there existB, β > 0 and
l ∈ N such that for any two functionsϕ,ψ ∈ C∞2 (X) and anyg ∈ G one
has ∣∣(gϕ,ψ)− µ(ϕ)µ(ψ)∣∣ ≤ Be−β‖g‖‖ϒl(ϕ)‖‖ϒl(ψ)‖ ,
where C∞2 (X) = { f ∈ C∞(X) | A( f ) ∈ L2(X) for any A from the
enveloping algebra of the Lie algebra of G}.
Proof. The familyΠ = {ρ0} satisfies the assumption of Theorem 3.4 in view
of Theorem 1.12. Therefore one can apply (3.2) to the functionsϕ − µ(ϕ)
andψ − µ(ψ). ut

4. A quantitative version of Theorem 1.8

4.1. Let G, Γ andµ be as in Theorem 1.12, and denote the (noncompact)
homogeneous spaceG/Γ by X. Our first goal is to apply Lemma 2.6 to
certain sequences of functions onX. For l ∈ N and C > 0, say that
h ∈ C∞2 (X) is (C, l)-regular if

‖ϒl(h)‖ ≤ C · µ(h) .
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Proposition. Assume thatF = { ft | t ∈ N} is an ED sequence of elements
of G. Takel ∈ N as in Corollary 3.5 and an arbitraryC > 0, and let
H = {ht} be a sequence of(C, l)-regular functions onX such that(2.7)
holds. Then the twisted sequenceH F satisfies(SP); in particular, (2.8)
holds and

lim
N→∞

SHF ,N(x)

EH,N
= 1 for µ-a.e. x ∈ X

wheneverH is nonsummable.

Proof. In view of (2.9), one has to estimate the sum

(4.1)
N∑

s,t=M

(
( f −1

s hs, f −1
t ht)− µ(hs)µ(ht)

)
from above. Observe that, sinceµ is F-invariant,

(
f −1
s hs, f −1

t ht
)

− µ(hs)µ(ht) is equal to(
hs, fs f −1

t ht
)− µ(hs)µ(ht)

≤
(by Corollary 3.5)

Be−β‖ fs f−1
t ‖‖ϒl(hs)‖‖ϒl(ht)‖

≤
(by the(C, l)-regularity ofhs, ht )

BC2e−β‖ fs f−1
t ‖µ(hs)µ(ht)

≤
(by (2.7))

BC2e−β‖ fs f−1
t ‖µ(ht) .

Therefore the sum (4.1) is not bigger than

BC2
N∑

s,t=M

e−β‖ fs f−1
t ‖µ(ht) = BC2

N∑
t=M

µ(ht)

N∑
s=M

e−β‖ fs f −1
t ‖

≤ BC2 · sup
t∈N

∞∑
s=1

e−β‖ fs f−1
t ‖ · EN .

In view of (ED), the constant in the right hand side is finite, and (SP) follows;
the “in particular” part is then immediate from Lemma 2.6. ut

4.2. Let now∆ be a DL function onX. Similarly to (1.4), forz ∈ R we
will denote byA(z) the set{x ∈ X | ∆(x) ≥ z} (note that it follows from
(DL) that A(z) is never empty). To prove a quantitative strengthening of
Theorem 1.8 that we are after, we need to learn how to approximate the sets
A(z) by smooth functions.

Lemma. Let ∆ be a DL function onX. Then for anyl ∈ N there exists
C > 0 such that for everyz ∈ R one can find two(C, l)-regular nonnegative
functionsh′ andh′′ on X such that
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(4.2) h′ ≤ 1A(z) ≤ h′′ and c · µ(A(z)) ≤ µ(h′) ≤ µ(h′′) ≤ 1

c
µ
(
A(z)

)
,

with c as in(DL).

Proof. Forε > 0, let us denote byA′(z, ε) the set of all points ofA(z)which

are notε-close to∂A(z), i.e. A′(z, ε) def= {x ∈ A(z) | dist
(
x, ∂A(z)

) ≥ ε},
and by A′′(z, ε) the ε-neighborhood ofA(z), i.e. A′′(z, ε) def= {x ∈ X |
dist

(
x, A(z)

) ≤ ε}. (If A(z) = X, the above sets will coincide withX.)
Chooseδ andc according to (DL). Then, using the uniform continuity

of ∆, find ε > 0 such that

(4.3) |∆(x)−∆(y)| < δ whenever dist(x, y) < ε .

From (4.3) it immediately follows that for allzone hasA(z+δ) ⊂ A′(z, ε) ⊂
A′′(z, ε) ⊂ A(z− δ), therefore one can apply (DL) to conclude that

(4.4) c · µ(A(z)) ≤ µ(A′(z, ε)) ≤ µ(A′′(z, ε)) ≤ 1

c
µ
(
A(z)

)
.

Now take a nonnegativeψ ∈ C∞(G) of L1-norm 1 such that supp(ψ)
belongs to the ball of radiusε/4 centered ine∈ G. Fix z ∈ R and consider

functionsh′ def= ψ ∗ 1A′(z,ε/2) andh′′ def= ψ ∗ 1A′′(z,ε/2). Then one clearly has

1A′(z,ε) ≤ h′ ≤ 1A(z) ≤ h′′ ≤ 1A′′(z,ε) ,

which, together with (4.4), immediately implies (4.2). It remains to observe
that‖ϒl h′‖ = ‖ϒl(ψ ∗ 1A′(z,ε/2))‖ = ‖ϒl(ψ) ∗ 1A′(z,ε/2)‖, so by the Young
inequality,

‖ϒl h′‖ ≤ ‖ϒl(ψ)‖ · µ(A′(z, ε/2)) ≤ ‖ϒl(ψ)‖ · µ(A(z))
≤

(4.2)

1

c
‖ϒl(ψ)‖µ(h′) for anyl ∈ N .

Similarly ‖ϒl h′′‖ ≤ ‖ϒl(ψ)‖ · µ(A′′(z, ε/2)) ≤
(4.4)
‖ϒl(ψ)‖ · 1

cµ
(
A(z)

) ≤
1
c‖ϒl(ψ)‖ · µ(h′′), hence, withC = 1

c‖ϒl(ψ)‖, bothh′ andh′′ are(C, l)-
regular, and the lemma is proven. ut

4.3. We now state and prove the promised quantitative strengthening of
Theorem 1.8.

Theorem. Let G, Γ, F = { ft} and∆ be as in Theorem 1.8, and let{rt} be
a sequence of real numbers such that

(4.5)
∞∑

t=1

Φ∆(rt) = ∞ .
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Then for some positivec≤ 1 and for almost allx ∈ G/Γ one has

c≤ lim inf
N→∞

#{1≤ t ≤ N | ∆( ftx) ≥ rt}∑N
t=1 Φ∆

(
rt
)

≤ lim sup
N→∞

#{1≤ t ≤ N | ∆( ftx) ≥ rt}∑N
t=1 Φ∆

(
rt
) ≤ 1

c
.

It is clear that Theorem 1.8 is a direct consequence of Lemma 2.3 and
the first of the above inequalities. Note that D. Sullivan proved that in the
setting of Theorem 1.2 one has a positive lower bound for

lim sup
N→∞

#{1≤ t ≤ N | dist
(
y0, γt(y, ξ)

) ≥ rt}∑N
t=1 e−krt

for almost allξ ∈ Sy(Y) (see [Su, §9, Remark (2)]).

Proof. First let us assume that the center ofG is trivial; after that we will
reduce the general case to the center-free situation. Observe that from the
existence of a DL function∆ on X it follows that X can not be compact:
indeed,∆ must be uniformly continuous, but unbounded in view of (DL).
Takel as in Corollary 3.5 andC as in Lemma 4.2. For anyt ∈ N, let h′t and
h′′t stand for the(C, l)-regular functions which one associates with the set
A(rt) = {x ∈ X | ∆(x) ≥ rt} by means of Lemma 4.2, and let us denote

A = {A(rt) | t ∈ N} , H ′ = {h′t | t ∈ N} , H ′′ = {h′′t | t ∈ N} .
By (4.5), the sequenceA is nonsummable; hence, in view of (4.2), the
same can be said aboutH ′ andH ′′. Also it is clear from the construction
thatµ(h′t) ≤ µ(h′′t ) ≤ 1. Therefore, asN → ∞, by Proposition 4.1 the
ratiosS(H ′)F ,N(x)/EH ′,N andS(H ′′)F ,N(x)/EH ′′,N tend to 1 forµ-a.e.x ∈ X.
But from (4.2) it follows thatS(H ′)F ,N ≤ SAF ,N ≤ S(H ′′)F ,N and 1

c EH ′,N ≥
EA,N ≥ c · EH ′′,N for any N ∈ N. Thereforeµ-almost everywhere one has

c= lim
N→∞

S(H ′)F ,N(x)
1
c EH ′,N

≤ lim inf
N→∞

SAF ,N(x)

EA,N

≤ lim sup
N→∞

SAF ,N(x)

EA,N
≤ lim

N→∞
S(H ′′)F ,N(x)

c · EH ′′,N
= 1

c
,

and the statement of the theorem follows.
Now let us look at what happens ifG has nontrivial centerZ. Let us

denote the quotient groupG/Z by G′, the homomorphismG 7→ G′ by p,

and the induced mapX 7→ X′ def= G′/p(Γ) by p̄. SinceΓZ is discrete [R1,
Corollary 5.17], p(Γ) is also discrete, henceZ/(Γ ∩ Z) is finite. This
means that(X, p̄) is a finite covering ofX′; moreover, one can choose
representativesg1, . . . , gl (g1 = e) from cosets ofZ/(Γ ∩ Z) which will
act isometrically onX. In particular, the distance betweenx ∈ X andgi x,
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1 ≤ i ≤ l , is uniformly bounded by some constantC. Now, given a DL
function ∆ on X, define∆′ on X′ by ∆′

(
p̄(x)

) = 1
l

∑
y∈ p̄−1◦ p̄(x)∆(y) =

1
l

∑l
i=1 ∆(gi x). Then from the uniform continuity of∆ it follows that∆′ is

also uniformly continuous, and for some constantC′ one has

(4.6) |∆′( p̄(x))−∆(x)| ≤ C′ ∀ x ∈ X .

Therefore for anyz> 0,Φ∆′(z) = µ
({

x ∈ X | ∆′( p̄(x)) ≥ z
})

is bounded
betweenΦ∆(z+C′) andΦ∆(z−C′). This implies that∆′ satisfies (DL) as
well; moreover,

(4.7)
Φ∆′(z)

Φ∆(z)
is uniformly bounded between two positive constants.

Finally, assume that (4.5) holds andF ⊂ G is ED. It follows that{p(F)}
is also ED, and from (4.7) one deduces that

∑∞
t=1 Φ∆′(rt) = ∞ as well.

Therefore one can use the center-free case of Theorem 4.3 and∆′ being
a DL function to conclude that for some 0< c ≤ 1 and forµ-almost all
x ∈ X one has

c≤ lim inf
N→∞

#{1≤ t ≤ N | ∆′( p̄( ftx)
) ≥ rt + C′}∑N

t=1 Φ∆′(rt)

and

lim sup
N→∞

#{1≤ t ≤ N | ∆′( p̄( ftx)
) ≥ rt − C′}∑N

t=1 Φ∆′(rt)
≤ 1

c
.

Clearly (4.6) implies that

∆′
(
p̄( ftx)

) ≥ rt + C′ ⇒ ∆( ftx) ≥ rt ⇒ ∆′
(
p̄( ftx)

) ≥ rt − C′.
Therefore to finish the proof it remains to replace the values ofΦ∆′ by those
of Φ∆, sacrificing no more than a multiplicative constant in view of (4.7).ut
4.4. Proof of Theorems 1.7 and 1.9.Recall that in part (a) of Theorem 1.9
we are given a sequenceF = { ft} = {exp(zt)} such that (1.6) holds. It is
easy to check thatF satisfies (ED): for anyβ > 0 one can write

sup
t∈N

∞∑
s=1

e−β‖ fs f−1
t ‖ = sup

t∈N

∞∑
s=1

e−β‖zs−zt‖

≤ sup
t∈N

∞∑
n=0

e−βn#{s | n ≤ ‖zs− zt‖ ≤ n+ 1}

≤
(1.6)

const·
∞∑

n=0

ndim(a)e−βn <∞ .

Therefore Theorem 1.8 applies and one concludes thatB(∆) is Borel-
Cantelli forF. Part (b) is then immediate from Corollary 2.4 and Lemma 2.8.
It remains to notice that Theorem 1.7 is a special case of Theorem 1.9, with
zt = tz, d = 1, d = Rz andd+ = {tz | t ≥ 0}. ut
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5. Distance functions are DL

5.1. The goal of the section is to prove the following

Proposition. LetG be a connected semisimple Lie group,Γ a non-uniform
irreducible5 lattice in G, K a maximal compact subgroup ofG, µ the nor-
malized Haar measure onG/Γ, x0 a point inG/Γ, dist(·, ·) a Riemannian
metric onG/Γ chosen by fixing a right invariant Riemannian metric onG
bi-invariant with respect toK. Then there existsk > 0 such that the function
dist(x0, ·) is k-DL.

5.2. Remark. Let (X1, x1) and(X2, x2) be pointed metric spaces with prob-
ability measuresµ1 andµ2, and letπ : X1 7→ X2 be a measurable sur-
jective map which almost preserves distances from base points (i.e. with
supx∈X1

∣∣dist(x1, x)−dist
(
x2, π(x)

)∣∣ <∞) and satisfies the following prop-
erty: for some positivec< 1 one has

cµ2(A) ≤ µ1
(
π−1(A)

) ≤ 1

c
µ2(A) for any A ⊂ X2 .

Then the function dist(x1, ·) on X1 is k-DL iff so is dist(x2, ·) on X2. This
observation will be used many times in the proof below, sometimes without
explicit mention. Examples include:

• X1 = X2, µ1 = µ2 (shift of base point);
• X1 = X2×Q (the direct product of metric and probability spaces),π the

projection onX2, diam(Q) <∞;
• X1

π7→ X2 a finite covering,µ2 = π(µ1).

5.3. Proof of Proposition 5.1.First suppose that theR-rank ofG is greater
than 1. Then, using the Arithmeticity Theorem, as in the proof of Theo-
rem 1.12 (see §3.2) we can assume thatG = G(R), whereG is a semisimple
algebraicQ-group andΓ is an arithmetic subgroup ofG(Q).

We now need to use the reduction theory for arithmetic groups. LetT
be a maximalQ-split torus ofG. Denote the identity component ofT(R)
by A, and its Lie algebra bya. Let Φ be a system ofQ-roots associated
with a. Choose an ordering ofΦ, let Φ+ (resp.Φs) be the set of positive
(resp. simple) roots, and leta+ stand for the closedQ-Weyl chamber ina

defined bya+
def= {z ∈ a | α(z) ≥ 0 ∀α ∈ Φs} . We setA+

def= exp(a+).
Let G = K AMU be a (generalized) Iwasawa decomposition forG,

whereK is maximal compact inG, U is unipotent andM is reductive (here
A centralizesM and normalizesU). Then one defines ageneralized Siegel

set SQ,τ as follows:SQ,τ
def= K exp(aτ )Q, whereQ is relatively compact

in MU, τ ∈ R andaτ
def= {z ∈ a | α(z) ≥ τ ∀α ∈ Φs}. It is known that

5 Again, the proposition is also true for reducible lattices, see §10.2.
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a finite union of translates of such a set (for suitableQ andτ) forms aweak
fundamental setfor theG-action onG/Γ. More precisely, the following is
true:

5.4. Theorem ([Bo, §13] or [L, Proposition 2.2]).Let G be a semisimple
algebraicQ-group andΓ an arithmetic subgroup ofG(Q). Then there exist
a generalized Siegel setS = SQ,τ ⊂ G = G(R) and{q1, . . . ,qm} ⊂ G(Q)
such that the unionΩ

def= ∪m
i=1 Sqi satisfies the following two properties:

(i) G = ΩΓ;
(ii) for anyq ∈ G(Q), the set{γ ∈ Γ | Ωq∩Ωγ } is finite.

In other words, the restriction toΩ of the natural projectionπ of G onto
G/Γ is surjective and at most finite-to-one.

We now want to study metric properties of the restrictionπ|Ω. Since the
distance onG/Γ is defined by distG/Γ

(
π(x), π(y)

) = inf γ∈Γ distG(x, yγ),
one clearly has distG/Γ

(
π(x), π(y)

) ≤ distG(x, y) for any x, y ∈ G. The
converse estimate, withx, y taken from a Siegel set, has been known as
Siegel’s Conjecture. Its proof is due to J. Ding forG = SLn(R) and to
E. Leuzinger and L. Ji (independently) for the general case. Specifically,
the following statement has been proved:

5.5. Theorem ([L, Theorem 5.7] or [J, Theorem 7.6]).For G, Γ, S and
{q1, . . . ,qm} as in Theorem 5.4, there exists a positive constantD such that

distG
(
xqi , yqjγ

) ≥ distG(x, y)− D

for all i, j = 1, . . . ,m, γ ∈ Γ andx, y ∈ S.

In view of the last two theorems and Remark 5.2, it is enough to prove
that the function distG(x0, ·) onΩ is k-DL for somek > 0 andx0 ∈ Ω (with
respect to suitably scaled Haar measure). Further, since the metric onG is
right invariant, it suffices to consider just one copyS = K exp(aτ )Q of the
Siegel set instead of the unionΩ of several translates thereof.

Our next goal is to reduce the problem to the restriction of the distance
function to exp(aτ ). Since the metric onG is right invariant and bi-K -
invariant, the projectionG = K AMU 7→ A is almost distance preserving
(in the sense of Remark 5.2). Furthermore, cf. [Bou1, Ch. VII, §9, Propo-
sition 13], the Haar measure onG is being sent to the measureδ(a)da,
whereda is a Haar measure onA andδ is the restriction of the modular
function of the groupAMU to A. Put differently,δ(a) is the modulus of
the automorphismx 7→ axa−1 of MU (equivalently, ofU, sinceM is cen-
tralized byA). Therefore, ifa = exp(z), z ∈ a, the value ofδ at a is equal

to etr(−adz) = e−ρ(z), whereρ
def= ∑

α∈Φ+ α is the sum of the positive roots.
Since the metric onA is carried froma by the exponential map, it suffices
to find k such that the functionz 7→ ‖z‖ on aτ (equivalently, ona+, since
aτ is an isometric translate of the latter) isk-DL with respect to the measure
const·e−ρ(z) dz.
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Let {α1, . . . , αn} be the simple roots, and{ω1, . . . , ωn} the dual system
of fundamental weights (that is, withαi (ω j ) = δij , i, j = 1, . . . ,n). One
can write

(5.1) ρ =
n∑

i=1

kiαi ,

whereki are positive integers. The following lemma is what one needs to
complete the proof:

5.6. Lemma. Let k = mini=1,...,n
ki
‖ωi ‖ . Then there existC1,C2 > 0 such

that for anyz > 0, the ratio of
∫
{z∈a+, ‖z‖≥z} e

−ρ(z) dz and e−kz is bounded
betweenC1 andC2.

Proof. Without loss of generality assume thatki
‖ωi ‖ is equal tok for 1≤ i ≤ j

and is strictly bigger thank for i > j . Forr > 0, denote byΣr the intersection
of a+ and the sphere of radiusr centered at the origin. This is a spherical

simplex with extremal points (vertices) given byzi
def= r
‖ωi ‖ωi . From the

strict convexity of the ball it follows thatρ|Σr attains its minimal valuekr
at the pointszi , 1 ≤ i ≤ j . Furthermore, one can chooseε, ε′, c > 0 such
that uniformly inr > 0 the set

Σr,ε
def= {z ∈ Σr , ρ(z) ≤ (k+ ε)r }

belongs to the union ofε′r -neighborhoods of the pointszi , 1≤ i ≤ j , and
on each of these neighborhoods one hasρ(z)− kr ≥ c‖z− zi‖.

Denote byσ the induced Lebesgue measure onΣr . Clearly to establish
the desired upper estimate for∫

{z∈a+, ‖z‖≥z}
e−ρ(z) dz=

∞∫
z

∫
Σr

e−ρ(z) dσ(z)dr

it suffices to prove that
∫
Σr

e−ρ(z) dσ(z) is not greater than6 const·e−kr . The
latter inequality follows since∫
Σr

e−ρ(z) dσ(z) ≤
∫

ΣrrΣr,ε

e−ρ(z) dσ(z)+
∫

Σr,ε

e−ρ(z) dσ(z)

≤
∫
Σr

e−(k+ε)r dσ(z)+
j∑

i=1

∫
{z∈Σr , ‖z−zi ‖≤ε′r}

e−(kr+c‖z−zi ‖) dσ(z)

≤ const· r n−1e−(k+ε)r + const· e−kr
∫
Rn−1

e−c‖x‖ dx

≤ const· e−kr .

6 The values of constants in the proof below are independent onr .
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As for the lower estimate, the set{z ∈ a+, ‖z‖ ≥ z} clearly contains
the translatez1+ a+ of a+, where, as before,z1 = z

‖ω1‖ω1 andρ(z1) = kz;
therefore∫
{z∈a+, ‖z‖≥z}

e−ρ(z) dz ≥
∫

z1+a+
e−ρ(z) dz=

∫
a+

e−ρ(z+z1) dz= e−kz
∫
a+

e−ρ(z) dz ,

which finishes the proof. ut
To complete the proof of Proposition 5.1 it remains to observe that in

the case when theR-rank ofG is equal to 1, the proof can be written along
the same lines, by means of the description [GR] of fundamental domains
for lattices in rank-one groups. ut

5.7. Note that the above proof, via Lemma 5.6, provides a constructive way
to express the exponentk for any homogeneous spaceG/Γ via parameters
of the corresponding systemΦ of Q-roots. For example, ifG = SLn(R)
and the metric onG is given by the Killing form, one can compute (using
e.g. [Bou2, Planche I]) the norms of fundamental weightsω1, . . . , ωn−1:

‖ωi‖2 = i(n− i)

n2

(
n(n+ 1)− 2i(n− i)

)
,

and the coefficientski in (5.1):ki = i(n− i)

2
. It follows that the ratio

‖ωi‖2

k2
i

= 4

n2

(
n(n+ 1)

i(n− i)
− 2

)
attains its maximum wheni = 1 orn−1; thereforek = k1

‖ω1‖ = n
2

√
n−1

n2−n+2.
Similar computation can be done for root systems of other types.

6. Geodesics and flats in locally symmetric spaces

6.1. We are now going to use the result of the previous section and derive
Theorems 1.4 and 1.10 from Theorems 1.7 and 1.9 respectively. Throughout
the end of the section,Y ∼= K\G/Γ is a noncompact irreducible locally
symmetric space of noncompact type and finite volume. HereG is the
connected component of the identity in the isometry group of the universal
cover Ỹ of Y, Γ an irreducible lattice inG and K a maximal compact
subgroup ofG, i.e. the stabilizer of a point̃y0 ∈ Ỹ.

Denote byg (resp. k) the Lie algebra ofG (resp. K ). The geodesic
symmetry atỹ0 induces a Cartan decompositiong = k ⊕ p, and one can
identify the tangent space to a pointỹ0 ∈ Y with p. Fix a Cartan subalgebra
a of p. Let a+ be a positive Weyl chamber relative to a fixed ordering
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of the root system of the pair(g, a). Then it is known that the seta1 of
unit vectors ina+ is a fundamental set for theG-action on the unit tangent
bundleS(Ỹ) of Ỹ; that is, every orbit ofG intersects the set{(ỹ0, z) | z ∈ a1}
exactly once. Furthermore, forz ∈ a1, the stabilizer of(ỹ0, z) in G is the
centralizerKz of z in K , so theG-orbit of (ỹ0, z) in S(Ỹ) (resp. theG-orbit

Ez
def= G(y0, z) of (y0, z) in S(Y)) can be identified withKz\G (resp. with

Kz\G/Γ). The setsEz, z ∈ a1, are smooth submanifolds ofS(Y) of finite
Riemannian volume, which form a singular measurable foliation ofS(Y). It
will be convenient to introduce the notationEz,y for the set of allξ ∈ Sy(Y)
for which (y, ξ) ∈ Ez (herey is an arbitrary point ofY). Note that if the
R-rank ofG is equal to 1, the seta1 consists of a single elementz, so one
hasEz = S(Y) andEz,y = Sy(Y) for any y ∈ Y.

It has been shown by F. Mautner [Ma] that the geodesic flowγt on S(Y)
restricted toEz, z ∈ a1, can be described via the action of the one-parameter
subgroup{exp(tz)} of G as follows:

(6.1) γt(KzgΓ) = Kz exp(tz)gΓ .

This clearly provides a link between Theorems 1.4 and 1.7. In particular,
one can prove the following strengthening of Theorem 1.4:

6.2. Theorem. There existsk = k(Y) > 0 such that for anyz ∈ a1 the
following holds: if y0 ∈ Y and {rt | t ∈ N} is a sequence of real numbers,
then for anyy ∈ Y and almost every (resp. almost no)ξ ∈ Ez,y there
are infinitely manyt ∈ N such that(1.2) is satisfied, provided the series∑∞

t=1 e−krt diverges (resp. converges).

Proof. Let p denote the natural projection fromX = G/Γ onto Ez, take
x0 ∈ p−1(y0) and denote by∆ the function distX(x0, ·) on X. Using Propo-
sition 5.1, findk such that∆ is k-DL. If

∑∞
t=1 e−krt = ∞, then, by Theo-

rem 1.7, for anyC > 0 and almost allx ∈ X there are infinitely manyt ∈ N
such that∆

(
exp(tz)x

) ≥ rt + C. But clearly∆(x) and distY(y0, y) differ
by no more than additive constant wheneverp(x) = (y, ξ). Therefore it
follows from (6.1) that the set

(6.2) {(y, ξ) ∈ Ez | (1.2) holds for infinitely manyt ∈ N}

has full measure inEz. To finish the proof of the divergence case, it remains
to notice that for anyy, y′ ∈ Y andξ ∈ Ez,y there existsξ ′ ∈ Ez,y′ such that
dist

(
γt(y, ξ), γt(y′, ξ ′)

)
is uniformly bounded from above for all positivet.

Therefore for anyy ∈ Y the intersection of the set (6.2) withEz,y has full
measure in the latter set. The proof of the easier convergence case follows
the same pattern (and certainly it suffices to use Lemma 2.3 instead of the
full strength of Theorem 1.7). ut
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6.3. Proof of Theorem 1.4.The main statement is a direct consequence of
the above theorem and the decomposition of the volume measures on the
spheresSy(Y) in terms of the measures on the leavesEz,y for all z ∈ a1.
As for the logarithm law (1.3), its validity for the set of pairs(y, ξ) of full
measure inS(Y) immediately follows from Corollary 2.4 and Lemma 2.8,
and then, as in the above proof, one shows that the intersection of this set
with Sy(Y) has full measure inSy(Y) for any y ∈ Y. ut

6.4. Proof of Theorem 1.10can be written along the same lines, with mi-
nor modifications. One considers theG-action on the bundleSd(Ỹ) and
finds a representative(z1, . . . , zd), with zi ∈ a, in any G-orbit (recall
that p ⊃ a has been identified with the tangent space toỸ at ỹ0). Then
G-orbits in Sd(Y) are identified with quotients ofX = G/Γ by central-
izers K(z1,...,zd) in K of appropriate orderedd-tuples (z1, . . . , zd). Simi-
larly to (6.1), one describesγt(K(z1,...,zd)gΓ), wheret = (t1, . . . , td) ∈ Rd,
via the action of exp(

∑
i ti zi ) on K(z1,...,zd)\X. An application of Theo-

rem 1.9 to thea-action onX then provides the desired dichotomy, hence
a logarithm law, for almost all(y, Eξ) in any G-orbit. To derive a similar
result for almost everyEξ ∈ Sd

y(Y) and anyy ∈ Y, one needs to decom-
posea as a union of Weyl chambersa j and, accordingly, break the flat
F = {γt(K(z1,...,zd)gΓ) | t ∈ d+} = {K(z1,...,zd) exp(

∑
i ti zi )gΓ | t ∈ d+}

into piecesF j = {K(z1,...,zd) exp(
∑

i ti zi )gΓ | t ∈ d+, ∑i ti zi ∈ a j }. After
that it remains to notice that given each of the piecesF j and a pointy ∈ Y,
one can use Iwasawa decomposition forG to find a similar pieceF ′j starting
from y which lies at a bounded distance fromF j . ut

7. A very important DL function on the space of lattices

7.1. We now consider another class of examples of DL functions on
homogeneous spaces. Throughout the section we fix an integerk > 1,
let G = SLk(R), Γ = SLk(Z) andµ the normalized Haar measure on the

spaceXk
def= G/Γ of unimodular lattices inRk, choose a norm onRk and

define the function∆ on Xk by (1.9). Our goal is to prove

Proposition. There exist positiveCk,C′k such that

(7.1) Cke
−kz ≥ Φ∆(z) ≥ Cke

−kz− C′ke
−2kz for all z ≥ 0 ,

in particular, ∆ is k-DL.

The main tool here is the reduction theory forSLk(R)/SLk(Z), in par-
ticular, a generalization of Siegel’s [Si] summation formula. Recall that
a vectorv in a latticeΛ ⊂ Rk is calledprimitive (in Λ) if it is not a multiple
of another element ofΛ; equivalently, if there exists a basis{v1, . . . , vk} of Λ
with v1 = v. Denote byP(Λ) the set of all primitive vectors inΛ. Now, given
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a functionϕ onRk, define a function
∧
ϕ on Xk by

∧
ϕ(Λ)

def= ∑
v∈P(Λ) ϕ(v).

The following is one of the results of the paper [Si]:

7.2. Theorem. For any ϕ ∈ L1(Rk), one has
∫

Xk

∧
ϕ dµ = ck

∫
Rk ϕ dv ,

whereck = 1
ζ(k) .

The theorem below is a direct generalization of Siegel’s result. For
1 ≤ d < k, say that an orderedd-tuple (v1, . . . , vd) of vectors in a lattice
Λ ⊂ Rk is primitive if it is extendable to a basis ofΛ, and denote byPd(Λ)
the set of all suchd-tuples. Now, given a functionϕ onRkd, define a function
∧d
ϕ on Xk by

∧d
ϕ (Λ)

def= ∑
(v1,...,vd)∈Pd(Λ) ϕ(v1, . . . , vd). Then one has

7.3. Theorem. For 1≤ d< k andϕ ∈ L1(Rkd),

(7.2)
∫
Xk

∧d
ϕ dµ = ck,d

∫
Rkd

ϕ dv1 . . .dvd ,

whereck,d = 1
ζ(k)·····ζ(k−d+1) .

Sketch of proof.We essentially follow S. Lang’s presentation (Yale Uni-
versity lecture course, Spring 1996) of Siegel’s original proof. Fix a basis
{e1, . . . ,ek} of Rk, denote byG′ (resp.Γ′) the stabilizer of the ordered
d-tuple (e1, . . . ,ed) in G (resp. in Γ′). ThenG/G′, as aG-homogeneous
space, can be naturally identified with an open dense subset ofRkd, namely,
with the set of linearly independentd-tuples. SimilarlyΓ/Γ′ can be iden-
tified with theΓ′-orbit of (e1, . . . ,ek), which is exactly the setPd(Zk) of
primitive d-tuples inZk. These identifications allow one to transport the
Lebesgue measure fromRkd to a Haar measureµG/G′ on G/G′, and to
interpret the summation overPd(Zk) as the integration over the counting
measureµΓ/Γ′ onΓ/Γ′.

The choice of the normalized Haar measureµ on Xk (and hence of the
measuresµG on G andµG/Γ′ on G/Γ′), together with the aforementioned
choice ofµG/G′, uniquely determines the Haar measuresµG′ andµG′/Γ′ on
G′ andG′/Γ′ (note thatΓ′ is a lattice inG′) such that for anyϕ ∈ L1(G/Γ′)
one has

(7.3)
∫
Xk

∫
Γ/Γ′

ϕ dµΓ/Γ′ dµ =
∫

G/Γ′

ϕ dµG/Γ′ =
∫

G/G′

∫
G′/Γ′

ϕ dµG′/Γ′ dµG/G′ .

It remains to take anyϕ ∈ L1(Rkd) ∼= L1(G/G′), extend it to an
integrable function onG/Γ′, and notice that the left hand side of (7.2)
coincides with that of (7.3), whereas the right hand side of (7.3) can be
rewritten asµG′/Γ′(G′/Γ′) ·

∫
G/G′ ϕ dµG/G′, which is exactly the right hand

side of (7.2) withck,d = µG′/Γ′(G′/Γ′). The computation of the exact value
of ck,d is not needed for our purposes and is left as an exercise for the reader.ut



476 D.Y. Kleinbock, G.A. Margulis

7.4. Proof of Proposition 7.1.Takez ≥ 0, denote byB the ball inRk of
radiuse−z centered at the origin, and byϕ the characteristic function ofB.
Note that

∆(Λ) ≥ z ⇒ log
(

1
‖v‖
) ≥ z for somev ∈ Λr{0} ⇒ Λ∩B 6= {0} ,

and the latter condition clearly implies thatB contains at least two primitive

vectors (v and−v) of Λ. Since
∧
ϕ(Λ) = #

(
P(Λ) ∩ B

)
, one has

(7.4)
∫
Xk

∧
ϕ dµ =

∫
{Λ|∆(Λ)≥z}

∧
ϕ dµ ≥ 2µ

({Λ | ∆(Λ) ≥ z}) .
The left hand side, in view of Theorem 7.2, is equal tock

∫
Rk ϕ dv = ckνke−kz

(hereνk is the volume of the unit ball inRk), hence the upper estimate for
Φ∆(z) in (7.1), withCk = 1

2ckνk.

For the lower estimate, we will demonstrate that latticesΛwith
∧
ϕ(Λ) > 2

contribute very insignificantly to the integral in the left hand side of (7.4).
Indeed,astandardargument fromreductiontheoryshowsthatwhenever there
exist at least two linearly independent vectors inΛ ∩ B, for anyv1 ∈ P(Λ)
one can findv2 ∈ Λ ∩ B such that(v1, v2), as well as(v1,−v2), belongs to
P2(Λ). Consequently, one has

∧
ϕ(Λ) = #

(
P(Λ) ∩ B

) ≤ 1

2
#
(
P2(Λ) ∩ (B× B)

)
whenever

∧
ϕ(Λ) > 2. Note that the right hand side is equal to1

2

∧2

ψ (Λ),
whereψ is the characteristic function ofB× B in R2k. Therefore∫

Xk

∧
ϕ dµ =

∫
{Λ| ∧ϕ (Λ)=2}

∧
ϕ dµ+

∫
{Λ| ∧ϕ (Λ)>2}

∧
ϕ dµ

≤ 2µ
({Λ | ∧ϕ(Λ) = 2})+ 1

2

∫
{Λ| ∧ϕ (Λ)>2}

∧2

ψ dµ

≤ 2µ
({Λ | ∆(Λ) ≥ z})+ 1

2

∫
Xk

∧2

ψ dµ .

From Theorems 7.2 and 7.3 it then follows that 2Φ∆(z) ≥ ckνke−kz −
1
2ck,2(νk)

2e−2kz, which finishes the proof of the proposition. ut
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8. The Khinchin-Groshev Theorem

8.1. We begin by introducing some terminology. Letψ : N 7→ (0,∞)
be a positive function. Fixm,n ∈ N and say that a matrixA ∈ Mm,n(R)
(viewed as a system ofm linear forms inn variables) isψ-approximable7 if
there are infinitely manyq ∈ Zn such that (1.1) holds. Then one can restate
Theorem 1.1 as follows:

Theorem. Let m,n be positive integers andψ : [1,∞) 7→ (0,∞) a non-
increasing continuous function. Then almost every (resp. almost no)Λ ∈
Xm+n is (ψ,n)-approximable, provided the integral

∫∞
1 ψ(x) dx diverges

(resp. converges).

To prepare for the reduction of this theorem to Theorem 1.7, let us present
an equivalent formulation. For a vectorv ∈ Rm+n, denote byv(m) (resp.v(n))
the vector consisting of firstm (resp. lastn) components ofv. Now, to a ma-

trix A ∈ Mm,n(R) we associate a latticeΛA in Rm+n defined byΛA
def=(

Im A
0 In

)
Zm+n; in other words,ΛA =

{(
Aq+ p

q

)∣∣∣∣ p ∈ Zm,q ∈ Zn

}
.

Clearly A ∈ Mm,n(R) is ψ-approximable iff there existv ∈ ΛA with
arbitrarily large‖v(n)‖ such that

(8.1) ‖v(m)‖m ≤ ψ(‖v(n)‖n) .
Let us say that a latticeΛ ∈ Xm+n is (ψ,n)-approximableiff there exist

v ∈ ΛA with arbitrarily large‖v(n)‖ such that (8.1) holds. Now the above
theorem can be restated as follows:

• Let m,n be positive integers andψ : [1,∞) 7→ (0,∞) a non-increasing
continuous function. Then almost every (resp. almost no) lattice of the
form ΛA, A ∈ Mm,n(R), is (ψ,n)-approximable, provided the integral∫∞

1 ψ(x)dx diverges (resp. converges).

We will see later that the same phenomenon takes place for generic
lattices inRm+n. More precisely, we will prove

8.2. Theorem. Letψ, m andn be as in Theorem 8.1. Then almost every
(resp. almost no)Λ ∈ Xm+n is (ψ,n)-approximable, provided the integral∫∞

1 ψ(x)dx diverges (resp. converges).

In fact it is not a priori clear how to derive Theorem 8.2 from Theorem 1.1
and vice versa. We will do it by restating these theorems in the language of
flows on the space of lattices. For that we first need a change of variables
technique formalized in the following

7 The authors are grateful to M. Dodson for a permission to modify his terminology
introduced in [Do].
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8.3. Lemma. Fix m,n ∈ N andx0 > 0, and letψ : [x0,∞) 7→ (0,∞) be
a non-increasing continuous function. Then there exists a unique continuous
functionr : [t0,∞) 7→ R, wheret0 = m

m+n log x0 − n
m+n logψ(x0), such

that

(8.2a) the function λ(t)
def= t − nr(t) is strictly increasing

and tends to∞ ast →+∞ ,

(8.2b) the function L(t)
def= t +mr(t) is nondecreasing,

and

(8.3) ψ(et−nr(t)) = e−t−mr(t) ∀ t ≥ t0 .

Conversely, givent0 ∈ R and a continuous functionr : [t0,∞) 7→ R such
that (8.2ab)hold, there exists a unique continuous non-increasing function
ψ : [x0,∞) 7→ (0,∞), with x0 = et0−nr(t0), satisfying(8.3). Furthermore,
for a nonnegative integerq,

I1
def=

∞∫
x0

(log x)qψ(x)dx<∞ iff I2
def=

∞∫
t0

tqe−(m+n)r(t) dt<∞ .

Proof. The claimed correspondence becomes transparent if one uses the

variablesL = − logψ, λ = log x, and the functionP(λ)
def= − logψ(eλ).

Givent ≥ t0, one can define
(
λ(t), L(t)

)
to be the unique intersection point

of the graph of the nondecreasing functionL = P(λ) and the decreasing
straight lineL = m+n

n t − m
n λ, and then put

(8.4) r(t) = L(t)− λ(t)
m+ n

.

The properties (8.2ab) and (8.3) are then straightforward. Conversely, given

the functionr(·) with (8.2ab) andλ ≥ λ0
def= t0 − nr(t0), one definesP(λ)

to be equal toL
(
t(λ)

)
, whereL(·) is as in (8.2b) andt(·) is the function

inverse toλ(·) of (8.2a).
Further, the integralI1 is equal to

∫∞
λ0
λqeλ−P(λ) dλ, while I2, in view of

(8.2ab) and (8.4), can be written as
∫ ∞
λ0

(
m

m+nλ+ n
m+n P(λ)

)q
eλ−P(λ)

(
m

m+ndλ+
n

m+ndP(λ)
) ≥ I1. It remains to assumeI1 <∞ and prove that the following

integrals are finite:

I3 =
∞∫
λ0

λqeλ−P(λ) dP(λ), I4 =
∞∫
λ0

P(λ)qeλ−P(λ) dλ,

I5 =
∞∫
λ0

P(λ)qeλ−P(λ) dP(λ) .
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Integration by parts reducesI3 to the form

I3 = −
∞∫
λ0

λqeλ d
(
e−P(λ)

) = − λqeλ−P(λ)
∣∣∞
λ0
+
∞∫
λ0

eλ(λq+qλq−1)eλ−P(λ) dλ ,

where both terms are finite due to the finiteness ofI1. To estimateI4, one
writes

I4 =
∫

λ≥λ0, P(λ)<2λ

P(λ)qeλ−P(λ) dλ+
∫

λ≥λ0, P(λ)≥2λ

P(λ)qeλ−P(λ) dλ ;

the first term is clearly bounded from above by 2q I1, while the integrand in
the second term is for large enough values ofλ not greater than 2qλqe−λ.
This implies thatI4 is also finite. Finally,

I5 =
∫

λ≥λ0, P(λ)<2λ

P(λ)qeλ−P(λ) dP(λ)+
∫

λ≥λ0, P(λ)≥2λ

P(λ)qeλ−P(λ) dP(λ)

≤ 2q I3+
∞∫
λ0

P(λ)qe−P(λ)/2 dP(λ) <∞ ,

which finishes the proof of the lemma. ut
In what follows, we will denote byDm,n(ψ) (after S.G. Dani) the func-

tion r corresponding toψ by the above lemma. Note also thatr does not
have to be monotonic, but is always quasi-increasing (as defined in §2.4) in
view of (8.2b).

8.4. Example. The easiest special case is given byψ(x) = ε/x for a pos-
itive constantε. Then the equation (8.3) givesr(t) = 1

m+n log(1
ε
), so the

correspondenceDm,n sends such a functionψ to a constant. Recall that
A ∈ Mm,n(R) is said to bebadly approximableif it is not ε

x -approximable
for someε > 0. In [D], Dani proved thatA is badly approximable iff the
trajectory{ ftΛA | t ≥ 0}, with ft as in (1.10), is bounded inXm+n. Note
that in view of Mahler’s Compactness Criterion (see [R1, Corollary 10.9]),
the latter condition is equivalent to the existence of an upper bound for
{∆( ftΛA) | t ≥ 0}, with ∆ as in (1.9).

8.5. We are now going to prove a generalization of the aforementioned
result of Dani.

Theorem. Let ψ, m and n be as in Theorem 8.1,∆ as in (1.9), { ft} as
in (1.10). ThenΛ ∈ Xm+n is (ψ,n)-approximable iff there exist arbitrarily
large positivet such that

(8.5) ∆( ftΛ) ≥ r(t) ,
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wherer = Dm,n(ψ). In particular, A ∈ Mm,n(R) is ψ-approximable iff
there exist arbitrarily large positivet such that

(8.5A) ∆( ftΛA) ≥ r(t) .

Proof. Assume that (8.1) holds for somev ∈ Λ, and note that, by definition
of ft and∆, to prove (8.5) it suffices to findt such that

(8.6a) et/m‖v(m)‖ ≤ e−r(t)

and

(8.6b) e−t/n‖v(n)‖ ≤ e−r(t)

Now definet by

(8.7) ‖v(n)‖n = et−nr(t) .

In view of (8.2a), one can do this whenever‖v(n)‖ is large enough. Then
(8.6b) follows immediately, and one can write

‖v(m)‖m ≤
(8.1)

ψ(‖v(n)‖n) =
(8.7)

ψ(et−nr(t)) =
(8.3)

e−t−mr(t) ,

which readily implies (8.6a). Lastly, again in view of (8.2a),t will be
arbitrarily large if one chooses‖v(n)‖ arbitrarily large as well.

For the converse, let us first take care of the case when

(8.8) v(m) = 0 for somev ∈ Λr {0} .
Then one can take integral multiples of thisv to produce infinitely many
vectors satisfying (8.1); thus lattices with (8.8) are(ψ,n)-approximable for
any functionψ. Otherwise, assume that (8.5) holds for a sufficiently larget.
This immediately gives a vectorv ∈ Λ satisfying (8.6a) and (8.6b), and one
can write

‖v(m)‖m ≤
(8.6a)

e−t−mr(t) =
(8.3)

ψ(et−nr(t)) ≤
(8.6b) and the monotonicity ofψ

ψ(‖v(n)‖n) .

Finally, if t is taken arbitrarily large,‖v(m)‖ becomes arbitrarily small in
view of (8.6a), and yet can not equal zero, so‖v(n)‖must be arbitrarily large
by the discreteness ofΛ. ut
8.6. Proof of Theorem 8.2.In view of the above theorem and Lemma 8.3,
it suffices to prove the following

Theorem. Givenm,n ∈ N, ∆ as in(1.9), { ft} as in(1.10)and a continuous
quasi-increasing functionr : [t0,∞) 7→ R, for almost every (resp. almost
no) Λ ∈ Xm+n there exist arbitrarily large positivet such that(8.5) holds,
provided the integral

∫∞
t0

e−(m+n)r(t) dt diverges (resp. converges).

Proof. From Corollary 2.4 and Lemma 2.8 it is clear that the above statement
is a straightforward consequence of the familyB(∆) being Borel-Cantelli
for f1. The latter, in its turn, immediately follows from Theorem 1.7 and
Proposition 7.1. ut
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8.7. Proof of Theorem 1.1.Similarly, Theorem 1.1 follows from

Theorem. Givenm,n ∈ N, ∆ as in(1.9), { ft} as in(1.10)and a continuous
quasi-increasing functionr : [t0,∞) 7→ R, for almost every (resp. almost
no) A ∈ Mm,n(R) there exist arbitrarily large positivet such that(8.5A)
holds, provided the integral

∫∞
t0

e−(m+n)r(t) dt diverges (resp. converges).

Proof. It is easy to see (cf. [D, 2.11]) that any latticeΛ ∈ Xm+n can be
written in the form

Λ =
(

B1 0
B2 B3

)
ΛA ,

for someA ∈ Mm,n(R), B1 ∈ Mm,m(R), B2 ∈ Mn,m(R) andB3 ∈ Mn,n(R)
with det(B1)det(B3) = 1. Therefore one can write

ftΛ = ft

(
B1 0
B2 B3

)
f−t ftΛA =

(
B1 0

e−(t/m+t/n)B2 B3

)
ftΛA .

From this and the uniform continuity of∆ it follows that for some pos-
itive C (dependent onΛ) one has supt>0 |∆( ftΛ) − ∆( ftΛA)| < C. If∫∞

t0
e−(m+n)r(t) dt diverges (resp. converges), by Theorem 8.6 the set of lat-

ticesΛ such that for any (resp. for some)C > 0 there exist arbitrarily large
positivet with ∆( ftΛ) ≥ r(t)+C (resp. with∆( ftΛ) ≥ r(t)−C), has full
(resp. zero) measure inXm+n. Therefore, by Fubini, the set ofA ∈ Mm,n(R)
such that (8.5A) holds for arbitrarily larget has full (resp. zero) measure
in Mm,n(R). ut

8.8. Remark. It is also possible to argue in the opposite direction and deduce
Theorem 8.6 from Theorem 8.7. (Cf. [D], where the abundance of bounded
orbits for certain flows onXm+n was deduced from W. Schmidt’s result
on badly approximable systems of linear forms, vs. [KM], where ergodic
theory was used to construct bounded orbits, thus providing another proof
of the aforementioned result of Schmidt.) In other words, one can derive
logarithm laws for specific flows onXm+n simply by applying Theorem 8.5
to translate the Khinchin-Groshev Theorem into the dynamical language.
As a historical note, the authors want to point out that this is exactly what
they understood first and what prompted them to start working on this circle
of problems.

9. Multiplicative approximation of lattices

9.1. As a motivation, let us consider the casem= n = 1 of Theorem 8.2.
The inequality (8.1) then transforms into

(9.1) |v1| ≤ ψ(|v2|) , or |v1||v2| ≤ |v2|ψ(|v2|) ,
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wherev = (v1, v2) is a vector from a latticeΛ ∈ X2. Sinceψ is bounded, the
fact that (9.1) holds for vectorsv with arbitrarily large|v2| implies that one
has‖v‖ = |v2| for infinitely manyv ∈ Λ satisfying (9.1); therefore (9.1) can
be replaced by (1.11). Conversely, if (1.11) holds for infinitely manyv ∈ Λ,
then eitherΛ or its mirror reflection around the axisv1 = v2 is (ψ,1)-
approximable. This way one gets an equivalent form of them= n = 1 case
of Theorem 8.2 as follows:

• Withψ as in Theorem 8.1, for almost every (resp. almost no)Λ ∈ X2 there
exist infinitely manyv ∈ Λ with (1.11), provided the integral

∫∞
1 ψ(x)dx

diverges (resp. converges).

This suggests a natural generalization and (sigh!) another definition: for
an integerk ≥ 2, say thatΛ ∈ Xk is ψ-multiplicatively approximable(to
be abbreviated asψ-MA) if there exist infinitely manyv ∈ Λ satisfying
(1.11). Thus the above theorem can be restated as follows:

• Forψ as in Theorem 8.1, almost every (resp. almost no)Λ ∈ X2 isψ-MA,
provided the integral

∫∞
1 ψ(x) dx diverges (resp. converges).

A question, raised by M. Skriganov in [Sk, p. 23], amounts to consid-
ering a family of functionsψq(x) = 1/x(log x)q and looking for a critical
exponentq0 = q0(k) such that almost all (resp. almost no)Λ ∈ Xk are
ψq-MA if q ≤ q0 (resp. ifq > q0). It is shown in [Sk] thatq0(k) must be
positive and not greater thank− 1. In this section we prove Theorem 1.11,
which, using the above terminology, reads as follows:

• Let ψ : [1,∞) 7→ (0,∞) be a non-increasing continuous function
and k an integer greater than1. Then almost every (resp. almost no)
Λ ∈ Xk is ψ-MA, provided the integral

∫∞
1 (log x)k−2ψ(x)dx diverges

(resp. converges).

In particular, this proves the existence ofq0(k) and gives its exact value,
namely,q0(k) = k− 1.

9.2. In order to reduce Theorem 1.11 to Theorem 1.9, we need an analogue
of the correspondence of Theorem 8.5. Again, the special case given by
ψ(x) = ε/x and r ≡ const is worth mentioning. Recall thatΛ is called
admissible(cf. [Sk, p. 6]) if it is not εx -MA for someε > 0. It easily follows
from Mahler’s Compactness Criterion (and is mentioned in [Sk, p. 14]) that
a lattice is admissible iff its orbit under the diagonal subgroup ofSLk(R) is
bounded inXk. To generalize this observation, identify the Lie algebrad of
traceless diagonalk×k matrices with{t = (t1, . . . , tk) ∈ Rk |∑k

i=1 ti = 0},
denote byft the element ofSLk(R) given by

(9.2) ft = exp(t) = diag(et1, . . . ,etk) ,

and let‖t‖− def= max{|ti |
∣∣ ti ≤ 0}.
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Theorem. Letψ be as in Theorem 8.1,k an integer greater than1, ∆ as
in (1.9) and { ft} as in (9.2). ThenΛ ∈ Xk is ψ-MA iff there existt ∈ d
arbitrarily far from 0 such that

(9.3) ∆( ftΛ) ≥ r(‖t‖−) ,
wherer = Dk−1,1(ψ).

Proof. Assume that (1.11) holds for somev ∈ Λ; our goal is to findt such
that

(9.4) eti |vi | ≤ e−r(‖t‖−) for all 1≤ i ≤ k .

We will do it in two steps. First definet ∈ R by ‖v‖ = et−r(t) (as before,
one uses (8.2a) to justify this step if‖v‖ is large enough). Note that in view
of (8.3) one then has

ψ(‖v‖) = ψ(et−r(t)) = e−t−(k−1)r(t) .

To definet, assume without loss of generality that|vi | ≥ |vi+1| for all
i < k, and putet1 = e−r(t)

|v1| = e−r(t)

‖v‖ = e−t , and then, inductively,eti =
min

(
e−r(t)

|vi | ,e
−(t1+···+ti−1)

)
. Then one can check that:

• eti is not greater thane
−r(t)

|vi | for all i ,

• ∑k
i=1 ti = 0, and

• t = −t1 = −min1≤i≤k ti = ‖t‖− .

Therefore (9.4) is satisfied, and it remains to observe that, again in view
of (8.2a),‖t‖− will be arbitrarily large if one chooses‖v‖ arbitrarily large
as well.

For the converse, we have to first take care of the case when

(9.5) vi = 0 for somev ∈ Λr {0} and 1≤ i ≤ k

(in [Sk] such lattices are callednot weakly admissible). Clearly one can take
integral multiples of thisv to produce infinitely many vectors satisfying
(1.11); thus lattices with (9.5) areψ-MA for any functionψ. Otherwise,
assume that (9.3) holds for somet ∈ d with sufficiently large‖t‖−. This
immediately gives a vectorv ∈ Λ satisfying (9.4). Let us again order the
components ofv so that|v1| ≥ · · · ≥ |vk|. Note that without loss of gen-
erality one can assume that‖t‖− = −t1 (otherwise, if‖t‖− = −t j > −t1,
one can interchanget1 and t j without any damage to (9.4)). Now one
can multiply the inequalities (9.4) fori = 2, . . . ,n by each other to get∏

2≤i≤k eti |vi | ≤ e−(k−1)r(‖t‖−), which makesΠ(v)/‖v‖ to be not greater
than

et1−(k−1)r(‖t‖−) = e−‖t‖−−(k−1)r(‖t‖−) =
(8.3)

ψ(e‖t‖−−r(‖t‖−))

≤
(9.4) and the monotonicity ofψ

ψ(‖v‖)
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as desired. Finally, recall thatt can be taken arbitrarily far from 0. Leti be
such thatti = max1≤ j≤k t j . Then (9.4) makes|vi | arbitrarily small and yet
positive, so‖v‖ must be arbitrarily large by the discreteness ofΛ. ut

9.3. Proof of Theorem 1.11.In view of the correspondence described in the
above theorem, we have to prove the following

• Given an integerk > 1, ∆ as in (1.9), d as in §9.2,{ ft} as in (9.2)
and a continuous quasi-increasing functionr : [t0,∞) 7→ R, for almost
every (resp. almost no)Λ ∈ Xk there existt ∈ d arbitrarily far from 0
such that(9.3) holds, provided the integral

∫∞
t0

tk−2e−kr(t) dt diverges
(resp. converges).

Note that the functiont 7→ ‖t‖− becomes a norm when restricted to
any Weyl chamber ofd. Therefore one can decomposed as a union of
such chambersd j and then apply Theorem 1.9, powered by Proposition 7.1,
to conclude that the familyB(∆) is Borel-Cantelli for{ ft}, wheret runs
through the intersection ofd j with an arbitrary lattice ind. The statement of
the theorem then immediately follows from Corollary 2.4 and Lemma 2.8.ut

10. Concluding remarks and open questions

10.1. It seems natural to conjecture that the conclusion of Theorem 1.12
(isolation properties of the restriction ofρ0 to any simple factor ofG),
and hence of Corollary 3.5 (exponential decay of correlation coefficients of
smooth functions), are satisfied for uniform latticesΓ ⊂ G as well. This
is clearly the case when all factors ofG have property (T); otherwise the
problem stands open.

10.2. In view of the result of W. Philipp mentioned in §1.5 (or a similar
result for expanding rational maps of Julia sets announced recently by R. Hill
and S. Velani), it seems natural to ask whether the family of all balls inG/Γ
will be Borel-Cantelli for an element exp(z) of G as in Theorem 1.7. For
fixed x0 ∈ G/Γ, this would measure the rate with which a typical orbit
approachesx0, in particular, in the form of a logarithm law for the function
∆(x) = log

(
1

dist(x0,x)

)
. This function satisfies (k-DL) with k = dim(G/Γ),

but is not uniformly continuous, therefore super-level sets of∆ cannot be
adequately approximated by smooth functions.

On the other hand, D. Dolgopyat [Dol] recently proved a number of
limit theorems for partially hyperbolic dynamical systems. In particular he
showed that if f is a partially hyperbolic diffeomorphism of a compact
Riemannian manifoldX, then the family of all balls inX is Borel-Cantelli
for f , provided a certain additional assumption (involving rate of conver-
gence of averages along pieces of unstable leaves) is satisfied. Using [KM,
Propositions 2.4.8 or A.6] this assumption can be checked whenG, Γ and
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f = exp(z) are as in Theorem 1.7,X = G/Γ is compact and all simple
factors ofG have property (T). See also [CK,CR] for other results in this
direction.

10.3. We now roughly sketch modifications one has to make in order
to consider flows on reducible homogeneous spaces. IfG is a connected
semisimple center-free Lie group without compact factors andΓ is a lattice
in G, one can find connected normal subgroupsG1, . . . ,Gl of G such that

G = ∏l
i=1 Gi (direct product),Γi

def= Gi ∩ Γ is an irreducible lattice inGi

for eachi , and
∏l

i=1 Γi has finite index inΓ (cf. [R1, Theorem 5.22]). As
a consequence of the above,G/Γ is finitely covered by the direct product
of the spacesGi/Γi . Denote bypi the projection fromG onto Gi . Then
one can apply Corollary 3.5 to the factorsGi/Γi (more precisely, to the
noncompact ones) and deduce that Theorem 4.3 (hence Theorem 1.8 as
well) holds in this generality provided the condition (ED) is replaced by

(10.1) pi (F) is ED for all i = 1, . . . , l .

Similarly one takes care of the case whenG has a nontrivial center: thenG
can be written as an almost direct product of the groupsGi , and the maps
pi are defined to be the projectionsG 7→ G/

∏
j 6=i G j .

Specializing to the caseF = {exp(tz) | t ∈ N}, with z ∈ a as in
Theorem 1.7, it is easy to see that (10.1) is satisfied wheneverpi (z) is
nontrivial for all i (here with some abuse of notation we letpi be the
projections of the corresponding Lie algebras). The latter condition holds
for a generic elementz ∈ a. Furthermore, one can prove that thek-DL
property of the distance function can be lifted to the direct product of metric
spaces. (More precisely, if∆i is a ki -DL function on Xi , 1 ≤ i ≤ l , then√

∆2
1+ · · · +∆2

l is (min1≤i≤l ki )-DL function on
∏l

i=1 Xi .) Therefore one
can argue as in §6 and prove Theorem 1.4 without assuming that the space
Y is irreducible.

10.4. Suppose thatG, Γ andF = { ft} are as in Theorem 1.8, and let∆ be
a uniformly continuous function onG/Γ such that

(10.2)
∀ c< 1 ∃ δ > 0 such thatΦ∆(z+ δ) ≥ c ·Φ∆(z) for large enoughz .

For such functions one can prove a refinement of Theorem 4.3: if{rt} is
a sequence of real numbers satisfying (4.5), then for almost allx ∈ G/Γ
one has

lim
N→∞

#{1≤ t ≤ N | ∆( ft x) ≥ rt}∑N
s=1 Φ∆

(
rt
) = 1 .

It is easy to see that (7.1) implies (10.2), therefore such a refinement holds
for the function∆ on SLk(R)/SLk(Z) given by (1.9). It seems very likely
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that distance functions on locally symmetric spaces satisfy (10.2) as well;
in other words, one can write exact asymptotics for the measure of the
complement of a ball of radiusz, not only bound it from both sides by
const·e−kz. However, the proof is beyond our reach, since in order to use
the main tools of our proof (reduction theory and the quasi-isometry with
a Siegel set) one has to sacrifice a multiplicative constant.

Appendix

A.0. Let ρ be a unitary representation of a locally compact second count-
able groupG in a separable Hilbert spaceV. Say that a sequence{vt |
t ∈ N} ⊂ V is asymptoticallyρ-invariant if vt 6= 0 for all sufficiently
large t, and‖ρ(g)vt − vt‖/‖vt‖ → 0 as t → ∞ uniformly on compact
subsets ofG. Thenρ is isolated fromIG in the Fell topology iff there are
no asymptoticallyρ-invariant sequences{vt} ⊂ V.

Let now(X, µ) be a probability space, and(g, x) 7→ gx aµ-preserving
action of G on X. Denote byL2

0(X, µ) the subspace ofL2(X, µ) orth-
ogonal to constant functions, and byρ0 the regular representation ofG
on L2

0(X, µ). Now, with some abuse of terminology, say that a sequence
{At | t ∈ N} of nontrivial measurable subsets ofX is asymptotically invari-
ant if the sequence of functions 1At −µ(At) is asymptoticallyρ0-invariant.
Equivalently, if

(AI)
µ(At4gAt)/µ(At)→ 0 ast →∞ uniformly on compact subsets ofG .

Further, we will say that{At} is a 0-sequenceif lim t→∞µ(At) = 0.
Now we can state the following useful criterion forρ0 being close toIG:

Proposition. Let G be a locally compact second countable group acting
ergodically on a probability space(X, µ). Then the following two conditions
are equivalent:

(i) there exists an asymptotically invariant0-sequence of subsetsAt of X;
(ii) ρ0 is not isolated fromIG.

The implication (i)⇒(ii) is clear: by definition, the sequence of functions
1At −µ(At) is asymptoticallyρ0-invariant whenever{At} is asymptotically
invariant. K. Schmidt [S], using a result of J. Rosenblatt [Ro], proved the
converse for countable groupsG; in fact, he showed that both conditions
are equivalent to

(iii) G has more than one invariant mean onL∞(X, µ).

In [FS], A. Furman and Y. Shalom extended the approach of Rosenblatt
and Schmidt to uncountable groups. In particular, assumingG is locally
compact, they proved the implication (ii)⇒(iii), of which the converse is
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in this generality not always true. Our proof of Proposition A.0 is based on
the ideas of Rosenblatt-Schmidt-Furman-Shalom. However we have chosen
to completely avoid any use of invariant means, in the hope to make the
argument more transparent and less involved.

Proof of Proposition A.0.Suppose we are given a sequence of functions
{ϕt} ∈ L2

0(X, µ) which is asymptoticallyρ0-invariant. Without loss of
generality we can assume that all the functionsϕt haveL2-norm 1. Note
also that any weak limit point of the sequence{ϕt} must beρ0-invariant,
hence (by the ergodicity of theG-action onX) equal to zero. Thus, by
choosing a subsequence, we can assume thatϕt → 0 weakly ast →∞.

Our goal is to produce an asymptotically invariant 0-sequence{At} of
subsets ofX. Define a sequence{σt} of probability measures onR by

σt(A) = µ
(
ϕ−1(A)

)
, A ⊂ R .

Observe that

(A.0)
∫
R

z dσt(z) = 0 and
∫
R

z2 dσt(z) = 1 .

In view of the last equality, we may assume thatσt converges weakly on
compacta to a probability measureσ onR. The construction of the desired
sequence of sets will crucially depend on this measure. Following [S] and
[FS], we consider two cases.

Case 1.The limit measure is concentrated on one pointa ∈ R.

A.1.1. Let us, following [FS], first show thata = 0. Indeed, using (A.0),
for anyt ∈ N andN > 0 one can write∣∣∣∣∣∣

N∫
−N

z dσt(z)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
|z|>N

z dσt(z)

∣∣∣∣∣∣ = 1

N

∣∣∣∣∣∣N
∫
|z|>N

z dσt(z)

∣∣∣∣∣∣
≤ 1

N

∣∣∣∣∫ z2 dσt(z)

∣∣∣∣ = 1

N
.

ChoosingN large enough andσt close enough toσ , one deduces that

|a| =
∣∣∣∫ N
−N z dσ(z)

∣∣∣ must be very small, which is only possible ifa = 0. In

particular, this implies that for anyC > 0,

(A.1.1)
∫

{|ϕt |<C}
ϕ2

t dµ =
C∫
−C

z2 dσt(z)→
C∫
−C

z2 dσ(z) = 0 .
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A.1.2. The next step is to pass from functions{ϕt} with zero mean value
to another sequence{ht} of nonnegative integrable functions. Namely we
define

(A.1.2) ht(x) =
{
ϕ2

t (x), |ϕt(x)| ≥ 1
0, |ϕt(x)| < 1

In what follows, we denote by‖h‖1 the L1-norm of a functionh, and
keep the notation‖ · ‖ for theL2-norm.

Lemma. As t → ∞, ‖ht‖1 → 1 and ‖ht − ght‖1 → 0 uniformly on
compact subsets ofG.

Proof. Note first that‖ϕ2
t ‖1 = ‖ϕt‖2 = 1, while ‖ht‖1 − ‖ϕ2

t ‖1 =∫
{|ϕt (x)|<1} ϕ

2
t dµ → 0 in view of (A.1.1). Now for anyg ∈ G one can

write

‖ ht −ght‖1

=
∫

{|gϕt |<1, |ϕt |≥1}
ϕ2

t dµ+
∫

{|ϕt |<1, |gϕt |≥1}
gϕ2

t dµ+
∫

{|ϕt |≥1, |gϕt |≥1}
|ϕ2

t − gϕ2
t |dµ .

The first integral in the r.h.s. is not greater than

∫
{1≤|ϕt |<2}

ϕ2
t dµ +

∫
{|ϕt |≥2, |gϕt |≤|ϕt |/2}

ϕ2
t dµ

≤
∫

{1≤|ϕt |<2}
ϕ2

t dµ + 4

3

∫
{|ϕt |≥2}

|ϕ2
t − gϕ2

t |dµ ;

similarly,
∫

{|ϕt |<1, |gϕt |≥1}
gϕ2

t dµ ≤ ∫
{1≤|gϕt |<2}

gϕ2
t dµ+ 4

3

∫
{|gϕt |≥2}

|ϕ2
t−gϕ2

t |dµ.

Thus, using (A.1.1) and theG-invariance ofµ, one gets

lim sup
t→∞

‖ht − ght‖1 ≤ 11

3
· lim sup

t→∞
‖ϕ2

t − gϕ2
t ‖1 .

But ‖ϕ2
t − gϕ2

t ‖1 = ‖(ϕt − gϕt)(ϕt + gϕt)‖1 ≤ 2‖ϕt − gϕt‖, and the latter
L2-norms tend to zero uniformly on compact subsets ofG, hence the claim.ut
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A.1.3. The next step of the proof is to pass from functions to sets. Here we
use the following trick, dating back to I. Namioka [N]: ifh is a nonnegative
function onX andz≥ 0, denote byBz,h the subset ofX given by

Bz,h
def= {x ∈ X | h(x) ≥ z} .

Then one can reconstruct the value ofh(x) as the Lebesgue measure of
the set{z ≥ 0 | x ∈ Bz,h}. Moreover, if g ∈ G, the absolute value of
(gh)(x) − h(x) is equal to the measure of{z ≥ 0 | x ∈ Bz,h4Bz,gh}.
Therefore, assumingh is integrable, itsL1-norm is equal to

‖h‖1 =
∫
X

∞∫
0

1{z|x∈Bz,h} dz dµ(x) =
∞∫

0

∫
X

1{z|x∈Bz,h} dµ(x)dz

=
∞∫

0

µ(Bz,h)dz;

similarly,

‖gh− h‖1 =
∫
X

∞∫
0

1{z|x∈Bz,h4Bz,gh} dz dµ(x) =
∞∫

0

µ(Bz,h4Bz,gh)dz.

This way, withht as defined in (A.1.2), one deduces from Lemma A.1.2
that ast →∞,

(A.1.3)

∞∫
0

µ(Bz,ht )dz→ 1

and

∞∫
0

µ(Bz,ht4Bz,ght)dz→ 0 uniformly on compacta.

Furthermore, uniformly for allz> 0 one has

(A.1.4) µ(Bz,ht) = µ
({x | ht(x) ≥ z})

≤ µ({x ∣∣ |ϕt(x)| ≥ 1})
= σt

(
Rr (−1,1)

)→ 0 ,

since by assumption the limit measure is concentrated at 0.
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A.1.4. The final step is to get rid of integration overz in (A.1.3). Choose
a sequence{Kt | t ∈ N} of compact subsets ofG such that:

(i) e∈ Kt for all t;
(ii) Kt ⊂ Kt+1 for all t, and∪∞t=1Kt = G ;
(iii) each Kt is equal to the closure of its interior.

Fix a right-invariant Haar measureν on G. From (i) and (iii) it follows
that for anyt the value of infg∈Kt

ν(Kt∩Ktg)
ν(Kt)

is positive. Thus one can choose
a sequence of positive numbersεt with εt → 0 ast →∞ such that

(A.1.5) ν(Kt ∩ Ktg) ≥ εtν(Kt) for all g ∈ Kt .

Now, replacing{ht} by a subsequence if needed, in view of (A.1.3) we can
assume that for allg ∈ Kt

∞∫
0

µ(Bz,ht4Bz,ght)dz<
ε2

t

4

∞∫
0

µ(Bz,ht )dz.

Integrating overKt and then changing the order of integration betweendz
anddν, we find that

∞∫
0

∫
Kt

(
ε2

t
4µ(Bz,ht )− µ(Bz,ht4Bz,ght )

)
dν(g)dz> 0 .

Therefore for everyt there existszt > 0 such that

(A.1.6)
1

ν(Kt)

∫
Kt

µ(Bzt ,ht4Bzt,ght )dν(g) <
ε2

t

4
µ(Bzt,ht ) .

Let us now show that the setsAt
def= Bzt,ht form an asymptotically invariant

0-sequence. It is immediate from (A.1.4) thatµ(Bzt ,ht ) → 0 ast → ∞.
Thus it suffices to find a sequence of compacta{K ′t} exhaustingG such that

(A.1.7) µ(At4gAt)/µ(At) ≤ εt wheneverg ∈ K ′t .

This is achieved by puttingK ′t
def= Q−1

t Qt , where

(A.1.8) Qt
def= {g ∈ Kt | µ(At4gAt ) ≤ εt

2
µ(At)} .

(Indeed, ifg = g−1
1 g2, with g1, g2 ∈ Qt , thenµ(At4gAt) = µ(g1At4g2At)

≤ µ(At4g1 At)+ µ(At4g2At), and (A.1.7) follows.) Therefore, the claim
for Case 1 can be derived from condition (ii) and the following

Lemma. K ′t containsKt.
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Proof. If not, then there existsg ∈ Kt such thatQtg ∩ Qt = ∅, which
implies thatQtg ⊂ (Kt r Qt) ∪ (Ktg r Kt) ⇒ ν(Qt) ≤ ν(Kt) −
ν(Qt)+ ν(Kt)− ν(Kt ∩ Ktg). This, in view of (A.1.5), forcesν(Qt) to be
not greater than(1− εt

2 )ν(Kt). On the other hand, using (A.1.8) and (A.1.6),
one can write

εt

2
µ(At)ν(Kt r Qt) <

∫
KtrQt

µ(At4gAt )dν(g) ≤
∫
Kt

µ(At4gAt )dν(g)

<
ε2

t

4
µ(At)ν(Kt) ,

thereforeν(Kt r Qt) <
εt
2 ν(Kt), a contradiction. ut

Case 2.The limit measureσ is not concentrated on one point.

A.2.1. The above assumption implies that there existsa ∈ R such that

(A.2.1) 0< σ
(
(a,∞)) = σ([a,∞)) = τ < 1 .

Without loss of generality we can assume thata > 0. As a first attempt to

build a good sequence of sets out of{ϕt}, we considerBt
def= ϕ−1

t

(
(a,∞)).

Then clearlyµ(Bt)→ τ ast →∞. Moreover, one has

Lemma. The sequence{Bt} is asymptotically invariant.

Proof. In view of (A.2.1), for anyε > 0 one can findδ > 0 such that
σ
(
(a− δ,a+ δ)) = µ({x ∣∣ |ϕt(x)− a| < δ}) ≤ ε. Thenµ(Bt4gBt) is not

greater than

µ
({

x
∣∣ |ϕt(x)− a| < δ}) + µ({x ∣∣ |ϕt(x)− a| ≥ δ} ∩ (Bt4gBt)

)
≤ ε+ 1

δ2

∫
X

|gϕt − ϕt |2 dµ .

Since{ϕt} is asymptoticallyρ0-invariant, lim supt→∞µ(Bt4gBt) ≤ ε uni-
formly on compacta, and (AI) follows. ut

A.2.2. We now use{Bt} to produce a family of asymptotically invariant
sequencesB(k)t with lim supt→∞ µ(B

(k)
t ) → 0 ask → ∞. As a first step,

choose a sequencel t → ∞ and a sequence of increasing compact subsets
Kt of G exhaustingG such that

(i) µ(Blt ) ≤ τ + 1/t;
(ii) µ(Bl4gBl) ≤ 1/2t uniformly in g ∈ Kt for all l ≥ l t ;
(iii) #{l | µ(Blt ∩ Bl) > 0} = ∞.
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Observe that by the Schwarz inequality, for anyl one has∣∣∣∣∣∣∣
∫

BltrBl

ϕl dµ

∣∣∣∣∣∣∣ ≤
 ∫

BltrBl

ϕ2
l dµ


1/2 ∫

BltrBl

1dµ


1/2

≤ √µ(Blt r Bl) .

Therefore

(A.2.2)∣∣∣∣∣∣∣
∫
Blt

ϕl dµ

∣∣∣∣∣∣∣ ≥
∫

Blt∩Bl

ϕl dµ−

∣∣∣∣∣∣∣
∫

BltrBl

ϕl dµ

∣∣∣∣∣∣∣ ≥ aµ(Blt ∩ Bl)−
√
µ(Blt r Bl) .

Applying (iii) and the weak convergence of{ϕt} to zero, for eacht choose

l > l t such thatz
def= µ(Blt∩Bl) > 0 and

∣∣∣∫Blt
ϕl dµ

∣∣∣ < a
2µ(Blt ) .Combining

this with (A.2.2), we obtain the inequalityaz− √µ(Blt )− z < a
2µ(Blt ).

An exercise in quadratic equations gives thatz must be less thanµ(Blt )

2 +√
1+2a2µ(Blt )−1

2a2 .

Now denoteB(2)t
def= Blt ∩ Bl . Then lim supt→∞ µ(B

(2)
t ) ≤ τ(2)

def=
τ
2 +
√

1+2a2τ−1
2a2 . Also, from (ii) it follows thatµ(Bl4gBl) ≤ 1/2t and

µ(Blt4gBlt ) ≤ 1/2t uniformly in g ∈ Kt . Thereforeµ(B(2)t 4gB(2)t ) ≤
µ(Bl4gBl) + µ(Blt4gBlt ) ≤ 1/t, which shows that{B(2)t } is asymptoti-
cally invariant.

Applying the above procedure to{B(2)t } we produce another sequence

B(3)t
def= B(2)lt

∩ Bl for appropriatel t andl > l t , and, inductively, a family of

asymptotically invariant sequencesB(k)t
def= B(k−1)

lt
∩Bl,with lim sup

t→∞
µ(B(k)t )

≤ τ(k)
def= τ(k−1)

2 +
√

1+2a2τ(k−1)−1
2a2 . It is easy to see thatτ(k) → 0 as

k→∞. Finally, defineAt diagonally asB(t)t ′ , wheret′ > t is chosen so that
µ(At4gAt ) < 1/t wheneverg belongs to the compact setKt . This com-
pletes the construction of the asymptotically invariant 0-sequence{At}, as
well as the proof of Proposition A.0. ut
A.3. It remains to write down the

Proof of Lemma 3.1.It is easy to deduce from (3.1) and theG-equivariance
of π that if {At} is an asymptotically invariant 0-sequence of subsets ofX1,
then {π(At)} is an asymptotically invariant 0-sequence of subsets ofX2;
and, conversely, any asymptotically invariant 0-sequence{At} of subsets
of X2 gives rise to an asymptotically invariant 0-sequence{π−1(At)} of
subsets ofX1. ut
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