Invent. math. 138, 451-494 (1999) ’

Digital Object Identifier (DOI) 10.1007/5002229900012 I””e”tw”es.
mathematicae
O Springer-Verlag 1999

Logarithm laws for flows on homogeneous spacés

D.Y. Kleinbock?!, G.A. Margulis?

1 Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA
(e-mail:kleinboc@math.rutgers.edu )

2 Department of Mathematics, Yale University, New Haven, CT 06520, USA
(e-mail:margulis@math.yale.edu )

Oblatum 27-VI11-1998 & 2-1V-1999 / Published online: 5 August 1999

Abstract. In this paper we generalize and sharpen D. Sullivan’s loga-
rithm law for geodesics by specifying conditions on a sequence of subsets
{A; | t € N} of a homogeneous spacg/T" (G a semisimple Lie group,

" an irreducible lattice) and a sequence of elemdpsf G under which

#{t e N| fix € A} is infinite for a.ex € G/T". The main tool is exponen-

tial decay of correlation coefficients of smooth functions@®". Besides

the general (higher rank) version of Sullivan’s result, as a consequence we
obtain a new proof of the classical Khinchin-Groshev theorem on simul-
taneous Diophantine approximation, and settle a conjecture recently made
by M. Skriganov.

1. Introduction

1.1. This work has been motivated by the following two related results.
The first one is the Khinchin-Groshev theorem, one of the cornerstones of
metric theory of Diophantine approximation. We will denote My, ,(R)

the space of real matrices withrows andh columns, and by - || the norm
onRK, k € N, given by||x|| = max.jk |X|.

Theorem [G]. Letm, n be positive integers ang : [1, co) — (0, co0)
a non-increasing continuous function. Then for almost every (resp. almost
no) A € M n(R) there are infinitely mang € Z" such that

(1.1) IAq +plI™ < ¥(lql™) for somep e Z™,
provided the integraylc><> Y(X) dx diverges (resp. converges).

* The work of the first named author was supported in part by NSF Grants DMS-9304580
and DMS-9704489, and that of the second named author by NSF Grants DMS-9424613 and
DMS-9800607.
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1.2. The second motivation comes from the paper [Su] of D. Sullivan.
Let Hk+! stand for thek + 1-dimensional real hyperbolic space with cur-
vature—1. Take a discrete group of hyperbolic isometries off*** such
thatY = H*1/I" is not compact and has finite volume. Roe Y, denote

by S,(Y) the set of unit vectors tangent Yoat y, and byS(Y) the unit tan-
gent bundle{(y, &) | y e Y, & € S(Y)} of Y. Finally, for (y, &) € YY) let

1 (Y, €) be the geodesic ovi throughy in the direction oft. The following
theorem is essentially proved in [Su] (see Remark (1) in 89):

Theorem. For Y as above, fiXg € Y, and let{r; | t € N} be an arbitrary
sequence of real numbers. Then for gny Y and almost every (resp. almost
no) & e S,(Y) there are infinitely many € N such that

1.2) dist(yo. y1(y. §) = 1t

provided the serie§ ;°; e Xt diverges (resp. converges).

1.3. A choicer; = 1 ~logt, wherex is arbitrarily close tdk, yields the
following statement, “which has been referred to asloigarithm law for
geodesics

Corollary. For Y as above, any € Y and almost alt € S,(Y),

(1.3) im sup S0 10 9)

= 1/k.
t—o00 I t /

1.4. It seems natural to ask whether one can generalize the statements
of Theorem 1.2 and Corollary 1.3 to other locally symmetric spaces of
noncompact type. On the other hand, Sullivan used a geometric proof of
the casem = n = 1 of Theorem 1.1 to prove Theorem 1.2; thus one
can ask whether there exists a connection between the general case of the
Khinchin-Groshev theorem and some higher rank analogue of Sullivan’s
result.

In this paper we answer both questions in the affirmative. In particular,
the following generalization of Sullivan’s results can be proved:

Theorem. For any noncompact irreducibldocally symmetric spac¥ of
noncompact type and finite volume there exists k(Y) > 0 such that
the following holds: ifyp € Y and {ry | t € N} is an arbitrary sequence
of positive numbers, then for any < Y and almost every (resp. almost
no) ¢ € S,(Y) there are infinitely many € N such that(1.2) is satisfied,
provided the serie$ 2, e Xt diverges (resp. converges). Consequently,
(1.3) holds for anyy € Y and almost alk € S,(Y).

1 In fact the theorem is true for reducible spaces as well, see §10.2 for details.
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The constank(Y) can be explicitly calculated in any given special case;
in fact, k(Y) = lim,_, o —log (vol(A(r)))/r , where
(1.4) Ar) E{y e Y | dist(yo. y) > 1}
and “vol” stands for a Riemannian volume. In other words, the series
Yo e Xt s, up to a constant, the sum of volumes of séfs;). The
latter sets can be viewed as a “target shrinkingdd(cf. [HV]), and Theo-
rems 1.2 and 1.4 say that if the shrinking is slow enough (read: the sum of
the volumes is infinite), then almost all geodesics approach infinity faster
than the seta\(ry).

This “shrinking target” phenomenon, being one of the main themes
of the present paper, deserves an additional discussion. Thus we have to
make a terminological digression. LeX, 1) be a probability space and let
F = {f; | t € N} be a sequence of-preserving transformations of. Also
let B8 be a family of measurable subsets)Xaf

1.5. Definition. Say that8 is a Borel-Cantelli family forF if for every
sequencgA; | t € N} of sets fromB one has

n({x € X | fi(x) € A for infinitely manyt € N})

:{O it Y g w(A) < oo
1 i Y2 uA) =00

Note that the statement on top is always true in view of the classical Borel-
Cantelli Lemma, see §2.3. An important special cage is {f! | t € N}

for a measure-preserving transformatibn X — X. We will say thatB is
Borel-Cantelli for f if it is Borel-Cantelli for F as above.

It is easy to see thaf : X — X is ergodic (resp. weakly mixirfy
iff every one-element (resp. finite) family of sets of positive measure is
Borel-Cantelli for f. On the other hand, ifX, ) is nontrivial, then for
any sequence of transformatioRs= { f;} one can construct a family (say,
A = fi(A) with 0 < w(A) < 1) which is not Borel-Cantelli forf.
Therefore in order to describe Borel-Cantelli families of sets for a particular
sequence of maps, it is natural to specialize and impose certain regularity
restrictions on the sets considered.

An important example is given in the paper [P] of W. Philipp: there
X = [0, 1], f is an expanding map of given by eitherx — {0x}, 6 > 1,
or by x {%} ({} stands for the fractional part), and it is proved that
the family of all intervals is Borel-Cantelli foff . This means that one can
take anyxg € [0, 1] and consider a “target shrinking xg”, i.e. a sequence
(Xo — I, Xo + ry). Then almost all orbit f'x} get into infinitely many
such intervals whenevar decays slowly enough. This can be thought

2 This characterization of weak mixing was pointed out to us by Y. Guivarc’h and A. Raugi;
see also [CK].
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of as a quantitative strengthening of density of almost all orbits (cf. the
paper [Bos] for a similar approach to the rate of recurrence).

We postpone further discussion of this general set-up until §10.2, and
concentrate on “targets shrinking to infinity” in noncompact spaces. Our
goal is to state a result which will imply both Theorem 1.4 and Theorem 1.1.
ForY as in Theorem 1.4, &6 be the connected component of the identity
in the isometry group of the universal cover¥f ThenG is a connected
semisimple Lie group without compact factors, and the spaaan be
identified with K\G/I", whereT is an irreducible lattice irG and K is
a maximal compact subgroup &. Instead of working withy, we choose
the homogeneous spa&¥e= G/I" as our main object of investigation. Fix
a Cartan subalgebra of the Lie algebra ofG. It is known [Ma] that the
geodesic flow on the unit tangent bun@g) of Y can be realized via action
of one-parameter subgroups of the fofexp(tz)}, with z € a, on the space
X (see 86 for details). In what follows, we will choose a maximal compact
subgroupK of G, endow X with a Riemannian metric by fixing a right
invariant Riemannian metric 08 bi-invariant with respect t&, and letu
be the normalized Haar measure ¥n

Recall that the “neighborhoods eb” of Theorem 1.4 are the com-
plementsA(r), see (1.4), of balls ir¥, and it follows from that theorem
that the family{ A(r) | r > 0} is Borel-Cantelli for the time-one map of the
geodesic flow. To describe sequences of sets “shrinking to infinit(; iwe
will replace the distance function dist, -) by a functionA on X satisfying
certain properties, and consider the family

BA) E {{xe X|AX) =1} |r e R}
of super-level sets ol. To specify the class of functiona that we will
work with, we introduce the following

1.6. Definition. For a functionA on X, define theail distribution function

(OIN OfAby

®A2) E p(ix | AKX > 2)).

Now say thatA is DL (an abbreviation for “distance-like”) if it is uniformly
continuous, and , does not decrease very fast, more precisely, if
(DL) 3¢, 6 > O0suchthatb,(z+68) >c- PA(2) VZ> 0.
Fork > 0, we will also say that is k-DL if it is uniformly continuous and
in addition
(k-DL) 3C4,C, > OsuchthaC;e ¥ < d,(2) < C,e ¥ VzeR.
It is clear that k-DL) implies (DL). Note that DL functions orX exist
only whenX is not compact (see 84.3). The most important example (85)

is the distance function oK. Thus the following theorem can be viewed as
a generalization of Theorem 1.4:
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1.7. Theorem. LetG be a connected semisimple Lie group without com-
pact factorsI" an irreducible lattice inG, a a Cartan subalgebra of the Lie
algebra ofG, z a nonzero element af Then:

(a)if Aisa DL function onX = G/T, the familyB (A) is Borel-Cantelli

for exp(2);
(b) if A isk-DL for somek > O, then for almost alk € X one has
A( exp(tz)x
(1.5 lim supw =1/k.
t—+oo IO t

In particular, (1.3) can be derived from (1.5) by takiBg= SQ,1.1(R)
andA(x) = dist(xg, X) for fixedxg € G/T".

1.8. Infact, itis possible to derive a version of Theorem 1.7 for actions of
multi-parameter subgroups &. More generally, we will consider actions
of arbitrary countable sequencgg | t € N} of elements ofG. To specify

a class of sequences good for our purposes, denotgglbyhe distance
betweeng € G and the identity element @&, and say that a sequent&}

is ED (an abbreviation for “exponentially divergent”) if

(ED) sup) e fIti < 0o VB> 0.

teN =1

In this setting we state the following general result:

Theorem. For G andI” asin Theorem 1.7, lék = {f; |t € N} be an ED
sequence of elements @fand A a DL function onG/T". Then the family
B(A) is Borel-Cantelli forF.

1.9. Clearly Theorem 1.7 is a special case of the above theorem: it is
easy to check (see 84.4) that the sequeiace exp(tz), with z € a ~ {0},
satisfies (ED). More generally, the following multi-parameter generalization
of Theorem 1.7 can be derived from Theorem 1.8:

Theorem. For G, I', X anda as in Theorem 1.7,
(@) if A is a DL function onX, andt — z is a map fromN to a such
that

(1.6) tllr;{z 1z, — z, Il > O,

then the familyB (A) is Borel-Cantelli for{exp(z) | t € N};

(b) if A isk-DL for somek > 0, andd, is a nonempty open cone in a
d-dimensional subalgebra of a (1 < d < rankg(G)), then for almost all
X € X one has

A
(1.7) lim sup M —
20,4, 700 |Og 1z]|
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1.10. From the above theorem one can get logarithm laws for flats in
locally symmetric spaces. Let the spatée as in Theorem 1.4. As usual,

by ad-dimensional flat inY (1 < d < rank(Y)) we mean the image d&¢
under a locally isometric embedding intt Fory € Y, denote byS;(Y)

the set of orthonormai-tuples of vectorg; € S;(Y) which form a basis for

a tangent space to a flat passing throyghhe seQ(Y) is a real algebraic
variety coming with the natural measure class, which makes it possible to

talk about “almost all flats passing through If § =(&,...,&) € $(Y),
we will denote byt = (t3, ..., tq) — (Y, ) the embedding specified l§y

that is, we lety (y, §) def exp, (3 ti&) (a multi-dimensional analog of the
geodesic in the direction of a single vectoe S/(Y)).

Theorem. LetY, yo and k = Kk(Y) be as in Theorem 1.4. Take <
d < rank(Y) and a nonempty open cong C RY, and lett — ri, t
2, NZ9, be a real-valued function. Then for ayye Y and almost every

(resp. almost no} e $(Y) there are infinitely many € 2, N Z9 such
that dist(yo, 11(y, £)) > r¢, provided the seried ., ~za€ " diverges

(resp. converges). Consequently, for gng Y and almost aII§ € $(Y)
one has

(18) lim sup distly. n(%.8)) _ d/k.

tedy, t—>o0 IOg ”t”
1.11. Another class of applications of Theorems 1.7 and 1.9 is given by
a modification of S.G. Dani’s [D, 82] correspondence between Diophantine
approximation of systems afi linear forms inn variables and flows on the
space of lattices ilR¥, wherek = m 4+ n. Namely, conside = SL(R),
I' = Slk(7Z), and the functiomA on the spac&/I" of unimodular lattices
in R* defined by

def
(1.9) A(A) = ,max. Iog(ﬁ).
Denote also byf; the element ofs of the form
(1.10) f, = diage’™, ..., /M e V" ... eV,
mtimes ntimes

We will show in 88 that Theorem 1.1 follows from the fact that the family
B(A) is Borel-Cantelli forf;. Using similar technique, one can also prove
a result that was, in somewhat weaker form, conjectured by M. Skriganov
in [SK]:

Theorem. Lety : [1,00) — (0,00) be a non-increasing continuous
function andk an integer greater that. Then for almost every (resp. almost
no) unimodular latticeA in R¥ there are infinitely many € A such that

(11D IT(v) < (vl ¥diviD
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(here and hereafter we use the notatidh(v) oo [T, lvi| for v =

(v, ..., w) € R¥), provided the integral/;~ (logx)*~2y(x) dx diverges
(resp. converges).

In 89 we will explain why the above statement can be thought of as
a higher-dimensional multiplicative generalization of Khinchin's Theorem,
and how one can derive it from Theorem 1.9 by considering the action of
the whole Cartan subgroup 8fLi(R) on the spac&L«(R)/SL(Z).

The paper is organized as follows. In 82 we work in a general setting
of a probability spacé&X, 1) and a sequence of nonnegative measurable
functions# = {h; | t € N} on X, and, following V. Sprinduk, write down
a condition (Lemma 2.6) which guarantees that for almost exeryX the
sum) 2, hi(x) is infinite. Then we throw in a measure preserving action
of F = {f; | t € N} and apply the aforementioned results to tivésted

sequencex” &' {fhe)
In 83 we restrict ourselves to flows @y TI" and prove the following

1.12. Theorem. LetG be a connected semisimple center-free Lie group
without compact factord; an irreducible lattice inG, and letpq stand for
the regular representation @ on the subspace &f*(G,/I") orthogonal to
constant functions. Assume in addition ti&afI" is not compact. Then the
restriction of pg to any simple factor o is isolated (in the Fell topology)
from the trivial representation.

The latter condition is known (cf. [KM, 8§2.4]) to guarantee exponential
decay of correlation coefficients of smooth functions@I", see Corol-
lary 3.5. In the next section we use the fact thats DL to approximate
characteristic functions of the setg € G/I" | A(X) > r¢} by smooth
functionsh;. A quantitative strengthening of Theorem 1.8 is then proved
by deriving Sprinduk’s condition from estimates on decay of correlation
coefficients of function$,. Theorem 1.9 (hence 1.7 as well) is also proved
in 84. After that we describe applications to geodesics and flats in locally
symmetric spaces (Theorems 1.4 and 1.10) and Diophantine approximation
(Theorems 1.1 and 1.11).

2. Borel-Cantelli-type results

2.1. Let (X, ) be a probability space. We will use notatigi(h)
[y h du for an integrable functioh on X. Let us consider sequenc#s

{hy | t € N} of nonnegative integrablefunctions onX, and, for N

3 Throughout the sequel all the functiohs will be assumed measurable, integrable,
a.e. nonnegative and nonzero on a set of positive measure.
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1, ..., 00, denote

N N
Sen® E Y i and Exn €Y ulhy) = w(Swn):

t=1 t=1

this notation will be used throughout the paper. We will omit the index
J¢ when it is clear from the context. A special case of such a sequence is
given by characteristic functions; = 15, whereA = {A; | t € N} is

a sequence of measurable subsetX oln this case we will put the index

A in place of # in the above notation. We will say that a sequetfée
(resp. ) of functions (resp. sets) isummablef Ey o, (resp.Ex ) IS
finite, andnonsummabletherwise.

Main example.If A is any function orX and{r; | t € N} a sequence of real
numbers, one can consider the sequence of super-leveksets(x) > r}
of A; their measures are equaldo, (1), where® , is the tail distribution
function (see §1.6) oA.

2.2. Another main example. Let F = {f; | t € N} be a sequence of
wu-preserving transformations of. Then given any sequenc¥# = {h; |

t € N} of functions onX or a sequencet = {A; | t € N} of subsets ofX,
one can considdxistedsequences

HF L5 teN) and AT E(fA [teN).
By F-invariance ofu, Eyr  is the same agy ny for any N € N; in
particular, the twisted sequence is summable if and only if the original
one is.

2.3. Givenasequenca = {A; |t € N} and au-generic poink € X, one
may want to look at the asymptotics 8f n(X) = #{1 <t < N | x € A}

in comparison with the suri, y of measures of the ses, 1 <t <N,
asN — oo. This is for example the subject of the classical Borel-Cantelli
Lemma. In general, for a sequenggeof functions onX, it is very easy to
estimate the ratio 0%y n(X) andE g y from above as follows:

Lemma (cf. [KS, part (i) of the Theorem]).Let (X, u) be a probability
space # a sequence of functions ot Then

liminf N
N— o0 #,N

< oo forpu-aexe X.

In particular, if # is summableSy  is finite almost everywhere.
Proof. By the Fatou Lemma,

.. S}g,N .. SJ(’,N _
;L(llll\'ll’l_)lgof E}&N) < I',@'?j”( }&N) =1.
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One immediately recognizes the last assertion as the conclusion of the
easy part of the classical Borel-Cantelli Lemma. It takes care of the conver-
gence cases in all the Khinchin-type theorems stated in the introduction, as
well as of the upper estimates for the limits in logarithm laws (1.3), (1.5),
(1.7) and (1.8).

2.4. The corollary below will make the connection with logarithm laws
more transparent. We need the following terminology: areal-valued function
r(-) will be calledquasi-increasindf there exists a constaf such that

(2.1 r(ty) > r(t;) — C whenevett; <t, <t;+ 1.

Corollary. LetX be a metric spacegy a probability measure oiX, d, k € N,
2, C RY a nonempty open cong,— f, a continuou$ homomorphism
from o, to the semigroup of all self-maps & A a k-DL function onX.
For somety € R, letr : [tp, o0) — R be a quasi-increasing function such
that the integral

(2.2) / td-1g7 O gt
to

converges. Then fqr-almost allx € X one hasA(fz(x)) < r(||z|]}) when-
everz € 0, is far enough fron®. Consequently,

(2.3 lim sup M < d/k.

2€0,4, 2500 |Og 1zl wae.

Proof. Choose a lattic& in RY; from (2.1) and the convergence of (2.2) it
follows that the series

(2.4) 3 e

ze0 NZ, |1zl =to

converges. Clearly for arg/e 0, far enough from0onecanfime o, NX
such that

(2.5) Izl =1 <121 < Izl

and||Z — z|| isless than some uniform const&ht Since the correspondence
z— f,iscontinuous, forsom@, onethenhassypy dist( f,(X), fz/(x)) < Cy;
further, from the uniform continuity oA it follows that for someC; one has

(2.6) su)E)|A(fz(x)) — A(fz(0)] < Cs.

4 Here by the distance between two médpsf, : X — Xwe mean sup distx(fl(x) —
f2(X)).
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Now consider the sequence of et {{x e X AX >r(z|) —
C—-Cgl|zeo, Nz} withCasin(2.1), ands = {f,|z€ o, N} It
follows from the convergence of (2.4) andbeing DL that4 is summable.
Applying Lemma 2.3 to the twisted sequengé&, one concludes that for
almostallx one hasi (f,(x)) < r(||Z[))—C—CsforZ € o, N with large
enough||Z||. In view of (2.1), (2.5) and (2.6), this implies that for almost
all x one hasA (f,(x)) < r(|lz|) for all z € 2. with large enoughiz||. The
second part of the corollary is obtained by takiriy = g logt with »x < k.
The integral (2.2) obviously converges, therefore for almosk alhe has

Aléézn(z"”” < 9 wheneverz € v, is far enough from 0, and (2.3) follows. O

2.5. Example. TakeX = S(Y) asin §1.2u the Liouville measure o§(Y),
fix yo € Y and letA((y, &) = dist(yo, y). As mentioned in [Su, §9]A is
k-DL. From the above corollary (witd = 1 ando, = R, ) one concludes

that lim sup_, ., ©Ye109) ast — oo is not greater than/k. To derive
the upper estimate for the limit in Corollary 1.3 from the above statement,

it suffices to observe that for any two points y, of Y:

e the functions disty,, -) and disty-, -) differ by at most disty,, y»), and
e for any geodesic ray starting fromy, there is a geodesic ray starting
from y, which stays at a bounded distance frgm

2.6. Let F be a sequence qi-preserving transformations of and 8B

a family of measurable subsets Xf From Lemma 2.3 it is clear tha is
Borel-Cantelli forF iff for any nonsummable sequenet of sets fromB
one hasS;r ,, = oo for almost allx € X. Therefore we are led to studying
asymptotical lower estimates &, n/Ex n, With # asin 82.1.

One can easily find many examples of sequerder which the above
ratio almost surely tends to zero Bs— oo. Itis also well known (see [Sp,
p. 317] for a historical overview) that the estimates we are after follow
from certain conditions on second moments of the functimndiVe will
employ a lemma which was abstracted by V. Sprinidfrom the works of
W. Schmidt (see also [P] for a related result).

Lemma ([Spr, Chapter |, Lemma 10])For a sequence¥ = {h; | t € N}
of functions onX, assume that

(2.7) why) <1 forallteN
and
N N 2
(SP 3C > 0 such that f( > h) — 3 M(ht)) die
X “t=M t=M

<C- uh) YVN>M=>1.

ek

—
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Then for any positive one has, aiN — oo,

28) SN0 = Esen + O (EJ5 1og2 Eqe.n )
. . Sy n(X )
for u-a.e.x € X; in particular, N () — lasN — oo whenever¥ is
Exn ae

nonsummable.

2.7.Remark. Note that the left hand side of (SP) is equal to

N

N 2 N 2
(2.9 / (Z ht) du — (Z u(ho) = 2 (nhshy — uhouchy).
X t=M t=M

st=M

This shows that (SP) will hold provided the correlation coefficients
[(hshy) — p(hg)(hy)| become small for large values [&— t|. Our plan

is to apply Lemma 2.6 to the twisted sequendé§, whereF is as in
Theorem 1.8 and¢ consists of smooth functions @y T". The exponential
decay of correlations under tikeaction, the main result of the next section,
will be enough to guarantee (SP).

2.8. We close the section with a partial converse to Corollary 2.4, which
we will use later for the derivation of logarithm laws.

Lemma. Let X, u,d, k, 0.,z f;, A andty be as in Corollary 2.4, and
letr : [tp, o0) — R be a quasi-increasing function such that the integral

(2.2)diverges. Assume that there exists a latfiti® RY such that the family

B(A) of super-level sets & is Borel-Cantelli forF oef {f,lzedo, N}

Then foru-almost allx € X there existz € v, arbitrarily far from 0 such

that A(f,(x)) > r(|lz|l) . Consequently,lim sup AI(();ZH(:”)) = d/k.

204,200 -ae.

Proof. From (2.1) and the divergence of (2.2) it follows that the series
(2.4) is divergent. In view ofA beingk-DL and by definition ofB(A)
being Borel-Cantelli for, one getsA( f,(x)) > r(||z||) almost surely for
infinitely manyz € o, N X, hence the first part of the lemma. The second
part is immediate by taking(t) = % logt. ]

3. Isolation properties of representations and correlation decay

3.1. Let G be alocally compact second countable group. Recall that the
Fell topology on the set of (equivalence classes of) unitary representations
of G in separable Hilbert spac®sis defined so that the sdis \ lo(Q)v—u|

< ¢|lv] Yg € K Vv € V}, wheree > 0 andK runs through all compact
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subsets of5, constitute a basis of open neighborhoods of the trivial repre-
sentationl g of G. (See the Appendix and [M, Chapter III] for more detail.)
If (X, ) is a probability space an@, X) — gx a u-preserving action of

G on X, we will denote byL3(X, 1) the subspace df?(X, n) orthogonal

to constant functions. Our proof of Theorem 1.12 will use the following
result, communicated by A. Furman and Y. Shalom, which will allow us to
pass from a space to its finite covering:

Lemma. Let (X4, n1) and (X, up) be probability spacesiG a locally
compact second countable group acting ergodically on both, and let
X1 X, be a surjective measurablg-equivariant map such that for some
positivec < 1 one has

1
(3.1 cui(A) < pa(m(A) < cHa(A) - forany AC X,

Denote bypi o the regular representation d& on L3(Xi, wi) (i = 1, 2).
Thenp o is isolated fromlg iff SO IS p2,o.

The proof of Furman and Shalom is based on the connection between
0o being close tolg and existence of nontrivials-invariant means on
L>®(X, u) [FS, Theorem 1.8]. In the Appendix we give a more transparent
proof, based on the notion of asymptotically invariant sequences of subsets
of X. The argument goes back to J. Rosenblatt [Ro] and K. Schmidt [S] and
runs more or less in parallel to the proof given in [FS].

3.2. Let now G be a connected semisimple center-free Lie group with-
out compact factord; an irreducible lattice irG, u the normalized Haar
measure on the homogeneous spag¢e. It is known (see [B, Lemma 3])
that the regular representatipp of G on L3(G/T, w) is isolated froml .
The latter property is also known to be equivalent to the follovapgctral
gap condition there exist a positive lower bound for the spectrum of the
LaplacianA on K\G/T", whereK is a maximal compact subgroup Gf

If Gisadirect product of simple grou,, ..., G;, one can decompose
A as asumA; + --- + A}, whereA; corresponds to coordinates coming
from G;. Then a lower bound for the spectrumAgfamounts to the isolation
of polg, from the trivial representatiom|g, of G;. In the paper [KM] it
was implicitly conjectured that restrictions|g, are isolated froml |g,.
Theorem 1.12 proves this conjecture in the non-uniform lattice case. The
main ingredient of the proof is an explicit bound for the bottom of spectra of
Laplacians given by M.-F. Vigneras in [V]. The reduction to the case where
these bounds are applicable is based on Lemma 3.1, the Arithmeticity
Theorem and the restriction technique of M. Burger and P. Sarnak. We now
present the

Proof of Theorem 1.14f G is simple, the claim follows from [B, Lem-
ma 4.1]. Therefore we can assume thatlfeank of G is greater than 1.



Logarithm laws for flows on homogeneous spaces 463

By Margulis’ Arithmeticity Theorem (see [Z, Theorem 6.1.2] or [M, Chap-
ter 1X]), I is an arithmetic lattice irG. That is, there exists a semisimple
algebraicQ-groupG and a surjective homomorphisp G(R)° — G such
that:

() Kergis compact, and
(ii) the subgroups(G(Z) N G(R)°) andI" are commensurable.

Further, sincd™ is non-uniform ands is center-freeG can be taken to
be connected and adjoint, and Keto be trivial (see [Z, Corollary 6.1.10]).
By (ii) above, the spaceG/T" andG/¢(G(Z)) have a common finite cov-
ering. In view of Lemma 3.1, without loss of generality one can assume that
I'=G(Z)andG = G(R). i

Write G in the form R,oG, wherek is a finite extension of, G is
an absolutelyk-simple k-group, andRy,q stands for Weil's restriction of

scalars functor (see [T2, 3.1.2]). Namely,= ]‘[!:1 Gei, whereoy, ..., o
are distinct imbeddings dk into C. This way, factorsG; of G can be
identified withG? (R) if o; is real, or withG® (C) if o; is complex.

Since I is non-uniform, G is isotropic overk (see [M, Theorem
1.3.2.4(b)]), therefore (see [T1, 3.1, Proposition 13] or [M, Proposition
.1.6.3]) there exists k-morphismé : SL, — G with finite kernel. Denote
the @-image ofSL, by H, and letH = Ry oH andH = H(R). Clearly to
show thatog|g, is isolated froml |g,, it will be enough to prove thaip|; is
isolated froml |, whereH; are almost simple factors &f, isomorphic to
Hei (C) for complex imbeddings; and toH” (R) for real ones.

We now use Theorem 1.1 from the paper [BS], which guarantees that
ooln lies in the closure of theutomorphic spectrunof H (the latter
stands for irreducible components of representatiortd oh all the spaces
L2(H/A) where A is a congruence subgroup Hf(Z)). Denote byL the
algebraic groupRgSL, and by« the isogenyL — H induced bya.
Note that homogeneous spadgsA can be identified with. (R) /a~1(A),
and preimages of congruence subgroupd @f) are congruence subgroups
of L (Z). Therefore it suffices to check that nontrivial irreducible compo-
nents of regular representations of alm@ssimple factors ofL (R) on
LZ(L(R) /A) are uniformly isolated from the trivial representation for all
i =1,...,r and all principal congruence subgroufof L (Z). The latter
statement is a reformulation of one of the corollaries in Section VI of the
paper [V], with the uniform bound for the first nonzero eigenvalue of the
corresponding Laplace operators being equal/tteJor real and 34 for
complex imbeddings;. O

3.3.Remark. One can also prove Theorem 1.12 without using Lemma 3.1
by extending the result of Vigneras to arbitrary subgroupbl ¢f) rather

than congruence subgroups. For this one can use the centrality of the congru-
ence kernel for higher rank groups, see [R2], and the results of Y. Flicker [F]
on lifting of automorphic representations to metaplectic coverings lof.
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This way it should be possible to get an explicit uniform (in@landI)
bound for the neighborhood of the trivial representation which is disjoint
from all the restrictions|g; -

3.4. We now turn to the paper [KM], where the well-known (from the
work of Harish Chandra, Howe, Cowling and Katok-Spatzier) connection
between isolation properties p§ and exponential decay of its matrix coef-
ficients has been made explicit. L@tbe a connected semisimple Lie group
with finite center,K its maximal compact subgroup. Take an orthonormal
basis{ X} of the Lie algebra oK, and denote bir the differential operator

1— 0mK0 %2 (see (W, §4.4.2]).

Theorem (see [KM, Corollary 2.4.4] and a correction on p. 172)et IT
be a family of unitary representations &f such that the restriction ofl

to any simple factor 06 is isolated from the trivial representation. Then
there exist a universal constaBt> 0, a positive integel (dependent only
on G) and B > 0 (dependent ol and on the choice of the t{-invariant
norm ||g|| = dist(g, €) on G) such that for any € I, any C*-vectorsv,

w in a representation space pfand anyg € G one has

(3.2) |(o(@v, w)| < Be P19 Y () |1 (w)]] -

Combining Theorem 3.4 and Theorem 1.12, we obtain the following

3.5. Corollary. Let G be a connected semisimple center-free Lie group
without compact factord, an irreducible non-uniform lattice iz, X =
G/T, u the normalized Haar measure ot Then there exisB, g > 0 and

| € N such that for any two functiong, v € C5°(X) and anyg € G one
has

|(9e, ¥) — n@u@)| < BeP19Y (@) 1T W,

where C°(X) = {f € C®(X) | A(f) € L?(X) for any A from the
enveloping algebra of the Lie algebra oG

Proof. The familyIT = {po} satisfies the assumption of Theorem 3.4 in view
of Theorem 1.12. Therefore one can apply (3.2) to the funcijorsu(p)

andy — u(¥). O

4. A quantitative version of Theorem 1.8

4.1. LetG, T andu be asin Theorem 1.12, and denote the (noncompact)
homogeneous spacg/T" by X. Our first goal is to apply Lemma 2.6 to
certain sequences of functions ot Forl € N andC > 0, say that

h e C3*(X) is (C, I)-regular if
I (hy| < C- u(h).



Logarithm laws for flows on homogeneous spaces 465

Proposition. Assume thaF = {f; | t € N} is an ED sequence of elements
of G. Takel € N as in Corollary 3.5 and an arbitraryC > 0, and let
J# = {h{} be a sequence afC, I)-regular functions onX such that(2.7)
holds. Then the twisted sequeng¢ satisfies(SP) in particular, (2.8)

holds and
lim Syer n(X)

=1 forpu-ae xeX
N— o0 EJ{,N K

whenever# is nonsummable.

Proof. In view of (2.9), one has to estimate the sum
N
(4.0) > (s, £ty — ethe) p(hy))
st=M

from above. Observe that, since is F-invariant, (fsths, fthy)
— u(hg)u(hy) is equal to

(hs, fs ftilht) — p(hg) pe(hy)

< Be #1117 (ho) 11! (ho) |
(by Corollary 3.5)
—1
< BC2e ATl (hg) pu(hy)
(by the(C, I)-regularity ofhs, ht)
< BC2e Al fsf why) .
(by (2.7))

Therefore the sum (4.1) is not bigger than

N N N
BC2 Z e Pl (hy) = BCZZ w(hy) Z e Al
st=M t=M s=M

o
< BC?.sup) eIl By,

teN 1

Inview of (ED), the constant in the right hand side is finite, and (SP) follows;
the “in particular” part is then immediate from Lemma 2.6. O

4.2. Let now A be a DL function onX. Similarly to (1.4), forz € R we

will denote by A(2) the set{x € X | A(X) > z} (note that it follows from

(DL) that A(2) is never empty). To prove a quantitative strengthening of
Theorem 1.8 that we are after, we need to learn how to approximate the sets
A(2) by smooth functions.

Lemma. Let A be a DL function onX. Then for anyl € N there exists
C > Osuch that for everyg € R one can find twdC, |)-regular nonnegative
functionsh’ andh” on X such that
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(42) h"<1py <h” and c- u(A@2) < u(h) < uh”) < %u(A(Z)) :

withcas in(DL).

Proof. Fore > 0, letus denote by (z, ¢) the set of all points oA(z) which
are nots-close t00A(2), i.e. A(z, ¢) def {x e A(2) | dist(x, 8A(z)) > ¢},

and by A’(z, ¢) the e-neighborhood ofA(z), i.e. A’(z, ¢) aef {x € X |
dist(x, A(2)) < ¢}. (If A(2) = X, the above sets will coincide witK.)

Chooses andc according to (DL). Then, using the uniform continuity
of A, finde > 0 such that

(4.3 [A(X) — A(y)] < § whenever digix, y) < €.

From (4.3) itimmediately follows that for atlone hasA(z+38) C A'(z, &) C
A'(z,¢e) C A(z— §), therefore one can apply (DL) to conclude that

1
(4.9 c-u(A@) < n(Aze) <u(A'ze) < EM(A(Z)) :

Now take a nonnegativér € C>(G) of L*-norm 1 such that sugp)
belongs to the ball of radius/4 centered ire € G. Fix z € R and consider

) def def
functionsh’ € v % 1x(z.e/2 andh” € ¥ % 1y, 2. Then one clearly has
Inge <h <1ppy <h" < layge,

which, together with (4.4), immediately implies (4.2). It remains to observe
that [ Y'H'[| = |0 (¥ * La@e2) | = 0 () * Lazesa |, SO by the Young
inequality,

I < IV @I w(Az e/2) < IT W - 1(AQ@)
< }IIT'(V/)IIM(W) for anyl € N.
4.2) C

Similarly IX'h"[| < IT' W) - w(A"(z £/2)) = I @Il gu(A@) <

Y ()l - w(h”), hence, withC = (1Y (]|, bothh’ andh” are(C, I)-
regular, and the lemma is proven. ]

4.3. We now state and prove the promised quantitative strengthening of
Theorem 1.8.

Theorem. LetG, T', F = { f;} and A be as in Theorem 1.8, and Igt} be
a sequence of real numbers such that

(4.5) D D) =00,
t=1



Logarithm laws for flows on homogeneous spaces 467

Then for some positive < 1 and for almost allx € G/T" one has
HL<t < NJA(fX) >1y

c < liminf
N—o0 ZtN=l Da(re)
#Hl1<t<N|A(fX)>T 1
< limsupfLEt=NIACR =) 1
N— o0 Zt:l CDA(rt) C

It is clear that Theorem 1.8 is a direct consequence of Lemma 2.3 and
the first of the above inequalities. Note that D. Sullivan proved that in the
setting of Theorem 1.2 one has a positive lower bound for

. #{1 <t < N|dist(yo, (Y. §) = ri}
limsup N ”
N— oo Zt:l e "t

for almost alls € S;(Y) (see [Su, §9, Remark (2)]).

Proof. First let us assume that the center®fs trivial; after that we will
reduce the general case to the center-free situation. Observe that from the
existence of a DL functiom\ on X it follows that X can not be compact:
indeed,A must be uniformly continuous, but unbounded in view of (DL).
Takel as in Corollary 3.5 an@ as in Lemma 4.2. For artye N, leth; and

h{" stand for the(C, |)-regular functions which one associates with the set
A(ry) = {x € X | A(X) > r¢} by means of Lemma 4.2, and let us denote

A={Ar) [teN}, H =(h|teN}, H ={(h|teN}.

By (4.5), the sequencet is nonsummable; hence, in view of (4.2), the
same can be said aba#t’ and #”. Also it is clear from the construction
that u(h)) < w(h{) < 1. Therefore, a?N — oo, by Proposition 4.1 the
ratiosS g n(X)/Ez N andS g N(X)/Eger n tend to 1 foru-a.ex e X.
But from (4.2) it follows thatS ;r y < Syr.n < Suerrn aNdiEz n >
Ean > C- Eg N for anyN e N. Thereforeu-almost everywhere one has

. DEND L Sy ()
c= lim S(f)i’ < liminf AN
N— oo EEJ(/’N N— o0 AN
) S,Fn(X . nE N(X) 1
< limsup =22 ) < jim Qxern® 1
N— 00 AN N—oco C- Egzr N c

and the statement of the theorem follows.
Now let us look at what happens @ has nontrivial centeZ. Let us
denote the quotient group/Z by G’, the homomorphisnG — G’ by p,

and the induced majf — X’ def G'/p(T) by p. Sincel"Z is discrete [R1,
Corollary 5.17], p(I') is also discrete, hencg/(I' N Z) is finite. This
means thai X, p) is a finite covering ofX’; moreover, one can choose
representativegy, ..., g (g1 = €) from cosets ofZ/(I' N Z) which will
act isometrically onX. In particular, the distance betwegrn= X andg;x,
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1< i_ <1, is uniformly bounded by some consti"mt Now, given a DL
function A on X, defineA” on X' by A'(P(X) = § Y yeptopoy AY) =
: Z!Zl A(giX). Then from the uniform continuity oA it follows that A’ is
also uniformly continuous, and for some const@hbne has

(4.6) A" (P(X) — AX¥)| <C' VxeX.

Therefore for ang > 0, ®4/(2) = u({x € X | A’(p(x)) > z}) is bounded
betweend (z+ C') and® 5 (z— C'). This implies thatA’ satisfies (DL) as
well; moreover,

D
4.7) & (:)) is uniformly bounded between two positive constants.
A
Finally, assume that (4.5) holds aRdc G is ED. It follows that{ p(F )}
is also ED, and from (4.7) one deduces thaf’; @ (r;) = oo as well.
Therefore one can use the center-free case of Theorem 4.3 ’abeing

a DL function to conclude that for some9© ¢ < 1 and foru-almost all
X € X one has

. #MI<t<N]|A(p(fx)=r+C}
c < liminf N
N—co D oing Parry)

and

#1<t<N|A(p(fx)=r—C/} 1
<

lim sup
N— o0 ZtN:]_ CDA/(rt)

Clearly (4.6) implies that
A(p(fx) =n+C = A(f=re = A'(p(fx) =r—C.

Therefore to finish the proof it remains to replace the valugs, oty those
of ®,, sacrificing no more than a multiplicative constant in view of (447).

4.4. Proof of Theorems 1.7 and 1.Recall that in part (a) of Theorem 1.9
we are given a sequende = { f;} = {exp(z)} such that (1.6) holds. It is
easy to check th&t satisfies (ED): for any > 0 one can write

[e¢) 1 [e¢)
Supz e_/s” fs ft I — Supz e_/s”ZS_Zt I
teN g1 teN g1

IA

o8]
supy e Ms|n <z —zl <n+1
teN ' 2o

o0
< const Y " niMWe N < oo
(1.6) =
Therefore Theorem 1.8 applies and one concludes &at) is Borel-
CantelliforF. Part (b) is then immediate from Corollary 2.4 and Lemma 2.8.
It remains to notice that Theorem 1.7 is a special case of Theorem 1.9, with

zz=tz,d=1,0=Rzando, ={tz|t > 0}. O
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5. Distance functions are DL
5.1. The goal of the section is to prove the following

Proposition. LetG be a connected semisimple Lie grolim non-uniform
irreducible’ lattice in G, K a maximal compact subgroup &, 1« the nor-
malized Haar measure 08/T", Xg a point inG/T, dist(-, -) a Riemannian
metric onG/T" chosen by fixing a right invariant Riemannian metric@n
bi-invariant with respect t&<. Then there exists > 0 such that the function
dist(Xg, -) is k-DL.

5.2.Remark. Let (X3, X;) and(X,, Xo) be pointed metric spaces with prob-
ability measuregt; and u,, and letr : X; — X, be a measurable sur-
jective map which almost preserves distances from base points (i.e. with
SUPcx, |dist(xy, X) —dist(X,, 7(X))| < oo) and satisfies the following prop-
erty: for some positive < 1 one has

1 1
cu2(A) < pa(r H(A) < cHa(A) foranyAC X;.

Then the function digk,, -) on Xy is k-DL iff so is dist(x,, -) on X5. This
observation will be used many times in the proof below, sometimes without
explicit mention. Examples include:

o X1 = Xy, u1 = uy (shift of base point);
e X; = X, x Q (the direct product of metric and probability spacesihe
projection onXs,, diam(Q) < oo;

e X1 X afinite coveringu, = (7).

5.3. Proof of Proposition 5.1.First suppose that tHe-rank of G is greater
than 1. Then, using the Arithmeticity Theorem, as in the proof of Theo-
rem 1.12 (see 83.2) we can assume @at G(R), whereG is a semisimple
algebraicQ-group and’ is an arithmetic subgroup @(Q).

We now need to use the reduction theory for arithmetic groupsTLet
be a maximalQ-split torus of G. Denote the identity component of(R)
by A, and its Lie algebra by. Let ® be a system of)-roots associated
with a. Choose an ordering ab, let ®* (resp.®®) be the set of positive
(resp. simple) roots, and let. stand for the close@-Weyl chamber im

defined bya, oef {zea|a(2 =0Va e ®5}. We setA, oef exp(ay).

Let G = KAMU be a (generalized) Iwasawa decomposition Gr
whereK is maximal compact i, U is unipotent andV is reductive (here
A centralizesM and normalize$)). Then one definesgeneralized Siegel

set$q,. as follows: 8¢ . 'K exp(a;)Q, whereQ is relatively compact
in MU, T € R anda, oef {zea|a@ > tVa € ®5}. Itis known that

5 Again, the proposition is also true for reducible lattices, see §10.2.
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a finite union of translates of such a set (for suitaDlandt) forms aweak
fundamental sefior the G-action onG/T". More precisely, the following is
true:

5.4. Theorem ([Bo, §13] or [L, Proposition 2.2])Let G be a semisimple
algebraicQ-group andI” an arithmetic subgroup d&(Q). Then there exist
a generalized Siegel sét= 4o . C G = G(R) and{q, ..., gm} C G(Q)

such that the uniog &' U™, 8q satisfies the following two properties:

(i) G=QrI;
(i) foranyq e G(Q), the sefy € I' | QqN Qy} is finite.

In other words, the restriction @ of the natural projection of G onto
G/T is surjective and at most finite-to-one.

We now want to study metric properties of the restrictigg . Since the
distance onG/T is defined by disg/r(n(x), n(y)) = inf, cr distg (X, yy),
one clearly has digtr(7(x), 7(y)) < dists(x, y) for anyx,y € G. The
converse estimate, witk, y taken from a Siegel set, has been known as
Siegel's Conjecture. Its proof is due to J. Ding for= SL,(R) and to
E. Leuzinger and L. Ji (independently) for the general case. Specifically,
the following statement has been proved:

5.5. Theorem ([L, Theorem 5.7] or [J, Theorem 7.6JFor G, I', 8 and

{d1, ..., Om} asin Theorem 5.4, there exists a positive conskastich that
dists (xq, yg;y) > dists(x, y) — D
foralli,j=1,...,m,y e CandXx, y € 4.

In view of the last two theorems and Remark 5.2, it is enough to prove
that the function digf(Xo, -) on2 isk-DL for somek > 0 andx, € 2 (with
respect to suitably scaled Haar measure). Further, since the metédon
right invariant, it suffices to consider just one copy= K exp(a.)Q of the
Siegel set instead of the unighof several translates thereof.

Our next goal is to reduce the problem to the restriction of the distance
function to exga,). Since the metric orG is right invariant and bK-
invariant, the projectiolc = KAMU +— A is almost distance preserving
(in the sense of Remark 5.2). Furthermore, cf. [Boul, Ch. VII, 89, Propo-
sition 13], the Haar measure db is being sent to the measuééa) da,
whereda is a Haar measure oA ands is the restriction of the modular
function of the groupAMU to A. Put differently,§(a) is the modulus of
the automorphisnx +— axa™* of MU (equivalently, ofU, sinceM is cen-
tralized by A). Therefore, ifa = exp(z), z € a, the value of§ ata is equal

to &2 — e® wherep £ Y . o is the sum of the positive roots.
Since the metric oA is carried froma by the exponential map, it suffices
to find k such that the functior — ||z|| on a, (equivalently, o, , since
a; is an isometric translate of the latterki€OL with respect to the measure
conste™"® dz.
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Let{as, ..., an} be the simple roots, andy, ..., w,} the dual system
of fundamental weights (that is, witla (w;) = 8,1, j = 1,...,n). One
can write

(5.1 o= Z Kicti
i—1

wherek; are positive integers. The following lemma is what one needs to
complete the proof:

5.6. Lemma. Letk = mini_1__, il Then there exis€,, C, > 0 such

il
that for anyz > 0, the ratio of /, e @ dz and e ¥* is bounded
betweerC,; and C,.

Proof. Without loss of generality assume th}% isequaltdkforl <i < j
and is strictly bigger thakfori > j.Forr > 0, denote by, the intersection

of a, and the sphere of radiuscentered at the origin. This is a spherical
simplex with extremal points (vertices) given hyd:ef L wi. From the

llooi |
strict convexity of the ball it follows thap|y, attains its minimal valudr
at the pointg;, 1 <i < j. Furthermore, one can choosg’, ¢ > 0 such

that uniformly inr > O the set

e E iz e p(2) < (k+ o)1}

belongs to the union of r-neighborhoods of the poinis, 1 <i < j, and
on each of these neighborhoods one p@s — kr > cjjz — z||.

Denote byo the induced Lebesgue measureXyn Clearly to establish
the desired upper estimate for

e"ddz = f / e @ do(2) dr

{zeay, zI=z7} zZ %

zeay, ||z|>z}

it suffices to prove thafZr e @ do(2) is not greater thdhconste™ . The
latter inequality follows since

/ e do(2) < f e do(z) + f e " do(2)

>r Zr\Zre Xre
i
S / e_(k"!‘g)r do-(z) _l_ Z f e—(kH-CHZ—Zi B} do-(z)
% =Lizes:, |-z l<em)

< const- r"le= & 4 const. e K / e Il dx
Rn—l
—kr
< const- e .

6 The values of constants in the proof below are independent on
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As for the lower estimate, the s@t € a., ||z|| > z} clearly contains

the translate; + a, of a,, where, as before; = Ta @1 andp(z;) = kz
therefore

e ”@ dz > / e ”Ddz = / e Ptz) 47 — e—kz/ e P2 dz,
{zeay, |Iz|>Z} 7+aq ay ay
which finishes the proof. m]

To complete the proof of Proposition 5.1 it remains to observe that in
the case when thR-rank of G is equal to 1, the proof can be written along
the same lines, by means of the description [GR] of fundamental domains
for lattices in rank-one groups. O

5.7. Note thatthe above proof, viaLemma 5.6, provides a constructive way
to express the exponekifor any homogeneous spaGgT via parameters

of the corresponding syster of Q-roots. For example, iG = SL,(R)

and the metric o1& is given by the Killing form, one can compute (using
e.g. [Bou2, Planche I]) the norms of fundamental weights. . . , wn_1:

i(n—1i)
n2

lwill? = (n(n+1) —2i(n—1)),

and the coefficientk; in (5.1):k; = . It follows that the ratio

[|wi I|2 (n(n +1) 2)
ki2 i(n—i)

attains its maximum whein= 1 orn — 1; thereforek = ‘. =1 /_n=1
lel\ — 2\ n2-n+2

Similar computation can be done for root systems of other types.

i(n—1i)
2

6. Geodesics and flats in locally symmetric spaces

6.1. We are now going to use the result of the previous section and derive
Theorems 1.4 and 1.10 from Theorems 1.7 and 1.9 respectively. Throughout
the end of the sectiory = K\G/T is a noncompact irreducible locally
symmetric space of noncompact type and finite volume. Heres the
connected component of the identity in the isometry group of the universal
coverY of Y, I an irreducible lattice inG and K a maximal compact
subgroup ofG, i.e. the stabilizer of a poirg, € Y.

Denote byg (resp.t) the Lie algebra ofG (resp.K). The geodesic
symmetry atyy induces a Cartan decompositign= £ & p, and one can
identify the tangent space to a poifat € Y with p. Fix a Cartan subalgebra
a of p. Let a, be a positive Weyl chamber relative to a fixed ordering
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of the root system of the pailg, a). Then it is known that the set; of
unit vectors ina, is a fundamental set for th@-action on the unit tangent
bundleS(Y) of Y; that is, every orbit ofs intersects the sét¥o, z) | z € a1}
exactly once. Furthermore, fare a,, the stabilizer of(yy, 2) in G is the

centralizerK, of zin K, so theG-orbit of (Jo, 2) in XY) (resp. theG-orbit

& % G(yo, 2) of (Yo, 2) in XY)) can be identified witK,\G (resp. with

K,\G/TI'). The setst,, z € a;, are smooth submanifolds &Y) of finite
Riemannian volume, which form a singular measurable foliatio®dj. It
will be convenient to introduce the notatién , for the set of alk € S (Y)
for which (y, &) € &, (herey is an arbitrary point ofY). Note that if the
R-rank of G is equal to 1, the set; consists of a single elementso one
has¢, = SY) andé&,y = S,(Y) foranyy e Y.

It has been shown by F. Mautner [Ma] that the geodesic fioan )
restricted tag,, z € ay, can be described via the action of the one-parameter
subgroup{exp(tz)} of G as follows:

(6.1) n(Kzgl') = Kzexp(tz)gr.

This clearly provides a link between Theorems 1.4 and 1.7. In particular,
one can prove the following strengthening of Theorem 1.4:

6.2. Theorem. There existk = k(Y) > 0 such that for any € a; the
following holds: ifyg € Y and{r | t € N} is a sequence of real numbers,
then for anyy € Y and almost every (resp. almost ng)e &, there
are infinitely manyt € N such that(1.2) is satisfied, provided the series
> oo, ekt diverges (resp. converges).

Proof. Let p denote the natural projection frold = G/I" onto &,, take
Xo € pP~1(yo) and denote by the function disg (o, -) on X. Using Propo-
sition 5.1, findk such thatA is k-DL. If Zfil e Kt = o0, then, by Theo-
rem 1.7, foranyC > 0 and almost alk € X there are infinitely many € N

such thatA (exp(tz)x) > r; + C. But clearly A(x) and disy(yo, y) differ

by no more than additive constant whenepgx) = (y, &). Therefore it
follows from (6.1) that the set

(6.2) {(y, & € & | (1.2) holds for infinitely many € N}

has full measure i8,. To finish the proof of the divergence case, it remains

to notice that for any, y' € Y and¢ € &,y there existg’ € &, such that
dist(y(y. &), %1 (Y, &) is uniformly bounded from above for all positite
Therefore for anyy € Y the intersection of the set (6.2) wit} y has full
measure in the latter set. The proof of the easier convergence case follows
the same pattern (and certainly it suffices to use Lemma 2.3 instead of the
full strength of Theorem 1.7). O
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6.3. Proof of Theorem 1.4.The main statement is a direct consequence of
the above theorem and the decomposition of the volume measures on the
spheresS,(Y) in terms of the measures on the leawgs for all z € aj.

As for the logarithm law (1.3), its validity for the set of paitg, &) of full
measure ir(Y) immediately follows from Corollary 2.4 and Lemma 2.8,
and then, as in the above proof, one shows that the intersection of this set
with S,(Y) has full measure itg,(Y) for anyy € Y. O

6.4. Proof of Theorem 1.10can be written along the same lines, with mi-
nor modifications. One considers ti&action on the bundl&?(Y) and
finds a representativézy, ..., zy), with z € a, in any G-orbit (recall
thatp O a has been identified with the tangent spaceé’tat ¥;). Then
G-orbits in §'(Y) are identified with quotients oK = G/T by central-
izers K. .zp In K of appropriate ordered-tuples (zi, ..., zg). Simi-
larly to (6.1), one describeg (K, .»H9I'), wheret = (t1, ..., t3) € RY,
via the action of exp) ;tiz)) on K, . 2\ X. An application of Theo-
rem 1.9 to thes-action onX then provides the desired dichotomy, hence
a logarithm law, for almost ally, £) in any G-orbit. To derive a similar
result for almost everf € S‘@(Y) and anyy € Y, one needs to decom-
posea as a union of Weyl chambers and, accordingly, break the flat
F = {Vt(K(zl ..... zd)gr) [ted} = {K(zl,...,zd) eXp(Zi iz)glh |t € 04}
into pieces¥; = {K,,..zo €XpO_tiz)gl | t € 04, D tizi € aj}. After
that it remains to notice that given each of the piegeand a pointy € Y,
one can use lwasawa decomposition@ao find a similar piecer; starting
from y which lies at a bounded distance frafj. i

7. A very important DL function on the space of lattices

7.1. We now consider another class of examples of DL functions on
homogeneous spaces. Throughout the section we fix an integerl,
let G = SL(R), I' = SL(Z) and u the normalized Haar measure on the

spaceXy aef G/T" of unimodular lattices ilR¥, choose a norm oRR* and
define the functiom on Xy by (1.9). Our goal is to prove

Proposition. There exist positiv€y, C, such that
(7.1) Ce > dp() > Ce ™ —Cle®* forallz>0,

in particular, A is k-DL.

The main tool here is the reduction theory Bty (R)/SL(Z), in par-
ticular, a generalization of Siegel's [Si] summation formula. Recall that
avectorv in a latticeA c R¥ is calledprimitive (in A) if it is not a multiple
of another element af ; equivalently, if there exists abagis, . .., vk} of A
with vy = v. Denote byP(A) the set of all primitive vectors ii. Now, given
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def

a functiong on R, define a functior on X by ¢(A) £ 3 _ Py P(V).

The following is one of the results of the paper [Si]:

7.2. Theorem. For any¢ € LY(RY), one haska@du = O [rx@dv,

-1
wherec, = ROR
The theorem below is a direct generalization of Siegel's result. For
1 < d < k, say that an ordered-tuple (v4, ..., vg) of vectors in a lattice
A C RKis primitive if it is extendable to a basis @f, and denote byP9(A)
the set of all such-tuples. Now, given a functiop onR*9, define a function

A A def
@’ on X by 9" (A) E Y. epica) @V, - .., Va). Then one has

7.3. Theorem. For1<d < kandg e LY(RK),

(7.2 / (zd du = Cq / @dvy...dvg,
Xk Rkd
1

Whel’eCk)d = Tt (—d1D)

Sketch of proofWe essentially follow S. Lang’s presentation (Yale Uni-
versity lecture course, Spring 1996) of Siegel’s original proof. Fix a basis
{er, ..., &) of R¥ denote byG’ (resp.I”) the stabilizer of the ordered
d-tuple (e, ..., &) in G (resp. in ). ThenG/G’, as aG-homogeneous
space, can be naturally identified with an open dense subB&t afiamely,
with the set of linearly independedttuples. Similarlyl"/T” can be iden-
tified with the I"-orbit of (ey, ..., &), which is exactly the seP4(Z¥) of
primitive d-tuples inZX. These identifications allow one to transport the
Lebesgue measure frof*? to a Haar measurpg,c on G/G’, and to
interpret the summation oveé?®(Z*) as the integration over the counting
measureur,r onT'/T".

The choice of the normalized Haar measuren Xy (and hence of the
measuregic on G and g, on G/I"), together with the aforementioned
choice ofug,c', uniquely determines the Haar measyigs andug/,r on
G’ andG'/I" (note thafl is a lattice inG’) such that for any € L*(G/T")
one has

(7.3 //Gﬁdﬂr/r/du= / ‘PdMG/F’:/ /@dMG’/F/dMG/G/'

X T/T G/I’ G/G G/

It remains to take any e LY(RK) = L1(G/G’), extend it to an
integrable function orG/T", and notice that the left hand side of (7.2)
coincides with that of (7.3), whereas the right hand side of (7.3) can be
rewritten asug,r (G'/T”) - fG/G, ¢ dug,e, which is exactly the right hand
side of (7.2) withc g = e/ (G'/T). The computation of the exact value
of ¢ ¢ is not needed for our purposes and is left as an exercise for the reader.

]
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7.4.Proof of Proposition 7.1.Takez > 0, denote byB the ball inRK of
radiuse % centered at the origin, and lpythe characteristic function d8.
Note that

AN >2 = Iog(ﬁ)zzforsomeveA\{O} = ANB # {0},

and the latter condition clearly implies thaicontains at least two primitive
vectors ¢ and—v) of A. Sincep(A) = #(P(A) N B), one has

aa  [ode= [ Gdez2u(ialsm) za).

Xk {AlA(N)=Z)

The lefthand side, in view of Theorem 7.2, is equaldgy ¢ dv = ce™

(herey, is the volume of the unit ball ilR¥), hence the upper estimate for
D4 (2) in (7.1), withCy = ey

Forthe lower estimate, we willdemonstrate that lattitegth @(A) > 2
contribute very insignificantly to the integral in the left hand side of (7.4).
Indeed, astandard argument from reduction theory shows thatwheneverthere
exist at least two linearly independent vectorgim B, for anyv; € P(A)
one can find/, € A N B such thatv,, v»), as well agvy, —V»), belongs to
P2(A). Consequently, one has

¢(A) =#(P(A)NB) <

NI =

#(P?(A) N (B x B))

A
wheneverq?(A) > 2. Note that the right hand side is equal ﬁwz(A),
wherey is the characteristic function & x B in R%. Therefore

/&m: / b+ / o

Xk [A19(A)=2) (A1§(A)>2)
A l N2
<2u({A | o(A) =2}) + > / ¥ du
{Al9(A)>2)
1 A2
<2u(inam = 2)+5 [ V.
Xk

From Theorems 7.2 and 7.3 it then follows thaz) > cuxe ¥ —
e 226722, which finishes the proof of the proposition. o
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8. The Khinchin-Groshev Theorem

8.1. We begin by introducing some terminology. L¢t: N — (0, co)

be a positive function. Fixn, n € N and say that a matriA € My n(R)
(viewed as a system ofi linear forms inn variables) is/-approximablé if
there are infinitely many € Z" such that (1.1) holds. Then one can restate
Theorem 1.1 as follows:

Theorem. Letm,n be positive integers ang : [1, co) — (0, o) a non-
increasing continuous function. Then almost every (resp. almoshne)
Xman IS (1, n)-approximable, provided the integrz;ﬂlOo Y(X) dx diverges
(resp. converges).

To prepare for the reduction of this theorem to Theorem 1.7, let us present
an equivalent formulation. For a vectoe R™™", denote by ™ (resp.v(n))

the vector consisting of firsh (resp. lash) components of. Now, to a ma-

trix A € Myn(R) we associate a lattica , in R™™" defined byAa def

Ié" IA Z™N: in other words,Aa = Aqq+p
n

Clearly A € Mnn(R) is y-approximable iff there exist € A with
arbitrarily large||v(n || such that

peZm,qu”}.

(8.1) V™™ < (v ") -

Let us say that a lattica € Xi.n iS (¥, n)-approximabldff there exist
v € Aa with arbitrarily large||v, || such that (8.1) holds. Now the above
theorem can be restated as follows:

e Letm,n be positive integers andgt : [1, co) +— (0, co) a non-increasing
continuous function. Then almost every (resp. almost no) lattice of the
form Aa, A € Mnn(R), is (1, n)-approximable, provided the integral
fl‘” ¥ (X) dx diverges (resp. converges).

We will see later that the same phenomenon takes place for generic
lattices inNR™*". More precisely, we will prove

8.2. Theorem. Lety,, mandn be as in Theorem 8.1. Then almost every
(resp. almost NnoA € Xmyn iS (¥, N)-approximable, provided the integral
fl°° ¥ (X) dx diverges (resp. converges).

Infactitis not a priori clear how to derive Theorem 8.2 from Theorem 1.1
and vice versa. We will do it by restating these theorems in the language of
flows on the space of lattices. For that we first need a change of variables
technique formalized in the following

7 The authors are grateful to M. Dodson for a permission to modify his terminology
introduced in [Do].
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8.3. Lemma. Fixm,n e Nandxy > 0, and lety : [Xg, 00) — (0, o0) be
a non-increasing continuous function. Then there exists a unique continuous

functionr : [to, 00) > R, wherety = = 10g%0 — 15 109 ¥(Xo), such
that

(8.2a) the function A(t) defy _ nr(t) is strictly increasing

and tends t@o ast — +o0,

def

(8.2b) the function L(t) =t+ mr(t) is nondecreasing
and
(83 Y0 =M Vi >t

Conversely, gively € R and a continuous function: [tg, oo) — R such
that (8.2ab)hold, there exists a unique continuous non-increasing function
¥ @ [Xo, 00) = (0, 00), with xg = o~ satisfying(8.3). Furthermore,

for a nonnegative intege,

o o
I, & / (logx) %y (x) dx < oo iff 1, % / e MO gt < oo
X0 to

Proof. The claimed correspondence becomes transparent if one uses the

variablesL = —log v, A = logx, and the functionP()) def _ logy(e").
Givent > ty, one can definék(t), L(t)) to be the unigue intersection point
of the graph of the nondecreasing functibon= P(1) and the decreasing
straight lineL = ™t — ) and then put

L(t) — A(t)
m+n
The properties (8.2ab) and (8.3) are then straightforward. Conversely, given

the functionr () with (8.2ab) and. > Aq def to — nr(tp), one defineP(1)
to be equal ta_(t(1)), whereL(:) is as in (8.2b) and(-) is the function
inverse tor(-) of (8.2a).

Further, the integral; is equal tof;;o A9e:=PM) dy, while 15, in view of

(8.2ab)and (8.4), can be written A% (72 + == P(2)) e P* (-da+

m+n m+n
m=dP()) > I. Itremains to assumig < oo and prove that the following
integrals are finite:

(8.4) re) =

o]

I3 = f AP AP, 1y = f P(L)9erPM gy,
A0

A0
lg = / PO PP P .
A0
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Integration by parts reducdsg to the form

l3=— f 29¢ d(ePV) = — A% PR +f eI+ gr i He PP dr,
ro A0

where both terms are finite due to the finiteness$,0fTo estimatel 4, one
writes

Iy = / PO PR dy, + f PO, PP dy;
A>2o, PV <24 A=ho, P(A)=21

the first term is clearly bounded from above B\ 2 while the integrand in
the second term is for large enough values. afot greater than®@.9e".
This implies thatl4 is also finite. Finally,

ls = / P(L)% PP dP(L) + / P(L)%P® dP())

A>ho, POL) <21 A>%o, P(L)>21

<25+ / P(1) % PM/2dPi) < oo,
A0
which finishes the proof of the lemma. O

In what follows, we will denote byDm (1) (after S.G. Dani) the func-
tion r corresponding tay by the above lemma. Note also thiatioes not
have to be monotonic, but is always quasi-increasing (as defined in §2.4) in
view of (8.2b).

8.4. Example. The easiest special case is givenyaik) = ¢/x for a pos-

itive constants. Then the equation (8.3) givest) = —= log(2), so the
correspondenceDn, , sends such a functioty to a constant. Recall that

A € Mnn(R) is said to bebadly approximablef it is not <-approximable

for somee > 0. In [D], Dani proved thatA is badly approximable iff the
trajectory{ fiAa | t > O}, with f; as in (1.10), is bounded X, . Note

that in view of Mahler's Compactness Criterion (see [R1, Corollary 10.9]),
the latter condition is equivalent to the existence of an upper bound for

{A(fiAp) |t > 0}, with A asin (1.9).

8.5. We are now going to prove a generalization of the aforementioned
result of Dani.

Theorem. Letvy, mandn be as in Theorem 8.1A as in (1.9), {f;} as
in (1.10) ThenA € Xmyn is (¥, n)-approximable iff there exist arbitrarily
large positivet such that

(8.5 A(fir) =),
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wherer = Dmn(¥). In particular, A € My n(R) is y-approximable iff
there exist arbitrarily large positivé such that

(8.5A) A(fiAp) =1(1).

Proof. Assume that (8.1) holds for some= A, and note that, by definition
of fy andA, to prove (8.5) it suffices to fintlsuch that

(8.6a) et/m||v(m)|| <e'®
and

(8.6b) e MVl < e®
Now definet by

8.7 ||V(n)||n — g

In view of (8.2a), one can do this whenevgary, || is large enough. Then
(8.6b) follows immediately, and one can write
ymm Vv ny _ g-nry e—t—mr(t),
V™I™ < VoD = e =
which readily implies (8.6a). Lastly, again in view of (8.2&)will be
arbitrarily large if one choosep/(, || arbitrarily large as well.
For the converse, let us first take care of the case when

(8.8) vi™ = 0 for somev € A ~ {0} .

Then one can take integral multiples of thigo produce infinitely many
vectors satisfying (8.1); thus lattices with (8.8) &ge n)-approximable for
any functionyr. Otherwise, assume that (8.5) holds for a sufficiently large
This immediately gives a vectore A satisfying (8.6a) and (8.6b), and one
can write

V™™ < e = (e ) < YV 1) -

(8.6a) (8.3) (8.6b) and the monotonicity af

Finally, if t is taken arbitrarily large|v(™| becomes arbitrarily small in
view of (8.6a), and yet can not equal zero||8g, | must be arbitrarily large
by the discreteness of. O

8.6. Proof of Theorem 8.2.In view of the above theorem and Lemma 8.3,
it suffices to prove the following

Theorem. Givenm, n € N, A asin(1.9), { f;} asin(1.10)and a continuous
guasi-increasing function : [tg, o0) — R, for almost every (resp. almost
no) A € Xmyn there exist arbitrarily large positivé such that(8.5) holds,
provided the integraytso e~ (MM gt diverges (resp. converges).

Proof. From Corollary 2.4 and Lemma 2.8 itis clear that the above statement
is a straightforward consequence of the fanslyA) being Borel-Cantelli

for f1. The latter, in its turn, immediately follows from Theorem 1.7 and
Proposition 7.1. O
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8.7. Proof of Theorem 1.1Similarly, Theorem 1.1 follows from

Theorem. Givenm, n € N, A asin(1.9), { f;} asin(1.10)and a continuous
guasi-increasing function : [tg, o0) — R, for almost every (resp. almost
no) A € M n(R) there exist arbitrarily large positivé such that(8.5A)
holds, provided the integrzg/l;;>O e~ (MM dt diverges (resp. converges).

Proof. It is easy to see (cf. [D, 2.11]) that any lattice € X.n can be

written in the form
_(B1 O
A= (B2 B3> An,

with det(B;)det(Bs) = 1. Therefore one can write

B; 0 B 0
fiA = f; (B; B3) fifiAa= (e—(t/mﬁ/n) B, Bg) fiAa.

From this and the uniform continuity of it follows that for some pos-
itive C (dependent om\) one has sup, |A(fiA) — A(fiAa)| < C. If

ftso e~ (M dt diverges (resp. converges), by Theorem 8.6 the set of lat-
tices A such that for any (resp. for som€)> 0 there exist arbitrarily large
positivet with A(f,A) > r(t) + C (resp. withA(fiA) > r(t) — C), has full
(resp. zero) measure Ky,.n. Therefore, by Fubini, the set &f € M, n(R)

such that (8.8) holds for arbitrarily large has full (resp. zero) measure
in Mpn(R). O

8.8. Remark. Itis also possible to argue in the opposite direction and deduce
Theorem 8.6 from Theorem 8.7. (Cf. [D], where the abundance of bounded
orbits for certain flows onX;,,, was deduced from W. Schmidt’s result
on badly approximable systems of linear forms, vs. [KM], where ergodic
theory was used to construct bounded orbits, thus providing another proof
of the aforementioned result of Schmidt.) In other words, one can derive
logarithm laws for specific flows oK, , simply by applying Theorem 8.5

to translate the Khinchin-Groshev Theorem into the dynamical language.
As a historical note, the authors want to point out that this is exactly what
they understood first and what prompted them to start working on this circle
of problems.

9. Multiplicative approximation of lattices

9.1. As a motivation, let us consider the care= n = 1 of Theorem 8.2.
The inequality (8.1) then transforms into

(9.1 lval < ¥(Jvzl),  or viffvz| < [v2|¥(fv2l)
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wherev = (v, vp) is avector from alatticd € X,. Sincey is bounded, the
fact that (9.1) holds for vectorswith arbitrarily large|v,| implies that one
has||v|| = |v,| for infinitely manyv € A satisfying (9.1); therefore (9.1) can
be replaced by (1.11). Conversely, if (1.11) holds for infinitely maryA,
then eitherA or its mirror reflection around the axis = v, is (¥, 1)-
approximable. This way one gets an equivalent form ofthe n = 1 case
of Theorem 8.2 as follows:

e Withyr asin Theorem 8.1, for almost every (resp. almostx@) X, there
exist infinitely many € A with (1.11) provided the integraylOo P(x) dx
diverges (resp. converges).

This suggests a natural generalization and (sigh!) another definition: for
an integerk > 2, say thatA € X is ¥-multiplicatively approximablégto
be abbreviated ag-MA) if there exist infinitely manyw € A satisfying
(1.11). Thus the above theorem can be restated as follows:

e Forr asin Theorem 8.1, almost every (resp. almosth@) X, is y-MA,
provided the integrayloo ¥ (X) dx diverges (resp. converges).

A question, raised by M. Skriganov in [SK, p. 23], amounts to consid-
ering a family of functions/q(x) = 1/x(logx)9 and looking for a critical
exponentgy = go(k) such that almost all (resp. almost na) e X are
Yq-MAif g < qo (resp. ifg > qo). It is shown in [SK] thatjg(k) must be
positive and not greater thda— 1. In this section we prove Theorem 1.11,
which, using the above terminology, reads as follows:

e Lety : [1,00) — (0,00) be a non-increasing continuous function
and k an integer greater tharl. Then almost every (resp. almost no)
A € Xy is ¢-MA, provided the integral; (log x)*~%y(x) dx diverges
(resp. converges).

In particular, this proves the existenceggtk) and gives its exact value,
namely,go(k) = k — 1.

9.2. Inordertoreduce Theorem1.11 to Theorem 1.9, we need an analogue
of the correspondence of Theorem 8.5. Again, the special case given by
Yw(X) = ¢/x andr = const is worth mentioning. Recall that is called
admissible(cf. [Sk, p. 6]) if itis notZ-MA for somes > 0. It easily follows

from Mahler's Compactness Criterion (and is mentioned in [Sk, p. 14]) that
a lattice is admissible iff its orbit under the diagonal subgrouf Igi(R) is
bounded inXy. To generalize this observation, identify the Lie algeibcd

traceless diagonélx k matrices withit = (t;, ..., ty) € R¥ | Zikzl ti = 0},
denote byf; the element oS L (R) given by
(9.2) f, = exp(t) = diag(e, ..., €%),

and let]t]|~ %" max(|t] | t < 0}.
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Theorem. Lety be as in Theorem 8.X% an integer greater thaid, A as
in (1.9)and {f;} as in(9.2). ThenA € X is y-MA iff there existt € 0
arbitrarily far from 0 such that

(9.3 A(fA) = r(lItl]-),
wherer = Dy_1.1(¥).

Proof. Assume that (1.11) holds for some= A; our goal is to find such
that

(9.4) éijy| < et foralll <i <k.

We will do it in two steps. First define e R by |v| = €® (as before,
one uses (8.2a) to justify this step|if| is large enough). Note that in view
of (8.3) one then has

Y(Iv]) = Y(&"V) = gt=k-Dro

To definet, assume without loss of generality that| > |v,1| for all

i < k and pute® = &0 = £ = e, and then, inductivelye’ =

min (Lr(” e (ut-+i-1) Then one can check that:

il

e € is not greater thaﬁ% for all i,

¢ Y1 t =0 and
o t=—1) =—minj<ti = [It]-.

Therefore (9.4) is satisfied, and it remains to observe that, again in view
of (8.2a),||t]|- will be arbitrarily large if one choosgsy|| arbitrarily large
as well.

For the converse, we have to first take care of the case when

(9.5 vi =0forsomeve A~ {0}and 1<i <Kk

(in [SK] such lattices are callatbt weakly admissibjeClearly one can take
integral multiples of thiss to produce infinitely many vectors satisfying
(1.11); thus lattices with (9.5) ang-MA for any functiony,. Otherwise,
assume that (9.3) holds for sorhe 0 with sufficiently large||t|_. This
immediately gives a vectar € A satisfying (9.4). Let us again order the
components o¥ so that|v;| > --- > |vk|]. Note that without loss of gen-
erality one can assume thigt| - = —t; (otherwise, if||t||- = —t; > —t3,
one can interchangg andt; without any damage to (9.4)). Now one
can multiply the inequalities (9.4) far= 2, ..., n by each other to get
[Tociok € vi] < e~ &=Drditi-) " which makesI(v)/|lv| to be not greater
than
1—k=Dr(tl-) _ o= ltl-—k=Drdtl-) _ Jith-—rCitl-)
e =€ & V(€ )

= w(ivid

(9.4) and the monotonicity of
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as desired. Finally, recall thatan be taken arbitrarily far from 0. Lebe
such that; = max,<j«t;. Then (9.4) makesv;| arbitrarily small and yet
positive, sg|v|| must be arbitrarily large by the discreteness\of O

9.3. Proof of Theorem 1.111n view of the correspondence described in the
above theorem, we have to prove the following

e Given an integekk > 1, A as in(1.9), 0 as in §89.2,{f;} as in(9.2)
and a continuous quasi-increasing function[ty, o) +— R, for almost
every (resp. almost nad) € Xy there exist € o arbitrarily far from 0
such that(9.3) holds, provided the integral, ~ t“~?e® dt diverges
(resp. converges).

Note that the functiort — ||t||- becomes a norm when restricted to
any Weyl chamber ob. Therefore one can decomposes a union of
such chambers; and then apply Theorem 1.9, powered by Proposition 7.1,
to conclude that the familyB(A) is Borel-Cantelli for{ f;}, wheret runs
through the intersection @f with an arbitrary lattice in. The statement of
the theorem then immediately follows from Corollary 2.4 and Lemma 2.8.

]

10. Concluding remarks and open questions

10.1. It seems natural to conjecture that the conclusion of Theorem 1.12
(isolation properties of the restriction @b to any simple factor ofG),

and hence of Corollary 3.5 (exponential decay of correlation coefficients of
smooth functions), are satisfied for uniform lattidesc G as well. This

is clearly the case when all factors Gf have property (T); otherwise the
problem stands open.

10.2. In view of the result of W. Philipp mentioned in 81.5 (or a similar
result for expanding rational maps of Julia sets announced recently by R. Hill
and S. Velani), it seems natural to ask whether the family of all balB/in

will be Borel-Cantelli for an element exp of G as in Theorem 1.7. For
fixed xo € G/T, this would measure the rate with which a typical orbit
approachesy, in particular, in the form of a logarithm law for the function
A(X) = log (m) This function satisfiesk(DL) with k = dim(G/TI"),

but is not uniformly continuous, therefore super-level seta afannot be
adequately approximated by smooth functions.

On the other hand, D. Dolgopyat [Dol] recently proved a number of
limit theorems for partially hyperbolic dynamical systems. In particular he
showed that iff is a partially hyperbolic diffeomorphism of a compact
Riemannian manifolX, then the family of all balls inX is Borel-Cantelli
for f, provided a certain additional assumption (involving rate of conver-
gence of averages along pieces of unstable leaves) is satisfied. Using [KM,
Propositions 2.4.8 or A.6] this assumption can be checked vihdnhand
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f = exp(z) are as in Theorem 1.7 = G/T" is compact and all simple
factors of G have property (T). See also [CK,CR] for other results in this
direction.

10.3. We now roughly sketch modifications one has to make in order
to consider flows on reducible homogeneous spaceS. if a connected
semisimple center-free Lie group without compact factorslairga lattice
in G, one can find connected normal subgro@s. . ., G, of G such that

G = ]‘[!:l G; (direct product) [ def G;i NI is an irreducible lattice iG;

for eachi, and]_[!:l I[N has finite index i (cf. [R1, Theorem 5.22]). As

a consequence of the abo&/T is finitely covered by the direct product

of the space&;/T'j. Denote byp; the projection fromG onto G;. Then

one can apply Corollary 3.5 to the factd®/T"; (more precisely, to the
noncompact ones) and deduce that Theorem 4.3 (hence Theorem 1.8 as

well) holds in this generality provided the condition (ED) is replaced by
(10.1) pi(F)isEDforalli =1,...,1.

Similarly one takes care of the case wt@inas a nontrivial center: thed
can be written as an almost direct product of the grd@psand the maps
pi are defined to be the projectios— G/ [ | i Gj-

Specializing to the casé = {exp(tz) | t € N}, with z € a as in
Theorem 1.7, it is easy to see that (10.1) is satisfied whengver is
nontrivial for all i (here with some abuse of notation we Igt be the
projections of the corresponding Lie algebras). The latter condition holds
for a generic elemert € a. Furthermore, one can prove that tkéL
property of the distance function can be lifted to the direct product of metric
spaces. (More precisely, i is ak-DL function on Xj, 1 < i < I, then

A%+ -+ AZis (ming<i< ki)-DL function on]‘[!:l X;.) Therefore one

can argue as in 86 and prove Theorem 1.4 without assuming that the space
Y is irreducible.

10.4. Suppose thaB, I'andF = { f;} are as in Theorem 1.8, and I&tbe
a uniformly continuous function o6 /T" such that

(10.2
Vec <138 > 0suchthatb,(z+ 8) > c- ®(2) for large enouglz.

For such functions one can prove a refinement of Theorem 4{8:}ifs
a sequence of real numbers satisfying (4.5), then for almost allG,/T
one has

#{1 N | A(f
lim {1<t<N| (tX)Zrt}:

N=o0 Yo Pa(r)
It is easy to see that (7.1) implies (10.2), therefore such a refinement holds
for the functionA on SL(R)/SL(Z) given by (1.9). It seems very likely

1.
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that distance functions on locally symmetric spaces satisfy (10.2) as well;
in other words, one can write exact asymptotics for the measure of the
complement of a ball of radius, not only bound it from both sides by
conste k2, However, the proof is beyond our reach, since in order to use
the main tools of our proof (reduction theory and the quasi-isometry with
a Siegel set) one has to sacrifice a multiplicative constant.

Appendix

A.0. Letp be a unitary representation of a locally compact second count-
able groupG in a separable Hilbert spadé. Say that a sequende; |

t € N} C V is asymptoticallyp-invariant if v, # 0O for all sufficiently
larget, and||p(Q) vy — ve|l/llve]l — 0 ast — oo uniformly on compact
subsets ofs. Thenp is isolated fromlg in the Fell topology iff there are

no asymptoticallyp-invariant sequences} C V.

Let now (X, ) be a probability space, arid, X) — gx a u-preserving
action of G on X. Denote byL3(X, ) the subspace of?(X, 1) orth-
ogonal to constant functions, and y the regular representation &
on L3(X, n). Now, with some abuse of terminology, say that a sequence
{A; | t € N} of nontrivial measurable subsetsXfis asymptotically invari-
antif the sequence of functions\1— 1 (A;) is asymptoticallypo-invariant.
Equivalently, if

(AI)
wW(AAGA) /(A — 0 ast — oo uniformly on compact subsets & .

Further, we will say thatA} is a @sequencéf lim_, ., u(A) = 0.
Now we can state the following useful criterion faybeing close tdg:

Proposition. Let G be a locally compact second countable group acting
ergodically on a probability spaceX, ). Then the following two conditions
are equivalent:

() there exists an asymptotically invariabisequence of subsefg of X;
(ii) pgis not isolated from .

The implication (i}=(ii) is clear: by definition, the sequence of functions
1a — n(A) is asymptoticallypo-invariant whenevefA;} is asymptotically
invariant. K. Schmidt [S], using a result of J. Rosenblatt [Ro], proved the
converse for countable groug in fact, he showed that both conditions
are equivalent to

(iii) G has more than one invariant meanloty (X, w).

In [FS], A. Furman and Y. Shalom extended the approach of Rosenblatt
and Schmidt to uncountable groups. In particular, assur@rig locally

compact, they proved the implication €#(iii), of which the converse is
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in this generality not always true. Our proof of Proposition A.O is based on
the ideas of Rosenblatt-Schmidt-Furman-Shalom. However we have chosen
to completely avoid any use of invariant means, in the hope to make the
argument more transparent and less involved.

Proof of Proposition A.0.Suppose we are given a sequence of functions
{pe} € L3(X, u) which is asymptoticallypo-invariant. Without loss of
generality we can assume that all the functignshave L?-norm 1. Note
also that any weak limit point of the sequenigg} must bepg-invariant,
hence (by the ergodicity of th&-action on X) equal to zero. Thus, by
choosing a subsequence, we can assumethat 0 weakly ag — oo.

Our goal is to produce an asymptotically invariant 0-sequérge of
subsets oiX. Define a sequendey} of probability measures dR by

(A = (e (A), ACR.
Observe that

(A.0) /zobt(z) =0 andf Zdoi(z) = 1.
R R

In view of the last equality, we may assume thatconverges weakly on
compacta to a probability measureon R. The construction of the desired
sequence of sets will crucially depend on this measure. Following [S] and
[FS], we consider two cases.

Case 1.The limit measure is concentrated on one pair R.

A.1.1. Let us, following [FS], first show tha = 0. Indeed, using (A.0),
for anyt € NandN > 0 one can write

N

/zdat(z) = / Z bt (2) :% N / Z bt (2)

—N |z|>N |z|>N

1
=9 f 72 doy(2)

ChoosingN large enough and; close enough te, one deduces that
la] = |f_NN z da(z)‘ must be very small, which is only possibleait= 0. In
particular, this implies that for ang > 0,

C C
(A.1.1) / gotzd,u:‘/zzdat(z)e fzzda(z):o.
{let|<C) -C -C
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A.1.2. The next step is to pass from functiofig} with zero mean value
to another sequendg;} of nonnegative integrable functions. Namely we
define

2
A.1.2 hx) — 19600, e =1
- 0 {0, 0] < 1

In what follows, we denote byh||; the L*-norm of a functionh, and
keep the notatiot - || for the L2-norm.

Lemma. Ast — oo, ||h]ls — 1 and|h; — ght|]1 — 0 uniformly on
compact subsets @&.

Proof. Note first that|l@?ll; = llgll? = 1, while [[h]ls — 9?1 =
Jinoo1<1y 96 i — 0 in view of (A.1.1). Now for anyg € G one can

write

| he —ghll1
= f ot du + f oef du + f |92 — ge?| due .
{lget1<1, |gt|>1} {letl<1, lget|>1} {lot|=1, |gpt|>1}

The first integral in the r.h.s. is not greater than

i + / o2 du
{1=<let|<2} {let|=2, [get|<|et|/2}
4
< / oidn + 3 f 9 — ge?l du;
{1=<let|<2} {let|>2}

similarly, [ gefdu< [ gefdut+3 [ lef—gpfldu.
{let|<1, Iger|=1) - {1=lgerl<2) {lget|=2)
Thus, using (A.1.1) and th@é-invariance ofu, one gets

. 11 .
lim sup|ih — ghill < = lim supll¢f — ge?ll1 .
t—o0

t—o0

But [lp? — g¢?lla = ll(@x — geo) (¢r + 9eo) 11 < 2ller — gerll, and the latter

L2-norms tend to zero uniformly on compact subset&phence the claim.
m]
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A.1.3. The next step of the proof is to pass from functions to sets. Here we
use the following trick, dating back to I. Namioka [N]:hfis a nonnegative
function onX andz > 0, denote byB, , the subset oKX given by

Bon & (xe X | h(x > 7}.

Then one can reconstruct the valuehgk) as the Lebesgue measure of
the set{z > 0 | x € B,n}. Moreover, ifg € G, the absolute value of
(gh)(x) — h(x) is equal to the measure ¢ > 0 | X € B,hAB,gn}.
Therefore, assuminky is integrable, itd_*-norm is equal to

||h||1=f/1{z|xesz,h}d2 e (X) fol{zxeBz,h}dM(X)dZ
X 0 0 X
= [ n(Baw dz
0

similarly,

o0

llgh — il = f f LizixeBznaBzgn 02 L0 = f W(Bn 2B, gn) dZ.
X 0

0

This way, withh; as defined in (A.1.2), one deduces from Lemma A.1.2
that ast — oo,

(A.1.3) /M(Bz,ht)dz—> 1
0
and /M(Bz,htABz,ght) dz — 0 uniformly on compacta.
0

Furthermore, uniformly for alt > 0 one has

(A.14) 1(Bzn) = 1({x | he(x) > 2})
< u({x| lei)] = 1})
=o (R~ (-11)— 0,

since by assumption the limit measure is concentrated at 0.
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A.1.4. The final step is to get rid of integration ovem (A.1.3). Choose
a sequencéK; | t € N} of compact subsets @ such that:

() eeK;forallt;
(i) K C Kiga forallt, andup®, K; = G;
(iii) eachK; is equal to the closure of its interior.

Fix a right-invariant Haar measuneon G. From (i) and (iii) it follows
that for anyt the value of infc, % is positive. Thus one can choose
a sequence of positive numbesswith ¢ — 0 ast — oo such that

(A.1.5) v(K¢ N Kig) > gv(Ky) forall g € K.

Now, replacing{h;} by a subsequence if needed, in view of (A.1.3) we can
assume that for alj € K;

/M(Bz,htABz,ght) dZ< Zt /M(Bz,ht)dz-
0 0

Integrating ovelK; and then changing the order of integration between
anddv, we find that

/ / ($14(Ben) — (BB gn)) do(g) dz > 0.

0 Ki
Therefore for every there existg; > 0 such that

1 &t
Kt) M(th,htAth,ghl)dU(g) < ZM’(Btht) .
Kt

(A.1.6) -

Let us now show that the sefs def B..n, form an asymptotically invariant

0-sequence. It is immediate from (A.1.4) thatB, ) — 0 ast — oo.
Thus it suffices to find a sequence of compdétg exhaustings such that

(A.1.7) n(AAGA)/1(A) < & wheneverg € K.

This is achieved by putting/ &' Q;1Q,, where
&
(A.1.8) Q£ (g e Ki | n(ALGA) < Zu(A)).

(Indeed, ifg = g; ‘gz, With g1, 92 € Q. thenu(AAGA) = (91 ALGA)
< w(AAQLA) + n(AcAQL A, and (A.1.7) follows.) Therefore, the claim
for Case 1 can be derived from condition (i) and the following

Lemma. K/ containsK;.
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Proof. If not, then there existg € K; such thatQ;g N Q; = &, which
implies thatQig C (Ki ~ Q) U (Kig\ Kp) = v(Qp) =< v(Ky) —
v(Qp) + v(Ky) — v(K¢ N Kg). This, in view of (A.1.5), forces(Qy) to be
not greater thanl — % )v(Ky). On the other hand, using (A.1.8) and (A.1.6),
one can write

(A QU < / HALGA) du(g) < / HAAGA) du(g)

Kt~ Qt Kt
2
&t
< ZM(At)V(Kt) )

thereforev(K; . Qi) < 5v(Ky), a contradiction. O

Case 2.The limit measure is not concentrated on one point.

A.2.1. The above assumption implies that there exastsR such that
(A.2.1) O0< o((a, oo)) =o([a, oo)) =7<1.

Without loss of generality we can assume that 0. As a first attempt to

build a good sequence of sets out{pf}, we considerB, &' o (@, 00)).

Then clearlyu(B;) — t ast — oo. Moreover, one has

Lemma. The sequencgB;} is asymptotically invariant.

Proof. In view of (A.2.1), for anye > 0 one can findd > 0 such that
o((@—=138,a+8) =u({x|lgx) —al <8}) <e Thenu(BAgB) is not
greater than

nw({x | lee0) —al < 8}) + n({x] lg:x) —al > 8} N (B.AGBY))
1

S€+§/|9¢t—<ﬂt|2dﬂ-
X

Since{¢} is asymptoticallypo-invariant, limsup_, ., #(BtAgB) < e uni-
formly on compacta, and (Al) follows. ]

A.2.2. We now usg{B;} to produce a family of asymptotically invariant
sequence8® with limsup_, . 1(B¥) — 0 ask — co. As a first step,
choose a sequente— oo and a sequence of increasing compact subsets
K of G exhaustingG such that

() wBy) =T+ 1t
(i) w(BAgB) < 1/2t uniformly ing € K; foralll > I;
(i) #{l | u(B, N B)) > 0} = oo.
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Observe that by the Schwarz inequality, for &imne has

1/2 1/2
/ @ du| < / gfdu / ldu| < /u(B, \B).
Bj; By B, \ B B, \ B
Therefore
(A.2.2)
/(ﬂld,u > / @ du — / @ du| > au(B, N B) —/u(B, \By).
By Bj;NB B, \ B

Applying (iii) and the weak convergence ff;} to zero, for eacth choose
| > |y suchthat d:efu(maBo > 0and|fBlt ) du‘ < %u(By,) . Combining

this with (A.2.2), we obtain the inequaligz — \/(B,) — z < Su(By).
An exercise in quadratic equations gives thahust be less thaﬁ% +
4/1+2a2M(B|1)71

2a2 )

Now denoteB?® &' B, n B,. Then limsup. u(B?) < @ &
5+ 7“2?2”1 Also, from (ii) it follows that u(B,AgB) < 1/2t and
(B, AgB,) < 1/2t uniformly in g € K;. Thereforeu(B?AgB?) <
w(BAGR) + (B, AgB,) < 1/t, which shows thatB{®} is asymptoti-
cally invariant.

Applying the above procedure ((Bt(z)} we produce another sequence

B> &' B® N B, for appropriatd; andl > I, and, inductively, a family of
asymptotically invariant sequencB&’ &' B“"Y'n B, with lim sup¢(B*)

t—o0
< o & f(k;) + V1+2a222(k71)_1. It is easy to see that® — 0 as
- a
k — oo. Finally, defineA, diagonally asB", wheret’ > t is chosen so that
w(AAgA) < 1/t wheneverg belongs to the compact sif. This com-
pletes the construction of the asymptotically invariant 0-sequéAge as
well as the proof of Proposition A.O. O

A.3. It remains to write down the

Proof of Lemma 3.1t is easy to deduce from (3.1) and tBeequivariance
of r that if { A} is an asymptotically invariant 0-sequence of subse?$, of
then {m (A} is an asymptotically invariant 0-sequence of subsetXof
and, conversely, any asymptotically invariant 0-seque#gé of subsets
of X, gives rise to an asymptotically invariant 0-sequefice(A)} of
subsets ofX;. O
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