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Abstract. We prove a reverse form of the multidimensional Bra-
scamp-Lieb inequality. Our method also gives a new way to derive
the Brascamp-Lieb inequality and is rather convenient for the study
of equality cases.

Introduction

We work on Rn with its usual Euclidean structure and we denote by
h; i the canonical scalar product. In [BL], H. J. Brascamp and E. H.
Lieb showed that for m; n 2 N, p1; . . . ; pm > 1 and a1; . . . ; am 2 Rn,
the norm of the multilinear operator U from Lp1�R� � � � � � Lpm�R�
into R de®ned by

U�f1; . . . ; fm� �
Z
Rn

Ym
i�1

fi�hx; aii�dx

can be computed as the supremum over centered Gaussian functions
g1; . . . ; gm of

U�g1; . . . ; gm�Qm
i�1 kgikpi

�
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In other words, U is ``saturated'' by Gaussian functions. This theorem
is a very convenient tool to derive sharp inequalities. Brascamp and
Lieb applied it successfully to prove the optimal version of Young's
convolution inequality (also established independently by Beckner
[Bec]), to rederive Nelson's hypercontractivity. Their proof is based
on a rearrangement inequality of Brascamp, Lieb and Luttinger
[BLL] and on the fact that radial functions of a large number of
variables behave like Gaussians. However, their method left open,
except in some special cases, the multidimensional problem. Let
m � n, p1; . . . ; pm > 1 and let n1; . . . ; nm be integers. For each i � m let
Bi be a linear mapping from Rn into Rni . Is the multilinear operator
on Lp1�Rn1� � � � � � Lpm�Rnm� de®ned by

W�fi; . . . ; fm� �
Z
Rn

Ym
i�1

fi�Bix�dx

saturated by Gaussian functions?
This question was solved positively by Lieb in his article

``Gaussian kernels have only Gaussian maximizers'' [Lie]. The key
point is that W can be viewed as a limit case of multilinear operators
with Gaussian kernels.

In [Bar3], we gave a simple proof, for functions of one real vari-
able, of the Brascamp-Lieb inequality and of a new family of in-
equalities which can be understood as a reverse form, or as a dual
form of the Brascamp-Lieb inequalities. These inequalities can be
stated as follows: let m � n, p1; . . . ; pm > 1 and a1; . . . ; am 2 Rn; the
largest constant E such thatZ�

Rn

sup
x�
P

cihiai

Ym
i�1

fi�hi�dx � E
Ym
i�1
kfikpi

holds for all fi; . . . ; fm is also the largest constant such that the in-
equality holds for centered Gaussian functions, where

R �
is the outer

integral. Again, Gaussian functions play an extremal role. This new
inequality was inspired by convexity theory. The strength of the
Brascamp-Lieb inequality for volume estimates of convex bodies was
noticed by K. Ball (see [Bal1], [Bal2] and [Bal3]), who also remarked
in [Bal3] that a reverse inequality would give dual results. For geo-
metric applications of the reverse Brascamp-Lieb inequality, see
[Bar1] and also section III of the present paper.

In the ®rst section, we prove a fully multidimensional version of
the reverse Brascamp-Lieb inequality. Our method also gives a new
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proof of the multidimensional Brascamp-Lieb inequality. It is very
similar to the one we used for the one-dimensional case and uses
a theorem of Brenier ([Bre1], [Bre2]) re®ned by McCann ([McC1],
[McC2]) on measure preserving mappings deriving from convex
potentials. Notice that this result was applied by McCann in [McC1]
to prove the PreÂ kopa-Leindler inequality ([PreÂ ], [Lei]), which is a
particular case of the reverse Brascamp-Lieb inequalities.

In section II, we focus on the one-dimensional case in order to deal
in detail with equality cases. This problem was left open for the Bra-
scamp-Lieb inequality because the previous proofs depended on limit
processes. We push further the study of [BL] in the spirit of [Lie] to see
when there is a Gaussian maximizer for the Brascamp-Lieb inequality
(or aGaussianminimizer for the reverse form) andwhether it is unique.

In section III, we study the particular case of the Brascamp-Lieb
inequality which was pointed out by K. Ball [Bal1] and which is so
useful in convexity. We state the corresponding converse inequality.
The equality cases are completely solved, which allows us to ®nd new
characteristic properties of simplices and parallelotopes. The multi-
dimensional version of the reverse Brascamp-Lieb inequality implies
a Brunn-Minkowski type theorem for sets that are contained in
subspaces.

1 Proof of the Brascamp-Lieb inequality and its converse

We ®rst introduce some notation. Let S��Rn� be the set of n� n
symmetric de®nite positive matrices. For A 2 S��Rn� we denote by
GA the centered Gaussian function on Rn

GA�x� � exp�ÿhAx; xi� :

We also denote byL�Rn;Rm� the set of linear mappings from Rn to
Rm, identi®ed with m� n-matrices. If B 2L�Rn;Rm�, then
B� 2L�Rm;Rn� will be its Euclidean adjoint. We work with the set
L�1 �Rn� of integrable non-negative functions on Rn.

The fully multidimensional version of the Brascamp-Lieb in-
equality and its converse is as follows:

Theorem 1 Let m; n be integers. Let �ci�mi�1 be positive real numbers and
�ni�mi�1 be integers smaller than n such that

Xm

i�1
cini � n :
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For i � 1; . . . ;m; let Bi be a linear surjective map from Rn onto Rni .
Assume that \

i�m

kerBi � f0g :

We de®ne two functions I and J on L�1 �Rn1� � � � � � L�1 �Rnm� as
follows: if fi 2 L�1 �Rni�, i � 1; . . . ;m then

I��fi�mi�1� �
Z�
Rn

sup
Ym
i�1

f ci
i �yi�;

Xm

i�1
ciB�i yi � x and yi 2 Rni

( )
dx ;

and

J��fi�mi�1� �
Z
Rn

Ym
i�1

f ci
i �Bix�dx :

Let E be the largest constant such that for all �fi�mi�1,

I��fi�mi�1� � E
Ym
i�1

Z
Rni

fi

0@ 1Aci

; �RBL�

and let F be the smallest one such that for all �fi�mi�1,

J��fi�mi�1� � F
Ym
i�1

Z
Rni

fi

0@ 1Aci

: �BL�

Then E and F can be computed using centered Gaussian functions only,
that is

E � inf
I��gi�mi�1�Qm
i�1

R
Rni gi

ÿ �ci
; gi centered Gaussian on Rni ; i � 1; . . . ;m

( )
;

and

F � sup J��gi�mi�1�Qm
i�1

R
Rni gi

ÿ �ci
;

(
gi centered Gaussian on Rni ; i � 1; . . . ;m

)
;

Moreover, if we denote by D the largest real number such that
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det
Xm

i�1
ciB�i AiBi

 !
� D

Ym
i�1

detAi� �ci ;

for all Ai 2S��Rni�; i � 1; . . . ;m, then

E �
����
D
p

and F � 1����
D
p �

Remark 1. The hypothesis
Pm

i�1 cini � n is just a necessary homoge-
neity condition for E to be positive and for F to be ®nite. The con-
dition on \ kerBi ensures that

Pm
i�1 ciB�i AiBi is an isomorphism.

Actually, the conclusion of the theorem remains obviously valid
without this condition, since D � 0 when it is not satis®ed.

Remark 2. Notice that the reverse Brascamp-Lieb inequality for
m � 2, n1 � n2 � n, B1 � B2 � B�1 � B�2 � In and c1 � a � 1ÿ c2,
where In is the identity map on Rn and 0 < a < 1, is the inequality of
PreÂ kopa-Leindler [PreÂ ] [Lei]. Indeed the constant D is

D � inf
A1;A22S��Rn�

det�aA1 � �1ÿ a�A2�
�detA1�a�detA2�1ÿa � 1

by the arithmetic-geometric inequality. So (RBL) becomes, for all
f ; g 2 L�1 �Rn�,

Z�
Rn

sup
x�au��1ÿa�v

f a�u�g1ÿa�v�dx �
Z
Rn

f

0@ 1Aa Z
Rn

g

0@ 1A1ÿa

:

It is well-known that this inequality implies the Brunn-Minkowski
theorem: for A; B compact non-void subsets of Rn,

Vol
1
n�A� B� � Vol

1
n�A� � Vol

1
n�B� :

The proof of Theorem 1 is divided into lemmas. We ®rst deal with
the study of the behavior of I and J with respect to centered Gaussian
functions. We set

Eg � inf
I��gi�mi�1�Qm
i�1

R
Rni gi

ÿ �ci
; gi centered Gaussian on Rni ; i � 1; . . . ;m

( )
;
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and

Fg � sup
J��gi�mi�1�Qm
i�1

R
Rni gi

ÿ �ci
; gi centered Gaussian on Rni; i � 1; . . . ;m

( )
�

Our aim is to prove that E � Eg �
����
D
p

and F � Fg � Dÿ1=2:We begin
with a classical computation, taken from [BL]; it only uses the fact
that if M 2S��Rk�, thenZ

Rk

exp�ÿhx;Mxi�dx �
������������

pk

detM

r
�

Lemma 1 With the notation of Theorem 1, we have

Fg � 1����
D
p �

Our next lemma links Eg and Fg by means of duality between
quadratic forms.

Lemma 2 With the previous notation, we have

Eg � Fg � 1 ;

and Eg � 0 if and only if Fg � �1.

Proof. For i � 1; . . . ;m, let Ai 2S��Rni� and let Q be the quadratic
form on Rn de®ned by

Q�y� �
*Xm

i�1
ciB�i AiBiy; y

+
:

Let Q� be the dual quadratic form of Q. We recall that it is de®ned on
Rn by

Q��x� � sup jhx; yij2; Q�y� � 1
n o

:

We also introduce the function R on Rn such that for all x 2 Rn,

R�x� � inf
Xm

i�1
cihAÿ1i xi; xii; x �

Xm

i�1
ciB�i xi and for all i; xi 2 Rni

( )
:
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We now show that R � Q�. Indeed, assume that x �Pm
i�1 ciB�i xi with

xi 2 Rn1 for i � 1; . . . ;m, then

jhx; yij2 �
*Xm

i�1
ciB�i xi; y

+�����
�����
2

�
Xm

i�1
h ����ci
p

Aÿ1=2i xi;
����
ci
p

A1=2
i Biyi

�����
�����
2

:

By the Cauchy-Schwarz inequality, applied to the quadratic form /
on Rn1 � � � � �Rnm de®ned by /�Xi; . . . ;Xm� �

Pm
i�1hXi;Xii, one gets:

jhx; yij2 �
Xm

i�1
j ����ci
p

Aÿ1=2i xij2
 ! Xm

i�1
j ����ci
p

A1=2
i Biyj2

 !

�
Xm

i�1
cihxi;Aÿ1i xii

 ! DXm

i�1
ciB�i AiBiy; y

E !
:

In fact, one easily checks that there is equality in the previous
argument if one takes

y �
Xm

i�1
ciB�i AiBi

 !ÿ1
x

and

xi � AiBiy i � 1; . . . ;m :

It follows that R � Q�.
We apply this result to our integrals of Gaussian functions.

Straightforward computations give that

J�GA1
; . . . ;GAm�Qm

i�1
R

GAi

ÿ �ci
�

����������������������������Qm
i�1�detAi�ci

detQ

s
;

and
I�GAÿ1

1
; . . . ;GAÿ1m

�Qm
i�1

R
GAÿ1i

� �ci
�

�������������������������������Qm
i�1�detAi�ÿci

detR

r
:

Using that R � Q� and the classical duality relation detQ � detQ� � 1,
one has

J�GA1
; . . . ;GAm�Qm

i�1
R

GAi

ÿ �ci
�
I�GAÿ1

1
; . . . ;GAÿ1m

�Qm
i�1

R
GAÿ1i

� �ci
� 1 ;

and therefore Eg � F ÿ1g . (
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Remark. Let us emphasize the equivalence for Ai 2S��Rn�,
i � 1; . . . ;m of the assertions
� det Pm

i�1 ciB�i AiBi
ÿ � � D

Qm
i�1 detAi� �ci :

� The m-tuple of centered Gaussians �GA1
; . . . ;GAm� is a maximizer

for (BL).
� The m-tuple of centered Gaussians �GAÿ1

1
; . . . ;GAÿ1m

� is a mini-
mizer for (RBL).

Lemma 3 For i � 1; . . . ;m, let fi and hi belong to L�1 �Rni� and satisfyR
Rni fi �

R
Rni hi � 1: Then

I�f1; . . . ; fm� � D � J�h1; . . . ; hm� :

Taking the supremum over �hi�mi�1 and the in®mum over �fi�mi�1 in
the previous inequality yields E � DF . So Lemmas 1, 2 and 3 imply����

D
p � Eg � E � DF � DFg �

����
D
p

. Thus the proof of Theorem 1 will
be complete as soon as Lemma 3 is established.

In [Bar3], we proved Lemma 3 for functions of one real variable,
using measure-preserving mappings. Given two non-negative func-
tions f and h on R with integral one, there exists a non-decreasing
mapping u such that for all x 2 R:

Zu�x�
ÿ1

f �
Zx

ÿ1
h :

In other words, u maps the probability measure of density h onto the
probability measure of density f . Our proof in the general case (i.e.
for functions of several variables) is also based on measure-preserving
mappings. But, in dimension larger than one, there is a large choice of
such mappings between two su�ciently regular probability measures.
For our purpose, the Brenier mapping (see [Bre1], [Bre2]) ®ts per-
fectly; it has the additional convenient property of deriving from a
convex potential. Brenier proved its existence and uniqueness under
certain integrability assumptions on the moments of the measures,
which where later removed by McCann [McC1], [McC2]. Let us state
the result that we need.

Theorem 2 Let f1; f2 be non-negative measurable functions on Rn with
integral one. There exists a convex function / on Rn such that the map
u � r/ has the following property: for every non-negative Borel
function b on Rn,

342 F. Barthe



Z
Rn

b�u�x��f2�x�dx �
Z
Rn

b�x�f1�x�dx :

The function / given by this theorem represents a generalized solu-
tion of the Monge-AmpeÁ re equation

det�r2/�x��f2�r/�x�� � f1�x� :

In fact, the gradient of / is unique f1 dx-almost everywhere. Since it is
convenient to work with strong solutions, we recall here a corollary
of a theorem of Ca�arelli [Caf], who has developed a regularity
theory for these convex solutions.

Theorem 3 For i � 1; 2; let Xi be bounded domains of Rn and let fi be
non-negative functions, supported on Xi. Assume that fi and 1=fi are
bounded on Xi and that X2 is convex. If fi, i � 1; 2 are Lipschitz then
the Brenier mapping / is twice continuously di�erentiable.

Let CL�Rn� be the set of functions f 2 L�1 �Rn� which are the re-
striction to some open Euclidean ball of a positive Lipschitz function
on Rn.

Let us remark that it su�ces to establish (BL) and (RBL) for
functions in CL�Rni�. We strongly rely on the monotonicity of the
functions I and J . Assume that (RBL) holds for functions in CL�Rni�.
Then it is clearly true for positive Lipschitz functions. By classical
monotone convergence arguments, this yields (RBL) for functions in
the classes DL�Rni� of pointwise limits of decreasing sequences of
positive Lipschitz functions. Let fi 2 L�1 �Rni�; i � 1; . . . ;m, and let
e > 0. Then there exist m functions �si�mi�1, which are positive linear
combination of characteristic functions of compact sets and such that

fi � si and

Z
fi ÿ

Z
si � e :

Since si belongs to DL�Rni�, (RBL) holds for �si�mi�1. Thus

I��fi�mi�1� � I��si�mi�1� � E
Ym
i�1

Z
si

� �ci

� E
Ym
i�1
ÿe�

Z
fi

� �ci

:

Hence (RBL) is always true. The same kind of argument is valid for
(BL).
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Proof of Lemma 3. We assume that D > 0. By homogeneity we can
also assume that

R
fi �

R
hi � 1 for all i. The previous remark allows

us to work with functions fi; hi belonging to CL�Rni�, so that we can
use Ca�arelli's regularity result and Brenier's theorem. We denote by
Xhi the domain where hi is positive. For i � 1; . . . ;m, we get a dif-
ferentiable function Ti deriving from a convex potential and such that
for all x 2 Xhi ,

det dTi�x�� � � fi�Ti�x�� � hi�x� :

Since Ti derives from a convex potential, its di�erential is symmetric
semi-de®nite positive and because of the previous equation and of
the non-vanishing property of hi, we know that for all x 2 Xhi ,
dTi�x� 2S��Rni�.

We de®ne a function H from
Tm

i�1 Bÿ1i �Xhi� � Rn into Rn by

H�y� �
Xm

i�1
ciB�i �Ti�Biy�� :

Its di�erential is symmetric semi-de®nite positive

dH�y� �
Xm

i�1
ciB�i dTi�Biy�Bi ;

and it is actually de®nite positive because:

det
Xm

i�1
ciB�i dTi�Biy�Bi

 !
� D

Ym
i�1

det dTi�Biy�� �ci> 0

In particular for all v 6� 0 in Rn,

hdH�y� � v; vi > 0

so H is injective. Denoting S � Tm
i�1 Bÿ1i �Xhi�, we can writeZ

Rn

Ym
i�1

hci
i �Biy� dy �

Z
S

Ym
i�1

hci
i �Biy� dy

�
Z
S

Ym
i�1

ÿ
fi�Ti�Biy�� det dTi�Biy�

�ci dy
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� 1

D

Z
S

Ym
i�1

fi�Ti�Biy��ci det
Xm

i�1
ciB�i dTi�Biy�Bi

 !
dy

� 1

D

Z
S

sup
H�y��

Pm

i�1 ciB�i xi

Ym
i�1

fi�xi�ci

 !
det�dH�y�� dy

� 1

D

Z
Rn

sup
x�
Pm

i�1 ciB�i xi

Ym
i�1

fi�xi�ci

 !
dx

which concludes the proof of Lemma 3. (

2 Equality cases

In this section, we restrict to functions of one real variable. With the
notation of Theorem 1 there are vectors v1; . . . ; vm in Rn such that
span��vi�mi�1� � Rn and for all x 2 Rn and t 2 R,

Bi�x� � hx; vii; B�i �t� � tvi and B�i Bi � vi 
 vi :

We are going to study the best constant in inequalities (BL) and
(RBL) and to characterize equality cases. We call maximizers the
non-zero functions that give equality in (BL) and minimizers those
that provide equality in (RBL).

2.1 The geometric structure of the problem

Given �vi�mi�1 which span Rn, we introduce some notation. For a
subset K of f1; . . . ;mg, we denote by EK the linear span in Rn of the
vectors �vk�k2K . We call adapted partition a partition S of f1; . . . ;mg
such that:

Rn � a
K2S

EK :

These partitions are useful because this splitting of the space Rn

yields a splitting of the Brascamp-Lieb inequality and of its converse,
so that one can work separately on each piece. We shall ®rst show
that there exists a best adapted partition.

Proposition 1 Let � be the relation on Nm � f1; . . . ;mg de®ned by as
follows: i � j if and only if there exists a subset K of Nm of cardinality
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nÿ 1 such that both �vi; �vk�k2K� and �vj; �vk�k2K� are bases of Rn. Let
� be the transitive completion of� (i � j means that there exists a path
between i and j in which two consecutive elements are in relation for�).

Then � is an equivalence relation and the subdivision C of Nm into
equivalence classes for � is the ®nest adapted partition.

Proof. We ®rst establish that C is more accurate than any adapted
partition S. Let I; J 2 S, I 6� J and let i 2 I, j 2 J . It su�ces to show
that i � j is impossible.

Assume precisely that i � j. Then there exists K � Nm such that

ei � �vi; �vk�k2K� and ej � �vj; �vk�k2K�
are bases of Rn. As S is adapted, we have Rn �aH2SEH , each of
them being spanned by some vi's. So, every basis of Rn with elements
taken among the vi's must contain dim�EH � elements in EH . But our
bases ei and ej do not have the same number of vectors in EI because
vi 2 EI and vj 2 EJ . Thus we have a contradiction.

We now show that the partition C is adapted to our geometric
setting. Let I be an equivalence class for � and let EI be the corre-
sponding space. Since the vectors �vi�mi�1 span Rn, we ®nd a permu-
tation of indices such that b � �v1; . . . ; vn� is a basis of Rn and
�v1; . . . ; vr� is a basis of EI for some r � n. Let us denote by F the span
of vr�1; . . . ; vn.

Let i 2 Nm; the vector vi can be decomposed in the basis b:

vi �
Xn

k�1
akvk :

For any j � n, we notice that

det
b
�v1; . . . ; vjÿ1; vi; vj�1; . . . ; vn� � aj ;

hence aj 6� 0 implies that vi and vj belong to neighbor bases, that is
i � j. So, if i 2 I, as i can be in relation for � only with elements of I
we have ar�1; . . . ; an � 0. Thus i 2 I implies vi 2 EI . By a similar ar-
gument, if i 62 I, a1; . . . ; ar � 0 and vi belongs to F . We have proved
that Rn � spanfvi; i 2 Iga spanfvi; i 62 Ig, this is the ®rst step of the
decomposition. The result follows by induction, noticing that the
relation � can be restricted to F . (

As a consequence of Proposition 1, let us observe that it is su�-
cient to study the case when the relation � has only one equivalence
class. In this case we say that �Rn; �vi�mi�1� is irreducible.
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2.2 The Gaussian case

Let v1; . . . ; vm be vectors of Rn such that Rn � span��vi�mi�1�. For
I � f1; . . . ;mg of cardinality jIj � n, we denote

dI � det��vi�i2I�2 :

For each m-tuple c � �ci�mi�1 of positive numbers, we study the con-
stant Dc de®ned by

Dc � inf
det�Pm

i�1 kivi 
 vi�Qm
i�1 kci

i
; ki > 0; i � 1 . . . m

� �
:

We wish to know when Dc is positive and when the in®mum is
achieved. We will sometimes call minimizers the m-tuples �ki�mi�1 for
which Dc is achieved.

The computation of the previous determinant is made possible by
the Cauchy-Binet formula which we recall:

Proposition 2 Let m � n be integers; let A be a n� m matrix and let B
be a m� n matrix. For I � Nm of cardinality n we denote by AI the
square matrix obtained from A by keeping only the columns with
indices in I ; we denote by BI the square matrix obtained from B by
keeping the rows with indices in I. Then we have the formula

det�AB� �
X
jIj�n

det�AI� det�BI�

where the sum is over all subsets of cardinality n of Nm.

The relevance of this formula is clear from

Corollary 1 Let m � n and let �v1; . . . ; vm� be vectors in Rn. Then

det
Xm

i�1
kivi 
 vi

 !
�
X
jIj�n

kI det��vi�i2I�
ÿ �2�X

jIj�n

kIdI ;

where for I � Nm, we have set kI �
Q

i2I ki.

The condition for Dc to be non-zero has a rather nice geometric
description which requires some notation. For I � f1; . . . ;mg, let 1I

be the vector of Rm of coordinates �1I�i � di2I (it is the characteristic
function of I). One has the following result:
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Proposition 3 The in®mum Dc is positive if and only if the vector
c 2 Rm belongs to the convex hull of the characteristic vectors 1I of the
subsets I of cardinality n such that the vectors �vi�i2I form a basis of Rn.

Proof.We shall ®rst show that the condition is su�cient. Assume that
we have a family of non-negative real numbers �tI�jIj�n indexed by the
subsets of cardinality n of f1; . . . ;mg, such that

tI � 0 whenever dI � 0 ;

ci �
X
jIj�n;i2I

tI ; for all i :

Let ki, i � 1; . . . ;m be positive. By the Cauchy-Binet formula and the
arithmetic mean-geometric mean inequality with coe�cients tI (their
sum is indeed one), we have:

det
Xm

i�1
kivi 
 vi

 !
�
X
jI j�n

kIdI �
X
tI 6�0

tI
kI

tI
dI

� �
�
X
tI�0

kI dI �
Y
tI 6�0

kIdI

tI

� �tI

:

Each ki appears with the total exponentX
i2I ;tI 6�0

tI ;

equal to ci by hypothesis. Thus we have

det
Xm

i�1
kivi 
 vi

 !
�
Y
tI 6�0

dI

tI

� �tIYm
i�1

kci
i :

Since tI 6� 0 implies dI 6� 0, the constant Dc is positive.
Let us now prove that the condition is necessary. For all ki > 0,

i � 1; . . . ;m; let

D�k1; . . . ; km� :�
P
jIj�n dIkIQm

i�1 kci
i
�

Let �xi�mi�1 2 Rn and let N > 0. There always exists a positive a such
that the quantity D��eÿNxi�mi�1� is equivalent when N tends to in®nity to

a � expN
Xm

i�1
xici �max ÿ

X
i2I

xi; jIj � n and dI 6� 0

( ) !
:
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If we assume that Dc is positive, then D��eÿNxi�mi�1� � Dc > 0 cannot
tend to zero. Necessarily, for all �xi�mi�1 2 Rm, one has:

Xm

i�1
xici � min

X
i2I

xi; jI j � n and dI 6� 0

( )
:

This can be reformulated in terms of convex cones as \dI 6�0C1I � Cc,
where, for y 2 Rm, Cy � fx 2 Rm; hx; yi � 0g: By duality of convex
cones, this implies that the vector c belongs to the convex cone
generated by the vectors 1I such that dI 6� 0. Thus there exist non-
negative real numbers �tI�I;dI 6�0 such that for all i � m,

ci �
X

jIj�n and i2I

tI :

Summing over i yields
P

dI 6�0 tI � �
Pm

i�1 ci�=n. But the hypothesis
Dc > 0 implies that the numerator and the denominator of D have the
same homogeneity degree in the variables. So

Pm
i�1 ci � n and we

have shown that c belongs to the convex hull of the 1I such that
dI 6� 0. (

Remark. Let K � fx 2 �0; 1�m;
Pm

i�1 xi � ng, it is the convex hull of
the vectors �1I�jIj�n. By the previous result, Dc is non-zero only if c is
in K. If the vectors �vi� are in generic position, Dc 6� 0 if and only if
c 2 K. But as the 1I are clearly the only extremal points of K,
any geometrical degeneracy (i.e. any dI equal to zero) will imply a
reduction of the domain where c must be.

We know that Dc is positive if and only if c can be written as a
convex combination of certain vectors. The next proposition states
that Dc is achieved if and only if there exists a convex combination
with some additional property.

Proposition 4 The constant Dc is achieved if and only if there exist
positive numbers �tI�jIj�n and �ki�mi�1 such that

c �
X
jIj�n

tI1I

and for all I
tI � dI

Y
i2I

ki :
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Notice that dI � 0 implies tI � 0, so the result is coherent with the
previous one.

Proof. The if part comes from a precise study of the ®rst half of the
proof of Proposition 3. All inequalities stated in this proof become
equalities for the particular m-tuple �ki�mi�1. The arithmetic-geometric
inequality is an equality because for all I, kIdI=tI � 1. Moreover, the
term

P
I;tI�0 kIdI is zero.

The only if part is obvious by di�erentiation. (

We are going to rewrite our problem in the setting of Fenchel
duality for convex functions in order to use the following result (see
[Roc] p. 264):

Proposition 5 Let / be a l.s.c. convex function on Rm and let /� be its
Fenchel conjugate, de®ned for x 2 Rm by

/��x� � sup
y2Rm
hx; yi ÿ /�y� :

Then /��x�, which is a supremum, is achieved if and only if /� is
subdi�erentiable at the point x. In particular, it is achieved when x
belongs to the relative interior of dom�/�� � fy 2 Rm; /��y� < �1g.

Let us de®ne the function / on Rm by

/�x1; . . . ; xm� � log det
Xm

i�1
etivi 
 vi

 !
:

The next proposition links our problem on Dc with the study of the
Fenchel conjugate of /.

Proposition 6 1. The function / is convex.
2. The constant Dc is equal to exp�ÿ/��c��.
3. Dc is positive if and only if c 2 dom�/��.
4. Dc is achieved if and only if /��c� is.
5. dom �/�� is equal to K � convf1I ; dI 6� 0g.
6. The constant Dc is achieved when c belongs to the relative interior

of K.

Proof. The convexity of / is a consequence of the Cauchy-Schwarz
inequality: let s; t 2 Rm,

350 F. Barthe



/
t � s
2

� �
� log

X
jI j�n

dI exp
X
i2I

ti

 !( )1
2

dI exp
X
i2I

si

 !( )1
2

0@ 1A
� log

X
i2I

dI exp
X
i2I

ti

 !( )1
2 X

i2I

dI exp
X
i2I

si

 !( )1
2

0@ 1A
�/�t� � /�s�

2
:

The other assertions are also very simple. (

The last statement of the previous proposition allows us to recover
a result of [BL].

Corollary 2 If for all I � Nm of cardinality n, dI � det��vi�i2I� is not
zero, then for all c � �ci�mi�1 such that:

Xm

i�1
ci � n and 0 < ci < 1 for all i ;

the constant Dc is achieved for a certain �k�mi�1.

The following result shows that the reciprocal statement is almost
true.

Proposition 7 If �Rn; �vi�mi�1� is irreducible and if c1 � 1, then Dc is
achieved only when m � n � 1.

We come to unicity results: if Dc is achieved, there is a unique
minimizer, up to scalar multiplication.

Proposition 8 Assume that �Rn; �vi�mi�1� has the irreducibility property.
If �ki�mi�1 and �li�mi�1 are two minimizers, then there exists r 2 R such
that for all i, ki � rli.

Proof. Let t � ��ti�mi�1� and s � ��si�mi�1� such that for all i, ki � eti and
li � esi : Let w be the function on Rm de®ned for all ��xi�mi�1� by

w��xi�� � /��xi�� ÿ
Xm

i�1
cixi :

Then w reaches its minimum at the points t, s and also at �t � s�=2
because it is convex. So we have
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/�t� � /�s�
2

� /
t � s
2

� �
;

and there must be equality in the Cauchy-Schwarz inequality in the
proof of Proposition 6. Hence, there exists a 2 R such that for all I ,
jI j � n,

dI exp
X
i2I

ti

 !
� a � dI exp

X
i2I

si

 !
:

In particular, if dI 6� 0, one has

Y
i2I

ki

li

� �
� a :

Let i; j 2 Nm such that i � j. By de®nition, there exists K � Nm of
cardinality nÿ 1, such that dfig[K and dfjg[K are both non-zero. So,
we have Y

l2fig[K

kl

ll

� �
�

Y
l2fjg[K

kl

ll

� �
;

and after simpli®cation
ki

li
� kj

lj
:

By the irreducibility property (see Proposition 1), this implies
k1
l1
� � � � � km

lm
. (

2.3 The general case

We studied existence and uniqueness of centered Gaussian maxi-
mizers for (BL) and minimizers for (RBL). Now, we turn to the
general study. As explained before, we may assume that �Rn; �vi�mi�1�
is irreducible. The behavior of extremal functions is very di�erent for
n � 1 and for n � 2.

2.3.1 The case n � 1

If n � 1, then ni � 1 for all i � m, the condition on �ci�mi�1 is justPm
i�1 ci � 1, and the vi's are just real numbers. The inequality (BL) is

nothing else than HoÈ lder's inequality for the functions x 7! fi�vix�,
whereas (RBL) is the PreÂ kopa-Leindler inequality for x 7! fi�x=vi�.
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The equality cases can be settled from our proof; we will not do
it because they are well-known: if

Pm
i�1 ci � 1, and fi 2 L�1 �R�,

i � 1; . . . ;m are non identically zero, thenZ
R

Ym
i�1

f ci
i �x�dx �

Ym
i�1

Z
R

fi

� �ci

holds if and only if
f1R
R f1
� � � � � fmR

R fm
:

Under the same assumptions,Z
R

supP
cixi�x

Ym
i�1

f ci
i �xi�dx �

Ym
i�1

Z
R

fi

0@ 1Aci

holds if and only if there exists �yi�mi�1 2 Rm such that

f1�� ÿ y1�R
R f1

� � � � � fm�� ÿ ym�R
R fm

is a log-concave function :

2.3.2 The case n � 2

We prove that if there is a centered Gaussian extremizer, then up to
dilatation and scalar multiplication, it is the only extremizer.

Theorem 4 Let n � 2 and let �Rn; �vi�mi�1� be irreducible. Let �ci�mi�1 and
�ki�mi�1 be positive numbers such that Dc is achieved for �ki�mi�1:

det
Xm

i�1
kivi 
 vi

 !
� Dc

Ym
i�1

kci
i :

Then �hi�mi�1 is a maximizer for (BL) if and only if there exist a > 0,
�ai�mi�1 positive and y 2 Rn such that for all i and for all t 2 R,

hi�t� � ai exp�ÿki�at ÿ hy; vii�2� : �1�
The m-tuple �hi�mi�1 is a minimizer for (RBL) if and only if there exist
b > 0, �bi�mi�1 positive and �ti�mi�1 real such that for all i and for all
t 2 R,

hi�t� � bi exp�ÿ�bt ÿ ti�2=ki� :
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Proof. By Lemma 1 and by the proof of Lemma 2, we know that
�Gki�mi�1 is a maximizer for (BL) and �Gkÿ1i

�mi�1 a minimizer for (RBL),
so by simple changes of variables in Rn, one can check that the
previous functions are extremizers.

Let �hi�mi�1 be a maximizer for (BL) and �fi�mi�1 be a minimizer for
(RBL). We may assume that fi; hi are positive and continuous for all
i. Indeed by the following lemma (which was communicated to us by
K. Ball) we know that �hi � Gki�mi�1 is a positive and continuous
maximizer for (BL). If we know that it is Gaussian, then so is �hi�mi�1
by the properties of the Fourier transform. The same argument is
relevant for (RBL).

Lemma 4 If �fi�mi�1 and �gi�mi�1 are maximizers for (BL), then so is
�fi � gi�mi�1. If �fi�mi�1 and �gi�mi�1 are minimizers for (RBL), then so is
�fi � gi�mi�1.

A proof of the ®rst part of this lemma appears in [Bar2], the proof
of the second part is similar. Notice that this lemma is valid for the
multidimensional version of the inequalities.

Let us now prove that positive continuous maximizers for (BL) are
of the form (1); the proof for (RBL) is analogous and a bit simpler.
Let �fi�mi�1 such that fi�x� � exp ÿx2=ki

ÿ �
; it is a minimizer for (RBL).

Let �hi�mi�1 be a positive continuous maximimizer for (BL). We study
precisely the proof of Lemma 3 applied with �hi�mi�1 and �fi�mi�1. Since
our functions are positive, the changes of variables Ti's are increasing
di�erentiable bijections of R, such that for all t 2 R,

T 0i �t� � fi�Ti�t�� � hi�t� :
There must be equality in every step of the proof. In particular, for all
y 2 Rn, one has

det
Xm

i�1
T 0i �hy; vii�vi 
 vi

 !
� Dc

Ym
i�1
�T 0i �hy; vii��ci :

By irreducibility and Proposition 8, one gets for all y 2 Rn,

T 01�hy; vii�
k1

� � � � � T 0m�hy; vii�
km

:

Since n � 2, for all i � m there exists j � m such that vi and vj are not
collinear; so there exists z 2 R such that hz; vii � 1 and hz; vii � 0:
The previous relation for y � tz means that for all t 2 R
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T 0i �t�
ki
� T 0j�0�

kj
:

Consequently, there exist a > 0 and real numbers �si�mi�1 such that for
all i and for all t 2 R,

Ti�t� � akit � si

and by the change of variable formula between hi and fi we get

hi�t� � T 0i �t� exp ÿT 2
i �t�=ki

ÿ � � li exp�ÿki�at ÿ ti�2� ;

for some positive �li� and some real �ti�.
It remains to ®nd which translates of a centered Gaussian maxi-

mizer are still maximizers. Let �gi�mi�1 be a maximizer,

gi�t� � exp�ÿkit2� ;

and let x � �xi�mi�1 2 Rm and for i � m; hi�t� � gi�t ÿ xi�. Let us
consider Rm with the Euclidean metric given by

N2�w� �
Xm

i�1
cikiw2

i ;

and the subspace

K � �hy; vii�mi�1; y 2 Rn� 	
:

Let s be the orthogonal projection of x onto A. Then there exists
z 2 Rn satisfying si � hz; vii for all i; moreover, by the Pythagore
Theorem

N �hy; vii ÿ xi�mi�1
ÿ � � N �hy; vii ÿ hz; vii�mi�1

ÿ �
with equality only if x belongs to A, that is x � s. Thus
J��hi�mi�1� � J��gi�mi�1�, with equality only if xi � hz; vii for all i. (

Remark. There are, for n � 2, some remaining questions. If there is
no centered Gaussian maximizer, is there any maximizer at all? The
answer seems to be no: if �fi�mi�1 is a maximizer then by the Brascamp-
Lieb-Luttinger inequality [BLL] so is �f �i �mi�1, where f � is the sym-
metric rearrangement. As K. Ball noticed it, for every integer k� ���

k
p

f �i � � � � � f �i|��������{z��������}
k times

�
���
k
p
��
�m

i�1
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is also a maximizer. Moreover, under some integrability assumptions,
it converges to a centered Gaussian m-tuple by the Central Limit
Theorem.

Notice that our method gives the answer when there are positive
continuous maximizers for (BL) and positive continuous minimizers
for the corresponding (RBL). The study of the equality case of
Lemma 3 shows that the constant D must be achieved, so there is a
centered Gaussian maximizer.

3 Applications to convex geometry

3.1. Dimension one

K. Ball noticed that an additional geometrical hypothesis, which is
often available in convexity, supports an easy computation of the
optimal constant in the Brascamp-Lieb inequality. His version of (BL)
gives sharp upper estimates for the volume of sections of the unit ball
of `m

p � �Rm; k � kp� (see [Bal1] and Proposition 8 of [Bal3]). Using
(BL), K. Ball also proved that simplices have maximal volume ratio
[Bal3], and that among symmetric convex bodies, parallelotopes do
have [Bal1]. We recall that the volume ratio vr�K� of a convex body
K � Rn is the ratio of the volume of K to the volume of the maximal
volume ellipsoid contained in K (called the John ellipsoid, see [Joh]).

However, the question of equality cases in Ball's version of (BL)
and in applications was open. Moreover, one needed a corresponding
tool for dual problems such as minorizing the volume of n-dimen-
sional projections of the unit ball of `m

p . In this section, we point out
a version of (RBL) which applies to such dual problems and we
characterize equality cases in (BL), (RBL) and in the applications.

Ball's version of the Brascamp-Lieb inequality and our reverse
version are as follows:

Theorem 5 Let m � n, let �ui�mi�1 be unit vectors in Rn and let �ci�mi�1 be
positive real numbers such thatXm

i�1
ciui 
 ui � In :

Then for all fi 2 L�1 �R�, i � 1; . . . ;m one hasZ
Rn

Ym
i�1

f ci
i �hx; uii�dx �

Ym
i�1

Z
fi

� �ci

;
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and Z�
Rn

sup
x�
P

cihiui

Ym
i�1

f ci
i �hi�dx �

Ym
i�1

Z
fi

� �ci

:

This result follows from Theorem 1. The optimal constant (equal to
1) is provided by Ball's observation:

Proposition 9 Let m � n, let v1; . . . ; vm be vectors in Rn such thatPm
i�1 vi 
 vi � In; where In stands for the identity map. Then for every

m-tuple �ki�mi�1 of positive numbers

det
Xm

i�1
kivi 
 vi

 !
�
Ym
i�1

kjvij2
i :

There is equality when k1 � � � � � km .

Proof. By the Cauchy-Binet formula, we have

1 � det In � det
Xm

i�1
vi 
 vi

 !
�
X
jI j�n

dI :

Hence we can use the arithmetic-geometric inequality with coe�-
cients dI :

det
Xm

i�1
kivi 
 vi

 !
�
X
jIj�n

kIdI �
Y
jIj�n

kdI
I :

Each ki appears with the total exponent
P

I;i2I dI . Applying Corol-
lary 1 to the m-tuple �v1; . . . ; viÿ1; 0; vi�1; . . . ; vm�, we get:X

I;i2I

dI �
X

I

dI ÿ
X
I ;i62I

dI

� 1ÿ det�v1 
 v1 � � � � � viÿ1 
 viÿ1 � vi�1

 vi�1 � � � � � vm 
 vm�

� 1ÿ det�In ÿ vi 
 vi� � jvij2 : (

The equality cases in Theorem 5 are completely settled by Prop-
osition 1 and Theorem 4. The space Rn is the direct sum of irre-
ducible subspaces. The additional hypothesis on �ui�mi�1 clearly
implies that the sum is orthogonal. On irreducible subspaces of di-
mension one there is equality for (BL) if and only if the functions are
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equal up to scalar multiplication and, for (RBL), if and only if all the
functions are equal, up to multiplication and translation, to a com-
mon log-concave function. On irreducible spaces of dimension � 2,
there is equality if and only if the functions are (up to scalar multi-
plications, up to translations and only coherent translations in the
direct form) equal to a common centered Gaussian function. In
particular, we get

Corollary 3 Let m � n, let �ui�mi�1 be m distinct unit vectors in Rn and
let �ci�mi�1 be positive real numbers such thatXm

i�1
ciui 
 ui � In :

If �fi�mi�1 are non-identically-zero functions in L�1 �R� such that none of
them is a Gaussian andZ

Rn

Ym
i�1

f ci
i �hx; uii�dx �

Ym
i�1

Z
fi

� �ci

;

then m � n and �ui�mi�1 is an orthonormal basis of Rn.

This result allows us to settle equality cases in Ball's volume ratio
estimates. We denote by Qn the unit cube and by Dn the regular
simplex.

Proposition 10 Let K � Rn a convex body.
� If K is symmetric and vr�K� � vr�Qn� then K is a parallelotope.
� If vr�K� � vr�Dn� then K is a simplex.

As mentioned by Ball in [Bal3], one gets, as a consequence of (RBL),
the sharp lower bounds of the outer volume ratio, which involves the
minimal volume ellipsoid containing a body K. A proof of such lower
estimates relies on the following dual version of Proposition 8 of
[Bal3].

Proposition 11 Let m � n, let �ui�mi�1 be unit vectors in Rn and �ci�mi�1
positive numbers such that

Pm
i�1 ciui 
 ui � In: Let �ai�mi�1 be positive

numbers and let p � 1. If K is the unit ball of Rn with the norm

kxk � sup
x�
Pm

i�1 cihiui

Xm

i�1
aijhijp

 !1
p

;
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then

Vol�K� � 2nC�1� 1=p�n
C�1� n=p�

Ym
i�1

ci

ai

� �ci
p

:

Proof. We apply (RBL) in the form of Theorem 5 to the functions fi

such that fi�t� � exp�ÿaijtjp=ci� for all t 2 R. We get

Vol�K� � 1

C�1� n=p�
Z
Rn

eÿkxk
p

dx

� 1

C�1� n=p�
Z
Rn

sup
x�
P

cihiui

Ym
i�1

f ci
i �hi�dx

� 1

C�1� n=p�
Ym
i�1

2
ci

ai

� �1
p

C�1� 1=p�
 !ci

: (

Remark. Applying (RBL) with the functions fi � 1�ÿbi=ci;bi=ci� yields
Ball's lower estimate for the volume of zonoids [Bal2]: under the same
assumptions on �ui�mi�1 and �ci�mi�1, one has

Vol
Xm

i�1
bi�ÿui; ui�

 !
� 2n

Ym
i�1

bi

ci

� �ci

:

3.2 Larger dimensions

We obtain a multidimensional generalization of Ball's version of
the Brascamp-Lieb inequality and its converse. It follows from
Theorem 1. The computation of the optimal constant, here equal to 1,
comes from a simple extension of Proposition 9.

Theorem 6 Let m; n be integers. For i � 1; . . . ;m let Ei be a subspace
of Rn of dimension ni and let Pi be the orthogonal projection onto Ei

(on each Ei there is a Lebesgue measure compatible with the induced
Euclidean structure). Assume that there exist positive numbers
�ci�mi�1 satisfying Xm

i�1
ciPi � In :
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If for i � 1; . . . ;m, fi is a non-negative integrable function on Ei, then
one has Z

Rn

Ym
i�1

f ci
i �Pix� dnx �

Ym
i�1

Z
Ei

fi

� �ci

;

and Z�
Rn

sup
x�
Pm

i�1 cixi; xi2Ei

Ym
i�1

f ci
i �xi� dnx �

Ym
i�1

Z
Ei

fi

� �ci

:

Remark.When the fi's are characteristic functions of sets, the reverse
inequality provides a Brunn-Minkowski type result for compact
subsets of subspaces: if Ki � Ei then

Voln
Xm

i�1
ciKi

 !
�
Ym
i�1

VolEi�Ki�� �ci :
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