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Abstract. We prove a reverse form of the multidimensional Bra-
scamp-Lieb inequality. Our method also gives a new way to derive
the Brascamp-Lieb inequality and is rather convenient for the study
of equality cases.

Introduction

We work on R” with its usual Euclidean structure and we denote by
(,) the canonical scalar product. In [BL], H. J. Brascamp and E. H.
Lieb showed that for m,n € N, p,...,p, > 1 and ay,...,a, € R”",
the norm of the multilinear operator ® from L, (IR) x --- x L, (IR)
into IR defined by

oot = [ T[ A0
i=1

]Rﬂ
can be computed as the supremum over centered Gaussian functions

gty 9m of
(D(gla"'vgm) .
[T [lgill,,

* This work will form part of a doctoral thesis under the supervision of professors
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In other words, @ is “‘saturated” by Gaussian functions. This theorem
is a very convenient tool to derive sharp inequalities. Brascamp and
Lieb applied it successfully to prove the optimal version of Young’s
convolution inequality (also established independently by Beckner
[Bec]), to rederive Nelson’s hypercontractivity. Their proof is based
on a rearrangement inequality of Brascamp, Lieb and Luttinger
[BLL] and on the fact that radial functions of a large number of
variables behave like Gaussians. However, their method left open,
except in some special cases, the multidimensional problem. Let
m>n,pi,...,pm > 1andletny,..., n, beintegers. For each i < m let
B; be a linear mapping from R” into R™. Is the multilinear operator
on L, (R™) x --- x L, (R") defined by

P(f,. .. /Hf,Bx

]R’i

saturated by Gaussian functions?

This question was solved positively by Lieb in his article
“Gaussian kernels have only Gaussian maximizers” [Lie]. The key
point is that W can be viewed as a limit case of multilinear operators
with Gaussian kernels.

In [Bar3], we gave a simple proof, for functions of one real vari-
able, of the Brascamp-Lieb inequality and of a new family of in-
equalities which can be understood as a reverse form, or as a dual
form of the Brascamp-Lieb inequalities. These inequalities can be
stated as follows: let m > n, pi,...,pn > 1 and ay,...,a, € R"; the
largest constant £ such that

*

/ sup [/ dx>EHHf||
R x—ZcGa,':

holds for all f;, ..., f, is also the largest constant such that the in-
equality holds for centered Gaussian functions, where | " is the outer
integral. Again, Gaussian functions play an extremal role. This new
inequality was inspired by convexity theory. The strength of the
Brascamp-Lieb inequality for volume estimates of convex bodies was
noticed by K. Ball (see [Ball], [Bal2] and [Bal3]), who also remarked
in [Bal3] that a reverse inequality would give dual results. For geo-
metric applications of the reverse Brascamp-Lieb inequality, see
[Barl] and also section III of the present paper.

In the first section, we prove a fully multidimensional version of
the reverse Brascamp-Lieb inequality. Our method also gives a new
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proof of the multidimensional Brascamp-Lieb inequality. It is very
similar to the one we used for the one-dimensional case and uses
a theorem of Brenier ([Brel], [Bre2]) refined by McCann ([McCl],
[McC2]) on measure preserving mappings deriving from convex
potentials. Notice that this result was applied by McCann in [McCl1]
to prove the Prékopa-Leindler inequality ([Pré], [Lei]), which is a
particular case of the reverse Brascamp-Lieb inequalities.

In section II, we focus on the one-dimensional case in order to deal
in detail with equality cases. This problem was left open for the Bra-
scamp-Lieb inequality because the previous proofs depended on limit
processes. We push further the study of [BL] in the spirit of [Lie] to see
when there is a Gaussian maximizer for the Brascamp-Lieb inequality
(or a Gaussian minimizer for the reverse form) and whether it is unique.

In section III, we study the particular case of the Brascamp-Lieb
inequality which was pointed out by K. Ball [Ball] and which is so
useful in convexity. We state the corresponding converse inequality.
The equality cases are completely solved, which allows us to find new
characteristic properties of simplices and parallelotopes. The multi-
dimensional version of the reverse Brascamp-Lieb inequality implies
a Brunn-Minkowski type theorem for sets that are contained in
subspaces.

1 Proof of the Brascamp-Lieb inequality and its converse

We first introduce some notation. Let ¥+ (IR") be the set of n x n
symmetric definite positive matrices. For 4 € ST(IR") we denote by
G, the centered Gaussian function on R”

G4(x) = exp(—(4x,x)) .

We also denote by Z(R”,IR™) the set of linear mappings from R” to
R”, identified with m x n-matrices. If B e Z(IR",IR™), then
B* € Z(R™,IR") will be its Euclidean adjoint. We work with the set
LT (R") of integrable non-negative functions on R”.

The fully multidimensional version of the Brascamp-Lieb in-
equality and its converse is as follows:

Theorem 1 Let m, n be integers. Let (c;)r | be positive real numbers and
(mi)iL, be integers smaller than n such that

m
E cing =n .
i=1
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Fori=1,...,m, let B; be a linear surjective map from IR" onto R™.
Assume that

ﬂ kerB; = {0} .

i<m

We define two functions I and J on L{(R™)x ---x LI (R™) as
Sollows: if fi € LT (R"), i=1,...,m then

i=1 i=1

I((fi)iL) = / sup{Hﬁ'"(y,»); Zcinyi =xand y; € IR”'} dx |
]RH

and

J((f)iey) = / 11/ Bax)ax
i=1
]Rll
Let E be the largest constant such that for all (f;)7:

=1

Ci

ﬁ / : (RBL)

R
and let F be the smallest one such that for all (f;)!,,

Ci

sz/ . (BL)

R"

Then E and F can be computed using centered Gaussian functions only,
that is

. I((g:);- . .
E= 1nf{%; g; centered Gaussian on RR™ i = 1,...,m} ,

[T, (flR"f gi)
and

J((gi)im
F =sup M7 g; centered Gaussian on R™,i = 1,...,m} ,
HH (f]R": )

Moreover, if we denote by D the largest real number such that
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det( CiB?A,'B,'> > DH(detA,-)c" s
i=1 i=1
forall 4; € ST (R"),i=1,...,m, then

E=+D and F=—0 .

Remark 1. The hypothesis Y | ¢;n; = n is just a necessary homoge-
neity condition for £ to be positive and for F to be finite. The con-
dition on NkerB; ensures that Y ! ¢;BiA;B; is an isomorphism.
Actually, the conclusion of the theorem remains obviously valid
without this condition, since D = 0 when it is not satisfied.

Remark 2. Notice that the reverse Brascamp-Lieb inequality for
m=2, np=nm=n, Bp=By=B]=B,=1, and ci=a=1—c,
where 7, is the identity map on R” and 0 < a < 1, is the inequality of
Prékopa-Leindler [Pré] [Lei]. Indeed the constant D is

pe o S04
Arae7(R") (det Ay)*(det ) *

by the arithmetic-geometric inequality. So (RBL) becomes, for all
f:9 € L{(R"),

* o 1—o

/Fﬁﬁwﬁww“@wz /f /g
e

R” R”

It is well-known that this inequality implies the Brunn-Minkowski
theorem: for A, B compact non-void subsets of IR”,

Vol'(4 + B) > Voli(4) + Vol(B) .
The proof of Theorem 1 is divided into lemmas. We first deal with

the study of the behavior of I and J with respect to centered Gaussian
functions. We set

. I((g9:)1 .
E, = 1nf{m((gl—)’l)ci; g; centered Gaussian on R" i =1,... ,m},
[T (g 90)
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and

J((g:)i~ :
F; = sup M, g; centered Gaussian on R"i=1,... ,mp-
IT; l(f]R”i )

Our aim is to prove that E = E, = v/D and F = F, = D~'/2. We begin
with a classical computation, taken from [BL]; it only uses the fact
that if M € & (RR¥), then

7k
det M

/exp( (x, Mx))dx =

]Rk
Lemma 1 With the notation of Theorem 1, we have

Fy=—= -

VD

Our next lemma links £, and F;, by means of duality between
quadratic forms.

Lemma 2 With the previous notation, we have
E,-Fy=1,
and E; = 0 if and only if F;, = +o0.

Proof. Fori=1,...,m, let 4; € *(R") and let Q be the quadratic
form on IR” defined by

o) = <Zc,-B§‘A,-B,-y,y> :
i=1

Let O* be the dual quadratic form of Q. We recall that it is defined on
R" by
0'(x) = sup{|(x. )5 Q) < 1} -

We also introduce the function R on IR” such that for all x € IR”,

m m
1nf{z ci{d; x,,xl P X = ZciB;‘xi and for alli,x; € ]R”’} .

i=1 i=1
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We now show that R = Q*. Indeed, assume that x = > """ | ¢;B;x; with
x; € R" fori=1,...,m, then

[, )P = ‘<Z c,-B;*xi,y>
i=1

By the Cauchy-Schwarz inequality, applied to the quadratic form ¢
on R™ x -+ x R"™ defined by ¢(X;, ..., X) = > - (X;, X;), one gets:

) < (Z WA:”%F) (Z wc—,»A:/ZB,»yV)
i=1 i=1
= (i Ci<xiaAi_1xi>> (<i CiB?AiBiYay>> .

i=1 i=1

2 2

m

S (Ve i, e By)

i=1

In fact, one easily checks that there is equality in the previous

argument if one takes
-1
y = (Z Cl‘B;FA[B[> X
i=1

and
xi:Al-Bl-y lzl,,m

It follows that R = O*.
We apply this result to our integrals of Gaussian functions.
Straightforward computations give that

J(GAI, PN GA ) N H:n:l(det/l,')ci

m

T2 (fGa)" deto -
and
I(GA]—],...,GA;]) B H;il(detAi)ici
H;n:l (fGA71> ! detR

Using that R = O* and the classical duality relation det O - det 0* = 1,
one has
J(GA],...,GA”Z) I(GAI*‘M--?GA,;‘)

060" 11 (fo,)"

=1,

and therefore £, = F, . 0



342 F. Barthe

Remark. Let us emphasize the equivalence for 4; € ¥ (R"),
i=1,...,m of the assertions
[ ] det(Zlm:l C[B?A,‘B,‘) = DH:n:l (detA[)c’.

e The m-tuple of centered Gaussians (Gy,, ..., Gy, ) is @ maximizer
for (BL).
e The m-tuple of centered Gaussians (GAI—I, .. .7GA';]) iS a mini-

mizer for (RBL).

Lemma 3 For i =1,...,m, let f; and h; belong to L] (R™) and satisfy
Jrei fi = Jgm hi = 1. Then

I(fiveeisfo) > DI, ) -

Taking the supremum over (4;);", and the infimum over (f;);_, in
the previous inequality yields £ > DF. So Lemmas 1, 2 and 3 imply
VD = E, > E > DF > DF, = v/D. Thus the proof of Theorem 1 will
be complete as soon as Lemma 3 is established.

In [Bar3], we proved Lemma 3 for functions of one real variable,
using measure-preserving mappings. Given two non-negative func-
tions f and 4 on IR with integral one, there exists a non-decreasing
mapping u such that for all x € R:

[o=]n

In other words, u maps the probability measure of density 4 onto the
probability measure of density /. Our proof in the general case (i.e.
for functions of several variables) is also based on measure-preserving
mappings. But, in dimension larger than one, there is a large choice of
such mappings between two sufficiently regular probability measures.
For our purpose, the Brenier mapping (see [Brel], [Bre2]) fits per-
fectly; it has the additional convenient property of deriving from a
convex potential. Brenier proved its existence and uniqueness under
certain integrability assumptions on the moments of the measures,
which where later removed by McCann [McCl1], [McC2]. Let us state
the result that we need.

Theorem 2 Let f1, f> be non-negative measurable functions on R" with
integral one. There exists a convex function ¢ on R" such that the map
u=Vq¢ has the following property. for every non-negative Borel
function b on R",
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[ b= [ bosias

R” R"

The function ¢ given by this theorem represents a generalized solu-
tion of the Monge-Ampere equation

det(V2h(x)2(Vo(x)) = fi(x) -

In fact, the gradient of ¢ is unique f; dx-almost everywhere. Since it is
convenient to work with strong solutions, we recall here a corollary
of a theorem of Caffarelli [Caf], who has developed a regularity
theory for these convex solutions.

Theorem 3 For i = 1,2, let Q; be bounded domains of R" and let f; be
non-negative functions, supported on Q;. Assume that f; and 1/f; are
bounded on Q; and that Q, is convex. If f;, i = 1,2 are Lipschitz then
the Brenier mapping ¢ is twice continuously differentiable.

Let 4. (IR") be the set of functions f € L] (IR") which are the re-
striction to some open Euclidean ball of a positive Lipschitz function
on R”".

Let us remark that it suffices to establish (BL) and (RBL) for
functions in %, (R™). We strongly rely on the monotonicity of the
functions / and J. Assume that (RBL) holds for functions in € (IR™).
Then it is clearly true for positive Lipschitz functions. By classical
monotone convergence arguments, this yields (RBL) for functions in
the classes 2, (R™) of pointwise limits of decreasing sequences of
positive Lipschitz functions. Let f; € LT (R™),i=1,...,m, and let
¢ > 0. Then there exist m functions (s;);",, which are positive linear
combination of characteristic functions of compact sets and such that

fi>si and/f,-—/s,»gg.

Since s; belongs to Z,(IR"), (RBL) holds for (s;);",. Thus

1) = 1)) ZEH(/)ZEH<—+/f) |

Hence (RBL) is always true. The same kind of argument is valid for
(BL).
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Proof of Lemma 3. We assume that D > (0. By homogeneity we can
also assume that [ f; = [h; = 1 for all i. The previous remark allows
us to work with functions f;, 4; belonging to %, (IR"), so that we can
use Caffarelli’s regularity result and Brenier’s theorem. We denote by
Q. the domain where 4; is positive. For i =1,...,m, we get a dif-
ferentiable function 7; deriving from a convex potential and such that
for all x € Q,,,

det(dT(x)) - H(TH(x)) = hi(x) -

Since 7; derives from a convex potential, its differential is symmetric
semi-definite positive and because of the previous equation and of
the non-vanishing property of 4;, we know that for all x € Q,
dT;(x) € ¥T(R™).

We define a function © from (2, B;'(€,) C R” into R” by

00) = > cBi(T(By)) -
i=1

Its differential is symmetric semi-definite positive

d®(y) = ) cB/dT;(Biy)B; ,
i=1
and it is actually definite positive because:
det (Z ciBdel-(Biy)Bi> > D[ [(detdT:(Biy))"> 0
i—1 i=1
In particular for all v # 0 in IR”,
(dO(y) -v,v) >0
so O is injective. Denoting S = (", B; 1(Qy,), we can write
/ 117 By)dy = / 115 By)ay
o =l ¢ i=l

- / ﬁ (fi(T:(Biy)) detdTi(By))" dy

S i=1
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S%/Hﬁ(ﬂ( ) Cfdet(Zc,B dT(Biy)B )dy
S

i=1

S%/ _sup | (Hfl X;) >det dO(y))dy

which concludes the proof of Lemma 3. O

2 Equality cases

In this section, we restrict to functions of one real variable. With the
notation of Theorem 1 there are vectors vy,...,v, in R” such that
span((v;)i~,) = R" and for all x € R” and ¢t € R,

Bi(x) = (x,v;), B(t)=ty; and BB;=0v;Qv; .

We are going to study the best constant in inequalities (BL) and
(RBL) and to characterize equality cases. We call maximizers the
non-zero functions that give equality in (BL) and minimizers those
that provide equality in (RBL).

2.1 The geometric structure of the problem
Given (v;)7, which span R”, we introduce some notation. For a
subset K of {1,...,m}, we denote by Ex the linear span in R” of the
vectors (v),cx. We call adapted partition a partition S of {1,...,m}

such that:
= @EK )
KES

These partitions are useful because this splitting of the space R”
yields a splitting of the Brascamp-Lieb inequality and of its converse,
so that one can work separately on each piece. We shall first show
that there exists a best adapted partition.

Proposition 1 Let < be the relation on N,, = {1, ... ,m} defined by as
follows: i > j if and only if there exists a subset K of N,, of cardinality



346 F. Barthe

n — 1 such that both (v;, (vx),ex) and (vj, (vk)zex) are bases of R". Let
~ be the transitive completion of <1 (i ~ j means that there exists a path
between i and j in which two consecutive elements are in relation for 1<).

Then ~ is an equivalence relation and the subdivision C of N,, into
equivalence classes for ~ is the finest adapted partition.

Proof. We first establish that C is more accurate than any adapted
partition S. Let I,J € S, I #J and let i € I, j € J. It suffices to show
that i < j is impossible.

Assume precisely that i < j. Then there exists K C N, such that

e = (v, (Uk)kel(> and e; = (vj, (Uk)keK)

are bases of IR". As § is adapted, we have R" = C—DHGSEH’ each of
them being spanned by some v;’s. So, every basis of IR” with elements
taken among the v;’s must contain dim(Ey) elements in Ey. But our
bases e; and e; do not have the same number of vectors in E; because
v; € Er and v; € E;. Thus we have a contradiction.

We now show that the partition C is adapted to our geometric
setting. Let / be an equivalence class for ~ and let £; be the corre-
sponding space. Since the vectors (v;)!", span R", we find a permu-

tation of indices such that b= (v,...,v,) is a basis of R” and
(v1,...,0,)1s a basis of E; for some r < n. Let us denote by F the span
of Ui1,...,0p.

Let i € N,,; the vector v; can be decomposed in the basis b:

n
v; = E OV
k=1

For any j < n, we notice that

dl?t(vl,---»Ujflvviavqul»---aUn) =o; ,

hence «; # 0 implies that v; and v; belong to neighbor bases, that is
i~ j.So,ifi € I, asican be in relation for >4 only with elements of 7
we have o,.,1,...,%, = 0. Thus i € [ implies v; € E;. By a similar ar-
gument, if i € I, «y,...,a, = 0 and v; belongs to F. We have proved
that R” = span{v;,i € I} P span{v;,i ¢ I}, this is the first step of the
decomposition. The result follows by induction, noticing that the
relation ~ can be restricted to F. O

As a consequence of Proposition 1, let us observe that it is suffi-
cient to study the case when the relation < has only one equivalence
class. In this case we say that (R”, (v;)_,) is irreducible.
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2.2 The Gaussian case

Let vy,...,v, be vectors of R” such that R"” = span((v;);_,). For
I C{l,...,m} of cardinality |/| = n, we denote

dp = det((v)),;)”

For each m-tuple ¢ = (¢;)1-, of positive numbers, we study the con-
stant D, defined by

Dc = inf{det(zi_ml Allil, @ Ui) ;/11' > 0,l =1.. m} .
Hi:l /11'

We wish to know when D, is positive and when the infimum is
achieved. We will sometimes call minimizers the m-tuples (4;);-, for
which D, is achieved.

The computation of the previous determinant is made possible by
the Cauchy-Binet formula which we recall:

Proposition 2 Let m > n be integers; let A be a n X m matrix and let B
be a m x n matrix. For I C N,, of cardinality n we denote by A; the
square matrix obtained from A by keeping only the columns with
indices in I; we denote by B' the square matrix obtained from B by
keeping the rows with indices in 1. Then we have the formula

det(4B) = > det(d,) det(B')
=

where the sum is over all subsets of cardinality n of N,,.

The relevance of this formula is clear from

Corollary 1 Let m > n and let (v, . ..,vy) be vectors in R". Then
m
det (Z At @ v,~> > du(det(( Z Judy
i=1 |I|=n [I|=n

where for I C N,,, we have set A; = ]_[ie, Ai.

The condition for D, to be non-zero has a rather nice geometric
description which requires some notation. For I C {1,...,m}, let 1,
be the vector of R™ of coordinates (1;); = d;¢; (it is the characteristic
function of 7). One has the following result:
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Proposition 3 The infimum D, is positive if and only if the vector
¢ € R™ belongs to the convex hull of the characteristic vectors 1; of the
subsets I of cardinality n such that the vectors (v;),.; form a basis of R".

Proof. We shall first show that the condition is sufficient. Assume that
we have a family of non-negative real numbers (tl)‘ I=n indexed by the
subsets of cardinality n of {1,...,m}, such that

t; = 0 whenever d; =0 ,

Z t;, forall i .

|I|=n,il

Let /;,i=1,...,m be positive. By the Cauchy-Binet formula and the
arithmetic mean-geometric mean inequality with coefficients ¢ (their
sum is indeed one), we have:

det (i /livi &® l)l'> Z }[d[ Z t (AI d]) + Z A]d[ > H < [d[> .
i=1 =" AN

Each /; appears with the total exponent

Ztlu

i€l ,;#0
equal to ¢; by hypothesis. Thus we have
T m
det (Z AiV; ® v,) > H( > H;HL"" .
1470 i=1

Since #; # 0 implies d; # 0, the constant D, is positive.
Let us now prove that the condition is necessary. For all 4; > 0,

i=1,....,m, let
Z\]\:nd[}“]
[T, 47

Let (x;)"; € R" and let N > 0. There always exists a positive a such
that the quantity A((e™™)’,) is equivalent when N tends to infinity to

a- expN(Zx,-cl- —i—max{—Zx,-; |I| = n and d; # 0}) .

A, i) =

i=1 iel



On a reverse form of the Brascamp-Lieb inequality 349

If we assume that D, is positive, then A((e™™)",) > D, > 0 cannot

tend to zero. Necessarily, for all (x;)_, € R", one has:

inc,- > min{in; |I| =n and d; # 0} )
i=1

iel

This can be reformulated in terms of convex cones as Ny,%1, C €.,
where, for y € R", ¢, = {x € R"; (x,y) > 0}. By duality of convex
cones, this implies that the vector ¢ belongs to the convex cone
generated by the vectors 1; such that d; # 0. Thus there exist non-
negative real numbers (#) 1.d)£0 such that for all i < m,

ci = Z t .

l/|=n and ics

Summing over i yields > , ot = (321, ¢;)/n. But the hypothesis
D, > 0 implies that the numerator and the denominator of A have the
same homogeneity degree in the variables. So > ", ¢; =n and we
have shown that ¢ belongs to the convex hull of the 1; such that
dr # 0. Ll

Remark. Let K = {x € [0,1]"; >, x; = n}, it is the convex hull of
the vectors (1 1)‘ I|=n- BY the previous result, D, is non-zero only if ¢ is
in K. If the vectors (v;) are in generic position, D, # 0 if and only if
c € K. But as the 1; are clearly the only extremal points of K,
any geometrical degeneracy (i.e. any d; equal to zero) will imply a
reduction of the domain where ¢ must be.

We know that D, is positive if and only if ¢ can be written as a
convex combination of certain vectors. The next proposition states
that D, is achieved if and only if there exists a convex combination
with some additional property.

Proposition 4 The constant D, is achieved if and only if there exist
positive numbers (i), and (Ai)ie, such that

c = Zl[l[

f|=n

and for all 1

tr :d]H)v,' .

icl
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Notice that d; = 0 implies #; = 0, so the result is coherent with the
previous one.

Proof. The if part comes from a precise study of the first half of the
proof of Proposition 3. All inequalities stated in this proof become
equalities for the particular m-tuple (/;)!_,. The arithmetic-geometric
inequality is an equality because for all 7, ;d;/t; = 1. Moreover, the
term ), _o A1d; 1s zero.

The only if part is obvious by differentiation. O

We are going to rewrite our problem in the setting of Fenchel
duality for convex functions in order to use the following result (see
[Roc] p. 264):

Proposition 5 Let ¢ be a ls.c. convex function on R™ and let ¢p* be its
Fenchel conjugate, defined for x € R™ by

¢"(x) = sup (x,y) — d(y) .

yeR™

Then ¢*(x), which is a supremum, is achieved if and only if ¢" is
subdifferentiable at the point x. In particular, it is achieved when x
belongs to the relative interior of dom(¢*) = {y € R™; ¢"(y) < 400}.

Let us define the function ¢ on IR” by

d(x1,...,x,) = logdet (E e'v; ® v,-) .

i=1

The next proposition links our problem on D, with the study of the
Fenchel conjugate of ¢.

Proposition 6 1. The function ¢ is convex.
2. The constant D, is equal to exp(—¢*(c)).
3. D, is positive if and only if ¢ € dom(¢p").
4. D, is achieved if and only if ¢*(c) is.
5. dom (¢") is equal to K = conv{l; d; # 0}.
6. The constant D, is achieved when c¢ belongs to the relative interior
of K.

Proof. The convexity of ¢ is a consequence of the Cauchy-Schwarz
inequality: let 5,7 € R™,
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o(5) =log %{dﬁ"p@:”) }i{dlex%;s")} |
sl {Geon(i) g oon()}

P(1) + ¢(s)
2

o=

The other assertions are also very simple. O

The last statement of the previous proposition allows us to recover
a result of [BL].

Corollary 2 If for all I C N, of cardinality n, d; = det((v;),.;) is not
zero, then for all ¢ = (¢;)}", such that:

m

Zci:n and 0<c¢ <1 foralli |

i=1
the constant D, is achieved for a certain ()" ,.

The following result shows that the reciprocal statement is almost
true.

Proposition 7 If (R”, (v;),) is irreducible and if ¢; = 1, then D, is
achieved only when m =n = 1.
We come to unicity results: if D, is achieved, there is a unique

minimizer, up to scalar multiplication.

Proposition 8 Assume that (R”", (v;)",) has the irreducibility property.
If (M), and (w;)i, are two minimizers, then there exists r € R such
that for all i, 7; = ry;.

Proof. Lett = ((t;);_,) and s = ((s;)i-,) such that for all i, ; = ¢" and
w; = €. Let Y be the function on IR” defined for all ((x;);_,) by

W) = B() — > e
i=1

Then  reaches its minimum at the points ¢, s and also at (¢ +s)/2
because it is convex. So we have
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b(1) + dls) _ ¢(t+S)
2 2 )7
and there must be equality in the Cauchy-Schwarz inequality in the
proof of Proposition 6. Hence, there exists a € R such that for all /,

|I’ =n,
dj exp <Z t,~> =a-d;exp <Z s,~> .

i€l iel

In particular, if d; # 0, one has

)bz' B
I1(;) =«

Let i,j € N,, such that i< j. By definition, there exists K C N,, of
cardinality n — 1, such that dux and dyj;,ux are both non-zero. So,

we have
<.“A l> (i1>
le{i}UK ! le{jIUK l

and after simplification

i A

:uz ,Uj
By the irreducibility property (see Proposition 1), this implies
S 0
W M

2.3 The general case

We studied existence and uniqueness of centered Gaussian maxi-
mizers for (BL) and minimizers for (RBL). Now, we turn to the
general study. As explained before, we may assume that (R”, (v;),)
is irreducible. The behavior of extremal functions is very different for
n =1 and for n > 2.

2.3.1 The case n =1

If n=1, then n; =1 for all i <m, the condition on (¢;)I_, is just
>, ¢ =1, and the v;’s are just real numbers. The inequality (BL) is
nothing else than Hélder’s inequality for the functions x— f;(v;x),
whereas (RBL) is the Prékopa-Leindler inequality for x+— f;(x/v;).
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The equality cases can be settled from our proof; we will not do
it because they are well-known: if > 7', ¢; =1, and f; € LT (R),
i=1,...,m are non identically zero, then

]R/ﬁﬁcf(x)dx _ ﬁ(/mﬁ> cr

1

holds if and only if
fio o m
f]Rfl f]Rfm

Under the same assumptions,

Ci
m

[ s Tlrwac=T1( [

R cixi=x i=1 i=1 R

holds if and only if there exists (y;);, € IR” such that
SiC=x) _ _ fu( = m)

f]Rfl a a f]Rfm

is a log-concave function .

2.3.2 The case n > 2

We prove that if there is a centered Gaussian extremizer, then up to
dilatation and scalar multiplication, it is the only extremizer.

Theorem 4 Let n > 2 and let (R”, (v;)-,) be irreducible. Let (c;);-, and

m

()12, be positive numbers such that D, is achieved for (4;);:

m m
det (Z /1,'1),' ® U,’) = DC H )vfi .
i=1 i=1

Then (h;);, is a maximizer for (BL) if and only if there exist a > 0,
(o)~ positive and y € R" such that for all i and for all t € R,

hi(t) = oy exp(—Ji(at — (y,v:))?) . (1)

The m-tuple (h;)?", is a minimizer for (RBL) if and only if there exist
b >0, (B, positive and (t;)i-, real such that for all i and for all
t€R,

hi(t) = Bexp(—(bt — 1;)* /1) .
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Proof. By Lemma 1 and by the proof of Lemma 2, we know that
(G;,)i-, is a maximizer for (BL) and (G) 1), a minimizer for (RBL),
so by simple changes of variables in IR” one can check that the
previous functions are extremizers.

Let (h;)", be a maximizer for (BL) and (f;)!", be a minimizer for
(RBL). We may assume that f;, 4; are positive and continuous for all
i. Indeed by the following lemma (which was communicated to us by
K. Ball) we know that (h;* G),), is a positive and continuous
maximizer for (BL). If we know that it is Gaussian, then so is (k)7
by the properties of the Fourier transform. The same argument is
relevant for (RBL).

Lemma 4 If (f;)i_, and (g;);, are maximizers for (BL), then so is
(fixg)iy. If (fi)ie, and (g;)i~, are minimizers for (RBL), then so is

(f * gl)l:l

A proof of the first part of this lemma appears in [Bar2], the proof
of the second part is similar. Notice that this lemma is valid for the
multidimensional version of the inequalities.

Let us now prove that positive continuous maximizers for (BL) are
of the form (1); the proof for (RBL) is analogous and a bit simpler.
Let ()7, such that f;(x) = exp(—x?/4;); it is a minimizer for (RBL).
Let (h;)", be a positive continuous maximimizer for (BL). We study
precisely the proof of Lemma 3 applied with (#;)}", and (f;);,. Since
our functions are positive, the changes of variables 7;’s are increasing
differentiable bijections of IR, such that for all 7 € IR,

T(0) - fi(Ti(0) = ha(1)

There must be equality in every step of the proof. In particular, for all
y € R”, one has

det(i / Ul ®Uz> = ﬁ y, Ul

i=1 i=1

By irreducibility and Proposition 8, one gets for all y € IR”,

T Ty

Al N N Am
Since n > 2, for all i < m there exists j < m such that v; and v; are not

collinear; so there exists z € IR such that (z,v;) =1 and (z,v;) = 0.
The previous relation for y = #z means that for all r € R
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Consequently, there exist @ > 0 and real numbers (s;);", such that for
all 7 and for all € R,
T,(f) = a/l,-t + Si

and by the change of variable formula between /; and f; we get

hit) = T/ (6) exp(=T7(6)/ 4s) = wyexp(—Ai(at — 1)%)

for some positive (y;) and some real (¢).
It remains to find which translates of a centered Gaussian maxi-
mizer are still maximizers. Let (g;);-, be a maximizer,

gi(t) = exp(—)u,»tz) ,

and let x = (x;)7., € R” and for i <m, h;(t) = g;(t — x;). Let us
consider R” with the Euclidean metric given by

m

2

= g Ci/liwl' )
i=1

and the subspace
K= { Vi v E IR”} .

Let s be the orthogonal projection of x onto 4. Then there exists
z € R" satisfying s; = (z,v;) for all i; moreover, by the Pythagore

Theorem
N (o) = x)ity) = N (s 03) = (2 0))1)

with equality only if x belongs to A4, that is x=s. Thus
J((h)7y) <J((g:)is;), with equality only if x; = (z,v;) for all i. [

Remark. There are, for n > 2, some remaining questions. If there is
no centered Gaussian maximizer, is there any maximizer at all? The
answer seems to be no: if (f;)!_, is a maximizer then by the Brascamp-
Lieb-Luttinger inequality [BLL] so is (f;*)i",, where f/* is the sym-

metric rearrangement. As K. Ball noticed it, for every integer k

(VRS -2 (VR)
hily

k times

m

i=
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is also a maximizer. Moreover, under some integrability assumptions,
it converges to a centered Gaussian m-tuple by the Central Limit
Theorem.

Notice that our method gives the answer when there are positive
continuous maximizers for (BL) and positive continuous minimizers
for the corresponding (RBL). The study of the equality case of
Lemma 3 shows that the constant D must be achieved, so there is a
centered Gaussian maximizer.

3 Applications to convex geometry
3.1. Dimension one

K. Ball noticed that an additional geometrical hypothesis, which is
often available in convexity, supports an easy computation of the
optimal constant in the Brascamp-Lieb inequality. His version of (BL)
gives sharp upper estimates for the volume of sections of the unit ball
of £} = (R",||-||,) (see [Ball] and Proposition 8 of [Bal3]). Using
(BL), K. Ball also proved that simplices have maximal volume ratio
[Bal3], and that among symmetric convex bodies, parallelotopes do
have [Ball]. We recall that the volume ratio vr(K) of a convex body
K C R" is the ratio of the volume of K to the volume of the maximal
volume ellipsoid contained in K (called the John ellipsoid, see [Joh]).

However, the question of equality cases in Ball’s version of (BL)
and in applications was open. Moreover, one needed a corresponding
tool for dual problems such as minorizing the volume of n-dimen-
sional projections of the unit ball of #”. In this section, we point out
a version of (RBL) which applies to such dual problems and we
characterize equality cases in (BL), (RBL) and in the applications.

Ball’s version of the Brascamp-Lieb inequality and our reverse
version are as follows:

Theorem 5 Let m > n, let (u;);-, be unit vectors in R" and let (c;);-, be
positive real numbers such that

m
E c,-u,-®ul-:In .
i=1

Then for all f; € L{(R),i=1,...,m one has
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and

*

[ aw Mroa=T1(f5)

R"

This result follows from Theorem 1. The optimal constant (equal to
1) is provided by Ball’s observation:

Proposition 9 Let m > n, let vy,...,v, be vectors in R" such that
Sl v @ = I, where 1, stands for the identity map. Then for every
m-tuple (4;)", of positive numbers

det (Z Aiv; ® U,) > H ol
i i=1
There is equality when Ay = -+ = Ay, .
Proof. By the Cauchy-Binet formula, we have
1 =detl, = det(Zv,@v,-) = d .
i=1 =
Hence we can use the arithmetic-geometric inequality with coeffi-
cients d:
m
det (Z A @ v,~> =Y dr > [
i=1 [I|=n |I|=n

Each /4; appears with the total exponent Z,Jel d;. Applying Corol-

lary 1 to the m-tuple (vy,...,0;-1,0,041,...,0n), We get:
2 =D di=) d
1iel 1,i¢l

=1—det(vy®@v)+ -+ vi-] ®Vi—1 + Vi1
QUi+ + Uy @ Up)
= 1—det(l, — v; ® v;) = |v;) . O

The equality cases in Theorem 5 are completely settled by Prop-
osition 1 and Theorem 4. The space R” is the direct sum of irre-
ducible subspaces. The additional hypothesis on (i), clearly
implies that the sum is orthogonal. On irreducible subspaces of di-
mension one there is equality for (BL) if and only if the functions are
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equal up to scalar multiplication and, for (RBL), if and only if all the
functions are equal, up to multiplication and translation, to a com-
mon log-concave function. On irreducible spaces of dimension > 2,
there is equality if and only if the functions are (up to scalar multi-
plications, up to translations and only coherent translations in the
direct form) equal to a common centered Gaussian function. In
particular, we get

Corollary 3 Let m > n, let (u;)7-, be m distinct unit vectors in R" and
let (c;)i-, be positive real numbers such that

m
E Cil; Q U; = In
i=1

If (f;)i-, are non-identically-zero functions in L (R) such that none of
them is a Gaussian and

Jrema=TI([1)

then m = n and (w;);", is an orthonormal basis of R”.

This result allows us to settle equality cases in Ball’s volume ratio
estimates. We denote by O, the unit cube and by A, the regular
simplex.

Proposition 10 Let K C R" a convex body.
o If K is symmetric and vr(K) = vr(Q,) then K is a parallelotope.
o [fvi(K) = vr(A,) then K is a simplex.

As mentioned by Ball in [Bal3], one gets, as a consequence of (RBL),
the sharp lower bounds of the outer volume ratio, which involves the
minimal volume ellipsoid containing a body K. A proof of such lower
estimates relies on the following dual version of Proposition 8 of
[Bal3].

Proposition 11 Let m > n, let (u;)}-, be unit vectors in R" and (¢;)",
positive numbers such that Y7 cu; @ u; = 1,. Let (o;);-, be positive
numbers and let p > 1. If K is the unit ball of R" with the norm

1

[x[[=" sup (Zai|6i|p> ;
X_Zi ciOu; \ i=1
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then

i

2T+ 1/p)" vr(e\”
Vol =) L )

Proof. We apply (RBL) in the form of Theorem 5 to the functions f;
such that f;(¢) = exp(—a|t|’ /¢;) for all + € R. We get

1 el
Voll) =yt [ €
J

1 T e
:r(H_n/p)/ sup Hfl (0;)dx

R” X:ZCif)iui i=1

1 i Cj ll’ “
ZWH(2<E> r(1+1/p)> : O

i=1

Remark. Applying (RBL) with the functions f; = 1/_p /¢, /e yields
Ball’s lower estimate for the volume of zonoids [Bal2]: under the same
assumptions on (u;);, and (¢;);_,, one has

=1

Vol (Z ﬂi[—ui, u,]) Z 2" H (%) i .
i=1 !

i=1

3.2 Larger dimensions

We obtain a multidimensional generalization of Ball’s version of
the Brascamp-Lieb inequality and its converse. It follows from
Theorem 1. The computation of the optimal constant, here equal to 1,
comes from a simple extension of Proposition 9.

Theorem 6 Let m,n be integers. For i =1,...,m let E; be a subspace
of R" of dimension n; and let P; be the orthogonal projection onto E;
(on each E; there is a Lebesgue measure compatible with the induced
Euclidean structure). Assume that there exist positive numbers

(¢i)in, satisfying

i:ciP,- = I,, .
i=1
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If fori=1,....m, f; is a non-negative integrable function on E;, then
one has
m ci
[ IDrwae<T1( [ 5)
and

*

¢l e m ‘ i '
/x—z Sllg))c,,x,EE ll_[f xl _ll_‘!:</Elﬁ>

n

Remark. When the f;’s are characteristic functions of sets, the reverse
inequality provides a Brunn-Minkowski type result for compact
subsets of subspaces: if K; C E; then

VOI,, zm:C[Kl’ ﬂ VO]E
i=1

i=1
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