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1 Introduction

Let G, H be p-divisible groups over a discrete valuation ring R. Set K
equal to the fraction field of R. There is a natural map

(1) HOl’l’lR(G,H) — HOIHK(GK,HK) .

In [13, Theorem 4] Tate proved that (1) is a bijection when the
characteristic of K is zero.

From now on we assume that the characteristic of K is p > 0. Set
S = SpecR and 5 = SpecK. There is an open immersion j: n — S.
Hence there is a natural functor

F-crystals over S SEAEN F-crystals over 1 .

Here, an F-crystal is a nondegenerate F-crystal of [12, 3.1.1]. We
recall that any characteristic p discrete valuation ring essentially of
finite type over a field has a p-basis, see e.g. [10]. A complete discrete
valuation ring of characteristic p has a p-basis if its residue field has
a finite p-basis.

1.1 Theorem. Assume R has a p-basis. The functor j* is fully faithful.

1.2 Corollary. (No assumption on R.) The map (1) is bijective.

The theorem implies the corollary by [1] or [2, Section 1] (there is
an immediate reduction to the case where R is complete with alge-
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braically closed residue field, see [13, page 181]). To establish the
bijectivity of (1) in the characteristic p case was mentioned as a
problem in the introduction of [6, Exposé IX]. The corollary implies a
result on extensions of homomorphisms of p-divisible groups over
normal base schemes, [13, page 180] and [2, Section 1]. In [1] it was
shown, using a result of [9], that 1.2 holds in case the Newton
polygons of G and H are constant. The results of [1] are now well
understood, as the main difficulty in [1] was to produce a suitable
Dieudonné module theory, which we have due to [3] and [4]. (See [7,
8] for further results.)

The author sees Theorem 1.1 as an indication that (overconver-
gent) F-crystals over schemes of characteristic p are the p-adic ana-
logue of the lisse /-adic sheaves. The author hopes that the methods
of this article may be used to study the bad reduction behavior of
overconvergent F-crystals.

In Section 2 we indicate some known applications of 1.2. First,
one can deduce a good reduction criterion for abelian varieties in
terms of associated p-divisible groups, [6, Exposé I1X]. Second, the
result that the natural map

Hom(X,Y) ® Z, — Hom(X [p>], Y[p*])

is an isomorphism for abelian varicties X,Y over a field finitely
generated over IF,.

In Section 3 we reduce Theorem 1.1 to Theorem 9.1. The proof
of Theorem 9.1 in Sections 4-9 takes up most of this paper. In
Section 4 all notations are introduced and fixed till the end of the
paper. The idea of the proof of Theorem 9.1 is roughly the fol-
lowing. First one writes any F-module (see 4.4) in a standard form
5.5 over a ring of convergent power series I';.; this is a ring which
is not p-adically complete. The important point is that the slopes
decrease in 5.5. Going up to this ring preserves enough information
so that one can deduce results about slopes from the existence of
@: M — T, see 5.7. Then one descends back to Q = W[[¢]] using a
linear independence result (Section 8) and Dwork’s trick (Section 6).
The final step is in Section 7 where a rank 1 submodule of highest
slope is split off.

Acknowledgements. The author thanks P. Berthelot, C. Deninger, B. Gross, N. Katz,
B. Mazur, W. Messing, and T. Scanlon for discussions on the problem and its
applications. He thanks B. Edixhoven for some pertinent remarks concerning Sec-
tion 2. He especially thanks U. Zannier, who first proved Theorem 9.1 in the case
that M has rank 2; the idea to consider the equations over the ring I'. of convergent
power series is due to U. Zannier.
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2 Applications of 1.2

In this section R is a henselian discrete valuation ring of characteristic
p > 0. We have K, S,y as above and s € § is the closed point. We will
use Corollary 1.2 a lot, sometimes without explicitly referring to it.

Some remarks on p-divisible groups. If G — H is a homomor-
phism of p-divisible groups over a field, then the image of G — H is a
p-divisible group. The height of this image might be called the rank of
the homomorphism; it is actually the rank of the induced map on
Dieudonné modules. The kernel K of G — H has the following
structure: there is a canonical exact sequence 0 — K’ — K — K" — 0,
where K’ is a p-divisible group and K” is a finite group scheme. The p-
divisible group K’ is the image of p" on K for sufficiently large n. The
following lemma says that the rank of a homomorphism of p-divisible
groups over S is constant over S.

2.1 Lemma. With the notations above.

(1) If G is a p-divisible group over S and H C G is an fppf subsheaf
which is a p-divisible group, then G/H is a p-divisible group.

(1) If G — H is a morphism of p-divisible groups over S, then the
height of the image of G, — H, is equal to the height of the image of
Gs - Hv-

(iii) Let o : G — H be a morphism of p-divisible groups over S and
suppose that the kernel of the generic fibre o, of o is a p-divisible group.
Then the kernel of o is a p-divisible group and so is the cokernel.

Proof. The proof of (i) is left to the reader. We defer the proofs of (ii)
and (iii) to the appendix. O

2.2 Definition. Let G, be a p-divisible group over 1.

(1) We say that G, has good reduction over S if it extends to a
p-divisible group G over S (uniquely by 1.2).

(i) We say that G, has semi-stable reduction over S if there exists
a filtration (0) C Gy C G{; C G, by p-divisible groups such that the
following conditions hold.

a) Both G{; and G,/ Gy extend to p-divisible groups G, and G over S.
By 1.2 there is a unique morphism G, — G, extending G;; — G,/ Gy
Note that Gi — G, satisfies the conditions of Lemma 2.1 (iii). Thus
G" = Ker(G, — G,) and G*' = Coker(G) — Gy) are p-divisible groups
over S.

b) The sheaf G*, resp. G** is a multiplicative, resp. étale p-divisible
group.
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2.3 Remark. The condition on semi-stable reduction of a p-divisible
group G, over n implies that G, has “virtuellement bonne reduction
d’echelon 2” [6, Exposé IX 5.12]. The author does not know whether
the concepts are equivalent in general. If G, =X,[p>*] for some
abelian variety X, over 7, then the concepts do coincide. We won’t use
this; the proof is left to the reader as an exercise. (Hint: Use 2.5 and
consider a finite Galois extension of K over which X, becomes semi-
stable, compare the two filtrations and use the Galois action to show
that the semi-stable filtration comes from a filtration over K.) O

24 Lemma. (i) If G, has semi-stable reduction over S, then
(0) C GI C G} C G, can be chosen such that G* @ k(s) is the multi-
plzcallve part of G and G®' is the étale part of G,.

(11) Suppose both G, and H, are p-divisible groups having semi-stable
reduction over S. Let ¢, : Gy — Hy be a morphism. If we choose the
filtrations as in (1) then ¢, induces morphisms G; — H; fitting into a
commutative square with the morphisms G, — G, and Hy — Hj.

The first application of Corollary 1.2 is a criteriom for good re-
duction of Abelian varieties in terms of their p-divisible groups. Be-
low we sketch the argument; for more precise information the reader
should consult [6, Exposé IX].

2.5 Criterion for good reduction. Let X, be an abelian variety over n
with p-divisible group G,. Then X, has good reduction if and only if G,
has good reduction. Same for semi-stable reduction.

Proof. The direct implication is well known and follows from the
description of the semi-stable model of X,, the description of the
semi-stable model of the dual abelian variety X,;, and the fact that
X;[p™] is dual to X, [p™]. See [6, Expose IX]

Suppose G, has semi-stable reduction. Let K C K’ be a finite
separable Galois extension such that X, has a semi-abelian model X’
over §'. Let G’ C X'[p™] be the union of the finite parts of the quasi-
finite group schemes X'[p"]. It is a p-divisible group. If we take the
filtration (0) C G C G{; C G, as in Lemma 2.4 (i), then there is a
morphism G| xg 8" — G'. Note that this induces an isomorphism on
formal groups (look at étale parts). There is an action of Gal(K'/K)
on the scheme X’. The inertia subgroup / C Gal(K'/K) acts trivially
on the special fibre of the formal group G over §' as G' = Gy x5S
Hence 7 acts trivially on X, as X’ = @'. This implies that X, has semi-
stable reduction over S: For example one concludes this by looking at
the action of inertia on the ¢-adic Tate module of X, for some prime ¢
not equal to p. (See [6, Exposé IX 3.5].)
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Next, assume that G, has good reduction. We already know that
X, has a semi-abelian model X over S. Let X — X" be the mo-
rphism of X to the Néron model of X,. Let X[p"} be the finite part of
X[p"]. The cokernel of the inclusion morphism X[p"} — G[p"] is an
étale group scheme. Thus ¥, = (X @ G[p"])/X [} is a smooth group
scheme over S (we divide out by the anti-diagonal). As G[p"], =
X,[p"], we have a map Y,, — X, induced by a® b+ a+b. This
extends to a homomorphism of group schemes ¥, — XN°" by the
Néron property. This implies that XN "] ® (s) has order p?4im&
for all n. It follows that XN s an abelian scheme over S. OJ

The second application of Corollary 1.2 is a theorem relating
endomorphisms of Abelian varieties to endomorphisms of their p-
divisible groups. For the ideas in the proof we refer to [5] and the
references therein.

2.6 Theorem. Let F be a field finitely generated over IF,. Let X, Yr be
abelian varieties over F. Then

Hom(Xr, Yr) ® Z, = Hom(Xr[p™], Yr[p™])

Proof. It is well known that the map is injective, and identifies the left
hand side with a saturated submodule of the right hand side.

There is a standard reduction to the case that the transcendence
degree of F over IF, is 1: The case of a finite field is known [14], hence
we may assume the transcendence degree is more than 1. Both X and
Y have models Xy and Yy defined over a variety U with R(U) = F.
We can find an irreducible divisor Z C U such that the specialization
mapping Hom(Xr, Yr) — Hom(Xz(z), Yg(z)) is an isomorphism. (E.g.
by looking at the /-adic representations and using Bertini.) On the
other hand, Corollary 1.2 insures there is a specialization mapping
Hom(Xx[p™], Yr[p™]) — Hom(Xgz) [p™], Yr(z)[p™]). Thus if we prove
the theorem for R(Z) then the theorem for F follows. By induction we
may assume that the transcendence degree of F" over IF, is 1.

Let C be the smooth projective curve over IF, defined by F. By
Galois descent, it suffices to prove the equality after a finite separable
extension of F. Therefore, we may assume that both Xz and Yz have
semi-abelian models X and Y over C.

We first give the argument in case both X and Y are actually
abelian schemes over C. Take yr € Hom(Xz[p™], Yr[p™]). By 1.2, we
get y: X[p™] — Y[p™] over C with generic fibre equal to y,. Let
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I Cc X[p™| @ Y[p™]

be the graph of y. Put Z, = (X @ Y)/I'[p"]. This is an abelian scheme
over C; we have an exact sequence of truncated Barsotti-Tate group
schemes of level 1 over C as follows

0 — I'lp] = X[p] & Y[p] = Z:[p] — Tp] = 0 .
And hence an exact sequence
(*) 0—owr—owz —wx®wy —or—0 .

We conclude that det(wg,) = det(wy © wy) independent of n. It is
known [15] that this implies there are only a finite number of iso-
morphism classes of abelian schemes among the Z, (this is explained
in [5, Section 7]). This implies that T =Im(y : X[p>] & Y[p>] —
X[p>®| @ Y[p>]) for some y € End(X®Y)®Z, by known argu-
ments, see the proof of Proposition 1 in [14]. This statement for all y
gives the equality of the theorem.

In the case X and Y are only semi-abelian schemes one has to be a
little more careful. We still have I'y C X[p*], & Y[p>],, where
U C C is the open subscheme over which X and Y are abelian. Let R,
be the complete local ring of C at a place v of F not in U. The abelian
schemes Z, y = (Xy @ Yy)/T'y[p"] have semi-abelian models Z, over
C. The p-divisible group I'y has semi-stable reduction over R,. Let
I'i , over R, be as in Lemma 2.4 (i). Remark that there is a morphism
[y — X[p™]z @ Y[p™]g . Then there is a morphism

(XRv @ YRL)/FI,U[pn] - n7R1,~

and this morphism is étale, as follows from the definitions. Using this
one checks that (*) remains true, taking for wr the sheaf o, where I
is the formal group over C with I' =I'yy over U and I' =Ty , over R,.

3 Preliminary reduction

Let R, K, S and 5 be as in Theorem 1.1. Let R — R’ be an injective
local homomorphism of discrete valuation rings with e(R'/R) = 1 and
assume that R’ is complete and that the residue field &’ of R’ is alge-
braically closed. We have assumed R has a p-basis and R’ has a p-basis
as it is complete with algebraically closed residue field. Hence R (resp.
R') has a lift (Q,0) (resp. (', d")), see [4, Section 1] and [8, 1.2]. We
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can choose a lift Q@ — Q' of the map R — R’ [4]. We do not assume
that it is compatible with ¢ and ¢’ (although we could choose it that
way with some effort). An F-crystal & over Spec R corresponds to a
triple (M,F,V) over Q, see [4, Proposition 1.3.3]. Then &g corre-
sponds to a triple (M ®q @', F',V'). Here V' is induced from V. But
since we did not assume Q — Q' to be compatible with our ¢’s the F’
is not just deduced from F by linear extension, but also involves V
and V'. Let us put I" equal to the p-adic completion of Q[¢~!], where ¢
maps to an uniformizer of R. Similar for I'". Then &, corresponds to
the triple M @ I', F® 0,V ® 1 + 1 ®d). Similar for &,.
We claim that if &, &, are F-crystals over S, then

Homg (&', &2) = Hom, (&1, &2,) N Homg (615, 825) -

The intersection is taken in Hom,y (&1, &2,). This follows from the
remarks above, by looking at the coefficients of the linear maps over
I' and Q' in terms of a basis of M; and M, over Q and the remark that

Q=0'NnT .

The intersection takes place in I'". Thus it suffices to prove Theorem
1.1 in case R = k[[f]] with k algebraically closed.

By [4, 1.3.3] the category of F-crystals over Spec k[[¢]] is equivalent
to a full subcategory of the category of (F,)-modules (M, F,0) (see
Definitions 4.4 and 4.9) over Q = W/[[¢]] (it is unimportant which full
subcategory this is). This is true as {z} is a p-basis of the ring &[[7]],
hence a connection on an Q-module M corresponds to a %—derivation
on the module M. Thus we have to show that any horizontal linear
map of (F,0)-modules M, and M,

o M QU — M, QT

compatible with | and F> maps M, into M,. Of course ¢ defines a
map

(p/Z(Ml ®QM;)®QF—>F .

There is a standard way to get a connection 0; on M; and for some
{ € Z>o the map p’(F;")" defines the structure of an F-module on
M5 . Thus M; ® M; has the structure of (F, 0)-module over Q. Then ¢
is horizontal (using 4 on TI) and has the property that
@' (F(m)) = p'a(¢'(m)) for all m € M; @ M;. We see that Theorem 9.1
implies Theorem 1.1.
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4 Notations

A.J. de Jong

In this section we introduce notations and give some definitions that
will be fixed in the rest of the article.

p

k

t

O = k[[]]
K =k((?)
K

01

K>

O

v:K; — @Q
{Sn}ne]N

W =wi(k)
oW —->Ww
Wy

Lo, Loy
Q=w[{]
g:Q—Q
D = (SpfQ)"e

A prime number.

An algebraically closed field of characteristic p.
An indeterminate.

The ring of power series over k.

The fraction field of €.

A perfect closure of K.

The integral closure of ¢ = k[[t]] in K.

An algebraic closure of K.

The integral closure of (/1 in K.

The valuation on K, with v(z) = 1. We will also
consider v as a valuation on the fields K and K.
Note that @ (resp. ¢;) is the valuation ring of v on
K (resp. K;).

A sequence of elements in K, with 57" =, and
s; = t. We will also write s, = /", s" = /", etc.
Note that s, € (). Remark that ¢ C @; C 0, and
that ) = {J,cn O[t'/7"]. Also remark that ¢; and
(), are perfect domains of characteristic p.

The Witt ring of the field £. The reduction map
W — k will be denoted a+ a. A similar notation
will be used for other (Witt) rings as well.
Frobenius. We will use ¢ to denote Frobenius on
all rings of Witt vectors; it will denote a lift of
Frobenius on other rings as well.

This is the ring W(n]/(n’® — p), where b is a posi-
tive integer. We will also write = = p'/?. The map
o is extended to W, by setting a(p'/?) = p'/b. The
reduction modulo n is a map W, — k and is
denoted a+ a.

These denote the fraction field of W and of W,.
The ring of power series in ¢ over . Again we use
a+—a to denote the reduction map Q — 0.

The unique lift of Frobenius on Q such that
a(t) =1.

This is the rigid analytic space over L associated
to the formal scheme SpfQ, see [8, Section 7].
It is the open unit disc with coordinate
t:D ={t:|t| < 1} and can be characterized as the
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(D, 0)

e Q,

Q—>Ql

strong Stein space D over Ly such that
I'(D, ") = Q. Associated to ¢ : Q — Q there is a
general morphism of analytic spaces ¢ : D — D
over o : Ly — Ly, see [8, 7.2.6]. It can be viewed as
a morphism D — D®, Ly.

The global rigid analytic functions on D. These
can be represented as power series [ = ) -, ant",
with a, € Ly such that for any € > 0 the function
n—uv,(a,) — en is bounded. The map ¢ maps f to
o) = Yo (@n) .

The rings of p-Witt vectors for ¢; and (7. The
map o : Q; — Q; is Frobenius. By functoriality of
the Witt vectors there is unique a map Q; — Q,
compatible with ¢ and reducing to the inclusion
(01 C 0, modulo p. This map is an inclusion; we
think of Q; as a subring of Q,.

Denotes the Teichmiiller lift of s, € @,. The ele-
ments #1/7" are in Q. The element ¢'/! is also
written ¢ again.

The unique homomorphism j of rings, with ¢ ¢,
compatible with ¢ and reducing to the inclusion
(¢ C 0 modulo p. Such a map exists; a con-
struction can be given as follows. Fix n € N. Any
element x € Q = W/[[¢]] can be written

n— pn—l—jil

P S

1
X =
=0 i=0

with g;; € Q and we set
Jj(x) mod p* = ZP’ [@,j]pnilfjt" mod p" .
i

Here [a] € Q) for a € O is the Teichmiiller lift of
a. Taking the limit for » — oo gives the map ;.
Compare [4, Section 1]. This map is an injection
of W-algebras; we think of Q as a sub W-algebra
of Q].

Q[n]/(7b — p). We will also write = = p!'/?. Here
b€ N. We extend ¢ to Q) by o(n) =n. Note
that if b divides &', there is a finite free map
Dy — Q.
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I, Iy, Ty The p-adic completions of the rings Q[1/7],
Q,[1/1], Q0 5[1/t]. Note that I" (resp. I';, resp. I'2)
is a complete discrete valuation ring (as I is p-
adically complete, flat over Z, and I';/pI'; = K;)
with residue field K (resp. K;, resp. K;) and uni-
formizer p (resp. p, resp. p'/?). It follows that
there are canonical identifications I'y = W(K;)
and T'; = W(K;). Note that Iy, = [;[p'/?]. There
are reduction maps I' — K, I'; — K; (i = 1,2) and
I, — K>; these are denoted by a+— a.

L; The fraction field of I';, where the index i is 1, 2,
or 2,b.

v(f, =), vi(f,—) The “pole order” function of an element /" € I' or
f €T; (the index i is 1, 2, or 2,b). For a precise
definition see 4.1.

I'ncTI, I, CI'; These will denote the subrings of ‘“‘convergent”
power series in I and I'; (the index i is 1, 2, or
2,b). More precisely, if f € I', then by definition
f eI, if there exist constants Cj,C, such that
v(f,n) < Ci + nC,. The same definition is used in
the case of I'; using v;(f,—). It is proved in 4.3
that the maps I'. — I" and I';, — I'; are local
morphisms of discrete valuation rings with rela-
tive ramification index e =1 and inducing an
isomorphism on residue fields.

Up The p-adic valuation on the discrete valuation
rings I',I';,I'; and I .. It is normalized such that

vp(p) = 1 and v,(p'/*) = 1/b.
4.1 Let f be an element of I'. It will be convenient to introduce the
function v(f,—) : NU{0} — Z U {—oc0} defined by

v(f,n) =min{a € Z | 'f € Q+p""'T} .

For convenience we set v(f,—1) = —oo. We explain this in more
down to earth terms. We can write f uniquely in the form
f =2 ez amt™, wWith a,, € W and a,, — 0 p-adically when m — —oo.
Thus we can also write (but not uniquely)

f = Zp”t_v"wn
n>0

with w, € Q. We may take vop=---=v,_ ;=00 and wy=---=
w,—1 = 0if £ is divisible by p” in I". Our definition of v(f, n) implies
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that we can find such a presentation of f with v, < v(f,n) for all n. In
fact we can write f as

(4.1.1) f= > PN,

n such that v(f,n)>v(f,n—1)

with w, € Q*. We leave the proof of this fact to the reader.
In the same manner we define for f € I'y, resp. f € I'5, resp.
f €TI'2, a function

nif,—) N U {0} — Z[l1/p]U{—00}, resp.
w(f,—) NuU{0} — QU {—o0},  resp.
VzJ,(f,-) : {0,1/b,2/b,} — QU{—OO} .

We remark that these behave well under restriction to subrings (e.g.
V2| r, = Vl).

4.2 Lemma. Properties of the functions v(f,—).

(1) The function v(f,—) is increasing, i.e., we have v(f,n) >
v(f,n—1).

(i) If f,g € T, then v(f + g,n) < max{v(f,n),v(g,n)} with equal-
ity if v(f,n) # v(g,n).

(iii) If f,g € I, then v(fg,n) < max,—,._, v(f,€) + v(g,n — ) with
equality if there is exactly omne (£ for which the expression
v(f,0) 4+ v(g,n — £) is maximal.

(v) If f € T and m € N, then v(p"f,n) = v(f,n —m).

V) If f €T, then v(a(f),n) = pv(f,n). Similar properties hold for
the functions v;(—,—), where the index i is 1, 2, or i = 2, b.

Proof. Left to the reader. O

4.3 The rings I';, I'1¢, Iz, and I, are discrete valuation rings
whose p-adic completions are I', I', I'; and I'; . Let us prove this in
the case of I'.. It is easy to show that I'./pI' — I'/pI' =K is an
isomorphism. So we just need to check that pI'. is the unique maxi-
mal ideal of I'.. To do this we will show that any f € I'. with f & pI'.
1s a unit in I',.

We have f ¢ pI', hence f € T'", i.e., there is an element g € I such
that fg = 1. In particular, v(fg,n) = 0 for all » > 0. By Lemma 4.2
(iii) we get for all n € IN the following inequality

v(g,n) +v(f,0) < max{0;v(f,€) + v(g;n — €),n = £ =1} .
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Assume that C > 0 is a constant such that v(f,n) < nC for all n > 1,
and such that |v(f,0)] < C, v(g,0) <C and v(g,1) < C. Such a
constant exists as f € I'.. We prove by induction on n the statement
H, :v(g,0) <20C, V¢, 1 < ¢ < n. Clearly this implies that g € I'.. The
assertion H is true by our choice of C. We assume H,_; and prove H,
for n > 2. The inequalities above and H,_; imply

v(g,n) < —v(f,0) + max{0;nC + C;4C+2(n—{)C,n—1> (> 1}
< v(f,0)| + max{0;(n+1)C; 2n —£)C,n — 1 > £ > 1}
< 2nC

Thus we get H,.

4.4 Definition. Let (R, 0) be an integral domain with an endomorphism
0 : R — R. An F-module over R is a pair (M, F), where M is a finitely
generated torsion free R-module and F : M — M is a o-linear map such
that the kernel and cokernel of the R-linear map

M®@R—M
R,o

are annihilated by some power of p.

Our use of this definition will be restricted to cases where p is not
zero in R. In case R is a perfect field of characteristic p and ¢ is the
Frobenius of R, the definition above does not correspond to what is
usually called an F-crystal over SpecR. (Such an F-crystal over
Spec R corresponds rather to an F-module over W(R).)

There is an obvious notion of morphisms of F-modules. A sub F-
module N of (M, F) is a submodule N C M such that F(N) C N and
such that the pair (N, F|y) is itself an F-module. We say that N is a
saturated sub F-module if M /N is torsion free. In this case
(M/N,F|y;y) is an F-module. An isogeny of F-modules is a morp-
hism (M, F) — (M', F’) such that both the kernel and cokernel of the
map M — M’ are killed by a power of p.

Assume that o is flat. (This condition will be satisfied in the case of
the rings we will consider in this article.) In this case M ®gr, R is
torsion free for any finitely generated R-module M which is torsion
free. (Use that there is an injection M <— R".) Thus given a pair
(M, F), with M torsion free and F o-linear, to see that the pair defines
an F-module it suffices to check that the cokernel of M ®z, R — M is
killed by some power of p. Any finitely generated sub module N C M
such that F(N) C N and all torsion of M /N is p-power torsion will be
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a sub F-module. In particular any finitely generated saturated sub
module N of M such that F(N) C N will be a sub F-module.

If (R,0) — (R',d’) is a morphism of integral domains with endo-
morphisms then there is a base change functor (M,F)+—
(M @z R'/T,F®d'). Here T C M ®g R’ is the R'-torsion submodule.

4.5 Slopes

Let R be a complete discrete valuation ring of mixed characteristic
with algebraically closed residue field x of characteristic p. Let L be
the quotient field of R. Let o : R — R be an automorphism inducing
the Frobenius map x+— x” on k. Let (V,F) be an F-module over L.
(Also called an isocrystal over L in the literature.) Note that V is a
finite dimensional L-vector space and that F is bijective.

There exists a basis eq,...,e,. of V over L and rational numbers
S1y...,8- € Q such that F"(e;) = p™ie; for sufficiently divisible n € N
(with ns; € Z). See [9]. The rational numbers sy, ...,s, (listed with

multiplicities) are unique and are called the slopes of the F-module
(V,F). The slope-decomposition

V=@V with V' =(e;s =s)
se@Q

can be defined intrinsically (interms of 7, F and the topology on V).
We have

@ = {u e V| lim pF"(v) = 0}

§>50

and

@V = {v ev| nli_}nolop”SOFf”(v) = 0} .

§<80

Two remarks on slopes. If there exists an R-lattice M C V with
F(M) C M then all the slopes of V" are > 0. (This is clear from the fact
that limp"F"(m) =0 for any m € M and any e >0.) Suppose
{v1,...,0,} is any basis of V, and F(v;) =) a;v;. Then one has
st + -+ + 5, = vp(det(a;;)). See [9].

Let «: R — R be an automorphism of R commuting with ¢. It
induces a continuous automorphism « of L. If V' is a vector space over
L we write V,; =V ®.,L. If (V,F) is an isocrystal over L, then
(Vy, F ® o) is an isocrystal over L. It follows from the above that the
slope decomposition V' =@ V* of (V,F) determines the slope de-
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composition of (¥, F ® o). The slope s submodule of V, is equal to
V® ®r 4 L. In particular the set of slopes with multiplicities of ¥ is
equal to that of V.

4.6 Suppose that (M,F) is an F-module over one of the rings
R=Q,Q, I''T.,I';,Ii.,L; (the index i is 1, 2, or 2,b). Then we can
look at the F-module (M ®g Ly, F ® a) over Ly . By the above it has
slopes.

4.7 Definition. The slopes s1 < --- <, of a rank r F-module (M,F)
over one of the rings R listed above are the slopes of the isocrystal
M ® Ly, over Ly as defined in 4.5.

We note that (after making » more divisible) M ® L, has a basis
el,...,e such that F(e;) = pe;. We say that (M, F) is isoclinic of
slope s if all the slopes s; are equal to s.

We remark that if R = Q, Q; then there is another F-module as-

sociated to M over R, namely the F-module ((M ®g W) /torsion, F®
a) over Wj. This gives rise to an isocrystal over L, with slopes s.. The
slopes s; are in general different from the slopes s;. A fundamental
result, see [9], is that the Newton polygon of the slopes s! lies above
the Newton polygon defined by the slopes s;. In particular, if M is
isoclinic of slope s, then all s} are equal to s as well. Although we do
not use this fact it is one of the ideas behind the arguments in
Section 6.
4.8 In case of the ring R is equal to Q,I',I". or I'(D, (/) we have the
derivation % : R — R. In any of these rings an element f has a unique
expansion f = >, 7 a,", with a, € W or Ly. We put 41 =3 na,
=1, which again lies in R. The map % : R — R is a derivation.

4.9 Definition. Let R be as above. An (F,0)-module over R is a triple
(M,F,0), where (M,F) is an F-module over R and 0 : M — M is an
additive map such that 0(fm) = f0(m) + L(f)m and pt~'F(0(m)) =
O(F(m)) for allm € M and f € R.

Note that if we take M =R, F = p'c and 0 =
an (F,0)-module.

4 then (M,F,0) is

5 Splitting an equation

We will work in the noncommutative polynomial algebra I';;.[F],
where Fy = a(y)F for all y € Ty, It is a subring of the ring I'; 4[F].

5.1 Proposition. Let F" +aiF" '+ - +a, € T2y [F] be a monic
polynomial in F. There exists a b € N, b|b' and elements 1,,...,/,
€ Iy o such that we have



Homomorphisms of Barsotti-Tate groups and crystals 315

Q) F'"+aiF" '+ ta,=(F—M)(F —2) - (F—4,).
(i) vp(41) 2 vp(42) = -+ = vp(dn).

Proof. We will prove this by induction on #; the case n = 1 is trivial.
We will try to solve

F'valF" '+ ta,=(F" + b F" 2+ 4 b)) (F — 1)
with b;, 4 € I'5, .. This equation is equivalent to the set of equations:

by =a; + O'n_l()»)
by =ap + O'n_2(}»)b1

bn—l =ap-1+ O-(JV)bn—Z
0=a,+ Ab,_

If we solve by,...,b,_; in terms of ay,...,a,_1, A from the first n — 1
equations then the last equation becomes

0=a,+ 2, 1+ ic(M)ay o+ -+ ia(2)--- " *(A)a

0 +ia(2) - ()

Put

We may assume that o = a/b for some a € Z> if we make b more
divisible. We are going to solve (1) for some 4 € I';, . of the form
4= p*uwithu € I';, .. If we can do this then the proposition follows.
Indeed, if we have such a solution A, then b, = a; + ¢"~!(4) will be an
element of Iy, with v,(h1) > a. And by = as + " 2(4)b; implies
by € I'yp . has vp(bz) > 2a, etc. Continuing we get v,(b;) > i, so that
the invariant minwv,(b;)/i > « has gone up. By induction we get a
splitting F" ' 4+ by F"™ 2+ .-+ b, 1 =(F =) (F— 1), with
Up(An—1) = minwy,(b;)/i and we are done.
We re-write (1), by setting 4 = p”*u and dividing by p™:

2)  0=p™a,+p "V ju+- +uoc(u)---o"(u) .
Note that all the elements a; = p a; € I', . and for some i we have

a. e I'; .- Recall that a— a denotes the map I’ C I'yp — K>. The
equdtlon (2) reduces to the equation
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0=a, + - +au P gl

in K;. This has a non zero solution # € K,, as it is a polynomial
equation with at least two nonzero coeflicients and K, is algebraically
closed. (We remark for later reference that if v,(a,) = na and n > 2,
then there are at least two distinct nonzero solutions.)

We will first show that (2) has a solution u € I';;, which is con-
gruent to the solution # we found above; after this we will prove that
actually u € I'yp.. (Then necessarily u €135, .) Suppose that
u. € I'p, ¥ > 11is a solution of (2) modulo Pt and that i, =u+#0.In
order that u,,; = u, + p'/?3, is a solution of (2) modulo p+1/?, we
have to solve a polynomial equation in terms of J, with leading term

-1

"2 TP
gt (5r)p

As K is algebraically closed, we can solve this equation and we get
ury1. The limit of the elements u, will be an element u € I'5, solving
(2). We are going to prove such a solution lies in I'2;,.. (If n =2 and
vp(az) = 2o there are at least 2 solutions, see previous remark.)

Let us write V(f,m) = va,(f,m/b) for f € ', and m € Z>y. We
choose a constant C > 0 such that v(a;,m) < mC for all m > 1, all i
and such that C is much larger then |¥(a},0)| and |V(u,0)|. (A factor
"1 will do.) This is possible as all a; are elements of I'; .. We are
going to prove by induction on m the statement H,, : (u 0) <(C,
1 < ¢ < m. The assertion H, is empty. We assume H,, | and m > 1
and prove H,,. By Lemma 4.2 we have

Huo(u) - 0 (), m) < max ¥, i) + pilus ) + -+ P )
Iyeeesln
(3)

where the maximum is taken over all n-tuples (ii,...,i,) with i; >0
and ) i; = m. One of the terms on the right hand side is

(4) (I+---+p" 2) i(u,0) + p" '9(u,m) .

It occurs if (if,...,i,) = (0,...,0,m). If this term does not strictly
exceed all others, then there exists an n-tuple (i1, ...,7,) with i; >0
and ) i; = m and i, < m such that

(T4 +p" ), 0) + p" '(u,m) < F(u,ir) + pi(u, in)
(5) 4o " N uy)
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The case that i; = m for some j < n in (5), which implies iy = 0 for
j' # j, leads to the inequality

(" = P)i(u,m) < —p/(u,0) .

By our choice of C and as m > 1, we conclude v(u,m) < mC in this
case. Thus we may assume i; < m for all j in (5). This gives using H,,_;
the following inequality:

W, ir) + pi(u,i) + -+ P (uydn) <P 0w, 0)+ > plC
=0 i#0

< (14 4+p" HFw,0)|+p2C+p"'(m—1)C .

The last inequality holds because ) i; = m and i, < m. Combining
this with (5) gives

2(1 + -+ p" Hi(u, 0)|

v(u7m) S pn_l

+(m—-1)C+p'Cc<mC,

where the last inequality uses C >|¥(u,0)| (e.g. C > p"*![i(u,0))).
This proves H,, in case the term (4) does not dominate in the right
hand side of (3).

Therefore we may assume that (4) does dominate in the right hand
side of (3) and hence we have that V(uc(u) - - - 6"~ (u), m) equals (4) by
Lemma 4.2 (iii). Hence, by Lemma 4.2 (ii), we see that (4) is domi-
nated by the maximum of the values of v(—, m) evaluated on the other
terms that appear in (2). We have for £ > 1 the following bound

V(auo(u)---a" " N(u),m) < max ¥(aj,io) + (u,ir)

L0581 50w esln—t

o P S i)

where the maximum is taken over all (n — ¢+ 1)-tuples (io,. .. ,in—¢),
with i; >0 and ) i; = m. Again the assumption that a term with
i; = m for some j € {1,...,n— {} is biggest leads to an inequality of
the form v(u,m) < C,, where C, is a constant depending only on
v(d},0), p, n and v(u,0). Hence we get H,, as m > 1 and C was chosen
large enough. For the other terms one gets a majoration by

i0oC +p" N m —ig)C + |9(a), 0)| + (1 + -+ p" 1) [3(u, 0)|
Spnfﬂflmc_i_ C3 .
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The fact that (4) is bounded by this suffices to imply v(u,m) < mC, as
£ > 1 and C was chosen large enough. O

5.2 Corollary. Let (M,F) be an F-module over I'y} .. There exists a
b €N, blb" such that M @ Ty has a filtration 0 C Ny C N, C ---
CN,=M®®Iyy,. by saturated sub F-modules N; such that
rank NV; = i.

Proof. Take a non zero element m € M. There is a monic polynomial
P(F)=F"+---+a, € I'y;.[F] such that P(F)m = 0 in M. Say P has
minimal degree. After replacing b by ' as in the proposition we get
P(F)=(F—/1)---(F— A,). The submodule N{ of M generated by
(F —22)--- (F — Ay)m has rank 1. We have F(N]) C N{ as P(F)m = 0.
The same hold for its saturation N; = {x € M | p°x € N| some a}.
Thus N is a sub F-module and M/N; is an F-module with strictly
smaller rank than M. We win by applying induction (on the rank of
M) to M/N1 . O

5.3 Corollary. Let 0 — Ny — M — N, — 0 be a short exact sequence
of F-modules over I'yp, .. Assume N; has rank 1 and let s; be its slope 4.5.
If s1 < sy, then there is a rank 1 sub F-module N' C M such that
N’ — N, is an isogeny.

Proof. Choose a generator n; of N;. We have F(n;) = pn; for some
W € I'ope. Note that s; =v,(y;) by the remarks in 4.5, hence
vp(1y) < vy(1y) by assumption. Choose 71> € M lifting n,. We have

(F — )iy = pn

for some u € I'yp.. If u = 0, then the extension is split; if not then we
have v,(o(p)u') = 0. (This computation takes place in Ly,.; note
that v, 00 =wv,.) Thus we have a(u)u ' €T3, . Since (F—o(u)
w ) (uny) = 0, we see that

0

(F =o' ) (F = )iz
=(F? = (o(wp ' wy + (1)) F + o (@ ) (7)

By the proposition we get a splitting of the degree 2 polynomial as
(F = Z4)(F = 22), with v,(41) > v,(42). Note that we do not need to
enlarge b, as the invariant o used in the proof of Proposition 5.1
equals v,(p). If s1 < sz then v,(42) # v,(1,), since 21h = a(p)u!
M io. In case v,(uy) = vy(1y), we also do not need to enlarge b and
vp(a(W)p iy py) = 2o so that we may choose 4, # pi, according to
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the remarks made on the number of solutions in the proof of the
proposition. The element (F — Ay)n; will generate the rank 1 sub
F-module N’ of M we are looking for: we have N'NN; = (0) as

Ao F W O

5.4 Lemma. Let N be a rank 1 F-module over I'y.. There is a gen-
erator n € N such that F(n) = p’n, where s = a/b is the slope of N.

Proof. Take any generator n of N. Then F(n) = p*nn for some unit
nel;,,. and some s € 1/bZ. We have to solve g(e) =ne with
€€ szc a unit. Arguing as in the proof of Proposition 5.1 a solution
e € I';, is found. A consideration using the functions v, (e, —) and
va5(n, —) shows that e is in I’y (use Lemma 4.2 (ii) and (iii)). O

5.5 Proposition. Let (M, F) be an F-module over Ty .

(1) There exists a unique filtration by saturated sub F-modules
OCM CM,C---CM,=M such that M;/M;_, is an isoclinic F-
module of slope s; and sy > s3 > -+ > s,.

(i1) If M is isoclinic of slope s, then for some b’ € N, b|b" the F-
module M @ 'y y . over I'y y . is isogenous to a direct sum of copies of
the rank 1 module (I'yy . - e, F), with F(e) = p’e.

Proof. Note that if b divides ', then I'ypy,. =125 @l ®
@ Ty, with r =54 /b and © = p'/* as F-modules over ',
(with F = ¢ since o(n) = m). Suppose M} C M ®r,,, I'2 . is a sub F-
module. We get I'; -linear F-compatible maps

1 _j. . Pn
M, M Oy e r27b’~,6’ = @;:0 M M .

Also, if M has rank r; over I'; ., then M, has rank rr; over I'z ., so
at least one of these composite maps has rank at least ;. Further-

more, if the slopes of the F-module M; over I'; . are sy, ...,s,, then
the slopes of M; considered as an F-module over I,,. are
Slyeevs 81,82« 2382,...y8m,-..,8, (€achs; s repeated » times). Thus if

M, is a maximal isoclinic Iy .-subspace of M ®r,,, I3 . with slope
s1 and rank ry, we get a I'y ;, .-subspace of M of slope 51 and of rank at
least r;. We conclude by uniqueness of slope decomposition that M| is
defined over I'; .. Arguing by induction we see that a slope filtration
over I'; y . descends to a slope filtration over I'y; ..

Therefore we may assume b is sufficiently divisible and we get a
filtration of M as in Corollary 5.2. By Corollary 5.3 we may assume
the filtration 0 C Ny C N, C --- C N, = M is such that the slopes of
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N;/Ni—; decrease when i increases. This proves (i). The second
statement is proved in the same manner using Lemma 5.4. O

5.6 Remark. In fact, if (M, F) over I';; . is isoclinic of slope s = a/¥/,
ged(a,b’) = 1 then it is isogenous over I';, . to a direct sum of copies
of the module M(s) described below. Let r =5'/ged(b,b’) and let
M(s) be the free I, . module with basis ey, ..., e,.. Put F(e;) = ey,
i <r and F(e,) = pe;. Note that rs € (1/b)Z so that this makes
sense. We will not use this result. O

5.7 Corollary. Let (M, F) be an F-module over I'yp .. Say M has a slope
filtration 0 C M| C --- C M, = M with slopes sy > s, > -+ > s, as in
the proposition. Let

(p:M—>F2,;,

be T'yp-linear and such that for some (¢ € (1/b)Z, ¢ >0 we have
@(F(m)) = p'o(p(m)) for all m € M. Then
(1) The kernel of ¢ contains M; whenever s; > £.
(i) If ¢ is injective and M # (0), then s; = ¢, rank M, = 1 and
M) CTope CTap.
(ii1) If € > sy, then ¢ = 0.

Proof. Since Ker(¢) is a saturated submodule of M and stable under
F, we may replace M by M /Ker(¢) and it suffices to prove (ii) for this
module. Thus we assume that ¢ is injective. We are allowed to make b
more divisible in proving (ii), as the extension I'z,, C I'y . 1s finite
free and I,y = Iy ®r,,, I .. Hence we may assume by Proposi-
tion 5.5 that there is an isogeny

Ni&---&N, — M

with rankN; = 1. In fact we can find nonzero n; € N; such that
F(n;) = p"'n; for each i. Thus ¢(n;) = f; € 'z is an element with

plolf) =r"f; .

This relation implies ¢ = 51 as v,(a(f;)) = v,(f;). Note that f; # 0 as ¢
is injective. Thus we have o(f;) = f;. We apply v2,(—, m) and we get

pvap(fism) = vap(fiym)
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whence vy, (f;,m) € {—00,0} for all m. Thus f; € I’y .. This means
that fi,...,f, are linearly dependent over I';, .. As we assumed that
¢ is injective it follows that » = 1. OJ

5.8 Proposition. Suppose (M, F) is an F-module over I'y .. The slope
Siltration of M ®r,, I'>. given by Proposition 5.5 is defined over I'y ..
More precisely, there exists a unique filtration by saturated sub F-
modules

ocMyCc---CM,=M
with M;/M;_, isoclinic of slope s; and s; > s > -+ > s,.

Proof. Let 4 = Gal(K,/K;). For any © € ¥ we get a continuous au-
tomorphism W (1) : W(K,) — W(K;) by definition of the ring of Witt
vectors. Note that 1 commutes with Frobenius ¢. The automorphism
7 also preserves the subring I'; . C I'; = W(K>). Indeed, it preserves
the functions v(f, —) as t(¢'/") = {¢'/" for some root of unity { € K,
and { € ;. By the remarks made in the Section 4.5 we see that the
map

idy QW (t
M ®r,, Fz,cL(%M ®r,, e

preserves the filtration by slopes 0 C M| C --- C M, =M ® I',. given
by Proposition 5.5.

Note that M is a free I'j .-module of finite rank. Let # be the
partial flag scheme of M over Specl’|. parametrizing flags
0CF C---CF,=M in M with rank F; = rank M. A morphism of
a scheme § over I'i. into # is given by a filtration of the sheaf
(s ®r,, M. Then Z is a smooth projective scheme over SpecI'; .. The
filtration M. defines a morphism x : SpecI'>, — % over SpecI'| .
Take any affine open U C # such that Im(x) C U. Take any element
f €T (U,0y). The fact proven above that the filtration M/ is stable
for all W(t), © € 4 means that the element x*(f) € I', is fixed by all
automorphisms W (t) of I';.. Then it is easy to see that x*(f) € I' ..
This means that x and hence M| are defined over I'; .. O

6 Entire versus convergent power series
Let (M, F,0) be an (F,0)-module over Q = W[[¢]].

6.1 Lemma. There is an isogeny M — M’ to a free (F,0)-module
(M',F,0) over Q (i.e., M’ is a finite free Q-module).
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Proof. The dual of a finitely generated Q-module W is finite free, since
Q is a regular local ring of dimension 2. Thus we take for M’ the
double dual of M:

M' = Homg( Homg(M,Q), Q) .

The evaluation map ev: M — M’ has a finite length cokernel. If
m' € M, then 'm' € M and p"m’ € M for some large n € N. Define
F(m') to be the element in M’ such that p"F(m') = F(p"m') and
P"F(m') =F("m'). Such an element F(m') € M' exists as
P"F(p"m') = p"F("m'). Clearly F(m’) is independent of the choice of
n.

To define 0, we take such an n as above. Then we define
O(m') € M’ as the element such that #'0(m’') = —nt""'m’ + 0(¢"m’) and
p'o(m') = 0(p"m’). Existence is proved as above. It is readily proved
that F and 6 on M’ have the desired properties. O

6.2 Lemma. Classification of rank 1 modules over Q.
(1) Let (M,F) be a rank 1 F-module over Q. Then M is isogenous to
(Q, p'c) for some £ € Z~q. If M is free then M is isomorphic to (Q, pa).
(i) Let (M,F, 0) be a rank 1 (F,0)-module over Q. Then M is
isogenous to (Q, p'o, dt) for some { € Z>y. If M is free of rank one then

M is isomorphic to (Q,p'e,4).

Proof. Proof of (1). We may assume that M is free by Lemma 6.1
(without 0). Let m € M be a basis element. We have F(m) = Zm and
we have Q/AQ killed by some power of p (axiom of F-modules). Since
Q is a UFD in which p is irreducible, 2 = p'n for some unit y € Q*
and some ¢ € Z>,. If we replace m by em, with € € Q°, then 5 is
replaced by na(e)e!. Thus we have to solve the equation no(e)e™!
=1 for a unit e € Q*. It is well-known (classification of rank 1 F-
modules over W) that one can solve this equation in W*. Hence we
may assume we have e such that no(e)e! = 1 + tw, some w € Q. In
this case no(e+15)(e+15)"" =14 t(w — € ') mod 2Q (recall that
o(t) =t and p > 2). Hence we can find a solution modulo #*. By
induction one finds compatible solutions modulo any power of ¢,
hence a solution.

Proof of (ii). Again we may assume that M is free. By (i) there
exists a basis element e € M such that F(e) = p’e. It is easy to see that
also 0(e) = 0, as we have p'0(e) = 0(F(e)) = pt*~'F(0(e)) in this case,
see Definition 4.9. O
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Let (M, F,0) be an arbitrary (F, )-module and let M — M’ be the
isogeny of Lemma 6.1. Let » = rank M. In the following we will use
the map Q = W[[t]] — W with ¢+ 0. Choose elements ey, ...,e, € M’
®aW linearly independent over W such that

F”(e,') :pa"e,- .

This is possible if # is the common denominator of the slopes of the
F-module M’ ®q W and its slopes are a;/n. See 4.5, it was remarked
there that a;/n > 0 in this case so that a; € Z>o. We lift ¢; to an
element m; € M’. Note that the quotient M'/(m;,...,m,) is p-power
torsion. We have

F”(m,-) = paimi + t5,~
2[11‘

for certain 6; € M'. If we apply F" once again we get F>"(m;) = p
m; + p“itd; + 7' F"(9;). Proceeding by induction we see that

N j— .
FN”(mi) :pNa,-mi + zp(]v_j)aitpn(/ I)Fn(J_l)((si) )
j=1

In particular we have FN(m;) — p“FN=Dn(m;) € """ M’ for N > 1.
We conclude that

Mo = IJi_rgopra,-FNn(ml_)

is a well defined element of M’ ®q I'(D, Op). (To see this more ex-
plicitly: note that m; . =m; + > 2, p " =D (5;) and writing
this in terms of a basis for M’ will give coefficients which are elements
of I'(D, Op). See Section 4 for an explicit description of elements of
I'(D, Op).) Note that M’ ®q I'(D, Op) = M ®q I'(D, Op) as M — M’ is
an isogeny and p~!' € T'(D, Op). The m;, , are elements of the (F,0)-
module M ®q I'(D, Op) over I'(D, Op) such that F"(m; ) = p“m; .
Furthermore,

G(PNa"m,-,oo) = Q(FNn(mi,oc)) :pNntpNnilFNn(Q(mLOO)) :

We conclude that the elements 0(m; ) of the module M ®q O have
vanishing power series expansions around ¢ = 0 (with respect to any
basis of M’). Thus they are zero. Therefore the elements m; ., are
horizontal for the integrable connection on M ® (U given by letting 0
actas 0®1+1 ®%. They also give a basis of the fiber at t =0 of
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M ® Op, as m; ., = e; mod ¢. The exterior power mj oo A--- Am, 1S a
horizontal element of A"(M') ® I'(D, Op). By Lemma 6.2 we know
that A"(M’) has a horizontal basis element e. Thus mj ., A---
Amy o = e® [ with f € T'(D, Op) and 4(f) = 0, hence f/ € W. By the
above f #0mod¢, so f # 0. Therefore the elements m; , form a
basis of M ®q I'(D, Op). This proves Dwork’s trick.

6.3. Lemma. (Dwork’s trick.) For any (F,0)-module (M,F,0) the
(F, 0)-module M @q I'(D, Op) over I'(D, Op) has a basis of elements d;,
which are horizontal and satisfy F"(d;) = p“d; for certain n € N and
a; € ZZO'

6.4 Proposition. Notations as in previous lemma. If N' C M @q T, is a
saturated sub (F,0)-module then N' = N ® I'. for some saturated sub
(F,0)-module N C M.

Proof. We may replace M by M’ as in Lemma 6.1 and N’ by its
saturation in M’ ® I'.. Thus we may assume that M is free over Q
(and N' & M @ T'./N’ are free over I';). Let r = rank N'. It suffices to
prove the proposition for "N’ C A"(M) ® I'., so we may assume
rank N/ = 1.

Say r = rank M and let my, ..., m, be a basis of M over Q. Write a
generator n' € N’ in the form

n/:Zmi®gi7 gel..

We may assume g; € I'; as I'. is a discrete valuation ring and N’ is
saturated in M ® I'.. Thus we may assume g; = 1. There is a constant
C > 0 such that for all {

v(gi,m) <mC, Vm >1 .

Using the discussion in Section 4.1 (especially equation 4.1.1) this
implies that g; can be viewed as a rigid analytic function on the
annulus 4 : {#;|p|° < |t] < 1} for some small € € Q.. Therefore we
can (and we will) view »’ as an element of M @ I'(4,04). As A C D we
may write n’ = > d; ® h; with h; € I'(4,04) and d; as in Lemma 6.3.
(We are using that M @ I'(4,0,) =M @ T'(D, Op) @ T'(4,04).) 1t is
still true that n'T'(4,04) C M @ T'(4, 04) is a locally direct summand.
(Use that g; = 1.) The fact that 0(N') C N’ implies that < h; = hh; for
some h € I'(4,0,). Intuitively this means that <log(h;) = and it
implies that 4;/h; is a constant (whenever 4; is not zero; the com-
putations are formal). Thus we see that there exist 4y,..., 4, € W (not
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all zero) such that ' = (41d) + - - - + A,d,) ® f for some nonvanishing
feTI(4,0,). We have shown that N’ is defined over I'(D, () as well,
as it corresponds to the submodule spanned by Aid; + -+ 2,d,
which is defined over I'(D, Op).

More precisely, this means that we have

m4mg+--+mg=meOq+---+meq)f

for certain ¢; € I'(D,0p) and f €TI'(4,0,) as above. (Just write
di=3% m;®gq; with g; €I'(D,0p) by Lemma 6.3 and put
g; = Y 4qi;.) We conclude that f is a meromorphic function on D,
invertible on 4. Hence it has only finitely many poles on D. (The pole-
locus of 1 is a closed analytic subset of some affinoid subdomain of
D.) Therefore, we can find a polynomial P(¢) € W[t|, P(t) & pW|t|
such that P(¢)f € I'(D, Op). This implies that P(¢)g; = P(t)fh; (i > 2)
can be viewed as an element of I'. and as an element of I'(D, Op).
However, the elements in I'(D, ¢p) are power series in ¢ with coeffi-
cients in Ly = W[l /p|, and the elements of I'. are power series in ¢ and
t~! with coefficients in . We conclude that P(t)g; € Q for all i. Thus
the subspace generated by n’ over I'.. (equal to the subspace generated
by P(¢)n’ over I'., since P(t) & pW|t]) is defined over Q: we have
shown 0 # P(f)n’ € (M ® 1) N N'. Let N be this intersection, seen as a
submodule of M. We clearly have F(N) C N and O(N) C N, by the
corresponding properties of N'. It is a saturated Q-submodule, hence
it is a sub (F,0)-module. Also, N ® I'. C N’ is an inclusion of satu-
rated rank 1 I'. modules, so it is an equality. O

6.5 Remark. The proposition holds in the following more general
situation: Suppose (M, 0) is a finitely generated torsion free Q-module
with a 4-derivation 0 such that M ® I'(D, Up) has an horizontal basis.
Any 0-invariant subspace N' C M ® I'. comes from an Q-submodule
N C M. The only point in the proof of the proposition where we used
the existence of F, was to ensure that the local system on D was
trivial, i.e., we used Dwork’s trick. O

7 Some crystals over power series rings

We claim that we may “‘split off” an F-submodule N of an F-module
M over Q if all its slopes are bigger than all the slopes occurring on
M/N. This follows from the following proposition using some tensor
algebra. We will not use the claim in the sequel.
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7.1 Proposition. Let (M, F) be an F-module over Q. Assume N C M is a
rank 1 sub F-module of slope £ and assume that all other slopes on M
are strictly smaller than £. Then there is a complement for N, i.e., a sub
F-module N' C M such that N ® N' — M is an isogeny.

Proof. We may assume that N is a saturated submodule of M. We
dualize and we get an homomorphism M* — N* of Q-modules whose
cokernel has finite length. (Since N, C M, is a locally direct summand
for all height 1 primes p of Q = W][[f]].) Let O be the torsion free,
saturated kernel of this map. For a module 7 over Q, write
T = T ®q, Q. If T is finitely generated we have (T*)(”) >~ (709",
as g:Q — Q is finite free [11, 3.E]. By definition of F-modules
the linear maps Fj, : M9 — M and F, : N — N induced by F
have an “almost inverse” p"F_! for some n large enough.
Dualizing this, we get a linear map (M*) = (M®))" — M* and
similar for N*. Thus M* and N* are F-modules in a natural way (up
to the choice of n), and so is O (and Q is a sub FF-module of M*). The
slope ¢* of N* is strictly smaller then all other slopes of M*. (Note that
0* =n —{ and any slope s* of M* is of the form s* = n — s for some
slope s of M.)

By Lemma 6.2 we may choose an isogeny (Q, p ¢) — (N*, F), and
scale by a power of p so that the image of Q — N* is contained in the
image of M* — N*. Further we choose an isogeny (Q,F) — (Q',F),
with O’ a free module over Q (see 6.1). We define the F'-module M’ by
the following commutative diagram with exact rows:

O — Q0 — M* — N~

I T 1
O — 0 — M — Q — 0
! l I

O—>Q’—>M’—>Q—>O

(We leave it to the reader to verify that the pushout and the pullback
give F-modules.) The Q-module M’ is free. Let s; be the smallest slope
occurring on Q. By assumption s; > ¢*. The extension of isocrystals
(the last one having slope £*)

0— 0 ®Raly — M@aL, — Q®qL, — 0

is canonically split by the theory of isocrystals over L,, see 4.5. Thus
the extension class of the exact sequence

0— Ql XRa W(Kz) — M XRa W(Kz) — Q ®q W(Kz) — 0
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is p-power torsion. (The category of isocrystals over L, with non-
negative slopes is equivalent to the category of F-modules over W (Kj)
up to isogeny.) Replacing Q by p™Q for m sufficiently large, i.e., doing
another pullback, we may assume that

0—Q0 —M —Q—0

becomes split after tensoring with W (K3).
By the structure theory over L, (and W (K;)) we see that the map

FN: Q@WK — 0 @ W(K)
for N large becomes divisible by p*', as all slopes on Q' are > s; > /.
(Compare Section 4.5.) The same divisibility holds in M’ ® W(K;) =
(O @W(K>)) @ (Q® W(K>)). But then the map FV : M — M’ is
also so divisible: We remark that p divides an element m € M’ if and
only if it divides the element m® 1 € M’ ® W(K,). Let us write

y=p V'FN .M - M .

It preserves ¢’ C M’ and induces ¢ on Q= M'/Q'.
Let e € M’ be an element mapping to 1 € Q. Consider the se-
quence of elements

ea=yY'le)eM a>1.

Of course ¢, maps to the element 1 in Q for all a. Further, if in the
decomposition M’ @ W(K>) = (0 ® W(K>)) ® (Q® W(K,)) we have

e=q® 1, then .
e, :pfaNZ FaN(q)@l )

The terms in the first factor O’ ® W(K;) converge to zero p-adically as
all slopes of Q' are > s; > £*. So e, converges p-adically to the ele-
ment 06 1 € M' ® W(K,). The p-adic topology on M’ is induced
from the p-adic topology on M’ ® W(K>), as is clear from the remark
on divisibility above, hence e, converges to an element e, € M’. This
element obviously gives the desired splitting of M’; then dualize and
“isogenize” back to M, keeping track of things. O

8 Equality of kernels

8.1 Proposition. The map Iy @r, I' = I, g @ f = gf is injective.

Proof. Note that we have I'yp. ®r, I =215,. Further the map
I'y . — I’y 1s finite free, hence flat. Thus we reduce to the case b = 1.
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Write M =1, ®r, T We may consider M as al,orlIy or
I-module. Note that M—2-M is injective as F20—>F2c is injective
and I'; — I is flat. Hence M injects into

(1) (Toc @r, T)[1/p) = Do [1/p] @, T(L /) -

Let us write u: M — I'; for the multiplication map of the lemma.
Assume that x = >}, g; ® f; € M is a non zero element such that
u(x) =371, g:fi is zero. We may assume r is minimal among all
r € IN occurring in this fashion. We claim the elements fi,...,f, € I’
are linearly independent over I'.. If not, then one of them may be
expressed as a linear combination of the others with coefficients from
I'.. (Here we use as always that I'.. is a discrete valuation ring.) Say

N = Z::2 aifi, a; € I'.. Thus

r

X=) g0fi=® (Zmﬁ) +D a®fi=) (ag+9)® fi
i=1 i=2

=2 i=2

in contradiction with the minimality of r.

After renumbering if necessary, we have v,(g1) < v,(g;), for all i.
Then ¥’ =>""_,(9:/91) ® fi € M is nonzero, as g;x’ =x and x # 0.
Further, u(x') =>(g9:/91)fi = (1/¢1) >_g:fi =0 (this computation
takes place in I';[1/p]). We see that we may assume g, = 1.

Let o: I, — I'; be an injective ring map such that o<|y =idr and
a(I'¢) C Tae. In this case

u(%j o(g; ®f> Z ng,—a<zglfl)_0

Therefore the element Y. ,¢;®fi—> i o(g:) @ fi = i (gi—
a(g:)) ® fi of M lies in the kernel of u. Hence it is zero as r was
assumed minimal. Since f, /3, .. ., f, are linearly independent over I'.
(with f; =1 fixed by o) we get by minimality of » that g; = a(g;),
i=2,...,r. (Use that f5,...,f, are part of a basis of the I'.[1/p]-
vector space I'[1/p] and that M injects into the space (1).) By taking
a=W(t) with 1€ 9 = Gal(K,/K;), we conclude that g; € I'j.
(Compare with the proof of Proposition 5.8.)

Note that Iy is the p-adic completion of the ring | J, ['[¢!/#"]. (This
can be seen by looking at the mod p" quotients of both rings.) Thus
we can write any element g of I'j uniquely in the form
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(2) g= Z *w,
a€Z[1/p], 1>0>0

with @, € I'. Not all sequences {w,}, occur in this way: the sets
{a|v,(w,) < C} are finite for all C > 0. If this condition holds, then
the sum (2) converges in I'y. If g € I'y ., then all w, € I', as is easy to
prove using the properties of the function v;(—,—). We write our
gi € I'1 . in this manner

= Zt(xwi,m Wi 4 € rc
o
We conclude that

0=f1+wfr+ —l—wrofr+zt <Zwmﬁ> .

>0

By uniqueness in (2) for g = 0, we get fi + w2 0f> + -+ + w,0f, =01n
contradiction with the linear independence of the f; over T. O

8.2 Corollary. Assume (M,F) is a nonzero F-module over T'. and
@ : M — T is T -linear and injective such that ¢(F(m)) = p'o(p(m))
for some { € Zq. The largest slope (see Definition 4.7) of M is ¢ and it
has multiplicity 1. In fact N = ¢~ "(T,) is a rank 1 sub F-module of M
having slope £.

Proof. Consider the composition ¢, , .

q)®1d
M @r, Type —

T @r, Tope — Top

It is injective being the composite of two injective maps (I'c — I 1s
flat). We take b so divisible that M ® I'; ;. has a slope filtration in the
sense of Proposition 5.5 (ii). The result on the largest slope and its
multiplicity as a slope of M follows from Corollary 5.7 (ii). By
Proposition 5.8 the slope £ subspace of M ® I'; . is defined over I'y ...
Thus there is a saturated sub F-module N’ C M ®r, I'| . of rank 1
and slope ¢ with

N' = (Pii(rl-6> .

Here the map ¢, . is defined by a composition as ¢,, . above. To
prove the corollary it will suffice to find one nonzero element n € M
such that ¢(n) € I'...
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Let my,...,m, be a basis of M over I'.. Take a generator n' € N’
and write n' =) gm;, g; € T'1.. As in the proof of the previous
proposition we may write

gi = Z Wiy
a€Z(1/p], 1>0>0

with w;, € T'.. If @(m;) = f; € T', then we get

@1.(n) = Zt“ <Z wi,afi) el .

Hence ), w;,fi € I'c for all a. For some o the element n =) w;,
m; € M will be nonzero and have ¢(n) € I'.. I

9 The theorem

9.1 Theorem. Let (N, F,0) be an (F,0)-module over Q. Let
o:M—T

be an Q-linear map such that

(i) for some £ € Z=y we have o(F(m)) = p‘a(p(m)) for all m € M,
and
(i) we have @(0(m)) =4 ¢(m) for all m € M.

Then ¢(M) C Q.

Proof. Consider the extension ¢, of ¢ to M ® I'. defined by the
composition

MRol, — T ®I,—T .

It is easy to check that ¢, satisfies the analogues of (i) and (ii). Let
N’ =Ker(p,) C M ®qI'.. Clearly, F(N') C N"and (N’) C N" and N’
is a saturated submodule of M ®q I'.. Therefore, by Proposition 6.4
we get NV = N ® I, for some (saturated) sub (F, §)-module N C M of
M. 1t is clear that N = Ker(¢) and replacing M by M /N we may
assume that ¢, is injective.

By Corollary 8.2 we conclude that N’ = ¢_!(T,) is a rank 1 slope ¢
sub F-module of M ® I'. and that all other slopes on M are strictly
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smaller than ¢. Clearly, N’ is also preserved by 0, hence it is a sub
(F,0)-module. We apply Proposition 6.4 and we get a saturated rank
1 sub F-module N € M over Q with N ® I'. = N’. By Lemma 6.2 we
have that there is an isogeny (Q, p'c) — (N,F) of F-modules, i.c., a
non zero element n € N with F(n) = p'n such that N/Qn is p-power
torsion. The elements g € T'. (or even g € I') that satisfy o(g) = g are
g€ W(IF,) C Q. Thus ¢(N) C Q[1/p|NT = Q.

We have seen above that the assumptions of Proposition 7.1 are
satisfied for (M, F) and N C M. The proposition gives us an isogeny

NeN — M .

The map N’ — M — T is zero, since the slopes on N’ are all strictly
smaller than ¢ (which implies that N’ ® I, — I'z; is zero by Cor-
ollary 5.7) (iii). This contradicts the injectivity of ¢ unless N’ = (0), so
N — M is an isogeny. Since N is saturated in M we have N = M. We
have won. [

10 Appendix: proof of Lemma 2.1

The author does not know how to prove Lemma 2.1 (ii) and (iii)
without using crystalline Dieudonné module theory. In both cases we
can reduce to the case where R = k[[f]] with & algebraically closed
(details left to the reader). Hence we may apply the theory of the
preceding sections.

Proof of (ii). Let

M(H),F,v,v) 2 Mm(G),F, v, V)

be the associated morphism of crystalline Dieudonné modules over
Q = W][[{]]. See e.g. [8, Section 2] for definitions and notations. Say
the rank of «, is a, i.e., that the height of the image of «, is a. Thus

AN N'M(H) — AN'M(G)
is not zero. Therefore the horizontal map
/\aM(H) ® Op — AaM(G) ® Op

of Op modules with connections is not zero. Hence it cannot vanish at
any point, in particular not at t =0. We conclude that the map
A'M(H;) — A“M(G;) induced by o, is not zero. Hence the height of
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the image of « is at least a. Vanishing of the map A*"'M(x) shows
that it is not more than a. The equality of heights has been proved.

Proof of (iii). The kernel of a map of finite free W[[f]]-modules is
finite free. Consider the map of Dieudonné modules

M(H) — M(G)

induced by « as above. Let M| be the kernel. The operations F, V,V
on M(H) and M(G) induce F,V and V on M. This gives a Die-
udonné module (M;,F,V,V). Similarly the kernel of the dual map

M(H)" = M(H") — M(G)" = M(G")

gives a Dieudonné module, whose dual we write (M, F,V,V).
Putting everything back together we get a complex of Dieudonné
modules

(%) 0— M — MH)— M(G) — M, —0 .

Our assumption on o, implies that the complex (x) becomes exact
after taking the tensor product with I'.
Let us write

L=A(M) ® 2M(G)) ® (A(M(H)) ® A(M2))""

where A(—) indicates highest exterior power. We note that L is a free
rank 1 (F,0)-module over Q. By the above (x) gives an element e of
L ® I' which is horizontal, which satisfies F(e) = p’e for some ¢ and
which is a generator of L. By our main theorem e € L. By a classifi-
cation of rank 1 (F,6)-modules over Q (compare Lemma 6.2) we
know that (L,0) = (Q,4). Therefore e generates L, and hence (x) is
exact. By the equivalence of categories [8, 2.4.4, 2.4.8, 4.1.1] the
Dieudonné modules M; and M, correspond to p-divisible groups over
S. These p-divisible groups are the kernel and cokernel of « since ()
is exact. This ends the proof.
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