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1 Introduction

Let G, H be p-divisible groups over a discrete valuation ring R. Set K
equal to the fraction ®eld of R. There is a natural map

HomR�G;H� ÿ! HomK�GK ;HK� :�1�

In [13, Theorem 4] Tate proved that (1) is a bijection when the
characteristic of K is zero.

From now on we assume that the characteristic of K is p > 0. Set
S � SpecR and g � SpecK. There is an open immersion j : g! S.
Hence there is a natural functor

F -crystals over S ÿÿ!j
�

F -crystals over g :

Here, an F -crystal is a nondegenerate F -crystal of [12, 3.1.1]. We
recall that any characteristic p discrete valuation ring essentially of
®nite type over a ®eld has a p-basis, see e.g. [10]. A complete discrete
valuation ring of characteristic p has a p-basis if its residue ®eld has
a ®nite p-basis.

1.1 Theorem. Assume R has a p-basis. The functor j� is fully faithful.

1.2 Corollary. (No assumption on R.) The map (1) is bijective.

The theorem implies the corollary by [1] or [2, Section 1] (there is
an immediate reduction to the case where R is complete with alge-
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braically closed residue ®eld, see [13, page 181]). To establish the
bijectivity of (1) in the characteristic p case was mentioned as a
problem in the introduction of [6, ExposeÂ IX]. The corollary implies a
result on extensions of homomorphisms of p-divisible groups over
normal base schemes, [13, page 180] and [2, Section 1]. In [1] it was
shown, using a result of [9], that 1.2 holds in case the Newton
polygons of G and H are constant. The results of [1] are now well
understood, as the main di�culty in [1] was to produce a suitable
DieudonneÂ module theory, which we have due to [3] and [4]. (See [7,
8] for further results.)

The author sees Theorem 1.1 as an indication that (overconver-
gent) F -crystals over schemes of characteristic p are the p-adic ana-
logue of the lisse `-adic sheaves. The author hopes that the methods
of this article may be used to study the bad reduction behavior of
overconvergent F -crystals.

In Section 2 we indicate some known applications of 1.2. First,
one can deduce a good reduction criterion for abelian varieties in
terms of associated p-divisible groups, [6, ExposeÂ IX]. Second, the
result that the natural map

Hom�X ; Y � 
 Zp ÿ! Hom�X �p1�; Y �p1��
is an isomorphism for abelian varieties X ; Y over a ®eld ®nitely
generated over Fp.

In Section 3 we reduce Theorem 1.1 to Theorem 9.1. The proof
of Theorem 9.1 in Sections 4±9 takes up most of this paper. In
Section 4 all notations are introduced and ®xed till the end of the
paper. The idea of the proof of Theorem 9.1 is roughly the fol-
lowing. First one writes any F -module (see 4.4) in a standard form
5.5 over a ring of convergent power series C2;c; this is a ring which
is not p-adically complete. The important point is that the slopes
decrease in 5.5. Going up to this ring preserves enough information
so that one can deduce results about slopes from the existence of
u : M ! C, see 5.7. Then one descends back to X � W ��t�� using a
linear independence result (Section 8) and Dwork's trick (Section 6).
The ®nal step is in Section 7 where a rank 1 submodule of highest
slope is split o�.

Acknowledgements. The author thanks P. Berthelot, C. Deninger, B. Gross, N. Katz,
B. Mazur, W. Messing, and T. Scanlon for discussions on the problem and its
applications. He thanks B. Edixhoven for some pertinent remarks concerning Sec-

tion 2. He especially thanks U. Zannier, who ®rst proved Theorem 9.1 in the case
that M has rank 2; the idea to consider the equations over the ring Cc of convergent
power series is due to U. Zannier.
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2 Applications of 1.2

In this section R is a henselian discrete valuation ring of characteristic
p > 0. We have K; S; g as above and s 2 S is the closed point. We will
use Corollary 1.2 a lot, sometimes without explicitly referring to it.

Some remarks on p-divisible groups. If G! H is a homomor-
phism of p-divisible groups over a ®eld, then the image of G! H is a
p-divisible group. The height of this image might be called the rank of
the homomorphism; it is actually the rank of the induced map on
DieudonneÂ modules. The kernel K of G! H has the following
structure: there is a canonical exact sequence 0! K 0 ! K ! K 00 ! 0,
where K 0 is a p-divisible group and K 00 is a ®nite group scheme. The p-
divisible group K 0 is the image of pn on K for su�ciently large n. The
following lemma says that the rank of a homomorphism of p-divisible
groups over S is constant over S.

2.1 Lemma. With the notations above.
(i) If G is a p-divisible group over S and H � G is an fppf subsheaf

which is a p-divisible group, then G=H is a p-divisible group.
(ii) If G! H is a morphism of p-divisible groups over S, then the

height of the image of Gg ! Hg is equal to the height of the image of
Gs ! Hs.

(iii) Let a : G! H be a morphism of p-divisible groups over S and
suppose that the kernel of the generic ®bre ag of a is a p-divisible group.
Then the kernel of a is a p-divisible group and so is the cokernel.

Proof. The proof of (i) is left to the reader. We defer the proofs of (ii)
and (iii) to the appendix. (

2.2 De®nition. Let Gg be a p-divisible group over g.
(i) We say that Gg has good reduction over S if it extends to a

p-divisible group G over S (uniquely by 1.2).
(ii) We say that Gg has semi-stable reduction over S if there exists

a ®ltration �0� � Gl
g � Gf

g � Gg by p-divisible groups such that the
following conditions hold:

a) Both Gf
g and Gg=Gl

g extend to p-divisible groups G1 and G2 over S.
By 1.2 there is a unique morphism G1 ! G2 extending Gf

g ! Gg=Gl
g .

Note that G1 ! G2 satis®es the conditions of Lemma 2.1 (iii). Thus
Gl � Ker�G1 ! G2� and Get � Coker�G1 ! G2� are p-divisible groups
over S.

b) The sheaf Gl, resp. Get is a multiplicative, resp. eÂ tale p-divisible
group.
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2.3 Remark. The condition on semi-stable reduction of a p-divisible
group Gg over g implies that Gg has ``virtuellement bonne reduction
d'echelon 2'' [6, ExposeÂ IX 5.12]. The author does not know whether
the concepts are equivalent in general. If Gg � Xg�p1� for some
abelian variety Xg over g, then the concepts do coincide. We won't use
this; the proof is left to the reader as an exercise. (Hint: Use 2.5 and
consider a ®nite Galois extension of K over which Xg becomes semi-
stable, compare the two ®ltrations and use the Galois action to show
that the semi-stable ®ltration comes from a ®ltration over K.) (

2.4 Lemma. (i) If Gg has semi-stable reduction over S, then
�0� � Gl

g � Gf
g � Gg can be chosen such that Gl 
 j�s� is the multi-

plicative part of G1 and Get is the eÂtale part of G2.
(ii) Suppose both Gg and Hg are p-divisible groups having semi-stable

reduction over S. Let ug : Gg ! Hg be a morphism. If we choose the
®ltrations as in (i) then ug induces morphisms Gi ! Hi ®tting into a
commutative square with the morphisms G1 ! G2 and H1 ! H2.

The ®rst application of Corollary 1.2 is a criteriom for good re-
duction of Abelian varieties in terms of their p-divisible groups. Be-
low we sketch the argument; for more precise information the reader
should consult [6, ExposeÂ IX].

2.5 Criterion for good reduction. Let Xg be an abelian variety over g
with p-divisible group Gg. Then Xg has good reduction if and only if Gg

has good reduction. Same for semi-stable reduction.

Proof. The direct implication is well known and follows from the
description of the semi-stable model of Xg, the description of the
semi-stable model of the dual abelian variety X t

g, and the fact that
X t

g�p1� is dual to Xg�p1�. See [6, ExposeÂ IX]
Suppose Gg has semi-stable reduction. Let K � K 0 be a ®nite

separable Galois extension such that Xg0 has a semi-abelian model X 0

over S0. Let G0 � X 0�p1� be the union of the ®nite parts of the quasi-
®nite group schemes X 0�pn�. It is a p-divisible group. If we take the
®ltration �0� � Gl

g � Gf
g � Gg as in Lemma 2.4 (i), then there is a

morphism G1 �S S0 ! G0. Note that this induces an isomorphism on
formal groups (look at eÂ tale parts). There is an action of Gal�K 0=K�
on the scheme X 0. The inertia subgroup I � Gal�K 0=K� acts trivially
on the special ®bre of the formal group Ĝ0 over S0 as Ĝ0 � Ĝ1 �S S0.
Hence I acts trivially on X 0s0 , as X̂ 0 � Ĝ0. This implies that Xg has semi-
stable reduction over S: For example one concludes this by looking at
the action of inertia on the `-adic Tate module of Xg for some prime `
not equal to p. (See [6, ExposeÂ IX 3.5].)
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Next, assume that Gg has good reduction. We already know that
Xg has a semi-abelian model X over S. Let X ! XN�eron be the mo-
rphism of X to the NeÂ ron model of Xg. Let X �pn�f be the ®nite part of
X �pn�. The cokernel of the inclusion morphism X �pn�f ! G�pn� is an
eÂ tale group scheme. Thus Yn �

ÿ
X � G�pn��=X �pn�f is a smooth group

scheme over S (we divide out by the anti-diagonal). As G�pn�g �
Xg�pn�, we have a map Yn;g ! Xg induced by a� b 7! a� b. This
extends to a homomorphism of group schemes Yn ! XN�eron by the
NeÂ ron property. This implies that XN�eron�pn� 
 j�s� has order p2ndimXg

for all n. It follows that XN�eron is an abelian scheme over S. (

The second application of Corollary 1.2 is a theorem relating
endomorphisms of Abelian varieties to endomorphisms of their p-
divisible groups. For the ideas in the proof we refer to [5] and the
references therein.

2.6 Theorem. Let F be a ®eld ®nitely generated over Fp. Let XF , YF be
abelian varieties over F . Then

Hom�XF ; YF � 
 Zp � Hom�XF �p1�; YF �p1��

Proof. It is well known that the map is injective, and identi®es the left
hand side with a saturated submodule of the right hand side.

There is a standard reduction to the case that the transcendence
degree of F over Fp is 1: The case of a ®nite ®eld is known [14], hence
we may assume the transcendence degree is more than 1. Both X and
Y have models XU and YU de®ned over a variety U with R�U� � F .
We can ®nd an irreducible divisor Z � U such that the specialization
mapping Hom�XF ; YF � ! Hom�XR�Z�; YR�Z�� is an isomorphism. (E.g.
by looking at the `-adic representations and using Bertini.) On the
other hand, Corollary 1.2 insures there is a specialization mapping
Hom�XF �p1�; YF �p1�� ! Hom�XR�Z��p1�; YR�Z��p1��. Thus if we prove
the theorem for R�Z� then the theorem for F follows. By induction we
may assume that the transcendence degree of F over Fp is 1.

Let C be the smooth projective curve over Fp de®ned by F . By
Galois descent, it su�ces to prove the equality after a ®nite separable
extension of F . Therefore, we may assume that both XF and YF have
semi-abelian models X and Y over C.

We ®rst give the argument in case both X and Y are actually
abelian schemes over C. Take cF 2 Hom�XF �p1�; YF �p1��. By 1.2, we
get c : X �p1� ! Y �p1� over C with generic ®bre equal to cF . Let
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C � X �p1� � Y �p1�

be the graph of c. Put Zn � �X � Y �=C�pn�. This is an abelian scheme
over C; we have an exact sequence of truncated Barsotti-Tate group
schemes of level 1 over C as follows

0! C�p� ! X �p� � Y �p� ! Zn�p� ! C�p� ! 0 :

And hence an exact sequence

0! xC ! xZn ! xX � xY ! xC ! 0 :���

We conclude that det�xZn� � det�xX � xY � independent of n. It is
known [15] that this implies there are only a ®nite number of iso-
morphism classes of abelian schemes among the Zn (this is explained
in [5, Section 7]). This implies that C � Im�c0 : X �p1� � Y �p1� !
X �p1� � Y �p1�� for some c0 2 End�X � Y � 
 Zp by known argu-
ments, see the proof of Proposition 1 in [14]. This statement for all c
gives the equality of the theorem.

In the case X and Y are only semi-abelian schemes one has to be a
little more careful. We still have CU � X �p1�U � Y �p1�U , where
U � C is the open subscheme over which X and Y are abelian. Let Rv

be the complete local ring of C at a place v of F not in U . The abelian
schemes Zn;U � �XU � YU �=CU �pn� have semi-abelian models Zn over
C. The p-divisible group CU has semi-stable reduction over Rv. Let
C1;v over Rv be as in Lemma 2.4 (i). Remark that there is a morphism
C1;v ! X �p1�Rv

� Y �p1�Rv
. Then there is a morphism

XRv � YRv� ��C1;v�pn� ÿ! Zn;Rv

and this morphism is eÂ tale, as follows from the de®nitions. Using this
one checks that (*) remains true, taking for xC the sheaf xĈ, where

bC
is the formal group over C with bC � bCU over U and bC � bC1;v over Rv.

3 Preliminary reduction

Let R, K, S and g be as in Theorem 1.1. Let R! R0 be an injective
local homomorphism of discrete valuation rings with e�R0=R� � 1 and
assume that R0 is complete and that the residue ®eld k0 of R0 is alge-
braically closed. We have assumed R has a p-basis and R0 has a p-basis
as it is complete with algebraically closed residue ®eld. Hence R (resp.
R0) has a lift �X;r� (resp. �X0; r0�), see [4, Section 1] and [8, 1.2]. We
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can choose a lift X! X0 of the map R! R0 [4]. We do not assume
that it is compatible with r and r0 (although we could choose it that
way with some e�ort). An F -crystal E over SpecR corresponds to a
triple �M ; F ;r� over X, see [4, Proposition 1.3.3]. Then ES0 corre-
sponds to a triple �M 
X X0; F 0;r0�. Here r0 is induced from r. But
since we did not assume X! X0 to be compatible with our r's the F 0

is not just deduced from F by linear extension, but also involves r
and r0. Let us put C equal to the p-adic completion of X�tÿ1�, where t
maps to an uniformizer of R. Similar for C0. Then Eg corresponds to
the triple �M 
 C; F 
 r;r
 1� 1
 d�. Similar for Eg0 .

We claim that if E1, E2 are F -crystals over S, then

HomS�E1;E2� � Homg�E1;g;E2;g� \HomS0 �E1;S0 ;E2;S0 � :

The intersection is taken in Homg0 �E1;g0 ;E2;g0 �. This follows from the
remarks above, by looking at the coe�cients of the linear maps over
C and X0 in terms of a basis of M1 and M2 over X and the remark that

X � X0 \ C :

The intersection takes place in C0. Thus it su�ces to prove Theorem
1.1 in case R � k��t�� with k algebraically closed.

By [4, 1.3.3] the category of F -crystals over Spec k��t�� is equivalent
to a full subcategory of the category of �F ; h�-modules �M ; F ; h� (see
De®nitions 4.4 and 4.9) over X � W ��t�� (it is unimportant which full
subcategory this is). This is true as ftg is a p-basis of the ring k��t��,
hence a connection on an X-module M corresponds to a d

dt-derivation
on the module M . Thus we have to show that any horizontal linear
map of �F ; h�-modules M1 and M2

u : M1 
X C ÿ! M2 
X C

compatible with F1 and F2 maps M1 into M2. Of course u de®nes a
map

u0 : �M1 
X M�2 � 
X C! C :

There is a standard way to get a connection h�2 on M�2 and for some
` 2 Z�0 the map p`�F ÿ12 �� de®nes the structure of an F -module on
M�2 . Thus M1 
M�2 has the structure of �F ; h�-module over X. Then u0

is horizontal (using d
dt on C) and has the property that

u0�F �m�� � p`r�u0�m�� for all m 2 M1 
M�2 . We see that Theorem 9.1
implies Theorem 1.1.
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4 Notations

In this section we introduce notations and give some de®nitions that
will be ®xed in the rest of the article.

p A prime number.
k An algebraically closed ®eld of characteristic p.
t An indeterminate.
O � k��t�� The ring of power series over k.
K � k��t�� The fraction ®eld of O.
K1 A perfect closure of K.
O1 The integral closure of O � k��t�� in K1.
K2 An algebraic closure of K1.
O2 The integral closure of O1 in K2.
m : K�2 ! Q The valuation on K2 with m�t� � 1. We will also

consider m as a valuation on the ®elds K and K1.
Note that O (resp. Oi) is the valuation ring of m on
K (resp. Ki).

fsngn2N A sequence of elements in K2 with sm
nm � sn and

s1 � t. We will also write sn � t1=n, sm
n � tm=n, etc.

Note that sn 2 O2. Remark that O � O1 � O2 and
that O1 �

S
n2N O�t1=pn �. Also remark that O1 and

O2 are perfect domains of characteristic p.
W � W �k� The Witt ring of the ®eld k. The reduction map

W ! k will be denoted a 7! �a. A similar notation
will be used for other (Witt) rings as well.

r : W ! W Frobenius. We will use r to denote Frobenius on
all rings of Witt vectors; it will denote a lift of
Frobenius on other rings as well.

Wb This is the ring W �p�=�pb ÿ p�, where b is a posi-
tive integer. We will also write p � p1=b. The map
r is extended to Wb by setting r�p1=b� � p1=b. The
reduction modulo p is a map Wb ! k and is
denoted a 7! �a.

L0; L0;b These denote the fraction ®eld of W and of Wb.
X � W ��t�� The ring of power series in t over W . Again we use

a 7! �a to denote the reduction map X! O.
r : X! X The unique lift of Frobenius on X such that

r�t� � tp.
D � �SpfX�rig This is the rigid analytic space over L0 associated

to the formal scheme SpfX, see [8, Section 7].
It is the open unit disc with coordinate
t :D � ft : jtj < 1g and can be characterized as the
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strong Stein space D over L0 such that
C�D;O�� � X. Associated to r : X! X there is a
general morphism of analytic spaces r : D! D
over r : L0 ! L0, see [8, 7.2.6]. It can be viewed as
a morphism D! D
̂r L0.

C�D;O� The global rigid analytic functions on D. These
can be represented as power series f �Pn�0 antn,
with an 2 L0 such that for any � > 0 the function
n 7! vp�an� ÿ �n is bounded. The map r maps f to
r�f � �Pn�0�an�tpn.

Xi � W �Oi� The rings of p-Witt vectors for O1 and O2. The
map r : Xi ! Xi is Frobenius. By functoriality of
the Witt vectors there is unique a map X1 ! X2

compatible with r and reducing to the inclusion
O1 � O2 modulo p. This map is an inclusion; we
think of X1 as a subring of X2.

t1=n 2 X2 Denotes the TeichmuÈ ller lift of sn 2 O2. The ele-
ments t1=pn

are in X1. The element t1=1 is also
written t again.

X! X1 The unique homomorphism j of rings, with t 7! t,
compatible with r and reducing to the inclusion
O � O1 modulo p. Such a map exists; a con-
struction can be given as follows. Fix n 2 N. Any
element x 2 X � W ��t�� can be written

x �
Xnÿ1
j�0

pj
Xpnÿ1ÿjÿ1

i�0
�ai;j�p

nÿ1ÿj

ti

with ai;j 2 X and we set

j�x�mod pn �
X

i;j

pj��ai;j�p
nÿ1ÿj

ti mod pn :

Here �a� 2 X1 for a 2 O1 is the TeichmuÈ ller lift of
a. Taking the limit for n!1 gives the map j.
Compare [4, Section 1]. This map is an injection
of W -algebras; we think of X as a sub W -algebra
of X1.

X2;b X2�p�=�pb ÿ p�. We will also write p � p1=b. Here
b 2 N. We extend r to X2;b by r�p� � p. Note
that if b divides b0, there is a ®nite free map
X2;b ! X2;b0 .
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C; Ci; C2;b The p-adic completions of the rings X�1=t�;
Xi�1=t�;X2;b�1=t�. Note that C (resp. Ci, resp. C2;b)
is a complete discrete valuation ring (as Ci is p-
adically complete, ¯at over Zp and Ci=pCi � Ki)
with residue ®eld K (resp. Ki, resp. K2) and uni-
formizer p (resp. p, resp. p1=b). It follows that
there are canonical identi®cations C1 � W �K1�
and C2 � W �K2�. Note that C2;b � C2�p1=b�. There
are reduction maps C! K, Ci ! Ki (i � 1; 2) and
C2;b ! K2; these are denoted by a 7! �a.

Li The fraction ®eld of Ci, where the index i is 1, 2,
or 2; b.

m�f ;ÿ�; mi�f ;ÿ� The ``pole order'' function of an element f 2 C or
f 2 Ci (the index i is 1, 2, or 2; b). For a precise
de®nition see 4.1.

Cc � C; Ci;c � Ci These will denote the subrings of ``convergent''
power series in C and Ci (the index i is 1, 2, or
2; b). More precisely, if f 2 C, then by de®nition
f 2 Cc if there exist constants C1;C2 such that
m�f ; n� � C1 � nC2. The same de®nition is used in
the case of Ci using mi�f ;ÿ�. It is proved in 4.3
that the maps Cc ! C and Ci;c ! Ci are local
morphisms of discrete valuation rings with rela-
tive rami®cation index e � 1 and inducing an
isomorphism on residue ®elds.

vp The p-adic valuation on the discrete valuation
rings C;Cc;Ci and Ci;c. It is normalized such that
vp�p� � 1 and vp�p1=b� � 1=b.

4.1 Let f be an element of C. It will be convenient to introduce the
function m�f ;ÿ� : N [ f0g ÿ! Z [ fÿ1g de®ned by

m�f ; n� � min a 2 Z j taf 2 X� pn�1C
� 	

:

For convenience we set m�f ;ÿ1� � ÿ1: We explain this in more
down to earth terms. We can write f uniquely in the form
f �Pm2Z amtm, with am 2 W and am ! 0 p-adically when m! ÿ1.
Thus we can also write (but not uniquely)

f �
X
n�0

pntÿmnxn

with xn 2 X. We may take m0 � � � � � mnÿ1 � 1 and x0 � � � � �
xnÿ1 � 0 if f is divisible by pn in C. Our de®nition of m�f ; n� implies
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that we can ®nd such a presentation of f with mn � m�f ; n� for all n. In
fact we can write f as

f �
X

n such that m�f ;n�>m�f ;nÿ1�
pntÿm�f ;n�xn�4:1:1�

with xn 2 X�. We leave the proof of this fact to the reader.
In the same manner we de®ne for f 2 C1, resp. f 2 C2, resp.

f 2 C2;b a function

m1�f ;ÿ� : N [ f0g ÿ! Z�1=p� [ fÿ1g; resp.
m2�f ;ÿ� : N [ f0g ÿ! Q [ fÿ1g; resp.
m2;b�f ;ÿ� : f0; 1=b; 2=b; . . .g ÿ! Q [ fÿ1g :

We remark that these behave well under restriction to subrings (e.g.
m2jC1

� m1).

4.2 Lemma. Properties of the functions m�f ;ÿ�.
(i) The function m�f ;ÿ� is increasing, i.e., we have m�f ; n� �

m�f ; nÿ 1�.
(ii) If f ; g 2 C, then m�f � g; n� � maxfm�f ; n�; m�g; n�g with equal-

ity if m�f ; n� 6� m�g; n�.
(iii) If f ; g 2 C, then m�fg; n� � max`�0;...;n m�f ; `� � m�g; nÿ `� with

equality if there is exactly one ` for which the expression
m�f ; `� � m�g; nÿ `� is maximal.

(iv) If f 2 C and m 2 N, then m�pmf ; n� � m�f ; nÿ m�.
(v) If f 2 C, then m�r�f �; n� � pm�f ; n�. Similar properties hold for

the functions mi�ÿ;ÿ�, where the index i is 1, 2, or i � 2; b.

Proof. Left to the reader. (
4.3 The rings Cc, C1;c, C2;c and C2;b;c are discrete valuation rings
whose p-adic completions are C, C1, C2 and C2;b. Let us prove this in
the case of Cc. It is easy to show that Cc=pCc ! C=pC � K is an
isomorphism. So we just need to check that pCc is the unique maxi-
mal ideal of Cc. To do this we will show that any f 2 Cc with f 62 pCc

is a unit in Cc.
We have f 62 pC, hence f 2 C�, i.e., there is an element g 2 C such

that fg � 1. In particular, m�fg; n� � 0 for all n � 0. By Lemma 4.2
(iii) we get for all n 2 N the following inequality

m�g; n� � m�f ; 0� � maxf0; m�f ; `� � m�g; nÿ `�; n � ` � 1g :
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Assume that C > 0 is a constant such that m�f ; n� � nC for all n � 1,
and such that jm�f ; 0�j � C, m�g; 0� � C and m�g; 1� � C. Such a
constant exists as f 2 Cc. We prove by induction on n the statement
Hn : m�g; `� � 2`C, 8`; 1 � ` � n. Clearly this implies that g 2 Cc. The
assertion H1 is true by our choice of C. We assume Hnÿ1 and prove Hn

for n � 2. The inequalities above and Hnÿ1 imply

m�g; n� � ÿ m�f ; 0� �maxf0; nC � C; `C � 2�nÿ `�C; nÿ 1 � ` � 1g
� jm�f ; 0�j �maxf0; �n� 1�C; �2nÿ `�C; nÿ 1 � ` � 1g
� 2nC

Thus we get Hn.

4.4 De®nition. Let �R; r� be an integral domain with an endomorphism
r : R! R. An F -module over R is a pair �M ; F �, where M is a ®nitely
generated torsion free R-module and F : M ! M is a r-linear map such
that the kernel and cokernel of the R-linear map

M 

R;r

R ÿ! M

are annihilated by some power of p.

Our use of this de®nition will be restricted to cases where p is not
zero in R. In case R is a perfect ®eld of characteristic p and r is the
Frobenius of R, the de®nition above does not correspond to what is
usually called an F -crystal over SpecR. (Such an F -crystal over
SpecR corresponds rather to an F -module over W �R�.)

There is an obvious notion of morphisms of F -modules. A sub F -
module N of �M ; F � is a submodule N � M such that F �N� � N and
such that the pair �N ; F jN � is itself an F -module. We say that N is a
saturated sub F -module if M=N is torsion free. In this case
�M=N ; F jM=N � is an F -module. An isogeny of F -modules is a morp-
hism �M ; F � ! �M 0; F 0� such that both the kernel and cokernel of the
map M ! M 0 are killed by a power of p.

Assume that r is ¯at. (This condition will be satis®ed in the case of
the rings we will consider in this article.) In this case M 
R;r R is
torsion free for any ®nitely generated R-module M which is torsion
free. (Use that there is an injection M ,!Rn.) Thus given a pair
�M ; F �, with M torsion free and F r-linear, to see that the pair de®nes
an F -module it su�ces to check that the cokernel of M 
R;r R! M is
killed by some power of p. Any ®nitely generated sub module N � M
such that F �N� � N and all torsion of M=N is p-power torsion will be
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a sub F -module. In particular any ®nitely generated saturated sub
module N of M such that F �N� � N will be a sub F -module.

If �R; r� ! �R0; r0� is a morphism of integral domains with endo-
morphisms then there is a base change functor �M ; F � 7!
�M 
R R0=T ; F 
 r0�. Here T � M 
R R0 is the R0-torsion submodule.

4.5 Slopes

Let R be a complete discrete valuation ring of mixed characteristic
with algebraically closed residue ®eld j of characteristic p. Let L be
the quotient ®eld of R. Let r : R! R be an automorphism inducing
the Frobenius map x 7! xp on j. Let �V ; F � be an F -module over L.
(Also called an isocrystal over L in the literature.) Note that V is a
®nite dimensional L-vector space and that F is bijective.

There exists a basis e1; . . . ; er of V over L and rational numbers
s1; . . . ; sr 2 Q such that F n�ei� � pnsiei for su�ciently divisible n 2 N
(with nsi 2 Z). See [9]. The rational numbers s1; . . . ; sr (listed with
multiplicities) are unique and are called the slopes of the F -module
�V ; F �. The slope-decomposition

V �a
s2Q

V s with V s � hei; si � si

can be de®ned intrinsically (interms of V , F and the topology on V ).
We have

a
s>s0

V s � v 2 V j lim
n!1 pÿns0F n�v� � 0

n o
and

a
s<s0

V s � v 2 V j lim
n!1 pns0F ÿn�v� � 0

n o
:

Two remarks on slopes. If there exists an R-lattice M � V with
F �M� � M then all the slopes of V are � 0. (This is clear from the fact
that lim pn�F n�m� � 0 for any m 2 M and any � > 0.) Suppose
fv1; . . . ; vng is any basis of V , and F �vi� �

P
aijvj. Then one has

s1 � � � � � sn � vp�det�aij��. See [9].
Let a : R! R be an automorphism of R commuting with r. It

induces a continuous automorphism a of L. If V is a vector space over
L we write Va � V 
L;a L. If �V ; F � is an isocrystal over L, then
�Va; F 
 r� is an isocrystal over L. It follows from the above that the
slope decomposition V � � V s of �V ; F � determines the slope de-
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composition of �Va; F 
 r�. The slope s submodule of Va is equal to
V s 
L;a L. In particular the set of slopes with multiplicities of Va is
equal to that of V .
4.6 Suppose that �M ; F � is an F -module over one of the rings
R � X;Xi;C;Cc;Ci;Ci;c;Li (the index i is 1, 2, or 2; b). Then we can
look at the F -module �M 
R L2;b; F 
 r� over L2;b. By the above it has
slopes.

4.7 De®nition. The slopes s1 � � � � � sr of a rank r F -module �M ; F �
over one of the rings R listed above are the slopes of the isocrystal
M 
 L2;b over L2;b as de®ned in 4.5.

We note that (after making b more divisible) M 
 L2;b has a basis
e1; . . . ; er such that F �ei� � psiei. We say that �M ; F � is isoclinic of
slope s if all the slopes si are equal to s.

We remark that if R � X;Xi then there is another F -module as-
sociated to M over R, namely the F -module

ÿ�M 
R Wb�=torsion; F

r
�
over Wb. This gives rise to an isocrystal over L0;b with slopes s0i. The

slopes si are in general di�erent from the slopes s0i. A fundamental
result, see [9], is that the Newton polygon of the slopes s0i lies above
the Newton polygon de®ned by the slopes si. In particular, if M is
isoclinic of slope s, then all s0i are equal to s as well. Although we do
not use this fact it is one of the ideas behind the arguments in
Section 6.
4.8 In case of the ring R is equal to X;C;Cc or C�D;OD� we have the
derivation d

dt : R! R. In any of these rings an element f has a unique
expansion f �Pn2Z antn, with an 2 W or L0. We put d

dt f �Pn nan

tnÿ1, which again lies in R. The map d
dt : R! R is a derivation.

4.9 De®nition. Let R be as above. An �F ; h�-module over R is a triple
�M ; F ; h�; where �M ; F � is an F -module over R and h : M ! M is an
additive map such that h�fm� � f h�m� � d

dt�f �m and ptpÿ1F �h�m�� �
h�F �m�� for all m 2 M and f 2 R.

Note that if we take M � R, F � p`r and h � d
dt, then �M ; F ; h� is

an �F ; h�-module.
5 Splitting an equation

We will work in the noncommutative polynomial algebra C2;b;c�F �,
where F c � r�c�F for all c 2 C2;b;c. It is a subring of the ring C2;b�F �.
5.1 Proposition. Let F n � a1F nÿ1 � � � � � an 2 C2;b;c�F � be a monic
polynomial in F . There exists a b0 2 N, bjb0 and elements k1; . . . ; kn

2 C2;b0;c such that we have
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(i) F n � a1F nÿ1 � � � � � an � �F ÿ k1��F ÿ k2� � � � �F ÿ kn�.
(ii) vp�k1� � vp�k2� � � � � � vp�kn�.

Proof. We will prove this by induction on n; the case n � 1 is trivial.
We will try to solve

F n � a1F nÿ1 � � � � � an � F nÿ1 � b1F nÿ2 � � � � � bnÿ1
ÿ ��F ÿ k�

with bi; k 2 C2;b;c. This equation is equivalent to the set of equations:

b1 � a1 � rnÿ1�k�
b2 � a2 � rnÿ2�k�b1
� � � � � �

bnÿ1 � anÿ1 � r�k�bnÿ2
0 � an � kbnÿ1

If we solve b1; . . . ; bnÿ1 in terms of a1; . . . ; anÿ1; k from the ®rst nÿ 1
equations then the last equation becomes

0 � an � kanÿ1 � kr�k�anÿ2 � � � � � kr�k� � � � rnÿ2�k�a1
� kr�k� � � �rnÿ1�k� :�1�

Put

a � min
i�1;...;n

vp�ai�
i

:

We may assume that a � a=b for some a 2 Z�0 if we make b more
divisible. We are going to solve (1) for some k 2 C2;b;c of the form
k � pau with u 2 C�2;b;c. If we can do this then the proposition follows.
Indeed, if we have such a solution k, then b1 � a1 � rnÿ1�k� will be an
element of C2;b;c with vp�b1� � a. And b2 � a2 � rnÿ2�k�b1 implies
b2 2 C2;b;c has vp�b2� � 2a, etc. Continuing we get vp�bi� � ia, so that
the invariant min vp�bi�=i � a has gone up. By induction we get a
splitting F nÿ1 � b1F nÿ2 � � � � � bnÿ1 � �F ÿ k1� � � � �F ÿ knÿ1�, with
vp�knÿ1� � min vp�bi�=i and we are done.

We re-write (1), by setting k � pau and dividing by pna:

0 � pÿnaan � pÿ�nÿ1�aanÿ1u� � � � � ur�u� � � �rnÿ1�u� :�2�

Note that all the elements a0i � pÿiaai 2 C2;b;c and for some i we have
a0i 2 C�2;b;c. Recall that a 7! �a denotes the map C2;b;c � C2;b ! K2. The
equation (2) reduces to the equation
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0 � �a0n � � � � � �a0i�u
1�p�...�pnÿiÿ1 � � � � � �u1�p�����pnÿ1

in K2. This has a non zero solution �u 2 K2, as it is a polynomial
equation with at least two nonzero coe�cients and K2 is algebraically
closed. (We remark for later reference that if vp�an� � na and n � 2,
then there are at least two distinct nonzero solutions.)

We will ®rst show that (2) has a solution u 2 C2;b which is con-
gruent to the solution �u we found above; after this we will prove that
actually u 2 C2;b;c. (Then necessarily u 2 C�2;b;c.) Suppose that
ur 2 C2;b, r � 1 is a solution of (2) modulo pr=b and that �ur � �u 6� 0. In
order that ur�1 � ur � pr=bdr is a solution of (2) modulo p�r�1�=b, we
have to solve a polynomial equation in terms of �dr with leading term

�u1�����pnÿ2��dr�p
nÿ1

:

As K2 is algebraically closed, we can solve this equation and we get
ur�1. The limit of the elements ur will be an element u 2 C�2;b solving
(2). We are going to prove such a solution lies in C2;b;c. (If n � 2 and
vp�a2� � 2a there are at least 2 solutions, see previous remark.)

Let us write ~m�f ;m� � m2;b�f ;m=b� for f 2 C2;b and m 2 Z�0. We
choose a constant C > 0 such that m�a0i;m� � mC for all m � 1, all i
and such that C is much larger then j~m�a0i; 0�j and j~m�u; 0�j. (A factor
pn�1 will do.) This is possible as all a0i are elements of C2;b;c. We are
going to prove by induction on m the statement Hm : ~m�u; `� � `C,
1 � ` � m. The assertion H0 is empty. We assume Hmÿ1 and m � 1
and prove Hm. By Lemma 4.2 we have

~m�ur�u� � � �rnÿ1�u�;m� � max
i1;...;in

~m�u; i1� � p~m�u; i2� � � � � � pnÿ1~m�u; in�
�3�

where the maximum is taken over all n-tuples �i1; . . . ; in� with ij � 0
and

P
ij � m. One of the terms on the right hand side is

1� � � � � pnÿ2ÿ �
~m�u; 0� � pnÿ1~m�u;m� :�4�

It occurs if �i1; . . . ; in� � �0; . . . ; 0;m�. If this term does not strictly
exceed all others, then there exists an n-tuple �i1; . . . ; in� with ij � 0
and

P
ij � m and in < m such that

1� � � � � pnÿ2ÿ �
~m�u; 0� � pnÿ1~m�u;m� � ~m�u; i1� � p~m�u; i2�

� � � � � pnÿ1~m�u; in� :�5�
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The case that ij � m for some j < n in (5), which implies ij0 � 0 for
j0 6� j, leads to the inequality

pnÿ1 ÿ pjÿ �
~m�u;m� � ÿpj~m�u; 0� :

By our choice of C and as m � 1, we conclude ~m�u;m� � mC in this
case. Thus we may assume ij < m for all j in (5). This gives using Hmÿ1
the following inequality:

~m�u; i1� � p~m�u; i2� � � � � � pnÿ1~m�u; in� �
X
ij�0

pjÿ1~m�u; 0� �
X
ij 6�0

pjÿ1ijC

� 1� � � � � pnÿ1�j~m�u; 0ÿ �j � pnÿ2C � pnÿ1�mÿ 1�C :

The last inequality holds because
P

ij � m and in < m. Combining
this with (5) gives

m�u;m� � 2�1� � � � � pnÿ1�j~m�u; 0�j
pnÿ1 � �mÿ 1�C � pÿ1C � mC ;

where the last inequality uses C �j ~m�u; 0�j (e.g. C � pn�1j~m�u; 0�j).
This proves Hm in case the term (4) does not dominate in the right
hand side of (3).

Therefore we may assume that (4) does dominate in the right hand
side of (3) and hence we have that ~m�ur�u� � � � rnÿ1�u�;m� equals (4) by
Lemma 4.2 (iii). Hence, by Lemma 4.2 (ii), we see that (4) is domi-
nated by the maximum of the values of ~m�ÿ;m� evaluated on the other
terms that appear in (2). We have for ` � 1 the following bound

~m a0`ur�u� � � � rnÿ`ÿ1�u�;mÿ � � max
i0;i1;...;inÿ`

~m�a0`; i0� � ~m�u; i1�
� � � � � pnÿ`ÿ1~m�u; inÿ`� ;

where the maximum is taken over all �nÿ `� 1�-tuples �i0; . . . ; inÿ`�,
with ij � 0 and

P
ij � m. Again the assumption that a term with

ij � m for some j 2 f1; . . . ; nÿ `g is biggest leads to an inequality of
the form ~m�u;m� � C2, where C2 is a constant depending only on
~m�a0i; 0�, p, n and ~m�u; 0�. Hence we get Hm as m � 1 and C was chosen
large enough. For the other terms one gets a majoration by

i0C � pnÿ`ÿ1�mÿ i0�C � j~m�a0`; 0�j � 1� � � � � pnÿ`ÿ1ÿ �j~m�u; 0�j
� pnÿ`ÿ1mC � C3 :
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The fact that (4) is bounded by this su�ces to imply ~m�u;m� � mC, as
` � 1 and C was chosen large enough. (

5.2 Corollary. Let �M ; F � be an F -module over C2;b;c. There exists a
b0 2 N, bjb0 such that M 
 C2;b0;c has a ®ltration 0 � N1 � N2 � � � �
� Nr � M 
 C2;b0;c by saturated sub F -modules Ni such that
rankNi � i.

Proof. Take a non zero element m 2 M . There is a monic polynomial
P �F � � F n � � � � � an 2 C2;b;c�F � such that P�F �m � 0 in M . Say P has
minimal degree. After replacing b by b0 as in the proposition we get
P �F � � �F ÿ k1� � � � �F ÿ kn�. The submodule N 01 of M generated by
�F ÿ k2� � � � �F ÿ kn�m has rank 1. We have F �N 01� � N 01 as P �F �m � 0.
The same hold for its saturation N1 � fx 2 M j pax 2 N 01 some ag.
Thus N1 is a sub F -module and M=N1 is an F -module with strictly
smaller rank than M . We win by applying induction (on the rank of
M) to M=N1. (

5.3 Corollary. Let 0! N1 ! M ! N2 ! 0 be a short exact sequence
of F -modules over C2;b;c. Assume Ni has rank 1 and let si be its slope 4.5.
If s1 � s2, then there is a rank 1 sub F -module N 0 � M such that
N 0 ! N2 is an isogeny.

Proof. Choose a generator ni of Ni. We have F �ni� � lini for some
li 2 C2;b;c. Note that si � vp�li� by the remarks in 4.5, hence
vp�l1� � vp�l2� by assumption. Choose ~n2 2 M lifting n2. We have

�F ÿ l2�~n2 � ln1

for some l 2 C2;b;c. If l � 0, then the extension is split; if not then we
have vp�r�l�lÿ1� � 0. (This computation takes place in L2;b;c; note
that vp � r � vp.) Thus we have r�l�lÿ1 2 C�2;b;c. Since �F ÿ r�l�
lÿ1l1��ln1� � 0, we see that

0 � F ÿ r�l�lÿ1l1
ÿ �

F ÿ l2� �~n2
� F 2 ÿ r�l�lÿ1l1 � r�l2�

ÿ �
F � r�l�lÿ1l1l2

ÿ ��~n2� :
By the proposition we get a splitting of the degree 2 polynomial as
�F ÿ k1��F ÿ k2�, with vp�k1� � vp�k2�. Note that we do not need to
enlarge b, as the invariant a used in the proof of Proposition 5.1
equals vp�l1�. If s1 < s2 then vp�k2� 6� vp�l2�, since k1k2 � r�l�lÿ1
l1l2. In case vp�l1� � vp�l2�, we also do not need to enlarge b and
vp�r�l�lÿ1l1l2� � 2a so that we may choose k2 6� l2 according to
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the remarks made on the number of solutions in the proof of the
proposition. The element �F ÿ k2�~n2 will generate the rank 1 sub
F -module N 0 of M we are looking for: we have N 0 \ N1 � �0� as
k2 6� l2. (

5.4 Lemma. Let N be a rank 1 F -module over C2;b;c. There is a gen-
erator n 2 N such that F �n� � psn, where s � a=b is the slope of N .

Proof. Take any generator n of N . Then F �n� � psgn for some unit
g 2 C�2;b;c and some s 2 1=bZ. We have to solve r��� � g� with
� 2 C2;b;c a unit. Arguing as in the proof of Proposition 5.1 a solution
� 2 C�2;b is found. A consideration using the functions m2;b��;ÿ� and
m2;b�g;ÿ� shows that � is in C2;b;c (use Lemma 4.2 (ii) and (iii)). (

5.5 Proposition. Let �M ; F � be an F -module over C2;b;c.
(i) There exists a unique ®ltration by saturated sub F -modules

0 � M1 � M2 � � � � � Ma � M such that Mi=Miÿ1 is an isoclinic F -
module of slope si and s1 > s2 > � � � > sa.

(ii) If M is isoclinic of slope s, then for some b0 2 N, bjb0 the F -
module M 
 C2;b0;c over C2;b0;c is isogenous to a direct sum of copies of
the rank 1 module �C2;b0;c � e; F �, with F �e� � pse.

Proof. Note that if b divides b0, then C2;b0;c � C2;b;c � pC2;b;c�
� � � � prÿ1C2;b;c with r � b0=b and p � p1=b0 as F -modules over C2;b;c

(with F � r since r�p� � p). Suppose M1 � M 
C2;b;c C2;b0;c is a sub F -
module. We get C2;b;c-linear F -compatible maps

M1 ÿ! M 
C2;b;c C2;b0;c �arÿ1
i�0p

iM ÿ!pri M :

Also, if M1 has rank r1 over C2;b0;c, then M1 has rank rr1 over C2;b;c, so
at least one of these composite maps has rank at least r1. Further-
more, if the slopes of the F -module M1 over C2;b0;c are s1; . . . ; sr1 , then
the slopes of M1 considered as an F -module over C2;b;c are
s1; . . . ; s1; s2; . . . ; s2; . . . ; sr1 ; . . . ; sr1 (each si is repeated r times). Thus if
M1 is a maximal isoclinic C2;b0;c-subspace of M 
C2;b;c C2;b0;c with slope
s1 and rank r1, we get a C2;b;c-subspace of M of slope s1 and of rank at
least r1. We conclude by uniqueness of slope decomposition that M1 is
de®ned over C2;b;c. Arguing by induction we see that a slope ®ltration
over C2;b0;c descends to a slope ®ltration over C2;b;c.

Therefore we may assume b is su�ciently divisible and we get a
®ltration of M as in Corollary 5.2. By Corollary 5.3 we may assume
the ®ltration 0 � N1 � N2 � � � � � Nr � M is such that the slopes of

Homomorphisms of Barsotti-Tate groups and crystals 319



Ni=Niÿ1 decrease when i increases. This proves (i). The second
statement is proved in the same manner using Lemma 5.4. (

5.6 Remark. In fact, if �M ; F � over C2;b;c is isoclinic of slope s � a=b0,
gcd�a; b0� � 1 then it is isogenous over C2;b;c to a direct sum of copies
of the module M�s� described below. Let r � b0=gcd�b; b0� and let
M�s� be the free C2;b;c module with basis e1; . . . ; er. Put F �ei� � ei�1,
i < r and F �er� � prse1. Note that rs 2 �1=b�Z so that this makes
sense. We will not use this result. (

5.7 Corollary. Let �M ; F � be an F -module over C2;b;c. Say M has a slope
®ltration 0 � M1 � � � � � Ma � M with slopes s1 > s2 > � � � > sa as in
the proposition. Let

u : M ÿ! C2;b

be C2;b;c-linear and such that for some ` 2 �1=b�Z, ` � 0 we have
u�F �m�� � p`r�u�m�� for all m 2 M . Then

(i) The kernel of u contains Mi whenever si > `.
(ii) If u is injective and M 6� �0�, then s1 � `, rankM1 � 1 and

u�M1� � C2;b;c � C2;b.
(iii) If ` > s1, then u � 0.

Proof. Since Ker�u� is a saturated submodule of M and stable under
F , we may replace M by M=Ker�u� and it su�ces to prove (ii) for this
module. Thus we assume that u is injective. We are allowed to make b
more divisible in proving (ii), as the extension C2;b;c � C2;b0;c is ®nite
free and C2;b0 � C2;b 
C2;b;c C2;b0;c. Hence we may assume by Proposi-
tion 5.5 that there is an isogeny

N1 � � � � � Nr ÿ! M1

with rankNi � 1. In fact we can ®nd nonzero ni 2 Ni such that
F �ni� � ps1ni for each i. Thus u�ni� � fi 2 C2;b is an element with

p`r�fi� � ps1fi :

This relation implies ` � s1 as vp�r�fi�� � vp�fi�. Note that fi 6� 0 as u
is injective. Thus we have r�fi� � fi. We apply m2;b�ÿ;m� and we get

pm2;b�fi;m� � m2;b�fi;m� ;
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whence m2;b�fi;m� 2 fÿ1; 0g for all m. Thus fi 2 C2;b;c. This means
that f1; . . . ; fr are linearly dependent over C2;b;c. As we assumed that
u is injective it follows that r � 1. (

5.8 Proposition. Suppose �M ; F � is an F -module over C1;c. The slope
®ltration of M 
C1;c C2;c given by Proposition 5.5 is de®ned over C1;c.
More precisely, there exists a unique ®ltration by saturated sub F -
modules

0 � M1 � � � � � Ma � M

with Mi=Miÿ1 isoclinic of slope si and s1 > s2 > � � � > sa.

Proof. Let G � Gal�K2=K1�. For any s 2 G we get a continuous au-
tomorphism W �s� : W �K2� ! W �K2� by de®nition of the ring of Witt
vectors. Note that s commutes with Frobenius r. The automorphism
s also preserves the subring C2;c � C2 � W �K2�. Indeed, it preserves
the functions m�f ;ÿ� as s�t1=n� � ft1=n for some root of unity f 2 K2

and f 2 O�2. By the remarks made in the Section 4.5 we see that the
map

M 
C1;c C2;c ������!idM
W �s�
M 
C1;c C2;c

preserves the ®ltration by slopes 0 � M 01 � � � � � M 0a � M 
 C2;c given
by Proposition 5.5.

Note that M is a free C1;c-module of ®nite rank. Let F be the
partial ¯ag scheme of M over SpecC1;c parametrizing ¯ags
0 � F1 � � � � � Fa � M in M with rank Fi � rankM 0i . A morphism of
a scheme S over C1;c into F is given by a ®ltration of the sheaf
OS 
C1;c M . ThenF is a smooth projective scheme over SpecC1;c. The
®ltration M 0� de®nes a morphism x : SpecC2;c !F over SpecC1;c.
Take any a�ne open U �F such that Im�x� � U . Take any element
f 2 C�U ;OU �. The fact proven above that the ®ltration M 0� is stable
for all W �s�, s 2 G means that the element x��f � 2 C2;c is ®xed by all
automorphisms W �s� of C2;c. Then it is easy to see that x��f � 2 C1;c.
This means that x and hence M 0� are de®ned over C1;c. (

6 Entire versus convergent power series

Let �M ; F ; h� be an �F ; h�-module over X � W ��t��.

6.1 Lemma. There is an isogeny M ! M 0 to a free �F ; h�-module
�M 0; F ; h� over X (i.e., M 0 is a ®nite free X-module).
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Proof. The dual of a ®nitely generated X-module W is ®nite free, since
X is a regular local ring of dimension 2. Thus we take for M 0 the
double dual of M :

M 0 � HomX HomX�M ;X�; X� � :

The evaluation map ev : M ! M 0 has a ®nite length cokernel. If
m0 2 M 0, then tnm0 2 M and pnm0 2 M for some large n 2 N. De®ne
F �m0� to be the element in M 0 such that pnF �m0� � F �pnm0� and
tpnF �m0� � F �tnm0�. Such an element F �m0� 2 M 0 exists as
tpnF �pnm0� � pnF �tnm0�. Clearly F �m0� is independent of the choice of
n.

To de®ne h, we take such an n as above. Then we de®ne
h�m0� 2 M 0 as the element such that tnh�m0� � ÿntnÿ1m0 � h�tnm0� and
pnh�m0� � h�pnm0�. Existence is proved as above. It is readily proved
that F and h on M 0 have the desired properties. (

6.2 Lemma. Classi®cation of rank 1 modules over X.
(i) Let �M ; F � be a rank 1 F -module over X. Then M is isogenous to

�X; p`r� for some ` 2 Z�0. If M is free then M is isomorphic to �X; p`r�.
(ii) Let �M ; F ; h� be a rank 1 �F ; h�-module over X. Then M is

isogenous to �X; p`r; d
dt� for some ` 2 Z�0. If M is free of rank one then

M is isomorphic to �X; p`r; d
dt�.

Proof. Proof of (i). We may assume that M is free by Lemma 6.1
(without h). Let m 2 M be a basis element. We have F �m� � km and
we have X=kX killed by some power of p (axiom of F -modules). Since
X is a UFD in which p is irreducible, k � p`g for some unit g 2 X�

and some ` 2 Z�0. If we replace m by �m, with � 2 X�, then g is
replaced by gr����ÿ1. Thus we have to solve the equation gr����ÿ1
� 1 for a unit � 2 X�. It is well-known (classi®cation of rank 1 F -
modules over W ) that one can solve this equation in W �. Hence we
may assume we have � such that gr����ÿ1 � 1� tx, some x 2 X. In
this case gr��� td���� td�ÿ1 � 1� t�xÿ �ÿ1d�mod t2X (recall that
r�t� � tp and p � 2). Hence we can ®nd a solution modulo t2. By
induction one ®nds compatible solutions modulo any power of t,
hence a solution.

Proof of (ii). Again we may assume that M is free. By (i) there
exists a basis element e 2 M such that F �e� � p`e. It is easy to see that
also h�e� � 0, as we have p`h�e� � h�F �e�� � ptpÿ1F �h�e�� in this case,
see De®nition 4.9. (
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Let �M ; F ; h� be an arbitrary �F ; h�-module and let M ! M 0 be the
isogeny of Lemma 6.1. Let r � rankM . In the following we will use
the map X � W ��t�� ! W with t 7! 0. Choose elements e1; . . . ; er 2 M 0


XW linearly independent over W such that

F n�ei� � paiei :

This is possible if n is the common denominator of the slopes of the
F -module M 0 
X W and its slopes are ai=n. See 4.5, it was remarked
there that ai=n � 0 in this case so that ai 2 Z�0. We lift ei to an
element mi 2 M 0. Note that the quotient M 0=hm1; . . . ;mri is p-power
torsion. We have

F n�mi� � paimi � tdi

for certain di 2 M 0. If we apply F n once again we get F 2n�mi� � p2ai

mi � pai tdi � tpn
F n�di�: Proceeding by induction we see that

F Nn�mi� � pNaimi �
XN

j�1
p�Nÿj�ai tpn�jÿ1�

F n�jÿ1��di� :

In particular we have F Nn�mi� ÿ paiF �Nÿ1�n�mi� 2 tpn�Nÿ1�
M 0 for N � 1.

We conclude that

mi;1 � lim
N!1

pÿNaiF Nn�mi�

is a well de®ned element of M 0 
X C�D;OD�. (To see this more ex-
plicitly: note that mi;1 � mi �

P1
j�1 pÿjtpn�jÿ1�

F n�jÿ1��di� and writing
this in terms of a basis for M 0 will give coe�cients which are elements
of C�D;OD�. See Section 4 for an explicit description of elements of
C�D;OD�.) Note that M 0 
X C�D;OD� � M 
X C�D;OD� as M ! M 0 is
an isogeny and pÿ1 2 C�D;OD�. The mi;1 are elements of the �F ; h�-
module M 
X C�D;OD� over C�D;OD� such that F n�mi;1� � paimi;1.
Furthermore,

h pNaimi;1
ÿ � � h F Nn�mi;1�

ÿ � � pNntpNnÿ1F Nn�h�mi;1�� :

We conclude that the elements h�mi;1� of the module M 
X OD have
vanishing power series expansions around t � 0 (with respect to any
basis of M 0). Thus they are zero. Therefore the elements mi;1 are
horizontal for the integrable connection on M 
 OD given by letting h
act as h
 1� 1
 d

dt. They also give a basis of the ®ber at t � 0 of
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M 
 OD, as mi;1 � ei mod t. The exterior power m1;1 ^ � � � ^ mr;1 is a
horizontal element of Kr�M 0� 
 C�D;OD�. By Lemma 6.2 we know
that Kr�M 0� has a horizontal basis element e. Thus m1;1 ^ � � �
^mr;1 � e
 f with f 2 C�D;OD� and d

dt�f � � 0, hence f 2 W . By the
above f 6� 0 mod t, so f 6� 0. Therefore the elements mi;1 form a
basis of M 
X C�D;OD�. This proves Dwork's trick.

6.3. Lemma. (Dwork's trick.) For any �F ; h�-module �M ; F ; h� the
�F ; h�-module M 
X C�D;OD� over C�D;OD� has a basis of elements di,
which are horizontal and satisfy F n�di� � paidi for certain n 2 N and
ai 2 Z�0.

6.4 Proposition. Notations as in previous lemma. If N 0 � M 
X Cc is a
saturated sub �F ; h�-module then N 0 � N 
 Cc for some saturated sub
�F ; h�-module N � M .

Proof. We may replace M by M 0 as in Lemma 6.1 and N 0 by its
saturation in M 0 
 Cc. Thus we may assume that M is free over X
(and N 0 & M 
 Cc=N 0 are free over Cc). Let r � rankN 0. It su�ces to
prove the proposition for ^rN 0 � ^r�M� 
 Cc, so we may assume
rankN 0 � 1.

Say r � rankM and let m1; . . . ;mr be a basis of M over X. Write a
generator n0 2 N 0 in the form

n0 �
X

mi 
 gi; gi 2 Cc :

We may assume g1 2 C�c as Cc is a discrete valuation ring and N 0 is
saturated in M 
 Cc. Thus we may assume g1 � 1. There is a constant
C > 0 such that for all i

m�gi;m� � mC; 8m � 1 :

Using the discussion in Section 4.1 (especially equation 4.1.1) this
implies that gi can be viewed as a rigid analytic function on the
annulus A : ft; jpj� < jtj < 1g for some small � 2 Q>0. Therefore we
can (and we will) view n0 as an element of M 
 C�A;OA�. As A � D we
may write n0 �P di 
 hi with hi 2 C�A;OA� and di as in Lemma 6.3.
(We are using that M 
 C�A;OA� � M 
 C�D;OD� 
 C�A;OA�.) It is
still true that n0C�A;OA� � M 
 C�A;OA� is a locally direct summand.
(Use that g1 � 1.) The fact that h�N 0� � N 0 implies that d

dt hi � hhi for
some h 2 C�A;OA�. Intuitively this means that d

dt log�hi� � h and it
implies that hi=hj is a constant (whenever hj is not zero; the com-
putations are formal). Thus we see that there exist k1; . . . ; kr 2 W (not
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all zero) such that n0 � �k1d1 � � � � � krdr� 
 f for some nonvanishing
f 2 C�A;OA�. We have shown that N 0 is de®ned over C�D;OD� as well,
as it corresponds to the submodule spanned by k1d1 � � � � � krdr

which is de®ned over C�D;OD�.
More precisely, this means that we have

m1 � m2 
 g2 � � � � � mr 
 gr � �m1 
 q1 � � � � � mr 
 qr� 
 f

for certain qi 2 C�D;OD� and f 2 C�A;OA� as above. (Just write
di �

P
mj 
 qij with qij 2 C�D;OD� by Lemma 6.3 and put

qj �
P

kiqij.) We conclude that f is a meromorphic function on D,
invertible on A. Hence it has only ®nitely many poles on D. (The pole-
locus of f is a closed analytic subset of some a�noid subdomain of
D.) Therefore, we can ®nd a polynomial P �t� 2 W �t�, P�t� 62 pW �t�
such that P�t�f 2 C�D;OD�. This implies that P �t�gi � P �t�fhi (i � 2)
can be viewed as an element of Cc and as an element of C�D;OD�.
However, the elements in C�D;OD� are power series in t with coe�-
cients in L0 � W �1=p�, and the elements of Cc are power series in t and
tÿ1 with coe�cients in W . We conclude that P�t�gi 2 X for all i. Thus
the subspace generated by n0 over Cc (equal to the subspace generated
by P�t�n0 over Cc, since P �t� 62 pW �t�) is de®ned over X: we have
shown 0 6� P �t�n0 2 �M 
 1� \ N 0. Let N be this intersection, seen as a
submodule of M . We clearly have F �N� � N and h�N� � N , by the
corresponding properties of N 0. It is a saturated X-submodule, hence
it is a sub �F ; h�-module. Also, N 
 Cc � N 0 is an inclusion of satu-
rated rank 1 Cc modules, so it is an equality. (

6.5 Remark. The proposition holds in the following more general
situation: Suppose �M ; h� is a ®nitely generated torsion free X-module
with a d

dt-derivation h such that M 
 C�D;OD� has an horizontal basis.
Any h-invariant subspace N 0 � M 
 Cc comes from an X-submodule
N � M . The only point in the proof of the proposition where we used
the existence of F , was to ensure that the local system on D was
trivial, i.e., we used Dwork's trick. (

7 Some crystals over power series rings

We claim that we may ``split o� '' an F -submodule N of an F -module
M over X if all its slopes are bigger than all the slopes occurring on
M=N . This follows from the following proposition using some tensor
algebra. We will not use the claim in the sequel.
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7.1 Proposition. Let �M ; F � be an F -module over X. Assume N � M is a
rank 1 sub F -module of slope ` and assume that all other slopes on M
are strictly smaller than `. Then there is a complement for N , i.e., a sub
F -module N 0 � M such that N � N 0 ! M is an isogeny.

Proof. We may assume that N is a saturated submodule of M . We
dualize and we get an homomorphism M� ! N� of X-modules whose
cokernel has ®nite length. (Since Np � Mp is a locally direct summand
for all height 1 primes p of X � W ��t��.) Let Q be the torsion free,
saturated kernel of this map. For a module T over X, write
T �r� � T 
X;r X. If T is ®nitely generated we have �T ���r� � �T �r���,
as r : X! X is ®nite free [11, 3.E]. By de®nition of F -modules
the linear maps Flin : M �r� ! M and Flin : N �r� ! N induced by F
have an ``almost inverse'' pnF ÿ1lin for some n large enough.
Dualizing this, we get a linear map �M���r� � �M �r��� ! M� and
similar for N�. Thus M� and N� are F -modules in a natural way (up
to the choice of n), and so is Q (and Q is a sub F -module of M�). The
slope `� of N� is strictly smaller then all other slopes of M�. (Note that
`� � nÿ ` and any slope s� of M� is of the form s� � nÿ s for some
slope s of M .)

By Lemma 6.2 we may choose an isogeny �X; p`�r� ! �N�; F �, and
scale by a power of p so that the image of X! N� is contained in the
image of M� ! N�. Further we choose an isogeny �Q; F � ! �Q0; F �,
with Q0 a free module over X (see 6.1). We de®ne the F -module M 0 by
the following commutative diagram with exact rows:

0 ÿ! Q ÿ! M� ÿ! N�

jj " "
0 ÿ! Q ÿ! M 00 ÿ! X ÿ! 0

# # jj
0 ÿ! Q0 ÿ! M 0 ÿ! X ÿ! 0

(We leave it to the reader to verify that the pushout and the pullback
give F -modules.) The X-module M 0 is free. Let s1 be the smallest slope
occurring on Q0. By assumption s1 > `�. The extension of isocrystals
(the last one having slope `�)

0 ÿ! Q0 
X L2 ÿ! M 0 
X L2 ÿ! X
X L2 ÿ! 0

is canonically split by the theory of isocrystals over L2, see 4.5. Thus
the extension class of the exact sequence

0 ÿ! Q0 
X W �K2� ÿ! M 0 
X W �K2� ÿ! X
X W �K2� ÿ! 0
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is p-power torsion. (The category of isocrystals over L2 with non-
negative slopes is equivalent to the category of F -modules over W �K2�
up to isogeny.) Replacing X by pmX for m su�ciently large, i.e., doing
another pullback, we may assume that

0 ÿ! Q0 ÿ! M 0 ÿ! X ÿ! 0

becomes split after tensoring with W �K2�.
By the structure theory over L2 (and W �K2�) we see that the map

F N : Q0 
 W �K2� ! Q0 
 W �K2�
for N large becomes divisible by pN`� , as all slopes on Q0 are � s1 > `�.
(Compare Section 4.5.) The same divisibility holds in M 0 
 W �K2� �ÿ
Q0 
W �K2�

�� ÿX
W �K2�
�
. But then the map F N : M 0 ! M 0 is

also so divisible: We remark that p divides an element m 2 M 0 if and
only if it divides the element m
 1 2 M 0 
 W �K2�. Let us write

w � pÿN`�F N : M 0 ! M 0 :

It preserves Q0 � M 0 and induces rN on X � M 0=Q0.
Let e 2 M 0 be an element mapping to 1 2 X. Consider the se-

quence of elements

ea � wa�e� 2 M 0; a � 1 :

Of course ea maps to the element 1 in X for all a. Further, if in the
decomposition M 0 
 W �K2� �

ÿ
Q0 
 W �K2�

�� ÿX
 W �K2�
�
we have

e � q� 1, then
ea � pÿaN`�F aN �q� � 1 :

The terms in the ®rst factor Q0 
 W �K2� converge to zero p-adically as
all slopes of Q0 are � s1 > `�. So ea converges p-adically to the ele-
ment 0� 1 2 M 0 
W �K2�. The p-adic topology on M 0 is induced
from the p-adic topology on M 0 
 W �K2�, as is clear from the remark
on divisibility above, hence ea converges to an element e1 2 M 0. This
element obviously gives the desired splitting of M 0; then dualize and
``isogenize'' back to M , keeping track of things. (

8 Equality of kernels

8.1 Proposition. The map C2;b;c 
Cc C! C2;b, g
 f 7! gf is injective.

Proof. Note that we have C2;b;c 
C2;c C2 � C2;b. Further the map
C2;c ! C2;b;c is ®nite free, hence ¯at. Thus we reduce to the case b � 1.
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Write M � C2;c 
Cc C. We may consider M as a Cc or C2;c or
C-module. Note that Mÿ!p M is injective as C2;cÿ!p C2;c is injective
and Cc ! C is ¯at. Hence M injects into

C2;c 
Cc C
ÿ ��1=p� � C2;c�1=p� 
Cc�1=p� C�1=p� :�1�

Let us write l : M ! C2 for the multiplication map of the lemma.
Assume that x �Pr

i�1 gi 
 fi 2 M is a non zero element such that
l�x� �Pr

i�1 gifi is zero. We may assume r is minimal among all
r 2 N occurring in this fashion. We claim the elements f1; . . . ; fr 2 C
are linearly independent over Cc. If not, then one of them may be
expressed as a linear combination of the others with coe�cients from
Cc. (Here we use as always that Cc is a discrete valuation ring.) Say
f1 �

Pr
i�2 aifi, ai 2 Cc. Thus

x �
Xr

i�1
gi 
 fi � g1 


Xr

i�2
aifi

 !
�
Xr

i�2
gi 
 fi �

Xr

i�2
�aig1 � gi� 
 fi

in contradiction with the minimality of r.
After renumbering if necessary, we have vp�g1� � vp�gi�, for all i.

Then x0 �Pr
i�1�gi=g1� 
 fi 2 M is nonzero, as g1x0 � x and x 6� 0.

Further, l�x0� �P�gi=g1�fi � �1=g1�
P

gifi � 0 (this computation
takes place in C2�1=p�). We see that we may assume g1 � 1.

Let a : C2 ! C2 be an injective ring map such that ajc � idC and
a�C2;c� � C2;c. In this case

l
Xr

i�1
a�gi� 
 fi

 !
�
Xr

i�1
a�gi�fi � a

Xr

i�1
gifi

 !
� 0 :

Therefore the element
Pr

i�1 gi 
 fi ÿ
Pr

i�1 a�gi� 
 fi �
Pr

i�2�giÿ
a�gi�� 
 fi of M lies in the kernel of l. Hence it is zero as r was
assumed minimal. Since f1; f2; . . . ; fr are linearly independent over Cc

(with f1 � 1 ®xed by a) we get by minimality of r that gi � a�gi�,
i � 2; . . . ; r. (Use that f2; . . . ; fr are part of a basis of the Cc�1=p�-
vector space C�1=p� and that M injects into the space (1).) By taking
a � W �s� with s 2 G � Gal�K2=K1�, we conclude that gi 2 C1;c.
(Compare with the proof of Proposition 5.8.)

Note that C1 is the p-adic completion of the ring
S

n C�t1=pn �. (This
can be seen by looking at the mod pN quotients of both rings.) Thus
we can write any element g of C1 uniquely in the form
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g �
X

a2Z�1=p�; 1>a�0
taxa�2�

with xa 2 C. Not all sequences fxaga occur in this way: the sets
fajvp�xa� � Cg are ®nite for all C > 0. If this condition holds, then
the sum (2) converges in C1. If g 2 C1;c, then all xa 2 Cc, as is easy to
prove using the properties of the function m1�ÿ;ÿ�. We write our
gi 2 C1;c in this manner

gi �
X

a

taxi;a; xi;a 2 Cc :

We conclude that

0 � f1 � x2;0f2 � � � � � xr;0fr �
X
a>0

ta
Xr

i�2
xi;afi

 !
:

By uniqueness in (2) for g � 0, we get f1 � x2;0f2 � � � � � xr;0fr � 0 in
contradiction with the linear independence of the fi over Cc. (

8.2 Corollary. Assume �M ; F � is a nonzero F -module over Cc and
u : M ! C is Cc-linear and injective such that u�F �m�� � p`r�u�m��
for some ` 2 Z�0. The largest slope (see De®nition 4.7) of M is ` and it
has multiplicity 1. In fact N � uÿ1�Cc� is a rank 1 sub F -module of M
having slope `.

Proof. Consider the composition u2;b;c

M 
Cc C2;b;c ÿ!u
id
C
Cc C2;b;c ÿ!l C2;b :

It is injective being the composite of two injective maps (Cc ! C2;b;c is
¯at). We take b so divisible that M 
 C2;b;c has a slope ®ltration in the
sense of Proposition 5.5 (ii). The result on the largest slope and its
multiplicity as a slope of M follows from Corollary 5.7 (ii). By
Proposition 5.8 the slope ` subspace of M 
 C2;b;c is de®ned over C1;c.
Thus there is a saturated sub F -module N 0 � M 
Cc C1;c of rank 1
and slope ` with

N 0 � uÿ11;c�C1;c� :

Here the map u1;c is de®ned by a composition as u2;b;c above. To
prove the corollary it will su�ce to ®nd one nonzero element n 2 M
such that u�n� 2 Cc.
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Let m1; . . . ;mr be a basis of M over Cc. Take a generator n0 2 N 0

and write n0 �P gimi; gi 2 C1;c. As in the proof of the previous
proposition we may write

gi �
X

a2Z�1=p�; 1>a�0
taxi;a

with xi;a 2 Cc. If u�mi� � fi 2 C, then we get

u1;c�n0� �
X

a

ta
X

i

xi;afi

 !
2 C1;c :

Hence
P

i xi;afi 2 Cc for all a. For some a the element n �Pxi;a

mi 2 M will be nonzero and have u�n� 2 Cc. (

9 The theorem

9.1 Theorem. Let �N ; F ; h� be an �F ; h�-module over X. Let

u : M ÿ! C

be an X-linear map such that

(i) for some ` 2 Z�0 we have u�F �m�� � p`r�u�m�� for all m 2 M ,
and

(ii) we have u�h�m�� � d
dt u�m� for all m 2 M .

Then u�M� � X.

Proof. Consider the extension uc of u to M 
 Cc de®ned by the
composition

M 
X Cc ÿ! C
X Cc ÿ! C :

It is easy to check that uc satis®es the analogues of (i) and (ii). Let
N 0 � Ker�uc� � M 
X Cc. Clearly, F �N 0� � N 0 and h�N 0� � N 0 and N 0

is a saturated submodule of M 
X Cc. Therefore, by Proposition 6.4
we get N 0 � N 
 Cc for some (saturated) sub �F ; h�-module N � M of
M . It is clear that N � Ker�u� and replacing M by M=N we may
assume that uc is injective.

By Corollary 8.2 we conclude that N 0 � uÿ1c �Cc� is a rank 1 slope `
sub F -module of M 
 Cc and that all other slopes on M are strictly
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smaller than `. Clearly, N 0 is also preserved by h, hence it is a sub
�F ; h�-module. We apply Proposition 6.4 and we get a saturated rank
1 sub F -module N � M over X with N 
 Cc � N 0. By Lemma 6.2 we
have that there is an isogeny �X; p`r� ! �N ; F � of F -modules, i.e., a
non zero element n 2 N with F �n� � p`n such that N=Xn is p-power
torsion. The elements g 2 Cc (or even g 2 C) that satisfy r�g� � g are
g 2 W �Fp� � X. Thus u�N� � X�1=p� \ C � X.

We have seen above that the assumptions of Proposition 7.1 are
satis®ed for �M ; F � and N � M . The proposition gives us an isogeny

N � N 0 ÿ! M :

The map N 0 ! M ! C is zero, since the slopes on N 0 are all strictly
smaller than ` (which implies that N 0 
 C2;b;c ! C2;b is zero by Cor-
ollary 5.7) (iii). This contradicts the injectivity of u unless N 0 � �0�, so
N ! M is an isogeny. Since N is saturated in M we have N � M . We
have won. (

10 Appendix: proof of Lemma 2.1

The author does not know how to prove Lemma 2.1 (ii) and (iii)
without using crystalline DieudonneÂ module theory. In both cases we
can reduce to the case where R � k��t�� with k algebraically closed
(details left to the reader). Hence we may apply the theory of the
preceding sections.

Proof of (ii). Let

�M�H�; F ; V ;r� ÿ!M�a� �M�G�; F ; V ;r�

be the associated morphism of crystalline DieudonneÂ modules over
X � W ��t��. See e.g. [8, Section 2] for de®nitions and notations. Say
the rank of ag is a, i.e., that the height of the image of ag is a. Thus

Ka : KaM�H� ÿ! KaM�G�

is not zero. Therefore the horizontal map

KaM�H� 
 OD ÿ! KaM�G� 
 OD

of OD modules with connections is not zero. Hence it cannot vanish at
any point, in particular not at t � 0. We conclude that the map
KaM�Hs� ÿ! KaM�Gs� induced by as is not zero. Hence the height of
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the image of as is at least a. Vanishing of the map Ka�1M�a� shows
that it is not more than a. The equality of heights has been proved.

Proof of (iii). The kernel of a map of ®nite free W ��t��-modules is
®nite free. Consider the map of DieudonneÂ modules

M�H� ÿ! M�G�

induced by a as above. Let M1 be the kernel. The operations F ; V ;r
on M�H� and M�G� induce F ; V and r on M1. This gives a Die-
udonneÂ module �M1; F ; V ;r�. Similarly the kernel of the dual map

M�H�^ � M�Ht� ÿ! M�G�^ � M�Gt�

gives a DieudonneÂ module, whose dual we write �M2; F ; V ;r�.
Putting everything back together we get a complex of DieudonneÂ
modules

0! M1 ! M�H� ! M�G� ! M2 ! 0 :���

Our assumption on ag implies that the complex ��� becomes exact
after taking the tensor product with C.

Let us write

L � k�M1� 
 k�M�G�� 
 k�M�H�� 
 k�M2�� �
ÿ1 ;

where k�ÿ� indicates highest exterior power. We note that L is a free
rank 1 �F ; h�-module over X. By the above ��� gives an element e of
L
 C which is horizontal, which satis®es F �e� � p`e for some ` and
which is a generator of L. By our main theorem e 2 L. By a classi®-
cation of rank 1 �F ; h�-modules over X (compare Lemma 6.2) we
know that �L; h� � �X; ddt�. Therefore e generates L, and hence ��� is
exact. By the equivalence of categories [8, 2.4.4, 2.4.8, 4.1.1] the
DieudonneÂ modules M1 and M2 correspond to p-divisible groups over
S. These p-divisible groups are the kernel and cokernel of a since ���
is exact. This ends the proof.
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