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Abstract. Let G be a semi-simple group andM the moduli stack of G-bundles
over a smooth, complex, projective curve. Using representation-theoretic
methods, I prove the pure-dimensionality of sheaf cohomology for certain
``evaluation vector bundles'' over M, twisted by powers of the fundamental
line bundle. This result is used to prove a Borel-Weil-Bott theorem, conjec-
tured by G. Segal, for certain generalized ¯ag varieties of loop groups. Along
the way, the homotopy type of the group of algebraic maps from an a�ne
curve to G, and the homotopy type, the Hodge theory and the Picard group
of M are described. One auxiliary result, in Appendix A, is the Alexander
cohomology theorem conjectured in [Gro2]. A self-contained account of the
``uniformization theorem'' of [LS] for the stack M is given, including a proof
of a key result of Drinfeld and Simpson (in characteristic 0). A basic survey of
the simplicial theory of stacks is outlined in Appendix B.
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0. Introduction

Loop groups are known to admit a class of representations (those of positive
energy) that are similar to those of semi-simple groups. Furthermore, their
subgroups of loops that extend holomorphically to some compact Riemann
surface are analogues of maximal parabolic subgroups. (This point of view I
owe to Graeme Segal.) Accordingly, this paper, which is a sequel to [T2],
presents some theorems of Borel-Weil-Bott type. It can be read indepen-
dently of the prior article, granting its main result (which is recalled in
Sect. I).

I shall work mostly in an algebraic framework. Let G be a com-
plex, simple1, simply connected Lie group, R a complex a�ne curve with
compacti®cation R c, smooth, unless otherwise indicated. The group GR

(also denoted by G�R�) of algebraic G-valued functions on R is contained
in the product L̂G of its formal completions L̂iG at the points at 1. (The
L̂iG are abstractly isomorphic to the group of G-valued formal Laurent
series, an algebraic substitute for the smooth loop group of G). It therefore
acts on a completed tensor product H of irreducible, positive energy
representations of the L̂iG. These shall all be chosen at the same level h.
Further, given distinct points z1; . . . ; zm on R, labeled by irreducible rep-
resentations (``irreps'') Vk of G, the space V :� V1 
 � � � 
 Vm becomes a
representation of GR, if maps g : R! G act on the factor Vk by means of
their value at zk.

Several related cohomologies are associated to these data, and it is my
purpose in this paper to describe them.

(0.1) The cohomology of the space GR, topologized as a union of closed
subvarieties.

(0.2) The cohomology of the Lie algebra gR of g-valued algebraic func-
tions on R, with coe�cients in H
 V. (This, we know from [T2].)

(0.3) The algebraic group cohomology H �G�R��H
 V� of GR, with the
same coe�cients.

(0.4) The (coherent sheaf) cohomology of the vector bundle L
h 
V
over M, where:

� M is the moduli stack of G-bundles over Rc (cf. Appendix B);
� L is the generator of Pic(M) (cf. [LS], or Sect. V in this paper);
� V is the tensor product of the Vk-bundles associated to the ``evaluation

bundles'' G�zk�,

1 The corresponding statements for semi-simple, simply connected Lie groups are clear. The

changes needed for arbitrary semi-simple groups are discussed in Sect. V
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� G�zk� is the restriction to M �M� fzkg of the universal G bundle G
over M� Rc.

(0.5) The cohomology of the bundle L
h 
V over the generalized ¯ag
variety L̂G=GR. Here,V is associated to the representation V of GR, andL
is the product of the basic line bundles (Sect. I) over the L̂iG. This abuse of
notation, relative to (0.4), will be justi®ed later; but, except in the context of
the variety L̂G=GR, L and V will carry their meanings of (0.4).
The ®fth item was added to the list during revision of the paper. It was
conjecturally described by Graeme Segal (cf. Theorem 4), and its knowledge
is, on the surface, stronger than that of (0.4); but I realized that the two were
equivalent after a tip from Shrawan Kumar.

Some background for these problems is outlined in Remark (0.6) below.
Meanwhile, the main results are summarized as follows.

Concerning (0.1), we shall see that GR is homotopy equivalent to the
group C1�R; G� of smooth maps from R to G. The latter, in turn, is
equivalent to a product of G and a number �N� of copies of the based loop
space XG, so we have

H ��G�R�� � H��G� 
 H� XG�Nÿ �
:�0:10�

Next, the ®rst three items are related by means of the van Est spectral
sequence

Ep;q
2 � Hp

G�R��H
 V� 
 H q�G�R�� ) H ��g�R�;H
 V� ;

and the Lie algebra cohomology (0.2) was already determined in [T2]:

H ��`�g�R�;H
 V� � H `�g�R�;H
 V� 
 H ��G� 
 H ��XG�N � ;�0:20�

for a certain degree `, depending only on V and on the level h. When R is
smooth, ``N '' is the same as in �0:10�; the two results will imply the collapse
at E2 of the spectral sequence, and the pure-dimensionality of the group
cohomology (0.3):

H `
G�R��H
 V� � H `�g�R�;H
 V�; whereas Hq

G�R��H
 V� � 0 if q 6� ` :
�0:30�

The van Est spectral sequence also collapses when R is singular, but we no
longer obtain the purity result �0:30�. For a nodal curve, we shall ®nd that
group cohomology acquires a factor of H ��XG� for each node.

The cohomology of the vector bundles over M follows, it turns out, from
the knowledge of group cohomology. As will be shown in Sect. I, there is a
natural isomorphism

H ��M;L
h 
V� � H�G�R� H0;h 
 V
ÿ �

;�0:40�
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where H0;h is the product of the vacuum representations. The isomorphism
applies, whether or not R is smooth; it follows, by standard arguments, from
the ``uniformization theorem'' of [LS], and a ``Borel-Weil-Bott'' theorem for
loop groups, due to Kumar [K] and Mathieu [M].

Finally, there is a natural morphism from L̂G=GR to M, under which the
L and V of (0.4) and (0.5) correspond (whence the abusive notation). One
can ``ascend'' from M back to L̂G=GR, and identify the cohomology of the
pull-back bundle as follows:

H��LG=GR;L
h 
V� �a �H
�H
 H� M;L
h 
V
Utÿ �

;�0:50�

where the sum goes over the highest-weight representations �H of L̂G at level
h, and U is the evaluation bundle over M, obtained by attaching, to the
points at in®nity of Rc, the highest-energy spaces of the tensor factors of �H.
The delicate step in going from �0:40� to �0:50� is showing that the left-hand
side is a sum of highest-weight representations of L̂G (Prop. 8.3).

There is an analytic version of the results �0:30� and �0:40�, if one is
careful with the statements. We may replace M by the stack of holomorphic
G-bundles over Rc, and the algebraic ind-varieties used in the paper (such as
GR) by their underlying analytic objects. Using analytic sheaf cohomology,
the proofs apply, mutatis mutandis. On the other hand, one might try to
replace GR by the group of holomorphic maps to G. In a sense, �0:40� is
una�ected (cf. Props. 3.17 and 3.18); but, while it seems likely that some
version of �0:30� and �0:50� should continue to hold, one runs into di�culties
when topologizing the representations, and when trying to prove vanishing
theorems for the cohomology of honestly in®nite-dimensional varieties; and
I do not know any tools suited to the task.

Remarks (0.6) (i) The results �0:10� and �0:30� were announced in [T2]. The
connection with the stack was already ``obvious'' then, but a proper treat-
ment had to wait for the clari®cations in [DS] and [LS].

(ii) The homotopy equivalence GR � C1�R; G� had been independently
conjectured by Kumar; see [Ham] for some partial results. Connectedness of
GR, for simply connected G, was also proved in [LS] (the argument is at-
tributed to V. Drinfeld). The case of the Laurent polynomial group was
well-known (essentially [PS], Prop. 8.6.6).

(iii) The spaces of invariants in �0:20� or �0:30� were worked out in [TUY],
who proved the conjectured ``Verlinde factorization formula'' for their di-
mensions. An alternative proof was given in [F] (and, later, [T2]). The
connection with the space of regular sections over the stack of G-bundles,
and over the GIT moduli space, was developed in [BL1], [F], [KNR], [LS].

(iv) The vanishing of the higher cohomology ofL
h on the GIT moduli
space is proved in [KN]. This would be closely related to the theorem for the
stack, if we knew the vanishing of the cohomology with supports on the
unstable strata (cf. Sect. IX). This seems to be a reasonable conjecture, but,
to my knowledge, it has not been veri®ed.
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The title of the paper derives from the following epitome for the coho-
mological purity results. Let P � G be a parabolic subgroup, E an irrep of G,
F one of P . Knowledge of the group cohomology H�P �E
 F� of P with
coe�cients in all the E
 F is equivalent to the Borel-Weil-Bott theorem
(``BWB'') for the ¯ag variety G=P . The argument (due to Bott) is usually
given in Lie algebra terms, so let me rephrase it. IfF is the sheaf of sections
of the algebraic vector bundle G�P F over G=P , one has a spectral sequence
of ``cohomological descent from G to G=P '', with

Ep;q
2 � H p

P H q G;OG 
 F� �� � ) H ��G=P ;F� :�0:7�

On the left-hand side, P acts simultaneously on F and (by right translation)
on OG. As G is a�ne, H q�G; . . .� � 0 for q > 0, so the spectral sequence must
collapse at E2. Further, the Peter-Weyl theorem implies that

H0�G;OG 
 F� �aEE
t 
 E
 F ;�0:8�

and a correct tracking of the P -action turns (0.7) into the isomorphism

H ��G=P ;F� �aEE
t 
 H �P �E
 F� :�0:9�

BWB says that the left-hand side lives in a single degree, where it gives an
irreducible representation of G. This amounts to the vanishing of H �P �E
 F�,
except possibly in a single degree (and, given F, also for a single choice of E,
when the non-zero cohomology is one-dimensional). Pure-dimensionality of
H �G�R��H
 V� is the corresponding loop group statement, because H is, in a
suitable sense, an irreducible representation of L̂G, while V is an irrep of the
parabolic subgroup GR. Note, however, that the remaining BWB assertions
fail, in general; for instance, the non-trivial cohomology group is a space of
conformal blocks in the WZW model, whose dimension, usually not 0 or 1,
is given by a ``factorization formula'' as in [TUY].

The main results of the paper are direct consequences of the Lie algebra
theorem in [T2], except for the di�culty that GR is not a Lie group, but an
algebraic ind-group. It is formally smooth, but its only known description is as
an increasing union of singular varieties. A priori, what appears in the van Est
spectral sequence is the Lie algebra cohomology of the space of algebraic
functions onGR, rather than its singular cohomology; to relate (0.1) and (0.2),
we must verify the equality of the two2. For Lie groups, this follows from the
algebraicdeRhamtheorem [Gro1]; theargument inSect.VI extends this toGR.

I have endeavored to render the paper accessible to readers who are not
stack-initiated. While there is nothing di�cult about the concept, the state
of the literature makes its intelligible use problematic, and constant attempts
to relate to the original de®nitions (inherited from the 1960's) tend to pro-
duce convoluted output. Also, to the usual category-theoretic approach

2 In other words, we must check the ``crystalline cohomology theorem'' for G�R�
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(probably best exposed in [LM]), I prefer the homotopy-theory point of
view, in which stacks are represented by simplicial schemes. This way, sheaf
cohomology comes almost for free. Whenever possible, I discuss stacks as if
they were ordinary schemes: the statements are literally true, yet a reader
willing to accept ``obvious'' properties of stacks could follow most argu-
ments without knowing the de®nition. (Knowledgeable readers will want to
consult Appendix B, where the basics of the simplicial theory of stacks are
outlined). Of course, explicit simplicial constructions are at times needed.
Also, the notions of a Grothendieck site ± in particular, the site of complex
schemes in the eÂ tale topology ± sheaves over such, and their cohomology,
were not always avoidable; a quick introduction to the topic
is [G].

The Appendices o�er some background material on Alexander coho-
mology (used in Sect. VII) and a proof of the ``uniformization theorem''
over C, in simplicial language. A direct proof of a key result of Drinfeld and
Simpson (in characteristic 0) is included in Sect. III.

Acknowledgement. I am indebted to Graeme Segal for much insight into loop groups and their
¯ag varieties; to Carlos Simpson for knowledgeable suggestions about stacks and Hodge theory;
to Shrawan Kumar for a conversation that led me to a proof of Theorem 4; to the referee,
for suggestions resulting in substantial improvements of the paper; and to A. Beauville,
Y.Eliashberg, V. Ginzburg, I. Grojnowski, A. Ogus and C. Sorger for helpful comments and
references. I must also correct an oversight in [T2]: a special case of the Lie algebra result (SL2)
was described (without proof) by Feigin and Fuchs [FF]; the paper is listed in the references, but
the citation in the text was deleted in an editing error.

I. De®nitions and statements

1. General background

Several kinds of cohomology will be used, sometimes in the same context.
Sheaf cohomology over algebraic or analytic objects will be denoted by H �,
or H �et when the eÂ tale topology needs to be emphasized; H �s will indicate
ordinary (singular) cohomology. The notations for group and Lie algebra
cohomology present no ambiguities.

Recall some loop group-related de®nitions [T2]. Having ®xed an integral
level h � 0, an irrep of G is called either regular or singular, according to the
a�ne weight �k� q; h� c� (k is its highest weight, q the half-sum of the
positive roots, and c the dual Coxeter number of g). To a regular repre-
sentation V, one assigns a non-negative integral length `�V�, and a ground
form, an irrep whose q-shifted highest weight lies inside the positive Weyl
alcove at level h� c. They are described by the following property: the q-
shifted highest weight of V and of its ground form are related by an a�ne
Weyl transformation (at level h� c) of length `�V�.

As before, H denotes a formally completed tensor product of n positive
energy irreps of the loop groups L̂iG at level h, completed with respect to the
total energy ®ltration. We reserve H0;h for the product of the vacuum rep-
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resentations. H is the algebraic dual of a highest-weight representation
(HWR) �H of L̂G (at level -h), which is ®ltered, by the total energy, as a
union of ®nite-dimensional, L̂�G-invariant subspaces. �L̂�G � L̂G is the
product of subgroups of regular power series within the L̂iG�: When all the
selected representations Vk are regular, call `�V� �P `�Vk�, let Wk be the
ground form of Vk, and H
W the corresponding G�R�-representation. The
main result of [T2] is the following.

Theorem. [T2, Thm. 2.5] When all the Vk are regular, there is a vector space
isomorphism

H ��g�R�;H
 V� � H `�V��g�R�;H
 V� 
 H �ÿ`�V��C1�R; G�� ;�1:1�

further, dimH `�V��g�R�;H
 V� � dim�H
W�g�R�. All cohomology groups
vanish as soon as one of the Vk is singular.

The dimension of �H
W�g�R� is determined by the ``factorization theorem''
([TUY]), Prop. 2.2.6), or by more explicit ``Verlinde formulas'' [BL1]. Its
dependence on R is only through the genus.

It was also claimed in [T2] that the isomorphism (1.1) is induced by the
cup-product

H `�g�R�;H
 V� 
 H�ÿ`�g�R�; C� ��!^ H��g�R�;H
 V� ;�1:2�

and further, that the level-zero isomorphism H ��g�R�; C� � H��C1�R; G�� is
obtained by interpreting Lie algebra cocycles as left-invariant de Rham
forms. These naturality properties will emerge from the proofs in Sect. VII.

Call Qi the standard ¯ag variety of the loop group L̂iG. Identifying the
latter with the standard formal loop group G��z��;Qi is the quotient
G��z��=G��z��. When G is simple and simply connected, it is known ([KN],
Lemma 2.2) that the Picard group of Qi is Z, identi®ed with H2�Q; Z� by the
®rst Chern class; the positive generator gives the basic central extension of
L̂iG. LetL be the product of the basic line bundles over X :� L̂G=L̂�G; the
product of the Qi. A special case of the ``BWB'' theorem of Kumar and
Mathieu says that C�X ;L
h� � H0;h, while all higher cohomology vanishes.
(We get all other representations H, if we twist L
h with vector bundles
over X , coming from suitable evaluation representations of L̂�G.) X carries
an obvious action of GR, which lifts uniquely to L (see Sect. V).

2. The ind-group GR

We shall encounter several ``ind-schemes'', or analytic ``ind-varieties''. (One
such example was X .) These are directed systems of closed embeddings,
modulo the co®nality relation. It is best to replace them by the sheaf direct
limits of the functors represented by the constituent schemes. (We shall
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generally use the eÂ tale topology, on the category of schemes of ®nite type,
and the classical topology on analytic spaces; but see also Remark 3.1.)
However, the di�erence between the ind-objects and their sheaf direct limits
is somewhat subtle, and, as it turns out, immaterial for the results of this
paper. I shall evade the distinction and call them spaces, in statements that
support both interpretations.

Starting with an embedding G � GLN �C�; GR is de®ned as a closed
subspace of MN �R�, the direct limit of the a�ne space MN �R�d of matrix-
valued functions of R of degree no more than d: G�R� � lim!d G�R�d , where
G�R�d is the scheme G�R� \MN �R�d , with the reduced induced structure. The
resulting space does not depend on the chosen embedding. In topological
questions, GR will be considered with its direct limit (classical) topology.

Theorem 1. The inclusion GR � C0�R; G� is a homotopy equivalence. (R may
be singular).

Remark (1.3) The result was well-known for the Laurent polynomial loop
group G�z; zÿ1�; however, an equivalent form of this special case will be used
in the proof.

There is an equivalent formulation of this theorem, whose importance
has become increasingly apparent to the author, largely as a result of dis-
cussions with Carlos Simpson. (Again, R need not be smooth.)

Theorem 1¢. The stack M has the homotopy type of C1�R c; BG�.

Remark (1.4) For now, we may interpret the ``homotopy type of M'' as the
homotopy quotient X=GR, using the ``uniformaization theorem'' (cf. Re-
mark 1.6 below); see Appendix B for the true de®nition. However, Theorem
10, which holds for any linear G, is better stated (and proved) independently
of the uniformization theorem, and of Theorem 1, which only hold when G
is semi-simple. To see the correct statement, note that the universal bundle G
of the Introduction determines a classifying morphism from M� R c to BG.
Applying geometric realization to their simplicial presentations gives an
arrow between their homotopy types. This arrow corresponds to a homo-
topy class of maps, from the homotopy type of M to C1�R c; BG�; this is the
asserted equivalence. A proof of Theorem 10, for all reductive groups,
follows from the Atiyah-Bott construction (cf. Cor. 2.11).

3. Regular functions on GR

De®ne3 the space C�G�R�;O� of regular functions on G�R� as lim d C�G�R�d �.
The corresponding de®nition for C�G�R��p;O�, with the obvious product

3 The low-brow de®nitions given here agree with the ``correct'' ones ± in this case, the space of

global sections of the structure sheaf O over the big site of G�R�

8 C. Teleman



®ltration on G�R��p, produces C�G�R�;O�
̂p, the formal completion of the
pth tensor power of C�G�R�;O�. There is, then, associated to the action of GR

on H
 V, an Eilenberg-MacLane cochain complex (where ``
̂'' denotes
completed tensor products with respect to the total ®ltration)

H
 V! C�G�R�;O�
̂H
 V! C�G�R�;O�
̂2
̂H
 V! . . . ;�1:5�
whose cohomology we call the group cohomology of GR, with coe�cients in
H
 V. One can verify by hand that the standard di�erentials in (1.5) are
well-de®ned on these completions; but an alternative is given by the fol-
lowing construction.

The simplicial homotopy quotient X� of X by GR is the simplicial space
�EGR

� � X �=GR, where EGR
� is the bar construction of the universal GR-bundle.

All pull-backs to Xp, by the face maps, of the vector bundleL

h 
 V over X

are canonically isomorphic, because the action of GR on X has a canonical
lifting to this bundle. We take this lifting as part of the de®nition of V, using
the GR-action of the Introduction. However, a lifting for L amounts to a
splitting of the projective cocycle of the L̂G-representationH, when restricted
to GR (see Sect. V); group cohomology would not make sense otherwise.
L
h 
 V, with these compatibility isomorphisms, is said to be a vector
bundle over X�. The Eilenberg-MacLane complex (1.5) is associated, in the
usual manner, to the co-simplicial complex of global sections of this bundle:
the di�erentials are the alternating sums of the coface morphisms.

Remark (1.6) In the simplicial realization of stacks (App. B), X� represents
the moduli stack M of algebraic G-bundles over R c; this is the ``uniform-
ization theorem'' of [LS].

Theorem 2. Let R be smooth. For regular Vk, the group cohomology
H �G�R��H
 V� lives only in degree `�V�, and has the same dimension as the
space of GR-invariants in H
W. It vanishes in all degrees, as soon as one Vk

is singular.

Remark (1.7) When R � P1nf0;1g and H and V are the trivial represen-
tations, this is an algebraic version of the vanishing of higher group coho-
mology of LGcpt (loops in the compact form of G), with smooth cochains
and complex coe�cients ([PS], Thm. 14.6.9). That was regarded in loc. cit. as
a simile between LGcpt and compact groups (thus, between LG and semi-
simple groups). However, our interpretation is quite di�erent: the Laurent
polynomial loop group is a parabolic subgroup of the product of two formal
loop groups. For example, twisting the coe�cients by an evaluation Ad-
representation shifts the cohomology into degree one.

We can also describe the group cohomology when R is deformed to a
nodal curve. We do allow the degenerate curve to be reducible, but require
that each of its components be a�ne, and that all the marked points remain
smooth.

Borel-Weil-Bott theory on the moduli stack of G-bundles over a curve 9



Theorem 2¢. Under such a deformation, H �G�R��H
 V� acquires a tensor factor
of H ��XG� for each node.

The factors H ��XG� are ``attached'' to the nodes in a manner that will be
clari®ed in Sect. VII. By contrast, the factors H��XG� in the (singular)
cohomology of GR come from non-trivial loops in R. The loops that get
contracted under the degeneration give rise to group cohomology classes,
instead of topological ones.

4. Vector bundles over the moduli stack and a conjecture of G. Segal's

The most interesting application of Theorem 2 is the cohomological single-
dimensionality of the ``evaluation vector bundles'' over the stack M of G-
bundles over R c, for smooth R. We shall see, in Sect. VIII, how this implies
a Borel-Weil-Bott theorem for certain ¯ag varieties of the loop group. The
statement for the stack is simple enough to prove here (accepting, for now,
one detail that will be clari®ed in Sect. III).

Theorem 3. For any R (smooth or not), there is a natural isomorphism

H ��M;L
h 
V� � H�G�R��H0;h 
 V� :

Remark (1.8) Using this and the smooth case of Theorem 2, one can give a
geometric proof of Theorem 20: H ��M;L
h 
V�, for a nodal curve, can be
computed by ®bering M over the moduli stack of bundles over the nor-
malized curve (cf. Sect. VII).

Proof of Theorem 3. We shall see in Sect. III.4 that the uniformization
theorem identi®es the sheaf cohomology H ��M;L
h 
V� over M with the
total cohomology of L
h 
 V over the simplicial space X�. We then have a
Leray spectral sequence for the projection p : X� ! BGR�, with

Ep;q
2 � Hp�BGR�; Hq�X ;L
h 
 V� ) Hp�q�M;L
h 
V� :�1:9�

Topologists know it from equivariant cohomology, but in the language of
[SGA4], this would be the ``spectral sequence of descent from X to M'': X is
regarded as a principal GR-bundle over M (which is true, in a simplicial
sense, if X is replaced by X � EGR). By the vanishing theorem of Kumar and
Mathieu, this sequence collapses at E2, giving

H p�BGR�; p��L
h� 
 V� � H p�M;L
h 
V� :�1:10�
Note that p��L
h� is not quite a vector bundle with ®ber H0;h; rather, on
each component G�R��p, it is a product of copies of O, indexed by a basis of
that space. Still, the higher cohomology of this sheaf vanishes, by (A.18),
and the spectral sequence for cohomology over BGR�,
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Ep;q
1 � Hq�G�R��p; p��L
h� 
 V� ) Hp�q�BGR�; p��L
h� 
 V� ;�1:11�

becomes the Eilenberg-MacLane resolution of H �G�R��H0;h 
 V�: (

The ®nal theorem is the algebraic version of a conjecture by Graeme
Segal (1990). It motivated the sequence of papers [T1], [T2], leading to the
present one, and it can now be proved. In the original formulation, R was a
Riemann surface with boundary, and the L̂iG were smooth loop groups.
Algebraically, we shall work with the ``thick'' generalized ¯ag variety
XR :� L̂G=GR; this can be shown to be a scheme (of in®nite type), but we
shall not use this fact now, and regard XR as a sheaf over the category Sch of
all schemes over C, carrying the L̂G-action.

Call �HU the HWR of L̂G at level �ÿh�, with zero-energy spaces the G-
irreps U1; . . . ;Un.

Theorem 44. H ��XR;L
h 
V� lives only in degree ` � `�V�, and is a sum of
HWRs at level �ÿh�. The multiplicity space of �HU identi®ed with the con-
formal block H `�M;L
h 
V
Ut�. Here, U is the evaluation bundle over M
associated to the Uk, attached to the points at in®nity on R c.

In other words, using Theorems 2 and 3, there is a natural isomorphism

H ��XR;L
h 
V� �a �H
�H
 H�G�R�� �Ht 
 V� ;�1:12�

summing over all HWRs of L̂G at level �ÿh�. This isomorphism holds for
any curve, but of course we will not get dimensional purity in general. (1.12)
would immediately follow from a ``Peter-Weyl theorem'' for the space of
holomorphic sections of the line bundle L
h over L̂G, in the manner ex-
plained in the Introduction (0.7±0.9). However, the Peter-Weyl statement is
false; nonetheless, Theorem 4 and (1.12) are true.

Remark (1.13) Theorem 4 implies all the other BWB theorems by standard
methods, as employed throughout this paper. The ascent from M to XR, on
the other hand, does use some special features of loop groups and of the
stack M (Lemmata 8.4 and 8.8). The extra information in (1.12), compared
to Theorem 3, is that the cohomologies over XR are sums of HWRs. In the
analytic setting, this is not known, and I had mistakenly assumed the al-
gebraic analogue to be equally problematic. The simple but e�ective idea of
using ®ltrations, instead of gradations, to verify the ``highest-weight'' con-
dition emerged in a conversation with S. Kumar.

5. A ®nite-dimensional analogue of nodal degeneration

The deformation of G�z; zÿ1� to G�L�, where L is a union of two a�ne lines
meeting at a point, has the following ®nite-dimensional counterpart. Choose

4 Added during revision of the paper
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a Borel subgroup B � G, and consider the subgroup K � B� B of pairs
mapping to the same point in the maximal torus. K is a degeneration of G.
To see this on Lie algebras, ®lter g by the norm of the eigenvalue of the ad-
action of the highest co-root: the associated graded Lie algebra is k (This Lie
algebra degeneration was also studied by Kostant.)

The diagonal action of G on the product U
 V of irreducible represen-
tations degenerates to an action of K, restricted from the natural B-action of
U and B-action on V. Assume that V � Ut (otherwise, all cohomologies will
vanish); we then have a natural isomorphism H��g; t; U
 V� � H��G=T �.
Indeed, the space of invariants in U
 V is one-dimensional, and the Koszul
resolution of H��g; t; C� is naturally identi®ed with the complex of left-in-
variant de Rham forms on G=T . Slightly less obvious is an isomorphism
H ��k; t; U
 V� � H��G=T � ± arising, this time, from group cohomology,
courtesy of the van Est spectral sequence for the pair �K; T � (because K=T is
contractible). Letting T̂ :� Hom�T ; C��, we have

H�K U
 V� � � H �
B�B

IndB�B
K �U
 V�

� �
�a

k2T̂

H �B U
Ck� � 
 H�
B

V
Ck

ÿ �
;

and from BWB, the last sum equals a direct sum of lines, labeled by elements
of the Weyl group, in degree equal to twice the length of the label. This is
H ��G=T � (non-canonically). So, the Lie algebra cohomology groups are
rigid under the degeneration of g to k, but singular cohomology has turned
into group cohomology.

The deformation of stacks, from BnG=B � �G=B� G=B�=G to
�G=B� G=B�=K, corresponds to a ``bubbling'' deformation from the genus
zeromoduli stack to the stack of bundles over two crossing copies ofP1.More
interestingly, if A is an annulus with parametrized boundary, LG=Hol�A; G� is
themoduli stack of holomorphicG-bundles over the elliptic curve obtained by
sewing together the boundary circles of A. Deforming A to two crossing disks
degenerates this stack to that of bundles over the self-crossing projective line.
This seems to bear some resemblance to the deformation of the quotient stack
G=G (conjugation action) to G=K (left and right action).

II. The homotopy type of GR

There is some overlap between this section and the next (esp. in the proofs of
Proposition 2.4 and of Proposition 3.18). This is unavoidable, because the
homotopy equivalence between algebraic and continuous mapping groups is
really a consequence of the ``uniformization theorem'' discussed in Sect. III.
Conversely, that theorem is a reformulation of the argument in Lemma 2.9
below. However, it seemed sensible to give a non-stacky proof for a state-
ment in classical topology.

We shall freely switch between C0�R; G� and C1�R; G�: as R is smoothly
deformable to a bouquet of N loops, the two spaces, and all Ck spaces with
their compact-open Ck topologies, are homotopy-equivalent to G� XG�N .
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Cauchy formulas show that all the above topologies agree on the subgroup
Hol�R; G� of holomorphic maps, and a fortiori on each G�R�d , where they
restrict to the usual topology.

In the direct limit topology, the union GR of the G�R�d is strongly
equivalent to a CW complex, in a manner compatible with the d-®ltration.
This follows from standard results on cellular approximation, in light of the
following remark: the successive inclusions are co®brations, so GR is
strongly equivalent to the homotopy direct limit (mapping telescope) of the
G�R�d . Observe, in this connection, that the H k�G�R�d ; C� are ®nite-dimen-
sional, so their R1 lim vanishes; and we record the following, for later use.

Lemma (2.1) H�s �G�R�; C� � lim
 d

H �s �G�R�d ; C�. (

Remark (2.2) One might ask whether, given k, the pairs �G�R�;G�R�d� are
k-acyclic for large d (so that their cohomology stabilizes); but I don't know
a way to verify this.

Now, if R is a singular curve and ~R denotes its normalization, it turns out
that the inclusions G�R� � G�~R� and C1�R; G� � C1�~R; G� give rise to
principal bundles over equivalent quotient spaces (Cor. 3.10, combined with
Lemma 2.6 below; note that singularities ®ner than crossings are homo-
topically irrelevant). Comparing the two bundles shows that it su�ces to
prove Theorem 1 for smooth curves. The proof has two steps, and uses the
group Hol�R; G�.

Proposition (2.3) The inclusion Hol�R; G� � C0�R; G� is a homotopy equiva-
lence.

Proposition (2.4) The inclusion G�R� � Hol�R; G� is a homotopy equivalence.

Remarks (2.5) (i) Weak equivalence in Proposition 2.3 is a result of
H. Grauert's, and holds for G-valued maps on any Stein space ([Gra], Satz 3
and Satz 6 imply isomorphism of the homotopy groups). Strong equivalence
is not clear in such generality; for instance, if the source does not have ®nite
topology, the C0 mapping space is not locally contractible, and thus not of
CW type, in the compact-open topology. However, the case of curves admits
some amusing proofs.
(ii) The result also holds for a compact Riemann surface with boundary,

and C1 boundary conditions on the maps. (Sobolev boundary conditions6

may be imposed, when Banach manifolds are needed, such as for the implicit
function theorem.) My choice of an open surface was quite accidental, and,
in fact, adds a di�culty, since it is not obvious that Hol�R; G� is a manifold!
Interestingly enough, a proof of this fact will emerge from the ®rst proof of
(2.3) this is why I retained the original setup.

6 Sup norms are not so good in this context; cf. [PS], Remark (i) following Proposition 8.3.3
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We shall need to know whether a topological space A is a principal
bundle over its quotient A=K by a continuous group action, so let us recall
the following fact.

Lemma (2.6) A is a locally trivial K-bundle over A/K i�: (1) the ``action''
�k; a� 7! �k � a; a� maps K � A homeomorphically onto its image in A� A, with
the induced topology; and (2) the projection has local sections. (

In the examples, we shall only check the slice condition (2); the ®rst
condition will be clear. It holds, for instance, if A is a group and K a closed
subgroup. Also, note that, once we have a candidate for the quotient, to
which A maps K-invariantly and continuously, producing enough slices
con®rms the candidate to be right.

First proof of (2.3) It su�ces to consider the inclusion Hol� � XG�N , of the
group of based holomorphic maps into the space of based maps, from a
bouquet of circles on R, to G. Now, Hol� acts freely, by gauge transfor-
mations, on the contractible space A of g-valued holomorphic connection
forms. The quotient space can be identi®ed with G�N , by sending a holo-
morphic connection to its holonomy around the loops of the bouquet. As
the holonomy map v is regular and surjective7, with ®nite-dimensional base,
it must admit local holomorphic sections.

Tracking the holonomy all the way along the loops lifts v to a map from
A to PG�N , the total space of the path ®bration PG�N { G�N of G�N . This
is a map of (strong) ®brations, inducing homotopy equivalences on the total
spaces (both are contractible) and on the bases (the identity); it must, then,
induce a strong equivalence between the ®bers Hol� and XG�N . (

Remark (2.7) The argument also shows that the ®bers of v are closed
complex submanifolds of A, with holomorphic tubular neighborhoods.
Indeed, choosing a holomorphic section over some open U , the map Hol��
section ! vÿ1�U� is not just bicontinuous, but biholomorphic, in all the
Banach manifold structures on Hol� and A, de®ned by a sequence of
shrinking circles about the punctures. Projecting along the slice gives a
biholomorphic map, in all these Banach metrics simultaneously, from some
®xed open set in a gauge orbit to a ®xed open set in its tangent space. It is
also easy to see, from here, that Hol� and Hol�R; G� are Lie groups.

Second proof of (2.3) The quotient C1�R; G�=Hol�R; G� can be identi®ed
with the contractible space of smooth, g-valued (0,1)-connection forms over
R, by sending r 2 C1�R; G� to the form @r � rÿ1. A local section of this map
is obtained by sending a connection form a to the unique (multi-valued)
solution to @r � rÿ1 � a; @r � rÿ1 � 0, corrected by a right factor which is
holomorphic, multi-valued and has opposite periods. Locally, the correction

7 In other words, ¯at G-bundles over R are holomorphically trivial. This is a special case of

Grauert's results
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factor can be chosen to vary holomorphically with a, as in the previous
proof. (

De®nitions (2.8) In the proof of Proposition 2.4, the following objects will be
used.
� D, a union of disjoint open disks Di centered at the points at in®nity on

Rc.
� D�, the union of the punctured disks.
� Hol�D; G�; Hol�D�; G�, the holomorphic mapping groups, with the

compact-open topology.
� G�D�� � Hol�D�; G�, the subgroup of meromorphic maps, topologized

as the limit of the subspaces G�D��d of maps with poles of order � d.

Proof of (2.4) Hol�R; G� is a closed subgroup of Hol�D�;G�, and meets
G�D�� in the closed subgroup GR of the latter. Regarding elements of
Hol�D�;G� (resp. G�D��) as transition functions for holomorphic (therefore,
algebraic) bundles over Rc, Harder's theorem [H] on the algebraic triviality
of G-bundles over an a�ne curve implies that the two quotient spaces co-
incide, set-theoretically, with the set S of isomorphism classes of ``holo-
morphic G-bundles on Rc, with holomorphic sections over the disks Di''. I
claim that the inclusion of G�D�� in Hol�D�;G� again de®nes a map of
principal bundles over the same base, inducing a strong equivalence on the
total spaces; it will follow that the ®bers are equivalent as well.

The homotopy equivalence of the inclusion G�D�� � Hol�D�; G� can be
seen by considering the compatible, contractible open covers, provided by
the Birkho� factorization theorems. Local triviality of the projections to S
will be needed again, in slightly stronger form, so we shall state is separately.

(

Lemma (2.9) S is a complex manifold, over which G�D�� and Hol�D�;G� are
holomorphic principal bundles, with structure groups GR and Hol�R; G�,
respectively.

Proof. Brie¯y put, locally, Hol�D�; G�=Hol�R; G� di�ers ®nite-dimension-
ally from Hol�D; G�; this will allow the construction of a holomorphic slice
through 1 for the action of Hol�R; G� on Hol�D�; G�, which will in fact sit in
some G�D��d . Such a slice inherits the same topologies from G�D�� and from
Hol�D�;G�, and Lemma 2.6, with the comment following it, ensures that,
topologically, we are done. The topological trivializations produced by the
slice are holomorphic, because the slice itself is so, and the closed subgroups
G�R� � G�D�� and Hol�R; G� � Hol�D�; G� carry the induced holomorphic
structure.

Consider a smooth, quasi-projective ®ne moduli space M for ``holo-
morphic G-bundles over R c, with gauge-®xing at the centers of the Di, that
are not too far from the trivial bundle'' (see Construction 3.19, Sect. III).
The G-bundle over Hol�D�;G� � Rc, de®ned by viewing elements of
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Hol�D�; G� as transition functions along R c, determines a classifying map
from a neighborhood of 1, in Hol�D�; G�, to M . The map is regular on
tangent spaces, and left � right-invariant under Holb�D; G� � Hol�R; G�
�Holb�D; G� is the group of maps based at the centers of the disks), so it can
be de®ned on an invariant open set W . We can even arrange for the double
quotient of W to be exactly M , because Hol�D�; G� parametrizes all the
bundles; but, most importantly, the ®bers of the map consist of single orbits,
and the group action is set-theoretically free in W .

Arguing as in Lemma 3.6 and Corollary 3.8, we can ®nd a smooth,
locally closed subvariety S of some G�D��d , whose tangent space at 1 is
complementary to g�R� �Holb�D; g� in g�D��. The inverse function theorem
applied to S and M , together with Lemma 2.6, show that, after possible
shrinking, S is local slice for the Holb�D; G� �Hol�R; G�-action on W . It
follows, then, that S �Holb�D; G� is a local cross-section for the action of
Hol�R; G� on Hol�D�; G�: the multiplication map Hol�R; G� � S� Holb
�D; G� ! Hol�D�; G� is biholomorphic. (

Remark (2.10) Reaching a bit ahead (see Sect. III), the quotient stack
S=Hol�D; G� is the stack Mhol of holomorphic G-bundles on R c. However,
in the previous proof, one may choose an algebraic (eÂ tale) slice S, and use it
to de®ne an algebraic structure on Mhol. This algebraic structure stems from
the fact that Mhol is the analytic stack underlying M.

Corollary (2.11) The homotopy quotient X=G�R� equivalent to C0�Rc; BG�.

Remark (2.12) The Corollary is equivalent to Theorem 1, since we know
that the ¯ag variety X is homotopy equivalent to its smooth version (a
product of XGs).

First proof. Replacing R, for convenience, by a surface with n boundary
circles, this is the homotopy double quotient G�nnC0�@R; G�=C0�R; G�: on
the left are the constant maps on @R, while the right group acts by restriction
to @R. For simply connected G, this right action is transitive, so the quotient
space is the classifying space of the stabilizer, BC0�R c; G�, which is also
C0�R c; BG�. If G is connected, but not simply connected, the homotopy
quotient C0�@R; G� =C0�R; G� is the homotopy ®ber of the restriction map
BC0�R; G� ! BC0�@R; G�. This ®ber is the space of maps from Rc to BG,
based at the n points at in®nity. However, it is better described as the total
space of the principal G�n-bundle over C0�Rc; BG�, obtained by pulling back
the universal bundle EG under the evaluations at in®nity. The left action of
the constant maps on @R is the structural G�n-action. Dividing it out,
C0�Rc; BG� emerges as the correct description of X=G�R�. (

Second proof. Because the stack Mhol of holomorphic G-bundles over Rc is
also the underlying analytic stack of M, its homotopy type is the homotopy
quotient X=G�R�. But Mhol has an alternative presentation, by the Atiyah-
Bott construction [AB], as the quotient stack of smooth (0,1)-connections
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over R c by the smooth complex gauge group. As in [AB], this leads to the
homotopy type C1�Rc; BG�; the di�erent connected components correspond
to the topological types of holomorphic bundles. (

Remark (2.13) The advantage of the second argument is that it applies to all
reductive groups, even those for which the uniformization theorem fails
(such as GLN ). It requires us to know that equivalent presentations of stacks
give rise to equivalent homotopy types; but one could also compare ho-
motopy types directly, by an explicit bi-simplicial argument (in which the
second proof of Prop. 2.4 plays a roÃ le). However, the construction is
somewhat similar to one we shall employ in Sect. VI, and the details are not
as interesting as the general theorem.

III. Algebraic and analytic uniformization of the moduli stack

The ``uniformization theorem'' states that the quotient stack X=GR is
equivalent to M. The idea goes back to A. Weil's adeÁ lic presentation of
moduli spaces of vector bundles, and, language aside, a holomorphic ver-
sion (due to Atiyah) can be found in [PS] (Proposition 8.10.2)8. However, a
complete proof of the algebraic version was only given recently, in [BL1] for
SLN , and in [LS] for general G. We shall give a brief account of algebraic
and analytic forms of the theorem; the proof is rewritten in simplicial
language in Appendix B.

1. Generalities on mapping spaces

Algebraic properties of GR are discussed in detail in [LS] (SLN was worked
out in [BL1]); but, to make this paper self-contained, I have extracted the
statements we need, especially since Lemma 3.6 and some of its corollaries,
though implied, are not overtly stated in loc. cit.

Let F be the category of schemes of ®nite type over C, with the eÂ tale
topology. The formal loop group, and its standard parabolic subgroup, are
the sheaves of F sending an a�ne scheme Spec(R) to Hom(Spec(R��z���; G),
and to Hom(Spec(R��z���; G), respectively. The latter is representable by a
group scheme (of in®nite type), while the loop group itself is a direct limit of
such schemes.

Remark (3.1) The larger category Sch, for all schemes over C, will be used
on the rare occasions when we consider the group cohomology or sheaf
cohomology of G��z��: F has the bene®t that the ``underlying analytic space''
and ``homotopy type'' carry their obvious meanings. However, schemes of
in®nite type, such as G��z��, are better left in their natural habitat. For stacks
that are covered by ®nite type schemes, the restriction to F does not alter

8 Only genus zero is treated, but the method would work in general
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their coherent sheaf cohomology, so the switch to Sch, when necessary,
carries no hidden cost.

We are mostly concerned with the quotient ``¯ag variety'' Q :� G��z��=
G��z��. This was extensively studied in [K], [M], [M2], and we recall the
following properties.

Proposition. (i) Q is a direct limit of closed projective subvarieties.
(ii) The projection G��z�� ! Q is a locally trivial ®ber bundle in the Zariski

topology.

Part (i) is obtained by a Kodaira embedding [K]. Part (ii) follows from the
``Birkho� factorization theorem'': G�zÿ1� �G G��z�� is an open subsheaf of
G��z��. This is one set of an explicit open cover, whose complete description
amounts to the uniformization theorem in genus zero.

Given schemes Y ; Z, the mapping space Y z is the sheaf over F sending a
scheme U to Hom�U � Z; Y �. Accordingly, GR is now de®ned as the group-
valued sheaf taking U to

Hom U ; GR
ÿ �

:� Hom�U � R; G� :�3:2�

Remark (3.3) The original ind-group de®nition gives rise to the direct limit
sheaf 9

U 7! lim!d Hom�U ; G�R�d� ;�3:4�

(whenU is a�ne), using the reduced structure on theG�R�d . The agreement of
(3.2) and (3.4), which we shall see in Remark 3.7, amounts to reducedness10 of
the mapping sheaf (3.2), and was veri®ed in [LS] for all semi-simple G; it fails
for G � C�. This distinction between semi-simple and reductive groups was,
it seems, ®rst emphasized in [BL1] (though it was also touched upon in [F]),
and appears to capture the topological fact that, for semi-simple G, but not
for a torus, GR is dense in the holomorphic mapping group.

Proposition (3.5) GR is formally smooth, and its tangent bundle is isomorphic
to �TG�R.

Proof. Formal smoothness means that the restriction Hom(Y 0; G�R�� !
Hom�Y ; G�R�� is subjective, for any nilpotent extension Y � Y 0 of a�ne
schemes. This is obvious from (3.2), by smoothness of G. The isomorphism
T �GR� � �TG�R follows from the de®nition Hom U ; T �GR�ÿ �
:� Hom U �e�=e2; GR

ÿ �
. (

9 Over a category containing schemes of in®nite type, this functor must be shea®®ed
10 The sheaf direct limit of an ind-scheme is reduced i� it agrees with the limit of the reduced

schemes
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2. Finer properties of the algebraic mapping groups

Formal smoothness, by itself, is not too meaningful; it holds for the map-
ping space to any smooth target, even though, when, say, G � C� and R is
the a�ne line, the space underlying C��R� is just C�. The following is more
signi®cant.

Lemma (3.6) There is a morphism from TGR to GR with di�erential (I, I) on
the zero-section.

Proof. Pick a basis fmkg of g consisting of nilpotent elements. For any
function f on some U � R, the exponentials exp�mk 
 f � : U � R! G are
algebraic. A morphism as desired is obtained by sending the pair
�g; f � 2 GR � gR, with f �P mk 
 f k, to g.

Q
k exp�mk 
 f k� (in order). (

Remarks (3.7) (i) Clearly, this morphism lands in the reduced group (3.2),
and gives isomorphisms between the formal neighborhoods of 0 in gR, and
of 1, in either of the group sheaves (3.2) and (3.4). Now, it is easy to show
that the mapping sheaf (3.2) is the direct limit of schemes with the same
support as the G�R�d . (It is a closed subsheaf of MN �R�, for which the two
de®nitions coincide). In this situation, isomorphism is detected at the level of
the completed local rings, and we have just checked it.

(ii) It is tempting to believe that GR is a complex manifold modeled on
gR, but this does not seem to be known.

Corollary (3.8) Any ®nite-dimensional subspace S of TpGR � gR is tangent to
some smooth subvariety of GR through p. The same holds for the ¯ag variety Q.

Proof. This is the image of S under the morphism in (3.6). The result for Q
follows from Birkho� factorization. (

Corollary (3.9) The eÂtale slice theorem applies to GR and to Q. (

This means that a morphism from Q to a complex variety has a local eÂ tale
cross-section through every point where it is formally smooth. It follows
from the usual slice theorem, by restriction to a subvariety tangent to a large
enough subspace of TGR.

One consequence concerns subgroups of GR de®ned by evaluation con-
ditions ± maps landing into speci®ed subgroups of G at marked points on R.
(One could also impose higher-order conditions.) Such subgroups de®ne
``obvious'' smooth quotient varieties, to wit, the quotients of the corre-
sponding adeÁ le groups. The following lemma ensures that it is these obvious
quotients that enter the Leray spectral sequences that will be used in
Sect. VII.

Corollary (3.10) The ``obvious'' quotient GR=H agrees with the sheaf-theo-
retic quotient, in the eÂtale (or any ®ner) topology.
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Proof. The map from the sheaf-theoretic to the adeÁ lic quotient is a mono-
morphism, so it su�ces to produce enough local sections. Clearly, the map
from GR to the adeÁ lic quotient is formally smooth; by the approximation
theorem in [H], it is surjective on points. Now apply (3.9). (

3. A theorem of Drinfeld and Simpson

The key step in the proof of uniformization is a result of Drinfeld and
Simpson ([DS], Theorem 3; Proposition 3.14 below). As noted by the ref-
eree, Lemma (3.6) lead to a simpler proof of this (in characteristic 0), which I
now describe. We need two constructions.

Construction (3.11) We de®ne the ``universal'' G-bundle over X � Rc by a
holomorphic shortcut (see [BL2] for an algebraic argument). By Birkho�
factorization, X � G�D��=Hol�D; G�, locally trivially. Viewing loop group
elements as transition functions yields a holomorphic G-bundle over X � Rc,
equipped with a canonical section over X � R, with ®nite-order poles at the
punctures. Because the base is projective, everything is, in fact, algebraic,
including the action of GR (on the section, and on X ).

Construction (3.12) For any G-bundle P over Rc, there exist smooth,
quasi-projective, ®ne moduli spaces M for ``G-bundles over Rc, near P ,
with suitable gauge-®xing''. In any algebraic family of ``G-bundles with
suitable gauge ®xing'', there is an open part classi®ed by a unique map to
M ; this open part contains all bundles that are freely isomorphic to P
(ignoring the gauge condition). The meaning of ``suitable'' depends on P ,
and can be ``at su�ciently many points'', or ``to su�ciently high order at a
given point''; we label the type of the gauge-®xing by a. The tangent space
to M at P is H 1 Rc;AdP �a�� �, where AdP �a� is the Ad-sheaf of P , re-
specting the gauge restriction a; and the gauge-®xing is suitable for P if
H 0 Rc;AdP �a�� � � 0.

For GLN , M can be obtained by re®ning a construction of Gieseker's;
vector bundles near P will be generated by their global sections, if poles to
prescribed orders are allowed at certain points of Rc. In general, embed G in
some GLN . Because GLN=G is a�ne, adequate gauge-®xing eliminates
multiple G-reductions of GLN -bundles near the isomorphism class P , in any
family, and ensures that a local universal family of ``G-bundles with gauge-
®xing'' appears as a smooth, closed subvariety of a local universal family of
``GLN -bundles with gauge-®xing''.

Remark (3.13) The spaces M � Ma carry an action of the ``residual local
gauge group'' Ga, whose orbits are the sets of a-gauge-®xing choices on
principal bundles in a free isomorphism class. The quotient stack Ma=Ga is
an open substack of M, and the latter is covered by the Ma (countably
many su�ce).
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Proposition (3.14) ([DS], Prop. 3) For semi-simple G, a principal bundle over
U � Rc becomes trivial after pull-back to ~U � R, for a suitable eÂtale covering
~U of U .

Remark (3.15) (i) Smoothness of G only ensures, a priori, triviality over
eÂ tale covers of U � Rc. (ii) The result generalizes a theorem of Harder's [H]
on the triviality of G-bundles over an a�ne curve; it also extends [BL1],
which veri®ed the result for SLn (in the Zariski topology).

Proof. X has a Zariski cover mapping to the Ma, and one checks on tangent
spaces that these classifying morphisms are formally smooth. By Corollary
(3.10), each Ma has an eÂ tale lifting ~Ma to X . Now, any family of G-bundles
will be eÂ tale-covered by families mapping to the Ma (take local sections of
the principal bundles of gauge-®xing choices). After further re®nement, we
can select a classifying morphism to X , and pull back, with its help, the
trivialization of the universal bundle along R. (

Remark (3.16) In stack language: M is locally of ®nite type and smooth, and
the morphism U : X !M, classifying the universal bundle over X � Rc, is
formally smooth. Corollary (3.10) and Harder's theorem imply, then, that U
has eÂ tale slices everywhere.

4. Algebraic uniformization

Let us brie¯y sketch the argument in [LS]. The authors start with the [DS]
result, that the GR-equivariant classifying morphism U of (3.16) admits a
covering family of eÂ tale sections. To show that U is a principal GR-bundle,
they must further check that the ``action'' map from GR � X to the (stack)
®bered product X �M X is an isomorphism. Now, X represents the functor
classifying pairs, consisting of a bundle over R c and a section over R: the
germs of the section at in®nity give the map, from the parameter space, to X .
Loosely put, the morphism to M forgets the section, and it follows that
X �M X classi®es triples, consisting of a bundle over Rc and two sections
over R. The ratio of the sections gives the GR-component of the inverse map,
and this implies the desired isomorphism.

From here, general theory implies that the morphism X !M ``satis®es
(eÂ tale) cohomological descent'': that is, cohomology of a sheaf over the big
eÂ tale site of M is isomorphic to the cohomology of the restricted sheaf over
X�, which is the simplicial space of ®bered powers of X over M. (Topologists
would say that cohomology over M is GR-equivariant cohomology over X .)
It also follows that any simplicial vector bundle over X� is pulled back from
M; this is the descent theorem for ®rst cohomology with GLN �O� coe�-
cients.
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5. Analytic versions

There are several versions of the uniformization theorem over the category
A of complex analytic spaces. Recall the de®nitions (2.8), and note that the
in®nite-dimensional Lie groups Hol�ÿ; G� satisfy the ``exponential law'':
e.g., Hol U ;Hol�D�G�� � � Hol U � D�; G� �, for any analytic space U . (This
is best seen in the gauge picture, in the ®rst proof of Prop. 2.3). They thus
represent the ``holomorphic mapping space'' functors over A, de®ned as in
Sect. III.1. In addition, let Xhol be the ``holomorphic ¯ag variety''
Hol D�; G� �=Hol�D; G�. It follows, from Birkho� factorization again, that
Xhol does not depend on the choice of the disks; Hol�D�; G� is covered by
open charts isomorphic to Hol�D; G� �G Hol�C; G�. Because of that local
factorization, the manifold Xhol also represents the sheaf-theoretical quo-
tient of the two group sheaves.

Consider ®rst the stack Mhol of holomorphic G-bundles over R c. By
Grauert's theorem, holomorphic G-bundles over a Stein space are classi®ed
by their topological type, for any complex Lie group G. Now, U � R is Stein
as soon as U is so; thus, if G is connected, principal bundles over U � R will
be trivial as soon as U is contractible. This holomorphic version of the
Drinfeld-Simpson theorem leads to the following proposition (valid, this
time, for any connected complex Lie group).

Proposition 3.17. Mhol � Xhol=Hol�R; G�. (

On the other hand, considering the analytic objects underlying X and GR,
de®ne Man as the quotient stack X=GR over A. This is the ``analytic stack
underlying M''. (General theory ensures that its analytic equivalence class
only depends on the algebraic equivalence class of M, and not on the choice
of presentation.) There is a natural morphism Man !Mhol, induced by the
inclusion X � Xhol.

Proposition (3.18) The natural morphism Man !Mhol is an equivalence of
stacks. In other words, the analytic stack underlying M ``is'' the stack of
holomorphic G-bundles over R c.

First proof. Note that G�D��=Hol�D; G� � X , by Birkho� factorization.
Further, by Lemma 2.9, the quotients G�D��=G�R� � Hol D�; G� �=Hol�R; G�
are isomorphic complex manifolds. But they also represent the stack quo-
tients, by local triviality of the bundles; therefore, we have

Man � Hol�D; G�nG�D��=G�R� � Hol�D; G�nHol�D�; G�=Hol�R; G� �Mhol :

I am indebted to C. Simpson for outlining a second proof of the prop-
osition, which applies to any reductive group. It is based on the following
observation.

Construction (3.19) There is a holomorphic construction corresponding to
(3.12), and GAGA implies that the moduli spaces obtained that way are the
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analytic varieties underlying Ma (and the ``residual gauge groups'' are the
analytic Ga). To obtain, locally, a holomorphic classifying map to a
Grassmannian, aÁ la Gieseker, we must check that any holomorphic family
of vector bundles over R c can locally be twisted by a line bundle, in such a
way that all bundles are generated by their global sections on R c, and that
these spaces of sections form a vector bundle over the parameter space. We
can guarantee this, simply by making the curvature along R c, on one
bundle, su�ciently positive, so that standard vanishing theorems for H1

apply; the positivity condition will then hold for nearby bundles as well.
That the global sections form a holomorphic bundle is, then, routine
Fredholm theory. Note that the argument applies even to an in®nite-
dimensional parameter space, as we needed in Lemma 2.9.

Second proof of (3.18) Construction (3.19) produces, as noted, the under-
lying analytic varieties of the Ma, and the corresponding residual gauge
groups Ga. Thus, Mhol is the limit of the analytic stacks underlying Ma=Ga;
but so is Man, the underlying analytic stack of M. (

Remark (3.20) Similarly, one establishes the double coset realization of Mhol

as the smooth maps from a loop on R c, to G, modulo the left and right
action of holomorphic loops over the cut surface (maps with smooth
boundary-values are handled as in the proof of [PS], Prop. 8.10.2). The
cutting loop need not disconnect the surface (see, for example, the end of
Sect. 1.5). Also, the ``Atiyah-Bott stack'', of (0,1)-connections modulo
complex gauge transformations, agrees with Mhol, essentially because the
gauge group action has ®nite-dimensional slices.

IV. The Hodge structure of the moduli stack

This section was included after a suggestion of C. Simpson. It has some
relevance to the other results (see the discussion on the degeneration of R, in
the ®nal section), but the remainder of the paper does not depend on it.

There is a well-de®ned theory of mixed Hodges structures (``m.H.s.'') for
stacks. This can be deduced, with mid e�ort, from the simplicial theory in
[D] (an account is planned for [ST]). However, I shall also indicate, in
Remark (4.7), a proof of the results ± or, at least, of one interpretation of the
statements ± that does not require this fact.

Note, ®rst, the following consequence of Corollary (2.11); it partially
vindicates the statement of Theorem 10, even in ignorance of the homotopy
theory of stacks.

Proposition (4.1) There is a natural isomorphism H ��Man; Z� � H�s �C1
�R c; BG�; Z�.
The ®rst term stands for cohomology of the constant sheaf over the analytic
site of Man.
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Proof. By the uniformization theorem, we have H ��Man; Z� �H�
an �X�; Z�.

But the latter is also the GR-equivariant cohomology of X . (

For the rest of this section, H� will denote cohomology with constant
coe�cients C. Assuming that R is smooth, of genus, g, we have a ring
isomorphism (already over Q, cf. [AB])

H ��M� � H ��BG� 
 H��G�
2g 
 H ��XG��4:2�

(however, the integer lattice can be more di�cult to determine, when there is
torsion). One obtains the algebra generators of (4.2) by pulling back those of
H ��BG� to R c � C1�R c; BG�, via the evaluation map, and then integrating
them against a basis of homology cycles in R c. In particular, the space of
primitive elements of degree �2p ÿ 1� in H��G�
2g is naturally isomorphic to
H1�R c�, twisted by the line of algebra generators of degree 2p of H��BG�.
This also holds when R c is singular, but the exponent 2g must be replaced
by the rank of H1�R c�.

Now, as was mentioned in Remark (1.4), the evaluation map on homo-
topy types arises from the evaluation morphism on stacks R c �M! BG,
classifying the universal G-bundle. The pull-back map on cohomology is a
morphism of mixed Hodge structures (see Remark 4.7). Consider the Hodge
structures on H ��M� and H ��R c �M�, and the dual m.H.s. on H��R c�.

Proposition (4.3) The slant product Hm�R c� 
 H n�R c �M� ! Hnÿm�M� is a
morphism of mixed Hodge structures.

Proof. Immediate from of the de®nition of the dual m.H.s on H��R c�, and
from the KuÈ nneth decomposition of the Hodge structure on H��R c �M�
([D], Cor. 8.2.11). (

Thus, (4.2) re®nes to a multiplicative splitting of Q-Hodge structures.
When the curve is smooth, the Hodge structure on each Hm�Rc� is pure of
weight ()m). There is a natural pure Tate structure on H ��XG� (when G is
simple, this is a polynomial algebra over Q with generators in distinct even
degrees). Since BG has a pure, Tate structure [D], we obtain the following.

Proposition (4.4) When R is smooth, the Hodge structure of M is pure.
Speci®cally, in (4.2), BG and XG have the pure, Tate structure; whereas, in the
factor H ��G�
2g, the space of primitive generators of degree �2p ÿ 1� splits
into � p ÿ 1; p� and � p; p ÿ 1� parts, according to the Hodge decomposition of
H1�R c�.

If R is singular, H 1�R c� is ®ltered by the weight-zero subspace of (0,0)
classes, while the weight one quotient splits into (1,0) and (0,1) parts ([D],
Sect. 10). The dual Hodge structure ®lters H1 R c� � by the subspace of �ÿ1; 0�
and �0;ÿ1� cycles (this is the image in homology of the normalization of
R c), the quotient having type (0,0). This induces, under the slant product
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H1�R c� 
 H 2p�BG� ! H 2pÿ1�M�, a weight ®ltration W2pÿ1 � W2p on the
space of primitive elements of degree (2p-1). Its excess-weight quotient Gr2p

has dimension equal to the number of self-crossings of R (multiply counted
where appropriate). Let ~g the genus of the normalization of R c. (

Proposition (4.5) When R is singular, the Hodge structure on M is super-
diagonal. Speci®cally, BG and XG in (4.2) still have the Tate structure, but the
``Gr'' of the middle factor splits into a pure tensor factor H��G2~g�, with the
Hodge structure in (4.4), and one factor of H��G�, with the usual structure, for
each self-crossing of R (counted appropriately). (

Remark (4.6) Recall from [D] that, in the usual structure on H ��G�, the
primitive generator of dimension �2p ÿ 1� has type �p; p�. To rephrase (4.5)
more invariantly, consider the ``pull-back'' morphism, from M to the stack
~M of G-bundles over the normalization of R c. Then, the pure subring of

H ��M� is the image of H�� ~M�, while the residual tensor factors H��G� are
the ®berwise cohomologies of this morphism.

Remark (4.7) Compatibility of the evaluation R c �M! BG with the
Hodge structure follows directly from the results in [D], because this mo-
rphism of stacks can be realized as a morphism of simplicial ind-varieties.
To exhibit such a morphism, one must take coverings of R c, and we leave
that for the end of Appendix B; but the propositions can also be proved
without that. One simply notes that, when R has a single point at in®nity,
the Leray spectral sequence in singular cohomology for the projection
X� ! BGR collapses at E2; the ®rst two factors in (4.2) come from the co-
homology of the base. It su�ces,� to determine the Hodge structures of X
and of the simplicial ind-variety BGR. The latter is determined, as above,
from the evaluation R� BGR ! BG, which is now a map of simplicial ind-
varieties. Further, the Hodge structure of X agrees with that of G�z; zÿ1�=G,
which ®bers over it with contractible ®bers. That the latter has a pure Tate
structure is seen from the evaluation morphism C� � G�z; zÿ1� ! G, noting
that the 1-cocycle in C� has type (1,1). The disadvantage of this method is
its reliance on the algebraic uniformization theorem; the earlier argument
applies to any linear algebraic group.

One should mention, in summary, that there are three relevant algebraic
objects whose homotopy type is XG, with di�erent Hodge structures. The
®rst is the standard ¯ag variety Q, which has a pure Tate structure. The
second is G�A�=G, where A is the a�ne line with a single self-intersection: its
type is super-diagonal, a primitive generator of dimension 2p ÿ 2 having
type �p; p�. Finally, the third type comes in pairs, as in XG�2g � G�R�=G,

�As H��XG� turns out to be pure, and H��M� super-diagonal at worst, the former can be lifted
into the latter, so (4.2) does re®ne to a multiplicative splitting of R-Hodge structures (but

getting the Q-splitting seems to require extra arguments)
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where R is a smooth curve with a single point at in®nity. The primitive
generators of dimension 2p ÿ 2 split into type � p; p ÿ 1� and � p ÿ 1; p�.
(Additional punctures on R would contribute factors of XG with the Tate
structure). Instead of G-quotients, we can also use the subgroups of maps
based at some point; and these spaces, and their B's, are responsible for the
Hodge structure of M.

V. The Picard group of M

This question has gathered some interest in recent literature. For the clas-
sical groups and for G2, the expected result (Prop. 5.1 below) has been
determined by case-by-case computations in [LS] (see also [BLS], and also
[KNR], for complete accounts); but ± one thing I had missed ± the cases E
and F were thought problematic. The simple holomorphic argument11 for
splitting the G�R�-extensions, given in the ®rst proof below, was apparently
unfamiliar in algebraic circles. Of course, knowing the low-degree homology
of G�R� allows for a completely algebraic rewriting. The several proofs below
amount to overkill, but they help emphasize that the notion of a ``line
bundle over a stack'' is not unusually subtle.

1. The simply connected case

One way to identify Pic�M� is by ``descent from X'' (the method used in the
cited papers). Assume that G is simple, the semi-simple analogue being
obvious.

Proposition (5.1) H 1�M;O�� � Z, and the generator lifts to the basic line
bundle L on X .

Remark (5.2) The ®rst Chern class identi®es Pic�M� with H 2
s �Man; Z�. In-

deed, for a singly punctured R, pull-back along the classifying morphism
identi®es this second group with H 2

s �XG; Z�, whose generator is c1�L�.

Remark (5.3) It is shown in [LS] that the line bundle K over M, the de-
terminant of cohomology along R c of the Ad-bundle G�G g of the uni-
versal bundle, has index 2c in Pic�M�, at least when G is not of type E or F.
As expected, this holds in all (1-connected) cases, as follows from the
computation of c1�K� (on XG) as �ÿ2c�. (One way to obtain the latter uses
Quillen's computation of the determinant bundle curvature over the ``Ati-
yah-Bott stack'' of GLN -bundles, plus the e�ect, on second cohomology of
M, of the Ad-homomorphism G! GL�g��.

11 Modulo 1-connectedness of Hol�R; G�. The argument, I believe, is due to G. Segal
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Proof. In words, we are asking which line bundles on X carry a lifting of the
GR-action. For Xhol and Hol�R; G�, these are precisely the powers of L, as
they are the only ones for which the central extension of L̂G splits over
Hol�R; G�. Indeed, the connectedness and simple connectedness of Hol�R; G�
reduces this to a Lie algebra question, which is settled by the well-known
inspection of 2-cocycles, and the absence of non-trivial characters. The ho-
lomorphic splitting determines, by restriction, a holomorphic lifting of the
GR-action, the only question being whether these lifted actions are algebraic.

Now, this is true for certain powers of the basic line bundle (those pulled
back, via a representation G! SLN , from the ``determinant'' line bundle
over XSLN ); but then, it must hold for L itself. To restate this in more
familiar form, notice that L descends to a holomorphic line bundle over
Mhol, some power of which is algebraic. Since H 0�M;O�� � C� (algebrai-
cally and holomorphically), the long exact cohomology sequence

0! H 1
�et�M; Z=�n�� ! H 1�M;O�� ����!���
n

H1�M;O�� ���!c1 H 2
�et�M; Z=�n�� ;

�5:4�
and the natural isomorphism H ��et�M; Z=�n�� � H��Man; Z=�n�� (cf. Prop.
4.1), remind us that the obstruction to existence and uniqueness of alge-
braic roots of line bundles are purely topological, and agree with the
holomorphic obstructions: they are the ®rst Chern class (mod. n), and the
¯at line bundles. In this case, H1

�et�M; Z=n� � 0, so L itself is algebraic, and
uniquely so.

(

Algebraic reformulation: Since H 0�X ;O�� � C�, the descent spectral se-
quence for cohomology of M with O� coe�cients leads, in low degrees, to
the exact sequence

0! H1�BGR;O�� ! H 1�M;O�� ! H0 BGR; H1�X ;O��ÿ �! H2�BGR;O�� :
�5:5�

Recalling the interpretations of H 1 and H 2 of BGR as one-dimensional
representations and central C�-extensions, respectively, (5.5) is a typo-
graphically-enhanced way of stating the obvious: line bundles on M are
the same, by pull-back, as line bundles on X with a GR action (the last
arrow captures the central extension arising from an attempted lifting of
the action); and the action on the lifted bundle is unique, up to a complex
character. But, as noted before, all such characters are trivial. Also, GR is
connected, so taking invariants in the discrete set Pic�X � � Z�n removes
nothing. As before, one argues that the kernel of the rightmost map is
non-zero, and is contained in the diagonal copy of Z in Pic�X �. We could
be missing a torsion obstruction in H 2�BGR;O��; but such a class would
come from H 2

�et�BGR; Z=n�, and Theorem 1 shows this last group to be
zero. (
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2. The general semi-simple case

The addition of this section was inspired by [BLS], where the Picard group
of M was determined, case-by-case, for most simple groups (for positive
genus curves). I shall give a general cohomological calculation; but ®rst, I
must explain how the statements of the previous sections are to be modi®ed
when G is not 1-connected. Let P :� p1�G�, call P̂ the dual group, and ~G the
simply connected cover of G. Then:
� The standard ¯ag variety G��z��=G��z�� is disconnected, with compo-

nents labeled by P. (All components are isomorphic to the ¯ag variety of
L ~G, but the L ~G-action on a component indexed by a central element
exp�2pi � f� is conjugated by the fractional loop z 7! zf.)
� The algebraic and holomorphic uniformization theorems hold without

changes.
� The homotopy equivalences GR � C1�R; G� and M � C1�R; BG�

continue to hold.
� The Hodge theory of Sect. IV applies, but the components of M are

labeled by P, and the complex cohomology acquires the tensor factor
H 0�M; C�, the algebra C�P� of functions on P.

As expected, Pic�M� is purely topological.

Proposition (5.6) H 1�M;O�� � H 1�Mhol;O
�
hol�:

Propostion (5.7) H1�Mhol;O
�
hol� � H 2�Mhol; Z�, by the ®rst Chern class.

The last cohomology, which is also that of C1�R c; BG�, will be computed
from the tower of ®brations over BG, with successive ®bres G�2g and XG,
associated to a bouquet of 2g loops on R c (see [AB]). For simply connected
G, we recover Proposition 5.1 from the absence of torsion in low degrees. In
general, there is a natural pull-back H 2�Mhol; Z� ! H 2�XG; Z�, and the
latter is H 2�X ~G� 
 Z�P�. Recall now ([PS]), Sect. 4.6) that, to every integral
class in H2�X ~G�, one can assign a symmetric bilinear pairing Z� ~G��
Z� ~G� ! S1, by

exp�2pi � n� � exp�2pi � g� 7! exp�2pi � hn; gi� ;�5:8�
where h i is the invariant inner product on g associated to the class. (The
integral generator of H 2�X ~G� is sent to the basic inner product, in which the
short co-roots have square-length 2.) Restricting (5.8) to P � Z� ~G� yields a
linear map a : H2�XG� ! Sym2�P̂��jPj. (This is the same map for every
component of XG�. By contracting the value of a with the indexing element,
inP, of components ofXG, we also obtain a linear map b : H 2�XG�! P̂�jPj.

Proposition (5.9) (i) In genus zero, H 2�Mhol; Z� is the kernel of b.
(ii) In genus g > 0, the torsion subgroup of H 2�Mhol; Z� is a sum of copies

of H1�R c; P̂�, indexed by the components of M. The torsion-free quotient is
the kernel of a.
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Remark (5.10) Recall that the centers of the simple Lie groups are: Z=n for
SLn; Z=2 for Sp�n� and Spin �2n� 1�;Z=2� Z=2 for Spin �4n�, Z=4 for
Spin�4n� 2�;Z=3 for E6;Z=2 for E7, and trivial for E8;F4 andG2. The pairing
(5.8) is non-degenerate for the simply laced groups and for the odd-rank
symplectic groups, and null for all others. This determines Pic (M) for all
semi-simple groups. For the classical ones, we recover the results of [BLS].

Recall also ([PS]), Proposition 4.6.3), that the kernel of a corresponds
also to ``levels'' in H 2�X ~G� at which the loop group LG has central exten-
sions that are trivial over the subgroup of constant loops. Interestingly, in
genus zero, di�erent components of M have basic line bundles of di�erent
levels; in higher genus, only those levels satisfying the most restrictive
condition survive. We shall prove (5.9) in the next subsection; now we return
to the previous propositions.

Proof of (5.6) We know that H1�BGR;O�� � H1�BGR;O�hol�, because all
one-dimensional representations of GR come from the group of components;
and H 1�X ;O�� � H 1�X ;O�hol�, just as in the simply connected case. Com-
paring the algebraic and analytic versions of the sequence (5.5), one-half of
the ®ve lemma shows that the natural map H 1�M;O�� ! H 1�Mhol;O

�
hol� is

one-to-one. But, by the argument used in the ®rst proof of (5.2), the quotient
is torsion group. This is, then, detected by comparing the exact sequence
(5.4) with its holomorphic counterpart; but cohomology with Z=n coe�-
cients being the same in both, the algebraic and analytic Picard groups must
agree. (

Remark (5.11) If R has a single point at in®nity, H 1�BGR;O�� is dual to the
group H1�R; P� of components of GR, and this is another way to explain the
torsion summand in Pic�M�.
Proof of (5.7) This follows from the exponential sequence and the vanishing
of H q�Mhol;Ohol� for q � 1; 2. This, of course, follows from Theorems 2 and
3 for Ohol coe�cients; but it can also be seen by descent from X , since GR has
no homomorphisms into, or extension by, C. (

Remark (5.12) The holomorphic argument can be avoided, if one argues, as
in the second proof of (5.1), that the problem lies only in identifying the
torsion subgroup and the integral generator of Pic�M�. EÂ tale cohomology
with torsion coe�cients can then be used to show that Pic�M� is
H 2�C1�R c; BG�; Z�.

3. Cohomological calculations

In genus zero, the homotopy type of M is an XG-®bration over BG, with
respect to the conjugation action of G. Thus, H 2�Mhol; Z� � H2

G�XG; Z�.
From the Leray spectral sequence, the later is the kernel of the transgression

H2�XG; Z� ��!d3 H 3�BG; Z�P�� � P̂�jPj :�5:13�
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(Recall that H 3�BG; Z� � H2�BP; Z�, naturally isomorphic to the dual
group P̂ of P.)

Claim (5.14) The transgression in (5.12) is the map b of (5.8).

Proof. This is the computation of [PS], Sect. 4.6 (though it served a di�erent
purpose there). To translate, note that each component of the map (5.13),
corresponding to some p 2 P, detects the obstruction for a line bundle over
the component p of LG=G to carry a lifting of the left G-action. Now, all line
bundles carry a unique ~G-action ( ~G has no non-trivial characters or central
extensions), and this comes from a G-action precisely when p1�G� � Z� ~G�
acts trivially on the ®bers of the bundle. But the computation in loc. cit.
identi®es this action with that character of P which is associated to p 2 Z� ~G�
by means of the pairing (5.8). (

In positive genus, M is an XG-®bration over the homotopy quotient
G�2g=G (again with respect to the conjugation action); speci®cally, it is the
pull-back of the path ®bration PG of G, via the ``product of commutators''
map G�2g ! G. This last map lifts to ~G, over which the path ®bration of G
splits into j P j components, with globally constant cohomology sheaves;
and everything is equivariant for the Ad action of G. (As before, the com-
ponents of the ®bre are not isomorphic as G-spaces, but his will now turn
out to be unimportant.) We can then extract, from the Leray spectral se-
quence of the XG-®bration, the exact sequence

0! H 2
G�G�2g; Z�P�� ! H2�M; Z� ! H2�XG; Z� ��!d3 H3

G�G�2g; Z�P��
�5:15�
The ®rst term is the advertised torsion subgroup H 1�R c; P̂� 
 Z�P�, and the
image of H2�M; Z� is free; so we must only identify d3. Now, the map
G�2g ! G factors into g commutator maps, followed by the multiplication
G�g ! G. The latter is split (equivariantly for the Ad action), and it follows
that the kernel of d3 is correctly identi®ed by the transgression to a single
pair of G's, corresponding to a genus one curve. The commutator G�2 ! G;
is rationally trivial, and factors through the smash product G ^ G; so d3 is
detected in the torsion subgroup P̂� P̂
 P̂ of H 3

G�G ^ G; Z�. (The ®rst
summand is H3�BG�, the second is the torsion subgroup Ext 1Z �P
P;Z� of
H 3�G ^ G; Z�. The splitting is natural, coming from the base-point section of
the G ^ G-bundle over BG:� So, projecting d3 onto the second summands
gives a map H2�XG; Z� ! �P̂
 P̂� 
 Z�P�.

Claim (5.16) The projected transgression H 2�XG; Z� ! �P̂
 P̂� 
 Z�P� is
the map a of (5.8).

Remark (5.17) Projection to the ®rst summands P̂�jPj is, of course, the map
b, as in (5.14); but it leads to no extra restrictions, because its kernel con-
tains that of a.
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Proof. The projected d3 arises by forgetting the Ad action on G ^ G. Now,
the generators of each ®ber component of the pulled-back path ®bration
PG�G ~G transgress to the generators of H 3� ~G; Z�; so the question becomes
to identify the generators of the latter, after pull-back to H3�G ^ G� by the
(lifted) commutator map. This map is rationally trivial, so the pull-back
lives in the torsion subgroup Ext1Z �P
P;Z�, as it should. The restriction
H 3�G ^ G� ! H 3�G ^ T � is injective, so it su�ces to identify the pull-back to
the latter. Now, the commutator G ^ T ! ~G factors through F ^ T , where F
is the ¯ag variety of G. Since F has no torsion, we lose no information by
lifting the class to F ^ ~T ( ~T is the maximal torus in ~G). Note that we have a
natural isomorphism of H3�F ^ ~T � with H1�~T � 
 H 1� ~T �, by the transgres-
sion in the Leray spectral sequence of ~G over F . From the de®nition in (5.9)
of the pairing of P, the proof of (5.16) will be completed, if we verify the
following lemma. (

Lemma 5.18. When G is simple, the generator of H 3� ~G� corresponds, under
the above procedure, to the pairing on H1�~T � coming from the basic inner
product in t.

Proof. We show that the pairing is symmetric; since it is clearly Weyl-
invariant, we only have to ®nd the normalization factor, which is accom-
plished by restriction to the principal SL2. For the latter, the commutator
map P1 ^ S1 ! SU2 is generically 2-to-1, so the principal co-root acquires
square-length 2, as predicted.

Now, in getting to H1�~T � 
 H1�~T �, we lift the cocyle from F ^ ~T to
~G ^ ~T , write it as a co-boundary, and restrict to ~T ^ ~T . We could also get
there through the commutator map ~T ^ F ! ~G, and symmetry is established
by showing that the two classes thus constructed agree. But H3� ~G� pulls
back trivially to ~G� ~G; so we can use the ``same'' trivialization of the cocyle
both over ~G ^ ~T and over ~T ^ ~G, and so the two pairings on H1� ~T � must
agree. (

VI. The van Est spectral sequence

The next two sections contain the proofs of Theorems 2 and 20. Here, we
show the following.

Proposition (6.1) There is a spectral sequence with Ep;q
2 � H p

G�R��H
 V

H q

s �GR��, converging to H ��g�R�;H
 V�. It is compatible with products.

Lie algebra cohomology with C coe�cients is a ring, acting on the coho-
mology with arbitrary coe�cients; and there are similar product structures
on the E2 term. The statement is that the di�erentials are derivations for
these products, and that the structure on E1 is the ``Gr'' of the abutment.
Compatibility with products will follow from the naturality of the con-
structions.

Borel-Weil-Bott theory on the moduli stack of G-bundles over a curve 31



Remarks (6.2) (i) Hq
s �GR� carries the translations action of GR. However,

when G is simply connected, GR is connected, so its action on cohomology is
trivial; the factor H q

s �GR� can then be pulled out of the group cohomology
coe�cients.

(ii) What appears naturally in the E2 term is the stratifying (or formal
Alexander) cohomology of GR. Similarly, the abutment is naturally the
cohomology of the formal group of GR. In this generality, (6.1) holds for
any group sheaf over F, and the true content of the Proposition lies in the
identi®cation of stratifying cohomology with H q

s �GR�; the identity between
cohomology of the Lie algebra and of the formal group is obvious in
characteristic zero (Lemma 6.10).

A direct proof is given in the ®nal subsection, and the reader may skip
ahead to it. However, it seemed sensible to start by reviewing the simple
situation of a complex linear algebraic group. I then recall the Shapiro
spectral sequence, analogous to (6.1), but where the Lie algebra is replaced
by a subgroup. Afterwards, the morally correct proof of (6.1) is explained, in
which the crystalline cohomology of GR appears; some ingredients of this
argument will resurface in the o�cial proof anyway. Finally, the o�cial
proof of (6.1) uses only rudiments of the cohomology theory of simplicial
objects. (See [D] for some background).

1. The case of a linear algebraic group

The Abelian categories Rep�K�, or locally ®nite representations of a linear
algebraic group K, and that of all its Lie algebra representations, Rep�k�, are
related by a pair of adjoint functors (Res, Ind). The ®rst functor is restric-
tion to k, while Ind�V� is the largest locally ®nite, K-integrable subrepre-
sentation of V 2 Rep�k�. This is the space V�K�k of V-valued polynomials on
K that are invariant under the action of k, simultaneously on V and, by right
translation, on K. (K then acts of V�K�k by left translations.)

The group cohomology functors H�K are the right derived functors of
���K . Because each V�K� is injective in Rep�K�, group cohomology is resolved
by the complex of algebraic Eilenberg-MacLane cochains. The composition
���K Ind of Ind with the left exact functor of K-invariants is the left exact
functor ���k of Lie algebra invariants, and there is a Grothendieck spectral
sequence for the composition of functors

Ep;q
2 � Hp

K�Rq Ind�V�� ) H ��k; V� :�6:3�

It follows from the de®nition that RqInd�V� � H ��k; V�K��. For the trivial
representation, this is the ordinary cohomology Hq�K� of the underlying
analytic space, as the Koszul resolution C�K� 
 K��kt� of k-cohomology is
isomorphic to the algebraic de Rham complex of K. In general, if V is a
restricted K-representation, the diagonal k-action on V�K� is isomorphic to
the action on K alone: the untwisting isomorphism sends t 2 V�K� to the
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function �k 7! k � t�k��. Therefore RqInd�V�� Hq�t; C�K��
V � H q�K� 
 V,
but with K now acting diagonally, and (6.3) becomes the van Est spectral
sequence

Ep;q
2 � Hp

K�Hq�K� 
 V � ) H ��t; V � :�6:4�

When K is connected, it acts trivially on H ��K�, and E2 factors as
H p

K�V� 
 H q�K�.

Remark (6.5) The spectral sequence (6.4) applies in great generality (real or
complex Lie groups, and even to topological groups); but the choice of
Abelian categories of representations may not be obvious. For linear alge-
braic groups, (6.4) always collapses at E2, a property not shared by the
analytic ones12. Collapse in the algebraic case can be shown from a uni-
potent � reductive semi-direct decomposition. (It can also be deduced from
Hodge-theoretic properties of BK, speci®cally, from the vanishing of the
map Hp�BK; C� ! H p�BK;O��.

2. The Shapiro spectral sequence

The reader may be familiar with a similar construction, in which the Lie
algebra k is replaced by a subgroup L � K. In that case, (6.3) is replaced by
the following spectral sequence (text-book material when K; L are ®nite
groups, in which case q � 0):

E2
p;q � H p

K�RqIndK
L �V�� ) H �L�V� :�6:6�

From the descent spectral sequence K ! K=L, it follows that
RqIndK

L �V� � Hq�K=L;V�, where V is the sheaf of (algebraic) sections of
the vector bundle associated to V over K=L. In this picture, (6.6) is the
``descent spectral sequence from K=L to BL''.

A general proof of (6.6), covering the needed cases, mirrors the o�cial
proof of (6.1) below, and we shall not rewrite it. We only note that the
relevant quotient K=L, in RqIndK

L , is the sheaf-theoretic quotient in the
eÂ tale topology; this is the obvious quotient when K and L are honest
algebraic groups. The Shapiro spectral sequence will be used in Sect. VII.

3. Relation to ``crystalline cohomology''

Before giving the o�cial proof of (6.1), let me describe the ``correct'' ar-
gument that applies in much greater generality. It relies on the homotopy
theory of simplicial sheaves over F, as in [Bro], [J] (or on a theory of 1-stacks

12The Heisenberg group with center C� gives a counterexample (using constant coe�cients)
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over big eÂ tale sites, thus a bit more general than [LM]); in the absence of a
complete exposition, it would be inadequate by itself. The argument applies
to any formally smooth group sheaf over F, in the eÂ tale topology13 .

Uno�cial proof of (6.1) Consider the formal group K̂ of K. The short exact
sequence of group sheaves 1! K̂ ! K ! K=K̂ ! 1 leads to a ®ber bundle
K=K̂ � BK̂ { BK. (This may seem like wishful thinking, but a model for
these objects will be given below.) The 0-stack K :� K=K̂ is the crystalline
stack of K. (If K is not formally smooth, this is, instead, the stratifying stack
of App. A). For any scheme Y , we have Hom �Y ; K� � Hom�Yred; K�, and
the over category F=K is the (big) crystalline site of K [Gro2]. This vocab-
ulary comes with a theorem.

Proposition (6.7) (``Crystalline cohomology'') H ��K;O� � H �s �K; C�.
We postpone of the proof, and note, by Lemma A.18, that Proposition 6.7
will remain true for a direct product of copies of O, if C is replaced by the
corresponding vector space.

Remark (6.8) The functor Hom�:; K� is called by Simpson [Sim] the de
Rham functor of K. Proposition 6.7 generalizes to a simplicial scheme (lo-
cally of ®nite type), instead of K, and can be proved using the methods of
loc. cit. (an account is planned for [ST]). Any ind-variety, such as GR, is
weakly equivalent (in the context of App. B) to such a simplicial scheme,
and this can replace, in the proof below, the use of Alexander cohomology.

To continue, consider the O-module F :� �point � F�=K over BK,
coming from a K-representation F. When K � GR and F � H
 V, one
should take care that F is not a vector bundle; rather, it will be the push-
down ofL
h 
V from the stack X=GR to BGR. The restriction ofF to BK̂
is trivial along the ®ber K=K̂ (for GR, this means it is a product of copies of
O); Prop. 6.7 implies that the Leray spectral sequence takes the form

Ep;q
2 � H P �BK; H q

s �K;F�� ) H p�q�BK̂;F� :�6:9�

When H q
s �K; C� is ®nite-dimensional, the E2 term is Hp

K�F
 H q
s �K; C��, and

the following proposition shows that (6.9) is the desired spectral sequence
(6.1).

Proposition (6.10) H ��BK̂;F� � H ��k;F�, canonically.
Assuming the two propositions, the proof of (6.1) is completed by de-

scribing a world containing the mythical creatures BK;BK̂ and K, with their
advertised properties. The 2-category of 1-stacks over F would do; but we
need the simplicial objects for cohomology anyway.

13Or over A in the analytic topology, for the complex analytic statement
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For BK, we take the simplicial bar realization EK�=K. Next, let K� be the
Alexander stack of K of (A.4); this is the formal completion of EK� about
the diagonal copy of K. Finally, while the bar construction will not do for
BK̂ (the obvious map to BK� is not a ®ber bundle), we can take instead
B0K̂� :� �EK� � K��=K. The projection to BK̂� (bar construction) is a weak
equivalence (a ``trivial local ®bration'', as de®ned in [Bro]). On the other
hand, B0K̂� does map to BK� through the ®rst factor, with ®ber K�:�B'K̂� is a
``twisted Cartesian product, with simplicially discrete structure group K and
®ber K�''; see [May], Ch. 4, for the de®nition.) (

4. Two useful lemmas proved

Proof of (6.7). When K is a group variety, the proposition follows from
[Gro2]. In general, H��K;O� is isomorphic to the Alexander cohomology
AH � (see App.A) of the ind-variety GR: the map K ! K is a covering (al-
ready in the Zariski topology), and the Alexander stack K� of K consists of
the ®bered powers of K over K. By Lemma (A.20), AH��GR� is the inverse
limit of the AH ��G�R�d�; by the Alexander cohomology theorem (A.5), these
are isomorphic to the singular cohomologies, whose inverse limit is
H �s �G�R�; C�, by Prop. 2.1. (

Proof of (6.10). Here, we use the bar construction BK̂�. Let p : U�k� ! C be
the projection whose kernel is the maximal ideal k � U�k� of the universal
enveloping algebra. The free resolution of the trivial left U�k�-module C

0 C U�k�  U�k� 
 U�k�  � � �  U�k�
p  � � � ;�6:12�

(k acts on U�k�
p diagonally by left multiplication), with di�erential

@�u0 
 � � � 
 up� �
X

i

�ÿ1�ip�ui� � 
 � � � 
 uiÿ1 
 uu�1 
 � � � 
 up ;�6:13�

leads to a U�k�-injective resolution of F (where k acts both on U and on F):

0! F! Hom�U�k�;F� ! Hom�U�k� 
 U�k�;F� ! � � � !
Hom�U�k�
p;F� ! � � ��6:14�

Taking invariants for the k-action in (6.14) produces a resolution of
H ��k;F�. Note that Hom�U�k�
p;F� is k-isomorphic to C�K̂�p;F�, the
pairing C�K̂�p;F� 
 U�k�
p ! F being right di�erentiation, followed by
evaluation at the identity. Under this isomorphism, (6.14) is the chain
complex associated to the co-simplicial complex of global sections of F
over BK̂�. (
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5. O�cial proof of Proposition 6.1

The statement is purely cohomological, and the homotopy theory that was
needed in the previous approach can be concealed by the use of bi-simplicial
spaces. Let K � G�R�, recall that its action of X has a canonical lifting to
F :�L
h 
V, and call F� the associated bundle on the simplicial
homotopy quotient X�. We already noted the Leray spectral sequence (1.9),
with

Ep;q
2 � H p�BK�; H q�X ;F��� ) H��X�;F�� :�6:15�

The E2 term is, by our de®nition, H p
K�H q�X ;F��. (When K is a group acting

on a variety, one can show that Hq�X ;F� is locally K-®nite, in agreement
with the theory of Subsect. 1; cf. Prop. 8.10). Let F � C�X ;F�, and recall
that Hq�X ;F� vanishes for q > 0, by the theorem of Kumar and Mathieu;
we get, from the collapse of (6.15),

H ��X�;F�� � H �K�F� :�6:16�
For the analogous simplicial homotopy quotient X̂� :� �X � K��=K, the
collapse of the spectral sequence for X̂� ! BK̂� gives

Hp�X̂�; F̂�� � Hp�BK̂�; C�X ;F�� � H p�k;F� :�6:17�

Let now X�� be the bi-simplicial space �X � EK� � K��=K. On one hand,
X�� is ®bered (in simplicial spaces) over X̂�, with the cohomologically
trivial ®ber EK�. If F�� denotes the pull-back of F̂� to X��, this implies
that H ��X��;F��� � H��k;F�. On the other hand, X�� is ®bered in
simplicial spaces over X�, with ®ber K�. The corresponding spectral
sequence is

Ep;q
2 � Hp�XK ; H q�K�;F���� ) H ��X��;F��� � H��k;F� :�6:18�

Because F̂� is obtained by restriction of F�;F�� is isomorphic to the pull-
back of F� from this second projection, so it restricts to a trivial bundle
over K�. Thus, H q�K�;F��� � H q�K�;O� 
F�. The isomorphism
H q�K�;O� � Hq

s �GR� in Proposition 6.7, combined with (6.14) and (6.16)
gives

H p�BK�; Hq
s �G�R�� 
 F� ) H��g�R� ;F�;

which is the desired spectral sequence, at least for F � H0;h 
 V. To get
other H's, one twists F with appropriate vector bundles on X . (
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VII. Collapse of the spectral sequence and its consequences

1. The edge-homomorphism

The collapse at E2 of the spectral sequence will follow by considering
products. The E2 term is a module over H�G�R��C� 
 H�s �GR�, and the higher
di�erentials are determined by their values on E0;q

2 � H q�GR� in this second
sequence. To allay any concerns, note that our knowledge of Lie algebra
cohomology (Sect. I) already implies that all the Hp

G�R� are ®nite-dimensional.
The following lemma requires no smoothness assumption on R.

Lemma (7.1) The vertical edge homomorphism H ��g�R�; C� ! H �s �GR� is
surjective.

Proof. The homomorphism can be obtained by regarding a Koszul repre-
sentative of a class in H��g�R�; C� as a left-invariant di�erential form on GR.
(The unceremonious switch, from the Alexander cocycles of App. A, to de
Rham forms, is justi®ed by the left GR-equivariance of the double complex
of (A.6) which realizes the quasi-isomorphism between the Alexander and
de Rham complexes). Choose a loop on R; restriction to this loop gives the
following commutative diagram (where LG stands for the smooth loop
group).

H ��Lg;C� ! H �s �LG�
# #

H��g�R�;C� ! H �s �GR�
�7:2�

The horizontal maps are the edge homomorphisms for the van Est spectral
sequence for LG (see [PS], Sect. 14.6); the vertical maps are induced by
restriction. Now, the top arrow is an isomorphism (loc. cit.), and H�s �GR� is
generated, as a ring, by the images of the right arrow. Surjectivity of the
bottom arrow follows. (

2. Products in Lie algebra and group cohomology

When R is smooth, Lemma 7.1 and our formula for Lie algebra cohomology
imply that the (shifted) edge homomorphism H ��`�g�R�;H
 V�
! H `

G�R��H
 V� 
 H�s �GR� is bijective, whence the vanishing of group

cohomology in degrees other than `. Further, the van Est ®ltration on
H ��g�R�;ÿ � being trivial, the product structure is determined by that on E2.
We conclude the result stated in [T2], Proposition 2.8.

Proposition (7.3) H ��g�R�; C� ! H ��GR� is a ring isomorphism, and
H ��g�R�;H
 V� is freely generated by H `�g�R�;H
 V� under the cup-product
action of H��g�R�; C�. (
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When R degenerates to a nodal curve R0;H ��GR� loses one factor of
H ��XG� for each node. By [T2], the dimension of H ��g�R�; :� remains un-
changed, so the collapse of (7.1) at E2 implies an (abstract) vector space
isomorphism H��`G�R0��C� � H `

G�R0� 
 H��XG�N �; but the ring structure is more
delicate. The natural homomorphism H �G�R0��C� ! H��g�R0�; C� makes the
second ring into a free module over the ®rst, and our knowledge, to this
point, is expressed by the existence of a canonical ring homomorphism

H ��g�R0�; C� 
H�
G�R0 �

C � H �s �G�R0���7:4�

Luckily, the right-hand side is a free graded algebra, so there exists a (non-
canonical) lifting H �s �G�R0�� ! H ��g�R0�; C�. To describe the ring structure
on H�G��0��C�, denote by ``�'' the union of two formal disks crossing at the
origin, and by G��� the corresponding group of G-valued maps. An inclu-
sion G�R0� � PnodesG��� is obtained by embedding a copy of ``�'' at each
node.

Lemma (7.5) (a) H�G����C� is a nilpotent ring.
(b) The inclusion induces an isomorphism in group cohomology with C

coe�cients.

Remarks (7.6) (i) If we ®lter g�z; zÿ1� by the absolute value of the z-degree,
the ring (a) is isomorphic to Gr�H��XG��, for the induced ®ltration on
H ��XG� � H ��Lg; g; C�; but I do not know a geometric meaning for it, or a
good way to compute it. (For SL2, all products are zero; but in SL3, there is
a non-zero product H2 ^ H 2 ! H 4.)

(ii) The cohomology isomorphism illustrates a certain independence of
geographically distinct regions of the surface (the same independence ap-
pears in the e�ect, on cohomology, of twisting by V). This ®ts in with G.
Segal's cutting and sewing philosophy [S] in Conformal Field Theory; at
level zero, the cup-product seems to be a cohomological version of the
``fusion product''.

Observe that the lemma and the discussion imply Theorem 20 (and
Proposition 2:80 of [T2]).

Propostion (7.3¢) H ��g�R�; C� � H�G�Ro��C� 
 H��GR0� (non-canonically), and
H �G�R0��C� is a nilpotent algebra. (

3. Proof of Lemma 7.5

Recall the Shapiro spectral sequence (7.6) (the Leray spectral sequence for
the ®ber bundle K=L � BL{BK). When the quotient K=L is a�ne, so is the
morphism BL{BK, and the sequence collapses at E2, absent any higher
RqInd. Such is the case for K � G��z�� � G��z�� and L � G���, with K=L � G,
giving
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H �G����C� � H�K�IndK
L �C�� � H �G��z���G��z����UU
 Ut�

�aUH �G��z���U� 
 H�G��z���Ut� :�7:7�

The sum goes over the irreps of G, and K acts, by the evaluations at 0, on the
two factors. The ring structure on the right-hand term comes from the Peter-
Weyl isomorphism of aUU
 Ut with the algebra of functions of G. If we let
G���z�� be the based group of formal disks passing through 1 in G, there is the
isomorphism

Hq
G��z���U� � �Hq

G���z���C� 
 U�G�7:8�

either from (6.6), or from the Hochschild-Serre spectral sequence for the pair
�G���z��;G��z���. Using this and van Est for G���z�� gives the isomorphisms

Hq
G��z���U� � Hq�g�z�; g; U� � 0; if U is singular or q 6� `�U�;

C; if U is regular and q � `�U� .
�

�7:9�

``Regular'' and ``singular'' refer to level zero. We can be casual about
polynomials versus power series, because of the C� rotation action, with
®nite-dimensional eigenspaces.

Remark (7.10) The ®rst isomorphism in (7.9) also follows from a relative
van Est spectral sequence for the pair �G��z��;G�, with topologically trivial
quotient G���z��.

Proof of 7.5(a) To see nilpotency of H �G����C�, it su�ces to check the fol-
lowing.

Claim (7.11) The cup-product map H `�V��g�z�; g; V� 
 H `�W��g�z�; g; W� !
H `�V��`�W��g�z�; g; V
W� vanishes, for all but ®nitely many pairs �V;W�,
when G is simple.

Proof of (7.11) There is another quantity additive under products beside the
degree, namely the energy (best de®ned on the Koszul complex). Now, while
the length is roughly linear in the highest weight, the energy is quadratic: it
equals the eigenvalue of the Casimir, divided by c. This leads to a mismatch
when one of the degrees is large, forcing the product to vanish. (Note that,
for simple G, the dot product of two dominant weights is bounded below by
a constant multiple of the product of their norms). (

Proof of 7.5(b) Call ~R0 the normalization of the nodal curve R0, and note
that, for the pair K � G�~R0�; L � G�R0�; IndK

L �C� is a tensor product of
Peter-Weyl sums, with one tensor factor for each node. (Again there is no
higher Rq Ind, because the quotient of the groups is a product of G's.) More
precisely, the new induction-restriction isomorphism
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H �L�C� � H �K�IndK
L �C���7:12�

is compatible with (7.7), via embedding the ``�'' at the nodes of R0. The
proof is completed by verifying the following, ®nal claim. Let D be a union
of formal disks Di at chosen points xi 2 ~R0;U :�biUi�xi� an evaluation
representation of G�~R0� (and G�D�).

Claim (7.13) The inclusion G�~R0� � G�D� induces an isomorphism H �G�D��U� ~!
H �G�R��U�.

Proof. This is obvious when U is the trivial representation: both sides are C,
and con®ned to degree 0. Also, both cohomologies vanish when U is sin-
gular (at level zero). To extend it to all regular representations, recall from
[T1], Sect. 3.5, that H��g�z�; g; U� can be determined inductively, over a
minimal sequence of simple a�ne Weyl re¯ections relating the highest
weight of U to 0. The inductive step is the ``Bott re¯ection'' from the original
proof of BWB; it applies equally to our group cohomology setting, one
factor of U at a time, and it is compatible with the inclusion G�R� � G�D�.
The joy of retracing all the steps is left to the reader. (

4. Application: computation of some Lie algebra cohomologies

Theorem 2 allows one to easily calculate of some of the Lie algebra co-
homology groups that required spectral sequence calculations in [T2]. Let
l � g�R� be a subalgebra de®ned by evaluation conditions of order zero
(vanishing or equality of the functions at selected points of R). Calling L
the corresponding subgroup of GR, the van Est spectral sequence implies
that

H ��l;H
 V� � H�L �H
 V� 
 H �s �L� ;�7:14�

its collapse at E2 following just as the ®rst subsection. The ®bration
L,!GR{B, homotopy equivalent to the ®bration of the topological map-
ping spaces (cf. Sect. III.2), determines the homotopy type of L as a product
of XG's (and possibly a copy of G). The quotient B is a product of copies of
G, and we get H �L�H
 V� � H �G�R��H
 V
 Ind

G�R�
L �C��, from Shapiro's

spectral sequence. This can be determined using Theorem 2, because
Ind

G�R�
L �C� is a product of evaluation representations of GR. Variations are

possible, for subalgebras de®ned by parabolic evaluation conditions; ®nding
the homotopy type of L becomes a brief and amusing exercise.

Remark (7.15) When L is de®ned by higher-order evaluation conditions, the
induced representation is not of the type studied here, and we can, at best,
set up a spectral sequence for group cohomology. There is a suggestion, due
to B. Feigin, who has checked special cases, that Lie algebra cohomology is
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rigid under the coalescence of marked points into higher-order vanishing
conditions; but the general case does not seem to be known.

Taking this approach to the calculations of [T2] might seem circular,
since the Lie algebra cohomology (1.1) was used in the proof of Theorem 2.
However, we shall now see how (1.1) reduces to the genus 0 result of [T1],
bypassing the spectral sequence computations in [T2]. For simplicity, con-
sider the case of a single puncture, and remove a factor H ��g; C� from the
cohomologies by switching to H ��gR; g;H
 V�, cohomology relative to the
constants g � gR. As in [T2], we deform R to an a�ne line R0 with g simple
nodes, and show that the ``special'' �g�R0�; g�- cohomology vanishes in all
odd (or in all even) degrees. This implies the rigidity of cohomology under
specialization, and thus also computes H� gR; g;H
 V

ÿ �
. One can use group

cohomology, as above, but let us proceed more geometrically, using the
stack M.

The ®bration of moduli stacks corresponding to the compacti®cations of
R0 and ~R0

G�g ,!M0 { ~M0�7:16�

is not a principal bundle; rather, each ®ber factor G, corresponding to a
node xk with inverse images x0k and x00k in ~R0, is the diagonal quotient of
G�x0k� � G�x00k � by G. (7.16) is, however, an a�ne ®ber bundle, and the Leray
spectral sequence collapses at E2, giving

H � M0;L

h 
Vÿ � � H� ~M0;L


h 
V
U
� �

;�7:17�

where U is the sheaf of ®berwise functions. Now, Lie algebra cohomology
(relative to g) incorporates sheaf cohomology over the M's and singular
cohomology of G�R0�=G. The ®ber sequence G�R0�=G! G�~R0�=G { Gg

is homotopy equivalent to the path ®bration of G�g. All higher di�erentials
in the Hochschild-Serre sequences of [T2] come from the Leray spectral
sequence of this ®bration. More precisely, G�~R0�=G is contractible, so van
Est and Theorem 3 give an isomorphism

H� ~M0;L

h 
V

� �
� H� g�~R0�; g;H
 V

ÿ �
;�7:18�

which, by the main result of [T1], lives only in degree `�V�. Given (7.17), we
see that

H� M0;L

h 
Vÿ � � H ` ~M0;L


h 
V
� �

H�ÿ` XG�g� � ;�7:19�

just as in [T2], Proposition 3.8, using (7.18) and Bott's Morse theory de-
scription of H��XG� (U splits into g tensor factors, each of which decom-
poses as a sum indexed by the Weyl alcoves in the positive chamber). But the
spectral sequence
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H p M0;L

h 
Vÿ �
 H q G�R0�=G� � ) H � g�R0�; g;H
 V� ��7:20�

collapses at E2, because, combining (7.18) and (7.19), we know that the left-
hand side is

H ` ~M0;L

h 
V

� �

 H pÿ` XG�g� � 
 H q XG�g� � ;�7:21�

con®ned to dimensions having the parity of `. Thus, (7.21), is also the
abutment of (7.20).

VIII. Proof of Theorem 4

Recall that L̂G is the product of the L̂iG, and L̂�G its subgroup of formal-
holomorphic loops. The generalized ¯ag variety XR :� L̂G=GR is an eÂ tale-
trivial, principal L̂�G-bundle over M, because the latter is equivalent to the
double coset stack L̂�G n L̂G=GR, by the uniformization theorem. Further,
the pull-backs to XR of the bundles L
h and V over M agree with their
homonyms in (0.5), since L descends from the basic line bundle over L̂G,
andV is, in both cases, associated to the evaluation representation V of GR.

Choose G-irreps U1; . . . ;Un (of length zero) and an HWR �H. Using the
notations of Sect. I, note the following, from the well-known Lie algebra
result and the van Est spectral sequence:

H �L̂�G Ut 
 �H
ÿ � � C; if �H � �HU and � � 0;

0; otherwise .

�
�8:1�

From here, we consider the descent spectral sequence for XR !M, with

Ep;q
2 � H p

L̂�G
Ut 
 H q XR;L
h 
Vÿ �ÿ �) H � M;L
h 
V
Utÿ �

;�8:2�

whereU is the evaluation bundle over M obtained by attaching the Uk at the
points at in®nity. It will follow that the spectral sequence collapses at
E2 � E0;q

2 , which picks out the multiplicity space of �HU in H q XR;L
h 
Vÿ �
,

once we prove the following claim. (

Proposition (8.3) All spaces H q XR;L
h 
Vÿ �
are sums of HWRs of L̂G.

Proof. We shall show, in Lemmata 8.6±8.8, that each H q is a locally-®nite
representation for L̂�G; and the statement will then follow from the next
observation.

Lemma (8.4) The following two conditions on a g��z��-representation H are
equivalent:
(a) H is locally g��z��-®nite and has a countable vector space basis.
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(b) H admits an increasing ®ltration, whose graded components are G-
integrable generalized Verma modules, or quotients thereof.
If, moreover, H arises from a G��z��-representation, then it is actually a sum of
HWRs.

Remarks (8.5) (i) The conditions do not quite imply that H belongs to
the Beilinson-Bernstein category O; stronger ®niteness assumptions are
needed.

(ii) We say that H ``arises from a G��z��-representation'' if the sheaf it
represents (over Sch) carries an action of the group sheaf G��z��, whose
in®nitesimal action is that of g��z��. However, we can restate this in human
language: (a) implies that the action of g��z�� can be exponentiated to G��z��.
As this subgroup and its conjugates generate G��z��, we can simply require
that the exponentiated action and its conjugates combine to an action of
G��z��.

Proof. That (b)) (a) is obvious. To see (a)) (b), choose a highest-weight
subspace, from the generated g��z��-representation, note that the quotient
will also have property (a), and keep going. (The ``countable basis'' as-
sumption avoids the need for trans®nite induction; otherwise, one should
consider ®ltrations be indexed by arbitrary well-ordered sets.) For the last
statement, recall that HWRs are the only quotients of Verma modules that
carry the group action, and that all extensions of group-HWRs are split.

(

Lemma (8.6) H q�XR;L
h 
V� is naturally isomorphic to H q M;L
h
ÿ


F
V�, whereF is the vector bundle over M associated to the left regular
representation F of L̂�G. The right L̂�G-action on F corresponds to the natural
action of L̂�G � L̂G on cohomology.

Proof. Clear from the fact that XR is a principal bundle over M, with
structure group the a�ne group scheme L̂�G. (

Lemma (8.7) (a) The cohomology of an increasingly ®ltered vector bundle
over a ®nitely presented 1-stack is ®ltered, in every degree.

(b) An algebraic group action on the setting (a) leads to a locally-®nite action
on cohomology.

Proof. (a) Such a stack is equivalent to a simplicial scheme, a�ne and of
®nite type in each dimension. The space of sections of a ®ltered bundle over
such a scheme is ®ltered; so is, then, each component of the total coho-
mology of the bundle. To see (b), call K the group and S the stack; arguing
as in (a) shows that all higher direct image sheaves of the vector bundle,
along the projection from the simplicial homotopy quotient S=K to BK, are
vector bundles over BK (possibly in®nite-dimensional); they must then come
from locally-®nite K-representations. (
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Lemma (8.8) Hq M;L
h 
F
Vÿ �
is isomorphic to the cohomology of the

same bundle over a ®nitely presented, open substack of M.

Proof. It is known that M has a smooth strati®cation by locally closed
substacks, of ®nite type and increasing codimension. Removing the strata of
codimension higher than q� 1 does not a�ect coherent sheaf cohomology in
dimensions up to q. (

End of Proof of Proposition 8.3. The bundleF is ®ltered by subbundlesFN ,
on which the L̂�G-action factors through the algebraic group of G-valued
germs to order N . (They correspond to the F-subspaces of functions on L̂�G
that are pulled back from these groups of N -germs). By Lemmata 8.7 and
8.8, Hq M;L
h 
F
Vÿ �

is ®ltered by locally-®nite L̂�G-subrepresenta-
tions, and is thus locally L̂�G-®nite. (

Remark (8.9) The ``®nite type'' restriction in Lemma 8.7 explains, in a way,
the failure of the Peter-Weyl theorem for L̂G. It is true that the space of
sections ofL
h over L̂G is the space of sections of the bundleF
L
h over
the original ¯ag variety X ; however, this last space will be an inverse limit of
locally ®nite L̂�G-representations, and this need not be locally L̂�G-®nite.

Remark (8.10) The theorem applies to a larger class of vector bundles over
XR, such as the exterior powers of the cotangent bundle. It fails for the
tangent bundle, whose space of regular sections, when R is the a�ne line,
contains the Lie algebra g��z��.

Remark (8.11) By the same argument, the cohomologies of certain L̂�G-
integrable D-modules over XR will satisfy condition (b) in Proposition 8.3.
Such D-modules are pulled back from M; and a su�cient condition for the
proof to work is that, in any given degree, local cohomology supported on
the far-away Atiyah-Bott strata should vanish. For adequate generality, we
should consider D-modules on stacks of bundles with additional structure,
allowing gauge-®xing to ®nite order at prescribed points of Rc; for instance,
parabolic bundles. They pull back to L̂�G-integrable D-modules over ``¯ag
varieties'' which are ®ber bundles over XR.

IX. Closing remarks

The use of Lie algebra cohomology seems unavoidable in the present de-
termination of the sheaf cohomology H � M;L
h 
Vÿ �

, because the latter is
not rigid under the nodal degeneration of R, and there is no obvious way to
control its jump. That is, the degeneration M!M0 is not ``¯at''. This can
already be suspected from the ®bration (7.16): M0 is ``less compact'' than M,
because of the a�ne ®bers G. This observation requires a large grain of salt,
or else the ®bration sequence G! �{BG might suggest that the point is not
compact. However, inspection of singular cohomology, for which the
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spectral sequence for (7.16) collapses rationally, and comparison with
Proposition (4.5), shows that the ®ber G�g is the one responsible for the
superdiagonal part of the Hodge structure of M0. This suggests that the
non-compactness of the ®ber is ``genuine'', and raises the question of ®nding
a ``¯at'' degeneration of M, which ``compacti®es'' M0, and whose coho-
mology is computable.

As a ®nal observation, the present proof the Borel-Weil-Bott theorem for
M is ultimately based on the genus zero Lie algebra theorem of [T1]. That
really was Theorem 3 for the genus zero stack, but the paper was written
within a di�erent framework, and one suspects there should be a shorter
proof of the result14 (using the language of stacks). One approach is sug-
gested by the result of Kumar and Narasimhan [KN], who prove the van-
ishing of higher cohomology ofL
h on the GIT moduli space of semi-stable
G-bundles over a smooth curve (in genus � 2), using a theorem of Grauert
and Riemenschneider (a version of Kodaira vanishing). Now, the agreement
of the cohomology of positive line bundles over M, possibly enhanced with
parabolic structures, with that over the semi-stable moduli spaces, is pre-
dicted by the quantization conjecture. In ®nite dimensions, there are some
well-understood theorems on the subject (cf. [GS]). While the stack M is not
of ®nite type, the Shatz strati®cation [Sha] decomposes it into smooth, ®nite
type substacks (corresponding to the Atiyah-Bott strata on the space of
connections), closely related to semi-stable moduli spaces of bundles for
subgroups of G; and these could be studied using traditional GIT methods.

Recall now that the result in [T1] was also based on a variant of the
Kodaira vanishing theorem. It may be interesting to ®nd a corresponding
theorem for stacks, powerful enough to apply directly to M.

Appendix A: Alexander cohomology

When applying the van Est spectral sequence for GR, we needed to know
that the Lie algebra cohomology of its space of algebraic functions com-
puted the cohomology of the underlying topological space. Absent an ex-
haustion of GR by smooth subvarieties, a naõÈ ve de Rham argument does not
apply15, for the intrinsic de Rham complex of a singular variety may not
compute the correct cohomology. (One does get the right answer by using
smooth formal embeddings [Har], but ®nding an inductive system of such
where the sheaf Mittag-Le�er conditions applied seemed non-trivial.) The
solution was to use a di�erent resolution for cohomology, known in the
topological world as Alexander-Spanier cohomology, and to algebraic

14 With the techniques of [T2], it can be reduced to the case of three marked points on the

sphere, which, for SL2, can be done by hand; but the higher-rank case is not clear
15 Using the methods of [Sim], this can now be ®xed (see [ST]). However, I have kept the original

argument, as the proof of the Alexander cohomology theorem (A.5) may have some intrinsic

interest
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geometers as stratifying cohomology. The fact that the latter computes
``classical'' cohomology with complex coe�cients was predicted in
[Gro2], Sect. 6. Some experts regard this as known, but no published proof
of the conjecture seems to exist, which is why I included the present section.

Recall ®rst the de®nition of the Alexander complex for a paracompact
Hausdor� space X , with coe�cients in an Abelian group A ([Spa], Ch. 6). Its
pth term is the sheaf over X of germs of all A-valued functions along the
diagonal X ! X��p�1�. (This is the shea®®cation of the presheaf U 7!
functions on U p�1.) The di�erential is given by the formula

@pu x0; . . . ; xp
ÿ �

:�
X

i

�ÿ1�iu x0; . . . ; x̂i; . . . ; xp
ÿ ��A:1�

for xi near some given x 2 X and an A-valued function u on a neighborhood
of x; . . . ; x� � in X�p (the hat denotes a missing argument). The complex gives
a ¯abby resolution of the constant sheaf A, so the cohomology of its global
sections, called Alexander-Spanier cohomology, agrees with the sheaf coho-
mology of A over X . When A is contractible, one obtains the same coho-
mology by considering the Alexander complex of continuous A-valued
functions, since the latter gives a soft resolution of the constant sheaf. Fi-
nally, when X is an analytic space, one can resolve the constant sheaf C by
using germs holomorphic functions, and the total cohomology (``hyperco-
homology'') of this complex is the cohomology of X .

The algebraic version of Alexander cohomology runs as follows. Given a
scheme X , of ®nite type over C, let Cp be the formal completion of the
structure sheaf of X��p�1� about the diagonal X ! X��p�1�. All the Cp are
sheaves over X , in the Zariski topology. By virtue of the following lemma,
they form a complex ± the formal Alexander complex of X ± under a dif-
ferential @p : Cpÿ1 ! Cp given by the same formula (A.1).

Lemma (A.2) The map @ of (A.1) extends by continuity to the formal com-
pletions C�, and @2 � 0.

Proof. An ideal of de®nition Dp�1 for the diagonal X ! X��p�1� is the sum
of the pull-backs, via all the projections of X��p�1� to pairs of factors, of D2,
the ideal sheaf of the diagonal in X � X . But then, clearly,
@p Dn

p

� �
� Dp�1
ÿ �n

for all n. The vanishing of @2 follows by continuity. (

De®nition (A.3) The Alexander cohomology AH ��X � is the hypercohomology
H� X ;C�� �.

Remark (A.4) For a separated scheme X , let Xp be the formal completion of
X��p�1� along the diagonal X . The X� form a simplicial formal scheme, and
AH ��X � is the cohomology of its structure sheaf. The stack represented by
X� is the Alexander stack of X ; it is equivalent (in the sense of App. B) to the
quotient sheaf of X by the ``equivalence relation'' determined by the formal
neighborhood of the diagonal in X � X . The eÂ tale site of this quotient sheaf
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is the stratifying site of X , as de®ned in [Gro2], Sect. 5; it agrees with the
crystalline site when X is formally smooth, but not otherwise. Nonetheless,
we shall see that their cohomologies with O coe�cients agree; thus, AH ��X �
equals H�s �X ; C�, by the crystalline cohomology theorem.

The construction of the Alexander complex also works for a Noetherian
formal scheme Y. When Y is the completion of a Noetherian scheme Y
along a closed subscheme X (which we can always arrange locally), Cp�Y� is
the formal completion of the structure sheaf of Y ��p�1� along a diagonally
placed copy of X , and C��Y� is the Alexander complex of the formal
neighborhood of X in Y .

Proposition (A.5) The Alexander cohomology of a scheme (or formal scheme)
X , of ®nite type over C, is naturally isomorphic to H�s �X ; C�. When the X is
a�ne, this is the cohomology of the Alexander complex of global sections
C�X ;C��.

Proof. When X is a�ne, H q�X ;Cp� � 0 for q > 0 by (A.18), so the second
statement follows from the ®rst, and from the collapse at E2 of spectral
sequence Ep;q

1 � Hq�X ;Cp� ) H��X an; C�.

Smooth X. We shall construct an Alexander-de Rham biocomplex Cp;q

�p; q � 0� of sheaves on X , which establishes a quasi-isomorphism be-
tween the Alexander and de Rham sheaf complexes; and it was shown
in [Gro1] that de Rham hypercohomology was canonically isomorphic to
H �s �X ; C�, for smooth X . The double complex will have the following
properties:
� the cohomology sheaves of the horizontal di�erential @ are con®ned to

the vertical edge, where they give the algebraic de Rham complex Xq�X �;
� the cohomology sheaves of the vertical di�erential d are con®ned to the

horizontal edge, where they give the Alexander complex Cp.
Let Cp;q :� ÔX p�2 
 Kq�T �X �, completed with respect to the diagonal

X ! X��p�2�, and let d be the de Rham operator with respect to the last
variable. @ is de®ned by the formula (A.1), but ignoring the last variable:

@p : Cpÿ1;q ! Cp;q;

@pu x0; . . . ; xp; xp�1
ÿ �

:�
X
0�i�p

�ÿ1�iu x0; . . . ; x̂i; . . . ; xp�1
ÿ �

:
�A:6�

For p � 0, (A.6) also de®nes a @-augmentation Cÿ1;q, isomorphic to Xq�X �.
A d-augmentation e : Cp;ÿ1!Cp;�, isomorphic to Cp, is given by the sub-
sheaf of sections in Cp;0 that are independent of the last argument.

A @-homotopy H : Cp;q ! Cpÿ1;q, proving acyclicity of the augmented
@-complex, is given by Hu�x0; . . . ; xp� � u�x0; . . . ; xp; xp�; we have
@ � H ÿ H � @ � �ÿ1�p. Id. To de®ne a d-homotopy, locally on X , note the
copy of Xp�1 inside Xp�2, embedded by repeating the last coordinate, and the
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projection p : Xp�2 ! Xp�1 on the ®rst �p � 1� coordinates. Given a defor-
mation retraction q : C� Xp�2 ! Xp�2 of Xp�2 onto Xp�1 (a morphism q
such that qj0 � p and qj1 � Id�, let G : Cp;q ! Cp;qÿ1 send u to q�q��u�,
where q� is integration along any path in C from 0 to 1. (This is really an
algebraic operation.) The augmentation e is seen to be a cohomology
isomorphism from the familiar homotopy formula d � Gÿ G � d � Id ÿ e.
When X is formally smooth, such deformations q always exist locally, over
sets U � X small enough to admit eÂ tale maps to a�ne space (one pulls back
the obvious scaling homotopy).

General X. It su�ces, by �Cech resolution arguments, to prove (A.5) locally
on X . Thus, we may embed X in some smooth variety Y , and denote by Y
the formal neighborhood of X . By [Har], the hypercohomology of the de
Rham complex of Y (the formal completion along X of the de Rham
complex on Y ) computes H �s �X ; C�. But the completion along X of the
double complex of Y establishes, as above, a quasi-isomorphism between de
Rham and Alexander complexes of Y. The proof of (A.5) is completed by
verifying the following ``tautness'' property:

Lemma (A.7) AH ��Y� � AH ��X �, under the embedding i : X ! Y.

Remark (A.8) This is an analogue of the following topological fact: if Y is
paracompact and X is closed in Y, the restriction lim!U H ��U� ! H ��X � is
an isomorphism in Alexander cohomology �U ranges over the neighbor-
hoods of X in Y ).

Proof. We ®rst check (A.7) in the presence of a retraction r : Y! X . Then,
on the Alexander complex of X ; i� � r� � Id, whereas a homotopy between
r� � i� and Id is de®ned by a formula, which can be written just as in the
topological case (cf. [Spa], Ch. 6, Sect. 6),

Hu�y0; . . . ; ypÿ1� �
X

o�j�pÿ1
�ÿ1�j � u y0; . . . ; yj; i � r�yj�; . . . ; i � r�ypÿ1�

ÿ �
;

�A:9�

if we pretend, for notational simplicity, that Y is a neighborhood of X in Y
and that r is a map. In the honest formula, to obtain the jth-summand,
r� � i� is applied to the last �p ÿ j� factors of Y��p � 1�, and the result is
restricted to the copy of Y�p � Y��p � 1� de®ned by equality of the jth and
�j� 1�st coordinates. Completeness of Y along X ensures that the formula
extends, by continuity, to the diagonal completions, because H preserves the
diagonal, modulo an ideal of de®nition for Y.

Absent a retraction, let us place i in a ¯at, one-parameter family
i�t� : X ! Y�t�, constant except at t � 0, where it specializes to the inclusion
of X into its normal cone CX within Y. The latter retracts to X , so i�0�
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induces an isomorphism in Alexander cohomology. If the condition
``i�t�� : AH��Y�t�� ! AH ��X � is an isomorphism'' turns out to be open in t,
then i� itself must be an isomorphism. Openness would follow, if we showed
that the ®berwise Alexander cohomologies of Y�t� over Spec(C[t]) formed
coherent sheaves. This can indeed be done, but there is an easier way to
handle the algebra.

To show that i� : C��Y� ! C��X � is a quasi-isomorphism, call its kernel
Iq � Cq�Y�, so that Cq�Y�=Iq � Cq�X �. We shall see below that the com-
plex C��Y� is ®ltered by the powers of the ideals Iq, with associated graded
complex the Alexander complex of CX . Granting this, note that
i�0�� : C��CX � ! C��X � is a quasi-isomorphism, because CX retracts to X .
Therefore, in the complex of sections of C��Y� over an a�ne open set, the
E1 term of the ®ltration spectral sequence is con®ned to the vertical edge. So,
the spectral sequence collapses there, and the original i�, which induces the
edge-homomorphism, is an isomorphism. Convergence questions do not
arise if we assume that I is nilpotent, as the ®ltration of C��X� has ®nite
length in every dimension. In the general case, isomorphism of cohomology
groups follows by taking limits over the nilpotent neighborhoods of X
(cf. Cor. A 20)16. (

It remains to verify the claim about the ®ltration, namely that the normal
cone to Xq in Yq is the qth diagonal completion of CX . Because products of
formal schemes are completed ex o®cio, the algebraic notation is greatly
simpli®ed if we assume that Y is a nilpotent extension of X ; the general case
follows, as before, by taking limits.

Locally then, Y � Spec�A�; X � Spec�A=I�, with A Noetherian and
I � A nilpotent. Let GrI

��A� :�apIp=Ip�1, and write A
̂q;GrI
��A�
̂q for the

diagonally completed tensor powers. The diagonal ideal in A
q is denoted
Dq, while Iq :� Rk�l�qÿ1A
k 
 I 
 A
l corresponds to the sheaf Iq used in
the proof.

Proposition (A.10) GrI
��A�
̂q and GrÎ q� �A
̂q� are naturally isomorphic.

Remark (A.11) This holds over any ground ring R, instead of C, as long as A
and GrI

��A� are ¯at over it. If I is nilpotent, ¯atness of GrI
��A� implies

¯atness of A; I and all of its powers.

Proof. We shall describe two natural ring isomorphisms

GrÎq� A
̂q
� �

! GrIq� A
q� �^ GrI
��A�
̂q�A:12�

where the middle ring is the completion of GrIq� A
q� � at GrIq� Dq
ÿ �

.

16 One can also check the Mittag-Le�er conditions directly in the spectral sequence
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First Map: Both rings arise by completing the same, so we must only check
the topologies. By the Artin-Rees lemma, the left-hand A
̂q-topology on
Ip
q=Ip�1

q is de®ned by the powers of Dq; as Iq acts trivially, these are also the
powers of Gr

Iq

0 Dq
ÿ �

. But, by the Artin-Rees lemma for the graded ring, the latter
powers also de®ne the right-hand topology, since Gr

Iq
� acts trivially.

Second Map: A natural isomorphism GrI
��A�
q ! GrIq� A
q� � is induced by

the obvious map

ap1�...pq�pIp1 
 Ip2 
 . . .
 Ipq ! Ip
q � A
q :�A:13�

(The ¯atness assumptions of Remark A.11 are needed here, if do not work
over a ®eld.) Because I is nilpotent, the diagonal ideal in GrI

��A�
q, which is
the kernel of the multiplication �A=I�
q ! A=I , di�ers only nilpotently from
GrIq�Dq�, so the completions are isomorphic. (

Remark (A.14) The ®rst isomorphism is an instance of the general fact that
``normal cone formation commutes with completion'' in a Noetherian,
Cartesian diagram of closed embeddings. The proof is the same as above.

Finally, we check the following commutation property of sheaf coho-
mology with inverse limits, used several times in the paper (cf. [Har], The-
orem 4.5). Recall that a generating subcategory of a Grothendieck site C is a
full subcategory containing a covering family for each object in C. For the
category of open sets in a topological space, this is the same as a basis of
neighborhoods.

Proposition (A.15) Let Fn be an inverse system of Abelian sheaves over C.
Assume there exists a generating subcategory in which every object U satis®es
the following:

(a) H q�U ;Fn� � 0 when q > 0, for all n;
(b) The system Fn�U� satis®es the Mittag-Le�er conditions.

Then, the natural transformation lim nFn ! R lim nFn is an isomorp-
hism. For a complex F�n, bounded below, of sheaves, satisfying (a), (b) di-
mensionwise, we have a short exact sequence

0! R1 lim Hqÿ1�C;Fn� !Hq�C; lim nF
�
n� ! lim n Hq�C; F�n� ! 0 :

Proof. The derived functor of lim is represented by a complex of sheaves
of the form

0!
Y

m
Fm !

Y
m<n

Fm !
Y

m<n<p
Fm ! . . .�A:16�

Because of (a), the cohomology sheaves of this complex, evaluated on U ,
agree with cohomology groups of the corresponding complex of sections
over U . However, by the Mittag-Le�er theorem, the latter complex is
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acyclic in positive degrees. Thus, Rq lim Fn vanishes on every U in the
generating subcategory, so it vanishes altogether. Further, if C is the functor
of sections over C, we have R�C �H�, and

RC � lim � RC �R lim � R�C � lim � � R�lim �C� � R lim �RC :

�A:17�

The desired exact sequence then follows from the spectral sequence
Ep;q
2 � Rp lim �RqC of the composition of functors, as Rp lim � 0 when

p > 1. (

Consider an ind-scheme Y , union of closed subschemes Yn, and the
surjective system of push-forwards to Y of the restrictions of Yn of a complex
of vector bundles on Y . The following are consequences of (A.15)

(A.18) If the Yn are a�ne, hypercohomology of a complex of vector bundles is
computed by the complex of global sections. (

(A.19) If the Yn are projective, we have H ��Y ;V� � lim H� Yn;V jYa� �: (

In particular, the cohomology of vector bundles over the ¯ag variety X , as
computed in [K], agrees with the sheaf cohomology over its big site of ®nite-
type schemes.

(A.20)We have 0! R1 lim AH qÿ1�Yn� ! AH q�Y � ! lim AH q�Yn�  0:
(

This proves the Alexander cohomology theorem for ind-varieties, because
the singular cohomology of Y , which is holim! Yn, will be determined by the
same short exact sequence.

Appendix B. stacks and simplicial objects

My preference for the simplicial theory of stacks comes from its expression
in the familiar language of homotopy theory: the general results, which I
shall use here without proof, look obvious enough. The proofs needed here
are contained in the literature, or can be easily derived from it ([Bro], [BG],
[J]; more recently [Sim]); but at present there seems to be no single, truly
complete account of the material. This is partly because, whereas the general
homotopy theory is well-understood, the ®ner algebro-geometric speci®cs
are still under construction [Sim2].

1. Generalities

Stacks. I shall take the point of view that a stack is a simplicial scheme.
Actually, stacks are objects in a homotopy category, obtained from the
category of simplicial schemes by inverting a class of simplicial morphisms,
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the weak equivalences de®ned by Illusie in [I]. A simplicial morphism
f : Y� ! Z� is a weak equivalence if, for any pointed complex scheme17

�U ; u�, the induced map on ``stalks at u'' f u : lim!V Hom�V ; Y��
! lim!V Hom�V ; Z��, where V runs over the pointed eÂ tale neighborhoods
of u in U , is a weak equivalence of simplicial sets.

For example, the simplicial EG� is weakly equivalent to a point, for any
group sheaf G. Another instance is that a scheme is weakly equivalent to the
simplicial scheme formed by the ®bered powers of some covering of it. For
Zariski-open coverings, this equivalence is implicit in the CÏ ech computation
of sheaf cohomology, or, more generally, in the Mayer-Vietoris spectral
sequence. There is a parallel theory for analytic spaces (of course, we can
then use classical neighborhoods in the de®nition of weak equivalences).

Other presentations and ``1-stacks''. There are alternative ways to present a
stack, much like a homotopy type in topology admits multiple descriptions.
For instance, one could use cubical schemes. More interesting are small
diagrams of schemes. (A simplicial scheme is obtained by taking the nerve of
the diagram). One could also work with category-schemes ± categories
whose set of objects and of morphisms are schemes, so that the de®ning
maps (source, target, composition, identity) are morphisms. Its nerve would
also be a simplicial scheme. Thus, to a groupoid scheme, one associates a
simplicial scheme by the bar construction, and obtains a socalled ``1-stack''.
Restricted to such objects, the homotopy theory is roughly equivalent18 to
the standard ``equivalence'' theory of 1-stacks (as in [LM]), much as the
notions of equivalence of categories and homotopy equivalence agree for
groupoids.

Sheaves. One really works, instead of schemes, with sheaves over F, in the
eÂ tale topology (or over A, in the analytic topology); the advantage is that
the category SSh of simplicial sheaves (over any Grothendieck site) has a
closed simplicial model structure, as de®ned by Quillen [Q]. (A proof is given
in [J].) Any sheaf over F can be covered by a disjoint union of schemes, and
one can show from here that any stack is equivalent to a simplicial scheme
(similarly for analytic spaces). However, there is no model structure on the
subcategory of simplicial schemes.

Pull-backs. There is a ``pull-back'' functor from sheaves over F to sheaves
over A, extending the underlying analytic space functor. It preserves the
weak equivalences of simplicial objects, and thus extends the underlying
analytic space functor to stacks. (This holds, more generally, for the pull-
back along any morphism of topoi.) Should we choose to work with a

17 U must belong to the appropriate test category; so it is of ®nite type, for stacks over F, and
arbitrary, over Sch. Also, over F, we need only consider simplicial schemes that are,

component-wise, locally of ®nite type
18To get a good theory, one must use algebraic spaces, instead of schemes
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larger class of schemes, the absence of an obvious underlying analytic space
can be circumvented, by pulling back the sheaves from the larger category
to F.

Homotopy type. For a stack represented by a simplicial analytic space, its
(topological) homotopy type is the geometric realization of the underlying
simplicial topological space. Equivalences of simplicial schemes induce co-
homology isomorphisms for a large class of sheaves, including all locally
constant coe�cient systems on the geometric realization; and Whitehead's
theorem shows, then, that the resulting homotopy type does not depend on
the chosen simplicial representative. The homotopy type of a stack over F is
that of its underlying analytic stack.

Internal Hom. There is an internal ``mapping stack'' functor
Hom� : SShop� SSh! SSh: For any object U in the site, Homk�Y�;Z��
�U� is the set of simplicial morphisms of sheaves from U �Y� � D�k�� to
Z�, where D�k�� stands for the constant simplicial sheaf, with ®ber the
standard k-simplex. As one knows from ordinary simplicial homotopy
theory, this is usually not the correct mapping stack19 from Y� to Z�; but
Hom� has a total right derived functor Ext, in the sense of Quillen, de®ned on
the homotopy categories. It is obtained by replacing the left argument by a
con®brant object over it, and the right one by a ®brant object under it; the
simplicial model axioms (esp. ``SM7'') ensure that the resulting object is
well-de®ned, up to canonical equivalence. Ext has the usual adjointness
property with respect to products.

The stack of G-bundles over R c: M is de®ned up to canonical equivalence, as
follows:

De®ntion (B.1) M :� Ext�R c; BG�:
It follows that �Y ; M� � �Y � R c; BG� � fisomorphism classes of G-bundles
over Y � R cg, if we use brackets to denote morphisms in the homotopy
category of stacks.

The universal bundle G over M� R c is the principal G-bundle corre-
sponding to the ``evaluation arrow'' E : R c � Ext�R c; BG� ! BG. This
arrow corresponds to the identity, under the adjointness isomorphism

R c � Ext R c; BG� �; BG� � � Ext R c; BG� �;Ext R c; BG� �� � :�B:2�

Restricting the evaluation morphism to the marked points to R gives the
classifying morphisms for the ``evaluation'' G-bundles G�zk� of the Intro-
duction.

19Unless the target is a ®brant object; in the homotopy theory of simplicial sets, this is a so-called

Kan complex [May]
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2. The uniformization theorem

The proof that follows is a sample application of homotopical techniques,
and allows me to illustrate a point that is not always so evident. Problems
about stacks often split into a ``local'' and a ``local-to-global'' part. The
``local'' part is pure algebraic geometry (or whatever category we work in),
and ``stacks'' need not appear in the statements. The ``local-to-global'' part
is pure homotopy theory. In this case, the local part was the Drinfeld-
Simpson theorem, and I shall now describe the homotopy theory.

Choose a new point of R, and call the punctured curve R�; let Rc� be the
punctured R c.

Proposition (B.3) If G is semi-simple, G�R��=G�Rc�� � X .

Proof. Clearly, the map from the quotient to the adeÁ lic quotient (at the old
punctures) X is a monomorphism, so it su�ces to check it is a covering.
EÂ tale-locally on X , the universal G-bundle over X � R c can be trivialized
over X � R�, by the theorem of Drinfeld-Simpson. Dividing by the canonical
section over X � R gives the desired eÂ tale lifting of X into G�R��. (

Corollary(B.4) The arrow B�G�Rc��� ! B�G�R��� can be realized as the ®ber
bundle, with ®ber X , associated to the obvious action of G�R�� on X. (

This is a refromulation of (B.3). ``Fiber bundle'' in the simplicial context
means, in general, twisted Cartesian product, as in [May], but this case is
especially obvious, since the ®ber X is simplicially discrete. Clearly, the bar
realization of B�G�Rc��� won't do, so having a notion of weak equivalence is
essential for this proposition to hold.

Proposition (B.5) (``Mayer-Vietoris'') The natural arrow to the homotopy
®bered product

Ext�Rc; BG� ! Ext�R; BG� �Ext�R�;BG� Ext�Rc�; BG�

is a weak equivalence. (

Remark (B.6) The evaluation bundle G�zk� correspond to the evaluation
bundles on either factor, when zk di�ers from the punctures. With the next
proposition, this implies that the bundle V over M is associated to the
evaluation representation V1 
 . . .
 Vm of GR in (B.9).

Proposition (B.7)20 The natural arrow B�G�R��� ! Ext�R�; BG� is an equiv-
alence, and the same holds for the other punctured curves.

20 See the Correction at the end of the paper
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This ``natural arrow'' is the structural transformation Hom��R�; BG� !
Ext�R�; BG� from a functor to its right derived functor (cf. [Q], Ch. I Sect. 4).
Explicitly, it corresponds to the evaluation R� � B�G�R��� ! BG on stan-
dard simplicial presentations.

Proof. Let us construct the inverse in the homotopy category. Over
R� � Ext�R�; BG�, there is a universal principal G-bundle, coming from the
evaluation arrow to BG. It follows from the result of Drinfeld and Simpson
that its pull-back, under some eÂ tale covering of Ext�R�; BG� can be trivial-
ized. The sections along R� on the local trivializations give an eÂ tale G�R��-
valued 1-cocycle over Ext�R�; BG�, which correspond to an arrow from the
latter to B�G�R���; this is the desired homotopy inverse. (

Remark (B.8) It is known in ordinary homotopy theory that the potential
di�erence between BMap�M ; G� and Map�M ; BG� is detected by p0: that is,
the natural map from the former to the latter is an equivalence i� the latter
is connected. This remains true in the context of shea®®ed homotopy theory.
If one de®nes the ``homotopy sheaf'' p0�Map�M ; BG�� to be the shea®®-
cation of the presheaf U 7!�U �M ; BG� � H 1

et�U �M ; G�, triviality of p0 is
necessary and su�cient for (B.7) to hold. In the present case, this is exactly
the Drinfeld-Simpson result.

Corollary (B.9) (``Uniformization theorem'') M is equivalent to the quotient
stack X=GR.

Proof. The latter is, by de®nition, the X -bundle over B�G�R�� associated to
the universal bundle by the obvious GR-action. The Corollary follows from
(B.4), (B.5) and (B.7), keeping in mind that the homotopy ®bered product is
represented by the strict ®bered product, when one of the arrows has been
realized as a (local) ®bration (cf. the axioms of [Bro], Sect. 1). (

The proof of the ®rst holomorphic version of uniformaization (Propo-
sition 3.17) is identical, working over the category of analytic spaces.

Finally, let us realize the arrow R c �M! BG, promised in Sect. IV, as a
simplicial morphism. We replace R c by the stack S� of ®bered powers of
R q Rc� over R c (this is the homotopy quotient of the diagram
R�!!R q Rc��, and we represent M by the homotopy quotient of G�R�� by
G�Rc�� � G�R� (left � right action). The later is Hom��S�; BG�, on the nose;
and the desired arrow is realized by the ``evaluation morphism''
S� �Hom��S�; BG� ! BG.

As all objects come from groupoids, the morphism is determined by the
map on 1-simplices, from �R q R� q R� q Rc�� � G�R� � G�R�� � G�Rc�� to
G. On R and Rc�, this is the obvious evaluation map. On each copy of R�, it
is the ratio of two evaluation morphisms, one of which comes from G�R��.
Correction. Theorem 3 of [DS] is misquoted in the proof of (B.7) and in
(B.8). To conclude triviality, locally on the base, the original family of
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bundles should extend (locally) over the family of complete curves. This
assumption is used in [DS], and also in my proof (cf. Proposition 3.14).
Holomorphic local extensions exist, by a theorem of Grauert's, but the
algebraic question is more delicate.

The discussion (B.7)±(B.8) of algebraic uniformization is incorrect, re-
lying on a stronger form of the [DS] result, whose status is unclear. (B.5) is
valid, but the Ext on the right side are unknown. To ®x the computation of
the homotopy ®ber product, observe the following:

(B.10) The images of p0Ext�R; BG� and of p0Ext�Rc�; BG� in p0Ext�R�; BG�
meet only at the base-point of p0Ext�R�; BG�
In words: a family of bundles over R� which extends (locally) to a family of
bundles over R and to one over Rc� extends, locally, to a family of bundles
over Rc. The p0 are taken sheaf-theoretically; they are the sheaves of iso-
morphism classes for families of bundles over the various a�ne curves. (B.7)
claims (groundlessly) that these p0 are trivial; but (B.10) means that we can
limit ourselves to those families of bundles which admit local extensions to
the complete curve. With that, the proof of (B.9) becomes correct.

The argument is not truly di�erent from the one in [LS]; but it provides
the needed link between the ``1-stack'' and the simplicial theories.
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