
Quantum groups and quantum shu�es

Marc Rosso

I.R.M.A., UniversiteÂ Louis Pasteur et Institut Universitaire de France,

7, rue ReneÂ Descartes, F-67084 Strasbourg Cedex, France

Oblatum 21-III-1997 & 12-IX-1997

Abstract. Let U�q be the ``upper triangular part'' of the quantized enveloping
algebra associated with a symetrizable Cartan matrix. We show that U�q is
isomorphic (as a Hopf algebra) to the subalgebra generated by elements of
degree 0 and 1 of the cotensor Hopf algebra associated with a suitable Hopf
bimodule on the group algebra of Zn. This method gives supersymetric as
well as multiparametric versions of U�q in a uniform way (for a suitable
choice of the Hopf bimodule). We give a classi®cation result about the Hopf
algebras which can be obtained in this way, under a reasonable growth
condition. We also show how the general formalism allows to reconstruct
higher rank quantized enveloping algebras from Uqsl�2� and a suitable
irreducible ®nite dimensional representation.

Introduction

The quantized enveloping algebras UqG associated with a symetrizable Kac-
Moody algebra G are de®ned by generators and relations in terms of the
Cartan matrix. It seems desirable to have a more intrinsic, or functorial
understanding of them. (After all, we don't want, in order to de®ne a simple
complex Lie algebra, to have ®rst to write down the list of all positive
de®nite Cartan matrices...). By functorial, we mean something like the
quantum double construction which allows to construct UqG from its Hopf
subalgebra U�q .

We shall restrict attention to U�q (the remark we have just made allows to
do that). There are already nice approaches to it, in terms of Hall algebras
(Ringel [Ri]), or perverse sheaves (Lusztig [L2]). We want to have here a
very pedestrian point of view. We shall show that U�q can be seen as a sort of
``quantum symetric algebra'' (rather than a ``quantum universal algebra'').
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The general formalism is as follows: starting with the data of a Hopf algebra
H and a Hopf bimodule M over it, one constructs the ``quantum shu�e
Hopf algebra'' as the cotensor Hopf algebra of M over H . It is naturally
N-graded, but is not generated by M and H . The sub-Hopf algebra gener-
ated by them is a natural generalization of the symetric algebra, and, for
very speci®c examples (H being the group algebra of Zn), one gets exactly
U�q .

It is very remarkable that these cotensor constructions were already done
by W. Nichols ([N]) more than 20 years ago! What was missing at that time
was interest in braids, and to realize that for each n, the braid group on n
strands naturally acts on the homogenous component of degree n of the
cotensor Hopf algebra.

As far as examples are concerned, we shall concentrate ®rst on the case
where H is the group algebra of an abelian group, and on Hopf bimodules
reproducing the coproduct for the comodule structure. This leads to (mul-
tiparametric generalizations of) U�q . One interest of our approach of seeing
U�q as a subspace rather than a quotient is that it allows for very easy
computations (the tensor coalgebra being a free left H -module with basis a
tensor space over a linear space, it is easy to see when a element is zero or
not). Extending classical results of Radford ([Ra]), we shall get information
on bases for the quantum shu�e algebra and we shall provide a classi®ca-
tion result on the ``generalized U�q '' under some growth conditions and
genericity of the parameters.

Consider now the case where H is U�q . Natural examples of Hopf
bimodules come from representations of UqG (because UqG is a quotient of
the double of U�q ). Choosing suitable irreducible UqG modules, we shall
construct, ``by induction on the rank'', the quantized enveloping algebras
from the one associated with sl�2�. This is close in spirit to the construction
of Kac-Moody Lie algebras from their local parts.

Let us explain roughly how this works on an example, refereeing to
section 4 for details. Let V be an irreducible UqG module. Then U�q 
 V has
a natural structure of a Hopf bimodule over U�q , and we can look at the
``quantum symetric algebra'' built on it. Assume to ®x ideas that G is sl�n�
and that V is its natural n-dimensional representation. Then the ``quantum
symetric algebra'' is nearly the ``upper triangular part'' of Uqsl�n� 1�. The
correct picture is obtained by extending U�q by a grouplike element which
acts diagonally on V . One observes in this case that elements of V belonging
to a basis of weight vectors appear as analogues of root vectors of a
Poincare-Birkho�-Witt type basis.

The results of sections 1, 2, 3 were announced in [Ro 2] and explained at
several conferences (Cours Peccot du ColleÁ ge de France 1993, International
Congress of Mathematical Physics Paris 1994, ...); the results of section 4
were announced in a course given at Les Houches Summer School in August
1995.
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Notations

In all this paper, we denote by k a commutative ®eld.
If H is a k-Hopf algebra, we denote by D its coproduct and by S its

antipode. We shall use Sweedler's notation: for h in H , D�h� �P h�1� 
 h�2�.
When we consider H with the opposite algebra structure, we denote it by
Hop.

As we shall be dealing with tensor products between tensor powers of
a given space, we shall often write �x1; . . . ; xn� instead of x1 
 � � � 
 xn.

We denote by Rn the symetric group of f1; 2; . . . ; ng and, for
i � 1; . . . ; nÿ 1, by si the transposition �i; i� 1�. The braid group on n
strands is denoted by Bn, and for i � 1; . . . ; nÿ 1, the i-th generator by ri.

For l1 � � � � � lr � n, the set of �l1; . . . ; lr�-shu�es, i.e. the set of per-
mutations w such that w�1� < w�2� < � � � < w�l1�, w�l1 � 1� < w�l1 �2� <
� � �< w�l1 � l2�; . . . ;w�l1 � � � � � lrÿ1�1� < � � � < w�n�, is denoted by
R�l1;...;lr�.

The length of a permutation w, de®ned as the length of any reduced
expression in terms of the standard generators si, is denoted by l�w�.

If w is in Rn, we denote by Tw the corresponding lift in Bn, de®ned as
follows: if w � si1 . . . sik is any reduced expression of w, then Tw � ri1 . . . rik .

We put B�l1;...;lr� �
P

w2R�l1 ;...;lr �
Tw, and eB�l1;...;lr� � Rw ÿ 1 2 R�l1;...;lr�Tw:

For q 2 k di�erent from 1 or ÿ1, or q an indeterminate, and for all
n 2 Z, we de®ne �n�q � qnÿqÿn

qÿqÿ1 , and �n�q! � �n�q�nÿ 1�q � � � �1�q.
G will denote a ®nite dimensional complex simple Lie algebra, H a

Cartan subalgebra, �ai;j�1�i;j�N its Cartan matrix, �a1; . . . ; aN � a set of simple
roots, � ; � the inner product on the root lattice (so, we have: ai;j � 2

�ai;aj�
�ai;ai��.

1. The quantum shu�e Hopf algebra

We begin by recalling general facts, due to W. Nichols ([N]), about Hopf
bimodules and the cotensor algebra. We complete them by clarifying the
algebra structure in terms of the natural action of the braid group. This
allows to give an abstract formulation in terms of the linearized braid
category.

1.1 Hopf bimodules

De®nition 1. Let H be a k-Hopf algebra. A Hopf bimodule over H is a k-vector
space M given with a H -bimodule structure, a H -bicomodule structure (i.e. left
and right coactions dL : M ! H 
M , dR : M ! M 
 H which commute in
the following sense: �dL 
 id�dR � �id 
 dR�dL, and such that dL and dR are
morphisms of H -bimodules.
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This notion has also been considered by S. Woronowicz ([W]), under the
name of bicovariant bimodule, in his work on non-commutative di�erential
calculus on quantum groups.
W. Nichols shows that, taking tensor products over H , Hopf bimodules
form a tensor category E.
The structure of Hopf bimodules is clari®ed if one considers the subspaces of
left or right coinvariants: ML � fm 2 M ; dL�m� � 1
 mg and MR � fm 2 M ;
dR�m� � m
 1g. In fact, a classical result of Sweedler says that M is isom-
orphic, as left module and comodule, to the trivial one H 
ML, or, as a
right module and comodule, to the trivial one MR 
 H . Furthermore, ML is
a sub-right comodule of M , and inherits a structure of right H -module given
by:

m � h �
X

S�h�1��mh�2�

with m 2 M and h 2 H . In the same way, MR is a sub-left comodule of M ,
and inherits a left H -module action given by:

h � m �
X

h�1�mS�h�2��
with m 2 M and h 2 H .

Proposition 2.With these two structures, MR is a crossed module over H in the
sense of Yetter ([Y ]); and if H and M are ®nite dimensional, it is a module over
the quantum double. Furthermore, a morphism of Hopf bimodules induces on
the spaces of right coinvariants a morphism of crossed modules.

Remark. This result gives a natural way to discover the quantum double (in
particular its non trivial algebra structure) if one doesn't know it before.

In order to illustrate this remark, we shall sketch the proof in the ®nite
dimensional context.

Proof. Assume that H and M are ®nite dimensional. Then MR is a right
module over the dual Hopf algebra H �, and using the antipode or its inverse,
we can make it a left module. So, for m in MR and l in H �, we have, writing
dL�m� �

P
m�ÿ1� 
 m�0�, l � m �P�Sÿ1�l�;m�ÿ1��m�0�. Now, we can compute

how the actions of H and H � commute. We have for h in H and l in H �,

l � �h � m� � l �
X

h�1�mS�h�2��
� �

�
X
�Sÿ1�l�; h�1�m�ÿ1�Sh�3��h�2� � m�0�

�
X
�Sÿ1�l�3��; h�1���Sÿ1�l�1��; Sh�3��h�2� � �l�2� � m�

This is also X
�Sÿ1�l�3��; h�1���l�1�; h�3��h�2�:�l�2��

acting on m, and one recognizes the formula for the product in the quantum
double.
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1.2 Braidings

Woronowicz ([W]) introduced a remarkable braiding in the category of
Hopf bimodules.

Proposition 3. Let M and N be H -Hopf bimodules. There exists a unique
morphism of H -bimodules rM ;N : M 
H N ! N 
H M such that, for x 2 ML

and g 2 MR rM ;N �x
 g� � g
 x. Furthermore, rM ;N is an invertible morp-
hism of bicomodules and satis®es the following braid equation (where M ;N and
P are Hopf bimodules):

�IP 
 rM ;N ��rM ;P 
 IN ��IM 
 rN ;P � � �rN ;P 
 IM ��IN 
 rM ;P ��rM ;N 
 IP � :

This makes E a braided tensor category.

One observes that rM ;M sends MR 
MR into itself, and de®nes a represen-
tation T of the braid group Bn in �MR�
n. An easy computation gives:
r�x
 y� � dL�x��y 
 1�, and so this representation is nothing but the one
coming from the crossed module structure. More precisely, we have:

Proposition 4. The functor sending M to MR is an equivalence of braided tensor
categories between E and the category of crossed modules.

1.3 The cotensor Hopf algebra

The following construction generalizes the classical shu�e algebra.

De®nition 5. (i) Let M and N be H -Hopf bimodules. Their cotensor coproduct
M t N is the kernel of dR 
 IN ÿ IM 
 dL : M 
 N ! M 
 H 
 N . (ii) The
cotensor coalgebra constructed on M is T c

H �M� � H ��n�1Mtn.

In fact, it is easy to see that M t N is again a Hopf bimodule, and that
T c

H �M� has a graded coalgebra structure given as follows: the component of
bidegree �p; q� of the coproduct on Mtn is given by the restriction of the
map: �x1; . . . ; xn� 7! �x1; . . . ; xp� 
 �xp�1; . . . ; xn�, for p � 1 and q � 1, and by
dL 
 id for p � 0, and id 
 dR for q � 0.

Remark. The dual construction, i.e. the tensor algebra TH �M� �
H ��n�1M
H n is certainly more familiar. The product is given by concat-
enation over H ; from its universal property, one deduces that TH �M� has a
unique bialgebra structure such that the restriction of the coproduct to H is
the one we started with and its restriction to M is the sum dL � dR. We shall
elaborate a little bit on this to give a concrete description of the coproduct in
terms of the braid group action. We begin by a more general result which is
of independent interest.

Let A an H -bimodule algebra (i.e. A is an H bimodule, and left and right
action of H respect its algebra structure: for all h in H , a and b in A,
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h�ab� �P h�1��a�h�2��b��. Let f and g: M ! A two H -bimodule maps. Then,
by the universal property of the tensor product over H , the map:
f � g : M 
H M ! A, sending m
H n to f �m�g�n� is well de®ned. More
generally, one de®nes the product of n bimodule maps from M to A as a
bimodule map from M
H n to A.

Proposition 6. Let A be an H -bimodule algebra and f and g : M ! A two
bimodule maps. Assume that g � f � � f � g� � r. Then the map � f � g�n :
M
H n ! A is given by:

� f � g�n �
Xn

k�0
� f k � gnÿk� � eBk;nÿk :

where eBk;nÿk �
P

wÿ12Rk;nÿk
Tw.

Proof. By induction on n:

� f � g��n�1� �
Xn

k�0
� f k � gnÿk� � eBk;nÿk:� f � g�

�
Xn

k�0
� f k � gnÿk� � � f � g� � �eBk;nÿk 
 Id� :

Now, for all r, gr � f � � f � gr� � r1 . . . rr; then the result follows from the
observation that, for w 2 Rk�1;nÿk, either w�n� 1� � n� 1 or w�k � 1�
� n� 1, and this implies that eBk�1;nÿk � eBk�1;nÿkÿ1 
 Id �Id
k
 �r1 . . .
rnÿk� � �eBk;nÿk 
 Id�.
We apply this to the following situation where A � TH �M� 
 TH �M�, and the
bimodule maps are dR and dL. This is possible because:

Lemma 7. We have: dL � dR � �dR � dL� � r.

Proof. Denote, for x 2 H , dL�x� �
P

x�ÿ1� 
 x�0� and dR�x� �
P

x�0� 
 x�1�.
Then, for x and y in H , we have: dL�x� � dR�y� �

P
x�ÿ1�y�0� 
 x�0�y�1�.

On the other hand, r�x
H y� �P x�ÿ2�y�0�Sy�1� 
 Sx�ÿ1�x�0�y�2�, and

�dR 
 dL��r�x
H y�� �
X

x�ÿ5�y�0�Sy�3�Sx�ÿ2�x�ÿ1�y�4�


 x�ÿ4�y�1�Sy�2�Sx�ÿ3�x�0�y�5�

�
X

x�ÿ1�y�0� 
 x�0�y�1� :

From Proposition 6 and Lemma 7, we get immediately:

Proposition 8. The coproduct on TH �M� is given by:

for �x1; . . . ; xn� 2 M
H n;D�x1; . . . ; xn� �
Xn

k�0
�dk

R � dnÿk
L � � eBk;nÿk :

Let us come back to the cotensor coalgebra. Nichols showed that this
coalgebra has a universal property, from which one derives that it is a
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Hopf algebra. The product is characterized as the unique coalgebra map
T c

H �M� 
 T c
H �M� ! T c

H �M� extending the given product on H and such that
on elements of degree 1 in T c

H �M� 
 T c
H �M�, i.e. on H 
M �M 
 H , it is

given by the left or right action of H on M .
When H and M are ®nite dimensional, it is very easy to understand the

cotensor Hopf algebra: H � is a Hopf algebra, M� is a Hopf bimodule and the
graded dual of the cotensor Hopf algebra T c

H �M� is the tensor Hopf algebra
TH� �M��.

So, from Proposition 8, it should not be surprising that the algebra
structure of T c

H �M� can made explicit in terms of the braid group action.
In order to simplify notations, let us put V � MR. As T c

H �M� is a Hopf
bimodule, it is a free right H -module over its subspace of right coinvariants,
and this subspace is naturally but not trivially isomorphic to the tensor
space T �V � (see below). So, as a right H -module and right H -comodule,
T c

H �M� is isomorphic to T �V � 
 H . We are going to exhibit a Hopf algebra
structure on T �V � 
 H , and we shall show that it coincides (via the is-
omorphism above) with the one coming from the universal property.

Proposition 9. 1. There is an associative algebra structure on T �V �, given by:
for x1; . . . ; xn in V ,

�x1 
 � � � 
 xp� � �xp�1 
 � � � 
 xn� �
X

w2Rp;n

Tw�x1 
 � � � 
 xn�

where Rp;nÿp is the set of �p; nÿ p�-shu�es.
2. The diagonal coaction of H on each V 
n gives T �V � an H -comodule

structure dL : T �V � ! H 
 T �V �, and dL is an algebra homomorphism.
3. For the diagonal action of H on each V 
n, T �V � is an H -module algebra,

and T �V � 
 H inherits the crossed product algebra structure.
4. The following de®nes a coalgebra structure on T �V � 
 H :
for �v1; . . . ; vn� in V and h in H ,

D��v1; . . . ; vn� 
 h� �
Xn

k�0
��v1; . . . ; vk� 
 vk�1�ÿ1� � � � vn�ÿ1�h�1��


 ��vk�1�0�; � � � ; vn�0�� 
 h�2�� :

5. The algebra structure of 3 and coalgebra structure of 4 are compatible
and make T �V � 
 H a Hopf algebra.

Proof. 1 In order to check associativity, we have to show that:

Bn;mÿn:Bk;nÿk � Bk;mÿk:shiftk�Bnÿk;mÿn�

where shiftk.Bmÿk ! Bm is the group homomorphism

given by: shiftk �ri� � ri�k 8i � 1; . . . ;mÿ k ÿ 1:
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When we expand in sums of products of braid group elements, all
products Tw � Tw0 which appear are such that l�w � w0� � l�w� � l�w0�. So,
all braid group elements are already written in terms of reduced expres-
sions, and associativity follows from the independance in the reduced
expression.

2 It follows from the fact that the braid group elements act as left
comodule morphisms.

3 and 4 are simple computational checkings, and 5 is a consequence of 2

Proposition 10. 1. There is a natural embedding / of T �V � in T c
H �M� given on

homogeneous elements of degree n by:

/�v1; . . . ; vn� �
X

v1v2�ÿ1�v
3
�ÿ2� . . . vn

�ÿn�1� 
 v2�0�v
3
�ÿ1� . . . vn

�ÿn�2� 
 � � � 
 vn
�0�

whose image is the subspace of right coinvariants. In fact, one has an iso-
morphism of right module and comodule /̂ : T �V � 
 H ! T c

H �M�

/̂��v1; . . . ; vn� 
 h� �
X

v1v2�ÿ1�v
3
�ÿ2� . . . vn

�ÿn�1�h�1�


 v2�0�v
3
�ÿ1� . . . vn

�ÿn�2�h�2� 
 � � � 
 vn
�0�h�n�

2. The subspace of right coinvariants is a subalgebra of T c
H �M�.

Proof. 1. One checks immediately that /�v1; . . . ; vn� is in Mtn and that it is
right coinvariant. Let w : M
n ! M
n be the map given by:

w�w1; . . . ;wn� � �w1S�w2
�ÿ1��;w2

�0�S�w3
�ÿ1��; . . . ;wn

�0�� :

(Observe that, on the subspace of right coinvariants of Mtn, w is given by
P
n

R , where PR is the projection from M onto V .) By computation, one sees
that w � / is the identity. Surjectivity follows by counting dimensions if V is
®nite dimensional; it holds in general because a (bi)comodule is the direct
sum of its ®nite dimensional subcomodules.

2. This follows from the fact that the product is a morphism of right
comodules.

Theorem 11. The map /̂ is a Hopf algebra isomorphism.

Proof. It is enough to show that it is a coalgebra isomorphism. Indeed, once
we have seen this, we transport, by /̂, the product of T �V � 
 H on T c

H �M�,
and we just have to check that it has the characteristic property of the
multiplication on T c

H �M�, i.e. that it is a coalgebra morphism (which
immediate, because /̂ is a coalgebra morphism and T �V � 
 H is a Hopf
algebra), and that it gives the good answer on degree one elements of
T c

H �M� 
 T c
H �M�, which is a simple checking. Now, that /̂ is a coalgebra

morphism is seen by inspection on the de®ning formulas.
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1.4 The quantum symetric algebra

The sub-Hopf algebra SH �M� of T c
H �M� generated by H and M has very

remarkable properties. It is again a Hopf bimodule and its subspace of right
coinvariants is isomorphic, via /, to the subalgebra of T �V � generated by V .
We shall denote this subalgebra by Sr�V �. It can be considered as a quantum
version of the symetric algebra and, as an algebra, SH �M� is nothing but the
crossed product of H by Sr�V �.
This Hopf algebra was introduced by W. Nichols under the name bialgebra
(or Hopf algebra) of type one. The name quantum symetric algebra is
deserved for at least two reasons:

1. The product, on the subspace of right coinvariants Sr�V � is given by
applying the braid version of the total symetrization.

2. (A Milnor-Moore type property) A classical result of Milnor and
Moore ([M-M]) states that for a connected, graded Hopf algebra A, if the
subspace of primitive elements is isomorphic to the (quotient) space of in-
decomposable elements, then, A is both commutative and cocommutative
(in the graded sense). We have a very similar situation here: Let B �
B0 � B1 � � � � be a graded bialgebra or Hopf algebra. Let us call primitive an
element of x in B such that D�x� 2 B0 
 B� B
 B0. Note that B1 is a B0

Hopf bimodule. Then ([N]) B is isomorphic to SB0
�B1� if and only if

(i) B0 � B1 is exactly the space of primitive elements,
(ii) �ai�1

i�1 Bi�2 �ai�1
i�2 Bi, i.e. B1 is isomorphic to the space of inde-

composable elements.

In fact, one can recover Milnor and Moore characterization of (graded)
symetric bialgebras from this.

1.5 Universal construction in the Braid category

All the results above suggest that, given a vector space V with an auto-
morphism r of V 
 V which satis®es the braid equation in V 
3 (a so called
``braided vector space''), one can de®ne interesting algebra and coalgebra
structures on the tensor space T �V �. In fact, using r to construct a repre-
sentation of the braid group Bn in V 
n, one can de®ne a (graded) multi-
plication sh by the same formula as in Proposition 6 and a comultiplication
D by the usual formula for the coproduct (as in De®nition 5, but with the
two coactions trivial) in the classical shu�e algebra to provide it with a
coalgebra structure. However these two structures are not compatible. In
order to make (e.g.) the coproduct a morphism of algebras, one has to
change the product in T �V � 
 T �V �. One proceeds as follows:

Proposition 12. Let �V ; r� be a braided vector space.
1. The following de®nes an associative algebra structure on T �V � 
 T �V �:

for p and q two positive integers, let wp;q be the permutation:
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1 2 . . . q q� 1 . . . p � q
p � 1 p � 2 . . . p � q 1 . . . p

� �
;

and let Twp;q be the associated element in the braid group Bp�q: it acts in V 
p�q

and can be seen as a ``generalized ¯ip'' from V 
p 
 V 
q to V 
q 
 V 
p. Then
the product sends �V 
n 
 V 
p� 
 �V 
q 
 V 
m� to �V 
n�q 
 V 
p�m� and it is
the composition: �sh
 sh� � �Id 
 Twp;q 
 Id� where sh denotes the product on
T �V � de®ned above.

2. Then D : T �V � ! T �V � 
 T �V � is an algebra homomorphism.

Proof. The idea is the same as for the proof of the ®rst statement of Prop-
osition 9. One observes that all the maps involved are given by the action of
certain elements of the group algebra of the braid group. The identities to be
checked involve sums of products of braid group elements, and all products
Tw � Tw0 appearing are such that l�w � w0� � l�w� � l�w0�. So, all braid group
elements are already written in terms of reduced expressions, and both
statements follow from the independance in the reduced expression.

One can formulate these twisted bialgebras structures in a unifom way
using a universal construction in the Braid category (cf [Ka]) made linear .
Recall that objects in the braid category B are the ``direct sums'' of positive
integers n, and that the morphisms Mor�n;m� are 0, if n 6� m, and the group
algebra of Bn otherwise. It is a braided monoidal category, the monoidal
structure being given by addition. Its universal property says that, given a
braided vector space �V ; r�, there is unique monoidal functor from B to the
category of vector spaces, sending 1 to V and the generator of B2 to r.

De®nition and Proposition 13. 1. The shu�e algebra S in B is, as an object,
the direct sum of all objects n.

2. The product is given by the direct sum of its ``homogenous components'':
for all n and m in N, one has a component in Mor�n
 m; n� m� which is the
sum of Tw 2 Bn�m, w ranging in the set of �n;m�- shu�es of Rn�m.

3. The coalgebra structure is also given by the direct sum of its ``homo-
genous components'': for all n; p; q in N such that p � q � n, the component in
Mor�n; p 
 q� is the canonical morphism n! p 
 q.

4. These product and coproduct are compatible if we give S
S the
algebra structure deduced from the one on S by ®rst twisting by the braiding:
�Id 
 Twp;q 
 Id� : �n� p� 
 �q� m� ! �n� q� 
 �p � m�.

The proof is the same as before: simply observe that we are only using
actions of linear combinations of braid group elements, which are precisely
the morphisms in B.

2. The examples from abelian group algebras

We are going to apply the preceding machinery to a very simple situation,
but which leads to interesting examples.
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Let H � k�G� be the group algebra of an abelian group G, written as a
product Zr � Z=l1 � Z=l2 � � � � � Z=lp. We shall ®x generators K1; . . . ;KN

of G �N � r � p�. As H is both commutative and cocommutative, the
structure of the subspace V of right coinvariants of a Hopf bimodule M is
just that of a left module and a left comodule, with trivial compatibility
condition. We shall consider the following family of examples: V is a k-
vector space of dimension N , with a left coaction of H reproducing the
coproduct of H , and a left action of H which is completely reducible. So,
there is a basis �e1; . . . ; eN � of V and N 2 non zero scalars qij such that:
d�ei� � Ki 
 ei, Ki�ej� � qijej.

Note that the braiding in V 
 V is given by: r�ei 
 ej� � qij�ej 
 ei�. The
adjoint action in SH �M� is completely described as follows: for any x in
SH �M� and any i � 1; . . . ;N , adei�x� � eixÿ Ki�x�ei; so ad�ei��Sr�V �� �
�Sr�V ��

In order to study the structure of SH �M�, the following lemma will be
very useful.

Lemma 14.
(a) for all i � 1; . . . ;N and r 2 N, er

i �
Qr

k�1
qk

iiÿ1
qiiÿ1
� �

e
r
i

(b) for i 6� j and r 2 N,

ad�ei�r�ej� �
Yr

k�1

qk
ii ÿ 1

qii ÿ 1

� �Yrÿ1
k�0

1ÿ qk
iiqijqji

ÿ �
e
r

i 
 ej :

Proof. By induction on r.

Example 1. Assume that the coe�cients qij satisfy: for i 6� j, qijqji � 1. One
gets from Lemma 14 that, for i 6� j, adei�ej� � 0, i.e. eiej � qijejei. The
algebra Sr�V � is the ``algebra of functions'' on the quantum hyperplane
of Manin ([Mn]).

Example 2. Let A � �aij�1�i;j�N be a symetrizable generalized Cartan matrix,
�d1; . . . ; dN � positive integers relatively prime such that �diaij� is symetric.
Take for G either ZN or �Z=l�N . Let q 2 C and de®ne qij � qdiaij . (For G �
�Z=l�N , q has to be an l-th root of unity.)

One gets immediately from Lemma 14. that:
(a) if q is a root of unity of order l, then for all i � 1; . . . ;N , el

i � 0.
(b) if q is generic, then for i 6� j there is a smallest integer r such that

ad�ei�r�ej� � 0, and it is given by: �r ÿ 1�diaii � 2diaij � 0, i.e. r � 1ÿ aij. In
fact, we have:

Theorem 15. In the situation of Example 2,
1. For G � ZN , if q is not a root of unity, then the Hopf algebra SH �M� is

isomorphic, as a Hopf algebra, to the sub Hopf algebra U�q of the quantized
universal enveloping algebra associated with A.
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2. For G � �Z=l�N , if q is a primitive l-th root of unity, SH �M� is isom-
orphic to the quotient of the restricted quantized enveloping algebra u�q of
Lusztig ([L1]) by the two-sided Hopf ideal generated by the elements �Kl

i ÿ 1� ,
i � 1; . . . ;N .

Proof. Observe that, giving the degree 0 to H and 1 to the ei's, U�q or u�q is
a graded Hopf algebra, generated by its elements of degree 0 and 1. Fur-
thermore, any primitive element of degree at least 2 would be in the kernel of
the Hopf pairing between U�q and Uÿq or between u�q and uÿq , and we know
that this Hopf pairing is nondegenerate. (This is the ``raison d'eÃ tre'' of the
universal R-matrix). So the theorem follows from the ``Milnor-Moore type
property'' of Section 1.4.

Remark 1. The computations of Lemma 14 give a very simple way to check
that the quantized Serre relations hold. In fact, for our framework, they give
a little more: one sees that the coe�cients qij occur only via the symetrized
expression qijqji. This leaves the freedom to chose the antisymetric part. If
one introduces an antisymetric matrix �rij� and put qij � qdiaij�rij , SH �M� is
isomorphic to the dual of the ``multiparametric versions'' of U�q introduced
by Reshetikhin ([Re]) via twistings.

Remark 2. Supersymetric versions are constructed by putting an Z=2 copy
in G to make some ei's odd. More precisely, take G � ZN � Z=2 and call �
the generator of Z=2. Let J � f1; . . . ;Ng the subset of indices i for which ei

must be odd. For i 2 J , put d�ei� � �Ki 
 ei, and ��ei� � ÿei; for i not in J ,
d is as before and ��ei� � ei.

3. A classi®cation result

We keep the same notations as in the preceeding section. All the structure of
Sr�V � is encoded in the N � N matrix �qij�, and we saw that some particular
choices led to familiar examples. The question that we address now is: are
there other interesting examples? We begin by the construction of ``multi-
plicative'' bases for the quantum shu�e algebra: this is a generalization of
a result of Radford ([Ra]) on bases for the classical shu�e algebra.

3.1 Multiplicative bases in the quantum shu�e algebra

3.1.1 Let V be a ®nite dimensional vector space. We begin with some
combinatorics in the tensor space T �V �, borrowed to Radford.

Fix �e1; . . . ; eN � a basis of V, and a total ordering (e.g. 1 < 2 < � � � < N ).
Then the set S of tensor products ei1 
 � � � 
 eik of these basis elements
provide a basis of T �V �.
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De®nition 16. 1. A total ordering � on the set S is de®ned by lexicographic
ordering, with the convention that a
 b � a for a and b in S.

2. An element p in S is said to be a prime if, for any splitting p � a
 b,
with a and b in S, one has: b < p.

One can show that any a 2 S has a unique prime factorization, i.e. can be
written in a unique way as a (tensor) product of primes with minimal
number of primes. In fact, if a � p1 � � � pr is a product of primes, p1 � � � pr is its
prime factorization if and only if p1 � p2 � � � � � pr.

3.1.2 Assume now that �V ; r� is a ®nite dimensional braided vector
space, with r given by the N � N matrix �qij�.

Proposition 17. Let a 2 S and a � p
n1
1 
 p
n2

2 
 � � � 
 p
ns
s be its prime

factorization. De®ne Xa � pn1
1 pn2

2 � � � pns
s (i.e. we replace tensor products be-

tween pi's by quantum shu�e multiplication). Then Xa; a 2 S form a basis of
T �V �, and the change of basis with respect to a is triangular: there exist
aab 2 k, with aaa 6� 0 such that: Xa �

P
a�b aabb.

Proof. We adapt Radford's one to our situation; this is possible because
of the special form of the braiding (usual permutation up to a scalar). Let li

be the length (or degree) of the tensor pi. Then Xa � B�l1;...;ls� �p
n1
1 


p
n2
2 
 � � � 
 p
ns

s �. As shown by Radford, for w 2 R�l1;...;ls�, w�a� � a and
w�a� � a if and only if w is in the subgroup Rn1 � � � � � Rns of ``block per-
mutations'', permuting only the pi's among themselves for each i. Formula
Xa �

P
a�b aabb follows immediately, as Tw, up to a non-zero scalar, acts as

w. Furthermore aaa is a product of q-factorials: for 1 � i � s let
pi � �ej1 ; . . . ; ejmi

� and Qi �
Q

k;l2fej1 ;...;ejmi
g qkl. Then aaa � �n1�Q1

! � � � �ns�Qs
!.

Corollary 18. Let i 6� j in 1; . . . ;N . There is a total ordering for which i > j.
Then, for each n, e
n

i 
 ej is a prime, and the ordered quantum shu�e prod-
ucts, �e
n1

i 
 ej��e
n2
i 
 ej� � � � �e
nr

i 
 ej�, for n1 � n2 � � � � � nr, are linearly
independent.

Remark. Assume that qij � qaij , with �aij� a Cartan matrix of type A. Then
the multiplicative basis �Xa� of T �V � has the following remarkable property:

Given a in S, either Xa is in the subalgebra Sr�V �, or it is not; and those
which are in Sr�V � form a basis of Sr�V �, which is, up to a scalar, nothing
but the Poincare-Birkho�-Witt basis.

To see this, recall that, for each positive root a � ai � � � � � aj, on
may construct a ``root vector'' ea � ad�ei�ad�ei�1� � � � ad�ejÿ1��ej� (for the
A-series, this is equivalent to the construction using Lusztig's braid
automorphisms). The same computations as in Lemma 14 give: ea �
�1ÿ qÿ2�jÿiÿ1ei 
 ei�1 
 � � � 
 ej, and this is a prime element.
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3.2 Consequences of growth conditions

We want to show that reasonable growth conditions on the dimensions of
the homogenous components of Sr�V � imply the existence of Serre type
relations, which in turn imply the existence of a symetrizable generalized
Cartan matrix from which Sr�V � is constructed as in Example 2 of Section 2.

Lemma 19. Suppose there are i 6� j in f1; . . . ;Ng such that, for all r 2 N�,
�adei�r�ej� 6� 0. Then, for n big enough, the dimension of the homogenous
component of degree n satis®es: dim Sr�V ��n� � e

��
n
p

n � 1
pe2

Proof. One has, from Lemma 14, that if �adei�r�ej� is not 0, then e
r
i 
 ej is

in Sr�V �. So, if for all r 2 N�, �adei�r�ej� 6� 0, then for all n1 � n2 � � � � � nr

�e
n1
i 
 ej��e
n2

i 
 ej� � � � �e
nr
i 
 ej� is in Sr�V �. From Corollary 18, one gets

that, for r < n, dim Sr�V ��n� is at least the number of partitions P �nÿ r; r�
of nÿ r in r parts. Using standard minorations for P �n;m� and Stirling's
formula, the result follows.

Lemma 19 implies immediately the following.

Lemma 20. If the Gelfand-Kirillov dimension of Sr�V � is ®nite, or its Borho-
Kraft dimension ([B-K]) is strictly smaller than 1=2, then necessarily, for all
i 6� j there exists nij in N such that: �adei�nij�ej� � 0.

Recall that a matrix �bij�1�i;j�N is said to be indecomposable if 8k;
l2f1; . . . ;Ng there exists i1 � k; i2; . . . ; ir � l such that 81 � s� r; bisis�1 6� 0.

We shall say that a matrix �qij�1�i;j�N with non zero entries is exp-
indecomposable if for all k; l 2 f1; . . . ;Ng there exists i1 � k; i2; . . . ; ir � l
such that 81 � s � r; qisis�1 6� 1.

Theorem 21. Assume that the ground ®eld k is the ®eld of complex numbers C,
that the symetrized matrix �qijqji�1�i;j�N is exp-indecomposable and that the
coe�cients qij are strictly positive. Then Sr�V � is of ®nite Gelfand-Kirillov
dimension, or of Borho-Kraft dimension strictly smaller than 1=2 if and only if
there exists q in C�, relatively prime positive integers �d1; . . . ; dN � and a
Cartan matrix A � �aij� such that:

qii � qdi qijqji � qÿdiaij � qÿdjaji :

The Hopf algebra SH �M� is then isomorphic to the multiparametric version of
the ``upper triangular subalgebra U�q '' of the quantized enveloping algebra
associated with A.

Proof. According to Lemma 20, for all i 6� j there exists a smallest integer nij

such that: �adei�nij�ej� � 0. As qii is not a root of unity, necessarily, we have:
1ÿ qnij

ii qijqji � 0, so: qÿnij
ii � qÿnji

jj � qijqji. This formula suggests to de®ne
nii � ÿ2. Observe that nij � 0 implies nji � 0. The hypothesis on �qij� im-
plies that the matrix N � �nij� is indecomposable. Put qii � exi ; xi 2 R. Note
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that xi 6� 0 and that xi's are all of the same sign. Then nijxi � njixj, from
which follows that there exists x 2 R and �d1; . . . ; dN � positive integers such
that xi � xdi; we may choose x in such a way that the di's are relatively
prime. Then, the matrix N � �nij� is the opposite of a symetrizable gener-
alized Cartan matrix.

4. Inductive construction of higher rank quantized enveloping algebras

The data needed to perform the quantum shu�e construction is that of a
Hopf algebra and a Hopf bimodule on it. Representations of quantized
enveloping algebras essentially provide such a Hopf bimodule for their sub-
Hopf algebra U�q .

Recall (cf [DC-K-P]) that for each lattice M between the root lattice Q
and the weight lattice P , one has a version Uq�M� of UqG (loosely speaking,
one adds grouplike elements Km for all m in the lattice M). This can be slightly
generalized as follows: assume that the weight lattice is an orthogonal direct
summand of a bigger lattice P 0, i.e. P 0 � P � S with S a sublattice orthogonal
to P . Then, for any sublattice M of P 0 containing Q, one has a version Uq�M�
of UqG, where the de®ning relations involving Km, m 2 M only use the
orthogonal projection of m onto P .

We are going to show that, if we take a suitable irreducible representa-
tion of a suitable version of UqG, what we construct is the ``plus part'' of
a quantized enveloping algebra associated with a Lie algebra containing
G and of rank equal to rk�G� � 1.

In order to increase the rank by 1, we extend U�q by a grouplike element,
which acts and coacts diagonally on the module. This amounts to extend the
weight lattice by a vector orthogonal to it, and then take a suitable sub-
lattice. This was suggested to us by a very interesting construction of Kac-
Moody algebras by Benkart, Kang and Misra ([B-K-M]). These authors
start with a ®nite dimensional simple Lie algebra of classical type G and its
fundamental representation V . They trivially extend G by a central element
c, and make c act by a non zero scalar on V (and dually on V �). Given a
certain G-equivariant linear map / : V � 
 V ! G, they construct the mini-
mal graded Lie algebra with local part V � � G� V and show that it is
isomorphic to a Kac-Moody Lie algebra whose Cartan matrix is obtained
from that of G by adding a line and a column of a certain form. In fact, our
work may be seen as a sort of quantization of theirs, with the bene®t that we
do not need to use any pairing /: it automatically appears when we do the
quantum double.

4.1 General construction

Let G be ®nite dimensional complex Lie algebra with an n� n Cartan matrix
A, and V an irreducible ®nite dimensional UqG module with lowest weight k.
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If we consider here the version where M is the sublattice of P generated by Q
and k, V is a Yetter crossed module on U�q �M� : it is generated, as a module,
by a lowest weight vector v and the coaction of U�q �M� on V is completely
determined by : d�v� � Kk 
 v (due to twisted compatibility between action
and coaction). Extend the lattice M by an element l orthogonal to it and
with square length �l; l� � c. Let Q0 the sub-lattice generated by Q and
k� l. The modi®cation of U�q that we use is the Hopf algebra U � Uq�Q0��.

Indeed, V is a Yetter crossed module on U : one extends the U�q -module
structure by making Kk�l act diagonally in a basis of weight vectors of V ,
the eigenvalues being completely speci®ed by: Kk�l�v� � q�k;k���l;l�v, and one
de®nes the coaction of U on V by d�v� � Kk�l 
 v.

Proposition 22. Assume that the scalar c � �l; l� is such that: for all
i 2 f1; . . . ; ng, 2 �k;ai�

��k;k��c� is a non positive integer. Then the quantum symetric
algebra SU �V 
 U� is isomorphic to the ``plus part'' of the quantum gen-
eralized Kac-Moody algebra eUq whose Cartan matrix �aij� is obtained from
A by adding a line and a column with: ai;n�1 � 2 �k;ai�

�ai;ai�, an�1;i � 2 �k;ai�
��k;k��c�.

Proof. We know that SU �V 
 U� is generated by U and V . The same

computations as Lemma 14 lead to: ad�ei�r�v� � 0 for r � 1ÿ 2 �k;ai�
�ai;ai� and

ad�v�s�ei� � 0 for s � 1ÿ 2 �k;ai�
��k;k��c�. So, clearly, SU �V 
 U� is a Hopf algebra

quotient of eU�q . The kernel is a two-sided ideal and coideal, homogenous
with respect to the gradation by the root lattice, and which does not meet
the subspace spanned by the elements having for degree a simple root. If it is
not zero, it has to contain an element of minimal degree . But such an
element is then necessarily nearly primitive, which is impossible due to the
non degeneracy of the Hopf pairing between the ``plus'' and ``minus'' parts
([Ro1]).

4.2 Examples

We now explain how to obtain step by step, and starting with sl�2�, all
quantized enveloping algebras associated with ®nite dimensional simple Lie
algebras or with a�ne Kac-Moody Lie algebras. For roots and weights, we
use the notations from Bourbaki ([Bo]). In particular, the root lattice and
the weight lattice are realized as sublattices of an euclidian lattice with
orthonormal basis ��i�.

The choice of the element l in Proposition 22 is made as follows: one
works over Q (i.e. l has rational coordinates in the basis ��i�), and one
chooses the euclidean space in which it lives to be of the smallest possible
dimension.
(a) The An series.

Take G � sl�n� and V the fundamental representation, with lowest
weight ÿxnÿ1. Let l � 1

n ��1 � � � � � �n� ÿ �n�1. Then we get sl�n� 1�.
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(b) The Bn series.
Take again G � sl�n� and V the fundamental representation, with lowest

weight ÿxnÿ1, but choose now l � 1
n ��1 � � � � � �n�. Then we get so�2n� 1�.

(c) The Cn series.
Take G � sl�n� and V the ``symetric square'' of the fundamental repre-

sentation, with lowest weight ÿ2xnÿ1. Choose l � 2
n ��1 � � � � � �n�. Then we

get sp�2n�.
(d) The Dn series.

Take G � sl�n� and V the second exterior power of the fundamental
representation, with lowest weight ÿxnÿ2. Choose l � 2

n ��1 � � � � � �n�.
Then we get so�2n�.
(e) The case of F4.

Take G � so�7� and V the irreducible module with lowest weight ÿx3

(the spin representation) Choose l � 1
2 �4.

(f) The case of G2.
Take G � sl�2�, and V the spin 3

2 representation. Choose
l � ÿ12 ��1 � �2� � �3.
(g) In the same way, E6 is obtained from so�10� and one of the half-spin
representation, then E7 from E6 and E8 from E7.
(h) The quantum a�ne untwisted Kac-Moody algebras.

Let G be a ®nite dimensional simple complex Lie algebra and V � G the
adjoint representation, with lowest weight ÿh. Here l has to be of length 0,
and orthogonal to Q. So we take l � d.

4.3 Application

The isomorphism of SU �V 
 U� with Sr�V � 
 U allows for an inductive
construction of bases. Let us show that, in the A-series case, this leads very
simply to the PoincareÂ -Birkho�-Witt basis and consequently to the ``q-ex-
ponential formula'' for the universal R-matrix. Indeed, we assume by in-
duction that we have constructed a PoincareÂ -Birkho�-Witt basis for An;
then we need a basis of Sr�V �. We observe that the braid group action is
given by application of the R-matrix of Anÿ1-type in the fundamental rep-
resentation, twisted by the scalar qc (due to the e�ect of kk�N in the coac-
tion). Here c � 1� 1

n, and the scalar qc combines with the factor qÿ
1
n

appearing from direct application of the universal R (see comments in [C-P]
p. 277), to give that the braid group representation in the tensor powers of
the fundamental representation factorizes through the Hecke algebra, with
eigenvalues of the generators 1 and ÿq2. Then, calling �v1; . . . ; vn� the
standard basis of V , we have: for i < j, vi � vj � q2vj � vi, so Sr�V � is a twisted
polynomial algebra (i.e. the algebra of functions on a quantum hyperplane).
Furthermore, looking at weights with respect to the new lattice Q0, we see
that vi's are root vectors, vi being associated with the root ai � � � � � an. So,
the given ordering on the vi's is a convex ordering and we get a PoincareÂ -
Birkho�-Witt basis.
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