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Abstract. We construct a hierarchical tiling of 3 dimensional Euclidean
space based on a triangular prism, using repeated rotations, about orthog-
onal axes, by angles 2p=m and 2p=n. To analyze the structure of the tiling we
are led to determine the group G�m; n� generated by such a pair of rotations,
for m � n � 3 and for m � 3; n � 4.

I. Introduction

This paper is concerned with certain patterns in 3 dimensional Euclidean
space, and their symmetries. One step in analyzing these symmetries involves
determining the group G�m; n� generated by a pair of rotations about or-
thogonal axes, one by 2p=m and the other by 2p=n; 2 � m � n. Speci®cally,
we determine presentations for the groups G�3; 3� and G�3; 4�, which are
perhaps the simplest cases aside from the ®nite groups, G�4; 4� and G�2; n�.
(There were previous results for some cases [Swi] where m � n � 1:)

The patterns we consider are tilings of space, by triangular prisms, which
have a hierarchical structure. In our primary example there is only one type
of tile, and it is shown to appear in the tilings in in®nitely many orientations,
in fact with orientations which are uniformly distributed in SO�3�. Fur-
thermore, the number of such orientations which occur in a sphere of vol-
ume N in a tiling grows polynomially in N . As we shall see, only logarithmic
growth is possible in analogous 2 dimensional tilings, such as the pinwheel
[Ra1. Ra2], due to the commutativity of rotations in 2 dimensions.
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We also discuss two local properties of the tilings, concerned with the
neighborhoods of tiles.

II. The quaquaversal tilings

Consider the triangular prism (``tile'') made from a 1, Ö3, 2 right triangle,
with depth 1. We want to de®ne a ``de¯ation'' rule which decomposes this tile
into eight congruent pieces (``small tiles''), each similar to the original. First
we decompose the right triangle by joining the midpoint of the hypotenuse to
the midpoints of the two legs and to the vertex of the right angle; see Fig. 1 for
a labelling of the four subtriangles this produces. We now fatten this by depth
1/2 tomake a collectionC of four small tiles, labelled 1 to 4, each similar to the
original tile. Next we modify this collection of four small tiles in two di�erent
ways. One modi®ed collection, CA, is obtained by rotating by 2p=4 the small
tiles labelled 2 and 3 about the axis joining the centres of their two square
faces. (The square faces are perpendicular to those visible in Fig. 1.). Note
that the modi®cation does not change the set theoretic union of the collection
of four (solid) small tiles; the collection CA still has the shape of C, that of a
triangular prism with a face consisting of a 1, Ö3, 2 right triangle and depth
1/2. The other modi®cation,CB, ofC is obtained by rotating by 2p=3 the small
tiles 3 and 4, which together de®ne an equilaterial triangular prism, about the
axis joining the centers of the two triangular faces of the equilateral prism.
Again, CB has the same overall shape as C. Now we abut CA and CB along
their triangular faces to yield a collection ~C of eight small tiles, for which the
set theoretic union is precisely the original tile. There is someminor ambiguity
in the above description, which is clari®ed in Fig. 2, which shows two views of
~C; the four tiles labelled with ``A'' refer to CA, the four labelled with ``B'' refer
to CB.

We interpret the above as follows: starting with a certain tile we end up
with a decomposition of it into eight small tiles each similar to the original

Fig. 1
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but shrunk by a factor of 2. We call this a de¯ation of the tile. And we de®ne
de¯ation of any collection of tiles by de¯ating each separately. Now if we
begin with a collection of n tiles, de¯ate them as above, and linearly expand
about any point by a factor of 2, we end up with 8n tiles (of the original
size). ``Quaquaversal tilings'' of space are produced by in®nite repetition of
this de¯ation-expansion process, as follows.

Start with a tile, do the de¯ation-expansion producing eight tiles, repeat
the process on the set of eight tiles, producing 64 tiles, and again on these,
producing 512 tiles. We will call this a ``big'' de¯ation-expansion, which,
starting with one tile, produces a collection of 512 tiles. (As with the simpler
de¯ation-expansion, it can, and will, be applied to a collection of tiles.) The
collection Ĉ of 512 tiles has the overall shape of a tile, stretched by a factor
of 23, and contains a tile T in its interior which has its faces parallel to the
corresponding faces of Ĉ. (We see the latter as follows. After the ®rst de-
¯ation-expansion select the ``2B'' tile, as de®ned by Fig. 2, calling it T1; after
the next de¯ation-expansion, again choose, from the byproducts of T1, the
2B tile, calling it T2; in the last de¯ation-expansion, the 4A tile produced by
T2 is what we are calling T .) There is a unique ®xed point P 2 T for the
similarity which takes Ĉ to T . Therefore if we start with a single tile and
perform the big de¯ation-expansion, expanding about the ``®xed point'' of
the tile, the result is simply to add 511 tiles around the tile (which therefore
can reasonably be called T ), enlarging the volume of the region tiled by a
factor of 29. Repeating this big de¯ation-expansion on the set of tiles pro-
duced from the previous action, always expanding about the ®xed point of
the original T , leads to (exponential) extension of the already constructed
tiling of a region of space. A quaquaversal tiling of space is obtained in the
limit of in®nitely many repetitions. (Expanding about variable points can
produce noncongruent tilings; this is not relevant in this paper, but for an
analysis of this see [Ra2].)

Our next goal is to analyze the set of relative orientations of the tiles
which appear in an expanding sphere of such a tiling.

Fig. 2
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Theorem 1. The orientations of the tiles in a quaquaversal tiling are uniformly
distributed in SO�3�.

Proof. From the Peter-Weyl theorem, a sequence fgng of elements of SO�3�
is uniformly distributed over SO�3� if and only if �1=N� PN

n�1 Dij�gn� ! 0
for every matrix element Dij of every continuous irreducible unitary repre-
sentation D of SO�3� other than the trivial one [K-N]. Using the methods of
[Ra2] we can restrict attention to N � 8k, corresponding to k iterates of
de¯ation-expansion. In such a structure the orientations of the tile are the
summands in the elements �g01 � . . .� g08�k of the group ring of SO�3�, where
g01; . . . ; g08 are the eight orientations of the small tiles with respect to that of
their de¯ated parent. (Speci®cally, with respect to the x; y; z axes of Fig. 2
and using the notation e for the identity and Rh

x for rotation by angle h about
the x axis, the eight orientations of tiles 1A; . . . ; 4A and 1B; . . . ; 4B are:
e;R2p=4

y R2p=2
z ;R6p=4

y , e; and e;R2p=2
z ;R2p=3

x R2p=2
y ;R2p=3

x :�
Now

j��D�g01� � � � � � D�g08��k�ijj � k�D�g01� � � � � � D�g08��kk �1�

So

��D�g01� � � � � � D�g08��k�ij=8k ! 0 �2�

as k !1 if

k�D�g01� � � � � � D�g08��kk=8k � k��D�g01� � � � � � D�g08��kk1=k=8�k ! 0 �3�

But k�D�g01� � � � � � D�g08��kk1=k has as its limit the spectral radius of
D�g01� � � � � � D�g08��RÿN�; so the limit in (2) can only be nonzero if that
spectral radius in 8; it certainly cannot be larger than 8 since the norm
cannot be larger than 8. We prove it is not 8 by contradiction as follows.
Assuming the spectral radius is 8, there is a (unit length) eigenvector f of
D�g01� � � � � � D�g08� with eigenvalue of absolute value 8, and since each
D�g0j�f is of unit length, they must be the same vector for all j � 1; . . . ; 8;
namely the same multiple of f . But then f de®nes a 1 dimensional space
invariant under all the D�gj�; and thus invariant for the representation of the
group generated by the gj. But since the representation is continuous, the
space is also invariant for the representation of the closure of that group,
which is all of SO�3� (the closed subgroups of SO�3� are known). But this
would be a contradiction with the irreducibility of the representation D,
unless it is the trivial representation. So the spectral radius of
D�g01� � � � � � D�g08� cannot be 8, and the limit in (3) is 0, except for the
trivial representation, proving that fgng is uniformly distributed. (
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Next we need to consider the algebraic aspects of the rotations in the
de¯ation to analyze the rate of growth of the number of di�erent orienta-
tions of the tile within an expanding sphere of a tiling.

III. Groups of rotations

Recalling the notation of the introduction, let G�m; n� be the group gener-
ated by a pair of rotations about orthogonal axes, one by 2p=m and the
other by 2p=n, where 2 � m � n.

Theorem 2. G�3; 4� is the free product S3 � �C2�C4 of the symmetric group S3
with the cyclic group C4; amalgamated over C2.

Proof. Our proof represents rotations by conjugation of quaternions in the
well-known way [Cur]. That is, with the quaternion notation:

q � q1 � q2i� q3j� q4k � r�cos�/� � sin�/�v� �4�

where qm; r are real, v is a unit 3-vector, 0 � / � p; r � 0 and the
norm N�q� � r2 � q12 � q22 � q32 � q42; we have the following. If
qq0qÿ1 � ~q � ~r�cos� ~/� � sin� ~/�~v�; then ~r � r0; ~/ � /0 and the 3-vector ~v is
obtained from v0 by rotation by 2/ about the axis containing v. As a map
from quaternions of norm one to rotations this is a group homomorphism,
with kernel f�1g.

Consider the subring K of quaternions generated by i and
w � �ÿ1� j

���
3
p �=2. Note that w2 � w� � �ÿ1ÿ j

���
3
p �=2; and w3 � 1. Also, i

inverts w : wi � iw�: If therefore we de®ne g � wi and h � wg we will have
gi � hg � ih � ÿw and ig � gh � hi � ÿw�; where we used gg � hh �
ii � ÿ1:

So the ring K is additively generated by 1;w;w� together with g; h; i;
where each of these triples adds to 0. Therefore as a subset of R4; K is the
direct sum of two equilateral triangular lattices: integer multiples of 1;w and
w� in the plane P1 spanned by 1 and j; and integer multiples of g; h and i in
the plane P2 spanned by i and k.

The furthest a point in the plane P1 can be from a point of its lattice is
when it is at the center of one of the equilateral triangles, when it is 1=

���
3
p

from it. Similarly for P2. So the furthest a point in R4 can be from the direct
sum of the lattices is

���
2
p

=
���
3
p

; which happens to be less than 1.
So by a familiar argument K is a Euclidean domain, and thus a principal

ideal domain. This implies a form of unique factorization, in the following
sense.

Lemma. Let X be an element of K that is not divisible by any rational integer
greater than 1. If the norm N�X � is the product p1p2 . . . pm of primes, then we
can write X � P1P2 . . . Pm; where N�P1� � p1; N�P2� � p2; . . . ; N�Pm� � pm:
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Given the order in which we take p1; p2; . . . ; pm; this expression is unique up to
``unit passage'' (that is, we may replace Pj and Pj�1 by Pju and uÿ1Pj�1 for any
unit u�:
Sketch of a proof by induction on m. First assume the norm N�X � of X is the
prime p. Consider the right ideal generated by X and p. This must be
principal, say �P �; and P is unique up to multiplication by a unit since if
�P � � �P 0� then P � P 0q1 and P 0 � Pq2. But then P 0 � P 0q1q2 and cancella-
tion justi®es the claim. Then continue inductively. (

We return to the proof of Theorem 2. Now the rotations that de®ne
G�3; 4� are represented by the conjugations by w and 1� i; and so any
element of G�3; 4� is represented by the conjugation by some product of
these, that product being unique up to a real factor. We can adjust the real
factor so that we get an element of our ring that is not divisible by any
rational integer greater than 1. From the geometrical form of K it has just
three right ideals of norm 2, namely �1� g�; �1� h�; �1� i�; and we see
that everything they (and the units) generate is uniquely of the form
�1� k0��1� k1� � � � �1� km� times a unit, where each of the kj is one of g; h; i;
and no two adjacent factors are equal.

Rewriting each of the kj as wÿtiwt for some t; we get another normal
form:

W0�1� i�W1�1� i�W2�1� i� � � � �1� i�Wk��1 or � i� �5�

which is (when we forget the sign) exactly the normal form for S3 � �C2�C4:
(

Corollary. G�3; 3� is the free product C3 � C3; and is a normal subgroup of
index 4 in G�3; 4�.

Proof. The result for G�3; 3� is obtained by specializing: the two generators
are w and its conjugate by 1� i; which we call W . Under conjugation by
1� i; we see

w! W ! w� ! W � ! w �6�

So the group hw;W i is normal of index 4 in hw; 1� ii; justifying the assertion
that G�3; 3� is normal of index 4 in G�3; 4�: (

Consider the orientations that appear in the structure of 8k tiles pro-
duced by k iterations of the de¯ation-expansion process, as in the proof of
Theorem 1. Using the above Corollary and just considering the 2k tiles
which at each stage of the hierarchy are within prisms of type 2A or 4B; we
see that the tiles must exhibit roughly 2k di�erent orientations, that is, the
total number of orientations grows polynomially in the volume. This is in
marked contrast to the situation for hierarchical tilings in the plane, such as
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the pinwheel, for which the number of di�erent orientations in a structure
produced by k iterations of de¯ation-expansion can be at most algebraic in k
(because of the commutativity of the rotations), and therefore logarithmic as
a function of the area.

IV. Two features of tile neighborhoods

This section contains an analysis of two local properties of the tilings. First
we show that there is only a ®nite number of ways in which a tile is sur-
rounded by abutting tiles in a quaquaversal tiling. This does not follow
merely from the hierarchical nature of the tilings; we later give a di�erent
example to illustrate this.

We add some lines on the faces of the tile. Speci®cally: on the rectangular
face of area 2 (henceforth called the ``top face'') draw a line between the
midpoints of the edges of length 2; on the triangular faces draw lines from
the midpoint of the hypotenuse to the midpoint of the leg of length

���
3
p

and
to the vertex of the right angle; and on the rectangular face of area

���
3
p

(henceforth called the ``bottom face'') draw both diagonals and a line be-
tween the midpoints of the edges of length

���
3
p

; and ®nally, draw lines along
all edges of all faces except for the edges of length

���
3
p

of the triangular and
bottom faces. Fig. 3 shows the added lines by heavy dashes.

We claim that in a quaquaversal tiling tiles abut in such a way that lines
overlap lines wherever faces abut: that is, wherever faces intersect in positive
area. (This of course implies our previous claim that tiles only abut in
®nitely many ways.) This is true by inspection for the eight abutting tiles in
the de¯ation of a tile. One can then use induction if it remains true on
further de¯ation, which is indeed the case as we see next from the assign-
ment of lines.

Proposition 1. In a quaquaversal tiling each triangular or bottom face of a tile
lies in a plane which only consists of such faces, and the pattern of lines on that
plane is an equilateral triangular lattice; each square or top face lies in a plane

Fig. 3
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which only consists of such faces, and the pattern of lines on that plane is a
square lattice.

Sketch of a proof. The proof is by induction, as follows. One ®rst sees by
examination that in a single de¯ation top or square faces give rise to such
faces of small tiles, and similarly for bottom and triangular faces. And then
we see by induction that this remains true.

Next one notes that on de¯ation each square of lines on top and square
faces is decomposed into four squares. As for the bottom and triangular
faces, it is convenient to think of them as follows. The pattern of lines on a
bottom face is the same as that of a pair of triangular faces making up the
rectangle, and on de¯ation it produces the same pattern of lines as would the
pair of triangular faces. And, creating an equilateral prism from a pair of
tiles as above, the lines created by de¯ation of the two tiles just adds
inscribed equilateral triangles within the four original equilateral triangles.

(

This result can be strengthened by the addition of further lines; namely,
on the triangular and bottom faces draw angle bisecters of the equilateral
triangles. Now weaken the notion of ``face'' of a polyhedron to allow faces
to simultaneously share an edge and be coplanar, and consider the lines on
the prism to de®ne 51 faces: 3 square and 48 triangular. With this conven-
tion we have the following corollary.

Corollary. Using the faces de®ned by both sets of lines, a quaquaversal tiling is
``full face to full face''.

We clarify the above result with an example of hierarchical tilings with
di�erent local properties. We begin with a triangular prism made from a
1; 2;

���
5
p

right triangle, with depth 1. We assume it comes in two colors, red
and black. We will give a de¯ation rule which decomposes each into ten
small tiles, ®ve red and ®ve black. First decompose the right triangle in two
ways as follows. Drop a perpendicular from the vertex V of the right angle
to point P on the hypotenuse, from the midpoint M of the leg of length 2 to
the point Q on the hypotenuse, and from M to the midpoint N of the line
�V ; P �. The ``pinwheel'' decomposition of the right triangle is obtained by

Fig. 4
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adding the line �M ; P �; while the ``anti-pinwheel'' decomposition is obtained
by adding the line �N ;Q�; see Fig. 4. By fattening each of these by depth 1
one makes two collections of ®ve congruent prisms, all red from the pin-
wheel decomposition, all black from the anti-pinwheel decomposition. The
de¯ation of the black tile is then made by abutting these two collections of
prisms along triangular faces. This involves a choice. The de¯ation of the
red tile is made similarly, but with the other choice. We then make ``sand-
wich'' tilings by repeated de¯ation-expansion, starting with some tile. We
note that any such tiling will consist of parallel red and black layers. (By
de®nition the colors appear in a Morse sequence [Que].)

Now it is known [Ra1] that in each red layer the tiles appear in in®nitely
many orientations. It is easy to see that in each black layer the tiles appear in
only four orientations. Therefore wherever black and red layers meet the
tiles must abut in in®nitely many ways. This proves the following.

Proposition 2. In a sandwich hierarchical tiling the tiles abut neighbors in
in®nitely many ways.

We conclude this section by considering another local property of the
quaquaversal tilings. First we note that, by construction, a quaquaversal
tiling can be thought of as a tiling at in®nitely many scales; that is, space can
be seen as simultaneously tiled by structures which are the result of iterating
the de¯ation-expansion process k times, for any ®xed k. This could also be
said to be true of the lattice tiling of space by unit cubes, which could be
obtained using the de¯ation rule which decomposes a unit cube into eight
congruent small cubes in the obvious way. An important di�erence between
the cubic and quaquaversal tilings is that while a cubic tiling can be thought
of as a tiling at in®nitely many scales, these are nonunique, while this is not
true for quaquaversal tilings. To see the nonuniqueness of the hierarchies of
cubic tilings one simply notes that there are eight distinct ways to group
together all the cubes of a tiling into appropriate sets of eight.

Proposition 3. The hierarchical structure of quaquaversal tilings is unique.

Sketch of a proof. This is easily seen by inspection, noting that a tile of type
3B di�ers in the way it abuts geometrically with its neighbors from each of
the other seven tiles obtained in the de¯ation-expansion of a tile. (

V. Conclusion

Most work on hierarchical tilings has centered on planar models. The 3
dimensional quaquaversal tilings in this paper show that the algebraic as-
pects of SO�3�; very much richer than SO�2�; lead to new qualitative features
such as the growth rate of orientations, treated in section II.

These growth rates have practical consequences. Hierarchical structures
such as the Penrose [Gar], pinwheel and quaquaversal tilings exhibit
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``statistical rotational symmetries'' [Ra3], whereby the frequencies of ®nite
elements in the tilings (or more accurately, the frequency densities) are in-
variant under rotations without the tiling itself being invariant. (Theorem 1,
together with methods from [Ra2], shows that quaquaversal tilings are
statistically invariant under all rotations.) It has been suggested [Ra5] that
such tilings could be useful in discrete models, or numerical solution of
di�erential equations, since local rotational symmetry might by better pre-
served in such models than, say, with cubic grids. But for planar models
logarithmic growth implies that this is impractical since too few orientations
would appear in a pattern of reasonable size to implement the symmetry.
The algebraic growth of our 3 dimensional quaquaversal tilings avoids this
problem.

Hierarchical tilings originated thirty years ago in logic, to solve decid-
ability problems of predicate calculus [Wan, G-S], and have since had sig-
ni®cant interaction with research in condensed matter physics [S-O, Sen],
discrete geometry [G-S] and ergodic theory [Ra4]. Most of this developed
from examples of 2 dimensional tilings, such as the Penrose and pinwheel
tilings. Through the rotation group, 3 dimensional tilings add a signi®cant
algebraic aspect to this wide ranging research, raising natural questions such
as the structure of the groups G�m; n�:
Acknowledgements. The authors gratefully acknowledge communication by Richard Kenyon of

a substitution tiling of his which uses rotations, about orthogonal axes, by angles irrational with

respect to p.
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