

Appendix The Chow ring of \mathcal{M}_2

Angelo Vistoli

Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, I-40127 Bologna, Italy (e-mail: vistoli@dm.unibo.it)

Oblatum 2-XII-1996 & 12-V-1997

There is now a well developed theory of the Chow rings of moduli spaces of curves [M, F], [V]. Due to the singularities of these spaces, these rings are defined as **Q**-algebras.

The development of an equivariant interesection theory by Totaro, Edidin and Graham [E-G] allows one to define *integral* versions of these rings. More precisely, Edidin and Graham show that the equivariant Chow ring of a smooth algebraic scheme acted on by an algebraic group is a naturally defined integral Chow ring of the associated quotient stack [E-G], Proposition 19). When the group acts with finite stabilizers (as is the case for moduli of curves) this ring is naturally isomorphic to the previously defined rings after tensoring with **Q**. (Moreover, their definition also extends to situations where the "classical" theory collapses and the automorphism groups have infinite order.) In [E-G], Proposition 21, the integral Chow rings of the stacks $\mathcal{M}_{1,1}$ and $\overline{\mathcal{M}}_{1,1}$ of smooth (respectively stable) pointed curves of genus 1 are computed. In this note we give one further example by computing the Chow ring of the stack of smooth curves of genus 2.

Let \mathcal{M}_2 be the stack of smooth curves of genus 2 over a fixed field κ . There is a natural vector bundle \mathscr{E} of rank 2 on \mathcal{M} , called the *Hodge bundle*: if $\pi: C \to S$ is a flat family of curves of genus g corresponding to a morphism $S \to \mathcal{M}_2$, and ω_{π} is the relative dualizing sheaf, then the pullback of E to S is $\pi_*\omega_{\pi}$. The Chern classes $\lambda_i = c_i(\mathscr{E})$ are among the tautological classes introduced by Mumford.

We'll use the following notation. If *R* is a commutative ring, x_1, \ldots, x_n are elements of R, f_1, \ldots, f_r are integral polynomial in *n* variables X_1, \ldots, X_n , we write

This note was written during a very pleasant stay at the Mathematics Department of Harvard University. The author is grateful for the hospitality

$$R = \mathbf{Z}[x_1, \ldots, x_n] / (f_1(x_1, \ldots, x_n), \ldots, f_r(x_1, \ldots, x_n))$$

to indicate that *R* is generated as a ring by the elements x_1, \ldots, x_n , and the polynomial f_1, \ldots, f_r generate the ideal of relations of x_1, \ldots, x_n in $\mathbb{Z}[X_1, \ldots, X_n]$.

The purpose of this appendix is to prove the following.

Theorem. Assume that κ has characteristic difference from 2 and 3. Then

$$A^*(\mathscr{M}_2) = \mathbf{Z}[\lambda_1,\lambda_2]/(10\lambda_1,2\lambda_1^2-24\lambda_2)$$
 .

In characteristic 3 these two relations still hold, but they do not generate the ideal of relations.

The proof consists in expressing the stack \mathcal{M}_2 as a quotient of an open subscheme of a representation space of GL₂, thus showing that $A^*(\mathcal{M}_2)$ is generated by λ_1 and λ_2 , then obtaining the relations coming from the complement of this open subscheme. For this last part, which is rather computational, I have used *Mathematica*, of Wolfram Research Inc.

Let *Y* be the stack whose objects are pairs (π, α) , where $\pi: C \to S$ is a smooth proper morphism of schemes whose fibers are curves of genus 2, and α is an isomorphism of \mathcal{O}_S sheaves $\alpha: \mathcal{O}_S^{\oplus 2} \simeq \pi_* \omega_{\pi}$, where ω_{π} is the relative dualizing sheaf of π , the arrows being the obvious ones. One can think of *Y* as the bundle of frames in the Hodge bundle of \mathcal{M}_2 . It is easy to check that the objects of *Y* have no nontrivial automorphisms, so that *Y* is an algebraic space. There is natural left $\operatorname{GL}_{2,\kappa}$ action on *Y*: if (π, α) is an object of *Y* with basis *S* and $A \in \operatorname{GL}_2(S)$, we set $A \cdot (\pi, \alpha) = (\pi, \alpha \circ A^{-1})$. Clearly \mathcal{M}_2 is canonically isomorphic to the quotient $[Y/\operatorname{GL}_2]$, and the equivariant bundle on *Y* induced by the standard representation of GL_2 corresponds to the Hodge bundle on \mathcal{M}_2 .

For the next result we only need to assume that the characteristic of κ is different from 2.

Consider the affine space \mathbf{A}_{κ}^{7} , considered as the space of all binary forms $\phi(x) = \phi(x_0, x_1)$ of degree 6. Denote by X the open subset consisting of non-zero forms with distinct roots.

Proposition 3.1. The algebraic space Y is naturally isomorphic to X; the given action of GL₂ corresponds to the action of GL₂ on X defined by $A \cdot \phi(x) = \det(A)^2 \phi(A^{-1}x)$. The canonical representation of GL₂ yields the Hodge bundle on \mathcal{M}_2 .

Proof. Let $(\pi: C \to S, \alpha)$ be an object of *Y*. The line bundle ω_{π} is generated by global sections on the fibers of π , so, together with the isomorphism α , yields an *S*-morphism $f: C \to \mathbf{P}_{S}^{1}$, which is a ramified covering of degree 2 on each fiber, together with an isomorphism $\omega_{\pi} \simeq f^* \mathcal{O}_{\mathbf{P}_{S}^{1}}(1)$. We use the well know description of covering of degree 2 of \mathbf{P}^{1} ; the embedding $\mathcal{O}_{S} \hookrightarrow f_* \mathcal{O}_{C}$ has a splitting, given by the trace divided by 2, so we get an isomorphism of $\mathcal{O}_{\mathbf{P}_{S}^{1}}$ -modules $f_{*}\mathcal{O}_{C} \simeq \mathcal{O} \oplus \mathscr{L}$. The line bundle \mathscr{L} on S is non-canonically isomorphic to $\mathcal{O}(-3)$ on the fibers of π . Multiplication in $f_{*}\mathcal{O}_{\mathscr{C}}$ yields a homomorphism $\mathscr{L}^{\otimes 2} \to \mathcal{O}$, which is injective on the fibers of π , and such that the quotient $\mathcal{O}/\mathscr{L}^{\otimes 2}$ is étale over S. The natural action of the cyclic group C_{2} on C corresponds to the action of C_{2} on $\mathcal{O} \oplus \mathscr{L}$ in which a generator of C_{2} leaves \mathscr{O} invariant, and changes sign on \mathscr{L} .

Conversely given a line bundle \mathscr{L} which is isomorphic to $\mathscr{O}(-3)$ on each fiber of π and an injective homomorphism $\mathscr{L}^{\otimes 2} \to \mathscr{O}_S$ such that the quotient $\mathscr{O}/\mathscr{L}^{\otimes 2}$ is étale over S, we get an algebra structure on $\mathscr{O}_S \oplus \mathscr{L}$, and a smooth family of curves $C = \operatorname{Spec}(\mathscr{O}_S \oplus \mathscr{L}) \to \mathbf{P}_S^1 \to S$ of genus 2. The line bundles ω_{π} and $f^*\mathscr{O}(1)$ are isomorphic when restricted to each of the fibers of the projection $f: \mathbf{P}_S^1 \to S$. Giving an isomorphism $\omega_{\pi} \simeq f^*\mathscr{O}_{\mathbf{P}_S^1}(1)$ is equivalent to giving nowhere vanishing section of $\omega_{\pi} \otimes f_* f^* \mathscr{O}(-1)$, or a nowhere vanishing section of

$$f_*(\omega_\pi \otimes f^* \mathcal{O}(-1)) = f_* \omega_\pi(-1)$$
.

But by Grothendieck duality, if we denote by ω the relative dualizing sheaf of \mathbf{P}_{S}^{1} on S, there is a functorial isomorphism

$$f_*\omega_\pi \simeq \operatorname{Hom}(f_*\mathcal{O}_C,\omega) = \omega \oplus (\omega \otimes \mathscr{L}^{-1})$$
;

so an isomorphism $\omega_{\pi} \simeq f^* \mathcal{O}_{\mathbf{P}_{S}^{1}}(1)$ corresponds functorially to a nowhere vanishing section of $\omega(-1) \oplus (\omega(-1) \otimes \mathscr{L}^{-1})$. Since $\omega(-1)$ does not have sections, this is the same as a nowhere vanishing section of $\omega(-1) \otimes \mathscr{L}^{-1}$, or an isomorphism of \mathscr{L} with ω . Given this, a homomorphism $\mathscr{L}^{2} \to \mathscr{O}$ corresponds to a homomorphism $\omega(-1)^{\otimes 2} \to \mathscr{O}$, or, equivalently, a section of $\mathscr{T}^{\otimes 2}(2)$, where \mathscr{T} is the relative tangent bundle of \mathbf{P}_{S}^{1} on S.

The conclusion of all this is that a morphism $S \to Y$ corresponds to a section of $\mathscr{T}^{\otimes 2}(2)$ whose subscheme of zeroes is étale on S. Fixing an isomorphism of \mathscr{T} with $\mathscr{O}(2)$, we see that such sections correspond to morphisms $S \to X$; in this way we obtain an isomorphism of Y with X. It is not hard to see that the action of GL_2 on Y corresponds to the action on X induced by the natural action of GL_2 on $\mathscr{T}^{\otimes 2}(2)$. If we fix an isomorphism of \mathscr{T} with $\mathscr{O}(2)$, this action corresponds to the action of GL_2 on $\mathscr{O}(2)$ defined by $A \cdot f(x) = \det(A)f(A^{-1}x)$, where $A \in GL_2(S)$, $f \in X$ and $x \in A_S^2$; therefore the action of GL_2 on Y corresponds to the given action on X.

The final statement is clear.

Now we have to calculate the equivariant Chow ring $A_{GL_2}^*(X)$ of X. Since X is an open subset in a representation space of GL₂, we see that $A_{GL_2}^*(X)$ is generated by the Chern classes λ_1 and λ_2 of the Hodge bundle; to find the relations we have to analyze the discriminant hypersurface in \mathbf{A}^7 , which is rather complicated. We write λ_1 and λ_2 for the first and second Chern classes of the standard representation of GL₂, and also for their pullbacks to the Chow ring of any smooth GL₂-scheme.

More generally, we will usually use the same symbol for a class in some Chow ring, and all of its pullbacks; this should not lead to confusion, and simplifies the notation considerably.

First of all, call *F* the dual of the basic representation of GL_2 , namely, the space of linear forms on \mathbf{A}^2 with the action of GL_2 given by $A \cdot f(x) = f(A^{-1}x)$. Its Chern classes are $-\lambda_1$ and λ_2 . Set $E = \text{Sym}^6 F$. So *E* is \mathbf{A}^7 , the space of sextic binary form, with the usual action defined by $A \cdot f(x) = f(A^{-1}x)$. Consider the space $\mathbf{P}^6 = \mathbf{P}(E)$ of lines in *E*, and the quotient *Z* of *X* by the diagonal subgroup $\mathbf{G}_m \subseteq \mathbf{GL}_2$. The \mathbf{GL}_2 -scheme *Z* is an invariant open subscheme of \mathbf{P}^6 , and the projection $X \to Z \subseteq \mathbf{P}^6$ makes *X* into the total space of the principal \mathbf{G}_m bundle on *Z* corresponding to the equivariant line bundle $\mathscr{D}^{\otimes 2} \otimes \mathscr{O}(-1)$, where \mathscr{D} is the determinant of the standard representation of \mathbf{GL}_2 , and $\mathscr{O}(-1)$ is the tautological bundle on \mathbf{P}^6 . If we denote by *t* the first Chern class of $\mathscr{O}(1)$ on \mathbf{P}^6 we see that the natural homomorphism

$$A^*_{\mathrm{GL}_2}(Z) \to A^*_{\mathrm{GL}_2}(X)$$

is surjective, and its kernel is generated by $2\lambda_1 - t$. This means that if $p_1, \ldots, p_r \in \mathbb{Z}[\lambda_1, \lambda_2, t]$ is a set of generators for the kernel of the surjective homomorphism

$$\mathbf{Z}[\lambda_1, \lambda_2, t] \to A^*_{\mathrm{GL}_2}(Z)$$
,

then $p_1(\lambda_1, \lambda_2, 2\lambda_1), \dots, p_r(\lambda_1, \lambda_2, 2\lambda_1)$ will be a set of generators for the kernel of the surjective homomorphism

$$\mathbf{Z}[\lambda_1,\lambda_2] \to A^*_{\mathbf{GL}_2}(X)$$

The equivariant Chow ring of \mathbf{P}^6 is generated by λ_1 and λ_2 , modulo a relation $p(\lambda_1, \lambda_2, t)$ in degree 7 which is determined by the Chern classes of $E = \text{Sym}^6 F$. If ℓ_1 and ℓ_2 are the Chern roots of F, so that $\ell_1 + \ell_2 = -\lambda_1$ and $\ell_1 \ell_2 = \lambda_2$, the Chern roots of E are $6\ell_1, 5\ell_1 + \ell_2, 4\ell_1 + 2\ell_2, 3\ell_1 + 3\ell_2, 2\ell_1 + 4\ell_2, \ell_1 + 5\ell_2$ and $6\ell_2$.

We have, after a straightforward calculation,

$$p(\lambda_1, \lambda_2, t) = (t + 6\ell_1)(t + 6\ell_2)(t + 5\ell_1 + \ell_2)(t + 5\ell_1 + \ell_2) (t + 4\ell_1 + 2\ell_2)(t + 2\ell_1 + 4\ell_2)(t + 3\ell_1 + 3\ell_2) = (t^2 - 6\lambda_1 t + 36\lambda_2)(t^2 - 6\lambda_1 t + 5\lambda_1^2 + 16\lambda_2) (t^2 - 6\lambda_1 t + 8\lambda_1^2 + 4\lambda_2)(t - 3\lambda_1) .$$

We set

$$\beta = -p(\lambda_1, \lambda_2, 2\lambda_1) = 16\lambda_1\lambda_2 (3\lambda_1^2 - 16\lambda_2) (2\lambda_1^2 - 9\lambda_2) ;$$

the expression β is 0 in $A_{GL_2}^7(X)$. We have thus found our first relation.

For r = 1, 2, 3, call Δ_r the closed subset of \mathbf{P}^6 corresponding to forms divisible by the square of a polynomial of degree *r* over some extension of the base field. So Δ_1 is the discriminant locus in \mathbf{P}^6 . There is a natural morphism

$$\pi_r: \mathbf{P}^r \times \mathbf{P}^{6-2r} \longrightarrow \mathbf{P}^6$$

induced by the map $\operatorname{Sym}^r F \times \operatorname{Sym}^{6-2r} F \to E$ which sends (f,g) into f^2g . The image of π_r is, by definition, Δ_r .

Lemma 3.2. For some r = 1, 2 or 3, let V be an irreducible subvariety of Δ_r which is not contained in Δ_{r+1} . Then there exists an irreducible subvariety V' of $\mathbf{P}^r \times \mathbf{P}^{6-2r}$ which maps birationally onto V.

Here we implicitly set $\Delta_4 = \emptyset$.

Proof. The statement is equivalent to the following: if K is an extension of κ , then every K-valued point of $\Delta_r \setminus \Delta_{r+1}$ is the image of a K-valued point of $\mathbf{P}^r \times \mathbf{P}^{6-2r}$. Let p be a point in $\Delta_r \setminus \Delta_{r+1}$; p is represented by some form $f \in K[x_0, x_1]$ of degree 6. Write $f = u^2 v$, where $v \in K[x_0, x_1]$ is a square-free form. Obviously the degree of u must be at most r, because otherwise p would be in Δ_{r+1} . Furthermore v will remain square-free in any extension of K, because its degree is less than the characteristic, so the degree of u must be exactly r. Hence if a and b are the K-valued points of \mathbf{P}^r and \mathbf{P}^{6-2r} corresponding to u and v, we have $\pi_r(a, b) = p$.

Lemma 3.3. The kernel of the surjective homomorphism

$$j^*: A^*_{\operatorname{GL}_2}(\mathbf{P}^6) \to A^*_{\operatorname{GL}_2}(Z)$$

is the sum of the images of the homomorphisms

$$\pi_{r*}: A^*_{\operatorname{GL}_2}(\mathbf{P}^r \times \mathbf{P}^{6-2r}) \longrightarrow A^*_{\operatorname{GL}_2}(\mathbf{P}^6)$$

Proof. Follows by standard arguments from Lemma 3.2.

Call ξ_i the pullback to $\mathbf{P}^r \times \mathbf{P}^{6-2r}$ of the first Chern class of the sheaf $\mathcal{O}(1)$ in the *i*th factor. The Chow ring of $\mathbf{P}^r \times \mathbf{P}^{6-2r}$ is generated by $\lambda_1, \lambda_2, \xi_1$ and ξ_2 . We have that

$$\pi_r^*(t) = 2\xi_1 + \xi_2$$

and that ξ_1 is a zero of a monic polynomial of degree r + 1 with coefficients in $\mathbb{Z}[\lambda_1, \lambda_2]$; therefore $A^*_{\mathrm{GL}_2}(\mathbb{P}^r \times \mathbb{P}^{6-2r})$ is generated as a $A^*_{\mathrm{GL}_2}(\mathbb{P}^6)$ -module

by 1, ξ_1, \ldots, ξ_1^r . Together with the projection formula, this implies that the image of π_{r*} is generated as an ideal in $A^*_{GL_2}(\mathbf{P}^6)$ by $\pi_{r*}1, \pi_{r*}\xi_1, \ldots, \pi_{r*}\xi_1^r$. From Lemma 3.3 it follows then that the kernel of j^* is generated by $\pi_{r*}\xi_1^i$ for $1 \le r \le 3$ and $0 \le i \le r$. For each r and i there is a unique homogeneous polynomial $p_{ri} \in \mathbf{Z}[\lambda_1, \lambda_2, t]$, of degree r + i, whose image into $A^*_{GL_2}(\mathbf{P}^6)$ is $\pi_{r*}\xi_1^i$. Set

$$\alpha_{ri} = p_{ri}(\lambda_1, \lambda_2, 2\lambda_2) \in \mathbb{Z}[\lambda_1, \lambda_2]$$

The discussion above leads us to the following conclusion.

Lemma 3.4. The kernel of the surjective homomorphism

$$\mathbf{Z}[\lambda_1, \lambda_2] \longrightarrow A^*_{\mathbf{GL}_2}(X)$$

is generated by α_{10} , α_{11} , α_{20} , α_{21} , α_{22} , α_{30} , α_{31} , α_{32} , α_{33} and β .

So we need to compute the α_{ri} . We'll see that they are all in the ideal generated by α_{10} and α_{11} , and so is β .

Here is the set-up of the calculation. Set $\mathbf{P}^1 = \mathbf{P}(F)$, and consider the morphism $\rho: (\mathbf{P}^1)^6 \to \mathbf{P}^6$ induced by the multilinear map $F^6 \to E$, $(f_1, \ldots, f_6) \mapsto f_1 \ldots f_6$. Analogously one defines the map

$$\rho_r: (\mathbf{P}^1)^r \times (\mathbf{P}^1)^{6-2r} \to \mathbf{P}^r \times \mathbf{P}^{6-2r}$$

by multiplying separately representatives for the first r and the last 6 - 2r coordinates.

Finally, call $\delta_r: (\mathbf{P}^1)^r \times (\mathbf{P}^1)^{6-2r} \to (\mathbf{P}^1)^6$ the map that sends, in settheoretic notation, (f_1, \ldots, f_6) into $(f_1, f_1, \ldots, f_r, f_r, f_{r+1}, f_{r+2}, \ldots, f_6)$. We obtain our basic commutative diagram of GL₂-schemes

in which all the maps are equivariant. The maps ρ and ρ_r are flat and finite, of degrees 6! and r!(6-2r)! respectively.

We identify each class in $A_{GL_2}^*(\mathbf{P}^6)$ with its pullback to $A_{GL_2}^*((\mathbf{P}^1)^6)$ via ρ . Call x_i the pullback to $A_{GL_2}^*((\mathbf{P}^1)^6)$ of the first Chern class of the sheaf $\mathcal{O}(1)$ on \mathbf{P}^1 . We have an equality $t = x_1 + \cdots + x_6$ in $A_{GL_2}^*((\mathbf{P}^1)^6)$, and for each *i* there is a relation

$$x_i^2 = \lambda_1 x_i - \lambda_2 \quad .$$

We introduce some basic elements of $A^*_{GL_2}((\mathbf{P}^1)^6)$. For each positive integer k we set

$$t_k = \sum_{i=1}^6 x_i^k \; ; \;$$

furthermore for $1 \le k \le 6$ we call s_k the k-the symmetric function of x_1, \ldots, x_6 multiplied by k!, that is

$$s_k = k! \sum_{1 \le i_1 < \cdots < i_k \le 6} x_{i_1} \ldots x_{i_k} \quad .$$

By convention we set $s_0 = 1$. The fundamental relation $x_i^2 = \lambda_1 x_i - \lambda_2$ allows for each integer k to write x_i^k as $a_k + b_k x_i$, where a_k and b_k are integral polynomials in λ_1 and λ_2 . By summing over i we see that $t_k = 6a_k + b_k t$. So we see that the t_k are all in $A_{GL_2}^*((\mathbf{P}^1)^6)$. After some computations we get

$$\begin{split} t_1 &= t \ , \\ t_2 &= -6\lambda_2 + \lambda_1 t \ , \\ t_3 &= -6\lambda_1\lambda_2 + (\lambda_1^2 - \lambda_2)t \ , \\ t_4 &= -6\lambda_1^2\lambda_2 + 6\lambda_2^2 + (\lambda_1^3 - 2\lambda_1\lambda_2)t \ , \\ t_5 &= -6\lambda_1^3\lambda_2 + 12\lambda_1\lambda_2^2 + (\lambda_1^4 - 3\lambda_1^2\lambda_2 + \lambda_2^2)t \ , \\ t_6 &= -6\lambda_1^4\lambda_2 + 18\lambda_1^2\lambda_2^2 - 6\lambda_2^3 + (\lambda_1^5 - 4\lambda_1^3\lambda_2 + 3\lambda_1\lambda_2^2)t \ . \end{split}$$

To compute the s_k we use Newton's formulas, which can be written as

$$s_k = \sum_{i=0}^k (-1)^{k-1} \frac{(k-1)!}{(k-i)!} t_i s_{k-i} \; .$$

These show by recursion that the s_k are also elements of $A^*_{GL_2}((\mathbf{P}^1)^6)$. We can use the expressions for the t_k above to calculate the s_k inductively. The results are as follows.

Lemma 3.5.

$$\begin{split} s_{1} &= t \ , \\ s_{2} &= 6\lambda_{2} - \lambda_{1}t + t^{2} \ , \\ s_{3} &= -12\lambda_{1}\lambda_{2} + (2\lambda_{1}^{2} + 16\lambda_{2})t - 3\lambda_{1}t^{2} + t^{3} \ , \\ s_{4} &= 36\lambda_{1}^{2}\lambda_{2} + 72\lambda_{2}^{2} - (6\lambda_{1}^{3} + 72\lambda_{1}\lambda_{2})t + (11\lambda_{1}^{2} + 28\lambda_{2})t^{2} - 6\lambda_{1}t^{3} + t^{4} \ , \\ s_{5} &= -144\lambda_{1}^{3}\lambda_{2} - 432\lambda_{1}\lambda_{2}^{2} + (24\lambda_{1}^{4} + 60\lambda_{1}^{2}\lambda_{2} + 552\lambda_{2}^{2})t - (2\lambda_{1}^{3} + 316\lambda_{1}\lambda_{2})t^{2} \\ &+ (35\lambda_{1}^{2} + 40\lambda_{2})t^{3} - 10\lambda_{1}t^{4} + t^{5} \ , \\ s_{6} &= 720\lambda_{1}^{4}\lambda_{2} + 2520\lambda_{1}^{2}\lambda_{2}^{2} + 720\lambda_{2}^{3} - (120\lambda_{1}^{5} + 1944\lambda_{1}^{3}\lambda_{2} + 2472\lambda_{1}\lambda_{2}^{2})t \\ &+ (274\lambda_{1}^{4} + 1270\lambda_{1}^{2}\lambda_{2} + 832\lambda_{2}^{2})t^{2} - (177\lambda_{1}^{3} + 576\lambda_{1}\lambda_{2})t^{3} \\ &+ (85\lambda_{1}^{2} + 50\lambda_{2})t^{4} - 15\lambda_{1}t^{5} + t^{6} \ . \end{split}$$

Before proceeding to further calculations, let us remark that $A^*_{GL_2}(\mathbf{P}^6)$ is torsion free as an abelian group, and therefore to prove an identity in this ring it is enough to prove it in $A^*_{GL_2}(\mathbf{P}^6) \otimes \mathbf{Q}$.

Let us also observe that as a $\mathbf{Z}[\lambda_1, \lambda_2]$ -module, $A^*_{GL_2}((\mathbf{P}^1)^6)$ is free with a basis formed by the monomials $x_{i_1} \dots x_{i_k}$, where i_1, \dots, i_k are integers with $1 \le i_1 < \dots < i_k \le 6$. By the projection formula to understand the pushforward

$$\rho_*: A^*_{\operatorname{GL}_2}\left(\left(\mathbf{P}^1\right)^6\right) \to A^*_{\operatorname{GL}_2}\left(\mathbf{P}^6\right)$$

we only need to know what the $\rho_*(x_{i_1} \dots x_{i_k})$ are.

The importance of the s_k is revealed by the following lemma.

Lemma 3.6. In $A^*_{GL_2}(\mathbf{P}^6)$ we have

$$\rho_*(x_{i_1}\ldots x_{i_k}) = (6-k)!s_k$$
.

Proof. Since $s_k \in A^*_{GL_2}(\mathbf{P}^6)$ and ρ is flat and finite of degree 6!, we have $\rho_* s_k = 6! s_k$. On the other hand, because of the obvious action of the symmetric group S_6 on $(\mathbf{P}^1)^6$, we see that $\rho_*(x_{i_1} \dots x_{i_k})$ only depends on k, and not on the i_k . From the definition of the s_k we obtain

$$\rho_*(x_{i_1}\dots x_{i_k}) = \frac{(6-k)!}{6!}\rho_*s_k = (6-k)!s_k$$

as desired.

Lemma 3.7. The class of the image of δ_r in $(\mathbf{P}^1)^6$ is

$$(x_1 + x_2 - \lambda_1) \dots (x_{2r-1} + x_{2r} - \lambda_1)$$
.

Proof. Follows immediately from the next lemma.

Lemma 3.8. Let *F* be a vector bundle of rank 2 on a smooth variety *S*, $P = \mathbf{P}(F)$ the projective bundle of lines in *F*, Δ the image of the diagonal embedding $\delta: P \hookrightarrow P \times_S P$. Let x_1 and x_2 in $A^*(P \times_S P)$ be the two pullbacks of the first Chern class of $\mathcal{O}_P(1)$, $c_1 \in A^*(P \times_S P)$ the pullback of the first Chern class of *F*. Then the class of Δ is $x_1 + x_2 + c_1$.

Proof. Denote by p_1 and p_2 the two projections of $P \times_S P$ onto P. Then we have the Beilinson resolution of the structure sheaf of the diagonal

$$0 \longrightarrow p_1^* \Omega_{P/S}(1) \otimes p_2^* \mathcal{O}(-1) \longrightarrow \mathcal{O}_{P \times_S P} \longrightarrow \mathcal{O}_\Delta \longrightarrow 0$$

 \square

From the Euler sequence we can compute the first Chern class of $p_1^*\Omega_{P/S}(1) \otimes p_2^*\mathcal{O}(-1)$, and the result follows.

Let us indicate how to calculate the α_{ij} . First one computes the $\delta_{r*}\xi_r^i$; this can be done using Lemma 3.7. Observe that in $A^*_{\text{GL}_2}((\mathbf{P}^1)^r \times (\mathbf{P}^1)^{6-2r})$ we have $x_1 = x_2, \ldots, x_{2r-1} = x_{2r}$, and also

$$\xi_r = x_1 + x_3 + \dots + x_{2r-1}$$

The results look extremely unwieldy, but everything will be pushed forward to $A^*_{GL_2}(\mathbf{P}^6)$, where all the products of k distinct x_i all have the same image, thus becoming much more manageable.

Next we compute the classes $\pi_{r*}\xi_r^i$. The calculation is based on the following obvious result.

Lemma 3.9.

$$\pi_{r*}\xi_r^i = \frac{1}{r!(6-2r)!}\pi_*\delta_{r*}\xi_r^i$$
.

Having obtained the expressions for the $\delta_{r*}\xi_r^i$ and knowing the formula for ρ_* (Lemmas 3.5 and 3.6), we can calculate the $p_{ri} = \pi_{r*}\xi_r^i$ using Lemma 3.9; then we only have left to substitute $2\lambda_1$ for *t* in the expressions above, and we have computed the relations α_{ri} . The results are as follows.

Lemma 3.10.

$$\begin{split} &\alpha_{10} = -10\lambda_1 \ , \\ &\alpha_{11} = 2\lambda_1^2 - 24\lambda_2 \ , \\ &\alpha_{20} = -12\lambda_1^2 + 144\lambda_2 \ , \\ &\alpha_{21} = -24\lambda_1^3 + 168\lambda_1\lambda_2 \ , \\ &\alpha_{22} = -24\lambda_1^4 + 148\lambda_1^2\lambda_2 \ , \\ &\alpha_{30} = 24\lambda_1^3 - 128\lambda_1\lambda_2 \ , \\ &\alpha_{31} = 24\lambda_1^4 - 128\lambda_1^2\lambda_2 \ , \\ &\alpha_{32} = 408\lambda_1^5 - 2048\lambda_1^3\lambda_2 + 1152\lambda_1\lambda_2^2 \ , \\ &\alpha_{33} = 1560\lambda_1^6 - 7808\lambda_1^4\lambda_2 + 4608\lambda_1^2\lambda_2^2 \end{split}$$

Then one checks that all the α_{ri} , as well as

$$\beta = 16\lambda_1\lambda_2 (3\lambda_1^2 - 16\lambda_2) (2\lambda_1^2 - 9\lambda_2)$$

are in the ideal generated in $\mathbb{Z}[\lambda_1, \lambda_2]$ by α_{10} and α_{11} . This concludes the proof of the theorem.

References

- [E-G] Edidin, D., Graham, W.: Equivariant intersection theory. Inv. math. 131, 595–634 (1998)
- [F] Faber, C.: Chow rings of moduli spaces of curves. I. The Chow ring of M
 ₃. Ann. of Math. 132, pp. 331–419 (1990). II. Some results on the Chow ring of M
 ₄. Ann. of Math. 132, pp. 421–449 (1990)
- [M] Mumford. D.: Towards an enumerative geometry of the moduli space of curves. In: Progress in Mathematics 36 (Volume dedicated to I.R. Shafarevich), Birkhäuser, Berlin– Heidelberg New York, pp. 271–328 (1983)
- [V] Vistoli, A.: Intersection theory on algebraic stacks and on their moduli spaces. Invent. Math. 97, pp. 613–670 (1989)