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There is now a well developed theory of the Chow rings of moduli spaces of
curves [M, F], [V]. Due to the singularities of these spaces, these rings are
de®ned as Q-algebras.

The development of an equivariant interesection theory by Totaro,
Edidin and Graham [E-G] allows one to de®ne integral versions of these
rings. More precisely, Edidin and Graham show that the equivariant Chow
ring of a smooth algebraic scheme acted on by an algebraic group is a
naturally de®ned integral Chow ring of the associated quotient stack [E-G],
Proposition 19). When the group acts with ®nite stabilizers (as is the case for
moduli of curves) this ring is naturally isomorphic to the previously de®ned
rings after tensoring with Q. (Moreover, their de®nition also extends to
situations where the ``classical'' theory collapses and the automorphism
groups have in®nite order.) In [E-G], Proposition 21, the integral Chow
rings of the stacks M1;1 and �M1;1 of smooth (respectively stable) pointed
curves of genus 1 are computed. In this note we give one further example by
computing the Chow ring of the stack of smooth curves of genus 2.

Let M2 be the stack of smooth curves of genus 2 over a ®xed ®eld j.
There is a natural vector bundle E of rank 2 on M , called the Hodge bundle:
if p: C ! S is a ¯at family of curves of genus g corresponding to a morphism
S !M2, and xp is the relative dualizing sheaf, then the pullback of E to S is
p�xp. The Chern classes ki � ci�E� are among the tautological classes in-
troduced by Mumford.

We'll use the following notation. If R is a commutative ring, x1; . . . ; xn are
elements of R; f1; . . . ; fr are integral polynomial in n variables X1; . . . ;Xn, we
write
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R � Z x1; . . . ; xn� �= f1 x1; . . . ; xn� �; . . . ; fr x1; . . . ; xn� �� �

to indicate that R is generated as a ring by the elements x1; . . . ; xn, and the
polynomial f1; . . . ; fr generate the ideal of relations of x1; . . . ; xn in
Z�X1; . . . ;Xn�.

The purpose of this appendix is to prove the following.

Theorem. Assume that j has characteristic di�erence from 2 and 3. Then

A� M2� � � Z k1; k2� � 10k1; 2k
2
1 ÿ 24k2

ÿ ��
:

In characteristic 3 these two relations still hold, but they do not generate the
ideal of relations.

The proof consists in expressing the stack M2 as a quotient of an open
subscheme of a representation space of GL2, thus showing that A��M2� is
generated by k1 and k2, then obtaining the relations coming from the
complement of this open subscheme. For this last part, which is rather
computational, I have used Mathematica, of Wolfram Research Inc.

Let Y be the stack whose objects are pairs �p; a�, where p: C ! S is a
smooth proper morphism of schemes whose ®bers are curves of genus 2, and
a is an isomorphism of OS sheaves a:O�2S ' p�xp, where xp is the relative
dualizing sheaf of p, the arrows being the obvious ones. One can think of Y
as the bundle of frames in the Hodge bundle ofM2. It is easy to check that
the objects of Y have no nontrivial automorphisms, so that Y is an algebraic
space. There is natural left GL2;j action on Y : if �p; a� is an object of Y with
basis S and A 2 GL2�S�, we set A � �p; a� � �p; a � Aÿ1�. Clearly M2 is ca-
nonically isomorphic to the quotient �Y =GL2�, and the equivariant bundle
on Y induced by the standard representation of GL2 corresponds to the
Hodge bundle on M2.

For the next result we only need to assume that the characteristic of j is
di�erent from 2.

Consider the a�ne space A7
j, considered as the space of all binary forms

/�x� � /�x0; x1� of degree 6. Denote by X the open subset consisting of non-
zero forms with distinct roots.

Proposition 3.1. The algebraic space Y is naturally isomorphic to X ; the given
action of GL2 corresponds to the action of GL2 on X de®ned by
A � /�x� � det�A�2/�Aÿ1x�. The canonical representation of GL2 yields the
Hodge bundle on M2.

Proof. Let �p: C ! S; a� be an object of Y . The line bundle xp is generated
by global sections on the ®bers of p, so, together with the isomorphism a,
yields an S-morphism f : C ! P1

S , which is a rami®ed covering of degree 2 on
each ®ber, together with an isomorphism xp ' f �OP1

S
�1�. We use the well

know description of covering of degree 2 of P1; the embedding OS ,! f�OC

has a splitting, given by the trace divided by 2, so we get an isomorphism of
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OP1
S
-modules f�OC ' O�L. The line bundle L on S is non-canonically

isomorphic to O�ÿ3� on the ®bers of p. Multiplication in f�OC yields a
homomorphism L
2 ! O, which is injective on the ®bers of p, and such
that the quotient O=L
2 is eÂ tale over S. The natural action of the cyclic
group C2 on C corresponds to the action of C2 on O�L in which a gen-
erator of C2 leaves O invariant, and changes sign on L.

Conversely given a line bundleL which is isomorphic to O�ÿ3� on each
®ber of p and an injective homomorphismL
2 ! OS such that the quotient
O=L
2 is eÂ tale over S, we get an algebra structure on OS �L, and a smooth
family of curves C � Spec�OS �L� ! P1

S ! S of genus 2. The line bundles
xp and f �O�1� are isomorphic when restricted to each of the ®bers of the
projection f :P1

S ! S. Giving an isomorphism xp ' f �OP1
S
�1� is equivalent

to giving nowhere vanishing section of xp 
 f�f �O�ÿ1�, or a nowhere
vanishing section of

f� xp 
 f �O�ÿ1�� � � f�xp�ÿ1� :

But by Grothendieck duality, if we denote by x the relative dualizing sheaf
of P1

S on S, there is a functorial isomorphism

f�xp ' Hom f�OC;x� � � x� x
Lÿ1ÿ �
;

so an isomorphism xp ' f �OP1
S
�1� corresponds functorially to a nowhere

vanishing section of x�ÿ1� � �x�ÿ1� 
Lÿ1�. Since x�ÿ1� does not have
sections, this is the same as a nowhere vanishing section of x�ÿ1� 
Lÿ1, or
an isomorphism of L with x. Given this, a homomorphism L2 ! O cor-
responds to a homomorphism x�ÿ1�
2 ! O, or, equivalently, a section of
T
2�2�, where T is the relative tangent bundle of P1

S on S.
The conclusion of all this is that a morphism S ! Y corresponds to a

section of T
2�2� whose subscheme of zeroes is eÂ tale on S. Fixing an
isomorphism of T with O�2�; we see that such sections correspond to
morphisms S ! X ; in this way we obtain an isomorphism of Y with X . It is
not hard to see that the action of GL2 on Y corresponds to the action on X
induced by the natural action of GL2 on T


2�2�. If we ®x an isomorphism
of T with O�2�, this action corresponds to the action of GL2 on O�2�
de®ned by A � f �x� � det�A�f �Aÿ1x�, where A 2 GL2�S�, f 2 X and x 2 A2

S ;
therefore the action of GL2 on Y corresponds to the given action on X .

The ®nal statement is clear. (

Now we have to calculate the equivariant Chow ring A�GL2
�X � of X . Since

X is an open subset in a representation space of GL2, we see that A�GL2
�X � is

generated by the Chern classes k1 and k2 of the Hodge bundle; to ®nd the
relations we have to analyze the discriminant hypersurface in A7, which is
rather complicated. We write k1 and k2 for the ®rst and second Chern classes
of the standard representation of GL2, and also for their pullbacks to the
Chow ring of any smooth GL2-scheme.
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More generally, we will usually use the same symbol for a class in some
Chow ring, and all of its pullbacks; this should not lead to confusion, and
simpli®es the notation considerably.

First of all, call F the dual of the basic representation of GL2, namely,
the space of linear forms on A2 with the action of GL2 given by
A � f �x� � f �Aÿ1x�. Its Chern classes are ÿk1 and k2. Set E � Sym6F . So E is
A7, the space of sextic binary form, with the usual action de®ned by
A � f �x� � f �Aÿ1x�. Consider the space P6 � P�E� of lines in E, and the
quotient Z of X by the diagonal subgroup Gm � GL2. The GL2-scheme Z is
an invariant open subscheme of P6, and the projection X ! Z � P6 makes
X into the total space of the principal Gm bundle on Z corresponding to the
equivariant line bundle D
2 
 O�ÿ1�, where D is the determinant of the
standard representation of GL2, and O�ÿ1� is the tautological bundle on P6.
If we denote by t the ®rst Chern class of O�1� on P6 we see that the natural
homomorphism

A�GL2
�Z� ! A�GL2

�X �

is surjective, and its kernel is generated by 2k1 ÿ t. This means that if
p1; . . . pr 2 Z�k1; k2; t� is a set of generators for the kernel of the surjective
homomorphism

Z�k1; k2; t� ! A�GL2
�Z� ;

then p1�k1; k2; 2k1�; . . . ; pr�k1; k2; 2k1� will be a set of generators for the
kernel of the surjective homomorphism

Z�k1; k2� ! A�GL2
�X � :

The equivariant Chow ring of P6 is generated by k1 and k2, modulo a
relation p�k1; k2; t� in degree 7 which is determined by the Chern classes of
E � Sym6F . If `1 and `2 are the Chern roots of F , so that `1 � `2 � ÿk1 and
`1`2 � k2, the Chern roots of E are 6`1; 5`1 � `2; 4`1 � 2`2; 3`1 � 3`2;
2`1 � 4`2; `1 � 5`2 and 6`2.

We have, after a straightforward calculation,

p�k1; k2; t� � �t � 6`1��t � 6`2��t � 5`1 � `2��t � 5`1 � `2�
�t � 4`1 � 2`2��t � 2`1 � 4`2��t � 3`1 � 3`2�

� t2 ÿ 6k1t � 36k2
ÿ �

t2 ÿ 6k1t � 5k21 � 16k2
ÿ �

t2 ÿ 6k1t � 8k21 � 4k2
ÿ �

t ÿ 3k1� � :

We set

b � ÿp k1; k2; 2k1� � � 16k1k2 3k21 ÿ 16k2
ÿ �

2k21 ÿ 9k2
ÿ �

;

the expression b is 0 in A7
GL2
�X �. We have thus found our ®rst relation.
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For r � 1; 2; 3; call Dr the closed subset of P6 corresponding to forms
divisible by the square of a polynomial of degree r over some extension of
the base ®eld. So D1 is the discriminant locus in P6. There is a natural
morphism

pr:P
r � P6ÿ2rÿ!P6

induced by the map SymrF � Sym6ÿ2rF ! E which sends �f ; g� into f 2g.
The image of pr is, by de®nition, Dr.

Lemma 3.2. For some r � 1, 2 or 3, let V be an irreducible subvariety of Dr

which is not contained in Dr�1. Then there exists an irreducible subvariety V 0 of
Pr � P6ÿ2r which maps birationally onto V .

Here we implicitly set D4 � ;.

Proof. The statement is equivalent to the following: if K is an extension of
j, then every K-valued point of DrnDr�1 is the image of a K-valued point of
Pr � P6ÿ2r. Let p be a point in DrnDr�1; p is represented by some form
f 2 K�x0; x1� of degree 6. Write f � u2v, where v 2 K�x0; x1� is a square-free
form. Obviously the degree of u must be at most r, because otherwise p
would be in Dr�1. Furthermore v will remain square-free in any extension of
K, because its degree is less than the characteristic, so the degree of u must
be exactly r. Hence if a and b are the K-valued points of Pr and P6ÿ2r

corresponding to u and v, we have pr�a; b� � p. (

Lemma 3.3. The kernel of the surjective homomorphism

j�: A�GL2
P6
ÿ �! A�GL2

�Z�

is the sum of the images of the homomorphisms

pr�: A�GL2
Pr � P6ÿ2r
ÿ �ÿ!A�GL2

P6
ÿ �

:

Proof. Follows by standard arguments from Lemma 3.2. (

Call ni the pullback to Pr � P6ÿ2r of the ®rst Chern class of the sheaf
O�1� in the ith factor. The Chow ring of Pr � P6ÿ2r is generated by k1; k2; n1
and n2. We have that

p�r �t� � 2n1 � n2

and that n1 is a zero of a monic polynomial of degree r � 1 with coe�cients
in Z�k1; k2�; therefore A�GL2

�Pr � P6ÿ2r� is generated as a A�GL2
�P6�-module
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by 1, n1; . . . ; nr
1. Together with the projection formula, this implies that the

image of pr� is generated as an ideal in A�GL2
�P6� by pr�1; pr�n1; . . . ; pr�n

r
1.

From Lemma 3.3 it follows then that the kernel of j� is generated by pr�n
i
1

for 1 � r � 3 and 0 � i � r. For each r and i there is a unique homogeneous
polynomial pri 2 Z�k1; k2; t�, of degree r � i, whose image into A�GL2

�P6� is
pr�n

i
1. Set

ari � pri k1; k2; 2k2� � 2 Z�k1; k2� :

The discussion above leads us to the following conclusion.

Lemma 3.4. The kernel of the surjective homomorphism

Z�k1; k2�ÿ!A�GL2
�X �

is generated by a10, a11, a20, a21, a22, a30, a31, a32, a33 and b.

So we need to compute the ari. We'll see that they are all in the ideal
generated by a10 and a11, and so is b.

Here is the set-up of the calculation. Set P1 � P�F �, and consider the
morphism q: �P1�6 ! P6 induced by the multilinear map F 6 ! E,
� f1; . . . ; f6� 7! f1 . . . f6. Analogously one de®nes the map

qr: P1
ÿ �r� P1

ÿ �6ÿ2r! Pr � P6ÿ2r

by multiplying separately representatives for the ®rst r and the last 6ÿ 2r
coordinates.

Finally, call dr: �P1�r � �P1�6ÿ2r ! �P1�6 the map that sends, in set-
theoretic notation, � f1; . . . ; f6� into � f1; f1; . . . ; fr; fr; fr�1; fr�2; . . . ; f6�. We
obtain our basic commutative diagram of GL2-schemes

P1
ÿ �r� P1

ÿ �6ÿ2r ÿ!dr
P1
ÿ �6??yqr

??yq
Pr � P6ÿ2r ÿ!pr

P6

in which all the maps are equivariant. The maps q and qr are ¯at and ®nite,
of degrees 6! and r!�6ÿ 2r�! respectively.

We identify each class in A�GL2
�P6� with its pullback to A�GL2

��P1�6� via q.
Call xi the pullback to A�GL2

��P1�6� of the ®rst Chern class of the sheaf O�1�
on P1. We have an equality t � x1 � � � � � x6 in A�GL2

��P1�6�, and for each i
there is a relation

x2i � k1xi ÿ k2 :

We introduce some basic elements of A�GL2
��P1�6�. For each positive

integer k we set
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tk �
X6
i�1

xk
i ;

furthermore for 1 � k � 6 we call sk the k-the symmetric function of
x1; . . . ; x6 multiplied by k!, that is

sk � k!
X

1�i1<���<ik�6
xi1 . . . xik :

By convention we set s0 � 1. The fundamental relation x2i � k1xi ÿ k2 allows
for each integer k to write xk

i as ak � bkxi, where ak and bk are integral
polynomials in k1 and k2. By summing over i we see that tk � 6ak � bkt. So
we see that the tk are all in A�GL2

��P1�6�: After some computations we get
t1 � t ;

t2 � ÿ6k2 � k1t ;

t3 � ÿ6k1k2 � k21 ÿ k2
ÿ �

t ;

t4 � ÿ6k21k2 � 6k22 � k31 ÿ 2k1k2
ÿ �

t ;

t5 � ÿ6k31k2 � 12k1k
2
2 � k41 ÿ 3k21k2 � k22

ÿ �
t ;

t6 � ÿ6k41k2 � 18k21k
2
2 ÿ 6k32 � k51 ÿ 4k31k2 � 3k1k

2
2

ÿ �
t :

To compute the sk we use Newton's formulas, which can be written as

sk �
Xk

i�0
�ÿ1�kÿ1 �k ÿ 1�!

�k ÿ i�! tiskÿi :

These show by recursion that the sk are also elements of A�GL2
��P1�6�. We

can use the expressions for the tk above to calculate the sk inductively. The
results are as follows.

Lemma 3.5.

s1 � t ;

s2 � 6k2 ÿ k1t � t2 ;

s3 � ÿ12k1k2 � 2k21 � 16k2
ÿ �

t ÿ 3k1t2 � t3 ;

s4 � 36k21k2 � 72k22 ÿ 6k31 � 72k1k2
ÿ �

t � 11k21 � 28k2
ÿ �

t2 ÿ 6k1t3 � t4 ;

s5 � ÿ144k31k2 ÿ 432k1k
2
2 � 24k41 � 60k21k2 � 552k22

ÿ �
t ÿ 2k31 � 316k1k2
ÿ �

t2

� 35k21 � 40k2
ÿ �

t3 ÿ 10k1t4 � t5 ;

s6 � 720k41k2 � 2520k21k
2
2 � 720k32 ÿ 120k51 � 1944k31k2 � 2472k1k

2
2

ÿ �
t

� 274k41 � 1270k21k2 � 832k22
ÿ �

t2 ÿ 177k31 � 576k1k2
ÿ �

t3

� 85k21 � 50k2
ÿ �

t4 ÿ 15k1t5 � t6 :
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Before proceeding to further calculations, let us remark that A�GL2
�P6� is

torsion free as an abelian group, and therefore to prove an identity in this
ring it is enough to prove it in A�GL2

�P6� 
Q.
Let us also observe that as a Z�k1; k2�-module, A�GL2

��P1�6� is free with a
basis formed by the monomials xi1 . . . xik , where i1; . . . ; ik are integers with
1 � i1 < � � � < ik � 6. By the projection formula to understand the push-
forward

q�: A�GL2
P1
ÿ �6� �

! A�GL2
P6
ÿ �

we only need to know what the q� xi1 . . . xik� � are.
The importance of the sk is revealed by the following lemma.

Lemma 3.6. In A�GL2
�P6� we have

q� xi1 . . . xik� � � �6ÿ k�!sk :

Proof. Since sk 2 A�GL2
P6
ÿ �

and q is ¯at and ®nite of degree 6!, we have
q�sk � 6!sk. On the other hand, because of the obvious action of the sym-
metric group S6 on �P1�6, we see that q� xi1 . . . xik� � only depends on k, and
not on the ik. From the de®nition of the sk we obtain

q� xi1 . . . xik� � � �6ÿ k�!
6!

q�sk � �6ÿ k�!sk

as desired. (

Lemma 3.7. The class of the image of dr in �P1�6 is

x1 � x2 ÿ k1� � . . . x2rÿ1 � x2r ÿ k1� � :

Proof. Follows immediately from the next lemma. (

Lemma 3.8. Let F be a vector bundle of rank 2 on a smooth variety S,
P � P�F � the projective bundle of lines in F , D the image of the diagonal
embedding d: P ,! P �S P . Let x1 and x2 in A��P �S P � be the two pullbacks of
the ®rst Chern class of OP �1�, c1 2 A��P �S P � the pullback of the ®rst Chern
class of F . Then the class of D is x1 � x2 � c1.

Proof. Denote by p1 and p2 the two projections of P �S P onto P . Then we
have the Beilinson resolution of the structure sheaf of the diagonal

0 ÿ! p�1XP=S�1� 
 p�2O�ÿ1� ÿ! OP�SP ÿ! OD ÿ! 0 :
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From the Euler sequence we can compute the ®rst Chern class of
p�1XP=S�1� 
 p�2O�ÿ1�, and the result follows. (

Let us indicate how to calculate the aij. First one computes the dr�n
i
r; this

can be done using Lemma 3.7. Observe that in A�GL2
��P1�r � �P1�6ÿ2r� we

have x1 � x2; . . . ; x2rÿ1 � x2r, and also

nr � x1 � x3 � � � � � x2rÿ1 :

The results look extremely unwieldy, but everything will be pushed forward
to A�GL2

�P6�, where all the products of k distinct xi all have the same image,
thus becoming much more manageable.

Next we compute the classes pr�n
i
r. The calculation is based on the fol-

lowing obvious result.

Lemma 3.9.

pr�n
i
r �

1

r!�6ÿ 2r�! p�dr�n
i
r :

Having obtained the expressions for the dr�n
i
r and knowing the formula

for q� (Lemmas 3.5 and 3.6), we can calculate the pri � pr�n
i
r using

Lemma 3.9; then we only have left to substitute 2k1 for t in the expressions
above, and we have computed the relations ari. The results are as follows.

Lemma 3.10.

a10 � ÿ10k1 ;
a11 � 2k21 ÿ 24k2 ;

a20 � ÿ12k21 � 144k2 ;

a21 � ÿ24k31 � 168k1k2 ;

a22 � ÿ24k41 � 148k21k2 ;

a30 � 24k31 ÿ 128k1k2 ;

a31 � 24k41 ÿ 128k21k2 ;

a32 � 408k51 ÿ 2048k31k2 � 1152k1k
2
2 ;

a33 � 1560k61 ÿ 7808k41k2 � 4608k21k
2
2 :

Then one checks that all the ari, as well as

b � 16k1k2 3k21 ÿ 16k2
ÿ �

2k21 ÿ 9k2
ÿ �

;

are in the ideal generated in Z�k1; k2� by a10 and a11. This concludes the
proof of the theorem.
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