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1. Introduction and main results

The problem of the uniqueness in the Cauchy problem for linear differential
operators has been widely investigated during the last years (see [Z] for
references). It is now well understood in the analytic framework, with
Holmgren’s theorem, where uniqueness always holds (at least for non
characteristic surfaces) and in the C* case, with Hormander’s theorem
([H1], IV, chap. 28) where the uniqueness is governed by principal normality
and pseudo-convexity. The purpose of this work is to fill the gap between
these two theorems by considering operators with C> and partly analytic
coefficients. In particular one of our results will contain both the theorems
mentioned above. Let us be more precise. Let n,, n, be two non negative
integers with n = n, + n, > 1. We shall set R” = R"” x IR™ and, for x or ¢ in
R", x = (x4,%p), & = (&4, Ep). Let P = P(x, D) = P(x4,x, Dy, Dy,) be a linear
differential operator of arbitrary order m, with principal symbol p,,. We shall
assume that

(1.1) the coefficients of P are C* in x and analytic in x,.
: in a neighborhood of x” € R” .

Let S be a C? hypersurface through x° locally given by

S={x o) =0(")}, @'(°)=(0,("). 9, (") £0 .

As usual, {,} will denote the Poisson bracket.
Our results are as follows



494 L. Robbiano, C. Zuily
Theorem A. Let us assume

H.1 transversal ellipticity: p,(x°,x3,0,&,) is elliptic
a’ b
pseudo-convexity: let{ = (x,x9,ip! (x),
&y +igy(x)), & € R™,
(H2) then pu({) = {pm, ©}({) = 0implies
HPu(x, & = i9'(x)), pun(x, & + ' (x)) }

o > 0.
&=(0.85)
Let V be a neighborhood of x° and u € C*(V) be such that

{Pu—OinV
Supp 1 C {x € V' p(x) < ()} |

Then there exists a neighborhood W of x° in which u = 0.

Theorem B. Let us assume

principal normality

(Hl)/ ‘{l_jmvinI}(xa?xb?O? éb)‘ S C|5b|mil|pm(xaaxb707 5b)|7
forall x = (x4,xp) in a neighborhood of x° and all & in IR™

pseudo-convexity
i) n,=00rn, > land, withX = (x°,x9,0,¢&,),&, € R™ \ {0},
, Pu(X) = {pu, 9}(X) = Oimplies Re{p,,, {pm, 9}}(X) > 0 .
(H2)" i) Letl = (29,29, igl(x), & + igh(x")), & € R™

then py({) = {pm, ¢}() = Oimplies
TP (x, & — 9/ (x)), pu(x, € + 10 (x)) }

o >0 .
&=(0.¢p)

(H.3)' On ¢, =0, p,doesnotdepend onx, .

Then the same conclusion, as in Theorem A, holds.

Let us give some applications of these results. First of all as we said before,
Theorem B contains both the Holmgren and the Hérmander theorem. For
operators with analytic coefficients Holmgren’s theorem asserts that
uniqueness holds for any non characteristic initial hypersurface. We take, in
theorem B, n, = 0 and n, > 1; then (H.1)', (H.3)" follow from the fact that,
by homogeneity, we have p,, = {p,,,pm+ = 0 on &, =0, (H.2)" i) is trivially
satisfied and (H.2)' ii) is empty since p,,({) # 0 if the initial hypersurface is
non characteristic. For operators with C* coefficients we take n, =0,
ny > 1; then (H.3)" is empty and (H.1)’, (H.2)" are exactly the hypotheses
made by Hormander in his theorem, [H1] Th. 28.3.4.

Here is an application of Theorem A. Let us consider, in a neighborhood
V of a point my = (fy,xo) in IR, x RZ, a second order strictly hyperbolic
symbol of the form
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n
2 z
=T - Zaij(tvx)giéj
ij=1

where (a;;(,x)) is a symmetric positive definite matrix with entries which are
analytic in time and C* in space. Then uniqueness holds for any non
characteristic initial hypersurface. (For a space-like hypersurface this result
has been known for a long time even for coefficients merely C* in time).
Indeed let us set, in theorem A, n, =1 ({,=71), np=n>1 (& =¢). On
T =0, py is elliptic in & so (H.1) holds. Now a straightforward computation
shows that the imaginary part of {ps, p}({) is equal to p»(mo, dp(my)), which
does not vanish, so (H.2) is empty.

Let us now describe the background of this problem. The initial moti-
vation for this kind of results came from control theory. Indeed Lions [Li]
introduced the HUM method which relies partly on uniqueness results. In
the case of second order hyperbolic operators P = 92 — A(t,x, 0;), the initial
hypersurface is time-like and the corresponding uniqueness result is false if
the coefficients are merely C*°, as shown by the counterexamples of Alinhac-
Baouendi [AB] (see also [R] for a detailed discussion of these counterex-
amples). However, when the coefficients of 4 do not depend on ¢, Rauch-
Taylor [RT] and Lerner [L2] making a global vanishing assumption in ¢,
proved uniqueness. Nevertheless this was not enough for control theory and
Robbiano [R] was able to improve their result, using only a local vanishing
assumption. His result was extended by Hoérmander [H3] and then by
Tataru [T] who was the first to consider operators with partially analytic
coefficients as considered here. In fact Tataru proved our theorem A, when
the coefficients of p,, are entire analytic functions of order 2 in x,, and our
theorem B when p,, is real and its coefficients are independent of x,.

Let us give a sketch of the proofs. As usual uniqueness will follow from
Carleman estimates; they are L> estimates with an exponential weight e .
Very roughly speaking, the principal normality and the pseudo-convexity
can be viewed as a subelliptic condition on the operator P, = e*/ Pe~* and
the proof of the estimates follows from Garding type inequalities. Our
problem here is that all our conditions are made on the set {&, = 0}; this
forces us to microlocalize our symbol on this set. This is the core of the
proof which is achieved by the use of Sjostrand’s theory of FBI transform
and pseudodifferential operators in the complex domain [S1], [S2]. (Al-
though not very far in spirit, our method differs from Tataru’s which uses
real pseudodifferential weights). So making a partial FBI transformation
(i.e. in the analytic variables only) we transfer our problem to the complex
domain with the great advantage that, using the analyticity assumptions and
several changes of contours, we can localize the symbol of the transferred
operator around {, = 0, modulo some controlled errors (Theorems 3.1 and
3.3). As soon as this is achieved, we go back to the real domain and get a
p.d.o with principal symbol localized near &, = 0. We then use the C*
machinery (the Hérmander-Weyl calculus, the Fefferman-Phong inequality,
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see [H1], III, chap. 18, etc ...) to prove a Carleman estimate using some
techniques of Lerner [L1]. The end of the proof is split according to whether
N, (the x, component of the normal to the surface) vanishes or not. The case
N, = 0 is straightforward, while the case N, # 0 requires use of the maxi-
mum principle according to an idea of Kashiwara (see also [S1]).

Finally we would like to thank Professors G. Lebeau and J. Sjostrand for
useful discussions during the preparation of this paper.

After the completion of the work, Professor L. Héormander informed us
that, using an extension of Tataru’s method, he has very recently obtained
the same results as described here (see [H4]).

2. Rewiew on Sjostrand’s theory

In this section we collect some material essentially taken from [S2], (see also
[H2)]).

2.1. The partial FBI transformation

Let n,, np be two non negative integers with n = n, + n, > 1 and let us set
X = (x4,%p) if x is in R” = R x R™.

We introduce the partial Fourier-Bros-Iagolnitzer (FBI) transformation.
It is defined for u in #(IR") by

(2.1) Tu(zq, Xp, 1) = K(2) / e 5 (%) dy

where z, € €, x, € R, 4> 1, K(A) =2"7(4)* and 22 = Ezf,j.
Here are some properties of 7" which will be used later on. Let us first
introduce

(2.2) ®(z,) :%(Imza)z, za€C" .

i) The function Tu is C* on R?" x R” x [1, 4o00[ and entire-holomorphic in
z, € €™ for all (x;,4) in R™ X [1,+o0].

Moreover for all M, N in N, any o in N there exists C = Cy 4 > 0
such that

(2.3) D2 Tu(za, xp, )| < CK(2){xp) ™ (z5) 7 &)

for all (z4,xp,7) in € x R™ x [1,+o0o[. Here () = (1+ |- )"/~

ii) Conversely let U(z,,x5,4) be a C* function on IR*™ x R™ x [I,+oo|
which is entire holomorphic in z, € €™ for all (x;,1) in R™ X [I,4+o00[ and
assume that U satisfies estimates like (2.3). Then there exists a unique u in
F(R") such that Tu = U (see [H2], prop. 6.1).
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iii) Let now (v;),¢p 5 be in #(R") and v € #(IR"). Then

l.ir1(1) v, = v in &' (R") implies l‘ing e MPC) Ty, = eI Ty in (T x R™) .

(2.4)
iv) If uisin C3°(R") we can improve (2.3). Indeed, in that case, for all M, N
in IN, any o in IN™ there exists C = Cy v, > 0 independent of u such that
(25) |D;cb Tu(za,xb, /1)| < CK(/L) <xb>*M <Za>7N e/lll)(za)*%'[d(Re zu,supp”)]z.

=sup [[D3 u(, xp) || v (o

Xb

for all z, in €™, x;, in R™, A > 1; here d is the Euclidian distance.
v) For fixed x,, T can be viewed as a Fourier integral operator with asso-
ciated (complex linear) canonical transformation

Kr: e s (Va _(l’);ﬂ (Zas Ya)) ¥ (2a, d);a (Zmya)) e ™

where ¢(zq,ya) =4 (24 —ya)z.

Let us set
200
Mo = {( ) € O™ & = T2 (2 | = (e ba) € € 2 8, = —Im 2,)
(2.6)

since ®(z,) =4 (Im z,)%. Then k7: T*IR"™ — Ag is a diffeomorphism. It is
easy to see that

(27) KT(xm éa) = (xa - iéaa éa) :

vi) In the sequel we shall also work with the partial FBI transformation 7,
associated with the phase ¢(zq,ya) = £ (14 1)(za —.)* where 1 is a small
non negative real number. In that case we have

23) v &) = (30— )

Let us introduce some notations. For k € N we set

(2.9) L.,

)CI)((EM ’ Hk(]Rn;,)) —? ((Cna’ 672i(l+n)<b(xa)L(dxa)) ’ Hk(IR"”))
which is the space of square integrable functions defined on C" equipped
with the measure e >*(1+1)®) [ (dx,) (where L(dx,) denotes the Lebesgue
measure in €™) and valued in H*¥(R™) (the usual Sobolev space).

If k£ = 0 we shall set for short
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(2.10) Ly o (T HOR™)) =L} 0, -
We also set
(2.11) g%Hrz)(D = L%l+n)(1> nA(C")

where # denotes the space of holomorphic functions.
Then we have:

Proposition 2.1. [S2]. i) 7, is an isometry from L*(R™, H*(R™)) to
Ly, 0(C" HE(R™)).

ii) 7,7, is the identity on L*(R"), where Ty is the adjoint of T,.

iii) 7,7, is the projection from L%H—q)
if © = Tv where v is in (IR").

o 10 E(ZHW)(D. In particular T,T v = v

2.2. Transfer to the complex domain

Let p= Y a,(x)&, (x,&) € R*, be a polynomial with coefficients in
[o| <m
Ci°(IR"). Assume moreover that

there exists ¢y > 0 such that if we set w, = {z, € C" : |z,| < ¢o}
and wp = {xp € R™ : |x3] < ¢} then for all o in N", |o| < m,

we have a, € C*(wp, #'(w,)) where # denotes the space

of holomorphic functions.

(2.12)

Let P = Op}(p) be the semi-classical Weyl quantized operator with symbol
p, which means that, for u € C°(IR"), we have in the oscillatory sense

(2.13) Pu(x) = (2—/;)”// ei;*(x_y>'5p<¥7ﬂnf) u(y)dydé .

Let  be a real quadratic polynomial on IR”. For any 4 > 1 we shall denote
by P, the differential operator defined by

(2.14) P,=e"pPe V.

It follows from Segal formula (see [H1]) that

Pt = (52)" [ erip(52 i (1) Juts) v
(2.15)
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The main result of this section, which will follow from proposition 1.4 in
[S2], is the following:

Proposition 2.2. For v in C{°(IR") we have T Pyv = P; Tv where

P;To(x, 2 27'5 // e xr=n): (// . )dybdéb

where

(2.16) o= ei;v(xa—ya)iap<xa;‘ya_"_iéa’xb‘;J’b’ié

+ a
2

al eryb)> To(Ya, Yo, ) dya NdE,

iy (x" g,

and the above integral has to be taken in the oscillatory sense i.e.

P;Tv(x, 2) —hrn // ) (// >dybdfb
e—0 27'[ 7—Imm +ya

in '(C" x R™), where y € & (R™) and %(0) = 1.
Proof. From (2.15) we have Pv = lim P, v in %' (R"), where

(2.17) PA SU

27'c // G 1 (e€a)12(88p)

p(5 e (52w ava

where y; € &, 7;(0) = 1. It follows from (2.4) that

(2.18) e )T Py = lin(l) e TP Lw in (T x R™) .
£e—

Now

A" Na .
TP;L,SU(X, ;L) - (E) ! // e’”("’ Vb) gbyz Ffb ( ZL) // el/l(xa_yg)‘éa;{l (Séa)
+

p( Ty /1§+z)x//( y)) v(y)dyadéa> dyy d& .

Since, for fixed (xp, 15, &), the symbol (xa, &) = 11 (e€a)p(a, X, AE + i24)")
belongs to #(IR?") we can apply Proposition 1.4 in [S2]. It follows that
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T((é) /[ dyadéa) - (£)" //_ﬂ__lmm%xl(efa)w

where w is defined in (2.16).
We shall show that, in &/(C" x IR™), we have

(2.19) lim e *® 7Py v

e—0

= Jcphm // ARG
é~>0
(// co)dybdéb.
byt g

According to (2.18) this will prove Proposition 2.2. Let us set

R, = e /) // e/ =) Sy (&) (// . (1= x(eé)) CU) dyy d&),
§ a+‘a

(2.20)

(2.21) S, = //Rs(xa,be) @ (x4, xp) L(dx,) dox;y

where ¢ € & and L(dx,) is the Lebesgue measure on C™.

For fixed (x4, Xp,Va, Vb, €a, &5, A) the integrand in the right hand side of
(2.20) tends to zero when ¢ goes to zero. Now since p is a polynomial in &, R,
is a finite sum of terms of type (2.20) where, in w, p is replaced by
(%% 4 155,,)‘”””) (78, + i) (&), where a € CP(R") and |of + |f]
<m. Since (1&,)f eHmré = (—p, W e#om4 and since by (2.3)
To(ya, ¥p, 4) is in & (IR™) we can integrate by parts in y,. We then use the
equality [ e =)% 4, (s8y) déy = &7, (A2=2) and we deduce that R, is a
finite sum of terms of the following kind

/S—nb22 (A D/f (// e (xa) gil(xa=a) Lo
——Im Ya+yu

(222) (1 _ Xl(géa)) . a(-xa ;yfl + iéa,xb ;%)

(A, + Mlﬂ;)“Tv(ya,y;,, A) dya N d£a> dyy d& .

Now on the surface ¢, = —Im % we have dy, ANd&, = ¢, L(dva),
where ¢,, € C and L(dy,) is the Lebesgue measure on €™, and
i(xg —ya) - &g = O(x,) — D(y,). It follows that the integral with respect to
(¥4, &,) in (2.22) is equal to
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ou [ (1= (=5 ) e B2 20)

(=t B ) Tl ) e L)

Now (2.3) shows that we can differentiate this integral with respect to y
under the sign integral. It follows from (2.22) that R, is a finite sum of terms
of the following kind

// e*"hzz()h)%) <1 -1 ( ,% Im(x, +ya)))

Xg + Ya xb+yb> ( 7 . />°‘
T T . - I]llx )\,
2 7 2 2 (Xa +ya) +1 Vi

- e P00 DI Ty, vy, A)L(dya) dys -

(2.23) Dl a(Re

Setting x, — y» = &zp, using (2.3) and Lebesgue’s theorem in (2.23) we deduce
that for fixed (x,,xp,4) in €™ x R™ x [1,400[, R;(x4,%p, ) tends to zero
with e. Moreover this also shows that there exists p, ¢ € IN such that for any
N eN

IR: (xa; xp, )| < Cnv(4)(xa)” / |72(226) 00 (va) ™" L{dya) iz
< Cy(A){xa)” -

This implies that S,, which is defined by (2.21), tends to zero. This proves
(2.19) and Proposition 2.2.
3. The localization procedure
In this section d is a positive real number such that 13d < ¢y, where ¢y is
defined in (2.12), and v is a C* function such that supp v C C{x € R™
|x| < d}. Let P; be defined in Proposition 2.2.
3.1. Case of Theorem A

Theorem 3.1. There exists y € C3(C™™), (x4 &a) = 1 if |xa| + |&4] < 12d,
2(%as €a) = 0 if |xa| + |E4| > 13d such that if we set, for n €]0, 1],

(3.1) Q; Tv(x,2)

B (;_;T)’l // o (//g —(14)Im 32 X(xa ;y‘l ' éa) CO) Dy des

=
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where o is defined in (2.16), then
(3.2) PTv=0,To+R; Tv+§,

with, for any N in N,

(14+m)® (14+n)®

Cy
(3.3) HR Tol| 2 < v 1702 (T HM(R™))

~ ¥ 2
(34) ||g/1||L%H”)¢ Ofe i1 HUHH”O(]R”)) R

where ngy depends only on n and on the order m of P.
Proof. This proof requires several steps. Let us recall for convenience that
Xp+

2 )

oXp+
+ léa? b P yb)) ' Tv(yavybv;t) dya /\dfa

(3.5) o= el'?-(xafya)‘éap(

Xa + Ya
i,

1 Va
2

2E+ iy (""

where & = (&,,&,).

Step 1. Let us fix (x4, s, &, 4). Then we have

(3.6) // o= // .
&,=—Im %3 &u=—Tm X2 4 Re(x,—ya)

a

To prove (3.6) we shall apply Stokes formula to the closed manifold
te0,1], y, € €, &, = —Im (x, +y,)/2 + it Re(x, — y,). On this manifold
(xa +¥4)/2 +ié, = Re(x, + y,)/2 — t Re(x, — y,) € R". Therefore w is well
defined. Then (3.6) will follow from

1
(3.7) / / / do=0.
0 Eo=—Im X204 jt Re(x,—ya)

Since 9y, c 0 =0 we have dw =0, ¢ . Now e <. Ty(y,, v, 1)
and v/ ((xa +¥4)/2 + iy, (x5 + )/2) are holomorphic in (y,, &,) and since
(x4 + ya)/2 + i, is real on our manifold we have

2 2 2

xb+yb AE il lp( +ya+l.€a7xb";yb)) .

p(.) p(l [x”+y“+iéa+x”+y” flfa],
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It follows that

5 7 (g =y )-E ~f170
3%’@)(” _ el/n(xu_)u)'ca Tv(ya,yb, A) (Z (85 . dya) Ndy, Nd&,
a

i (Op
() i)

Now ¢, +¢&, =2Reé, = —% Va —Fa) — 5 (xa —X,); therefore we have
dé, +d§ = —1 (dy, — dy,) i.e. dé, = —d&, — % (dy, — dya) It follows that
i(e LM»AdmAd@—&(iathﬂAd%Ad@ 50 9, )0 =do = 0.
ThlS 1mphes (3.7).

Let us set

(38) gl(xaaxba

2n // 1 xb —): (//Im Xa+}a+1 Relramra) ) dyb déb .

\Re(m —ya)|zd

Our purpose is to show that

(3.9) e+ g, | = 0(e 2% ||y

LZ(C"” ><]R”b) H™ (]R”)) .

We proceed as in Proposition 2.2; g, is a limit as ¢ goes to zero of a finite
sum of terms of the following kind

AN » .
- iA(xp=15)Ep
(271) // € 2(e&p)
iitaya) by (Ya T Va | o Xb +y,,>
<//lm X030 4 Re(vaya) ¢ a( 2 + Zé”’ 2

[Re(xqg—ya)|=d

: (}“éa + i;ulp;)a (iéb)ﬁ Tv(yavyba j') dya A déa) dyb déb )

where a € C{° (IR”) and |o| + |B| < m.

We write (1&,)F e — (=D, ) e#s=2)% | we integrate by parts in
the y, integral, we use the equality [ (=) ,((8@) déy = e (A 2222),
we set x, — ¥, = &zp, We let ¢ go to zero and we deduce that g, is a ﬁmte sum
of terms of the following kind

A\ a BV Xq + ), .
(27'[) ‘/%:7["1 mﬂ' Re(xa—ya) CM(X'I ya) - D)/C}b] a( - 2 - + lﬁa’x},>

[Re(xa—ya)|>d

- (AEy + i) DI To(ya,xp, 1) - dyva N dE,

Then we use the following facts: on our contour we have
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1) Re(i(xa—ya) - Ca) =D(xa) — P(ya) —|Re(x, _ya)|2 and |Re(x,—y.)|>d,
i) Db a(®5 iy, xp) (A, + i) < C A" ((xa) + (va) + (x5))",

iii) |e=**0%) DE To(yy, x5, 2)| < Carv K(2) ()™ (va) ™[]0l s sy for all
M,N in N,

iV) <xa> S <Re(xa _ya)> + <ya> + <Im xa>a
V) dya A déa = CnL(dya)'

It follows that we can find a constant C depending only on m, n, d and 5
such that

()" 2 O e AT g, < C e ol e
This implies (3.9). Now it follows from (3.6), (3.8) and (3.9) that

(3.10) P, To(x,

2
i M (x6—yp)- d dé +
= 2 Eq=—Im X“+y”+z Re(xg Ja) % b gl

‘Re(‘/ﬂ —Ya ‘<d
where g, satisfies (3.9).

Step 2. We want to prove

(3.11) P, Tv(x, 1) = 2n // el ) (// )dybd€b+gz

where X= {ya € €™, |Re(x, —ya)| < d, |[Re y,| <2d, ¢, = —Im @4'
iRe(x, —ya)}

(3.12) |[e=#1+me = 05 |v|

H"0 (]R”)) .

Cna ]R”b)

This will be proved if we show that the part, in the right hand side of (3.10),
where |Re y,| > 2d satisfies (3.12). This part is as before a finite sum of terms
of the following type

_ at Va
eMxa=ya)-Sa D'Bl ( )
2n // 7 T

(A&, +idy)* D)/fb To(ya, Xp, A) dva NdE,

Ql

We then use (2.5). Since suppv C {|x| < d} and |Re y,| > 2d it follows that
dist (Re y,,supp v) > d. We also use the remarks i) to v) above and we
deduce easily that

<xa>nu+l <xb>% (m5+1) =A(1)D(x,) 1G] < Ce_%d2||v|

H" (R")

from which (3.12) follows.
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Step 3. Our purpose is now to localize in Im y,.

Let # be in ]0,1[ and let us consider the manifold with boundary
G=lt,1]]x% where on X, we have y,€C"™, |Re(x,—y,)|<d,
[Re y| < 2d, [Im (x,—y,)| < ¢ and &, =—Im 3% + iRe(x, — ya)
+ tIm (x, — ¥,). On G we have

xa+ya xa+ya

2

d .

oo

‘ Re

—Re(x, —y,) +itIm(x, — y,)| <

Since % d < ¢y we are, by (2.12), on a domain where the coefficients of p are
holomorphic. We can apply Stokes formula to the differential form defined
in (3.5) and we have dw = 0. The difference between ffz ® and ffz

consists then in boundary terms and we show now that eachh of them gives
an exponentially decreasing contribution in the expression of P Tv in (3.11).

i) [Re(xa —ya)l =d,  [Re ya| <24, |Im (x4 = ya)| <

We use the same argument as in the proof of (3.9) in step 1. Indeed we just
have an extra term in |e/*( %) %| namely e~* m(xe—a) * which is bounded by
one. Therefore the corresponding term satisfies an estimate like (3.12).

. d
ii) IRe(xs —ya)| <d, [Rey,|=2d, [Im (x,—y,)| < P
The corresponding term can be handled exactly as in step 2.

d
iii) [Re(xs —ya)| <d, |Rey,| <2d, |Im (x,—y)|=-,

t

In that case we have

2
Re(iA(r ) &) = A(0(x) — @) — 2 Relrg )~ 4 %

Now (x,) < {Im x,) + (Re(x, = 1)) + () < {Im x,) + () + (d) and e+
< e *4" since ¢ < 1. Therefore the corresponding term is also exponentially
decreasing.

Summing up we have proved that

// e”():b)’b)‘fb(// w) dyy déy, = // eM(beb)'Cfb(// w) dyy dé), + §3
%, %

(3.13)

(3.14) ||e-Hn® O (%ol

||L2 e xR™) H”O(]R"))

where the above @ is independant of .
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We want to prove now that when £, goes to zero the left hand side of
(3.13) converges to [| e =) (1 w) dy, dé, where X is defined in (3.11).
As usual this term is a finite sum of terms of the following kind

(e —y )& Xa+Ya | . .
/ /Z % plt a( M i ) (2, + i)’

]

bez Tu(Ya,xp, ) dya NdE, .

This integral can be written as

AP (xa)—DP(ya)—|Re(xa—ya \ —to Im(x,—y, \ )
(& 1 d
/l;e Xa—va)|<d {lIm Xa—Va |<,0}

|Reyg|<2d
Xq + , . ,
th' ( - D Ja + léaaxb) (’“éa + l)'l//;)“ Df,f Tu(ymxba /L) Cn(IO) L(dya)
where &, = —Im %% 4 i Re(x, — y,) + fo Im(x, — y,), 1o denotes the cha-
racteristic function of Q and C,(¢)) converges to C,(0) as to goes to zero.
Using (2.3) we can apply Lebesgue’s theorem to reach the conclusion.
According to (3.13), (3.14), (3.11) and (3.12) it follows that

- A\n Y P ~
(3.15) P, Tv= (ﬂ) // e Hxb=11)-Sp <// w> dyy d&y + gy
%

where X = {y, € €, [Re(x, — )| < d, |Rey,| < 2d, [Im(x, —y,)| < d
and &, = —Im *2% 4 (x, ya)} and

(3.16) |[e1+n® g, = 0(e 5 |v|

L2(C xR™) o)

This will allow us to localize in Im y,. Indeed let us consider t13e part of X;
where |Im y,| > 2d. We shall show that its contribution in P; Tv satisfies
(3.16). To see that it is enough to consider the following term

~ iA(xg—ya)-Ea Yt Xa+Ya
gaﬁy:// e 2 af ot +idm)
Py

(A&, + i) DY Tu(va, x5, 2) - dva NdE,

where 2y = Z; N {|Im y,| > 2d}.
Since in X; we have [Im(x, — y,)| < d we get [Im x,| > d. On the other

hand, (xo) < (¥ — ya) + (va) < C(d) + () and Re(i(xq = ya) - o) = (xa)
—®(y,) — [0 — yal* < ®(x4) — ©(y,). Therefore using (2.3) we get

@ IO (5 (i) || < C 27

Ho(R?)

It follows then from (3.15), (3.16) that
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(3.17) P, Tv= (%)” // e (v=y)-E (// w) dyy d&p + gs
>

where T = {y, € C", [Re (x, — )| <d, [Im (x, —y2)| < d, [Re y,| <2d,
Im y,| < 2d, &, = —Im *3% 4+ (x, —y,)} and

— A1+ ~ —4 nd?
(318) ||e (I+n)® gs||L2(¢naX]Rnh) = @(e 3nd ||UHH”0(]R")) .

Step 4. Our goal is to write P; in term of the contour

(3.19) Z,,:{yae([i"“ JRe(xa — va)| < d,[Im (xg —va)| < d,|Re y,| < 2d,

xa"’ a N
[tmy, | < 2d, & = —(1+mIm =24 1T =)} -

For that purpose we introduce for ¢ in [0, 1] the contour Z,, which is defined
by (3.19) with #y instead of 5. Along these contours we have

Xa + Ya
2

Xa +ya

+il,| = <7d .

—tmIm

Xa — ya)

Xot Vo ——
R _
’ © 2 (

Since 7d < ¢o we are still on a domain where the coefficients of p are ho-
lomorphic. When ¢ = 0 we find the contour X defined in (3.17) and for ¢t = 1
we find the contour X,. We apply Stokes formula to the differential form w
and we note that dw = 0. Our goal will be reached if we prove that the other
boundary terms give exponentially decreasing contributions. As usual we
just have to look at one term of the form

- (Xg—ya)-E XatYa | .
ga/f?’ = // e“»(xa ya) o D;(b a( 2 % + lézvxb)
0

(2, +imy ) D2 Tu(ya, x5, 2) - dva A dE,

where 0 is a part of the boundary of %,,.

i) [Re(x, —y,)| =d or [Im(x, —y,) =d. In that case d < |x, — y,| < 2d
and (x,) < (x; — ya) + (u) < M(d). Now

- )"(1 + ’7) (I)(xa) + Re(i)"(xa *ya) : fa)
= At — Dn®(x,) — in®(y,) — 2®(a) — Alxa — yal* < —3®(y) — Ad>

since ¢ € [0, 1]. It follows from (2.3) that the corresponding term in g,
satisfies

(3.20) ||e=1m® O(e5%|0|

ga/bHLz (@ xR"™) — H”D(]R")) .
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ii) [Re(x, —yo)| < d, [Im (x; — y2)| < d, | Re yo| <2d, |Im y,| = 2d.
In that case |Im x,| > d and as above

J(@) = =A(1 +n) O(xq) + Re(i(xa = ya) - a)

<At — 1D ®(x,) — Aty ®(v,) — AD(v,)
<Mt —Dnd* = and* —)®(y,) = —Ind* — () .

It follows that the corresponding term satisfies (3.20) with
O [0l o (o)

iii) |Re(x, — y,) < d, |[Im(x, — )| < d, |Im y,| < 2d, |Re y,| = 2d.

For this case we use (2.5) instead and f(¢f) < —1®(y,). Summing up we
have proved

321) B To(x,2) = (2_1)// eﬂ(x»—wab(//z w> dyy dé, + G

where X, is defined in (3.19) and

(3.22) e 10 G| |2 = 0(e ™41 |o]

H"o(]Rn)) .

Xq +ya

Now on X, we have
€** such that

e =1 if |zl + | < 124
(3.23) {m,g) =0 if 2] +[E,] > 13d

+1&,] < 12d. Let y(z,, &,) be a C* function on

and y is almost analytic on A4y = {(za, E) e ¢ =—(1+n)Im za}
which means that

(3.24) 10%(2a, &) < Cw |Ea+ (1 + 1) Im 2|V for every N e N .

According to (3.23) and (3.21) we can write

(3.25) P, To(x, A) 2 // i2(xp=yp) € (// ya)) dyy d&p + g
n b

where g, satisfies (3.22).
Let us note that, since 13d < co, p(*3% + i&,, 3% &+ id)'(...)) is
holomorphic in (y,, &,) on the support of .

Step 6. We want to remove the constraints |Re y,| <2d, |Im y,| < 2d,
|IRe(x, — y,)| < d, [Im (xa va)| < d and write

(3.26) P; To(x, 2) 2n // 4 =3p)-¢ (// yw) dyy dSp + g7
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where T = {y, € €", &, = —(1 + ) Im *3% 4 i(x, — y,) } and g; satisfies
(3.22).
Indeed on X, we have

A= —(1+4n) ®(xs) + Re(id(xa — ya) - &a) + AD(va)
= _)vn (D(ya) — 4 |xa - ya|2

If |Re y,| > 2d we use (2.5) and we observe that 4 < 0. If |Im y,| > 2d we
use (2.3) and 4 < —4/nd>. If |Re(x, — y,)| > d or |Im (x, — y,)| > d then
lxs — ya| > d and 4 < —id®. Therefore the contribution in the right hand
side of (3.25) of Z, \ Z; is exponentially decreasing. Thus g, satisfies (3.22).

Step 7. In this last step we want to write P; in term of the contour
= {va €€ & =—(1+n)Im ==} For this purpose we state a
lemma which will be also used later on. Recall that we have set

A(1+71)(I> = {(Zaa éa) € Czn” : ga = _(1 + ’7) Im Za} .

Let ¥ be a C* function on €* which is almost analytic on Ao Let
b =b(z4,&4,xp,2) be a C* function on €™ x €™ x R™ x [, +oo[ which is
holomorphic with respect to (z,,&,) on the support of y and such that
|b(za, Eayxp, A)| < C 2™, mp € N, on the support of y. Let w = w(z,,xp, 4) be
C*® on (C" x IR™, entire holomorphic with respect to z, such that
e APy s in L2(C" x R™).

Lemma 3.2. Let us consider the differential form

~ ir(x,— £ xa+(l xa+a
& = ey (R ) (R e, 2) Wl ) d A,

and the contours

3 n n Xq + S N
Z;:{(ya,ga)e(l:“X(E":fa:—(l—i—n)lm : ya—|—z(xa—ya)}

2
%) = {00 €) € € x &, = —(1+0) Im

Xq +ya}
If we set
h = // w— // w
1/7 :1/

2
then for any integer N one can find a positive constant Cy such that

y - Cy,
e DY Al (o eny < — e Ol 2oy for 221
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Proof. We follow the proof of Proposition 1.2 in [S2].
Let us consider for ¢ in [0, 1] the contours

n n Xa + Va T~
I, = {(yayéa) eC™ X(E”:éazf(lJrn)Im Terlt(xa*Ya)}

and G = [0, 1] x I',. We apply Stokes formula to & and G. Since I'p = X}
and I’y = X we have 1 = Jo [ [, dé. Noting that e« ab(..) w(yy, xp, 2)
is holomorphic in (y,, &,) on the support of y we get

Xa + Ya
2

dip = ML () wdy, [1( ,ga) dva A dga] .

Now O (252 &) dva AdE,] is a linear combination of terms as
dyaj /\dya NdE, and 7 déa, ANdy, Nd&,. On the other hand on I';, we

have &, = (xa + V. — xa ¥,) + it (x; — ya), therefore d&, and dé, can

be written as O(l) dy, + O(1) dy, + O(|xa — ya|) dt. 1t follows that dy, ; A dy,

Ndé, and dE, jNdva Nd&, can be expressed as O(|x, — va|) L(dya) dt Since
on T, we have, for every integer N, [0y,x] +10¢,2] < Cn &0+ (1 +1)
Im 2 N = Cy(tlxa — o))" we can write

1
il < cly / / A1)~ ()] ~tbra—ral*
0

i xa *.Va|N+l (W (Vas xp)| L(dya) dt .

It follows that

e~ A1+ ®(

|h(xa, )HLZ ) <

1 2
cly am // e~ Ma=yal” N x4 _ya|N+l dt e~ A1+M®0u) [w(Vas ')||L2<R"b>L(dya) .
0

Now the right hand side is an integral operator with kernel

1
2
K(xa,Va) :/ e MRl N e, — N dr
0

Since
/ 1K (v, )| L{d / 1K (o, )| Ldya)
e / ey / el |,V L(d,)
0

Schur lemma ensures that for every large enough integer N we have

Hef) 1+n)® C;\l/ /1mofn,szTJrl ||efi(l+i1)<l>

Al 2o smmy < Wl (@ smn) >

and the lemma is proved.
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Now lemma 3.2 ends the proof of theorem 3.1 since, as before the in-

tegral in the right hand side of (3.26) can be written as a finite sum of terms
of the kind

i2(xq— xa+ a xa+ a .
0(/3, /// o) Ca 2y >€a)D:ha( 2y +léa7xb)

(A&, + i) D To(ya,xp, 2) dvy N dE,

where |o| + |f]| + |y| <m and a has compact support in x,. Thus we can
apply Lemma 3.2 with w = D} Tv and b = D% a - (¢ + il ).

3.2. Case of Theorem B
Recall that we have assumed
(3.27) on ¢(,=0, p, does not depend on x, .

In that case we have
(328) pm(xa i + ’W(x)) :p;n(xba fb) +p;n71(xaaxb7 ém éb)

where p/ is a polynomial of order m in &, and p/, ,(x, ¢) is a polynomial of

order m in & but of order m — 1 in &,. Writing p = ) p,,—; we have,

=0
Theorem 3.3. There exists y € CoO(C*™), y =1 if |xa| +|&| < 12d, y =0 if
Xa| + |Eq| > 13d, such that, if we set X, =232, 7, =% 4 i and

~ iA(xg—ya)-& Am Xa + Va m .
(329) w = eﬁ('a Ya) Ca{ ! (va éb) + X( D) J aéa) |:;“ p:n_l(ZaaXb, Ca s éb)

D o i 28 00 2o X)) T30 2) s s

j=1
// 1A (xp=Yp)- (// (Z)) dyb déb
& 1 V] MH:V{I

then we have, with P; introduced in Proposition 2.2,

(3.30) Q, Tv(x,

(3.31) P,To=0,Tv+R; v+,

with

_J ~ Cv -
(3:32) [l MY R, Tol| (o m) < oy [le™ 0% Tof| 2 o s (g
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—(14+n)® ~ ) (a4 nd?
(3.33) lle () g)vHLZ((IZ”“x]R“b) = (9(6 2 HUHH"O(]R”)) :

Proof. Tt follows from (3.28) that the operator P, defined in (2.15) can be
written as P; = P, (xb,ng) + P where P/ is of order < m — 1 in Dy,. Then
P, Tvo = P, (xp,Dy,) To + P} Tv. Then theorem 3.3 follows from theorem 3.1
applied to P/ and from the equality

(i) / / emmm-éb( / / R (x, 38,)
2n éo=—(14n) Im 2322

To(Ya, Vb, 2) dya N déa> dyydxiy, = P, (xp, Dy,) Tv

(see formula (1.8) in [S2]).

Remark 3.4. A slight modification of these proofs shows that the estimates
(3.4) and (3.33) can be precised as follows

Zi(lm® ~ i
(3.34) e Gl 2o xirony < C €5 [l 2o gt () 5

where k = m or m — 1.

4. Back to the real domain. The main estimates
4.1. Pull back to the reals

Let Q;v be the operator defined in (3.1) (and (3.30)). It is complex in the
(x4, &,) variable; we are going to pull it back to the reals by the canonical
transformation x7z,, described in (2.8), which is associated with the FBI
transformation 7, defined by

Ty0(2a, X3, 2) = K(2) / e MG (3 v dye, vE S (RY)

Let v be in #(R") and set w = T, Tv. Then it follows from Sect. 2.1 ii) and
Proposition 2.1 iii) that

4.1) w=T Tve S(R") and T,w=Tv .
We deduce from Proposition 2.2 (see also Proposition 1.4 in [S2]),
(4.2) 0, Tv=0, Tyw=T,0;w

where Q, is an operator on IR™ x IR™, pseudo-differential in x,, differential
in x,. Moreover denoting by ¢ the Weyl-symbol
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(4.3) 0" (05) (Xa, Ear X, &) = 6" (0,) (7, (Xa E4) X0, E)

where

O-W(Qi)(zaa Cas X, fb) = X(Zaa éa)p(za + iy, xp, AL

. +idy (x4 + iéa,xb)) (thm A)

(4 4) O-W(Q/l) = ;”mpz/n(xba éb) + /{(Z(h éa) (Za,.X'b, éaa ﬁb, /’L)
' where p”(zaaxhvémfb, ) - )“ pm 1(Za,xbaéméb)

+ me j(Za,Xb,}é + l)»lﬁ (zaaxb)) (thm B)
Jj=

Summing up we have by (4.1) to (4.4),
Q}. Tv = T;] ina
w=T Tve S(R"), Tw=Tv,
GW(QI) = X(xa - ﬁ” éav éa) p(xa + #’7,’ éavxb; /“f
(4.5) i (xa 1 Eoxs) ), (thm A)
0" (01) = Py (x5, AZp)
+x(xa 1 & &) P (%o + 1y &¥,C0r G0 4)  (thm B)

o) = (£) [[ ¢ 0)(*52 ¢) win dvae

Moreover we have

(0:)(x,¢) = 20 7 (%, €)
e
qm*j(x’ é) = X(xa - 11T;1 éav éa) pm*j (xll + % éavxba 6
1/ (xo + 15 Earxp) ) (thm A)

a3, €) = P, 65) + 7(%a = 15 € €a) P (30 + 125 Car3: €006
and q,—j(x, &) = x(...) pw—j(...) (thm B) .

(4.6)

4.2. The estimates in case of Theorem A

We are now prepared to prove Carleman estimates for Q;. First of all we are

going to precise our choice of . Of course we may assume from now on that

x% =0 and ¢(0) = 0. Let us recall our hypotheses on p,,

(4.7) np = 0 or n, # 0 and there is a positive constant C such that
' Pn(0,0,0,&,)] > C[&,|" &, € R™
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OPm
¢

implies +{p,(x.& = i (x)). pu(x, € + 19/ ()) |

Pm(0,0,i9;,(0), & + i3, (0)) = 9'(0) (0,0,i9,(0), &, + i}, (0)) =0

(4.8)

Lemma 4.1. Let ¢ be a C? function in a neighborhood of zero in R” satisfying
(4.7), (4.8). Then we can find a polynomial \ of degree two in x such that

(4.9) Y(0) =0, ¥'(0)=¢'(0),
and, setting X = (0,0, (0), &, + iy} (0)), &, € R™

(4.10) pa(X) :Oimplies%{ﬁm(x,f—il//(x)),pm(x,i—kilﬂ'(x))} >0 .

x=0
¢a=0

Moreover

(4.11)

there exists a neighborhood of zero in which Y(x) =0
and x # 0 imply ¢(x) >0 .

By homogeneity, (4.10) is still true with the same \ if we replace \ by pys
where p is a positive constant.

Proof. We shall take ¢ of the following form

(4.12) Y(x) =x- @' (0) +A(x- ¢'(0))* —l—% ¢@"(0)(x,x) —% Ix|*, 4>0.

Then (4.9) is obvious. Let us show (4.11). If y(x) = 0 then x - ¢/(0) = O(|x]*)
and x - ¢'(0) +3 ¢"(0)(x,x) =1 x|* — A(x - ¢/(0))%. Then by Taylor formula

006) = - I — ACx- 9'(0))* + () = 1 I + O(l*) + o((xP)

thus ¢(x) > 0 if x is small and x # 0. Let us prove (4.10). We set for

convenience Z = (x, ¢ + i@’ (x)), Z = (x,& — i¢'(x)) and p,, = p. Then

@13 202 = (222 2)-P @)L @)

—i\og ox VT ox Y ae
0p I op
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Now if we set { = (x = 0,i¢,(0), & + i}, (0)),{ = (0, —ig,(0), & — ig},(0))
condition (4.8) reads

0
p(0) = a—éﬁ (©)-¢'(0) =0 implies

w19 e =H(Z o a—"()—%(@) 2 o)
Jp -~ op
+28j:(§)'</’ (0 )a*()

We are looking for 4 in order to have (see (4.10))

pX)=0 lmplles
1(0P + 8p
(4.15) Cy(&) = PR (X)

+2L(0): gfg ) a’g x>0

Now by (4.9) and (4.12) we have

- - 2
(416) X ={ X =0 and Y/ (0) = ¢, (0) +24¢'(0)'¢(0) -~ 1d
from which we deduce

(4.17) Cy(&p) = Cy(&) +44 |@ ‘ T4 log )2

We argue now by contradiction. Assume that for each 4 one can find &, such
that p(X) = 0 and Cy (&) < 0. Therefore there exist sequences (4;) + oo and
(&) such that

(4.18) p(X;) =0and Cy(&) <0 where X; = (0,i/,(0), & + i)(0)) .

It follows from (4.16) that p((;) = 0. Since p({;) =p(x =0, & =0, &)
+O(1E™ ) we get |p(x=0,&, =0, &) < C|f’\m ' If there is a subse-
quence of (ff) which tends to +oo we Would have by (4.7),
C1|E|" < C|&|™". Therefore the sequence (&) is bounded and there is a
subsequence, still denoted by (&) which converges to &, Thus

Cj —{= (x = O,il//;(()), éb + ll//;;<0)) and
(4.19) p()=0.

It follows from (4.16), (4.17) and (4.18) that,
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2 ]
#(0)- 22 (&) /ﬂag@ﬂ’ Col&)) -

The right hand side tends to zero, thus

op

(420) o0)-5

@ =0.

Using once more (4.16), (4.17) and (4.18) we get

40

Co&) <7 |58 @) —o
SO
(421) Co(&) <0

But (4.19), (4.20) and (4.21) contradict (4.14).

Lemma 4.2. Under conditions (4.7),(4.8) there exist positive constants
No, & Ci and Cy such that for all n in ]0,n,] and all (x,&) in R*" such that
x| + |&4] < & we have

(4.22) lam (6, E)| = C1 (&)™ if |Sp] = Cs

1
(4.23) qm(0,0,0,&,) = 0 implies - {2,(x,8),qm(x, &)} 0 >0 .

Proof. We first take & so small that |x,| + |&,| <& implies |x, —
+]&,| < 12d. Tt follows then from (3.23) and (4.6) that

&l

i
1+n

0n(x.8) = ot + o G £ 0 (v + T o))

= pn(0,0,0,&) + O(|x| + [E,) (€)™ + O(1)(&)"

Therefore |g, (x, &)| > C &)™ — C3(e(&,)™ + (&)™ 1), and we get (4.22) if we
still reduce ¢ and take |&,| large enough.
Let us look to (4.13) and let us set for convenience p, = p and

(= (xa+l T fa,xb,erl'ﬂ (xa+l 1—7— fa,xb»
Z: (xa —im CarXp, & —i‘ﬁ (xa —1i m faﬂ%)) .

Then
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@8 = | P O 57 @41 ) v O
~@3+%% )| +2E G @u+m%@
B o-wn 2ol Lo+t ©
+ i )%;%@4
-gzaydwm§«§gg@»

Moreover setting

=@+ (), Z=(x<-i)(x)

we have
@mﬂm=%mﬁwwwﬁ%ﬂ
ap " = ap
Re-wgo| L.

It follows that, for bounded |&,|,

(4.24) (@ an}| 0 = {Pu(2), Pn(2)}

=0 +0(n) .

Let &, be such that ¢,(0,0,0,&,) = 0. Then p, (0,0, (0), &, + iy, (0)) =
and (4.22) implies that |&,| < C,. It follows from (4.10), by compactness on
éb! that

(4.25) P (D)} > o

Now (4.24) and (4.25) imply (4.23) if 5 is small enough. From now on 5 is a
fixed number in 0, #,].

Lemma 4.3. If q,, satisfies (4.22) and (4.23) there exist positive constants A, 0,
g9 such that for all (x, &) € R such that |x| + |&,| < &y we have

(4.26) Algnl, OF + 5 G4} (5,) 2 58"
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Proof. We argue by contradiction. Otherwise there exist sequences ¢; — 0,
d; — 0, 4; — +o0, (¥, &) with || + [&| < ¢ and

a1 L .
(4.27) A 1gn (o, )P + A an} &, ) < 5™

Case 1. There exists a subsequence, still denoted by (ii), such that \é{,| —
~+o0. Since we have

(428) |{qma qm}(xv 5)‘ < C0<éb>2m

and, by (4.22), |gu(x, &) > C}(&)™™" if |&| > Ca, we deduce from (4.27),
(4; C} — Co) (&)™ < 6;(&)® which is impossible since 4; — +oo and
51' — 0.

Case 2. The sequence (f’ ) is bounded and therefore there exists a subse-

quence (still denoted by (5’ )) which converges to éb We deduce from (4.27)
and (4.28) that

1 ) .
g ) < - (Co(E)™ +35(8)™) — 0
thus, since (x/) — 0, (&) — 0

(4.29) qn(0,0,0, &) =

Moreover (4.27) 1mphes (G G} (¥, &) < ,(E)>", thus

1

Now (4.29), (4.30) contradict (4.23). This ends the proof of lemma 4.3.
From now on ¢ is fixed according to lemma 4.3.
Let 0y € C>(C>") be such that 0 < 0 < 1 and

00 (20 €) = 1 i |zl + (2] <
(431) 4 Oofea &) = 0 il 18] >

0y is almost analytic on A¢ 4o

Let us set, with k7, defined in (2.8),

n

(4.32) 0() = 90|A (14n)0 oK, .

It is easy to see that 0y € C*(IR*") and there exists & € ]0,%0 [ such that
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Lif x|+ &) < e
4.33 00 (xa, &, :{ : a
(4.33) 0(Xa &) 0 if || + & >2 .

Let & € C°(IR™) be such that 0 < 4 <1 and

1 if o) <2
4.34 = 4
Finally let us set
(4.35) O(x,&,) = h(xp) - Op(x,&,)

Then

Ui ]+ < e
(4.36) 9(x,€a>—{o if x| + &4 > €0

We shall consider the semi classical norm on Sobolev space H™(IR™) which

is defined by
2 ¢
ay;(waZ/ (”‘z

Lemma 4.4. Let Q = Op} (qm). There exist positive constants Cy, Ci, Ay such
that for every u in & (IR") and 7. > Ay we have

(4.37) [|u

2 m
) (&) dé .

% (OPB.”((l —0)(&)™") u, u)

C
2 0 >
L2(R™) + ||Qu||L2(]Rn) 2 7 ||u||L2(R"“,H$ZI(R"b)) 3

Proof. We write Q = Qg + i Oy where O = OpY(Re ¢,,), Or = Opy(Im gy).
Then Qf = Ok, K = R, I and writing || - || for the L*(R") norm

1
(4.38) 10ull* = [|Qxull® + || Qul > + 5 (197 Qlu,u) .

Now the semi classical principal symbols of [0*, O] and O Ok are % {Gsqm}
and q%(, where gg = Re ¢,,, ¢; = Im ¢,,. We claim that one can find a

positive constant B such that

(4.39)  B(1=0) (&)™ + A lgu(x, &) +% (s 4} (x,8) = 5 (&)™

for all (x, &) in R?".
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Indeed Lemma 4.3 implies (4.39) if |x| + |, | < &, since 0 < 0 < 1, and if
x| + [€a| > g0 then, by (4.36), 0= 0 and |gu|* + [{g, gu}| < C (&)™, thus
(4.39) is true if B is large enough.

Then we can apply the Garding inequality in the following context. Let
g=d+di+dé + 9% This is a metric which is temperate and slowly
varying in the sense ofg Hormander [H1]. Let a € S((&)*,9), k € N, be a
symbol such that Re a > (¢,)*, and 4 = Op " (a). Then there exists g > 0
such that for every u in &(R") and every 4 > A

0
(4.40) Re(Au,u);» > B HuH%Z(R"‘Z,HfC(R”h)) .

Thus we may apply (4.40) with, for a, the left hand side of (4.39). It follows
that for 1 > /g

B(Op} (1 - 0)(&)™"
+ (10", Olu,u) >

) + A ||Qrtl [ + A1 Qrul

||u||L2 R"a H'"(IR“b)) .

[\)|an 3

Now, we deduce from (4.38) that
221|Qully: > A ||Qxull® + 4[| Quul* + A([Q", O u,u) if 22> 4,

and Lemma 4.4 follows.

Corollary 4.5. Let Q; be defined in (4.5). Then one can find positive constants
Co, Cy, Ay such that for u in ¥ (R") and 7. > 2

Co

c ! (Opﬁv ((1 —0) <5b>2m) “a“) +110: 2-(]R" 2 2 ||”HL’ R"™ H7"(IR"))
where
(4.41) ol = [ G2+ 16PyloEP dé -

Proof. Use (4.6).
We are now ready to prove the following estimate.

Proposition 4.6. Let Q,z be defined in Theorem 3.1. Then there exist positive
constants Cy, Ca, Ly, &,ng such that forv € C°(IR"), suppv C {x: |x| < &}
and 1. > Ay,

||| |L” (C' 1 (R™)) =

A 2 —Jlo 2
2o 0, TUHL(?H”)(D +Ce [yl H™ (R")
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where o > 0 depends only on n and ¢y defined in lemma 4.3. The norms here
have been defined in (2.9), (2.10).

Proof. We apply corollary 4.5 to u = T,y Tvo which is in &’ (R") (see Sect. 2.1
i1)). It follows from proposition 2.1 and (4.5)

(4.42) ||”||L2(ﬂ1"a,H;"(1R"h)) = ||Tf1”||Lfl+”)¢(H;") = HTvHLme(ﬁy)

(443) Nl ey = 1Ty 04 Ty Toll

"o

=110, Tl

14n)®

Let us set R = Opy((1 —0) (¢,)*™). Then proposition 1.4 in [S2] (see also
Proposition 2.2) and Proposition 2.1 show that

TyRu=RTu=RT,T; To=RTv

- An o 5 5
RTo(x,2) = ( — // =) Ch (£, '"(// w> dyy dé
(2ﬂ) ’ ¢ =— (1) Tm S ’

(4.44)

Xg+Ya Xp+ W
2 T2

(445) o=t (14 Ca) ) ol ) dva A &,

where 6 = 0o K;ﬂl = h(xp) 0y is defined in (4.31) to (4.36). Therefore, we
deduce from Proposition 2.1,

(Ru,u),>» = (T, Ru, T,ju) B (R Tv, Tv),»

"o (l4mo

It follows that Proposition 4.6 will be proved if we show that for any integer
N one can find a positive constant Cy such that

~ Cy 2 el
(@46) (R To,T0) < S ITolEs iy + Ol 0> 0 -

Proof of (4.46). First of all we see from (4.35) that
1 —0(x,&,) =1 = 00(xq, &) hxp) = (1 — Oo(xa, Ea)) h(xp) + 1 — h(xs)

Now it follows from (4.34) that (1 — A(x,))(&,)*" is the symbol of a differ-
ential operator with coefficients vanishing for |x,| < %. If we take & <%
and supp v C {x : [x| < &} then suppu = supp T;' Tv C {|xp| <%}, therefore
OpY (1 — h(x)) (&)™) u = 0, which implies that

Ru = Op} (1= 0) (&)™) u = Op} ((1 = Oo(xas &) hxs) (&)™) ue .
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We deduce that, in the expression of R in (4.44), (4. 45) we can put

(1 —Go(xa,éa)) (xp) instead of 1—9( ¢,). We write <§b> = > G¢&
and we show, by induction that for |o| < 2m || <2m
Al g2 gialos—yn)-G h(x” +y”) - ¥ o D“Z( v g (x" +y"))
A o
o) |[<m

oty =o

where the Ay 4, 4, are derivatives of h.
We deduce that R Tv is the limit, as ¢ goes to zero, of a finite sum of terms

of the form
e [ e (512 )

: (// _ 67)1> dy, d&y,
&o=—(1+n) Im "5

where Ny € N is fixed, (e CP(R™), ((0)=1, || <m, |uw]<m,
g € C°(IR™) and

By = e (12 6y (2220 ,)) Tolya, ) dvg A,

After integrating by parts in the y, integral (which is possible by (2.3)) we
can write [, = Dy J, with

J, = s // ei).<~’éb*}’b)-ébg(m> {(e&y) // @ | dyy d&y
2 o= (14) Im 22

By = ) ( _é()(xa;‘ya 7@))1);; To(ya, 1) dva A dE, .

As before we compute the integral in £, then, in the y, integral, we set
Xp — yp = &y, we take the limit, when ¢ goes to zero, in &' and we get

hm I, =V D°‘l // it (xa=ya) L g(xp)
&= 1+,1 Im kuﬂa

(1= (* ;y" &) ) D Tolt ) dvg A,

Moreover R Tv is a finite sum of such terms. It follows that (R Tv, Tv),»

. . . a & I+n)@

is a finite sum of terms like A" (S Tv, DX Tv) ., where e
I+n)®
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/ / i),
5 1+'1 Im Xu+}u

. (1 — éo (xa +Ya ,fa)> (xb)D;‘z To(ya,xp) dya NdE, .

Therefore (4.46) will follow from the estimate

18l < S 7ol amy + Ol

Hno(]Rn)), YVNeN, ¢>0.
(14n)®

(4.47)

Proof of (4.47).

Step 1. Let us set

g = eHEr) L (1 B éo(xa erya ,5‘1)) 9() D% Ty, ) dya A dE, |

Then

(4.48)
ILToll, <% ||TvHLz Jum  YNEN.

{ S Tv(x, A) ffef () I 2 @3+ LTv

(14+n)®
This follows from Lemma 3.2 and (4.31).

Step 2. Assume & < L 1+n 155 and supp v C {|x| < &}. Then

(4.49) S To(x, 2 // @3 + LT+,
—(14n) Im

D8 4 (g3 [Xa—a e,y | <262

where L T satisfies (4.48) and there exists ¢ = (e, #) such that
(4.50) lall,, < Celollngme, -

To prove this we look at the part, in the integral in the right hand side of
(4.48), where |x, — y,| > & or |y,| > &. The estimate (4.50) follows then
from the argument in step 6 in the proof of Theorem 3.1.

Step 3. If |x, —y4| <& and [|y,| < 2¢, then + [Ea] < 1082 < 1+n
Therefore, by (4.31), Op(*f2 &) =1 so 3= 0 and STv=1L Tv+g1
By (4.48) and (4.50) we get (4.47) and the proof of proposition 4.6.

Xa +ya

Corollary 4.7. Let P; be the operator occuring in proposition 2.2. One can
find positive constants Cy, Ca, Ay, &, o,ng such that for ve C°(R"),
suppv C {x: |x| < &} and 2 > A9 we have
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|| Tv

2 2
12 H" (]R" ) .

(I4-n)®

L »
(@ mrrmyy < C1 4 ||P TU||L§H”>(D + e[yl

Proof. This follows from Proposition 4.6 and Theorem 3.1.

4.3. The estimates in case of Theorem B

Let 0° = Op}(gm) where g,, is defined in (4.6). We have

(4.51) { 110%ul[7: = ||Orull: + || Qs I} +% (0™, 0" u,u)
where Q° = Or +iQ;1, O3 =0k, O; =0; .

Let us introduce the following Hérmander’s metrics

dé
(&)’

Then it is easy to see from (4.6) and (3.29) that

dé
&)

(4.52) g1 = d* + , gr = dx* +dE +

gm(x, &) = P, (xp, Ep) 4+ 1(xXas &) (rma1 (%, &) + N Sm—1(x, &)
(453) Tm—1 € S(<éb>m717gl)7sm71 S S(<€b>m717g2) ) where
Tkar &) = 2(%a — 15 Car o

We shall write 0°= P!, + Ry—1 + 1 S,—1 where " (P.) = pl, (xp, &), 6" (Rm—1)
= 7 Fm-1, 6" (Su—1) = 7 Sm—1- Let us set

(4.54) L=P +R, | .

Since R,,_; and S,,_; belong to Opf(S((§b>m_17g2)) and since p), depends
only on (x,, &), it is easy to see that

(4.55) (0”0~ [L",L] € T Op}(S((&)™ . 92) -

We shall set

(4.56) " (L) =¢ =4, + ¢, where

' b =P (xb, &) + (X rm=1)|e,—0 €2 = T Tm—1 — (X Fm=1)le,—0 -
Then
(4.57) heS&)"g), LeSIE)" ! q) .

We shall also write
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(4.58) {aw([L*,LD 1 (e1 4 ¢2) where

= {60~

Then since the symbol of L is a polynomial in &, and p), depends only on
(xp, &) we have

(4.59) e S{&)™ L a1), 2 €S(E)" %, g2), uniformly in 2 .

Lemma 4.8. There exists a positive constant A such that if we set Y(x) =
@'(0)-x+1 " (0)x-x — L x> — 4(¢'(0) - x)* then
2 1 2m—2 1 . ny
Al (x, &) +er(x, &) 25 (&)™, for |x| <5 and &, in R™ .
(4.60)

Moreover, by homogeneity, (4.60), with possibly other constants, is still true
with the same \ if we replace W by pyy where p is a positive constant.

Proof. We first take 4 so large that 7 = 1if |x,| + [&,| < J>. Then from (3.29)
and (4.56) we have £1(x, &) = pu(x, i, (x), & + i, (x)) and
1 / .10
€1(6,8) == {Pnlor. & = W/ (), po (v, &+ 0/ () |

=0

Now

q=2m{%%@¢wmﬂ ~ g () 2 <w<>@+wwm}

0¢

- 0 P 0, 6 — W) - B (k0L 6 U 0))

If we multiply the inequality (4.60) by 2*"~? and we divide both members by
(A28 = (24 22|&,))™ ", we see, setting Z;, = Hﬁ%)’ = (A/g , that
(4.60) is equivalent to '

A 2 0P, = Opm ” 0P,y —=. OPm 1
@+ 5 (T @)FE @) ') T @) GE (@) 2 4

(4.61)

it x| <A2, where  Z = (x,ily,(x), B +iTY,(x), Z = (x,—i[Y,(x),
Ep — iT'Y(x)). We prove (4. 61) by contradiction. If it is false one can find
sequences Ay— + 0o, |xx| < Av, _b, I'; such that
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4 2 P 5\ OPn
(462) Sipa(f+ (B @0 @)
" Opm = Opm 1
— ¥ () 'a—i(zk)' e (Zk) SA—k

Since |E’,§\ <1, I’y <1, taking subsequences, we may assume that
(4.63) Ef —E and Iy — I .

On the other hand ¥/ (xx) = @'(0) + ¢”(0) xx — A% xp — 2 Ak(¢'(0) - xx) ¢’ (0)
and |x| < AZ ; therefore /' (xx) — ¢/(0). It follows that
(4.64) 7 — (0,iT°N, , E) +iT°N),  Zy — (0, —i[° N, E) — iT" N,)

where ¢'(0) = (N,, Np).
Since ¥"(xi) = ¢"(0) — & — 245 ¢'(0)'¢’(0) the third term in the left
hand side of (4.62) can be written

wros O OPm 2 | Opm , 2
o' OB @) @)+ | B2 @] + 24| 0) B2 @)
(4.65)
Case 1. T 0.

If we divide both members of (4 62) by A, and if we use (4.64) and (4.65) we
get with Z° = (x = 0,i[° N, E) + il Np)

(4.66) pul@) = (0)- B2 (2 =0 .

Coming back to (4.62), (4.65) we get

2 apm 0 apm 0 " 6pm =0 8pm 0
Gl @) Ty} - 0fe @) T @) <o

which contradicts the hypothesis (H.2)" ii) in theorem B.

Case 2.T" =050 2 — 2° = (x =0,¢, = 0,Z)), ) # 0.
In this case we write

(4.67) Im{ag;’ (Zk)égjg (Zk)} = Im{af_z”( ;0 "k)%’é’" (x ,o,a’;)}

8 m —_ (9 'm —_
+Fk1m{—z¢ () o P (., 0,E5) - gé (¢, 0, 25

op -
+% (xk,O,.:]g) - —— (x4, 0, _‘b) iy’ (xk)} + e(ri) .
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We use then the assumption (H.1)" in theorem B. We get

P = pm - -
i {22 0,02 %2 (0,0.3) | < Clputon 0.2

Opm
o¢

< Clpn(Z)| + CTe| T2 (Z2) - ¥/ )| + 0(T) .

Therefore

OPm _ Opm —- \/_
os) | |22 0.2 - B2 05| < Y ()

cz\/rj_+crk %pg (Ze) -/ (o) | + O(TF)
It follows from (4.62), (4.65), (4.67) and (4.68) that
469)  Prlpn(20R - Y3t (2P - | % @) ¥
- C' Ty + Im{—n// (x) ;g’é (x,0,Z}) - %”g (x4,0,25)
00 (,0.30) - P (a0, 0 o)}
o) P 2. 2 )4 2 2 g
+ 245 |¢'(0) - aévg (Z) 2§Aik :

Dividing both members by % we get, since [y — 0, Ay — + o0,
k

(4.70) Pn(0,0,E)) =0 .
Now, since (% — —) lom (Z, k)|2 > 0, dividing (4.69) by A; we get
(4.71) ¢'(0) - 8;5’” (0,0,E) =0 .

Removing all positive terms in (4.69) and letting k£ go to +oo we get

Py Opm & pm  Op
[m{ " oxoe oe NJ”@@Z Ox N}
PR/ apm 8pm =0

which is contradiction with (H.2)" i).
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Lemma 4.9. Let ¢, and ¢, be defined in (4.56) and (4.58). Then there exists
a > 0 such that for any ¢ > 0 one can find a positive constant C, such that

w C —
|| Op} (£2)”||L2(]R") <eé ||MHL2(H§:',*‘) "‘7% ||u||L2(1{;Z{*‘) +0(e M||v||H,,0(IRn)) .

Céi \
0P te2) )] < el + = el + €

0l o (o))

Jor any u =T, Tv, v € Cg°(R"), where Hy. has been defined in (4.37).

Proof. Given &>0 let y(x, &) in C* with 0<y<1 and
supp y C {|x| + |&,] < &}. We claim that one can find C, > 0 such that

w Cﬂ
(4.72) 10p7 (Caryulliz < & iy + 7 lellizn

This follows from the sharp Gérdlng inequality in the class S(1,¢>) (h =1
for g). Indeed we have & <f,,>2’" — 72 (&)"" % > 0. Now (4.56) and
(4.57) show that ¢, € S((&,)" ,gz) and £|: o =0. Therefore taking
% = 0(xa,&,) - g(xp), such that y = 1 if [x| +[&,| < 4 we write

[10p; (&2)ull> < || Op3 (La)ull> + [[OPF (1 = 7) o)ull2 = (1) +(2) -
We deduce from (4.72) that

C;

1Op} (€2)u L2(Hr ) \/7 [lual] 2 Hm=1) s

p <ellu

and it follows from (4.47) that

w CN _
||Op/1 ((1 - X) gz)u”l} S )_N HuHLZ(H\’?*') + (O(e j.O—”U‘|Hr10(]Rn)) .

This gives the first part of the lemma. For the second part we observe
that ¢; is a sum of terms of the form &, (x,¢&,) & with |af <2m — 2.
Therefore (Op} (cz)u u) can be written as a sum of terms of the form
(0P} (& ¢ (x, o) Eh)us DI, u), where 3] < m =1, [B] <m—1, so

w 2 C V(A= AT 2
|(Op} (c2) u,u)| <& ||”||L2(11;g*1) +—= (e ||U||H”0(]R”))) :

We are now ready to prove the Carleman estimate for Q°.

Proposition 4.10. Let Q° = Op¥(q,) be defined in (4.6). Then one can find
positive constants Co, Cy, Ao, ¢ such that, for any u =T Tv, vE C™,

< 4/112} and A > Ay, we have
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Co

0 _
il e -y < 11O ey + O (€ lel )

Proof. First claim: let ¢; and ¢; be defined in (4.56), (4.58). Then

(4 +2) (11Op} (Re £1)ul 3= + || Op (1m ¢1)u}:)
(473) + (09 (en)us) 2 Sollu e

for large A. (Here 4 has been ﬁxed by lemma 4.8.)
Indeed let us set a = A |[¢;* +¢; (see lemma 4.8) and ap = al, ;. Let

1if x| < g5
ho € C3°(IR") be such that sy = and 0 < hg < 1. Then we
have 0 if [xg| > 55

1 m—2 . 1
a+(l—ho)(ao—a):/’loa-i-(l—ho)a()zz<€b>2 2 if |xb|§m

(4.74)

Indeed if |x,| < a then by lemma 4.8, a and ay satisfy (4.60) thus (4.74) is
true. If |x,| > 2,4’ then hy = 0 and ay satisfies (4.60) dnd (4.74) is also true.

Now denoting by 7, a symbol in the class S((&;)*, g2) we have by (4.56)
and (4.58)

W 0P
Oxp  0&

a = |p},(xs, &) +2 Im( )(xb, &)+ Re(l) - rpt) + Fm—2 -

Thus a — ap = Re() - 1) + Fm—2 SO
(4.75) la —ao| <210 +C (&) .
It follows from (4.60) and (4.75) that

2m-2
(&) if |xp| < VIR

| —

(A+2)0) + e +C (1 = ho) (&) 7>
(4.76)

Let A (xp) m C>(R™) be such that 0 < 4y <1 and & =0 if |x,| >
h=1if |x| < Thus we have, from (4.76)

g2
w2

(420 18F ++ €1 = ho) G = % () ) o) 2 0

for any (x,&,) in R” x R™, and this symbol belongs to S((éb>2m,g1).
Therefore we can apply the Fefferman-Phong inequality (see [H1]) and get
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477) (Opy (A +2)la] W)u,u) + (0P} (1 h)u,u)
25 (o (1 @ 7))
— C(OPY (1 — o)) ) — 55 Nl
We can use the symbolic calculus in S(-, g1). We get
—(0py ((4 +2)/a]* i), u) = (4 +2)((O (£ h1)* Op (¢ )
+Op2 () OPY(Ehhn))ue) + 5 O(ale)
Here (8 = Re ¢; and ¢{ = Im ¢,. Thus
(478) 1= (4 +2)([| O ()l + 1100 () + (5 e )
because

OP(£) - by = Op(¢f ) + 5 OpY(S((2)" )

for K =R or I and hju = u since suppu C {|x;| < ;1z}. By the same way

42
Op} (c1 ) = Op(e1) i + 5 Op} (S((&) ™" . a1)

thus

@79 (Op}ler i u) = (Op(er)uu) + 5 Ol ) -

We have also
480)  (OpX((En ™ 2 i) = [l o, — O+ [l
: p; ({%s) v ) = |l 22 ) 7 Meellza e

w m— 1
(P21 = Ao)en™ ) = 11 = gz + € 5 il )
(4.81)

C
(4.82) 10 = Ro)ul gty < 57 Nl

Thus (4.73) follows from (4.77) to (4.82).
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Now from (4.53), (4.54), (4.56) we get

103 (¢1)ull 2 < [|Qull 2 + 1| OP ()l + 1 1| OP (7 55—l 2 -

Therefore, applying Lemma 4.9, we deduce

LZ(H:Z—I) + @(Cfia||v| H"O(]R”))

10D} (E)ull2 < 11Qatl2 + (&+ G+ C'n) Il
10p} (@)ull> < lIQpullyz + (o + G+ C'n ) Nl gy + Ole ]l
(4.83)

H™ (JR"))

Using (4.55), (4.58) and lemma 4.9 we get

|((Op(e1) = 20", 0°)u,u)]

C .
(4.84) S <8+\/_;—+’1C/> Hu”iZ(H:g—]) +(9(€ JJHU| i[no(]Rn)) .

It follows from (4.73), (4.83) and (4.84) that

0
O B, < ) (I Qul + ol +5 (10, )} +

H"o (]R") ) .

C. ,
(o S O )l + 0l ol

Taking ¢ and x small, then A large we get, by (4.51), proposition 4.10.

Corollary 4.11. Let P; the operator occuring in Proposition 2.2. One can
find positive constants Cy, Ca, Ay,&, ¢ such that for ve Cy(R"),
suppv C {|x| < &} and 1 > 4y we have

b 2 D 2 —A 2
(4.85)  A|Tv][p2 (€ HP (R ) <GP TU||L§H”)® +Ce U”U”H”O(]R”) :

(14n)®

Proof. By theorem 3.3, (4.85) will follow from the same estimate for 0,.
Now ||QTU||L2 = ||Qsul|,;» and by (4. 6) we have ¢"(Q;) = *"(¢"(0")
+3 1 A g jj where g,_; € S((&)"~ ' g2). Thus (4.84) follows from
proposition 4.10 if / is large enough.

5. End of the proof of the Theorems A and B

Without loss of generality we may assume that x* = 0, ¢(x°) = 0.

Let P be the differential operator under consideration in the theorems A
and B and u be a C* solution near the origin of the equation Pu = 0, with
suppu C {x: ¢(x) < 0}. Let y be the quadratic polynomial introduced in
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1 ift>—3

(4.12) or in lemma 4.8 and y € C*°(R) be such that y(z) = {0 ifr< 4

with 0 < y <1. We set

(5.1) w =7 (Y(x)) -u .

It is classical that if ¢ is small enough we have suppu; C {x € R": |x|* < C ¢}
with a fixed constant C and we reduce ¢ in order that suppu; C {x: |x| < &}
where &, has been fixed by corollary 4.7 (or 4.11). Now, since Pu = 0 we see
that

(52)  Pu=f.feC™, suppf {x:i—e <yl <1}

We introduce a positive parameter p such that p|[y”|| <1 and

P SUP|yj<1 W\x\ﬂ <z 1 Tt follows that on the support of u; we have

ol =p N o < 4 v

Then we set

(5.3) u =e "y .
Then
(5.4) Puj =e " Py

where P; is defined by (2.14) with pys instead of . It follows that (5.2) can be
written as

(5.5) P =e"f |
We apply proposition 2.2 and get
(5.6) PTo=Te"f .

Then corollary 4.7 (and 4.11) ensures that one can find ¢ = o(p) > 0 such
that

5 j — A0 2
(5.7)  ||Tv||} (@e sy < Ci||Te + 0|9l |70 (o)) -

(1+n)® (14 @

We reduce ¢ in order that § v/Ce <1 a(p). We claim that

(5.8) T f|l, = 0(e5%) .

(14+n)®
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Indeed we know from (5.2) that yy < —% on the support of f. On the other
hand z* T eV f is a finite sum of terms of the following kind

I=K(}) / e’% (zfrya)z(za _ ya)ﬁy;' e PV axp) F 0ayxp) dya

. A 2 A 2 . .
Since (z, — Ya); €2 (za=a) :% 0 e=3(z¥) we can make integrations by

_ v
parts and conclude that [ is a ﬁr’lite sum of terms of the form

J=P() / o4 (a3 + i (ers) 9V, xp) Y D;z (Va, Xp) dya

where P is a polynomial in A and g a C* function.
It is then easy to see that for large 1

(2a) e B | T £ (2, ) ey < C et

where C is independant of /. Thus (5.8) follows.
We deduce from (5.7), (5.8) that

9 2 05 . ep 1 1
(59) T, =), 5mm<2,za<p>,loo).

14+n)®

Now since y is quadratic we have

lﬂ(ya,xb) = w(xasz) + lﬁ;(xa,Xb) : (ya _xa) +% A(ya _xa) : (ya - xa) s

where 4 is the symmetric matrix ¥/, . We have also, with B = y/,,

W (xaxp) = Y (0,0) + Ax, + Bxp = Ny + Axy + Bxp
where
(5.10) N = (N,,N,) is the normal to S at the origin
Thus

(5.11) Y (ya,xs) :lﬁ(xa,xb)+(Na—i—Axa—i-Bxb)(ya—xa)—i—%A(ya—xa)z .

We choosed p so small that

1 1
Al < = Bl| <= .
loAll <5, lloBIl <5

It follows that
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(5.12) A, =1d —p4 is symmetric and positive definite .

Let us set X =y, —x, and (1) = —% (x, —3a)? + 2pY (ya, xp). We deduce
from (5.11) that

A
(1) = -3 (XX =20V - X — pAX - X| + Ap(xa, xp)
where
(5.13) V=N,+Ax,+Bxp .
Then
y
(1) = 2py (x4, xp) —3 [4,X - X —2pV - X]
AT v -4, 4
= ip(rasxs) = 5 [GXIP =20 4,7V - 43X
A1 AR _ 214
= Ip(xa ) =5 (143X = p 4 VIP = g2 14,7 VIP]
Therefore

) ’%
(5.14) T (&Y u1) (xa, xp, 1) = K (1) PV o) 4507 14,%VIF 5, uy (Xg,Xp, 4)

! -1
(5.15) S w1 (Xa, Xp, 4) :/ e Ao 0 ut (Va, Xp) dva

We split the proof into two cases.

Case 1. N, =0.
Let Q = {(x4,x5) € €™ x R™: |x,| < 3, |xp| < d}. Then (5.9) implies that

/ / o 24(11) O(x,)
o

Since in Q we have —A(1 + 1) ®(x,) > —240% > —1 26 we get

T(uy) (xa, x5, 2)|” Ldg) dicy = O(c) .

(5.16) // | (&) (g 0) | L(da) doy = O(7#7)
Q

Let us set

0 0
Q= {(xa,Xb> € R"™ x IR”[;, |xa‘ < E a|xb‘ < E} .



Uniqueness in the Cauchy problem 535

The function x, — T(e**¥u;) is holomorphic in €. Therefore one can find a
positive constant C independant of 4, x;, ¢, p such that

/ |T A”Wul)(xa,xm } dx, dxb<C/ |T )p'/’ul)(xa,xb, | L(dx,) dxp -

According to (5.16) we get

(5.17) // ‘T(eip‘/’ul)(xa,xb,},)lz dx, dxy = @(e’% ‘5) .
Q
Using (5.14), (5.15), (5.17) and the fact that in Q we have
A A
Ipbeares) + 5 77 114, VI > o sup ‘”|(|>' S
[x|<1

we deduce that for A large enough
(5.18) / 1S 141 (a3 |* v vy = O(e757) .

Q
Let us fix (x,,x5) € Q and set in (5.15)

Vo —Xg— p A (Ax, + Bxp) L t

a a P a \/I a
we get
S5 u( J) = i —%HA% tall? + A_I(A +Bxp) _~_L ¢ dt

LU Xg, Xp,y A _)"Ta S Ui\ Xq p p Xa Xp ﬂ arXb a

and Lebesgue’s theorem shows that
(5.19) lim A% S; uy(xq, x5, 4) = Cte ui (4, Yy + pBxp),xp) .

A—+00

It follows then, from (5.18), (5.19) and Fatou’s Lemma that
ul( Y(x, + pBxp),x;) = 0. This implies that u; =0 for |x,]| < , ] < g.
Slnce u; = u if 0 is small enough we have proved theorem A.

Case 2. N, # 0.
Assume N, | = ‘7‘” (O 0) # 0. In a neighborhood of the origin we can make
the change of Varlables
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xla,l = lﬁ(xa,Xb)
'xa.j = x”J’ ] Z 2
X, =Xp .

The symbol of the operator P is transformed into a symbol whose coeffi-
cients are analytic in x/, and C* in x} in a neighborhood of the origin.
Moreover all the hypotheses in the theorem are invariant. Therefore we still
have the estimate (5.9) namely

(520) // e 241+ P(x,)

where T is the FBI transform (2.1) where, for simplicity we have removed
the factor K (1) i.e. with v, = (1,0,...,0)

(e ) (xa, X0, 2)|” L(dxy) dry = O (e )

T(eip aVayy ) (X, Xp, A) = / 3 (a—3) +p v uy (Vayxp) dyy
We see easily that
(5.21) T(e;"’ "“"’“ul)(xa,xb, )= P Yavats p? T uy(xq + pVa,Xxp) -
Inserting (5.21) in (5.20) and setting x, + pv, = x], we get

// 672/1(1+r1)(D(x;)f)~pz+2ip(Re X0,)Va

(5.22)
Let us consider

Ty (5,00, ) L(d,) doy = O(e)

Q = {(x4,x5) € C™ x R™: |Re x,| < 2p, [Imx,| < 26, |xp| < d} .

For (x4,x5) € Q one has 2(1 + 1) ®(x,) < 165> < 1 650 (5.22) implies

(5.23) // o~ H2ip(Rex)v,
Q

Now since the function x, — e*”*«T u; (x4, X, 4) is holomorphic in €™, it
follows from Cauchy formula that we can find a positive constant C,
independant of 4 and x, such that for |Re x,| < p and |Im x,| < J we have

s (s, 2) Lld) diy = 0(e747)

|5 Ty (xy %, )| < € / |7 Ty (0,05, 2)|” L)

|Re xq|<2p
|Im xg|<20

So we deduce from (5.23) that if |Re x,| < p, [Im x,| <

524 [ Tl do < cer e

xp| <0
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On the other hand from its definition we have
(5.25) T uy (xq, x5, 2)| < *0a) / =3 (Rexevamw)’ |y (3 x| dyy

If Re x, - v, < 0 we bound the exponential, inside the integral, by one. If
Re x, - v, >0, since on the support of u; we have y, v, <0, we have
Rex, vy —ys-va > Rex, - v, > 0, therefore

C e"®w) ifRex, v, <0

. )] < , )
(5 26) |Tu1 (Xa7-xb7 /L)| — { C e’“‘b(x“)*? (Rex{,-v[,)z if Re Xy - Vg 2 0

For fixed A let us introduce the subharmonic function

(5.27) w(xa) = / |€% (xave)? Tul(xa,xb,/l)lz dxp .

|xp | <O

It follows from (5.24) and (5.26)

(5.28) w(x,) < C ei[(Re Xaa)” = (IM Xgva)*=2p Re xv4+p? =4 0]
C e/lRexeva)’ +(mx)" i Re x, - v, < 0

5.29 wix,) < / i

(5.29) (xa) < { C Him¥,)’ ifRex, -v; >0

where we have set x, = (X, - V4, x},).
Let us fix x/, and 4, let us set = x, - v, € € and consider the subharmonic
function

(5.30) () = = 0% - Re < p, Imi< s

We introduce the rectangle Q drawn here the sides of which are denoted by
I, 11, I, IV as indicated below. Here p is a fixed positive number such that
e
n<i5e0.
Imt
1V, ) 1V,

I I

11, 3 I
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e On I, III, IV we use (5.29). We get

(1)

w(t)

=

(Im x)* on II}, 1V;
(Im x')* 4 4 on IL, Il and IV; .

IN A

e On [ we use (5.28). Here Re x, - v, = p, thus

1 1 .
W(7) §pz—(Imxwva)szszrpzfiég —50.
Summing up, we have
0 on II, 1,1V

(5.31) w<z>—(lmx;>2—uzé{ 15 onl.

Let us consider the harmonic function

_ cos (4 Im ¢) sinh (% (Re ¢+ p))

(5.32) 9(1) sinh (% (p + 1)

Then ¢(¢) =0 when Im ¢ = F6 and when Re = —pu thus ¢g(¢) =0 on
ILar,1v. On I we have Ret=p so g¢g(tf)=cos5Im¢<1 and
—16<-14690@).

It follows from (5.31) that on the boundary of Q we have

1
(5.33) Ww(t) — (Im x.)* — 12 < —504(1) -
By the maximum principle we deduce from (5.33) that

W(t) — (Im x,)% — 12 < féég(t), teQ .

Now it is easy to see that there exists a positive constant M > 1 independant
of p such that

M
(539) sup 19/l <5
teQ
Since ¢(0) = % > e 7, we deduce from (5.35) that
1 . -
(5.36) o) >3 e ¥ if |4 < ”’;M =y

It follows from (5.34) that
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1 M .
(5.37) () = (Im x,)” = @ < = mue ™ if | < Wi 3

. . _mp
Since (2 < L ape ¥, if [Im x> < L mue™ we get

_
0

- 1
(5.38) w(t) < —1g THE T =—Ho -

Using (5.30) and (5.27) we get if |x,| is small enough
(5.39) / | 1wy (xa, X5, )| dixy, < eIk
‘Xb‘ftj

Then we let A go to 400, using, as in the proof of case 1, Fatou’s lemma. We
get u; = 0 in a neighborhood of zero. The proof of theorems A and B is
complete.
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