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1. Introduction and main results

The problem of the uniqueness in the Cauchy problem for linear di�erential
operators has been widely investigated during the last years (see [Z] for
references). It is now well understood in the analytic framework, with
Holmgren's theorem, where uniqueness always holds (at least for non
characteristic surfaces) and in the C1 case, with HoÈ rmander's theorem
([H1], IV, chap. 28) where the uniqueness is governed by principal normality
and pseudo-convexity. The purpose of this work is to ®ll the gap between
these two theorems by considering operators with C1 and partly analytic
coe�cients. In particular one of our results will contain both the theorems
mentioned above. Let us be more precise. Let na, nb be two non negative
integers with n � na � nb � 1. We shall set Rn � Rna �Rnb and, for x or n in
Rn, x � �xa; xb�, n � �na; nb�. Let P � P �x;D� � P �xa; xb;Dxa ;Dxb� be a linear
di�erential operator of arbitrary order m, with principal symbol pm. We shall
assume that

the coefficients of P are C1 in x and analytic in xa:
in a neighborhood of x0 2 Rn :

�
�1:1�

Let S be a C2 hypersurface through x0 locally given by

S � fx: u�x� � u�x0�g; u0�x0� � �u0a�x0�;u0b�x0�� 6� 0 :

As usual, f; g will denote the Poisson bracket.
Our results are as follows
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Theorem A. Let us assume

transversal ellipticity: pm�x0a; x0b; 0; nb� is elliptic�H:1�

pseudo-convexity: let f � �x0a; x0b; iu0a�x0�;
nb � iu0b�x0��; nb 2 Rnb ;
then pm�f� � fpm;ug�f� � 0 implies
1
i fpm�x; nÿ iu0�x��; pm�x; n� iu0�x��g�� x�x0

n��0;nb�
> 0 :

8>>><>>>:�H:2�

Let V be a neighborhood of x0 and u 2 C1�V � be such that

Pu � 0 in V
supp u � fx 2 V : u�x� � u�x0�g :

�
Then there exists a neighborhood W of x0 in which u � 0.

Theorem B. Let us assume

principal normality
jfpm; pmg�xa; xb; 0; nb�j � Cjnbjmÿ1jpm�xa; xb; 0; nb�j;
for all x � �xa; xb� in a neighborhood of x0 and all nb in Rnb ;

8<:�H:1�0

�H:2�0

pseudo-convexity
i� nb � 0 or nb � 1 and; with X � �x0a; x0b; 0; nb�; nb 2 Rnb n f0g;

pm�X � � fpm;ug�X � � 0 impliesRefpm; fpm;ugg�X � > 0 :
ii� Let f � �x0a; x0b; iu0a�x0�; nb � iu0b�x0��; nb 2 Rnb ;

then pm�f� � fpm;ug�f� � 0 implies
1
i fpm�x; nÿ iu0�x��; pm�x; n� iu0�x��g�� x�x0

n��0;nb�
> 0 :

8>>>>>>><>>>>>>>:
On na � 0; pm does not depend on xa :�H:3�0

Then the same conclusion, as in Theorem A, holds.

Let us give some applications of these results. First of all as we said before,
Theorem B contains both the Holmgren and the HoÈ rmander theorem. For
operators with analytic coe�cients Holmgren's theorem asserts that
uniqueness holds for any non characteristic initial hypersurface. We take, in
theorem B, nb � 0 and na � 1; then �H:1�0, �H:3�0 follow from the fact that,
by homogeneity, we have pm � f�pm; pmg � 0 on na � 0, �H:2�0 i� is trivially
satis®ed and �H:2�0 ii� is empty since pm�f� 6� 0 if the initial hypersurface is
non characteristic. For operators with C1 coe�cients we take na � 0,
nb � 1; then �H:3�0 is empty and �H:1�0, �H:2�0 are exactly the hypotheses
made by HoÈ rmander in his theorem, [H1] Th. 28.3.4.

Here is an application of Theorem A. Let us consider, in a neighborhood
V of a point m0 � �t0; x0� in Rt �Rn

x , a second order strictly hyperbolic
symbol of the form
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p2 � s2 ÿ
Xn

i;j�1
aij�t; x�ninj

where �aij�t; x�� is a symmetric positive de®nite matrix with entries which are
analytic in time and C1 in space. Then uniqueness holds for any non
characteristic initial hypersurface. (For a space-like hypersurface this result
has been known for a long time even for coe�cients merely C1 in time).
Indeed let us set, in theorem A, na � 1 �na � s�, nb � n � 1 �nb � n�. On
s � 0, p2 is elliptic in n so �H:1� holds. Now a straightforward computation
shows that the imaginary part of fp2;ug�f� is equal to p2�m0; du�m0��, which
does not vanish, so �H:2� is empty.

Let us now describe the background of this problem. The initial moti-
vation for this kind of results came from control theory. Indeed Lions [Li]
introduced the HUM method which relies partly on uniqueness results. In
the case of second order hyperbolic operators P � @2t ÿ A�t; x; @x�, the initial
hypersurface is time-like and the corresponding uniqueness result is false if
the coe�cients are merely C1, as shown by the counterexamples of Alinhac-
Baouendi [AB] (see also [R] for a detailed discussion of these counterex-
amples). However, when the coe�cients of A do not depend on t, Rauch-
Taylor [RT] and Lerner [L2] making a global vanishing assumption in t,
proved uniqueness. Nevertheless this was not enough for control theory and
Robbiano [R] was able to improve their result, using only a local vanishing
assumption. His result was extended by HoÈ rmander [H3] and then by
Tataru [T] who was the ®rst to consider operators with partially analytic
coe�cients as considered here. In fact Tataru proved our theorem A, when
the coe�cients of pm are entire analytic functions of order 2 in xa, and our
theorem B when pm is real and its coe�cients are independent of xa.

Let us give a sketch of the proofs. As usual uniqueness will follow from
Carleman estimates; they are L2 estimates with an exponential weight eÿkw.
Very roughly speaking, the principal normality and the pseudo-convexity
can be viewed as a subelliptic condition on the operator Pk � ekw P eÿkw and
the proof of the estimates follows from GaÊ rding type inequalities. Our
problem here is that all our conditions are made on the set fna � 0g; this
forces us to microlocalize our symbol on this set. This is the core of the
proof which is achieved by the use of SjoÈ strand's theory of FBI transform
and pseudodi�erential operators in the complex domain [S1], [S2]. (Al-
though not very far in spirit, our method di�ers from Tataru's which uses
real pseudodi�erential weights). So making a partial FBI transformation
(i.e. in the analytic variables only) we transfer our problem to the complex
domain with the great advantage that, using the analyticity assumptions and
several changes of contours, we can localize the symbol of the transferred
operator around fa � 0, modulo some controlled errors (Theorems 3.1 and
3.3). As soon as this is achieved, we go back to the real domain and get a
p.d.o with principal symbol localized near na � 0. We then use the C1

machinery (the HoÈ rmander-Weyl calculus, the Fe�erman-Phong inequality,
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see [H1], III, chap. 18, etc ...) to prove a Carleman estimate using some
techniques of Lerner [L1]. The end of the proof is split according to whether
Na (the xa component of the normal to the surface) vanishes or not. The case
Na � 0 is straightforward, while the case Na 6� 0 requires use of the maxi-
mum principle according to an idea of Kashiwara (see also [S1]).

Finally we would like to thank Professors G. Lebeau and J. SjoÈ strand for
useful discussions during the preparation of this paper.

After the completion of the work, Professor L. HoÈ rmander informed us
that, using an extension of Tataru's method, he has very recently obtained
the same results as described here (see [H4]).

2. Rewiew on SjoÈ strand's theory

In this section we collect some material essentially taken from [S2], (see also
[H2]).

2.1. The partial FBI transformation

Let na, nb be two non negative integers with n � na � nb � 1 and let us set
x � �xa; xb� if x is in Rn � Rna �Rnb .

We introduce the partial Fourier-Bros-Iagolnitzer (FBI) transformation.
It is de®ned for u in S�Rn� by

Tu�za; xb; k� � K�k�
Z

eÿ
k
2�zaÿya�2u�ya; xb� dya�2:1�

where za 2 Cna , xb 2 Rnb , k � 1, K�k� � 2ÿ
na
2

ÿ
k
p

�3na
4 and z2a �

Pna

j�1
z2aj.

Here are some properties of T which will be used later on. Let us ®rst
introduce

U�za� � 1

2
�Imza�2 ; za 2 Cna :�2:2�

i) The function Tu is C1 on R2na �Rnb � �1;�1� and entire-holomorphic in
za 2 Cna for all �xb; k� in Rnb � �1;�1�.

Moreover for all M , N in N, any a in Nnb there exists C � CN ;M ;a > 0
such that

jDa
xb

Tu�za; xb; k�j � CK�k�hxbiÿM hzaiÿN ekU�za��2:3�

for all �za; xb; k� in Cna �Rnb � �1;�1�. Here h�i � �1� j � j2�1=2.
ii) Conversely let U�za; xb; k� be a C1 function on R2na �Rnb � �1;�1�
which is entire holomorphic in za 2 Cna for all �xb; k� in Rnb � �1;�1� and
assume that U satis®es estimates like (2.3). Then there exists a unique u in
S�Rn� such that Tu � U (see [H2], prop. 6.1).
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iii) Let now �ve�e2�0;1� be in S�Rn� and v 2S�Rn�. Then

lim
e!0

ve � v in S0�Rn� implies lim
e!0

eÿkU�za�Tve � eÿkU�za�Tv in S0�Cna �Rnb� :
�2:4�
iv) If u is in C10 �Rn� we can improve (2.3). Indeed, in that case, for all M , N
in N, any a in Nnb there exists C � CM ;N ;a > 0 independent of u such that��Da

xb
Tu�za; xb; k�

�� � CK�k�hxbiÿM hzaiÿN ekU�za�ÿk
2�d Re za;supp u� ��2 ��2:5�

� sup
xb

jjDa
xb

u��; xb�jjH N �Rna �

for all za in Cna , xb in Rnb , k � 1; here d is the Euclidian distance.
v) For ®xed xb, T can be viewed as a Fourier integral operator with asso-
ciated (complex linear) canonical transformation

jT : C2na 3 �ya;ÿ/0ya
�za; ya�� 7! �za;/

0
za
�za; ya�� 2 C2na

where /�za; ya� � i
2 �za ÿ ya�2:

Let us set

KU �
n
�za; na� 2 C2na: na �

2

i
@U
@za
�za�
o
� f�za; na� 2 C2na : na � ÿIm zag

�2:6�

since U�za� � 1
2 �Im za�2. Then jT : T �Rna ! KU is a di�eomorphism. It is

easy to see that

jT �xa; na� � �xa ÿ ina; na� :�2:7�

vi) In the sequel we shall also work with the partial FBI transformation Tg

associated with the phase /�za; ya� � i
2 �1� g��za ÿ ya�2 where g is a small

non negative real number. In that case we have

jTg�xa; na� �
�

xa ÿ i
1� g

na; na

�
:�2:8�

Let us introduce some notations. For k 2 N we set

L2�1�g�U�Cna ;Hk�Rnb�� � L2
��

Cna ; eÿ2k�1�g�U�xa�L�dxa�
�
; Hk�Rnb�

�
�2:9�

which is the space of square integrable functions de®ned on Cna equipped
with the measure eÿ2k�1�g�U�xa�L�dxa� (where L�dxa� denotes the Lebesgue
measure in Cna ) and valued in H k�Rnb� (the usual Sobolev space).

If k � 0 we shall set for short

Uniqueness in the Cauchy problem 497



L2�1�g�U
ÿ
Cna ;H 0�Rnb�� � L2�1�g�U :�2:10�

We also set

L2
�1�g�U � L2�1�g�U \H�Cna��2:11�

where H denotes the space of holomorphic functions.
Then we have:

Proposition 2.1. [S2]. i) Tg is an isometry from L2�Rna ;H k�Rnb�� to
L2�1�g�U�Cna ;Hk�Rnb��.
ii) T �g Tg is the identity on L2�Rn�, where T �g is the adjoint of Tg.

iii) TgT �g is the projection from L2�1�g�U to L2
�1�g�U. In particular TgT �g ~v � ~v

if ~v � Tv where v is in S�Rn�.

2.2. Transfer to the complex domain

Let p � P
jaj�m

aa�x�na, �x; n� 2 R2n, be a polynomial with coe�cients in

C10 �Rn�. Assume moreover that

�2:12�
there exists c0 > 0 such that if we set xa � fza 2 Cna : jzaj < c0g
and xb � fxb 2 Rnb : jxbj < c0g then for all a in Nn; jaj � m;
we have aa 2 C1�xb;H�xa�� where H denotes the space
of holomorphic functions.

8><>:
Let P � Opw

k �p� be the semi-classical Weyl quantized operator with symbol
p, which means that, for u 2 C10 �Rn�, we have in the oscillatory sense

Pu�x� �
� k
2p

�n
ZZ

eik�xÿy��np
� x� y

2
; kn
�

u�y� dy dn :�2:13�

Let w be a real quadratic polynomial on Rn. For any k � 1 we shall denote
by Pk the di�erential operator de®ned by

Pk � ekw P eÿkw :�2:14�

It follows from Segal formula (see [H1]) that

Pkv�x� �
� k
2p

�n
ZZ

eik�xÿy��np
�

x� y
2

; kn� ikw0
� x� y

2

��
u�y� dy dn :

�2:15�
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The main result of this section, which will follow from proposition 1.4 in
[S2], is the following:

Proposition 2.2. For v in C10 �Rn� we have T Pkv � ~Pk Tv where

~PkTv�x; k� �
� k
2p

�n
ZZ

eik�xbÿyb��nb

�ZZ
na�ÿIm xa�ya

2

x

�
dyb dnb

where

x � eik�xaÿya�na p
�

xa � ya

2
� ina;

xb � yb

2
; kn�2:16�

� ikw0
� xa � ya

2
� ina;

xb � yb

2

��
Tv�ya; yb; k� dya ^ dna

and the above integral has to be taken in the oscillatory sense i.e.

~PkTv�x; k� � lim
e!0

� k
2p

�n
ZZ

eik�xbÿyb��nbv�enb�
�ZZ

na�ÿImxa�ya
2

x

�
dyb dnb

in S0�Cna �Rnb�, where v 2S�Rnb� and v�0� � 1.

Proof. From (2.15) we have Pkv � lim Pk;ev in S0�Rn�, where

Pk;ev�x; k� ��2:17� � k
2p

�n
ZZ

eik�xÿy��nv1�ena�v2�enb�

� p
�

x� y
2

; kn� ikw0
� x� y

2

��
u�y� dy dn

where vj 2S, vj�0� � 1. It follows from (2.4) that

eÿkU�za�T Pkv � lim
e!0

eÿkU�za�T Pk;ev in S0�Cna �Rnb� :�2:18�

Now

T Pk;ev�x; k� �
� k
2p

�nb
ZZ

eik�xbÿyb��nbv2�enb�T
 �

k
2p

�na
ZZ

eik�xaÿya��nav1�ena�

� p
�

x� y
2

; kn� ikw0
� x� y

2

��
v�y� dya dna

!
dyb dnb :

Since, for ®xed �xb; yb; nb�, the symbol �xa; na� 7! v1�ena�p�xa; xb; kn� ikw0�
belongs to S�R2na� we can apply Proposition 1.4 in [S2]. It follows that
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T
�� k

2p

�na
ZZ

. . . dya dna

�
�
� k
2p

�na
ZZ

na�ÿIm xa�ya
2

v1�ena�x

where x is de®ned in (2.16).
We shall show that, in S0�Cna �Rnb�, we have

lim
e!0

eÿkU T Pk;ev�2:19�

� eÿkU lim
e!0

� k
2p

�n
ZZ

eik�xbÿyb��nbv2�enb�

�
�ZZ

na�ÿIm xa�ya
2

x

�
dyb dnb :

According to (2.18) this will prove Proposition 2.2. Let us set

Re � eÿkU�xa�
ZZ

eik�xbÿyb��nbv2�enb�
�ZZ

na�ÿIm xa�ya
2

�1ÿ v1�ena��x
�

dyb dnb

�2:20�

Se �
ZZ

Re�xa; xb; k� u�xa; xb� L�dxa� dxb�2:21�

where u 2 S and L�dxa� is the Lebesgue measure on Cna .
For ®xed �xa; xb; ya; yb; na; nb; k� the integrand in the right hand side of

(2.20) tends to zero when e goes to zero. Now since p is a polynomial in n, Re

is a ®nite sum of terms of type (2.20) where, in x, p is replaced by
a
ÿ xa�ya

2 � ina;
xb�yb
2

� � �kna � ikw0a�a�knb�b, where a 2 C10 �Rn� and jaj � jbj
� m. Since �knb�b eik�xbÿyb��nb � �ÿDyb�b eik�xbÿyb��nb and since by (2.3)
Tv�ya; yb; k� is in S�Rnb� we can integrate by parts in yb. We then use the
equality

R
eik�xbÿyb��nb v2�enb� dnb � eÿnb v̂2

ÿ
k xbÿyb

e

�
and we deduce that Re is a

®nite sum of terms of the following kind

Z
eÿnb v̂2

�
k

xb ÿ yb

e

�
Db

yb

 ZZ
na�ÿIm xa�ya

2

eÿkU�xa� eik�xaÿya��na

�1ÿ v1�ena�� � a
� xa � ya

2
� ina;

xb � yb

2

�
�kna � ikw0a�aTv�ya; yb; k� dya ^ dna

!
dyb dnb :

�2:22�

Now on the surface na � ÿIm xa�ya
2 we have dya ^ dna � cna L�dya�,

where cna 2 C and L�dya� is the Lebesgue measure on Cna , and
i�xa ÿ ya� � na � U�xa� ÿ U�ya�. It follows that the integral with respect to
�ya; na� in (2.22) is equal to
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cna

Z �
1ÿ v1

�
ÿ e
2
Im �xa � ya�

��
a
�
Re

xa � ya

2
;
xb � yb

2

�
�
�
ÿ k Im

xa � ya

2
� ikw0a

�a
Tv�ya; yb; k� eÿkU�ya�L�dya� :

Now (2.3) shows that we can di�erentiate this integral with respect to yb

under the sign integral. It follows from (2.22) that Re is a ®nite sum of terms
of the following kind

ZZ
eÿnb v̂2

�
k

xb ÿ yb

e

��
1ÿ v1

�
ÿ e
2
Im�xa � ya�

��
Db1

yb
a
�
Re

xa � ya

2
;
xb � yb

2

�
�
�
ÿ k
2
Im�xa � ya� � ikw0a

�a
�2:23�

� eÿkU�ya� Db2
yb

Tv�ya; yb; k�L�dya� dyb :

Setting xb ÿ yb � ezb, using (2.3) and Lebesgue's theorem in (2.23) we deduce
that for ®xed �xa; xb; k� in Cna �Rnb � �1;�1�, Re�xa; xb; k� tends to zero
with e. Moreover this also shows that there exists p; q 2 N such that for any
N 2 N

jRe�xa; xb; k�j � CN �k�hxaip
ZZ
jv̂2�kzb�jhyaiqhyaiÿN L�dya� dzb

� C0N �k�hxaip :

This implies that Se, which is de®ned by (2.21), tends to zero. This proves
(2.19) and Proposition 2.2.

3. The localization procedure

In this section d is a positive real number such that 13d < c0, where c0 is
de®ned in (2.12), and v is a C1 function such that supp v � Cfx 2 Rn:
jxj � dg. Let ~Pk be de®ned in Proposition 2.2.

3.1. Case of Theorem A

Theorem 3.1. There exists v 2 C10 �C2na�, v�xa; na� � 1 if jxaj � jnaj � 12d,
v�xa; na� � 0 if jxaj � jnaj � 13d such that if we set, for g 2�0; 1�,

~Qk Tv�x; k��3:1�

�
� k
2p

�n
ZZ

eik�xbÿyb��nb

�ZZ
na�ÿ�1�g�Im xa�ya

2

v
� xa � ya

2
; na

�
x

�
dyb dnb
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where x is de®ned in (2.16), then

~PkTv � ~Qk Tv� ~Rk Tv� ~gk�3:2�

with, for any N in N,

jj~Rk TvjjL2�1�g�U
� CN

kN jjTvjjL2�1�g�U�Cna ;Hm�Rnb �� ;�3:3�

jj~gkjjL2�1�g�U
� Oÿeÿk

3 gd2 jjvjjH n0 �Rn�
�
; k! �1 :�3:4�

where n0 depends only on n and on the order m of P .

Proof. This proof requires several steps. Let us recall for convenience that

x � eik�xaÿya��na p
� xa � ya

2
� ina;

xb � yb

2
;�3:5�

kn� ikw0
� xa � ya

2
� ina;

xb � yb

2

��
� Tv�ya; yb; k� dya ^ dna

where n � �na; nb�.

Step 1. Let us ®x �xb; yb; nb; k�. Then we have

ZZ
na�ÿIm xa�ya

2

x �
ZZ

na�ÿIm xa�ya
2 �i Re�xaÿya�

x :�3:6�

To prove (3.6) we shall apply Stokes formula to the closed manifold
t 2 �0; 1�, ya 2 Cna , na � ÿIm � xa � ya�=2� it Re�xa ÿ ya�. On this manifold
�xa � ya�=2� ina � Re� xa � ya�=2ÿ t Re�xa ÿ ya� 2 Rna . Therefore x is well
de®ned. Then (3.6) will follow fromZ 1

0

ZZ
na�ÿIm xa�ya

2 �it Re�xaÿya�
dx � 0 :�3:7�

Since @�ya;na�x � 0 we have dx � @�ya;na�x. Now eik�xaÿya��na � Tv�ya; yb; k�
and w0

ÿ�xa � ya�=2� ina; �xb � yb�=2
�
are holomorphic in �ya; na� and since

�xa � ya�=2� ina is real on our manifold we have

p�. . .� � p
�
1

2

h xa � ya

2
� ina �

xa � ya

2
ÿ i na

i
;

xb � yb

2
; kn� ikw0

� xa � ya

2
� ina;

xb � yb

2

��
:
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It follows that

@�ya;na�x � eik�xaÿya��na Tv�ya; yb; k�
�
1

4

� @p
@xa
� dya

�
^ dya ^ dna

ÿ i
2

@p
@xa
� dna

� �
^ dya ^ dna

�
:

Now na � na � 2 Re na � ÿ 1
2i �ya ÿ ya� ÿ 1

2i �xa ÿ xa�; therefore we have
dna � dna � ÿ 1

2i �dya ÿ dya� i.e. dna � ÿdna ÿ 1
2i �dya ÿ dya�. It follows that

i
2

ÿ
@p
@xa
� dna

� ^ dya ^ dna � 1
4

ÿ
@p
@xa
� dya� ^ dya ^ dna so @�ya;na�x � dx � 0.

This implies (3.7).
Let us set

~g1�xa; xb; k��3:8�

�
� k
2p

�n
ZZ

eik�xbÿyb��nb

�ZZ
na�ÿIm xa�ya

2
�i Re�xaÿya�

jRe�xaÿya�j�d

x

�
dyb dnb :

Our purpose is to show that����eÿk�1�g�U ~g1
����

L2�Cna�Rnb � � O
ÿ
eÿ

k
2 d2 jjvjjH n0 �Rn�

�
:�3:9�

We proceed as in Proposition 2.2; ~g1 is a limit as e goes to zero of a ®nite
sum of terms of the following kind� k

2p

�n
ZZ

eik�xbÿyb��nb v�enb� ZZ
na�ÿIm xa�ya

2
�i Re�xaÿya�

jRe�xaÿya�j�d

eik�xaÿya��na a
� xa � ya

2
� ina;

xb � yb

2

�
� �kna � ikw0a�a �knb�b Tv�ya; yb; k� dya ^ dna

!
dyb dnb ;

where a 2 C10 �Rn� and jaj � jbj � m.

We write �knb�b eik�xbÿyb��nb � �ÿDyb�b eik�xbÿyb��nb , we integrate by parts in
the yb integral, we use the equality

R
eik�xbÿyb��nb v�enb� dnb � eÿnb v̂

ÿ
k xbÿyb

e

�
,

we set xb ÿ yb � ezb, we let e go to zero and we deduce that ~g1 is a ®nite sum
of terms of the following kind

� k
2p

�na
ZZ

na�ÿIm xa�ya
2
�i Re�xaÿya�

jRe�xaÿya�j�d

eik�xaÿya��na Db1
xb

a
� xa � ya

2
� ina; xb

�
� �kna � ikw0a�a Db2

xb
Tv�ya; xb; k� � dya ^ dna :

Then we use the following facts: on our contour we have
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i) Re�i�xaÿya� � na��U�xa� ÿ U�ya�ÿjRe�xaÿya�j2 and jRe�xaÿya�j�d,

ii)
��Db1

xb
a
ÿ xa�ya

2 � ina; xb
��kna � ikw0a�a

�� � C km�hxai � hyai � hxbi�m,
iii)

��eÿkU�ya� Db2
xb

Tv�ya; xb; k�
�� � CM ;N K�k� hxbiÿM hyaiÿN jjvjjHn0 �Rn�, for all

M ;N in N,
iv) hxai � hRe�xa ÿ ya�i � hyai � hIm xai,
v) dya ^ dna � Cn L�dya�.
It follows that we can ®nd a constant C depending only on m, n, d and g

such that

hxaina�1 hxbi
1
2 �nb�1� eÿk�1�g�U�xa� j~g1j � C eÿ

k
2 d2 jjvjjHn0 �Rn� :

This implies (3.9). Now it follows from (3.6), (3.8) and (3.9) that

~Pk Tv�x; k��3:10�

�
� k
2p

�n
ZZ

eik�xbÿyb��nb

�ZZ
na�ÿIm xa�ya

2
�i Re�xaÿya�

jRe�xaÿya�j�d

x

�
dyb dnb � ~g1

where ~g1 satis®es (3.9).

Step 2. We want to prove

~Pk Tv�x; k� �
� k
2p

�n
ZZ

eik�xbÿyb��nb

�ZZ
R

x

�
dyb dnb � ~g2�3:11�

where R � �ya 2 Cna ; jRe�xa ÿ ya�j � d; jRe yaj � 2d; na � ÿIm xa�ya
2 �

iRe�xa ÿ ya�
	
����eÿk�1�g�U ~g2

����
L2�Cna�Rnb � � O

ÿ
eÿ

k
3 d2 jjvjjH n0 �Rn�

�
:�3:12�

This will be proved if we show that the part, in the right hand side of (3.10),
where jRe yaj � 2d satis®es (3.12). This part is as before a ®nite sum of terms
of the following type

~g �
� k
2p

�na
ZZ

R
eik�xaÿya��na Db1

xb
a
� xa � ya

2
� ina; xb

�
�kna � ikw0a�a Db2

xb
Tv�ya; xb; k� dya ^ dna :

We then use (2.5). Since supp v � fjxj � dg and jRe yaj � 2d it follows that
dist �Re ya; supp v� � d. We also use the remarks i) to v) above and we
deduce easily that

hxaina�1 hxbi
1
2 �nb�1� eÿk�1�g�U�xa� j~gj � C eÿ

k
3 d2 jjvjjHn0 �Rn�

from which (3.12) follows.

504 L. Robbiano, C. Zuily



Step 3. Our purpose is now to localize in Im ya.
Let t0 be in �0; 1� and let us consider the manifold with boundary
G � �t0; 1� � Rt where on Rt we have ya 2 Cna , jRe�xa ÿ ya�j � d,
jRe yaj � 2d, jIm �xa ÿ ya�j � d

t and na � ÿIm xa�ya
2 � iRe�xa ÿ ya�

� t Im �xa ÿ ya�. On G we have��� xa � ya

2
� ina

��� � ���Re xa � ya

2
ÿRe�xa ÿ ya� � it Im�xa ÿ ya�

��� � 9

2
d :

Since 9
2 d < c0 we are, by (2.12), on a domain where the coe�cients of p are

holomorphic. We can apply Stokes formula to the di�erential form de®ned
in (3.5) and we have dx � 0. The di�erence between

RR
Rt0

x and
RR

R1
x

consists then in boundary terms and we show now that each of them gives
an exponentially decreasing contribution in the expression of ~P Tv in (3.11).

jRe�xa ÿ ya�j � d; jRe yaj � 2d; jIm �xa ÿ ya�j � d
t
;i)

We use the same argument as in the proof of (3.9) in step 1. Indeed we just
have an extra term in jeik�xaÿya��na j namely eÿkt jIm�xaÿya�j2 which is bounded by
one. Therefore the corresponding term satis®es an estimate like (3.12).

jRe�xa ÿ ya�j � d; jRe yaj � 2d; jIm �xa ÿ ya�j � d
t
;ii)

The corresponding term can be handled exactly as in step 2.

jRe�xa ÿ ya�j � d; jRe yaj � 2d; jIm �xa ÿ ya�j � d
t
;iii)

In that case we have

Re�ik�xa ÿ ya� na� � k�U�xa� ÿ U�ya�� ÿ k jRe�xa ÿ ya�j2 ÿ k
d2

t
:

Now hxai � hIm xai � hRe�xa ÿ ya�i � hyai � hIm xai � hyai � hdi and eÿk d2
t

� eÿk d2 since t < 1. Therefore the corresponding term is also exponentially
decreasing.

Summing up we have proved thatZZ
eik�xbÿyb��nb

�ZZ
Rt0

x

�
dyb dnb �

ZZ
eik�xbÿyb��nb

�ZZ
R1

x

�
dyb dnb � ~g3

�3:13� ����eÿk�1�g�U ~g3
����

L2�Cna�Rnb � � O
ÿ
eÿ

k
2 d2 jjvjjHn0 �Rn�

��3:14�

where the above O is independant of t0.
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We want to prove now that when t0 goes to zero the left hand side of
(3.13) converges to

RR
eik�xbÿyb��nb

ÿ RR
R x
�

dyb dnb where R is de®ned in (3.11).
As usual this term is a ®nite sum of terms of the following kindZZ

Rt0

eik�xaÿya��na Db1
xb

a
� xa � ya

2
� ina; xb

�
�kna � ikw0a�a

� Db2
xb

Tu�ya; xb; k� dya ^ dna :

This integral can be written asZ
jRe�xaÿya�j�d
jReya j�2d

ek�U�xa�ÿU�ya�ÿjRe�xaÿya�j2ÿt0 Im�xaÿya�j2� 1fjIm�xaÿya�j� d
t0
g

�Db1
xb

a
� xa � ya

2
� ina; xb

�
�kna � ikw0a�a Db2

xb
Tu�ya; xb; k� Cn�t0� L�dya�

where na � ÿIm xa�ya
2 � iRe�xa ÿ ya� � t0 Im�xa ÿ ya�, 1X denotes the cha-

racteristic function of X and Cn�t0� converges to Cn�0� as to goes to zero.
Using (2.3) we can apply Lebesgue's theorem to reach the conclusion.

According to (3.13), (3.14), (3.11) and (3.12) it follows that

~Pk Tv �
� k
2p

�n
ZZ

eik�xbÿyb��nb

�ZZ
R1

x

�
dyb dnb � ~g4�3:15�

where R1 �
�

ya 2 Cba ; jRe�xa ÿ ya�j � d; jReyaj � 2d; jIm�xa ÿ ya�j � d
and na � ÿIm xa�ya

2 � i �xa ÿ ya�
	
and����eÿk�1�g�U ~g4

����
L2�Cna�Rnb � � O

ÿ
eÿ

k
3 d2 jjvjjH n0 �Rn�

�
:�3:16�

This will allow us to localize in Im ya. Indeed let us consider the part of R1

where jIm yaj � 2d. We shall show that its contribution in ~Pk Tv satis®es
(3.16). To see that it is enough to consider the following term

~gabc �
ZZ

R2

eik�xaÿya��na Da
xb

a
� xa � ya

2
� ina; xb

�
� �kna � ikw0a�b Dc

xb
Tu�ya; xb; k� � dya ^ dna

where R2 � R1 \ fjIm yaj � 2dg.
Since in R1 we have jIm�xa ÿ ya�j � d we get jIm xaj � d. On the other

hand, hxai � hxa ÿ yai � hyai � Chdi � hyai and Re�i�xa ÿ ya� � na� � U�xa�
ÿU�ya� ÿ jxa ÿ yaj2 � U�xa� ÿ U�ya�. Therefore using (2.3) we get

eÿk�1�g�U�xa� hxaina�1 hxbi
1
2 �nb�1� j~gabcj � C km eÿkgd2 jjvjjHn0 �Rn� :

It follows then from (3.15), (3.16) that
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~Pk Tv �
� k
2p

�n
ZZ

eik�xbÿyb��nb

�ZZ
R

x

�
dyb dnb � ~g5�3:17�

where R � �ya 2 Cn; jRe �xa ÿ ya�j � d; jIm �xa ÿ ya�j � d; jRe yaj � 2d;
jIm yaj � 2d; na � ÿIm xa�ya

2 � i �xa ÿ ya�
	
and����eÿk�1�g�U ~g5jjL2�Cna�Rnb � � O
ÿ
eÿ

k
3 gd2 jjvjjHn0 �Rn�

�
:�3:18�

Step 4. Our goal is to write ~Pk in term of the contour

Rg �
n

ya 2 Cna ; jRe�xa ÿ ya�j � d ; jIm �xa ÿ ya�j � d ; jRe yaj � 2d ;�3:19�

jImyaj � 2d; na � ÿ�1� g�Im xa � ya

2
� i �xa ÿ ya�

o
:

For that purpose we introduce for t in �0; 1� the contour Rtg which is de®ned
by (3.19) with tg instead of g. Along these contours we have��� xa � ya

2
� ina

��� � ���Re xa � ya

2
ÿ tg Im

xa � ya

2
ÿ �xa ÿ ya�

��� � 7d :

Since 7d < c0 we are still on a domain where the coe�cients of p are ho-
lomorphic. When t � 0 we ®nd the contour R de®ned in (3.17) and for t � 1
we ®nd the contour Rg. We apply Stokes formula to the di�erential form x
and we note that dx � 0. Our goal will be reached if we prove that the other
boundary terms give exponentially decreasing contributions. As usual we
just have to look at one term of the form

~gabc �
ZZ

@

eik�xaÿya��na Da
xb

a
� xa � ya

2
� ina; xb

�
�kna � ikw0�b Dc

xb
Tu�ya; xb; k� � dya ^ dna

where @ is a part of the boundary of Rtg.

i) jRe�xa ÿ ya�j � d or jIm�xa ÿ ya� � d. In that case d � jxa ÿ yaj � 2d
and hxai � hxa ÿ yai � hyai � M�d�. Now

ÿ k�1� g�U�xa� �Re�ik�xa ÿ ya� � na�
� k�t ÿ 1�gU�xa� ÿ ktgU�ya� ÿ kU�ya� ÿ k jxa ÿ yaj2 � ÿkU�ya� ÿ k d2

since t 2 �0; 1�. It follows from (2.3) that the corresponding term in ~gabc
satis®es ����eÿk�1�g�U ~gabc

����
L2�Cna�Rnb � � O

ÿ
eÿ

k
2 d2 jjvjjH n0 �Rn�

�
:�3:20�
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ii) jRe�xa ÿ ya�j � d; jIm �xa ÿ ya�j � d; j Re yaj � 2d, jIm yaj � 2d.

In that case jIm xaj � d and as above

f �t� � ÿk�1� g�U�xa� �Re�ik�xa ÿ ya� � na�
� k�t ÿ 1�g U�xa� ÿ ktg U�ya� ÿ kU�ya�
� k�t ÿ 1�g d2 ÿ ktg d2 ÿ kU�ya� � ÿkg d2 ÿ kU�ya� :

It follows that the corresponding term satis®es (3.20) with
O
ÿ
eÿ

k
2 d2 jjvjjHn0 �Rn�

�
.

iii) jRe�xa ÿ ya� � d, jIm�xa ÿ ya�j � d, jIm yaj � 2d, jRe yaj � 2d.

For this case we use (2.5) instead and f �t� � ÿkU�ya�. Summing up we
have proved

~Pk Tv�x; k� �
� k
2p

�n
Z Z

eik�xbÿyb��nb

�Z Z
Rg

x

�
dyb dnb � ~g6�3:21�

where Rg is de®ned in (3.19) and����eÿk�1�g�U ~g6
����

L2 � O
ÿ
eÿ

k
3 gd2 jjvjjHn0 �Rn�

�
:�3:22�

Now on Rg we have
�� xa�ya

2

��� jnaj � 12d. Let v�za; na� be a C1 function on
C2na such that

v�za; na� � 1 if jzaj � jnaj � 12d
v�za; na� � 0 if jzaj � jnaj � 13d

�
�3:23�

and v is almost analytic on K�1�g�U �
��za; na� 2 C2na : na � ÿ�1� g� Im za

	
which means that

j@v�za; na�j � CN jna � �1� g� Im zajN for every N 2 N :�3:24�

According to (3.23) and (3.21) we can write

~Pk Tv�x; k� �
� k
2p

�n
ZZ

eik�xbÿyb��nb

�ZZ
Rg

vx

�
dyb dnb � ~g6�3:25�

where ~g6 satis®es (3.22).
Let us note that, since 13d < c0, p

ÿ xa�ya
2 � ina;

xb�yb
2 ; kn� ikw0�. . .�� is

holomorphic in �ya; na� on the support of v.

Step 6. We want to remove the constraints jRe yaj � 2d, jIm yaj � 2d,
jRe�xa ÿ ya�j � d, jIm �xa ÿ ya�j � d and write

~Pk Tv�x; k� �
� k
2p

�n
ZZ

eik�xbÿyb��nb

�ZZ
R0g

vx

�
dyb dnb � ~g7�3:26�
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where R0g �
�

ya 2 Cna ; na � ÿ�1� g� Im xa�ya
2 � i�xa ÿ ya�

	
and ~g7 satis®es

(3.22).
Indeed on Rg we have

A � ÿk�1� g�U�xa� �Re�ik�xa ÿ ya� � na� � kU�ya�
� ÿkg U�ya� ÿ k jxa ÿ yaj2 :

If jRe yaj � 2d we use (2.5) and we observe that A � 0. If jIm yaj � 2d we
use (2.3) and A � ÿ4kg d2. If jRe�xa ÿ ya�j � d or jIm �xa ÿ ya�j � d then
jxa ÿ yaj � d and A � ÿkd2. Therefore the contribution in the right hand
side of (3.25) of Rg n R0g is exponentially decreasing. Thus ~g7 satis®es (3.22).

Step 7. In this last step we want to write ~Pk in term of the contour
R00g �

�
ya 2 Cna ; na � ÿ�1� g� Im xa�ya

2

	
. For this purpose we state a

lemma which will be also used later on. Recall that we have set

K�1�g�U �
n
�za; na� 2 C2na : na � ÿ�1� g� Im za

o
:

Let v be a C1 function on C2na which is almost analytic on K�1�g�U. Let
b � b�za; na; xb; k� be a C1 function on Cna �Cna �Rnb � �1;�1� which is
holomorphic with respect to �za; na� on the support of v and such that
jb�za; na; xb; k�j � C km0 , m0 2 N, on the support of v. Let w � w�za; xb; k� be
C1 on Cna �Rnb , entire holomorphic with respect to za such that
eÿk�1�g�U�za�w is in L2�Cna �Rnb�.
Lemma 3.2. Let us consider the di�erential form

~x � eik�xaÿya��na v
� xa � ya

2
; na

�
b
� xa � ya

2
; na; xb; k

�
w�ya; xb� dya ^ dna

and the contours

R0g �
n
�ya; na� 2 Cna �Cna: na � ÿ�1� g� Im xa � ya

2
� i �xa ÿ ya�

o
R00g �

n
�ya; na� 2 Cna �Cna: na � ÿ�1� g� Im xa � ya

2

o
:

If we set

~h �
Z Z

R0g

~xÿ
Z Z

R00g

~x

then for any integer N one can ®nd a positive constant CN such that

jjeÿk�1�g�U ~hjjL2�Cna�Rnb � �
CN

kN jjeÿk�1�g�UwjjL2�Cna�Rnb � ; for k � 1 :
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Proof. We follow the proof of Proposition 1.2 in [S2].
Let us consider for t in �0; 1� the contours

Ct �
n
�ya; na� 2 Cna �Cna : na � ÿ�1� g� Im xa � ya

2
� it�xa ÿ ya�

o
and G � �0; 1� � Ct. We apply Stokes formula to ~x and G. Since C0 � R00g
and C1 � R0g we have ~h � R 10 R RCt

d ~x. Noting that eik�xaÿya��na b�. . .� w�ya; xb; k�
is holomorphic in �ya; na� on the support of v we get

d ~x � eik�xaÿya��na b�. . .� w @�ya;na�
h
v
� xa � ya

2
; na

�
dya ^ dna

i
:

Now @�ya;na�
�
v
ÿ xa�ya

2 ; na
�

dya ^ dna
�
is a linear combination of terms as

@v
@ya;j

dya;j ^ dya ^ dna and
@v
@na;j

dna;j ^ dya ^ dna. On the other hand on Ct we

have na � ÿ 1�g
4i �xa � ya ÿ xa ÿ ya� � it �xa ÿ ya�, therefore dna and dna can

be written as O�1� dya � O�1� dya � O�jxa ÿ yaj� dt. It follows that dya;j ^ dya

^dna and dna;j ^ dya ^ dna can be expressed as O�jxa ÿ yaj� L�dya� dt. Since
on Ct we have, for every integer N , j@yavj � j@navj � CN

��na � �1� g�
Im xa�ya

2

��N � CN �tjxa ÿ yaj�N we can write

j~hj � C0N km0

Z 1

0

Z
ek�1�g��U�xa�ÿU�ya��ÿktjxaÿyaj2

tN jxa ÿ yajN�1 jw�ya; xb�j L�dya� dt :

It follows that

eÿk�1�g�U�xa� jj~h�xa; ��jjL2�Rnb � �

C0N km0

Z Z 1

0

eÿktjxaÿyaj2 tN jxa ÿ yajN�1 dt eÿk�1�g�U�ya� jjw�ya; ��jjL2�Rnb � L�dya� :

Now the right hand side is an integral operator with kernel

K�xa; ya� �
Z 1

0

eÿktjxaÿyaj2 tN jxa ÿ yajN�1 dt :

SinceZ
jK�xa; ya�j L�dxa� �

Z
jK�xa; ya�j L�dya�

� km0ÿnaÿN�1
2

Z 1

0

t
Nÿ1
2 ÿna dt

Z
eÿjfaj2 jfajN�1 L�dfa�

Schur lemma ensures that for every large enough integer N we have

jjeÿk�1�g�U ~hjjL2�Cna�Rnb � � C00N km0ÿnaÿN�1
2 jjeÿk�1�g�U wjjL2�Cna�Rnb � ;

and the lemma is proved.
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Now lemma 3.2 ends the proof of theorem 3.1 since, as before the in-
tegral in the right hand side of (3.26) can be written as a ®nite sum of terms
of the kind

Aabc �
� k
2p

�na
ZZ

R0g

eik�xaÿya��na v
� xa � ya

2
; na

�
Da

xb
a
� xa � ya

2
� ina; xb

�
� �kna � ikw0a�b Dc

xb
Tv�ya; xb; k� dya ^ dna

where jaj � jbj � jcj � m and a has compact support in xb. Thus we can
apply Lemma 3.2 with w � Dc

xb
Tv and b � Da

xb
a � �kn� ikw0a�b.

3.2. Case of Theorem B

Recall that we have assumed

on na � 0; pm does not depend on xa :�3:27�

In that case we have

pm�x; n� iw0�x�� � p0m�xb; nb� � p0mÿ1�xa; xb; na; nb��3:28�

where p0m is a polynomial of order m in nb and p0mÿ1�x; n� is a polynomial of
order m in n but of order mÿ 1 in nb. Writing p � Pm

j�0
pmÿj we have,

Theorem 3.3. There exists v 2 C10 �C2na�, v � 1 if jxaj � jnaj � 12d, v � 0 if
jxaj � jnaj � 13d, such that, if we set Xb � xb�yb

2 , Za � xa�ya
2 � ina and

~x � eik�xaÿya��na

�
kmp0m�Xb; nb� � v

� xa � ya

2
; na

�h
kmp0mÿ1�Za;Xb; na ; nb��3:29�

�
Xm

j�1
pmÿj�Za;Xb; kn� ikw0�Za;Xb��

i�
Tv�ya; yb; k� dya ^ dna ;

~Qk Tv�x; k� �
� k
2p

�n
ZZ

eik�xbÿyb��nb

�ZZ
na�ÿ�1�g� Im xa�ya

2

~x

�
dyb dnb�3:30�

then we have, with ~Pk introduced in Proposition 2.2,

~Pk Tv � ~Qk Tv� ~Rk Tv� ~gk�3:31�

with

jjeÿk�1�g�U ~Rk TvjjL2�Cna�Rnb � �
CN

kN jjeÿk�1�g�U TvjjL2�Cna ;Hmÿ1�Rnb ���3:32�
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jjeÿk�1�g�U ~gkjjL2�Cna�Rnb � � O
ÿ
eÿ

k
2 gd2 jjvjjHn0 �Rn�

�
:�3:33�

Proof. It follows from (3.28) that the operator Pk de®ned in (2.15) can be
written as Pk � P 0m�xb;Dxb� � P 00k where P 00k is of order � mÿ 1 in Dxb . Then
~Pk Tv � P 0m�xb;Dxb� Tv� ~P 00k Tv. Then theorem 3.3 follows from theorem 3.1
applied to ~P 00k and from the equality� k

2p

�n
ZZ

eik�xbÿyb��nb

�ZZ
na�ÿ�1�g� Im xa�ya

2

eik�xaÿya��na p0m�xb; knb�

Tv�ya; yb; k� dya ^ dna

�
dybdxia � P 0m�xb;Dxb� Tv

(see formula (1.8) in [S2]).

Remark 3.4. A slight modi®cation of these proofs shows that the estimates
(3.4) and (3.33) can be precised as follows

jjeÿk�1�g�U ~gkjjL2�Cna�Rnb � � C eÿ
k
3 gd2 jjvjjL2�Rna ;Hk�Rnb �� ;�3:34�

where k � m or mÿ 1.

4. Back to the real domain. The main estimates

4.1. Pull back to the reals

Let ~Qk be the operator de®ned in (3.1) (and (3.30)). It is complex in the
�xa; na� variable; we are going to pull it back to the reals by the canonical
transformation jTg , described in (2.8), which is associated with the FBI
transformation Tg de®ned by

Tgv�za; xb; k� � K�k�
Z

eÿk�1�g��zaÿya�2 v�ya; xb� dya ; v 2 S�Rn� :

Let v be in S�Rn� and set w � T �g Tv. Then it follows from Sect. 2.1 ii) and
Proposition 2.1 iii) that

w � T �g Tv 2 S�Rn� and Tgw � Tv :�4:1�

We deduce from Proposition 2.2 (see also Proposition 1.4 in [S2]),

~Qk Tv � ~Qk Tgw � Tg Qkw�4:2�

where Qk is an operator on Rna �Rnb , pseudo-di�erential in xa, di�erential
in xb. Moreover denoting by rw the Weyl-symbol
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rw�Qk��xa; na; xb; nb� � rw� ~Qk��jTg�xa; na�; xb; nb��4:3�

where

�4:4�

rw� ~Qk��za; na; xb; nb� � v�za; na� p�za � ina; xb; kn
�ikw0�xa � ina; xb�� (thm A)

rw� ~Qk� � km p0m�xb; nb� � v�za; na� p00�za; xb; na; nb; k�
where p00�za; xb; na; nb; k� � km p0mÿ1�za; xb; na; nb�

�Pm
j�1

pmÿj�za; xb; kn� ikw0�za; xb�� (thm B)

8>>>>>><>>>>>>:
Summing up we have by (4.1) to (4.4),

�4:5�

~Qk Tv � Tg Qkw;
w � T �g Tv 2S�Rn�; Tgw � Tv;

rw�Qk� � v
�

xa ÿ i
1�g na; na

�
p
�

xa � ig
1�g na; xb; kn

�ikw0
�

xa � ig
1�g na; xb

��
; (thm A)

rw�Qk� � p0m�xb; knb�
�v
�

xa ÿ i
1�g na; na

�
p00
�

xa � ig
1�g na; xb; na; nb; k

�
(thm B)

Qkw�x� �
�

k
2p

�n
ZZ

eik�xÿy��n rw�Qk�
� x� y

2
; n
�

w�y� dy dn :

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
Moreover we have

�4:6�

rw�Qk��x; n� �
Pm
j�0

kmÿj qmÿj�x; n�

qmÿj�x; n� � v
�

xa ÿ i
1�g na; na

�
pmÿj

�
xa � ig

1�g na; xb; n

�iw0
�

xa � ig
1�g na; xb

��
(thm A)

qm�x; n� � p0m�xb; nb� � v
�

xa ÿ i
1�g na; na

�
p0mÿ1

�
xa � ig

1�g na; xb; na; nb

�
and qmÿj�x; n� � v�. . .� pmÿj�. . .� (thm B) :

8>>>>>>>>>><>>>>>>>>>>:

4.2. The estimates in case of Theorem A

We are now prepared to prove Carleman estimates for Qk. First of all we are
going to precise our choice of w. Of course we may assume from now on that
x0 � 0 and u�0� � 0. Let us recall our hypotheses on pm

�4:7� nb � 0 or nb 6� 0 and there is a positive constant C such that
jpm�0; 0; 0; nb�j � C jnbjm ; nb 2 Rnb

�
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�4:8�
pm�0; 0; iu0a�0�; nb � iu0b�0���u0�0� � @pm

@n
�0; 0; iu0a�0�; nb � iu0b�0���0

implies 1
i

n
pm�x; nÿ iu0�x��; pm�x; n� iu0�x��

o����
x�0
na�0

> 0 :

8>><>>:

Lemma 4.1. Let u be a C2 function in a neighborhood of zero in Rn satisfying
(4.7), (4.8). Then we can ®nd a polynomial w of degree two in x such that

w�0� � 0 ; w0�0� � u0�0� ;�4:9�

and, setting X � �0; 0; iw0a�0�; nb � iw0b�0��, nb 2 Rnb

pm�X � � 0 implies
1

i

n
pm�x; nÿ iw0�x��; pm�x; n� iw0�x��

o����
x�0
na�0

> 0 :�4:10�

Moreover

�4:11� there exists a neighborhood of zero in which w�x� � 0
and x 6� 0 imply u�x� > 0 :

�
By homogeneity, (4.10) is still true with the same w if we replace w by qw
where q is a positive constant.

Proof. We shall take w of the following form

w�x� � x � u0�0� � A�x � u0�0��2 � 1

2
u00�0��x; x� ÿ 1

A
jxj2 ; A > 0 :�4:12�

Then (4.9) is obvious. Let us show (4.11). If w�x� � 0 then x � u0�0� � O�jxj2�
and x � u0�0� � 1

2 u00�0��x; x� � 1
A jxj2 ÿ A�x � u0�0��2. Then by Taylor formula

u�x� � 1

A
jxj2 ÿ A�x � u0�0��2 � o�jxj2� � 1

A
jxj2 � O�jxj4� � o�jxj2�

thus u�x� > 0 if x is small and x 6� 0. Let us prove (4.10). We set for
convenience Z � �x; n� iu0�x��, Z � �x; nÿ iu0�x�� and pm � p. Then

1

i
fp�Z�; p�Z�g � 1

i

� @p
@n
�Z� @p

@x
�Z� ÿ @p

@x
�Z� � @p

@n
�Z�
�

�4:13�

� 2
@p
@n
�Z� � u00xx�x� �

@p
@n
�Z� :
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Now if we set f � �x � 0; iu0a�0�; nb � iu0b�0��; f � �0;ÿiu0a�0�; nb ÿ iu0b�0��
condition (4.8) reads

�4:14�

p�f� � @p
@n
�f� � u0�0� � 0 implies

Cu�nb� � 1
i

@p
@n
�f� � @p

@x
�f� ÿ @p

@x
�f� � @p

@n
�f�

� �
�2 @p

@n
�f� � u00xx�0�

@p
@n
�f� > 0 :

8>>>>>><>>>>>>:
We are looking for A in order to have (see (4.10))

�4:15�

p�X � � 0 implies

Cw�nb� � 1
i

@p
@n
�X � @p

@x
�X � ÿ @p

@x
�X � @p

@n
�X �

� �
�2w00xx�0� �

@p
@n
�X � � @p

@n
�X � > 0 :

8>>>><>>>>:
Now by (4.9) and (4.12) we have

X � f; X � f and w00xx�0� � u00xx�0� � 2Au0�0�tu0�0� ÿ 2

A
Id�4:16�

from which we deduce

Cw�nb� � Cu�nb� � 4A
���u0�0� � @p

@n
�X �
���2 ÿ 4

A

��� @p
@n
�X �
���2 :�4:17�

We argue now by contradiction. Assume that for each A one can ®nd nb such
that p�X � � 0 and Cw�nb� � 0. Therefore there exist sequences �Aj� �1 and
�nj

b� such that

p�Xj� � 0 and Cw�nj
b� � 0 where Xj � �0; iw0a�0�; nj

b � iw0b�0�� :�4:18�

It follows from (4.16) that p�fj� � 0. Since p�fj� � p�x � 0; na � 0; nj
b�

�O�jnj
bjmÿ1� we get jp�x � 0; na � 0; nj

b�j � C jnj
bjmÿ1. If there is a subse-

quence of �nj
b� which tends to �1 we would have by (4.7),

C1 jnj
bjm � C jnj

bjmÿ1. Therefore the sequence �nj
b� is bounded and there is a

subsequence, still denoted by �nj
b� which converges to nb. Thus

fj ! f � �x � 0; iw0a�0�; nb � iw0b�0�� and

p�f� � 0 :�4:19�

It follows from (4.16), (4.17) and (4.18) that,
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���u0�0� � @p
@n
�fj�
���2 � 1

A2
j

��� @p
@n
�fj�
���2 ÿ 1

4Aj
Cu�nj

b� :

The right hand side tends to zero, thus

u0�0� � @p
@n
�f� � 0 :�4:20�

Using once more (4.16), (4.17) and (4.18) we get

Cu�nj
b� �

4

Aj

��� @p
@n
�fj�
���2 ÿ! 0

so

Cu�nb� � 0 :�4:21�

But (4.19), (4.20) and (4.21) contradict (4.14).

Lemma 4.2. Under conditions �4:7�; �4:8� there exist positive constants
g0; e; C1 and C2 such that for all g in �0; g0� and all �x; n� in R2n such that
jxj � jnaj � e we have

jqm�x; n�j � C1 hnbim if jnbj � C2 ;�4:22�

qm�0; 0; 0; nb� � 0 implies
1

i
qm�x; n�; qm�x; n�f g�� x�0

na�0
> 0 :�4:23�

Proof. We ®rst take e so small that jxaj � jnaj � e implies
��xa ÿ i

1�g na

��
�jnaj � 12d. It follows then from (3.23) and (4.6) that

qm�x; n� � pm

�
xa � ig

1� g
na; xb; n� iw0

�
xa � ig

1� g
na; xb

��
� pm�0; 0; 0; nb� � O�jxj � jnaj�hnaim � O�1�hnbimÿ1 :

Therefore jqm�x; n�j � C jnbjm ÿ C3�ehnbim � hnbimÿ1�, and we get (4.22) if we
still reduce e and take jnbj large enough.

Let us look to (4.13) and let us set for convenience pm � p and

f �
�

xa � i
g

1� g
na; xb; n� iw0

�
xa � i

g
1� g

na; xb

��
f �

�
xa ÿ i

g
1� g

na; xb; nÿ iw0
�

xa ÿ i
g

1� g
na; xb

��
:

Then
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fqm; qmg�x; n� � ÿi
g

1� g
@p
@xa
�f� � @p

@na
�f� � i i

g
1� g

� �
w00xxa
� @p
@n
�f�

� �
� @p
@xa
�f� � iw00xxa

@p
@n
�f�

� �
� @p
@nb
�f� @p

@xb
�f� � iw00xxb

@p
@n
�f�

� �
ÿ @p

@xa
�f� ÿ iw00xxa

@p
@n
�f�

� �
i

g
1� g

@p
@xa
�f� � @p

@na
�f�

�
� i
�

i
g

1� g

�
w00xxa

@p
@n
�f�
�

ÿ @p
@xb
�f� ÿ iw00xxb

@p
@n
�f�

� �
@p
@nb
�f� :

Moreover setting

Z � �x; n� iw0�x��; Z � �x; nÿ iw0�x��

we have

fp�Z�; p�Z�g � @p
@n
�Z� @p

@x
�Z� � iw00xx �

@p
@n
�Z�

� �
ÿ @p

@x
�Z� ÿ iw00xx

@p
@n
�Z�

� �
� @p
@n
�Z� :

It follows that, for bounded jnbj,

fqm; qmg
��

x�0
na�0
� fpm�Z�; pm�Z�g

��
x�0
na�0
� O�g� :�4:24�

Let nb be such that qm�0; 0; 0; nb� � 0. Then pm�0; 0; iw0a�0�; nb � iw0b�0�� � 0
and (4.22) implies that jnbj � C2. It follows from (4.10), by compactness on
nb, that

1

i
pm�Z�; pm�Z�
� 	��

x�0
na�0
� C4 :�4:25�

Now (4.24) and (4.25) imply (4.23) if g is small enough. From now on g is a
®xed number in �0; g0�.

Lemma 4.3. If qm satis®es �4:22� and �4:23� there exist positive constants A, d,
e0 such that for all �x; n� 2 R2n such that jxj � jnaj � e0 we have

A jqm�x; n�j2 � 1

i
qm; qmf g�x; n� � dhnbi2m :�4:26�
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Proof. We argue by contradiction. Otherwise there exist sequences ej ! 0,
dj ! 0, Aj ! �1, �xj; nj� with jxjj � jnj

aj � ej and

Aj jqm�xj; nj�j2 � 1

i
qm; qmf g�xj; nj� � djhnj

bi2m :�4:27�

Case 1. There exists a subsequence, still denoted by �nj
b�, such that jnj

bj !
�1. Since we have

�� qm; qmf g�x; n��� � C0hnbi2m�4:28�

and, by (4.22), jqm�x; n�j2 � C2
1hnbi2m if jnbj � C2, we deduce from (4.27),

�Aj C2
1 ÿ C0�hnj

bi2m � djhnj
bi2m which is impossible since Aj ! �1 and

dj ! 0.

Case 2. The sequence �nj
b� is bounded and therefore there exists a subse-

quence (still denoted by �nj
b�) which converges to n0b. We deduce from (4.27)

and (4.28) that

jqm�xj; nj�j2 � 1

Aj

ÿ
C0hnj

bi2m � djhnj
bi2m�! 0

thus, since �xj� ! 0, �nj
a� ! 0,

qm�0; 0; 0; n0b� � 0 :�4:29�

Moreover (4.27) implies 1i qm; qmf g �xj; nj� � djhnj
bi2m, thus

1

i
fqm; qmg�0; 0; 0; n0b� � 0 :�4:30�

Now (4.29), (4.30) contradict (4.23). This ends the proof of lemma 4.3.
From now on e0 is ®xed according to lemma 4.3.
Let ~h0 2 C1�C2na� be such that 0 � ~h � 1 and

~h0�za; na� � 1 if jzaj � jnaj � g
1�g

e0
4

~h0�za; na� � 0 if jzaj � jnaj � g
1�g

e0
2

~h0 is almost analytic on K�1�g�U :

8><>:�4:31�

Let us set, with jTg de®ned in (2.8),

h0 � ~h0jK�1�g�U � jTg :�4:32�

It is easy to see that h0 2 C1�R2na� and there exists e1 2
�
0; e0
2

�
such that
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h0�xa; na� � 1 if jxaj � jnaj � e1
0 if jxaj � jnaj � e0

2 :

�
�4:33�

Let h 2 C10 �Rnb� be such that 0 � h � 1 and

h � 1 if jxbj � e0
4

0 if jxbj � e0
2

(
�4:34�

Finally let us set

h�x; na� � h�xb� � h0�x; na� :�4:35�

Then

h�x; na� � 1 if jxj � jnaj � e1
0 if jxj � jnaj � e0

�
�4:36�

We shall consider the semi classical norm on Sobolev space Hm�Rnb� which
is de®ned by

kuk2Hm
sc�Rnb � �

Z
1� n

k

���� ����2
 !m

jû�n�j2 dn :�4:37�

Lemma 4.4. Let Q � Opw
k �qm�. There exist positive constants C0; C1; k0 such

that for every u in S�Rn� and k � k0 we have

C1

k

�
Opw

k ��1ÿ h�hnbi2m� u; u
�

L2�Rn�
� jjQujj2L2�Rn� �

C0

k
jjujj2L2�Rna ;Hm

sc�Rnb �� :

Proof. We write Q � QR � i QI where QR � Opw
k �Re qm�, QI � Opw

k �Im qm�.
Then Q�K � QK , K � R; I and writing jj � jj for the L2�Rn� norm

jjQujj2 � jjQRujj2 � jjQI ujj2 � 1

2
��Q�;Q� u; u� :�4:38�

Now the semi classical principal symbols of �Q�;Q� and Q�K QK are 1i fqm; qmg
and q2K , where qR � Re qm, qI � Im qm. We claim that one can ®nd a

positive constant B such that

B�1ÿ h� hnbi2m � A jqm�x; n�j2 � 1

i
qm; qmf g�x; n� � d hnbi2m�4:39�

for all �x; n� in R2n.

Uniqueness in the Cauchy problem 519



Indeed Lemma 4.3 implies (4.39) if jxj � jnaj � e0, since 0 � h � 1, and if
jxj � jnaj � e0 then, by (4.36), h � 0 and jqmj2 � j qm; qmf gj � C hnbi2m, thus
(4.39) is true if B is large enough.

Then we can apply the GaÊ rding inequality in the following context. Let

g � dx2a � dx2b � dn2a � dn2b
hnbi2

. This is a metric which is temperate and slowly

varying in the sense of HoÈ rmander [H1]. Let a 2 S�hnbi2k; g�, k 2 N, be a

symbol such that Re a � d hnbi2k, and A � Opw
k �a�. Then there exists k0 > 0

such that for every u in S�Rn� and every k � k0

Re�Au; u�L2 �
d
2
jjujj2L2�Rna ;Hk

sc�Rnb �� :�4:40�

Thus we may apply (4.40) with, for a, the left hand side of (4.39). It follows
that for k � k0

B Opw
k

ÿ�1ÿ h�hnbi2m� u; u
� �

� A jjQRujj2 � A jjQI ujj2

� k �Q�;Q�u; u� � � d
2
jjujj2L2�Rna ;Hm

sc�Rnb �� :

Now, we deduce from (4.38) that

2k jjQujj2L2 � A jjQRujj2 � A jjQI ujj2 � k��Q�;Q� u; u� if 2k � A ;

and Lemma 4.4 follows.

Corollary 4.5. Let Qk be de®ned in �4:5�: Then one can ®nd positive constants
C0; C1; k0 such that for u in S�Rn� and k � k0

C1 k2mÿ1
�
Opw

k

ÿ�1ÿ h� hnbi2m� u; u
�
� jjQkujj2L2�Rn� �

C0

k
jjujj2L2�Rna ;Hm

k �Rnb ��

where

jjvjj2Hm
k
�
Z
�k2 � jnbj2�mjv̂�nb�j2 dnb :�4:41�

Proof. Use (4.6).

We are now ready to prove the following estimate.

Proposition 4.6. Let ~Qk be de®ned in Theorem 3.1. Then there exist positive
constants C1; C2; k0; e2; n0 such that for v 2 C10 �Rn�; suppv � x:f jxj � e2g
and k � k0,

jjTvjj2L2�1�g�U�Cna ;Hm
k �Rnb �� � C1k jj ~Qk Tvjj2L2�1�g�U

� C2 e
ÿkrjjvjj2Hn0 �Rn�
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where r > 0 depends only on g and e0 de®ned in lemma 4.3. The norms here
have been de®ned in �2:9�; �2:10�.

Proof. We apply corollary 4.5 to u � T �g Tv which is in S�Rn� (see Sect. 2.1
ii)). It follows from proposition 2.1 and (4.5)

jjujjL2�Rna ;Hm
k �Rnb �� � jjTgujjL2�1�g�U�Hm

k � � jjTvjjL2�1�g�U�Hm
k ��4:42�

jjQkujjL2�Rn� � jjTg Qk T �g TvjjL2�1�g�U
� jj ~Qk TvjjL2�1�g�U

:�4:43�

Let us set R � Opw
k ��1ÿ h� hnbi2m�. Then proposition 1.4 in [S2] (see also

Proposition 2.2) and Proposition 2.1 show that

Tg R u � ~R Tgu � ~R Tg T �g Tv � ~R Tv

with

~R Tv�x; k� �
� k
2p

�n
ZZ

eik�xbÿyb��nb hnbi2m
�ZZ

na�ÿ�1�g� Im xa�ya
2

~x

�
dyb dnb

�4:44�

~x � eik�xaÿya��na

�
1ÿ ~h

� xa � ya

2
;
xb � yb

2
; na

��
Tv�ya; yb� dya ^ dna�4:45�

where ~h � h � jÿ1Tg
� h�xb� ~h0 is de®ned in (4.31) to (4.36). Therefore, we

deduce from Proposition 2.1,

�Ru; u�L2 � �Tg Ru; Tgu�L2�1�g�U
� �~R Tv; Tv�L2�1�g�U

:

It follows that Proposition 4.6 will be proved if we show that for any integer
N one can ®nd a positive constant CN such that

j�~R Tv; Tv�j � CN

kN jjTvjj2L2�1�g�U�H m
k � � O�e

ÿkrjjvjj2Hn0 �Rn�� ; r > 0 :�4:46�

Proof of �4:46�. First of all we see from (4.35) that

1ÿ h�x; na� � 1ÿ h0�xa; na� h�xb� � �1ÿ h0�xa; na�� h�xb� � 1ÿ h�xb� :

Now it follows from (4.34) that �1ÿ h�xb��hnbi2m is the symbol of a di�er-
ential operator with coe�cients vanishing for jxbj � e0

4 . If we take e2 � e0
4

and supp v � x : jxj � e2f g then supp u � supp T �g Tv � jxbj � e0
4

� 	
, therefore

Opw
k ��1ÿ h�xb��hnbi2m� u � 0, which implies that

Ru � Opw
k

ÿ�1ÿ h� hnbi2m� u � Opw
k

ÿ�1ÿ h0�xa; na�� h�xb� hnbi2m� u :
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We deduce that, in the expression of ~R in (4.44), (4.45), we can put
�1ÿ ~h0�xa; na�� h�xb� instead of 1ÿ ~h�x; na�. We write hnbi2m � P

jaj�2m
Ca na

b
and we show, by induction that for jaj � 2m

kjaj na
b e

ik�xbÿyb��nb h
xb � yb

2

� �
�
X
ja1 j�m
ja2 j�m

a1�a2�a

Da1
xb

Da2
yb

eik�xbÿyb��nb ha;a1;a2
xb � yb

2

� �� �

where the ha;a1;a2 are derivatives of h.
We deduce that ~R Tv is the limit, as e goes to zero, of a ®nite sum of terms

of the form

Ie � kN0

ZZ
Da1

xb
Da2

yb
eik�xbÿyb��nb g

xb � yb

2

� �
f�enb�

n o
�
ZZ

na�ÿ�1�g� Im xa�ya
2

~x1

 !
dyb dnb

where N0 2 N is ®xed, f 2 C10 �Rnb�, f�0� � 1, ja1j � m, ja2j � m,
g 2 C10 �Rnb� and

~x1 � eik�xaÿya��na 1ÿ ~h0
xa � ya

2
; na

� �� �
Tv�ya; yb� dya ^ dna :

After integrating by parts in the yb integral (which is possible by (2.3)) we
can write Ie � Da1

xb
Je with

Je � kN0

Z Z
eik�xbÿyb��nb g

xb � yb

2

� �
f�enb�

Z Z
na�ÿ�1�g� Im xa�ya

2

~x2

 !
dyb dnb

~x2 � eik�xaÿya��na

�
1ÿ ~h0

� xa � ya

2
; na

��
Da2

yb
Tv�ya; yb� dya ^ dna :

As before we compute the integral in nb then, in the yb integral, we set
xb ÿ yb � e tb, we take the limit, when e goes to zero, in S0 and we get

lim
e!0

Ie � kN1 Da1
xb

ZZ
na�ÿ�1�g� Im xa�ya

2

eik�xaÿya��na g�xb�

� 1ÿ ~h0
xa � ya

2
; na

� �� �
Da2

xb
Tv�ya; xb� dya ^ dna :

Moreover ~R Tv is a ®nite sum of such terms. It follows that �~R Tv; Tv�L2�1�g�U
is a ®nite sum of terms like kN1�~S Tv;Da1

xb
Tv�L2�1�g�U

where
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~S Tv�x; k� �
ZZ

na�ÿ�1�g� Im xa�ya
2

eik�xaÿya��na

� 1ÿ ~h0
xa � ya

2
; na

� �� �
g�xb�Da2

xb
Tv�ya; xb� dya ^ dna :

Therefore (4.46) will follow from the estimate

jj~S TvjjL2�1�g�U
� CN

kN jjTvjjL2�1�g�U�Hm� � O�eÿkrjjvjjHn0 �Rn�� ; 8N 2 N ; r > 0 :

�4:47�

Proof of �4:47�:

Step 1. Let us set

~x3 � eik�xaÿya��na

�
1ÿ ~h0

� xa � ya

2
; na

��
g�xb�Da2

xb
Tv�ya; xb� dya ^ dna :

Then

~S Tv�x; k� � RRna�ÿ�1�g� Im xa�ya
2 �i�xaÿya� ~x3 � ~L Tv

jj~L TvjjL2�1�g�U
� CN

kN jjTvjjL2�1�g�U�Hm� 8N 2 N :

(
�4:48�

This follows from Lemma 3.2 and (4.31).

Step 2. Assume e2 � g
1�g

e0
100 and supp v � jxj � e2f g. Then

~S Tv�x; k� �
ZZ

na�ÿ�1�g� Im xa�ya
2 �i �xaÿya�;jxaÿyaj�e2;jyaj�2e2

~x3 � ~L Tv� ~g1�4:49�

where ~L Tv satis®es (4.48) and there exists r � r�e2; g� such that

jj~g1jjL2�1�g�U
� C eÿkrjjvjjHn0 �Rn� :�4:50�

To prove this we look at the part, in the integral in the right hand side of
(4.48), where jxa ÿ yaj � e2 or jyaj � e2. The estimate (4.50) follows then
from the argument in step 6 in the proof of Theorem 3.1.

Step 3. If jxa ÿ yaj � e2 and jyaj � 2e2 then
�� xa�ya

2

��� jnaj � 10e2 <
g

1�g
e0
4 .

Therefore, by (4.31), ~h0
ÿ xa�ya

2 ; na

� � 1 so ~x3 � 0 and ~S Tv � ~L Tv� ~g1.
By (4.48) and (4.50) we get (4.47) and the proof of proposition 4.6.

Corollary 4.7. Let ~Pk be the operator occuring in proposition 2.2. One can
®nd positive constants C1; C2; k0; e2; r; n0 such that for v 2 C10 �Rn�,
supp v � x: jxj � e2f g and k � k0 we have
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jjTvjj2L2�1�g�U�Cna ;Hm
k �Rnb �� � C1 k jj ~P Tvjj2L2�1�g�U

� C2 e
ÿkrjjvjj2Hn0 �Rn� :

Proof. This follows from Proposition 4.6 and Theorem 3.1.

4.3. The estimates in case of Theorem B

Let Q0 � Opw
k �qm� where qm is de®ned in (4.6). We have

jjQ0ujj2L2 � jjQRujj2L2 � jjQI ujj2L2 � 1
2
��Q0�;Q0� u; u�

where Q0 � QR � i QI ; Q�R � QR ; Q�I � QI :

(
�4:51�

Let us introduce the following HoÈ rmander's metrics

g1 � dx2 � dn2

hnbi2
; g2 � dx2 � dn2a �

dn2b
hnbi2

:�4:52�

Then it is easy to see from (4.6) and (3.29) that

qm�x; n� � p0m�xb; nb� � ~v�xa; na��rmÿ1�x; n� � g smÿ1�x; n��
rmÿ1 2 S�hnbimÿ1; g1�; smÿ1 2 S�hnbimÿ1; g2� ; where
~v�xa; na� � v xa ÿ i

1�g na; na

� �
:

8><>:�4:53�

We shall write Q0� P 0m � Rmÿ1 � g Smÿ1 where rw�P 0m�� p0m�xb; nb�, rw �Rmÿ1�
� ~v rmÿ1, rw�Smÿ1� � ~v smÿ1. Let us set

L � P 0m � Rmÿ1 :�4:54�

Since Rmÿ1 and Smÿ1 belong to Opw
k �S�hnbimÿ1; g2�� and since p0m depends

only on �xb; nb�, it is easy to see that

�Q0�;Q0� ÿ �L�; L� 2 g
k
Opw

k �S�hnbi2mÿ2; g2�� :�4:55�

We shall set

rw�L� � ` � `1 � `2 where
`1 � p0m�xb; nb� � �~v rmÿ1�jna�0 ; `2 � ~v rmÿ1 ÿ �~v rmÿ1�jna�0 :

�
�4:56�

Then

`1 2 S�hnbim; g1� ; `2 2 S�hnbimÿ1; g2� :�4:57�

We shall also write
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rw��L�; L�� � 1
k �c1 � c2� where

c1 � 1
i `; `
� 	jna�0 :

(
�4:58�

Then since the symbol of L is a polynomial in nb and p0m depends only on
�xb; nb� we have

c1 2 S�hnbi2mÿ1; g1�; c2 2 S�hnbi2mÿ2; g2�; uniformly in k :�4:59�

Lemma 4.8. There exists a positive constant A such that if we set w�x� �
u0�0� � x� 1

2 u00�0�x � xÿ 1
A jxj2 ÿ A�u0�0� � x�2 then

Aj`1�x; nb�j2 � c1�x; nb� �
1

A
hnbi2mÿ2 ; for jxj � 1

A2
and nb in Rnb :

�4:60�

Moreover, by homogeneity, �4:60�, with possibly other constants, is still true
with the same w if we replace w by qw where q is a positive constant.

Proof.We ®rst take A so large that ~v � 1 if jxaj � jnaj � 1
A2. Then from (3.29)

and (4.56) we have `1�x; nb� � pm�x; iw0a�x�; nb � iw0b�x�� and

c1�x; nb� �
1

i

n
pm�x; nÿ iw0�x��; pm�x; n� iw0�x��

o����
na�0

:

Now

c1 � 2 Im
@pm

@x
�x;ÿiw0a�x�; nb ÿ iw0b�x��

@pm

@n
�x; iw0a�x�; nb � iw0b�x��

� �
ÿ iw00�x� @�pm

@n
�x;ÿiw0a�x�; nb ÿ iw0b�x�� �

@pm

@n
x; iw0a�x�; nb � iw0b�x�
ÿ �

:

If we multiply the inequality (4.60) by k2mÿ2 and we divide both members by
hk; knbi2mÿ2 � �k2 � k2 jnbj2�mÿ1, we see, setting Nb � knb

hk;knbi ; C � k
hk;knbi, that

(4.60) is equivalent to

A

C2
jpm�Z�j2 � 2

C
Im

� @pm

@x
�Z� @pm

@n
�Z�
�
ÿ w00�x� � @pm

@n
�Z� � @pm

@n
�Z� � 1

A
�4:61�

if jxj � 1
A2, where Z � �x; iCw0a�x�; Nb � iCw0b�x��; Z � �x;ÿiCw0a�x�;

Nb ÿ iCw0b�x��. We prove (4.61) by contradiction. If it is false one can ®nd
sequences Akÿ!�1; jxkj � 1

A2
k
; Nk

b; Ck such that
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Ak

Ck
jpm�Zk�j2 � 2

Ck
Im

@pm

@x
�Zk� @pm

@n
�Zk�

� �
�4:62�

ÿ w00�xk� � @pm

@n
�Zk� � @pm

@n
�Zk� � 1

Ak
:

Since jNk
bj � 1, Ck � 1, taking subsequences, we may assume that

Nk
b ÿ! N0

b and Ck ÿ! C0 :�4:63�

On the other hand w0�xk� � u0�0� � u00�0� xk ÿ 2
Ak

xk ÿ 2 Ak�u0�0� � xk� u0�0�
and jxkj � 1

A2
k
; therefore w0�xk� ÿ! u0�0�. It follows that

Zk ! �0; iC0 Na ; N0
b � iC0 Nb� ; Zk ! �0;ÿiC0 Na; N0

b ÿ iC0 Nb��4:64�

where u0�0� � �Na;Nb�.
Since w00�xk� � u00�0� ÿ 2

Ak
ÿ 2Ak u0�0�tu0�0� the third term in the left

hand side of (4.62) can be written

ÿu00�0� @pm

@n
�Zk� @pm

@n
�Zk� � 2

Ak

��� @pm

@n
�Zk�

���2 � 2Ak

���u0�0� @pm

@n
�Zk�

���2 :
�4:65�

Case 1. C0 6� 0.
If we divide both members of (4.62) by Ak and if we use (4.64) and (4.65) we
get with Z0 � �x � 0; iC0 Na;N

0
b � iC0 Nb�

pm�Z0� � u0�0� � @pm

@n
�Z0� � 0 :�4:66�

Coming back to (4.62), (4.65) we get

2

C0
Im

@pm

@x
�Z0� � @pm

@n
�Z0�

� �
ÿ u00�0� @pm

@n
�Z0� � @pm

@n
�Z0� � 0

which contradicts the hypothesis �H :2�0 ii) in theorem B.

Case 2. C0 � 0 so Zk ÿ! Z0 � �x � 0; na � 0;N0
b�, N0

b 6� 0.
In this case we write

Im
@pm

@x
�Zk� @pm

@n
�Zk�

� �
� Im

@pm

@x
�xk; 0;N

k
b�
@pm

@n
�x; 0;Nk

b�
� �

�4:67�

� CkIm ÿiw0�xk� @
2�pm

@x@n
�xk; 0;N

k
b� �

@pm

@n
�xk; 0;N

k
b�

�
� @pm

@x
�xk; 0;N

k
b� �

@2pm

@n2
�xk; 0;N

k
b� � iw0�xk�

�
� O�C2

k� :

526 L. Robbiano, C. Zuily



We use then the assumption �H :1�0 in theorem B. We get

Im
@pm

@x
�xk; 0;N

k
b�
@pm

@n
�xk; 0;N

k
b�

� ����� ���� � C jpm�xk; 0;N
k
b�j

� C jpm�Zk�j � C Ck

��� @pm

@n
�Zk� � w0�xk�

���� O�C2
k� :

Therefore

Im
@pm

@x
�xk; 0;N

k
b� �

@pm

@n
�xk; 0;N

k
b�

� ����� ���� � �����
Ak
p
Ck
jpm�Zk�j2�4:68�

� C2 Ck�����
Ak
p � CCk

@pm

@n
�Zk� � w0�xk�

���� ����� O�C2
k� :

It follows from (4.62), (4.65), (4.67) and (4.68) that

Ak

C2
k

jpm�Zk�j2 ÿ
�����
Ak
p

C2
k

jpm�Zk�j2 ÿ C2�����
Ak
p ÿ C

@pm

@n
�Zk� � w0�xk�

���� �����4:69�

ÿ C0 Ck � Im ÿiw0�xk� @
2 pm

@x@n
�xk; 0;N

k
b� �

@pm

@n
�xk; 0;N

k
b�

�
� @

2pm

@n2
�xk; 0;N

k
b� �

@pm

@x
�xk; 0;N

k
b� iw0�xk�

�
ÿ u00�0� @pm

@n
�Zk� � @pm

@n
�Zk� � 2

Ak

@pm

@n
�Zk�

���� ����2
� 2Ak u0�0� � @pm

@n
�Zk�

���� ����2� 1

Ak
:

Dividing both members by Ak

C2
k
we get, since Ck ! 0; Ak ÿ! �1,

pm�0; 0;N0
b� � 0 :�4:70�

Now, since Ak

C2
k
ÿ

����
Ak
p
C2

k

� �
jpm�Zk�j2 � 0, dividing (4.69) by Ak we get

u0�0� � @pm

@n
�0; 0;N0

b� � 0 :�4:71�

Removing all positive terms in (4.69) and letting k go to �1 we get

Im ÿi
@2 pm

@x@n
� @pm

@n
� N � i

@2pm

@n2
� @pm

@x
N

� ��
ÿu00�0� @pm

@n
� @pm

@n

�
�0; 0;N0

b� � 0

which is contradiction with �H :2�0 i).
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Lemma 4.9. Let `2 and c2 be de®ned in �4:56� and �4:58�. Then there exists
r > 0 such that for any e > 0 one can ®nd a positive constant Ce such that

jjOpw
k �`2�ujjL2�Rn� � e jjujjL2�H mÿ1

sc � �
Ce���
k
p jjujjL2�Hmÿ1

sc � � O�eÿkrjjvjjHn0 �Rn�� :

j�Opw
k �c2�u; u�j � e jjujj2L2�H mÿ1

sc � �
Ce���
k
p jjujj2L2�Hmÿ1

sc � � O�eÿkrjjvjjHn0 �Rn���

for any u � T �g Tv, v 2 C10 �Rn�, where H m
sc has been de®ned in �4:37�:

Proof. Given e > 0 let v�x; na� in C1 with 0 � v � 1 and
supp v � jxj � jnaj � ef g. We claim that one can ®nd Ce > 0 such that

jjOpw
k �nav�ujjL2 � e jjujjL2�Hmÿ1

sc � �
Ce���
k
p jjujjL2�Hmÿ1

sc � :�4:72�

This follows from the sharp GaÊ rding inequality in the class S�1; g2� �h � 1
for g2�. Indeed we have e2 hnbi2mÿ2 ÿ n2a v2 hnbi2mÿ2 � 0. Now (4.56) and
(4.57) show that `2 2 S�hnbimÿ1; g2� and `2jna�0 � 0. Therefore taking
v � h�xa; na� � g�xb�, such that v � 1 if jxj � jnaj � e

2 we write

jjOpw
k �`2�ujjL2 � jjOpw

k �`2v�ujjL2 � jjOpw
k ��1ÿ v� `2�ujjL2 � �1� � �2� :

We deduce from (4.72) that

jjOpw
k �`2v�ujjL2 � e jjujjL2�Hmÿ1

sc � �
Ce���
k
p jjujjL2�Hmÿ1

sc � ;

and it follows from (4.47) that

jjOpw
k ��1ÿ v� `2�ujjL2 �

CN

kN jjujjL2�Hmÿ1
sc � � O eÿkrjjvjjHn0 �Rn�

� �
:

This gives the ®rst part of the lemma. For the second part we observe
that c2 is a sum of terms of the form na c02�x; na� na

b with jaj � 2mÿ 2.
Therefore �Opw

k �c2�u; u� can be written as a sum of terms of the form
�Opw

k �na c002�x; na� nb
b�u;Dc

xb
u�, where jcj � mÿ 1, jbj � mÿ 1, so

j�Opw
k �c2� u; u�j � e jjujj2L2�Hmÿ1

sc � �
Ce���
k
p jjujj2L2�Hmÿ1

sc � � O�eÿkrjjvjj2Hn0 �Rn��� :

We are now ready to prove the Carleman estimate for Q0.

Proposition 4.10. Let Q0 � Opw
k �qm� be de®ned in �4:6�. Then one can ®nd

positive constants C0; C1; k0; r such that, for any u � T �g Tv; v 2 C1;
supp v � jxj � 1

4A2

� 	
and k � k0, we have
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C0

k
jjujj2L2�Rna ;H mÿ1

sc �Rnb �� � C1 jjQ0ujj2L2�Rn� � O eÿkrjjvjj2Hn0 �Rn�
� �

:

Proof. First claim: let `1 and c1 be de®ned in (4.56), (4.58). Then

�A� 2�
�
jjOpw

k �Re `1�ujj2L2 � jjOpw
k �Im `1�ujj2L2

�
� �Opw

k �c1�u; u� � d0jjujj2L2�Hmÿ1
sc ��4:73�

for large k. (Here A has been ®xed by lemma 4.8.)
Indeed let us set a � A j`1j2 � c1 (see lemma 4.8) and a0 � ajxa�0. Let

h0 2 C10 �Rna� be such that h0 �
1 if jxaj � 1

4A2

0 if jxaj � 1
2A2

(
and 0 � h0 � 1. Then we

have

a� �1ÿ h0��a0 ÿ a� � h0 a� �1ÿ h0� a0 � 1

A
hnbi2mÿ2 if jxbj � 1

2A2
:

�4:74�

Indeed if jxaj � 1
2A2 then by lemma 4.8, a and a0 satisfy (4.60) thus (4.74) is

true. If jxaj � 1
2A2 then h0 � 0 and a0 satis®es (4.60) and (4.74) is also true.

Now denoting by rk a symbol in the class S�hnbik; g2� we have by (4.56)
and (4.58)

a � jp0m�xb; nb�j2 � 2 Im
� @p0m
@xb
� @p0m
@nb

�
�xb; nb� �Re�`1 � rmÿ1� � rmÿ2 :

Thus aÿ a0 � Re�`1 � rmÿ1� � rmÿ2 so

jaÿ a0j � 2 j`1j2 � C hnbi2mÿ2 :�4:75�

It follows from (4.60) and (4.75) that

�A� 2�j`1j2 � c1 �C �1ÿ h0� hnbi2mÿ2� 1

A
hnbi2mÿ2 if jxbj � 1

2A2
:

�4:76�

Let h1�xb� in C1�Rnb� be such that 0 � h1 � 1 and h1 � 0 if jxbj � 1
2A2,

h � 1 if jxbj � 1
4A2. Thus we have, from (4.76)

�A� 2� j`1j2 � c1 � C �1ÿ h0� hnbi2mÿ2 ÿ 1

A
hnbi2mÿ2

� �
h21�xb� � 0

for any �x; nb� in Rn �Rnb , and this symbol belongs to S�hnbi2m; g1�.
Therefore we can apply the Fe�erman-Phong inequality (see [H1]) and get
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Opw
k

ÿ�A� 2�j`1j2 h21
�
u; u

� �
� Opw

k �c1 h21�u; u
ÿ ��4:77�

� 1

A
Opw

k h21 hnbi2mÿ2
� �

u; u
� �
ÿ C

ÿ
Opw

k �h21�1ÿ h0��u; u�
�ÿ C

k2
jjujj2L2�Hmÿ1

sc � :

We can use the symbolic calculus in S��; g1�. We get

I � Opw
k

ÿ�A� 2�j`1j2 h21
�
u; u

� �
� �A� 2�

�
Opw

k �`R
1 h1�� Opw

k �`R
1 h1�

ÿ
�Opw

k �`I
1h1��OPw

k �`I
1h1�

�
u; u
�
� 1

k2
O jjujj2L2�Hmÿ1

sc �
� �

:

Here `R
1 � Re `1 and `

I
1 � Im `1. Thus

I � �A� 2�
�
jjOpw

k �`R
1 �ujj2L2 � jjOpw

k �`I
1�ujj2L2

�
� O 1

k2
jjujj2L2�H mÿ1

sc �

� �
�4:78�

because

Opw
k �`K

1 � � h1 � Op�`K
1 h1� � 1

k
Opw

k �S�hnbimÿ1; g1��

for K � R or I and h1u � u since supp u � jxbj � 1
4A2

� 	
. By the same way

Opw
k �c1 h21� � Op�c1� h21 �

1

k
Opw

k

ÿ
S�hnbi2mÿ2; g1�

�
thus

ÿ
Opw

k �c1 h21�u; u
� � ÿOpw

k �c1�u; u
�� 1

k
O
ÿjjujj2L2�Hmÿ1

sc �
�
:�4:79�

We have also

Opw
k �hnbi2mÿ2 h21�u; u

� �
� jjujj2L2�Hmÿ1

sc � ÿ O
1

k
jjujj2L2�Hmÿ1

sc �

� �
�4:80�

�
Opw

k �h21�1ÿ h0�hnbi2mÿ2�u; u
�
� jj�1ÿ h0�ujj2L2�Hmÿ1

sc � � O
�
1

k
jjujj2L2�Hmÿ1

sc �

�
:

�4:81�

jj�1ÿ h0�ujj2L2�Hmÿ1
sc � �

CN

kN jjujj2L2�Hmÿ1
sc � :�4:82�

Thus (4.73) follows from (4.77) to (4.82).
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Now from (4.53), (4.54), (4.56) we get

jjOpw
k �`R

1 �ujjL2 � jjQRujjL2 � jjOpw
k �`R

2 �ujjL2 � g jjOpw
k �~v sR

mÿ1�ujjL2 :

Therefore, applying Lemma 4.9, we deduce

jjOpw
k �`R

1 �ujjL2 � jjQRujjL2 � e� Ce��
k
p � C0g

� �
jjujjL2�H mÿ1

sc � � O�eÿkrjjvjjH n0 �Rn��
jjOpw

k �`I
1�ujjL2 � jjQI ujjL2 � e� Ce��

k
p � C0g

� �
jjujjL2�Hmÿ1

sc � � O�eÿkrjjvjjH n0 �Rn��

8<:
�4:83�

Using (4.55), (4.58) and lemma 4.9 we getÿ�Opw
k �c1� ÿ k�Q0�;Q0��u; u��� ��

� e� Ce���
k
p � gC0

� �
jjujj2L2�Hmÿ1

sc � � O�eÿkrjjvjj2Hn0 �Rn�� :�4:84�

It follows from (4.73), (4.83) and (4.84) that

d0
2
jjujj2L2�Hmÿ1

sc � � C�A�
�
jjQRujj2L2 � jjQI ujj2L2 �

k
2
��Q0�;Q0�u; u�

�
�

� e� Ce���
k
p � C0g

� �
jjujj2L2�Hmÿ1

sc � � O�eÿkrjjvjj2Hn0 �Rn�� :

Taking e and g small, then k large we get, by (4.51), proposition 4.10.

Corollary 4.11. Let ~Pk the operator occuring in Proposition 2.2. One can
®nd positive constants C1; C2; k0; e2; r such that for v 2 C10 �Rn�,
supp v � jxj � e2f g and k � k0 we have

k jjTvjj2L2�1�g�U�Cna ;Hmÿ1
k �Rnb �� � C1 jj ~P Tvjj2L2�1�g�U

� C2 e
ÿkrjjvjj2H n0 �Rn� :�4:85�

Proof. By theorem 3.3, (4.85) will follow from the same estimate for ~Qk.
Now jj ~Q TvjjL2�1�g�U � jjQkujjL2 and by (4.6) we have rw�Qk� � k2mÿrw�Q0�
�Pm

j�1 kÿj qmÿj
�
where qmÿj 2 S�hnbimÿ1; g2�. Thus (4.84) follows from

proposition 4.10 if k is large enough.

5. End of the proof of the Theorems A and B

Without loss of generality we may assume that x0 � 0, u�x0� � 0.
Let P be the di�erential operator under consideration in the theorems A

and B and u be a C1 solution near the origin of the equation Pu � 0, with
supp u � x : u�x� � 0f g. Let w be the quadratic polynomial introduced in

Uniqueness in the Cauchy problem 531



(4.12) or in lemma 4.8 and v 2 C1�R� be such that v�t� � 1 if t � ÿ e
2

0 if t � ÿe

�
with 0 � v � 1. We set

u1 � v�w�x�� � u :�5:1�

It is classical that if e is small enough we have supp u1 �
�

x 2 Rn: jxj2 � C e
	

with a ®xed constant C and we reduce e in order that supp u1 � x : jxj � e2f g
where e2 has been ®xed by corollary 4.7 (or 4.11). Now, since Pu � 0 we see
that

P u1 � f ; f 2 C1 ; supp f � x : ÿe � w�x� � ÿ e
2

n o
:�5:2�

We introduce a positive parameter q such that qjjw00jj � 1
2 and

q supjxj�1
jw�x�j
jxj � 1

4. It follows that on the support of u1 we have

qjw�x�j � q
jw�x�j
jxj jxj �

1

4

������
Ce
p

:

Then we set

u1 � eÿkqwv :�5:3�

Then

P u1 � eÿkqw Pkv�5:4�

where Pk is de®ned by (2.14) with qw instead of w. It follows that (5.2) can be
written as

Pkv � ekqwf :�5:5�

We apply proposition 2.2 and get

~Pk Tv � T ekqwf :�5:6�

Then corollary 4.7 (and 4.11) ensures that one can ®nd r � r�q� > 0 such
that

jjTvjj2L2�1�g�U�Cna ;Hm
k �Rnb �� � C1k jjT ekqwf jj2L2�1�g�U

� O�eÿkrjjvjj2H n0 �Rn�� :�5:7�

We reduce e in order that 1
4

������
Ce
p � 1

3 r�q�. We claim that

jjT ekqwf jjL2�1�g�U
� Oÿeÿk

3 eq
�
:�5:8�
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Indeed we know from (5.2) that w � ÿ e
2 on the support of f . On the other

hand za
a T ekqwf is a ®nite sum of terms of the following kind

I � K�k�
Z

eÿ
k
2 �zaÿya�2�za ÿ ya�b yc

a e
kqw�ya;xb� f �ya; xb� dya :

Since �za ÿ ya�j eÿ
k
2 �zaÿya�2 � 1

k
@
@yaj

eÿ
k
2 �zaÿya�2 we can make integrations by

parts and conclude that I is a ®nite sum of terms of the form

J � P�k�
Z

eÿ
k
2 �zaÿya�2�kqw�ya;xb� g�ya; xb� yc1

a Dc2
ya

f �ya; xb� dya

where P is a polynomial in k and g a C1 function.
It is then easy to see that for large k

hzaina�1 eÿk�1�g� U�za� jjT ekqwf �za; �; k�jjL2�Rnb � � C eÿ
k
3 eq

where C is independant of k. Thus (5.8) follows.
We deduce from (5.7), (5.8) that

jjT �ekqwu1�jj2L2�1�g�U
� O eÿkd

ÿ �
; d � min

eq
2
;
1

2
r�q�; 1

100

� �
:�5:9�

Now since w is quadratic we have

w�ya; xb� � w�xa; xb� � w0a�xa; xb� � �ya ÿ xa� � 1

2
A�ya ÿ xa� � �ya ÿ xa� ;

where A is the symmetric matrix w00aa. We have also, with B � w00ab,

w0�xa; xb� � w0a�0; 0� � A xa � B xb � Na � A xa � B xb

where

N � �Na;Nb� is the normal to S at the origin :�5:10�

Thus

w�ya; xb� � w�xa; xb� � �Na � A xa � B xb��ya ÿ xa� � 1

2
A�ya ÿ xa�2 :�5:11�

We choosed q so small that

jjqAjj � 1

2
; jjqBjj � 1

2
:

It follows that
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Aq � IdÿqA is symmetric and positive definite :�5:12�

Let us set X � ya ÿ xa and �1� � ÿ k
2 �xa ÿ ya�2 � kqw�ya; xb�. We deduce

from (5.11) that

�1� � ÿ k
2

�
X � X ÿ 2qV � X ÿ qAX � X �� kqw�xa; xb�

where

V � Na � A xa � B xb :�5:13�

Then

�1� � kqw�xa; xb� ÿ k
2

AqX � X ÿ 2qV � X� �
� kqw�xa; xb� ÿ k

2
jjA1

2
qX jj2 ÿ 2q A

ÿ1
2

q V � A1
2
qX

h i
� kqw�xa; xb� ÿ k

2
jjA1

2
qX ÿ q A

ÿ1
2

q V jj2 ÿ q2 jjAÿ1
2

q V jj2
h i

:

Therefore

T �ekqw u1��xa; xb; k� � K�k� ekqw�xa;xb��k
2 q2 jjAÿ

1
2

q V jj2 Sk u1�xa; xb; k��5:14�

Sk u1�xa; xb; k� �
Z

eÿ
k
2jjA

1
2
q�yaÿxa�ÿq A

ÿ1
2

q V jj2 u1�ya; xb� dya :�5:15�

We split the proof into two cases.

Case 1. Na � 0.
Let ~X � �xa; xb� 2 Cna �Rnb: jxaj � d; jxbj � df g. Then (5.9) implies thatZ Z

~X

eÿ2k�1�g� U�xa� T �ekqwu1��xa; xb; k�
�� ��2 L�dxa� dxb � O eÿkd

ÿ �
:

Since in ~X we have ÿk�1� g�U�xa� � ÿ2kd2 � ÿ 1
2 kd we getZ Z

~X

��T �ekqwu1��xa; xb�
��2 L�dxa� dxb � O

ÿ
eÿ

k
2 d
�
:�5:16�

Let us set

X � �xa; xb� 2 Rna �Rnb ; jxaj � d
2
; jxbj � d

2

� �
:
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The function xa 7! T �ekqwu1� is holomorphic in Cna . Therefore one can ®nd a
positive constant C independant of k, xb, e, q such thatZZ

X

��T �ekqwu1��xa; xb; k�
��2 dxa dxb � C

ZZ
~X

��T �ekqwu1��xa; xb; k�
��2 L�dxa� dxb :

According to (5.16) we getZ Z
X

��T �ekqwu1��xa; xb; k�
��2 dxa dxb � O

ÿ
eÿ

k
2 d
�
:�5:17�

Using (5.14), (5.15), (5.17) and the fact that in X we have

kqw�xa; xb� � k
2

q2 jjAÿ1
2

q V jj2 � ÿkqd sup
jxj�1

jw�x�j
jxj � ÿ

k
4

d

we deduce that for k large enoughZ Z
X

jSk u1�xa; xb�j2 dxa dxb � O
ÿ
eÿ

k
4 d
�
:�5:18�

Let us ®x �xa; xb� 2 X and set in (5.15)

ya ÿ xa ÿ q Aÿ1q �A xa � B xb� � 1���
k
p ta ;

we get

Sk u1�xa; xb; k� � 1

k
na
2

Z
eÿ

1
2jjA

1
2
q tajj2 u1

�
xa � q Aÿ1q �A xa � B xb� � 1���

k
p ta; xb

�
dta

and Lebesgue's theorem shows that

lim
k!�1

k
na
2 Sk u1�xa; xb; k� � Cte u1�Aÿ1q �xa � qB xb�; xb� :�5:19�

It follows then, from (5.18), (5.19) and Fatou's Lemma that
u1�Aÿ1q �xa � qB xb�; xb� � 0. This implies that u1 � 0 for jxaj � d

4, jxbj � d
4.

Since u1 � u if d is small enough we have proved theorem A.

Case 2. Na 6� 0.
Assume Na;1 � @w

@xa;1
�0; 0� 6� 0. In a neighborhood of the origin we can make

the change of variables
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x0a;1 � w�xa; xb�
x0a;j � xa;j ; j � 2
x0b � xb :

8<:
The symbol of the operator P is transformed into a symbol whose coe�-
cients are analytic in x0a and C1 in x0b in a neighborhood of the origin.
Moreover all the hypotheses in the theorem are invariant. Therefore we still
have the estimate (5.9) namelyZ Z

eÿ2k�1�g�U�xa� ��T �ekqxa;1u1��xa; xb; k�
��2 L�dxa� dxb � O

ÿ
eÿkd

��5:20�

where T is the FBI transform (2.1) where, for simplicity we have removed
the factor K�k� i.e. with ma � �1; 0; . . . ; 0�

T
ÿ
ekq xa�ma u1

��xa; xb; k� �
Z

eÿ
k
2 �xaÿya�2�kq ma�ya u1�ya; xb� dya :

We see easily that

T
ÿ
ekq xa�ma u1

��xa; xb; k� � ekq xa�ma�k
2 q2 T u1�xa � qma; xb� :�5:21�

Inserting (5.21) in (5.20) and setting xa � qma � x0a we getZ Z
eÿ2k�1�g�U�x0a�ÿkq2�2kq�Re x0a��ma jT u1�x0a; xb; k�j2 L�dx0a� dxb � O

ÿ
eÿkd

�
:

�5:22�
Let us consider

~X � �xa; xb� 2 Cna �Rnb: jRe xaj < 2q; jImxaj < 2d; jxbj < df g :

For �xa; xb� 2 ~X one has 2�1� g�U�xa� � 16d2 � 1
2 d so (5.22) impliesZ Z

~X

eÿkq2�2kq�Re xa��ma jT u1�xa; xb; k�j2 L�dxa� dxb � O
ÿ
eÿ

k
2 d
�
:�5:23�

Now since the function xa 7! ekq xa�ma T u1�xa; xb; k� is holomorphic in Cna , it
follows from Cauchy formula that we can ®nd a positive constant C,
independant of k and xb such that for jRe xaj � q and jIm xaj � d we have

ekq xa�ma T u1�xa; xb; k�
�� ��2� C

Z
Re xaj j�2q
Im xaj j�2d

��ekq xa�ma T u1�xa; xb; k�
��2 L�dxa� :

So we deduce from (5.23) that if jRe xaj � q, jIm xaj � dZ
jxbj�d

jT u1�xa; xb; k�j2 dxb � C ekq2ÿ2kq�Re xa��maÿk
2 d :�5:24�
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On the other hand from its de®nition we have

jT u1�xa; xb; k�j � ekU�xa�
Z

eÿ
k
2 �Re xa�maÿya�ma�2 ju1�ya; xb�j dya :�5:25�

If Re xa � ma < 0 we bound the exponential, inside the integral, by one. If
Re xa � ma � 0, since on the support of u1 we have ya � ma � 0, we have
Re xa � ma ÿ ya � ma � Re xa � ma � 0, therefore

jT u1�xa; xb; k�j � C ekU�xa� if Re xa � ma < 0
C ekU�xa�ÿk

2 �Re xa�ma�2 if Re xa � ma � 0:

�
�5:26�

For ®xed k let us introduce the subharmonic function

w�xa� �
Z
jxbj�d

��ek
2 �xa�ma�2 T u1�xa; xb; k�

��2 dxb :�5:27�

It follows from (5.24) and (5.26)

w�xa� � C ek �Re xa�ma�2ÿ�Im xa�ma�2ÿ2q Re xa�ma�q2ÿ1
2 d� ��5:28�

w�xa� � C ek��Re xa�ma�2��Im x0a�2� if Re xa � ma < 0
C ek�Im x0a�2 if Re xa � ma � 0

�
�5:29�

where we have set xa � �xa � ma; x0a�.
Let us ®x x0a and k, let us set t � xa � ma 2 C and consider the subharmonic

function

~w�t� � Ln 1
C w�t; x0a�

k
; jRe tj � q; Im t � d :�5:30�

We introduce the rectangle Q drawn here the sides of which are denoted by
I , II , III , IV as indicated below. Here l is a ®xed positive number such that
l � 1

10 e
ÿpq

d .
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� On II, III, IV we use (5.29). We get

~w�t� � �Im x0a�2 on II1; IV1

~w�t� � �Im x0a�2 � l2 on II2; III and IV2 :

� On I we use (5.28). Here Re xa � ma � q, thus

~w�t� � q2 ÿ �Im xa � ma�2 ÿ 2q2 � q2 ÿ 1

2
d � ÿ 1

2
d :

Summing up, we have

~w�t� ÿ �Im x0a�2 ÿ l2 � 0 on II ; III ; IV
ÿ 1

2 d on I :

�
�5:31�

Let us consider the harmonic function

g�t� � cos
ÿ

p
2d Im t

�
sinh

ÿ
p
2d �Re t � l��

sinh
ÿ

p
2d �q� l�� :�5:32�

Then g�t� � 0 when Im t � �d and when Re t � ÿl thus g�t� � 0 on
II ; III ; IV . On I we have Re t � q so g�t� � cos p

2d Im t � 1 and
ÿ 1

2 d � ÿ 1
2 d g�t�.

It follows from (5.31) that on the boundary of Q we have

~w�t� ÿ �Im x0a�2 ÿ l2 � ÿ 1
2

d g�t� :�5:33�

By the maximum principle we deduce from (5.33) that

~w�t� ÿ �Im x0a�2 ÿ l2 � ÿ 1
2

d g�t� ; t 2 Q :

Now it is easy to see that there exists a positive constant M � 1 independant
of q such that

sup
t2Q
jjg0�t�jj � M

d
:�5:35�

Since g�0� � sinh �pl
2d�

sinh � p2d �q�l�� � pl
d eÿ

pq
d , we deduce from (5.35) that

g�t� � 1

2

pl
d

eÿ
pq
d if jtj � plM

2
eÿ

pq
d :�5:36�

It follows from (5.34) that
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~w�t� ÿ �Im x0a�2 ÿ l2 � ÿ 1
4

pl eÿ
pq
d if jtj � plM

2
eÿ

pq
d :�5:37�

Since l2 � 1
8 pl eÿ

pq
d , if jIm x0aj2 � 1

16 pl eÿ
pq
d we get

~w�t� � ÿ 1

16
pl eÿ

pq
d � ÿl0 :�5:38�

Using (5.30) and (5.27) we get if jxaj is small enoughZ
jxbj�d

T u1�xa; xb; k�j j2 dxb � eÿ
k
2 l0 :�5:39�

Then we let k go to �1, using, as in the proof of case 1, Fatou's lemma. We
get u1 � 0 in a neighborhood of zero. The proof of theorems A and B is
complete.
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