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In this paper, we attach a motive M of Artin-Tate type to a connected,
reductive group G over a ®eld k. The construction of M follows Steinberg,
who used the twisted dual motive M_�1� to give a formula for the order of
G�k�, when k is ®nite.

When k is a local ®eld of characteristic zero, we show the L-function
L�M� is ®nite if and only if Serre's Euler-PoincareÂ measure lG on G�k� is
non-zero. In this case, we obtain a local functional equation, relating
L�M� � lG to L�M_�1�� � jxGj, in the one-dimensional real vector space of
invariant measures on G�k�. Here jxGj is a Haar measure on G�k�, de®ned
using a di�erential form xG of top degree on G (speci®ed in Sects. 4 and 7)
and the normalized valuation of k�. When k is non-Archimedean and G is
quasi-split over k, we de®ne a smooth model G0 for G over the ring A of
integers of k using the theory of Bruhat and Tits, and xG is a volume form
on G0 over A whose restriction to the special ®bre is non-zero. In this case,
the functional equation is:
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L�M� � lG �#H 1�k;G� � L�M_�1�� � jxGj:

The general case is given in Theorem 8.1; it also involves the sign e�G�
Kottwitz attaches to G, which is 1 in quasi-split case.

When k is a number ®eld, we use the L-function of M to evaluate certain
adeÁ lic integrals which arise in the trace formula. For example, assume that
the connected center of G is anisotropic, and that S is a ®nite set of places of
k, which contains all in®nite places and all ®nite places where G=kv is not
quasi-split. Let A be the ring of adeÁ les of k, and de®ne a measure lS � 
lv
on the locally compact group G�A� by taking lv � Lv�M_�1�� � jxGv j on
G�kv� for all v not in S, and lv � Euler-PoincareÂ measure lGv

on G�kv� for all
v in S.

Let LS�M� be the value at s � 0 of the meromorphic continuation of
the Euler product

Q
v 62S Lv�M ; s�, which converges in some right half plane.

Results of Siegel show that LS�M� is a rational number, which is non-zero
if and only if the measure lS is non-zero on G�A�. In this case, we show
that Z

G�k�nG�A�

lS � LS�M� � s�G�
.Y

v2S

c�Gv�

where s�G� is the Tamagawa number of G, and c�Gv� � #H 1�kv;G� for ®nite
v. In general, let T ! G be a maximal torus which is anisotropic over kv.
Then

c�Gv� � #H 1�kv; T �
#�ker : H 1�kv; T � ! H1�kv;G�� :

The general case also involves the local signs e�Gv� for v 2 S; it is given in
Theorem 9.9. A related result on the global e-factor e�M�, occurring in the
functional equation of the L-function of M , is given in Theorem 11.5.

The local results in this paper are reformulations of work of Kottwitz,
Serre, Steinberg and Tate. The global results were suggested by the work of
Harder and G. Prasad.

Notation

Throughout the paper, k is a ®eld, ks is a separable closure of k, and
C � Gal�ks=k�. From Sect. 4 until the end, we assume that k has charac-
teristic zero, so ks is an algebraic closure of k.

We let G denote a connected, reductive group over k; C denote the
connected component of the center of G (which is a torus), and Gder denote
the derived subgroup of G. The group Gder is connected and semi-simple,
and we let Gsc denote its simply-connected covering group.

If Y is a ®nite set, #Y denotes its cardinality.
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1 The de®nition of M

We ®rst de®ne the motive M for quasi-split groups G over k. For general
groups G, we will de®ne M as the motive of the quasi-split inner form of G.

Let S be a maximal split torus in G, and let T be the centralizer of S in G.
Since we are assuming that G is quasi-split, T is a maximal torus in G. Let
W � NG�ks��T �ks���T �ks� be the Weyl group of T in G, over the separable
closure ks of k. Then C � Gal�ks=k� acts on W , and kW � W C is the relative
Weyl group of S in G [3, p. 13].

The Q-vector space

E � X ��T � 
Q � Homks�T ;Gm� 
Q�1:1�
admits an action of WoC. Chevalley [9] proved that the algebra of
W -invariants in the symmetric algebra on E is isomorphic to a symmetric
algebra on a graded Q-vector space V . If R � Sym��E�W , and R� is the
ideal of elements of degree �1 in R, then we de®ne the graded vector space
V � �d�1Vd by:

V � R�=R2
�:�1:2�

One can show, using results of Steinberg [25, p.17], that V is isomorphic
(as a representation of C over Q) to E. The advantage of passing to the space
V is that it is graded, and that each summand Vd (the primitive invariants of
degree d ) is a representation of C. Some useful formulae are [18. pg. 289]

dimG �
X
d�1
�2d ÿ 1� dim Vd�1:3�

#W �
Y
d�1

ddim Vd�1:4�

Let Q�1� � H1�Gm� be the Tate motive, of rank 1 and weight ÿ2 over k
[11, p. 325]. If N is an Artin motive over k, given by rational representation
of C, then N�n� � N 
Q�1�
n is an Artin-Tate motive, of weight ÿ2n.

We de®ne the motive M of G by:

M �a
d�1

Vd�1ÿ d�:�1:5�

The rank of M is the rank of G over ks. Since each representation Vd is self-
dual, the twisted dual of M is the motive:

M_�1� �a
d�1

Vd�d�:�1:6�

The weights of M are all � 0, and the weights of M_�1� are all �ÿ2.
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2 Examples and properties of M

If G � T is a torus, then W � 1 and V � V1 � E. In this case, M � X ��T �

Q is an Artin motive, which determines T up to isogeny over k [19, pp.
124±125].

If G is split over k, then T � S and each Vd is the trivial representation of
C. In this case, M is a Tate motive. For example, if G � GLn then

M � Q�Q�ÿ1� �Q�ÿ2� � . . .�Q�1ÿ n�:

Here M does not even determine G up to isogeny: the split groups Sp2n and
SO2n�1 both give the motive

M � Q�ÿ1� �Q�ÿ3� � . . .�Q�1ÿ 2n�;

but they are not isogenous if n � 3 and char�k� 6� 2.

Lemma 2.1 1) If G is isogenous to G0 over k, then M � M 0.
2) If G � G1 � G2, then M � M1 �M2.
3) Let K be a ®nite separable extension of k, and GK be a connected, re-

ductive group overK with motiveMK �ad�1Vd�1ÿ d�. ThenG � ResK=k�GK�
has motive M � Ind K=kMK �ad�1 Ind K=kVd�1ÿ d�.

To prove this, one passes to the quasi-split inner forms, and compares
the representations of WoC on E.

Corollary 2.2 The canonical isogeny C � Gder ! G gives a decomposition of
M by weight:

MC � V1 of weight � 0

MGder �a
d�2

Vd�1ÿ d� of weights � 2

When G is quasi-split over k, the Tate motive

MC �a
d�1

V C
d �1ÿ d��2:3�

can be computed from the relative root system of S. The restriction
X ��T � ! X ��S� identi®es X ��S� 
Q with the C-coinvariants of E, as a
representation of kW , and the primitive generators of Sym��EC�kW can be
identi®ed with VC � V C as a graded Q-vector space.

For example, assume G � U2n�1 is a quasi-split unitary group, associated
to a Hermitian space of dimension 2n� 1 over the separable quadratic
extension K of k. Let Q�e� be the rank 1 Artin motive of C � U1, so e is the
non-trivial quadratic character of Gal�K=k�. Then
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M � Q�e� �Q�ÿ1� �Q�e��ÿ2� �Q�ÿ3� � . . .�Q�e��ÿ2n�;

MC � Q�ÿ1� �Q�ÿ3� � . . .�Q�1ÿ 2n�:

The relative root system has type BCn. Note that MC is the motive associated
to either of the maximal split subgroups SO2n�1 or Sp2n of G (cf. [5, pp. 121±
122]).

3 Finite ®elds

In this section, we assume that k is ®nite, of cardinality q. Then C is topo-
logically generated by the geometric Frobenius element F , which has
eigenvalue qÿ1 on the Tate motive Q�1�.

The twisted dual M_�1� of M was introduced by Steinberg [25, p. 79],
who obtained the formula:

#G�k�=qdimG � det�1ÿ F jM_�1���3:1�
�
Y
d�1

det�1ÿ F jVd�d��

�
Y
d�1

det�1ÿ Fqÿd jVd�

A nice formula involving M was shown to me by W-T. Gan. Assume
that G is split, simply-connected, and simply-laced, and let R be the re-
¯ection representation of G�k�. Then R is de®ned over Q, and Kilmoyer has
observed that R is the unique irreducible complex representation of G�k�
with

dimRP �k� � `ÿ `P

for all parabolic subgroups P � G, where ` is the rank of G and `P is the
semi-simple rank of a Levi factor of P .

Let c be a semi-simple element in G�k�, and let Gc be the centralizer of c
in G. Then Gc is connected and reductive; let Mc �ad�1Vd;c�1ÿ d� be the
motive of Gc over k. Then we have the formula

Tr�cjR� � Tr�F jMc� �
X
d�1

Tr�F � qdÿ1jVd;c�:�3:2�

When c is regular, so Gc � T is a maximal torus in G, this is a restate-
ment of a result of Lusztig [17, p. 334]. The general case was deduced from
results of Lusztig by Gan. For example, when c � 1, Gc � G and

dim�R� � Tr�F jM� �
X
d�1

dim Vd � qdÿ1 �
X̀
i�1

qmi ;�3:3�

where m1;m2; . . . ;m` are the exponents of G.
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4 p-adic ®elds

In the next three sections, we assume that k is a local, non-Archimedean
®eld. Let A be the ring of integers of k, p a uniformizing element, and q be
the cardinality of the ®nite residue ®eld A=pA. To avoid questions of in-
separable isogenies, we will assume that k has characteristic zero (although
the results should be true in general). Let G be a connected, reductive group
over k, with motive M .

Let k1 be the maximal unrami®ed extension of k contained in ks, and let
I / C be the inertia subgroup which ®xes k1. Our aim in this section is to give
a geometric description of the Artin-Tate motive

MI �a
d�1

V I
d �1ÿ d��4:1�

over A=pA, using the theory of Bruhat and Tits [6]. As a by-product, we will
de®ne a canonical Haar measure jxGj on the group G�k�.

Assume that G is quasi-split over k, and let X � X �Gsc� be the (semi-
simple) Bruhat-Tits building of G over k. This is a polysimplicial complex,
which admits an action of G�k�. The center acts trivially, and the action
extends to the larger group Gad�k� [28, p. 46].

LetA � X be the apartment associated to the maximal split torus S, and
let T be the centralizer of S in G. Let x be a special vertex inA, and let a be a
root of S which lies in the reduced system [3, p. 12]

Us � fa 2 U : a=2 62 Ug�4:2�
Let

Ua;x � Ua�k�
be the compact open subgroup of the unipotent group Ua which is de®ned
by the special vertex x [7, 292�], and let T 0 be the smooth group scheme over
A which is the connected component of the NeÂ ron-Raynaud model of the
torus T [6, ch.10].

Bruhat and Tits [7, 316�], [16, Ch. 2] construct a smooth group scheme
G0

x over A, with general ®bre G and connected special ®bre, such that G0
x�A�

is the open compact subgroup of G�k� generated by T 0�A� and the root
subgroups Ua;x; a 2 Us. If G is simply-connected, G0

x�A� is the subgroup of
G�k� ®xing the point x in X [7, p. 329]. In general, G0

x is given by the root
datum �T 0;U a;x� over A.

Let A1 be the ring of integers in k1. Then G0
x�A1� is the subgroup of G�k1�

generated by T 0�A1� and the root groups Ua;x�A1� in Ua�k1�. Since A1 is
strictly Henselian, this description of points determines the group scheme.
The isomorphism class of G0

x over A depends only on the Gad�k�-orbit of the
special vertex x in B. When the relative root system is reduced �U � Us�,
there is a single orbit of Gad�k� on the special vertices [28, p. 47]. In this case,
G0 � G0

x is well-de®ned up to isomorphism.
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When U is not reduced, we must ®x an orbit. Our convention is as
follows: for each component of the local Dynkin diagram of the type

� (� � � . . . . . . . . . . . . . . . � � (� �
s s

we choose the special vertex at the right end of the diagram. For example,
assume that Gsc has a factor SU2n�1�K=k�. If the quadratic extension is
unrami®ed over k, we are choosing the hyperspecial vertex. If K is rami®ed
over k, we are choosing the vertex whose reduction �mod p� is the group
SO2n�1, not the group Sp2n (cf. [20, p. 95]). With this convention, G0 � G0

x is
well-de®ned over A in all cases. Let G denote the special ®bre of G0, Ru�G�
the unipotent radical of G, and G

red
the reductive quotient G=Ru�G�. Both

Ru�G� and G
red

are smooth, connected group schemes over A=pA.
The reduction S of the smooth subgroup scheme S0 is a maximal split

torus in G [28, p.52]. The reduction T of the smooth subgroup scheme T
0

centralizes S; its image T
red

in the quotient G
red

is a maximal torus in a Borel
subgroup B � G

red
.

Proposition 4.5 The motive of T
red

over A=p A is EI , and the (absolute) Weyl
group of T

red
in G

red
is W I � k1W . The motive of G

red
over A=pA is MI .

This follows from the general theory of Bruhat and Tits (cf. [28, p. 52±53]).
We emphasize that the group scheme G0 over A and its reduction G

red
over

A=pA are only considered when G is quasi-split over k

Corollary 4.6 The following conditions are all equivalent.
1) M � MI .
2) The quasi-split group G is split over k1.
3) The group G0�A� is a hyperspecial maximal compact subgroup of the

locally compact group G�k�.
4) The group C is split over k1, and the building X contains hyperspecial

points.

We continue to assume that G is quasi-split over k. The group scheme G0

over A with general ®bre G gives rise to a canonical Haar measure on the
locally compact group G�k�. Indeed, Lie�G0� is an A-lattice inside the k-

vector space Lie�G�, so ^top Lie�G0� is a free A-module of rank 1 inside the k-

vector space ^top Lie�G� of dimension 1. Let xG be a di�erential of top degree

on G over k which generates the A-submodule Hom� ^top Lie�G0�;A�. Then
xG is determined up to multiplication by a unit of A.

We say such di�erentials have good reduction �mod p�, as xG is non-
zero on G. Let jxGj be Haar measure on G�k� which corresponds to a
di�erential xG with good reduction �mod p�, and to the canonical absolute
value kv : k� ! R�� with jpjv � qÿ1 [14, pp. 258±259].

On the motive of a reductive group 293



Proposition 4.7 We haveZ
G0�A�

jxGj � det�1ÿ F jM_�1�I�:

Moreover, if f : G0 ! G is a central isogeny, then

f ��jxGj� � j# ker f �ks�jv � jx0Gj

as Haar measures on G0�k�.

Proof. Let G1�A� be the kernel of the surjective homomorphism G0�A� !
G�A=pA�. If Ĝ is the formal group of dimension n � dim�G� over A asso-
ciated to G0, then we have an analytic isomorphism

Ĝ�pA�!�G1�A�

such that the pull-back of jxGj is the Haar measure dx1 � � � dxn on �pA�n.
Hence Z

G0�A�

jxGj �#G�A=pA��qn

� #G
red�A=pA��qdimG

red

� det�1ÿ F jM_�1�I�

by Proposition 4.5 and Steinberg's formula (3.1).
The second formula follows from the fact that f ��xG� �

�#kerf �ks�� � xG0 for a di�erential xG0 with good reduction on G0. Indeed,
the group schemes G0

x and G00x are associated to the same special point x in X .
The isogeny f identi®es U 0a;x with Ua;x, so the cokernel of f� : Lie�G00�
,! Lie�G0� is the cokernel of f� : Lie�T 00� ,! Lie�T 0�. The latter map has
determinant equal to #�kerf �ks��.

We have de®ned G0 and jxGj only for groups G which are quasi-split
over k. The de®nition of the canonical Haar measure jxGj can be extended
to general G as follows. Let H be the quasi-split inner form of G, and ®x an
inner twisting W : G! H over ks. Assume xH has good reduction �mod p�,
and de®ne xG on G over k (cf. [15, pp. 68±69]) by pull-back

xG � W��xH �:�4:8�

Again, this is unique up to multiplication by a unit in A, so jxGj is a well-
de®ned Haar measure on G�k�.

The de®nition of jxGj on G�k� by transfer from H makes the explicit cal-
culation of local integrals di�cult. However, on any connected reductiveGwe
can de®ne a measure jmGj, where mG is a volume form for the integral structure
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given by an Iwahori subgroup B ofG�k�. Then mG � W��mH � [13, p. 632], and a
short computation on the quasi-split inner form H shows that:

xH � pN � mH ;�4:9�
with

N �
X
d�1
�d ÿ 1� dim V I

d :�4:10�

Hence jxGj � qÿN � jmGj, soZ
B

jxGj � qÿN det�1ÿ FwGjE�1�I��4:11�

where wG is an element of W I � k1W associated to W [13, p.633].

5 The local L-function

We continue to assume that k is a local, non-Archimedean ®eld of charac-
teristic zero. If M is the motive of G over k, we have the L-functions

L�M� = det�1ÿ F jMI�ÿ1
L�M_�1�� = det�1ÿ F jM_�1�I�ÿ1

�
�5:1�

The latter is a positive rational number, whose inverse appears in Propo-
sition 4.7. The L-function of M can be in®nite, positive, or negative.

Let lG be Serre's Euler-PoincareÂ measure on G�k� [21, pp. 139±141]. This
is an invariant measure, possibly negative or zero, with the property that, for
all discrete, torsion-free, co-compact subgroups D of G�k�:

Z
DnG�k�

lG �
XdimG

i�0
�ÿ1�i dimH i�D;Q�:�5:2�

Proposition 5.3 The following conditions are all equivalent.
1) The measure lG is non-zero on G�k�.
2) The L-function L�M� is ®nite.
3) The connected center C of G is anisotropic.
4) There is a maximal anisotropic torus T ! G.

Proof. The equivalence of 1), 3), and 4) is due to Serre [21, p. 151]. Since

L�M�ÿ1 � det�1ÿ F jMI�
�
Y
d�1

det�1ÿ F � qdÿ1jV I
d �
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we see that L�M�ÿ1 is non-zero provided that V C
1 � 0. By Corollary 2.2, this

is equivalent to condition 3) on the connected center.
Let e�G� � �1 be the sign that Kottwitz attaches to the group G. If H is

the quasi-split inner form of G over k, then [12, pp. 289±290]

e�G� � �ÿ1�rank�G=k�ÿrank�H=k��5:4�

We also recall that the pointed set H1�k;G� is ®nite, and has the structure
of an abelian group. The following is our main result in the local non-
Archimedean case.

Theorem 5.5 Assume that the connected center C of G is anisotropic. Then

L�M� � lG � e�G� �#H1�k;G� � L�M_�1�� � jxGj

in the space of invariant measures on G�k�.

6 The functional equation

We now give the proof of Theorem 5.5, which we view as a functional
equation for the L-function of M in the one dimensional real vector space of
invariant measures on G�k�. We ®rst prove the result for quasi-split groups
G, when e�G� � 1, then deduce the general result.

When G is quasi-split and simply-connected, we have H 1�k;G� � 1
[14, p. 255]. Since Z

G0�A�

L�M_�1�� � jxGj � 1

by Proposition 4.7, the identity in Theorem 5.5 is equivalent to the formulaZ
G0�A�

lG � det�1ÿ F jMI� � L�M�ÿ1:�6:1�

Since G is simply-connected, G0�A� is the maximal compact subgroup of
G�k� ®xing the special vertex x in X .

Let B � G0�A� be an Iwahori subgroup. Then B is the inverse image of a
Borel subgroup B � G

red
under the reduction map G0�A� ! G�A=pA�

[28 pp.54±55,]. Hence the index of B in G0�A� is equal to the index of
B�A=pA� in G

red�A=pA�. Let r � F ÿ1 be an arithmetic Frobenius in the
Galois group C=I . Using Proposition 4.5, we ®nd that:

�G0�A� : B� � det�1ÿ rjM_�1�I�
det�1ÿ rjE�1�I� :�6:2�

On the other hand, Serre [21, p. 148] evaluated the integral
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Z
B

lG � 1=W �q��6:3�

in terms of the PoincareÂ series W �t� of the a�ne Weyl group. This series was,
in turn, evaluated by Steinberg [25, p. 28]. Using the translation provided by
Kottwitz [13, p. 634], we ®nd that

W �q� � det�1ÿ rjM_�1�I�
det�1ÿ rjE�1�I� � L�M�:�6:4�

Combining (6.2) ± (6.4), we obtain a proof of (6.1). We note that (6.1) was
proved by Serre in the case when G is split over k [21, p.151]; there we
have:

det�1ÿ F jMI� �
Y
d�1
�1ÿ qdÿ1�dim Vd �

Ỳ
i�1
�1ÿ qmi�:

Next consider the case when G � T is a torus. Since we are assuming the
conditions of Proposition 5.3 hold, T is anisotropic over k and lT is the
Haar measure on T �k� with Z

T �k�

lT � 1:�6:5�

Since Z
T 0�A�

L�M_�1�� � jxT j � 1�6:6�

we see that Theorem 5.5 is equivalent to the formula

L�M� �#H 1�k; T � � �T �k� : T 0�A��:�6:7�

Since T is anisotropic, Tate local duality gives an isomorphism of ®nite
abelian groups:

H1�k; T � ' X��T �C
� coker�1ÿ F jX��T �I�;

�6:8�

where X��T � � Homks�Gm; T �.
The abelian group P � X��T �I is ®nitely generated, so we have an exact

sequence of C=I-modules

0! Ptor ! P ! P=Ptor ! 0

with Ptor ®nite, and P=Ptor a free Z-module of ®nite rank. The kernel of
�1ÿ F � on P=Ptor is zero, as it is a free sub-module of rank equal to the
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dimension of EC (which is zero, as T is anisotropic). Applying the snake
lemma to the endomorphism �1ÿ F � of the above diagram, we ®nd
that:

# coker �1ÿ F jP� � # coker �1ÿ F jPtor� �#coker�1ÿ F jP=Ptor�
#ker�1ÿ F jP � � #ker�1ÿ F jPtor�:

Since Ptor is ®nite, we also have

# ker �1ÿ F jPtor� � # coker�1ÿ F jPtor�:

Hence we have:

#H 1�k; T � � # ker �1ÿ F jP � �# coker �1ÿ F jP=Ptor��6:9�

The group T �k��T 0�A� is isomorphic to

T �A�=T 0�A� � T=T
0�A=pA�;

where T is the NeÂ ron-Raynaud model for T over A (which is a smooth,
commutative group scheme, locally of ®nite type over A) [6, Ch. 10]. As an
eÂ tale group scheme over A=pA

T=T
0 ' X��T �I � P :

Hence

�T �k� : T 0�A�� � # ker �1ÿ F jP ��6:10�

Since P=Ptor is dual to X ��T �I , we have

# coker 1ÿ F
���P=Ptor

� �
� det 1ÿ F

���P=Ptor
� �

� det 1ÿ F
���X ��T �I� �

� L�M�ÿ1:

Combining (6.9) ± (6.11) gives a proof of (6.7).

To complete the proof of the functional equation in the quasi-split case,
we show it is compatible with products and central isogenies. Since G is
isogenous to the product Gsc � C, where Gsc is simply-connected and C is a
torus, and we have checked the functional equation in those two cases, we
will be done. The compatibility with isogenies hinges on Tate's formula for
the Euler characteristic of the kernel [22, p. 109].
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Proposition 6.12 1) If Theorem 5.5 is true for the groups G1 and G2, it is true
for the product G � G1 � G2.

2) If Theorem 5.5 is true for the group GK over the ®nite separable
extension K=k, it is true for the group G � ResK=k�GK�.

3) Let 1! F ! G0 !
f

G! 1 be the exact sequence of separable isogeny,
so F � ker f is a ®nite commutative eÂtale group scheme over k. If Theorem
5.5 is true for either G or G0, it is true for the other group. Moreover, if
Theorem 5.5 is true for both G and G0, then we have Tate's formula:

v�F � � #H0�k; F � �#H 2�k; F ��#H 1�k; F � � j#F �ks�jv:

Proof. 1) In this case, lG � lG1

 lG2

[21, p. 143], and jxGj � jxG1
j 
 jxG2

j.
The latter follows from the fact that G0 � G0

1 � G0
2 as smooth group schemes

over A. Since

L�M� � L�M1�L�M2�; L�M_�1�� � L�M_1 �1��L�M_2 �1��; e�G� � e�G1�e�G2�;

and H 1�k;G� � H1�k;G1� � H 1�k;G2�, the result follows.
2) In this case, L�M� � L�MK� and L�M_�1�� � L�M_�1�� by Artin's

formalism for induction. Similarly, e�GK� � e�G� [12, p. 295], and H 1�k;G�
� H1�K;GK�. Since G�k� � GK�K�, we clearly have lG identi®ed with the
Haar measure lGK

. But G0 � ResAK=AG0
K , as this gives a smooth connected

group scheme over A with the correct points in A1 [7, p. 218�]. Hence jxGj is
identi®ed with jxGK j.

3) Serre shows that f ��lG� is the measure [21, p. 152]

#H0�k; F �
# G�k��fG0�k�ÿ � � lG0 on G0�k�

On the other hand, since C is anisotropic, the cohomology sequence (of
®nite abelian groups):

1! G�k�=fG0�k� ! H 1�k; F � ! H 1�k;G0� ! H1�k;G� ! H 2�k; F � ! 1

is exact. Hence

#H1�k;G� � f ��lG� � v�F � �#H1�k;G0� � lG0

as measures on G0�k�.
By Proposition 4.7, we have

f ��jxGj� � j#F �ks�jv � jxG0 j

Since e�G� � e�G0� and the L-function is unchanged under isogeny, we de-
duce that the combination of Theorem 5.5 for G (resp. G0) and Tate's for-
mula v�F � � j#F �ks�jv implies Theorem 5.5 for G0 (resp. G). Moreover if
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one has Theorem 5.5 for both G and G0, this implies Tate's formula for v�F �.
(Thus, our proof of Theorem 5.5 for tori gives a proof of the formula for
v�F �, similar to Tate's original argument).

We have now completed the proof of Theorem 5.5 for quasi-split groups
G. To ®nish the proof in the general case, we let H be the quasi-split inner
form of G and appeal to Kottwitz's results on the compatibility of the
measures e�G� � lG and lH � e�H� � lH [13, p. 631]. Let W : G! H be an
inner twisting over ks. Then by de®nition we have

W��jxH j� � jxGj;

and by Kottwitz's results

W��lH � � W��e�H� � lH � � e�G� � lG:

Since H 1�k;G� and H 1�k;H� are both dual to Z�Ĝ�C � Z�Ĥ�C, they are
isomorphic. Since the motive M of G is, by de®nition, the motive of H , we
are done.

7 The real case

We now consider the local functional equation when k is Archimedean,
although only the case when k � R is non-trivial. Assume G is connected
and reductive over k with motive M . Again, we have the local L-function
value in R� [ f1g. When k ' C we have

L�M� =
Q
d�1

CC�1ÿ d�dim Vd

L�M_�1�� =
Q
d�1

CC�d�dim Vd

8><>:�7:1�

with CC�s� � 2 � 2pÿs � C�s�. When k � R, let V �d be the subspace of Vd on
which complex conjugation acts by �1. Then

L�M� =
Q
d�1

CR�1ÿ d�dim V �d CR�2ÿ d�dim V ÿd

L�M_�1�� =
Q
d�1

CR�d�dim V �d CR�d � 1�dim V ÿd

8>><>>:�7:2�

with CR�s� � pÿs=2C�s=2�.

Lemma 7.3 The following conditions are all equivalent

1) The Euler-PoincareÂ measure lG is non-zero on G�k�.
2) The L-function L�M� is ®nite.
3) The group G has a compact inner form over k.
4) There is a maximal anisotropic torus T ! G.
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Proof. This is clear when k � C, when the conditions hold only when
G � 1. When k � R, the equivalence of 1), 3), and 4) was shown by Serre

[21, p. 136]. It is well-known that condition 3) is equivalent to the fact that

Vd � V �ÿ1�
d

d for all d � 1, which is precisely what is needed to show that
L�M� is ®nite.

We henceforth assume that k � R, and that G has a compact inner form
Gc. Let W : G! Gc be an inner twisting over C. We will de®ne a canonical
Haar measure jxGj on G�R� by ®rst de®ning a measure jxGc j on the com-
pact group Gc�R�, following Bourbaki, and then transferring that measure
to G : jxGj � W��jxGc j�.

For simplicity in notation, ®rst assume G � Gc is compact. Let
g � Lie�G=R�; by Bourbaki [1, p. 122] it su�ces to de®ne a Haar measure
jxgj on g. Let T ! G be a maximal torus, and t! g the corresponding
Cartan sub-algebra. Let C�T � be the kernel of the exponential map t! T ;
then C�T � ' 2piX��T � in t
C. Let U be the roots of t
C on g
C, and let
fXaga2U be a Chevalley system in g
C which satis®es: X a � Xÿa. Then
[1, p. 17]:

ua �Xa � Xÿa

va �i�Xa ÿ Xÿa�

are elements of g, with ua ^ va � ÿ2iXa ^ Xÿa in
V2 g. Bourbaki [1, p. 112]

shows that

gZ �
1

2p
C�T �; ua; va

� �
a2U

gives a Lie algebra over Z with gZ 
R � g. There is therefore a unique Haar
measure jxgj on g such that Z

g=gZ

jxgj � 2#�U��

The associated Haar measure jxGj on G�R� satis®es [1, p. 122]:Z
G�R�

jxGj �
Y
d�1

�2p�d�dim Vd

�d ÿ 1�! :�7:4�

Having de®ned jxGj on the compact group G � Gc, we can transfer it to any
inner form of Gc by an inner twisting. We henceforth assume G is an
arbitrary inner twist of Gc.

Let e�G� � �1 be the sign that Kottwitz attaches to G. If H is the quasi-
split inner form of G, then [12, p. 289]

e�G� � �ÿ1�12 dim�XG�ÿ1
2 dim�XH ��7:5�

where XG and XH are the symmetric spaces of G and H respectively.
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Proposition 7.6 Assume that G has an anisotropic maximal torus T ! G, and
let W c be the compact Weyl group of T in G. Then

L�M� � lG � e�G� �
2dim T

#�W =W c� � L�M_�1�� � jxGj

in the space of Haar measures on G�k�.
Proof. Again, Kottwitz [13, p. 631] has shown that the measures
e�G� � lG=#�W =W c� and e�Gc�lGc are compatible. Hence, it su�ces to prove
Proposition 7.6. when G � Gc is compact. In this case, lG has volume 1 on
G�R�, and the volume of jxGj is given by formula (7.4).

For d � 2 even, we ®nd that

L�Q�1ÿ d��
L�Q�d�� � 1

2

�2pi�d
�d ÿ 1�!

For d � 1 odd, and e the sign character of Gal�C=R� we ®nd that

L�Q�e��1ÿ d��
L�Q�e��d�� � 1

2i
�2pi�d
�d ÿ 1�!

Since Vd � V �ÿ1�
d

d by hypothesis, we have

L�M�
L�M_�1�� � 2

dim T � �ÿ1�m �
Y
d�1

�2p�d�dim Vd

�d ÿ 1�!�7:7�

where m � 1
4 �dimG� dimM� ÿ dimMÿ�. Checking case by case, we ®nd

that m � 1
2 dim�XH �, where H is the quasi-split inner form of G. Hence

�ÿ1�m � e�G�. Since W � W c in this case, a combination of (7.4) and (7.7)
proves Proposition 7.6.

8 The general local result

We end by restating Theorem 5.5 and Proposition 7.6 in a common manner.

Theorem 8.1 Let k be a local ®eld of characteristic zero, and let G be a
connected reductive group over k. Assume that G has a maximal anisotropic
torus T , and let D�T ;G� be the ®nite set ker �H 1�k; T � ! H 1�k;G��. Then

L�M� � lG � e�G� �
#H 1�k; T �
#D�T ;G� � L�M_�1�� � jxGj

in the real vector space of invariant measures on G�k�, where lG is Euler-
PoincareÂ measure, and jxGj is the Haar measure de®ned in sects. 4 and 7.
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We will henceforth denote the cohomological invariant

c�G� � #H1�k; T �
#D�T;G� :�8:1�

It depends only on G. In the non-Archimedean case

c�G� � #H 1�k;G��8:2�

as the map H 1�k; T � ! H1�k;G� is a surjective group homomorphism. Since
C is anisotropic, we also have the formula

c�G� � #Z�Ĝ�C;�8:3�

where Ĝ is the complex dual group. In the real case [23, p. 13±14]:

c�G� � 2dim T

#�W =W c� :�8:4�

9 AdeÁ lic integrals

We now assume that k is a number ®eld, and let A be the ring of adeÁ les of k.
If G is connected and reductive over k, then G�k� is a discrete subgroup of
the locally compact group G�A� [26 p. 116].

Let S be a ®nite set of places of k, which includes the in®nite places. For v
not in S, let lv be the Haar measure Lv�M_�1�� � jxGm j on G�kv�. For v in S,
let lv be Euler-PoincareÂ measure on G�kv�.

For almost all places v, the group G is unrami®ed over kv (i.e. G is quasi-
split, and split by an unrami®ed extension) [28, pp. 55±56]. For almost all
places v where G is unrami®ed, the measure lv de®ned above has volume 1
on any hyperspecial maximal compact subgroup of G�kv�. We may therefore
de®ne the product measure

lS �b
v

lv on G�A�:�9:1�

Our aim is to calculate the integral of lS over G�k� n G�A�, using the global
L-function of M .

The L-function LS�M� is de®ned as the value at s � 0 of the function

LS�M ; s� �
Y
v 62S

det�1ÿ Fv � qÿs
v jMIv�ÿ1:�9:2�

This Euler product converges for Re�s� � 0, and has a meromorphic con-
tinuation to the entire complex plane [27, p. 16]. We make a similar de®-
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nition for the L-function LS�M_�1��. If S consists only of in®nite places, we
will write L�M� and L�M_�1�� for LS�M� and LS�M_�1�� respectively. Then
we have:

L�M� =
Q
d�1

L�Vd ; 1ÿ d�
L�M_�1�� =

Q
d�1

L�Vd ; d�

8<:�9:3�

where L�Vd ; s� is the Artin L-series of the rational representation Vd of
Gal�ks=k�.

Proposition 9.4 The following conditions are equivalent.
1) The connected center C of G is anisotropic.
2) The quotient space G�k� n G�A� has ®nite volume, for any Haar measure

l on G�A�.
3) The L-function L�M_�1�� is ®nite.

Proof. The equivalence of 1) and 2) is due to Borel and Harish-Chandra [4].
We will show that 1) is equivalent to 3). The product

Q
d�2 L�Vd ; d� is given

by an absolutely convergent Euler product, so is ®nite and non-zero. Hence
L�M_�1�� is ®nite if and only if L�V1; 1� is ®nite. But by Corollary 2.2,
L�V1; s� is the Artin L-function of the representation V1 � X ��C� 
Q of
Gal�ks=k�. This is ®nite at s � 1 if and only if V C

1 � 0 [27, p. 16], [30, p. 124],
which is equivalent to the condition that C is anisotropic.

Proposition 9.5 The value LS�M� is ®nite and rational, for any S.
If L�M_�1�� is ®nite, the following conditions are all equivalent.
1) The measure lS is non-zero on G�A�.
2) The Euler-PoincareÂ measure

Q
v2S lv is non-zero on

Q
v2S G�kv�.

3) The value LS�M� is non-zero.
Proof. The ®rst statement follows from (9.3), and Siegel's results on the
values of Artin L-series at negative integers [24].

The conditions 1) and 2) are equivalent without any hypothesis on
L�M_�1�� as for v 62 S lv is a positive measure on G�kv�. To see the equiv-
alence of 2) and 3), de®ne the complete L-functions

K�M� =
Q
v2S

Lv�M� � LS�M�
K�M_�1�� =

Q
v2S

Lv�M_�1�� � LS�M_�1��

8<:�9:6�

Then Artin's functional equation is given by [pg.18,26], [pg.328,10].

K�M� � e�M� � K�M_�1��;�9:7�

with e�M� a positive real number, whose square is an integer divisible only
by the primes rami®ed in M or k. More precisely, if f �Ind Vd� is the Artin
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conductor of the representation Ind k=Q�Vd�; f�Vd� is the Artin conductor of
Vd , and dk is discriminant of k over Q, then

e�M� � jdkjdimG=2 �
Y
d�1

N�f�Vd��dÿ
1
2 �

Y
d�1

f � Ind Vd�dÿ
1
2:�9:8�

In any case, from (9.7) and the hypothesis that L�M_�1�� is ®nite, we deduce
that K�M� is ®nite and non-zero. Hence LS�M� is non-zero precisely whenQ

v2S Lv�M� is ®nite. By Proposition 5.3, this is equivalent to the condition
that

Q
v2S lv is non-zero. Our main global result is the following integral

formula, which holds when the connected center C of G is anisotropic over
k.

Theorem 9.9 Assume that L�M_�1�� is ®nite and that LS�M� is non-zero. For v
in S, let e�Gv� and c�Gv� be the signs and cohomological invariants attached to
G=kv in sect. 8, and let s�G� denote the Tamagawa number of G.

Then Z
G�k�nG�A�

lS � LS�M� � s�G�
.Y

v2S

e�Gv�c�Gv�:

Note 9.10 We may replace the product
Q

v2S e�Gv� of signs in the integral
formula by the product

Q
v 62S e�Gv�, asY

v

e�Gv� � 1 [12, p. 297]:�9:10�

If G=kv is quasi-split for all v 62 S, then e�Gv� � 1 for all v 62 S, and henceQ
v2S e�Gv� � 1. This gives the formula stated in the introduction.

10 The integral formula

We now present a proof of Theorem 9.9. The method is similar to the local
case: by a series of reductions we are left with the cases where either G is
quasi-split, simply-connected, and absolutely quasi-simple over k or G is a
one dimensional anisotropic torus over k. We check these cases by explicit
calculation.

Throughout this section, the hypothesis that L�M_�1�� is ®nite is as-
sumed. Thus, the connected center C of G is anisotropic. We will not always
assume that LS�M� is non-zero; if it is zero then lS � 0 by Proposition 9.5.
In all cases we will refer to the integral formula of Theorem 9.9 as i�G; S�. If
S consists only of in®nite places, we refer to the formula as i�G�, and write
the measure lS simply as lG.
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Proposition 10.1 1) Assume that i�G; S� is true, and that S0 � S. Then i�G; S0�
is true.

2) Assume that H is an inner form of G over k, and that i�G; S� is true. Then
i�H ; S� is true.

Proof. 1) Write S0 � S [ T. Then

LS0 �M� � LS�M� �
Y
v2T

det�1ÿ FvjMIv�:

On the other hand, by Theorem 8.1,

lS0 � lS �
Y
v2T

det�1ÿ FvjMIv��e�Gv�c�Gv�:

Hence i�G; S� implies i�G; S0�. The converse is also true, provided thatQ
v2T det�1ÿ FvjMIv� 6� 0.
2) Let x be a non-zero di�erential form of top degree on G over k. We

de®ne the Tamagawa measure jxGj on G�A� (assuming that C is anisotro-
pic) by the formula:

jxGj �b
v

Lv�M_�1��jxjv
�
K�M_�1�� � jdkjdim�G�=2�10:2�

where dk is the discriminant of k over Q. Then jxGj is independent of the
choice of x 6� 0, and we have the formula [19, p. 124].Z

G�k�nG�A�

jxGj � s�G�:�10:3�

Hence i�G; S� is equivalent to the formula:Y
v2S

e�Gv�c�Gv� � lS � LS�M� � jxGj�10:4�

in the space of measures on G�A�. This, in turn, is equivalent to the fol-
lowing identity of real numbers:

Y
v

jxGv j
�jxjv � K�M�

K�M_�1�� � jdkj�dimG�=2

� e�M��jdkj�dimG�=2

�
Y
d�1

N�f�Vd��dÿ
1
2:

�10:5�
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In the product on the left hand side of (10.5), almost all of the terms are
equal to 1.

Let W : G! H be an inner twisting over ks. If lH � 
lv is a measure on
H�A�, we de®ne W��lH � � 
W��lv� on G�A�. Here we transfer lv � cjxjv
on H�kv� to a measure on G�kv� by the usual formula: W��lv� � c � jW�xjv.
Clearly, the transfer of Tamagawa measure jxH j on H�A� is Tamagawa
measure on G�A�: W��jxH j� � jxGj (cf. [15, p. 69±71]).

But by Theorem 8.1, we have

W�
Y
v2S

e�Hv�c�Hv� � lS;H

 !
�
Y
v2S

e�Gv�c�Gv� � lS;G:

If i�G; S� is true, we have (10.4) on G�A�. This implies the corresponding
equality of measures on H�A�. Therefore i�H; S� is true.

Note. In the proof of part 2) of Proposition 10.1, we do not use the deeper
fact, due to Kottwitz [13] that s�G� � s�H�. Nor is the theorem that s�G� �
1 for simply-connected groups used anywhere in the proof of Theorem 9.9.
However, it is critical in the applications of the integral formula to the trace
formula.

By Proposition 10.1, we may reduce to the case when G is quasi-split over
k, and S contains only the in®nite places. Then e�Gv� � 1 for all places v, and
we must show that (10.4) holds:Y

vj1
c�Gv� � lG � L�M� � jxGj:

If G 6� 1, and k has a complex place, both sides of this identity are zero.
Hence, we may assume that k is totally real, and that the real Lie group
G�k 
R� �Qvj1 G�kv� has a compact inner form. Then both sides of (10.4)
are non-zero measures on G�A�.

Proposition 10.6 1) Assume that G � G1 � G2. If i�G1� and i�G2� are true, so
is i�G�. If i�G� and i�G1� are true, so is i�G2�. If i�Gn� is true for any n � 1,
then i�G� is true.

2) Assume that G � ResK=k�GK�. Then i�G� is true if and only if i�GK� is
true.

3) Let 1! F ! G0!
f

G! 1 be the exact sequence of a central isogeny

from G0 to G. Then i�G� is true if and only if i�G0� is true.

Proof. 1) Since M � M1 �M2, the terms in (10.5) for G are just the products
of the terms for G1 and G2. Since both sides of (10.5) are positive real
numbers, i�Gn� for any n � 1 implies i�G�.

2) If we identify G�A� � GK�AK�, then lG is identi®ed with lGK
and jxGj

is identi®ed with jxGK j. The other terms are equal, as M � Ind MK .
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3) Let x0 � f ��x�, so jxG0 j � f ��jxGj�. To show that i�G� is invariant
under isogeny, we use the fact that L�M� is an isogeny invariant, and show
that:

f �
Y
vj1

c�Gv� � lG

0@ 1A �Y
vj1

c�G0v� � lG0 :�10:7�

This follows from our local results and product formula. By Proposition 4.7,
we have

f ��lv� � j#F �ks�jv � l0v
for all ®nite v, and similarly one shows that

f ��c�Gv�lv� � j#F �ks�jv � c�G0v�l0v
for all real v. Then (10.7) follows from the product formula:Y

v

j#F �ks�jv � 1:

By Proposition 10.6, we are now reduced to proving i�G� in the following
two cases:

a) G is an absolutely quasi-simple, simply-connected group, which is quasi-
split over k.

b) G is a one dimensional torus, which is anisotropic over k 
R, and is
split by totally imaginary quadratic extension K=k.

To see this, we use the isogeny Gsc � C ! G to reduce to simply-con-
nected groups and tori. Since Gsc � Qi Reski=k�Gki�, with Gki simply-con-
nected and absolutely quasi-simple, this reduces simply-connected groups to
case a). Similarly, since C is anisotropic over k 
R, we have an isogeny
from the product

Q
i Reski=k�Ti� � Cn to

Q
j Reskj=k�Tj�, where all Ti have

dimension 1 and are split by totally imaginary quadratic extensions Ki=ki

(cf. [19, p. 125], [10, p. 548]). Thus the case of a torus reduced to b).
In case a) i�G� is equivalent to a result of G. Prasad. Fix a non-zero

di�erential x on G over k. For ®nite v, Prasad de®nes the real number cv by

cv � jxGv j=jxjv:

This ratio is equal to 1 for almost all v. For real v, he de®nes cv by

cv � c�Gv� � lv=c�Gc�e�Gc�jxjv
where lv is Euler-PoincareÂ measure on G�kv�, and Gc is the compact inner
form of G over kv. Thus cv � jxjv is the unique Haar measure on G�kv� whose
transfer to Gc�kv� has volume � 1. Prasad's main result is a formula for the
product [20, p. 96]:
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Y
v

cv � Nk=Q�dL=k�
1
2s�G� �

Yr

i�1

�mi�!
�2p�mi�1

 !�k:Q�
:

Here L is a minimal ®eld extension (of degree �3 over k) whose Galois
closure splits G, dL=k is the discriminant of L over k, s�G� is an integer
associated to G [20, pp. 93±94], and m1; . . . ;mr are the exponents of G
[20 p. 96].

Since for all real v,

lv � c�Gv� � Lv�M_�1��
Lv�M� � jxGv j

by Proposition 7.6, andYr

i�1

�mi�!
�2p�mi�1 �

Lv�M_�1��
Lv�M� � e�Gc� � c�Gc�

by (7.7) (the degrees di of the invariants are given by di � mi � 1), Prasad's
result is equivalent to the statement:Y

v

jxGv j
�jxjv � Nk=Q�dL=k�

1
2s�G�:

By (10.5), we are therefore reduced to proving that:Y
d�1

f�Vd�2dÿ1 � ds�G�
L=k :�10:8�

This follows a calculation of the rami®cation of M . If G is quasi-split but not
split, the Galois group of the splitting ®eld acts non-trivially on Vd , when d is
odd. It acts trivially on Vd when d is even, except when G is of type D2r and
d � 2r, when it acts faithfully. This gives the formula (10.8).

In case b), we have L�M� � L�v; 0�, where v is the non-trivial quadratic
character of Gal�K=k�. This can be evaluated as a ratio of zeta functions,
whose leading terms at s � 0 are given by the class-number formula
[27, pg. 48]:

L�M� � ÿ hKRK

wK

.
ÿ hR

w

� hK

h
� w
wK
� 2�k:Q�ÿ1

�UK : lK � U�

Here hK and h are the class numbers of K and k, UK and U are their unit
groups, w � 2 is the order of lk � h�1i, and wK is the order of lK , the group
of roots of unity in K. Since cv�G� � 2 for all real v, to prove i�G� we must
show that
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lG �
hK

h � wK � �UK : lK � U�
� jxGj�10:9�

as Haar measures on G�A�.
Let M � Qv Mv be the maximal compact subgroup of G�A�. Since

Mv � G�kv� for all real v,
R

Mv
lv � 1. Similarly, if v is unrami®ed in K=k, then

Mv � G0�Av� and
R

Mv
lv � 1. However, if v is rami®ed in K=k, then G0�Av�

has index 2 in Mv � G�Av� � G�kv� � K�v =k�v , and consists of the elements
A�K;v=A�v with even valuation. Hence

R
Mv

lv � 2, and
R

M lG � 2t, with t the
number of ®nite places v in k which are rami®ed in K.

Let h�G� be the cardinality of the ®nite quotient group G�A��G�k� �M .
Since G�k� \M � G�k�tor has order wK , we ®nd thatZ

G�k�=G�A�

lG �
2t � h�G�

wK
:

On the other hand, since s�G� � 2 by [19, p. 128], we haveZ
G�k�=G�A�

jxGj � 2;

and (10.9) is equivalent to the formula:

h�G� � hK

2tÿ1 � h � �UK : lKU��10:10�

for the class-number of G. This is standard genera theory, and we sketch the
proof.

Since G�k� � �K��N�1 and G�A� � �A�K�N�1, we consider the snake
lemma for the diagram:

1 ÿ! K� � Qvj1 K�v � Â�K
� �

ÿ! A�K ÿ! CK ÿ! 1???yN
???yN

???yN

1 ÿ! k� � Qvj1 k�v � Â�
� �

ÿ! A� ÿ! C ÿ! 1

Here A is the integers of k; AK is the integers of K, C is the class group of k,
and CK is the class group of K.

This gives a long exact sequence of abelian groups:

1! G�A�=G�k� �Mÿ! ker �N : CK ! C�
&

1 coker�N:CK!C� A�
.
NA�K 

f
k�
Y
vj1

k�v � Â�

0@ 1A.NK�
Y
vj1

NK�v �NÂ�K

0@ 1A
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These groups are all ®nite, with the exception of the source and target of f .
Replacing those with �ker f � and �coker f � respectively, we get:

h�T � �# ker �N : CK ! C� �# coker f
# coker �N : CK ! C� �# ker f

� hK

h
�# coker f

# ker f
:

�10:11�

By local class ®eld theory, the quotientY
vj1

k�v � Â�
.Y

vj1
NK�v �NÂ�K

is an elementary abelian 2-group of order 2t��k:Q�. By global class ®eld
theory, the map

k�=NK� ! A�=NA�K

is an injection (as K=k is cyclic), with cokernel of order 2 � �K : k�. On the
other hand:

k� \
Y
vj1

k�v � Â� � U

NK� \
Y
vj1

NK�v �NÂ�K � NUK

�U : NUK� � �U : U2�
�NUK : U2� �

2�k:Q�

�UK : lK � U�
Putting these together gives:

# coker f
# ker f

� 2

2t � �UK : lKU� ;

which, combined with (10.11), gives the desired formula (10.10) for the class-
number of G.

This concludes the proof of Theorem 9.9.

11 A general global result

The identity (10.5), in its ®nal form:Y
v

jxGv j=jxjv � e�M�=jdkjdimG=2

makes no reference to L�M_�1��, or to LS�M�, and is true in greater gen-
erality than Theorem 9.9. However, to make sense of the left hand side, we
must de®ne the canonical Haar measures jxGv j on G�kv� in all cases.
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When kv is non-Archimedean, jxGv j is de®ned in Sect.4. We recall that
when G is quasi-split over kv, we haveZ

G0�A�

jxGv j � Lv�M_�1�� � 1�11:1�

by Proposition 4.7. In general, if H is the quasi-split inner form of G over kv

and W : G! H is an inner twisting over ks
v, we de®ne jxGv j � W�jxHv j by

transfer.
In the Archimedean case, we have only de®ned jxGv j when G�kv� has a

compact inner form. When G�kv� is compact, we haveZ
G�kv�

jxGv j �
Y
d�1

�2p�d�dim Vd

�d ÿ 1�!�11:2�

by formula (7.4). We ®rst do the general case G when kv � R. Let Gc be the
compact form of G over R, and choose an isomorphism W : G! Gc over C.
Then W � a �W with a an automorphism of Gc over C. We have the
formula

det�ajLie�Gc�� � �ÿ1�dim�G=K��11:3�

where K is the maximal compact subgroup of G. In particular, the di�er-
ential

xGv � W��xGc
v
� � idim�G=K��11:4�

is de®ned over R, and jxGv j is the canonical Haar measure on G�R�. When
kv � C, we have G�kv� � G0�R� with G0 � ResC=R G, and we de®ne jxGv j to
be equal to the canonical Haar measure on G0�R�.

The general global theorem, which is an extension of Prasad's work
[20 pp. 95±96], is the following.

Theorem 11.5 Let k be a number ®eld, and let G be a connected, reductive
group over k with motive M . Let x be a non-zero di�erential of top degree on
G over k and let jxGv j be the canonical Haar measure on G�kv�, for each place v
of k. Then jxGv j � jxjv for almost all v, andY

v

jxGv j
�jxjv � e�M��jdkj

dimG
2 :

This formula should also hold when k � F �X � is a function ®eld of a
curve X over a ®nite ®eld F , replacing jdkj with q2gÿ2, where g is the genus of
X , and q is the cardinality of F .
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