
Tight contact structures and Seiberg±Witten invariants

P. Lisca1, G. MaticÂ 2

1Dipartimento di Matematica, UniversitaÂ di Pisa, I-56127 Pisa, Italy

(e-mail: lisca@dm.unipi.it)
2Department of Mathematics, The University of Georgia, Athens, GA 30602, USA

(e-mail: gordana@math.uga.edu)

Oblatum 1-III-1996 & 5-XI-1996

1. Introduction and statement of results

Contact structures are the odd-dimensional analogue of symplectic struc-
tures. Although much is known, the present understanding of both kinds of
structures is far from complete, even in low dimensions. Due to the work of
Cli� Taubes is it now a fact that there is a close relationship between
symplectic structures and Seiberg±Witten monopole equations on 4-mani-
folds [Ta1, Ta2, Ta3, Ta4]. The results contained in this paper may be
thought of as evidence that the 3-dimensional reduction of the Seiberg±
Witten equations is related with contact structures. Although we will not
work directly with the 3-dimensional version of the equations, we will use
the 4-dimensional Seiberg±Witten theory to prove new results about contact
structures on 3-manifolds.

Let M be a smooth 3-dimensional manifold. A contact structure on M is
a distribution n of tangent 2-planes locally de®ned by a 1-form a
(n � fa � 0g) such that a ^ da is nowhere vanishing. Therefore a ^ da de-
®nes an orientation on M and this orientation is independent of the choice of
the sign of a. If M is already oriented and a ^ da is a positive multiple of the
volume form, then n is called positive, otherwise it is called negative. When
M is oriented, a de®nes a coorientation, and hence an orientation of the
plane ®eld n. Changing from a to ÿa changes the orientation of n. On a
generically embedded surface S � M , n induces a line ®eld which integrates
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to a foliation Sn with isolated singularities (at points where S is tangent to n)
which is called the characteristic foliation [Ae]. There is an essential di-
chotomy among contact structures: they are either tight or overtwisted. A
contact structure is called overtwisted if there is an embedded disc D � M
such that its characteristic foliation contains a closed orbit with exactly one
singular point inside it. Otherwise the contact structure is called tight
([Ae,E15]). An important result due to Eliashberg [El1] is that the classi®-
cation up to isotopy of overtwisted contact structures on closed 3-manifolds
coincides with their homotopy classi®cation as 2-plane ®elds. On the other
hand, the classi®cation of tight contact structures is far from understood.

A source of examples of tight contact structures is provided by bound-
aries of pseudo-convex domains inside 2-dimensional complex manifolds.
Let X be a smooth 4-manifold with an almost complex structure
J: TX ! TX . Any smooth, oriented hypersurface M � X has a canonically
induced distribution of J -invariant tangent 2-planes n � TM \ J�TM�. No-
tice that J induces a complex structure on n. Suppose that M is de®ned as
the zero set of a smooth function f : X ! R, with df jM 6� 0. Then, n is the
kernel of the 1-form a � J�df and, up to changing f into ÿf , one may
assume that a de®nes the coorientation of n inside M determined by the
complex orientation of n and the orientation of M . M is called J -convex if
the quadratic form da�v; Jv� restricted to n is everywhere positive de®nite.
Thus, n is a contact structure. When M is J -convex and J is integrable, M is
also called strictly pseudo-convex, and the induced contact structure n is
called holomorphically ®llable. It is a theorem of Gromov and Eliashberg
[El3,Gro] that ®llable contact structures are tight. Holomorphically ®llable
contact structures are naturally oriented, since they are distributions of
complex lines. This orientation agrees with the orientation determined by
a � ÿJ �df and the orientation of M as the boundary of ff < 0g. Since we
will mainly consider ®llable structures, from now on we shall always im-
plicitly assume that a contact structure is oriented.

Generalizing Bennequin's work, Eliashberg [El3] proved that if n is an
oriented tight contact structure on a 3-manifold M , e�n� 2 H2�M ; Z� is its
Euler class as a 2-plane bundle and S � M is a closed oriented surface, then
either S is a sphere and he�n�; �S�i � 0 or

jhe�n�; �S�ij � ÿv�S��1�

This inequality clearly implies that for any compact 3-manifold there are
only ®nitely many classes that can be Euler classes of tight contact structures
(cf. 4.3 in [El3], 2.2.2 in [El5]). It is an open question whether all the co-
homology classes allowed by (1) are Euler classes of tight contact structures.

We will discuss here various notions of equivalence of contact structures.
Two contact structures n1 and n2 are said to be isomorphic, or equivalently,
two contact manifolds �M1; n1� and �M2; n2� are called contactomorphic if
there is a di�eomorphism sending one contact structure to the other. Such a
di�eomorphism is called a contactomorphism. There are two other notions
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of equivalence. They deal with the question of path-connectedness of the
space of 2-plane ®elds and of the space of contact structures. We will say
that the contact structures are homotopic if they belong to the same con-
nected component of the space of 2-plane ®elds, i.e. if they are connected by
a smooth family of 2-plane ®elds (which are not necessarily contact). Two
contact structures belonging to the same component of the space of contact
structures are called isotopic. Namely, by a classical result of Gray [Gra],
two contact structures on a closed 3-manifold are connected by a smooth
family of contact structures if and only if there is a di�eomorphism isotopic
to the identity which sends one contact structure to the other.

Clearly, two contact structures which are isotopic are both homotopic
and isomorphic. We will discuss here to what extent the converse fails and
these notions are di�erent. Since, as we said before, classi®cations up to
homotopy and isotopy agree for overtwisted contact structures, the question
is only interesting in the case of tight contact structures.

There is one example where the space of contact structures is under-
stood, namely S3. By the work of Eliashberg [El1], the isotopy classi®cation
of overtwisted structures coincides with their homotopy classi®cation as 2-
plane ®elds. The classi®cation of tight structures is simple: any tight contact
structure on S3 is isotopic to the standard one (see Sect. 2).

Consistently with the examples available at the time, a few years ago
Eliashberg [El4] formulated the conjecture that two tight contact structures
with the same Euler class are isotopic. It is now known that two tight contact
structures with the same Euler class do not have to be even homotopic.
Gompf's work [Go2] implies the existence of non-homotopic tight contact
structures on homology 3-spheres (having necessarily the same Euler class,
namely 0). It is also known that two tight contact structures which are
homotopic can be non-isomorphic. Moreover, homotopic tight contact
structures could be isomorphic but non-isotopic. The ®rst counterexamples
were provided by Giroux [Gi1, Gi2, Gi3], who used rigidity results about
Lagrangian submanifolds of cotangent bundles to construct examples of
homotopic but not isomorphic (and therefore certainly non-isotopic) tight
contact structures on T 3. Eliashberg and Polterovich, using results of Lut-
tinger on Lagrangian tori in C2, constructed homotopic, isomorphic but
non-isotopic contact structures on T 3 [EP]. In both of the Giroux and Eli-
ashberg±Polterovich counterexamples the tools used to distinguish the
structures relied on the fact that the underlying manifold was T 3.

The two kinds of counterexamples we discussed above are of a quali-
tatively di�erent nature. While the obstruction to the existence of a path
connecting two contact structures in the space of 2-plane ®elds can be de-
scribed purely in topological terms (see e.g. [Go2]), a ®ner tool is needed to
distinguish up to isotopy two tight contact structures which are homotopic
as 2-plane ®elds.

The proof of Theorem 1.1 below shows that 4-dimensional Seiberg±
Witten theory is subtle enough to distinguish many pairs of homotopic, non-
isomorphic tight contact structures. The theorem gives new counterexam-
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ples (of the second kind) to the conjecture on in®nitely many homology 3-
spheres.

Theorem 1.1. Given any positive integer n, there exist homology 3-spheres with
at least n homotopic, but non-isomorphic tight contact structures.

In order to explain the construction of the counterexamples, we will now
make a little digression.

A Stein manifold is a complex manifold which can be embedded as a
proper submanifold of Cn. Any Stein manifold X admits a smooth, strictly
plurisubharmonic function /, namely a smooth function which is strictly
subharmonic on any holomorphic curve in X (cf [EG]). A Stein manifold
with boundary can be de®ned as a smooth manifold with boundary W having
a Stein structure in its interior and admitting a smooth, strictly plurisub-
harmonic function which has @W as a level set (cf. [Go2]). Regular level sets
of a strictly plurisubharmonic function are strictly pseudo-convex, thus so is
@W . In complex dimension n > 2 Eliashberg [El2] has shown that any al-
most complex manifold having a proper Morse function with the indices of
all of its critical points � n carries a genuine complex structure which makes
its interior a Stein manifold with boundary. Thus the boundary carries a
tight contact structure. The main idea of the proof is that the standard Stein
structure on the 4-ball can be extended over handles of index � n. In the
case n � 2 the obstructions Eliashberg introduces in [El2] and which vanish
in higher dimensions do not always vanish. A su�cient condition (Theo-
rem 6.1 in [El4]) was brought to our attention by Emmanuel Giroux, as well
as by recent work of Bob Gompf [Go2] on the existence of Stein structures
on fake R4's. The condition is the following: surgery on a framed Leg-
endrian link in S3 will de®ne a Stein structure on the resulting 4-manifold if
the framing of each component K is fr�K� � tb�K� ÿ 1, where tb�K� is the
Thurston±Bennequin invariant of the Legendrian knot K. To prove theo-
rem 1.1 we consider contact structures which are induced on the boundary
of Stein manifolds de®ned by surgery on framed Legendrian links (see
Sect. 2). Di�erent Stein manifolds are shown to induce homotopic non-
isomorphic contact structures on the same homology sphere.

It seems to be a natural question to ask whether for a smooth 4-manifold
with boundary W there is a relationship among the various contact struc-
tures on @W which are induced by Stein structures with boundary on W . The
proof of Theorem 1.1 can be adapted to prove the following Theorem 1.2.
A di�erent proof has been recently announced by Kronheimer and Mrowka
[KM3]. Recall that an almost complex structure J on W has a canonically
associated Spinc-structure SJ . When H 2�W ; Z� has no 2-torsion SJ is de-
termined up to isomorphism by the Chern class of its determinant line
bundle c1�J� 2 H 2�W ; Z�, but in general there are non-isomorphic Spinc-
structures corresponding to the same c1.

Theorem 1.2. Let X be a smooth 4-manifold with boundary. Suppose J1, J2 are
two Stein structures with boundary on X with associated Spinc-structures H1
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and H2. If the induced contact structures n1 and n2 on @X are isotopic, then H1

and H2 are isomorphic (and in particular have the same c1).

The contents of the paper are as follows. In Sect. 2 we exploit the above
mentioned result of Eliashberg to construct certain families of tight contact
structures, showing that all the contact structures in the same family are
homotopic as 2-plane ®elds. In Sect. 3 we prove the following general result,
which seems to be interesting on its own: given an exhausting strictly
plurisubharmonic function / on a Stein manifold X, any sublevel set
Xc � f/ < cg can be holomorphically embedded as a domain inside a
smooth projective variety with ample canonical bundle S having a KaÈ hler
form whose pull-back to X equals x/ � dJ��d/�, the symplectic form in-
duced by /. Moreover, when X has complex dimension two S may be chosen
so that b�2 �S� > 1. The contact structures constructed in Sect. 2 are those
induced by the complex structure on the boundary of such domains Xc. In
Sect. 4 we prove Theorems 1.1 and 1.2 by exploiting the following idea. Let
Xi � �X ; Ji�, i � 1; 2, be two Stein structures on the same smooth 4-manifold
with boundary X , and let ni, i � 1; 2 be the induced contact structures on
@X . If n1 and n2 are isotopic (or just isomorphic, in special cases) then one
can cut X1 out of a compact KaÈ hler surface S containing it as a symplectic
domain and glue back X2 in such a way that the resulting closed 4-manifold
X is di�eomorphic to S and admits a symplectic structure. Finally, results
from Seiberg±Witten theory applied to X are used to relate the ®rst Chern
classes and the Spinc-structures of X1 and X2, and prove the theorems. In
Sect. 5 we deduce some ®nal consequences of Corollary 3.3 and we end the
paper with a question.

2. Construction of contact structures

In this section we will de®ne certain families of contact structures, and we
shall use Proposition 2.2 to prove that members of the same family are
homotopic as 2-plane ®elds.

A knot K in a contact 3-manifold M is Legendrian if it is tangent to the
plane ®eld n at every point. For a Legendrian knot K which is homologous
to zero in M and a relative homology class b 2 H2�M ;K� the Thurston±
Bennequin invariant tb�K; b� is de®ned as follows: if S is an oriented surface
which represents b and K 0 is a ``parallel copy'' of the knot K (obtained by
pushing o� K along a vector ®eld transversal to n) then tb�K; b� is the
homological intersection of K 0 and S. This invariant is independent of the
orientation of the knot. It was originally de®ned by Bennequin [Be] by using
the push-o� of the curve in the direction of the vector ®eld normal to the
curve and contained in n, which gives the same result.

Another invariant associated to an oriented Legendrian curve K in a
contact 3-manifold and a surface S bounded by K representing
b 2 H2�M ;K� is the rotation number r�K; b�. To de®ne it choose a trivial-
ization of the bundle njS . Let t be the vector ®eld tangent to K determining
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the orientation. The degree of t with respect to the chosen trivialization
depends only on K and b and is the rotation number. It follows from the
de®nition that when the orientation of K is reversed, r�K; b� changes sign.

Let us recall a few useful properties of the standard contact structures on
S3 and R3. Consider the sphere S3 � C2. The complex lines tangent to S3

de®ne the standard contact structure n0. When restricted to the complement
of a point, n0 is isomorphic to the standard structure on R3 de®ned by the 1-
form a � xdy � dz (cf. [Be, Erl]). A front C � R2 � f�y; z�g is a piecewise-
smooth immersed curve with ®nitely many singularities which are either
ordinary double points or horizontal cusps, such that the cusps are exactly
the local extrema of yjC. Moreover, the lines tangent to C are nowhere
vertical. The projection of a generic Legendrian knot K � R3 to the yz-plane
is a front CK , and the knot K can be reconstructed from CK using the
di�erential equation dz=dy � ÿx. In particular, the diagram obtained from a
front C by letting the over-arc at any double point be the one with the most
negative slope is a knot diagram for the Legendrian knot KC constructed
from C via the di�erential equation (see Fig. 1 for an example of such
diagrams).

Given an oriented Legendrian knot K � R3 � S3, it is not hard to check
that its Thurston-Bennequin invariant tb�K� and rotation number r�K�
(notice that, since H2�S3;K� � 0, b can be omitted) can be calculated from
such a generic projection in the following way. Let w denote the writhe of K,
namely the algebraic number of crossings. Let c denote the number of cusps,
a the number of ascending cusps and d the number of descending cusps.
Then tb�K� � wÿ 1

2 c, while r�K� � 1
2 �d ÿ a�. In Fig. 1 the diagram of a

Legendrian right-handed trefoil is shown, and tb and r are computed.

The following result, due to Eliashberg, is implicitly contained in [El2]
(and explained in detail in [Go2]).

Theorem 2.1. ([El2],[El4, Theorem 6.1]). Let W be a smooth 4-manifold with
boundary having a handlebody decomposition B4

S
i H 2

i with only 2-handles.
Suppose that there exists a Legendrian link L � Si Ki in the framed isotopy
class of the union of the attaching circles of the 2-handles such that
fr�Ki� � tb�Ki� ÿ 1 for all i. Then W admits a structure of Stein manifold with
boundary such that, if hi denotes the 2-homology class supported by H2

i , then,
hc1�W �; hii � r�Ki�.
Proof. (Sketch) One can easily check that the conditions fr�Ki� � tb�Ki� ÿ 1
insure that the attaching maps of the 2-handles give special HAT's in the

Fig. 1
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sense of [El2, Sect. 2]. Hence, the proof of 1.3.2 in [El2], which deals with
complex dimension > 2, carries over to show that a standard plurisubhar-
monic function on the 4-ball can be extended to a smooth strictly pluri-
subharmonic function on W having @W as a level set and exactly one critical
point of index 2 inside each 2-handle. Moreover, the extension can be
constructed independently over each 2-handle. This proves the ®rst part of
the statement. The property of the resulting Chern class follows from the
construction and the de®nition of r. (

We are now ready to de®ne our families of contact structures. We will
use the so-called nuclei Nn (studied e.g. in [Go1]), which are the 4-manifolds
with boundary having the framed link description given in Fig. 2a. The
boundary of Nn is isomorphic to the Brieskorn homology sphere
R�2; 3; 6nÿ 1�, endowed with orientation opposite to the one as a boundary
of the Milnor ®ber of the corresponding singularity.

These framed links can be realized as Legendrian in several ways
(Fig. 2b). For n � 2, denote by W k

n , 1 � k � nÿ 1, the Stein manifolds with
boundary constructed by attaching handles along these Legendrian links
and applying Theorem 2.1. Using the theorem, from Fig. 2b we read o�
the values hc1�W k

n �; T i � 0, hc1�W k
n �; Si � 2k ÿ n. Hence c1�W k

n � � �2k ÿ n�
PD�T �. Thus, although all the W k

n 's are the same as smooth manifolds, they

are di�erent complex manifolds. We denote by nk
n the holomorphically

®llable (hence tight) contact structures induced on @Nn by the complex
structure on W k

n .
We learned the statement of the following proposition from Bob Gompf.

A forthcoming preprint of Gompf contains a more detailed analysis for a
general 3-manifold [Go2].

Proposition 2.2. Let Xi, i � 1; 2, be two almost complex 4-manifolds with
boundary. Let M be an oriented integral homology 3-sphere, and suppose there
exist orientation-preserving di�eomorphisms /i : M ! @Xi. Let ni, i � 1; 2 be
the 2-plane ®elds induced on @Xi by the almost complex structures on Xi. Then,
/�1�n1� and /�2�n2� are homotopic as 2-plane ®elds if and only if

c1�X1�2 ÿ 2v�X1� ÿ 3r�X1� � c1�X2�2 ÿ 2v�X2� ÿ 3r�X2�:
Proof. Notice that, if X is an almost complex 4-manifold with a homology
sphere boundary, c1�X � 2 H 2�X ; Z� � H 2�X ; @X ; Z� is well-de®ned, and

Fig. 2
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c1�X �2 2 H 4�X ; @X ; Z� can be identi®ed with the number hc1�X � [ c1�X �;
�X ; @X �i 2 Z.

Denote by Ji, i � 1; 2, the almost complex structure on Xi. Fix Ji-in-
variant Riemannian metrics gi on Xi, and let fvi; Jivi;wig be orthonormal
global frames for T@Xi such that vi 2 ni. Let X 2 denote X2 with the opposite
orientation and let X � X1 [ X 2 be the smooth closed oriented manifold
obtained by gluing via the di�eomorphism U � /2 � /ÿ11 : @X1 ! @X2. J2
gives T X 2 a structure of a complex bundle (note that this is not an almost
complex structure on X 2, since it does not de®ne the same orientation).
De®ne a complex bundle E � TX1 [l T X 2 ! X by gluing the restrictions of
TX1 and T X 2 via a complex bundle isomorphism l : TX1j@X1 ! T X 2j@X2

covering U and sending v1 to v2 and w1 to w2. If we look at the two clutching
maps de®ning the bundles E and TX we see that

p1�TX � ÿ p1�E� � �2 deg�F �;�2�

where p1 denotes the ®rst Pontrjagin number, i.e. the evaluation of the ®rst
Pontrjagin class on the fundamental class of X , and F : @X1 ! SO�3� is the
map de®ned by associating to every point of @X1 the matrix expressing the
frame fdU�v1�; dU�J1v1�; dU�w1�g in terms of the frame fv2; J2v2;w2g for
T@X 2. /�1�n1� and /�2�n2� are homotopic as 2-plane ®elds if and only if F is
null-homotopic, and since @X1 is an integral homology sphere the map F is
null-homotopic if and only if F has degree zero, i.e. if and only if
p1�TX � � p1�E�.

Since l�J1�w1�� � J2�w2�, the vector ®eld v � J1�w1� can be considered as
a section of Ej@X1. On the other hand, v is also a section of TX1j@X1, and
l�v� a section of TX2j@X2. Now we observe that the obstruction to extend v
as a nonzero section of TX1 is equal to v�X1�, while the obstruction to extend
l�v� as a nonzero section of TX2 is equal to ÿv�X2� (because the orientation
of T X 2 is the opposite of the one compatible with J2). Hence, the obstruction
to extend v as a nonzero section of E, i.e. the Euler number of E, is equal to
e�E� � v�X1� ÿ v�X2�.

By the Mayer±Vietoris sequence there is a direct sum decomposition
H 2�X � � H2�X1� � H2�X2�, and under this decomposition c1�E� � c1�X1�ÿ
c1�X2�. Hence,

p1�E� � c1�E�2 ÿ 2e�E� � c1�X1�2 ÿ c1�X2�2 ÿ 2v�X1� � 2v�X2�:�3�

On the other hand, by the Hirzebruch signature theorem,

p1�TX � � 3r�X � � 3r�X1� ÿ 3r�X2�:�4�

Therefore, it follows from (2), (3) and (4) that n1 and n2 are homotopic if
and only if the condition stated is satis®ed. (

Finally, applying proposition 2.2, we have the following:
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Corollary 2.3. Given any k; k0 with 1 � k; k0 � nÿ 1, nk
n and nk0

n are homotopic
as ®elds of 2-planes tangent to @Nn.

Proof. Apply the proposition to the manifolds X1 � W k
n and X2 � W k0

n . Since
the underlying smooth manifold is the same, we only need to check that
c1�W k

n �2 � c1�W k0
n �2. This follows because c1�W k

n � � �2k ÿ n�PD�T � for all k
and since T � T � 0 both squares are 0. (

3. Symplectic compacti®cations of Stein surfaces

The fact that a Stein manifold is biholomorphic to a domain in a projective
manifold has been known for some time. It was originally proved by Stout
for Stein manifolds [S] and later extended to Stein spaces (see e.g. [DLS, L]).
Using the approach of [DLS], Theorem 3.2 improves Stout's result by
showing that the biholomorphism can be chosen to be a symplectomorp-
hism, and the projective manifold to have ample canonical bundle, which is
what we need for our applications.

We learned the following lemma from Peter Kronheimer.

Lemma 3.1. Let X be a complex manifold and /;w : X ! R smooth strictly
plurisubharmonic functions on X . Suppose that for some c 2 R fw � cg � X
is compact. Then, for every � > 0 there exist constants a, b and a strictly
plurisubharmonic function s on X which coincides with / on fw � cÿ �g, and
with aw� b on fw � c� �g.

Proof. Since fw � cg is compact, we can ®nd a C1 function b which is equal
to 1 on fw � cg and to 0 on fw � c� �g. We look for a s of the form

s�x� � b�x�/�x� � f �w�x��; x 2 X ;�5�

where f : R! R has positive ®rst and second derivative. It su�ces to show
that, for a suitable choice of f , the hessian form H�s� �Pi;j @

2s=@zi@zjdzidzj

is positive de®nite. Since w is strictly plurisubharmonic, H�w� > 0, and a
straightforward calculation shows that H� f � w� � f 0H�w�. We are free to
choose f to be zero on �ÿ1; cÿ �� and f 0 big enough on �c; c� �� so that
f 0H�w� overcomes the negative terms coming from H�b/�. Moreover, we
can make f �t� linear for t � c� �. Clearly, s satis®es the conditions of the
statement. (

Recall that a symplectic form on a smooth 4-manifold X is a closed, non-
degenerate 2-form x. If X has also an almost complex structure J , x is called
J -positive if x�v; Jv� > 0 for every tangent vector v. An almost complex
structure J is called x-compatible if x is J -positive and x�Jv; Jv0� � x�v; v0�.
The space of almost complex structures compatible with a given symplectic
form is well known to be contractible [Ae], so the canonical class K of the
almost complex structure is uniquely determined by the symplectic struc-

Tight contact structures and Seiberg±Witten invariants 517



ture, and sometimes called the canonical class of x. Let X be a Stein
manifold, and / : X ! R a smooth strictly plurisubharmonic function. If we
denote by J� the dual of J , the 2-form x/ � dJ��d/� is non-degenerate and
closed, hence it de®nes a symplectic structure. X is therefore KaÈ hler with a
KaÈ hler metric de®ned by g/�v; v0� � x/�v; Jv0�. A vector ®eld H is called
contracting for a symplectic form x if the Lie derivativeLHx � mx with m a
negative, locally constant function. If x is understood, then we will simply
say that H is contracting. For a domain W with smooth boundary M
contained in �X ;x� we say that M is (locally) x-convex if there is a con-
tracting vector ®eld de®ned on a neighborhood of M which is transverse to
M and pointing into W . The gradient vector ®eld of / is contracting for the
symplectic form x/, and if we look at the domain W � f/ � cg its boun-
dary is J -convex and x/-convex. It is a theorem of Eliashberg and Gromov
(see 1.4.A in [EG]) that for any two plurisubharmonic functions / and w on
the complex manifold X , the two symplectic manifolds �X ;x/� and �X ;xw�
are symplectomorphic.

Theorem 3.2. Let X be a Stein manifold and / : X ! R a smooth strictly
plurisubharmonic function. Let r 2 R be a regular value of / and
Xr � f/ < rg � X . Then there exists a holomorphic embedding of Xr as a
domain inside a smooth projective variety with ample canonical bundle S
having a KaÈhler form whose pull-back to X equals x/ � dJ��d/�. Moreover,
when X has complex dimension two S may be chosen so that b�2 �S� > 1.

Proof. When X has complex dimension two, in order to insure the condition
b�2 > 1 we need to perform a preparatory ``enlargement'' of Xr in the fol-
lowing way. Choose a regular value t of /, with t > r. If Xt � f/ < tg � X ,
then @Xt is endowed with a holomorphically ®llable contact structure n. On
su�ciently small 3-balls in @Xt, n is isomorphic to the standard structure on
R3. Consider two copies of the Legendrian link L de®ning W 1

3 inside two
disjoint such 3-balls. By [El2], / may be extended to a smooth strictly
plurisubharmonic function on the 4-manifold W obtained by attaching 2-
handles along the two copies of L with framings ÿ1 with respect to the
canonical framings induced by n (cf. the proof of Theorem 2.1). The re-
sulting function, which we shall keep calling /, has @W as a level set. Hence,
the interior of W is Stein. Notice that, since b�2 �N3� � 1, b�2 �W � � 2. When
X is not complex two-dimensional, the construction just described is not
needed, and one may just take W to be Xt, and start the proof from this
point.

Let c be a regular value of / slightly smaller than the value taken on @W ,
and let Xc � f/ < cg. Then, Xc is a relatively compact Stein domain of W .
In view of Lemma 5.2 of [DLS], there exists an a�ne algebraic manifold A
and a proper holomorphic embedding Xc,!A with trivial normal bundle.
Moreover, by a quick inspection of the proof one sees that A has a smooth
projective compacti®cation ~A. Using the embedding inside A, / can be pu-
shed forward to a strictly plurisubharmonic function on (the image of) Xc,
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which we will keep calling /. We shall denote by Xr � f/ < rg the sublevel
sets of /. Let w � log�1�Pi jzij2� be the standard strictly plurisubharmonic
function on the a�ne space containing A, so that the associated KaÈ hler form
xw � dJ��dw� is the �1; 1�-form associated to the Fubini-Study metric. Of
course, / also de®nes a KaÈ hler form x/ on Xc. We will denote the restriction
of w to Xc again by w, to simplify the notation. Both / and w are exhausting
functions on Xc with relatively compact sublevel sets, hence for any r < c
there is t 2 R such that Xr � fw < tg, and � > 0, s with r < s < c such that
wÿ1��t ÿ �; t � ��� � Xs n Xr. Since Xs is a relatively compact Runge domain
of Xc (by, e.g. [GR, Theorem IX.C.8]), by Lemma 5.3 in the same paper
[DLS], for every neighborhood V of Xs in A there exists a Runge domain X
in A with Xs � X � V , a holomorphic retraction q : X! Xs and a closed
algebraic submanifold Y � A such that q maps Y \ qÿ1�Xs� biholomorph-
ically onto Xs. Moreover, Y is the intersection of the zero sets of generic
polynomial functions fPjg on A. The polynomials Pj can be chosen to be of
arbitrarily large degree. Thus, Y is an a�ne Zariski open subset of the
projective algebraic submanifold ~Y obtained by intersecting the hypersur-
faces de®ned by the homogenizations of the generic polynomials Pj with the
projective algebraic manifold ~A. For any r < s, let Yr � Y \ qÿ1�Xr� � Y .
The function /0 � / � q is strictly plurisubharmonic on Ys and Yr are its
sublevel sets. Up to choosing a smaller neighborhood V , we will still have
Y \ wÿ1��t ÿ �; t � ��� � Ys n Yr. Lemma 3.1 applied to the Stein manifold Ys

and the two strictly plurisubharmonic functions /0 and w yields a strictly
plurisubharmonic function which coincides with /0 on fw � t ÿ �g and with
aw� b on fw � t � �g. It follows that on the smooth projective surface ~Y
there is a KaÈ hler form which is equal to x/0 � dJ ��d/0� on an open subset
containing Yr, and to a times the standard Fubini-Study KaÈ hler form on the
complement of Ys. Yr has x-convex boundary and is a biholomorphic image
of Xr. Therefore, to ®nish the proof we need to argue that ~Y can be chosen
to have ample canonical bundle. This is because ~Y can be chosen to be the
intersection of the smooth projective variety ~A with hypersurfaces of arbi-
trarily high degree. In fact, the adjunction formula applied to the inclusion
~Y � ~A says that the canonical divisor K ~Y is equal to the restriction of
K ~A �

P
i di

ÿ �
H , where H is the hyperplane class and the di's are the degrees

of the hypersurfaces. But if
P

i di is su�ciently large K ~A �
P

i di
ÿ �

H is ample
on ~A, hence K ~Y is ample on ~Y . (

Corollary 3.3. Let X be a complex 2-dimensional Stein manifold and
/ : X ! R a smooth strictly plurisubharmonic function. Let r 2 R be a regular
value of / and Xr � f/ < rg � X . Then there exists a holomorphic embedding
of Xr as a domain inside a compact KaÈhler minimal surface S of general type,
with b�2 > 1, such that the pull-back of the KaÈhler form of S to X equals
x/ � dJ��d/�.
Proof. All we need to do is to observe that a smooth complex surface with
ample canonical bundle is minimal of general type. (
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4. Proofs of Theorems 1.1 and 1.2

In this section we will use the symplectic embeddings of Corollary 3.3 to
prove Theorems 1.2 and 1.1. The following lemma shows that we can cut
out a domain with x-convex boundary from a symplectic manifold and glue
in another such domain in a symplectic way (thus constructing a new
symplectic manifold), provided that the two corresponding contact struc-
tures are isomorphic.

Lemma 4.1. Let X0 and X1 be complex 2-dimensional Stein manifolds with
boundary, and suppose that @X0 and @X1 are di�eomorphic to the connected 3-
manifold M . Let l : X1 ! R be a strictly plurisubharmonic Morse function on
X1 having @X1 as a level set, and endow X1 with the symplectic form x1

associated to l. Suppose that the contact structures n0 and n1 induced on M
are isomorphic. Then, there exist:

1. collars Ui � Xi, i � 0; 1, around @Xi,
2. a J -compatible symplectic form x0 on the interior of X0,
3. a symplectic embedding U of the interior of U1 as a subcollar of the

interior of U0.

Proof. Let us ®rst recall the following facts. Let / be a strictly plurisub-
harmonic function, and let x/ � dJ��d/�. Let h/ denote minus the gradient
vector ®eld of / with respect to the metric x/�ÿ; Jÿ�. Then, it is straight-
forward to check that the 1-form x/�h/;ÿ� is equal to ÿJ��d/�. Also, the
di�eomorphisms between regular level sets of / de®ned by the ¯ow of h/

preserve the induced contact structures [We]. Let hl be minus the gradient
vector ®eld of l : X1 ! R. The ¯ow generated by hl de®nes a di�eomor-
phism /1 from a neighborhood U1 of @X1 onto M � �ÿ�1; 0�, for some
�1 > 0. Moreover, /1 sends hl to ÿd=dt. Denote by a1 the restriction to
M � f0g of the push-forward of ÿJ�1 �dl� under /1. Then, eta1 can be
thought of as a 1-form on M � �ÿ�1; 0�. Since both eta1 and the push-
forward of ÿJ �1 �dl� satisfy the equation db

dt � ÿb, and coincide along
M � f0g, they must be equal on M � �ÿ�1; 0�. This shows that the 1-form a1
de®nes n1, and that /�1�d�eta1��jU1 � x1jU1. Let m : X0 ! R be a strictly
plurisubharmonic Morse function having constant value c on @X2. As be-
fore, the ¯ow generated by hm de®nes a di�eomorphism from a neighbor-
hood U0 of @X0 onto M � �ÿ�2; 0�, for some �2 > 0. By composing m with a
suitable function g : �ÿ1; c� ! R such that g�r� � r for r � ÿ�2 and g is
increasing and convex for r > ÿ�2 we get an unbounded strictly plurisub-
harmonic function s on the interior of X0 with the same level sets as m. s
de®nes a symplectic structure on X0 given by dJ��ds�. The ¯ow of hs de®nes
a di�eomorphism /0 from the interior of U0 with M � �ÿ�2;1� and
/�0�d�et�a0��� � dJ��ds�, where a0 is a 1-form on M � M � f0g de®ning n0
up to isomorphisms. n0 and n1 are isomorphic if and only if there is a
di�eomorphism f : M ! M such that f ��a0� � ka1, where k : M ! R is a
non-vanishing function. We can ®nd a constant a 2 R such that
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G : M �R! M �R de®ned by G� p; t� � � f � p�; t ÿ ln jk� p�j � a� maps
M � �ÿ�1; 0� di�eomorphically onto M � �c1; c2�, where �c1; c2� is contained
in �ÿ�2;1�. Moreover,

G��d�eta0�� � d G��eta0�� � � d etÿln jkj�aka1
� �

� �ead eta1� �:

Finally, set x0 � �eÿadJ ��ds� and U � /ÿ10 � G � /1. (

Let us now recall a few results from Seiberg±Witten theory [FS, KM2,
Kr, Mo, Wi]. For a smooth 4-manifold with b�2 � 2 the Seiberg±Witten
monopole equations [SW1, SW2] give rise to invariants of its di�erentiable
structure. The Seiberg±Witten invariant is a map SW from the set of Spinc-
structures to the integers. It takes nonzero values at only ®nitely many
Spinc-structures. The ®rst Chern classes of the determinant line bundles
associated to the Spinc-structures for which SW is nonzero are called basic
classes by analogy to the similar notion in Donaldson theory introduced by
Kronheimer and Mrowka in [KM1]. The set of basic classes is ®nite and it is
a di�erentiable invariant of the 4-manifold. Moreover, when a class c is
basic then so is ÿc. Witten [Wi] showed that this set contains the canonical
class in the case of a KaÈ hler surface. Taubes proved [Ta1] the same to be the
case for symplectic 4-manifolds. For minimal KaÈ hler surfaces of general
type a more precise result holds. In this case there are only two Spinc-
structures with nontrivial Seiberg±Witten invariants, i.e. those canonically
associated to the complex structure and its conjugate.

Let nk
n denote the tight contact structure induced on the homology 3-

sphere @Nn by the complex structure of W k
n constructed in Sect. 2. Theo-

rem 1.1 is an immediate consequence of Corollary 2.3 together with the
following result, which shows that, for n � 2, there are at least �n2� non-
isomorphic contact structures among the nk

n's.

Theorem 4.2. Let 1 � k; k0 � nÿ 1. Suppose that nk
n and nk0

n are isomorphic.
Then, either k � k0 or k � nÿ k0.

Proof. Let S be a compact KaÈ hler minimal surface of general type (with
b�2 �S� > 1) containing W k

n according to Corollary 3.3. Suppose that nk
n and

nk0
n are isomorphic. We can build a new symplectic manifold

S0 � Nn
S

U S n Nn� � by gluing via the symplectomorphism U of the collars
constructed in Lemma 4.1. Choose an almost complex structure on S0

compatible with the newly built symplectic structure. Now recall that there
are only two isotopy classes of self-di�eomorphisms of @Nn and that they
both extend to orientation-preserving self-di�eomorphisms of Nn which
induce plus or minus the identity map on (co)homology [Go1]. Therefore,
there is an orientation-preserving di�eomorphism f : S ! S0 which extends
the identity on S n Nn. Hence, f � sends any class in H 2�Nn� � H2�S0� to plus
or minus the same class in H2�Nn� � H2�S�, and is the identity on
H 2�S n Nn�. Since the ®rst Chern class of a symplectic manifold (with
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b�2 > 1) is a basic class, c1�S0� is a basic class, and therefore it is mapped by
/� to the set of basic classes of S which, S being a minimal KaÈ hler surface
of general type, is f�c1�S�g. But c1�S�jH 2�Nn� � �2k ÿ n�PD�T �,
c1�S0�jH2�Nn� � �2k0 ÿ n�PD�T �, and f � � �id on H2�Nn�. Hence, either
k � k0 or k � nÿ k0. (

Remark 4.3. If instead of the trefoil knot in Fig. 2a we consider a �p; q�-
torus knot K (with p, q relatively prime) the ®gure becomes a framed link
presentation of a smooth 4-manifold W whose boundary is the Seifert
®bered homology sphere R�p; q; pqnÿ 1�. It is easy to see that K can be
realized by Legendrian knots having Thurston±Bennequin invariant tb � 1
and any even rotation number r with jrj � �p ÿ 1��qÿ 1� ÿ 2. The Chern
classes of the resulting Stein structures on W are of the form
c1�W � � �s� rn�F � rS, where F and S are the generators corresponding to
K and to the unknot, respectively, while jsj � nÿ 2, s � n mod 2,
jrj � �p ÿ 1��qÿ 1� ÿ 2, r � 0 mod 2. Thus if we take p and q su�ciently
large and calculate the values of c1�W �2 for di�erent allowable s and r,
Proposition 2.2 immediately implies that among the contact structures in-
duced on the boundary of W there are homotopic as well as non-homotopic
ones. Moreover, among the homotopic contact structures there are non-
isotopic ones by an application of Theorem 1.2. This shows that the same 3-
manifold R�p; q; pqnÿ 1� supports both kinds of counterexamples to the
conjecture that the Euler class determines the tight contact structure up to
isotopy.

Proof of Theorem 1.2. The proof is very similar to the proof of Theo-
rem 4.2. Suppose that there exists a di�eomorphism f : @X ! @X isotopic to
the identity with f��n� � n0. Let S be a compact KaÈ hler minimal surface of
general type with b�2 �S� > 1 containing �X ; J1� as a complex domain, ac-
cording to Corollary 3.3, and let HS denote the Spin

c-structure associated to
the complex structure of S. We may apply Lemma 4.1 to build a symplectic
structure x0 on the smooth manifold S0 � X

S
U�S n X � obtained by gluing

via the symplectomorphism of collars U constructed in the lemma. Choose
an almost complex structure J 0 on S0 compatible with this symplectic
structure, and denote by HS0 the associated Spinc-structure. Since f is iso-
topic to the identity on @X , there is an orientation-preserving di�eomor-
phism w : S ! S0 (which is equal to the identity outside of a small
neighborhood of @X ). Since S is a surface of general type, the pull-back of
HS0 under w is isomorphic either to HS or to the Spinc-structure associated
to the conjugate complex structure. But the symplectic structure x0 is equal
to the symplectic structure x on S0 n X � S n X by construction, and w � id
on the same set, so w��HS0 � � HS on X n S. The Spinc-structure associated to
the conjugate complex structure has basic class equal to ÿKS . Since w in-
duces the identity map on cohomology and the restriction of KS to the
complement of X is nontrivial (as one can check by going through the
construction of S in Theorem 3.2) this implies w��HS0 � � HS . Moreover,
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since the restrictions of HS and HS0 to X are equal, respectively, to H1 and
H2 we see that these have to be isomorphic. (

5. Final remarks

In this last section we collected a few intriguing consequences of Corol-
lary 3.2 together with Seiberg±Witten theory, which seem to point to phe-
nomena worth investigating. We hope to return to this in a future paper.

Let us recall that basic classes satisfy the following adjunction inequality
[KM2, MST]. Let X be a smooth 4-manifold with b�2 �X � > 1. If c 2 SWB�X �
and R,!X is a smoothly embedded surface of positive genus such that
R � R � 0, the genus of S is bounded from below, as

2g�R� ÿ 2 � jc � Rj � R � R�6�

Remark 5.1. The adjunction inequality (6) has an interesting consequence.
If a 2-plane ®eld n on a 3-manifold M is induced by an almost-complex
structure on a 4-manifold X in which M is a hypersurface, the Euler class
e�n� is the restriction of c1�X �. If the almost-complex structure of X is
compatible with a symplectic structure, c1�X � is basic, and since for any
S � M the self-intersection in X is S � S � 0 we see that for such structures
the Bennequin±Eliashberg inequality (1) follows trivially from the adjunc-
tion inequality (6). The relationship of such 2-plane ®elds to the tight con-
tact structures on M is not clear.

Theorem 5.2. Let W be a 2-dimensional Stein manifold with boundary. Then,
c1�W � satis®es the adjunction inequality for any smooth surface R � W having
positive genus and satisfying R � R � 0.

Proof. By Corollary 3.3 the Stein manifold W embeds holomorphically
inside a closed KaÈ hler surface S with b�2 �S� > 1. Thus, the image of R under
this embedding satis®es (6) with c � c1�S�. But since the embedding W � S
is holomorphic, c1�S� restricts to H2�W � as c1�W �. (

We may now apply this theorem to compute, for n � 2, all the Chern
classes of Stein structures on the manifold Nn de®ned by the framed link of
Fig. 2a. Recall that the homology of Nn is generated by the two classes T
and S, where T is represented by a smoothly embedded torus of square zero,
S is represented by a smoothly embedded sphere of square ÿn and T � S � 1.

Corollary 5.3. The set of ®rst Chern classes of Stein structures with boundary
on Nn is faPD�T �ja � n mod 2; jaj � nÿ 2g.
Proof. The class S � hT has non-negative square for h � n

2, and it is repre-
sentable by a smoothly embedded surface of genus h. If c 2 H2�Nn; Z� is the
®rst Chern class of some Stein structure on Nn then it is a characteristic class,
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and by Theorem 5.2 it satis®es (6) with respect to both T and S � hT for
h � n

2. This implies c � aPD�T �, with a � n mod 2, and jaj � nÿ 2. On the
other hand, we know that every such class is the ®rst Chern class of a Stein
structure, because c1�W k

n � � �2k ÿ n�PD�T �, k � 1; . . . nÿ 1. (

Looking at the previous results, it seems natural to raise a question.
Given a smooth 4-manifold with boundary W , denote by B�W � the set of
®rst Chern classes of Stein structures with boundary on W .

Question 5.4. Let W be a smooth 4-manifold with boundary. Given some
description of W , as for example a framed link presentation, does there exist
an algorithmic procedure to compute B�W �?

Finally, we ask two more informal questions. We have seen in Corol-
lary 5.3 that the possible Legendrian realizations of the framed link repre-
senting the 4-manifold Nn give us all the possible Chern classes of Stein
structures with boundary on Nn. Does this happen for every 4-manifold with
boundary? Having picked another framed link presentation for Nn, would
the same procedure give the same classes?
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