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1. Introduction 

In this paper we consider the rational quantized Knizhnik-Zamolodchikov equa- 
tion (qKZ equation) associated with the Lie algebra ~I2 and solve it. The 
rational qKZ equation associated with ~12 is a system of  difference equations 
for a function 7J(zl .... ,Zn) with values in a tensor product V1 |  V~ of  
sl2-modules. The system of  equations has the form 

~ ( Z 1  . . . . .  Zm + p, . . . , zn)= R . . . .  l ( Z m  - -  Z m - - I  -Jr- p) .  . " R m ,  l ( Z  m - -  z I -~- p)x  -rim 

M R m ,  n ( Z  m - -  z n ) .  . . R m ,  m + l ( Z  m - Zm+ 1 ) t / j ( Z  1 . . . . .  z n )  , 

m = 1 . . . . .  n, where p and 1c are parameters o f  the qKZ equation, H is 
a generator o f  the Cartan subalgebra o f  M2,Hm is H acting in the m-th factor, 
Rt,m(X) is the rational R-matrix R ~ ( x )  E End(Vl | Vm) acting in the l-th and 
m-th factors o f  the tensor product o f  sl2-modules. In this paper we consider 
only the negative steps p. The case o f  other values o f  the step can be treated 
by analytic continuation. 

The qKZ equation is an important system of  difference equations. The qKZ 
equations had been introduced in [FR] as equations for matrix elements o f  ver- 
tex operators o f  the quantum affine algebra. An important special case o f  the 
qKZ equation had been introduced earlier in [S] as equations for form factors 
in integrable quantum field theory; relevant solutions for these equations had 
been given therein. Later, the qKZ equations were derived as equations for cor- 
relation functions in lattice integrable models, cf. [JM] and references therein. 
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In the quasiclassical limit the qKZ equation turns into the differential 
Knizhnik-Zamolodchikov equation for conformal blocks of  the Wess-Zumino-  
Witten model of  conformal field theory on the sphere. 

Asymptotic solutions to the qKZ equation as p tends to zero are closely 
related to diagonalization of the transfer-matrix of the corresponding lattice 
integrable model by the algebraic Bethe ansatz method [TV2]. 

We describe the space of solutions to the qKZ equation in terms of rep- 
resentation theory. Namely, we consider the quantum group Uq(~12) with 
q = e r~i/p and the Uq(~I2)-modules V1 q . . . . .  Vn q where V q is the deformation 
of  the ~12-module Vm. For every permutation v E S n we consider the tensor 
product V~ q | . . -  | V~ q and establish a natural isomorphism of the space S 
of solutions to the qKZ equation with values in Vt | . . .  N V~ and the space 
V~ q |  | V~ q | IF, where IF is the space of functions in zl . . . .  ,z, which are 
p-periodic with respect to each of the variables, 

c~ : v,,~ | . . .  | B~ | IF --,  s .  

Notice that if  7J(z) is a solution to the qKZ equation and F(z) is a p-periodic 
function, then also F(z)T(z) is a solution to the qKZ equation. 

We call the isomorphisms C~ the tensor coordinates on the space of solu- 
tions. The compositions of the isomorphisms ate linear maps 

.. --, v,~ |  | Bq, C'c,r'(z1, "'Zn) " B! |  | B q q 

depending on zl,...,z,, and p-periodic with respect to all variables. We call 
these compositions the transition functions. It turns out that the transition 
functions are defined in terms of  the trigonometric R-matrices Rqv,.(~)E 
End(Vtq | V q )  acting in tensor products of  Uq(~12)-modules. Namely, for any 
permutation ~ and for any transposition (m, m + 1) the transition function 

c,,~ . O, ,m+~(z , , . . . , z , )  : V,~, | . . . |  V4+ , | 5 ~. | 1 7 4  5q ~ Bq | . . . |  v,~ 

equals the operator q " PvT.., vj..Rv.q v.q (exp(2m(z~,+~ - z~.,)/p)) acting in the m-th 
. . . . . .  m+l -m 

and (m + 1)-th factors, here Pz~z,, is the transposition of  the tensor factors; 
el. Theorem 4.22. 

We consider asymptotic zones Rez~ l ,~ .- .  ~Rez~, labelled by permutations 
T E S n. For every asymptotic zone we define a basis of asymptotic solutions 
to the qKZ equation. We show that for every permutation r the basis o f  the 
corresponding asymptotic solutions is the image of the standard monomial basis 
i n  ~1 q |  | gn q under the map 

�9 ." ~ V~, @ - ' -  @ ~ " | t n Tn 

cf. Theorem 6.4. The last two statements express the transition functions be- 
tween the asymptotic solutions via the trigonometric R-matrices. 

The rational R-matrix Rv~v,,(x) E End(V/| V~) is defined in terms of  the 
action of the Yangian Y(gl2) in the tensor product of ~12-modules. The 
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Yangian Y(912) is a Hopf algebra which contains the universal enveloping alge- 
bra U(~[2) as a Hopf subalgebra and has a family of homo- 
morphisms Y(gl2)---* U(~12) depending on a parameter. Therefore, each 
~lz-module Vm carries a Y(gl2)-module structure Vm(x) depending on a para- 
meter. For irreducible ~12-modules Vt, Vm the Yangian modules Vl(x) | Vm(y) 
and V~(y)| Vt(x) are irreducible and isomorphic for generic x, y. The map 

Pvtv.Rv~v.(x - y) : Vt(x) | Vm(y) ""+ Vm(y) | Vt(x) 

is the unique suitably normalized intertwiner [T], [D1]. 
Similarly, the trigonometric R-matrix Rqtz,,(~ ) E End(Vtq | V q)  is defined 

in terms of the action of the quantum loop algebra Uq(g[2) in the tensor prod- 

uct of Uq(~[2)-modules. The quantum loop algebra Uq(g[2) contains Uq(~I2) 

as a Hopf subalgebra and has a family of homomorphisms Uq(gl2) ~ Uq(sI2) 

depending on a parameter. Therefore, each Uq(~Iz)-module V q has a Uq(gle)- 
module structure Vmq(() depending on a parameter. For irreducible Uq(~Iv)- 

modules Vl, Vm the Uq(gl2)-modules vtq(~ ) | v~q(~) and vq(() | vtq(~) are ir- 
reducible and isomorphic for generic 4, ~- The map 

Pvtv~Rqlym(~/() : Vlq(~ ) | vq(~) -..+ vq(~) | Vlq(~ ) 

is the unique suitably normalized intertwiner [T], [CP]. 
Our result on the transition functions between asymptotic solutions to- 

gether with the indicated construction of R-matrices shows that the qKZ 
equation establishes a connection between representation theories of the Yan- 
gian Y(gI2) and the quantum loop algebra Uq(gl2). Our result is analogous 
to the Kohno-Drinfeld theorem on the monodromy group of the differential 
Knizhnik-Zamolodchikov equation [K], [D2]. 

The differential Knizhnik-Zamolodchikov equation (KZ equation) with 
values in a tensor product of ~12-modules V = ~ | .-- | V~ is a system of 
differential equations for a V-valued function ~P(zl . . . . .  zn) and has the form 

d~=-pl  y. zt~f2tm- Zm ~d(z~ - Zm) 

where p is a parameter of the equation, ~'21m E End(V1 | Vm) is the Casimir 
operator. The KZ equation defines an integrable connection over the comple- 
ment in tE n to the union of the diagonal hyperplanes. The fundamental group 
of the complement is the pure braid group lPn. The monodromy group of the 
equation is the representation IPn ~ End(V) defined by analytic continuation 
of solutions over loops. The Kohno-Drinfeld theorem says that this represen- 
tation is isomorphic to the R-matrix representation of IPn in the tensor product 
of Uq(~12)-modules Vq = V1 q | " ' "  | Vnq , q  = e hi~p, where the R-matrix repre- 
sentation is defined as follows. Let Rqv~, E End(vtq @ V~) be the action of 
the universal R-matrix of the quantum group Uq(~12) in the tensor product of 
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Uq(~12)-modules. Then the R-matrix representation of P, in V q is defined by 
elementary transformations 

R q Pt~ m VZrn+l V~ m Vzm+ I 

v.1 |  | , |  | v4+, | v4 |  �9 | 

The Kohno-Drinfeld theorem establishes a connection between representation 
theories of a Lie algebra and the corresponding quantum group, see [D2]. Using 
the ideas of the Kohno-Drinfeld result it was proved in [KL] that the category 
of representations of a quantum group is equivalent to a suitably defined fusion 
category of representations of the corresponding affine Lie algebra. Similarly to 
the Kazhdan-Lusztig theorem one could expect that our result for the difference 
qKZ equation could be a base for a Kazhdan-Lusztig type result connecting 
certain categories of representations of Yangians and quantum affine algebras, 
cf. [KS]. 

In this paper we consider the rational qKZ equation. There are other types 
of the qKZ equation: the trigonometric qKZ equation [FR] and the elliptic 
qKZB equation [F]. Here KZB stands for Knizhnik-Zamolodchikov-Bemard, 
and the difference qKZB equation is a discretization of the differential KZB 
equation for conformal blocks on the torus. 

The trigonometric qKZ equation with values in a tensor product of Uq(~I2)- 
modules vq = VI q | . . .  @ Vn q is a system of difference equations for a vq- 
valued function ~U(zl . . . . .  zn) and has the form 

~(Zl . . . . .  pZm . . . . .  Zn) = Rq, m _ l(pZm/Zm-1)" " Rq l(PZm/Zl )to-H" 

X R q ,  n (Zm/Zn)  q �9 "Rm, m+l(zm/Zm+l ) 7t(zt . . . . .  z , ) ,  

m = 1 . . . . .  n, where p and ~c are parameters of the qKZ equation, q'q is a 
generator of the Cartan subalgebra of Uq(~lz),H,, is H acting in the m-th 
factor, Rt, m(X) is the trigonometric R-matrix E | RqvTv~(x) End(V/q Vm q) acting 

in the /-th and m-th factors of the tensor product of Uq(~|z)-modules. In the 
next paper [TV3] we will describe for the trigonometric qKZ equation the 
analogues of the above results for the rational qKZ equation. Namely, we will 
describe the space of solutions to the trigonometric qKZ equation in terms of 
modules of the elliptic quantum group associated to the Lie algebra ~Iz [F], 
[FV] and will get the transition functions between asymptotic solutions in the 
same way as we did for the rational case. This result for the trigonometric qKZ 
equation gives a connection between representation theories of the quantum 

loop algebra Uq(gl2) and the elliptic quantum group associated to sl2. 
In the paper [FTV] we will describe solutions to the elliptic difference 

qKZB equation. The construction of solutions for the elliptic qKZB equation is 
similar to the construction of solutions to the rational qKZ equation described 
in this paper and to the solutions of the trigonometric qKZ in [M], [R], [V3], 
[TV1]. Nevertheless, we do not know yet how to define asymptotic solutions 
for the elliptic qKZB equation and what could be an elliptic analogue of our 
result on transition functions. 
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There are three different proofs for the Kohno-Drinfeld theorem. Roughly 
speaking, they are analytic [K], algebraic [D2], and geometric [SV2], IV2]. 
In the initial proof [K], Kohno expands a monodromy operator as a series 
of iterated integrals and studies such expansions. Drinfeld in [D2] formalizes 
algebraic properties of transition functions between asymptotic solutions and 
proves that the monodromy group could be nothing else but the R-matrix rep- 
resentation. 

The leading idea of the geometric proof [SV2], IV2], [V4] was the princi- 
ple that the monodromy of a differential equation could be computed only if 
the differential equation is the equation of the Gauss-Manin connection. The 
Gauss-Manin connection is a connection associated to a locally trivial bundle 
of algebraic manifolds with a local system on the space of the bundle. One 
considers the associated holomorphic vector bundle which fiber is the homo- 
logy group of the fiber of the initial locally trivial bundle. Then the vector 
bundle has a canonical connection called the Gauss-Manin connection. Having 
a trivialization of the vector bundle one realises the connection as a system of 
differential equations. Its solutions are parametrized by elements of the homo- 
logy group of the fiber. The monodromy group of that differential equation is 
the monodromy group of cycles of the fiber of the initial locally trivial bun- 
dle under continuous deformations over loops in the base. The description of 
the monodromy group of cycles is a geometric problem which is easier than 
studying analytic continuation of solutions of an abstract differential equation. 
In order to apply this idea to the proof of the Kohno-Drinfeld theorem the 
differential KZ equation was solved explicitly in terms of multidimensional 
hypergeometric integrals and solutions were represented as integrals of  closed 
differential forms over cycles depending on parameters, then the space of  cycles 
was identified with a tensor product of Uq(~lz)-modutes and the monodromy 
of cycles was computed in term of R-matrices. 

In this paper, in order to establish a connection between representation theo- 
ries of Yangians and quantum loop algebras we quantize the geometric picture 
for the KZ equation. First we solve the qKZ equation in terms of  suitable 
multidimensional hypergeometric integrals of Mellin-Barnes type. We define a 
discrete analogue of a locally trivial bundle and a local system on the space 
of bundle. We define a discrete analogue of the Gauss-Manin connection for 
the discrete locally tirvial bundle with a discrete local system and consider the 
corresponding difference equation. We identify that difference equation with the 
difference qKZ equation. To realize this idea we introduce a suitable discrete de 
Rham complex and its cohomology group in the spirit of [A], then we define 
the homology group as the dual space to the cohomology group and construct 
a family of discrete cycles, elements of the discrete homology group, using 
ideas of [S]. We construct the space of discrete cycles as a certain space of 
functions. Having a representative of a discrete cohomology class (a function) 
and a discrete cycle (a function again) we define the pairing (the hypergeomet- 
ric pairing) between the cohomology class and the cycle as an integral of their 
product with a certain fixed "hypergeometric phase function" over a certain 
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fixed contour o f  the middle dimension. We show that there is enough discrete 
cycles and they form the space dual to the quotient space of  the space o f  our 
discrete closed forms modulo discrete coboundaries. To prove this we com- 
pute the determinant of  the period matrix and surprisingly get an explicit for- 
mula (5.14) for the determinant analogous to the determinant formulae for the 
"continuous" hypergeometric functions [V1], cf. the Loeser determinant for- 
mula for the Frobenius transformation [L]. The form of our discrete cycles 
suggests a natural identification o f  the space o f  our discrete cycles with a 
tensor product o f  Uq(~I2)-modules and this identification allows us to prove 
the result on transition functions between asymptotic solutions. 

As we know the qKZ equation turns into the differential KZ equation under 
the quasiclassical limit. We show that our discretization o f  geometry under the 
quasiclassical limit turns into the geometry o f  the differential KZ equation: 
representatives o f  our discrete cohomology classes turn into closed differential 
forms, our discrete cycles turn into "honest" topological cycles. 

Note in conclusion, that our solutions to the qKZ equation in the special 
case considered in IS] are close to the solutions constructed therein, but dif- 
ferent. It is also worth mentioning that our description of  transition functions 
indicates quantum loop algebra symmetries in the model of  quantum field the- 
ory considered in [S]. 

The paper is organized as follows. Sections 2-7  contain constructions and 
statements. In Sect. 8 we consider the special case o f  one-dimensional hyper- 
geometric functions o f  the Mellin-Barnes type to illustrate ideas and proofs. 
Section 9 contains proofs in the multidimensional case. 

Parts of this work had been written when the authors visited the University of Tokyo, the Kyoto 
University, the University Paris VI, l~cole Normale Suprrieure de Lyon, the MSRI at Berkeley. 
The authors thank those institutions for hospitality. The authors thank G. Felder and P. Etingof 
for valuable discussions. 

2. Discrete flat connections and local systems 

Discrete f iat  connections 

Consider a complex vector space ~n called the base space. Fix a nonzero 
complex number p called the step. The lattice Z n acts on the base space by 
translations z ~-~ z + p l  where l E Zn C C n. Let �9 be an invariant subset o f  
the base space. Say that there is a bundle with a discrete connection over 113 
if for any z E IB there are a vector space V(z)  and linear isomorphisms 

A m ( Z l  . . . . .  Zn) : V(Zl . . . .  ,Zm + p . . . . .  Zn) ~ V(Zl . . . .  ,Zn), m = 1 . . . . .  n .  

The connection is called f iat  (or integrable) if  the isomorphisms A1 . . . . .  An 
commute: 

(2.1) At(Zl . . . . .  Zn ) A m ( Z l  . . . . .  Zl + p . . . . .  zn) 

= Am(Zl . . . . .  z,)A~(zl . . . . .  Zm + p . . . . .  zn) .  
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Say that a d i s c r e t e  s u b b u n d l e  in IB is given if a subspace in every fiber is 
distinguished and the family o f  subspaces is invariant with respect to the con- 
nection. 

A section s : z ~ s ( z )  is called p e r i o d i c  (or h o r i z o n t a l )  if its values are 
invariant with respect to the connection: 

(2.2) Am(z1 . . . . .  Z n ) S ( Z l , . . .  ,Zm + p . . . . .  Zn) = S(Zl . . . .  ,Zn),  m = 1 . . . . .  n . 

A function f ( z l  . . . . .  zn)  on the base space is called a q u a s i c o n s t a n t  if 

f ( z l  . . . . .  zm + p . . . . .  zn)  = f ( z l  . . . .  ,Zn), m = 1 . . . . .  n .  

Periodic sections form a module over the ring of  quasiconstants. 
The d u a l  b u n d l e  with the d u a l  c o n n e c t i o n  has fiber V * ( z )  and isomorphisms 

A * ( Z l  . . . . .  Zn) : V * ( z I  . . . . .  Zn) "-+ V*(z1 . . . .  ,Zm + p , . . . , Z n ) .  

Let s l  . . . . .  Su  be a basis of  sections of  the initial bundle. Then the isomorphisms 
A m of  the connection are given by matrices A(m): 

N 
A m ( Z l , .  ,Zn)Sk(Zl . . . . .  Zm + P . . . . .  Zn) S (m) �9 . = Akt  (z l  . . . . .  z n ) s t ( z l , . . . , z , ) .  

/=1 

For any section ~k : z ~ r  o f  the dual bundle, denote by ~ : z ~ 7~(z) its 
coordinate vector, kUk(z)= ( ~ k ( z ) , s k ( z ) ) .  

The section ~b is periodic if  and only if its coordinate vector satisfies the 
system of  difference equations 

~(Zl . . . . .  Zm + p . . . . .  Zn) = AO")(z l  . . . . .  Z n ) ~ ( z l  . . . . .  zn) ,  m = 1 . . . . .  n .  

Moreover, all solutions to the system have this form. This system of  difference 
equations is called the p e r i o d i c  s e c t i o n  e q u a t i o n .  

Say that functions <Pl . . . .  , <p, in variables zl . . . . .  z, form a s y s t e m  o f  c o n -  

n e c t i o n  c o e f f i c i e n t s  if  

q~t(zl . . . .  ,Zm + p . . . .  , z , )q~m(z l  . . . .  , z , )  = q~m(Z l , . . . ,Z t  + p . . . . .  Zn)q~l(Zl . . . . .  Z~) . 

for all l, m. These functions define a connection on the trivial complex one- 
dimensional vector bundle. 

There is a simple construction of  connection coefficients. Fix arbitrary func- 
tions q~t,,, l < m, in one variable and nonzero complex numbers ~Cr,. Set 

]-' 
~Om(Zl . . . . .  Z . )  = K,. 1-I ~ , ~ ( z ~ - - ~ m  -- P )  I-I C~,~t(~m --z~). 

l< l<m m<l<n 

The system of  connection coefficients o f  this form is called d e c o m p o s a b l e ,  t he  

functions ~bt,~ are called p r i m i t i v e  f a c t o r s  and x,, are called s c a l i n 9  p a r a m e t e r s .  
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A function ~(zl . . . . .  zn) is called a phase function of a system of connection 
coefficients if  

~) (Zl  . . . . .  Zm + p . . . .  ,zn) : ~Om(Zl . . . . .  Zn)~(Z1 . . . . .  Zn), m = 1 . . . . .  n .  

Similarly, a function ~(x) is called a phase function of a function qS(x) in 
one variable if  ~(x + p)  = dp(x)~(x). Note that the phase functions are not 
unique. 

I f  the connection coefficients are decomposable, if ~Zm are phase functions 
of  primitive factors, and if Km are phase functions of  scaling parameters, then 

~ ( Z l  . . . . .  Zn) : I-I gm(zm) I I  ~ lm(Zl - -Zm)  
m = l  l <m 

is a phase function of the system of connection coefficients. 
For any function f ( z l  . . . . .  z , )  define new functions Q l f  . . . .  , Q n f  and 

D l f  . . . . .  D , f  by 

(Qmf)(z l  . . . . .  Zn) = r . . . . .  Zn)f(zl  . . . .  ,Zm -~ p . . . . .  Zn), 

and 
D m f  = Q m f -  f .  

The functions D l f  . . . . .  D , f  are the discrete partial derivatives of the function 
f .  We have DtDmf  = DmDlf .  

Let F be a vector space of functions in z l , . . . , z ,  such that the operators 
Q1 . . . .  , Q, induce linear isomorphisms of F: 

Qm : F---* F .  

Say that the space F and the connection coefficients q~l,.-.,cPn form a one- 
dimensional discrete local system on IE n. F is called the functional space of 
the local system. 

Define the de Rham complex (f2"(F),D) of  the local system in a standard 
way. Namely, set 

1 2 a = (  ~ = ~-~k~,...,ka f k ~ ' " k ~  I 

where D z l , . . . , D z ,  are formal symbols and the coefficients fk~,...,ka belong to 
F. Define the differential of  a function by D f  = ~'~nm=lDmfOzm, and the dif- 
ferential of  a form by 

Dco = ~ Dfk~,...,ko A Dzk~ A . . .  A Dzka . 
kt,...,ka 

The cohomology groups H 1 . . . . .  H ~ of this complex are called the cohomology 
groups o f  ~n with coefficients in the discrete local system. In particular, the 
top cohomology group is H n = F/DF where DF = ~ , = 1  D,,F. The dual spaces 
Ha = (Ha) * are called the homology 9roups. 



q-hypergeometric functions, Yangians and quantum affine algebras 509 

There is a geometric construction of  bundles with discrete flat connections. 
This is a discrete version o f  the Gauss-Manin connection construction. 

Let n : C  :+~---, qY be an affine projection onto the base with fiber 112:. 
II; :+~ will be called the total  space.  Let zl . . . . .  z~ be coordinates on the base, 
h , . . . , t :  coordinates on the fiber, so that q , . . . , t : ,  z l , . . . , z n  are coordinates on 
the total space. When it is convenient, we will denote the coordinates Z l , . . . ,  z ,  

by t:+1 . . . . .  t:+,. 

Let F, q~l,... ,q):+, be a local system on C :+". For a point z EII;  n define 
a local system F(z), ~oa(-;z), a = 1 . . . . .  : ,  on the fiber over z. Set 

F(z) = { f l ~ - , ( z ) ] f  E F} and (p~(.;z) = q0al~-,(z). 

The de Rham complex, cohomology and homology groups o f  the fiber are 
denoted by ( f 2 " ( z ) , D ( z ) ) ,  H a ( z )  and Ha(z) ,  respectively. 

There is a natural homomorphism of  the de Rham complexes 

( (2"(IE:+n,F) ,D) --'+ (g2~  e) ~ ool~-,(z) , 

where the restriction o f  a form is defined in a standard way: all symbols 
Dzl  . . . . .  Dzn are replaced by zero and all coefficients o f  the remaining mono- 
mials Dtk I /X . . . / x  Dtko are restricted to the fiber. 

For a fixed a the vector spaces H a ( z )  form a bundle with a discrete flat 
connection. The linear maps 

Am(zl . . . . .  zn) : Ha(z1 . . . .  ,zm + p , . . .  ,Zn) --* H a ( z 1 , . . .  ,Zn) 

are defined as follows. Define Qm : Oa( II2:+", F) --+ g2a(C :+", F) by 

e )  ~ ~ Q m f k , , . . . , ~ o D z k ,  A . . . A D z k ~  . 
kl ,...,ka 

Then Qm induces a homomorphism of  the de Rham complexes 

(f2"(zl  . . . . .  Zm + p . . . . .  z n ) , D ( z l , . . . , z m  + p . . . . .  zn))  

-"+ (~'~~ (Z  1 . . . . .  z , ) , D ( z l  . . . . .  z , ) ) .  

We set A m ( z l , . . . , z n )  to be equal to the induced map of  the cohomology spaces. 
This connection is called the discrete  G a u s s - M a n i n  connection.  

The Gauss-Manin connection on the cohomological bundle induces the dual 
flat connection on the homological bundle: 

A ; ( Z I  . . . . .  Zn) " H a ( Z l  . . . . .  Zn) --~ m a ( Z l  . . . . .  Zm Ay p . . . . .  Zn)  . 

In this paper we study the Gauss-Manin connection for a class o f  discrete 
local systems. 
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Connection coefficients o f  local systems 

There are three important classes of  local systems: rational, trigonometric and 
elliptic. 

Consider a local system with decomposable connection coefficients and 
primitive factors of the form 

t ( x  + ~b  ) 
ckab(x) - 

t (x  + ~ ) 

where t(x) is a function in one variable and cr fl~b are suitable complex 
numbers. A local system is called rational, trigonometric or elliptic if 

t(x) = x, "c(x) = sin(?x), t(x) = O(~x), 

respectively. Here O(x) is a theta-function and y is a nonzero complex number. 
Note that t ( x ) =  ~x for all y4:0 gives the same primitive factors. 

Say that a decomposable system of connection coefficients on the total 
space is of the ~Iz-type if the constants CCab,/3~b, and the scaling parameters 
/~1 . . . . .  KT~'+n have the following form: 

(2.3) a,b = - - f l a b  -~- - h  for a < b < f ,  

O~ab = - - f l a b  ~ -  Ab-E for a < g' < b ,  

Ctab=--flab=O for E < a < b ,  

x a = x  for a < ~, 

rca=l  for g < a .  

Such a system of connection coefficients depends on n + 2 complex numbers 
A1, . . . ,An ,  tc, h. 

In this paper we study rational systems of the ~la-type, for the trigonometric 
case see [TV3] and for the elliptic case see [FTV]. 

The primitive factors of a rational ~ta-type local system have the form 

x - h  
C ~ a b ( X ) = ~  for a < b  < E ,  

x + h  
x + Ab-~ 

~ b ~ b ( X ) - - - -  for a < f < b ,  
x - Ar-~ 

~b~b(x) = 1 for E < a < b .  

Rescaling A1 . . . .  , An and x we can set h = 1, so we assume that the primitive 
factors of a rational ~12-type local system have the form 

x - 1  
~ b a o ( x ) = - -  for a < b  < E, 

x + l  
x + A b - t  

C ~ a b ( X ) = - -  for a < E < b ,  
x - A b - t  

r  for • < a < b .  
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The connection coefficients of a rational ~12-type local system have the form 

ta --Zm + Am ta -- tb -- 1 
qga(t,z) 

m=l Zra-s .Fib< ta ~ 7 1  
K 

a<b=Y 

• [-[ t a - t b - l + p  a = l , . . . , d ,  
i < b < a t a - - t b  + 1 4 -  p '  

ta -- zm -- Am -- p m =  1, . . . , n . 
(p~+m(t,z) = 1"-[ "+Am p 

a = l  ta Zrn 

A phase function of a primitive factor (x  + c t ) / (x  - ~) has the form 

F ( ( x  + ~ ) / p )  
(2.4) ~(x; ~) -- 

r((x - ~)/p) 

and, therefore, a phase function of the system of connection coefficients is 
given by 

(2.5)  ~ ( t l  . . . . .  t t , Z l , . . . , Z n )  = exp # ta/p 1-I ~(ta -Zm;'Am) 
= m = l  a = l  

x I I  q)(t~ - t b ; - 1 )  
l < a < b < t  

where parameters K and # are connected by the equation ~c = eC 
The Stirling formula gives the following asymptotics for the phase function 

�9 (2.4) of  the primitive factor as x ~ co: 

(2.6) ~(x;cQ = (x/p)2~(1 +o(1 ) ) ,  larg(x/p) l  < z c .  

This formula defines asymptotics at infinity of  the phase function of  the system 
of connection coefficients. 

The phase function (2.4) of  the primitive factor has a symmetry property 

(x + ~) sin0z(x + a ) / p )  
�9 ( -x ;  ~) = ~(x; ~) 

(x - cQ sin(rc(x - ~) /p )  

which leads to a symmetry property 

(2.7) ~( t :  . . . . .  ta+l,ta . . . . .  t t , z : , . . . , z , )  

z , ) ( t ~ -  ta+: - 1)s in (~( t a -  ta+l - 1)/p) 
~b(tl t{ ,Zl  

t~+: T 1)sin(rfft~ t~+: T t ) /p )  

of  the phase function of the system of connection coefficients. This property 
later motivates definitions (2.9) and (2.25) of  certain actions of  the symmetric 
group. 
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The f unc t i on a l  space o f  a rat ional  ~12-type local  s y s t em  

Define the functional space ~ of  a rational ~12-type local system as the space of  
rational functions on the total space with at most simple poles at the following 
hyperplanes 

(2.8) to = Zm - -  A m  + ( s  -k 1 )p ,  ta = Zm ~- A m  - s p ,  

to = tb -- 1 -- (s + 1)p,  ta = tb + 1 + sp , 

1 < b < a < f,  m = 1,. . . ,n, s C 7Z__>0. It is easy to check that the functional 
space is invariant with respect to all operators Qm+I. 

Define an action of the symmetric group S f on the functional space: 

(2.9) a : ~ - - ~ ,  f ~ - - ~ [ f ] ~ ,  a E S  ~ ,  

by the following action of simple transpositions: 

z ta - t~+l - 1 
[f](~,a+l)(tl . . . . .  t[,Zl . . . . .  Zn) ---- f ( q  . . . . .  ta+l,t~ . . . . .  t [ , Z l , . . . ,  ,)V-to ~ ' 

ta+ ! 1 

a = 1 . . . . .  { -  1. The operators Q1 . . . . .  Qt+n and D1 . . . . .  Dr+, commute with 
the action of the symmetric group. 

We extend the St-action to the de R_ham complex assuming that it respects 
the exterior product and 

ff : Dta ~ Dtao, a : Dzm ~ Dzm, ff E S f . 

The same formulae define an action of the symmetric group on the de Rham 
complex of a fiber. The homomorphism of the restriction of the de Rham 
complex of the total space to the de Rham complex of a fiber commutes with 
the action of the symmetric group. The action of the symmetric group induces 
an action of the symmetric group on the homology and cohomology groups. 
The Gauss-Manin connection commutes with this action. 

If  a symmetric group acts on a vector space V, we will denote by Vs 
the subspace of invariant vectors and by V "4 or by Va the subspace of skew- 
invariant vectors. 

In this paper we are interested in the skew-invariant part H e ( z  ) of the 
top cohomology group of a fiber. This subspace is generated by forms f D t l  
A . .  �9 A D t f  where f runs through the space ~ s ( z )  of invariant functions. 

Introduce an important rat ional  hypergeome t r i c  space ~ C ~'z as the sub- 
space of functions of the form 

l 1 t ~ - t b  
P( f i  . . . .  . t t . z ,  . . . . .  z . )  l-I I-[ t .  ~- ~ - +  1 

m = l a = l  ta - -  Zm - A m  l < a < b < f  

where P is a polynomial with complex coefficients which is symmetric in 
variables tl . . . . .  tr and has degree less than n in each of the variables h , . . . ,  t f .  
The restriction of the hypergeometric space to a fiber defines the rat ional  
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hypergeometrie space ~ ( z ) C ~ z ( z )  of  the fiber which is a complex finite- 
dimensional vector space. A form f Dfl /~ �9 ../~ Dtt with the coefficient in the 
hypergeometric space is called a hypergeometric form. 

The subspace Jg(z)CH~A(Z) of  the top cohomology group of  a fiber gen- 
erated by the hypergeometric forms is called the hypergeometric space or the 
hypergeometric cohomology 9roup. 

The union of  the hyperplanes 

(2.10) z t + A t - z m + A m = r + p s ,  r = 0  . . . . .  E - l ,  s E Z ,  

l, m = 1 . . . . .  n, l ~= m, in the base space C" is called the discriminant. The com- 
plement to the discriminant will be denoted by IB. 

(2.11) Theorem. [V3], [TV1] The family of  subspaces { ~ ( z ) } z ~  is invariant 
with respect to the Gauss-Manin connection and, therefore, defines a discrete 
subbundle. 

This subbundle will be called the hypergeometric subbundle. 
Later on we often make the following assumptions. We assume that the 

step p is real negative and such that 

(2.12) (1 . . . . .  d} (~ p2g, 

the weights A1, . . . ,An are such that 

(2.13) 2Am-s4 ip7Z ,  m = l  . . . . .  n, s = l - ( , . . . , d - 1 ,  

and the coordinates z t , . . . , zn  obey the condition 

(2.14) zt -4- Al - zm q- Am - s ~ p7l, l, m = 1 . . . .  ,n, 14=m , 

for any s = 1 - { . . . . .  g - 1 and for an arbitrary combination of  signs. 

(2.15) Theorem. Let x4= 1. Let p < O. Let (2 .12)- (2 .14)  hold. Then 

dim ~ ( z )  = dim ~ ( z )  = ( n + g - l ) 
n - 1  

This means that 

(2.16) ~r ----- ~,~(z). 

(2.17) Theorem. Let x = 1. Let p < O. Let (2 .12)- (2 .14)  hold. I f  ~,~=l 

Am - s  ~pT/<0 for all s = { - 1 . . . . .  21 - 2, then dim Jg(z )  = (n+~s2). 

Theorems 2.15 and 2.17 are proved in Sect. 9. 
Theorem 2.15 means that if the scaling parameter x is not equal to 1, then 

every nonzero hypergeometric form defines a nonzero cohomology class. On 
the contrary, if  x = l, then by Theorem 2.17 there are exact hypergeometric 
forms. We describe them in Lemma 2.21. 
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Bases in the rat ional  hypergeometr ic  space o f  a f iber  

The f ini te-dimensional  rational hypergeometr ic  space ~ - (z )  o f  a fiber has n! 
remarkable  bases. These bases will  a l low us to identify geometry  of  an ~12-type 
local system with representation theory. The bases are label led by e lements  o f  
the symmetr ic  group S ' .  First we define the basis corresponding to the uni t  
e lement  of  the symmetr ic  group. 

Let 

(2.18) ~ = {  l E 7z~~ m = l  ~ l m  = d )  " 

Set I" " l [o i n = ~-]~k=l k. In particular, = 0, = f .  For  any I E ~  define a rat ional  
funct ion wl E ~ as follows: 

(2 .19)  wl(q  . . . . .  t l , z l  . . . . .  z , )  

f i  ~ ta--Zra Am l<l<mta=zS--h, a E 
a E $  l m = l  a - -  _ 

where Fm = {1 + I  m-1 . . . . .  lm}, m = 1 . . . .  ,n .  The funct ions wt are called the 

rational weight  funct ions.  

Example .  For f = 1 the functions have the form 

1 t - z t  + At 
- 

We(m)(t ,  Zl . . . .  ,zn) = t - -  Zm -- Am I= rn t zt At  

where e(m) = (0 . . . . .  lm-th . . . . .  0), m = 1 . . . .  ,n. 

Example .  For  n = 1 the funct ion has the form 

1 ta - - t b  
w(~) ( t l , . . . ,  t l ,z l  ) = I-[ I-[ 

a = l  ta -- Zl - A1 l <a<b<t ta -- tb + 1 

Example .  For  g = 2 and n = 2 the funct ions have the form 

w(2,0)(tl, t2,Zl,Z2) = 

W(l,1)(q,t2,zx,z2) = 

w(o,z)(tl, t z , z l , z2 )  = 

1 tt - t2 

( t ~ - z l - A 1 ) ( t 2 - Z l - A 1 ) t l - t 2 + l  ' 

1 t2 - z l  + A 1  

( q  - z l  - A1  ) ( t2  - z 2  - -  A 2 )  t 2  - Z l  - A1 

1 tl - z l  + AI tl - t2 - 1 

(t2 - Zl - A1)(q  - z2 - A2) tl - zl - A1 tl - t2 + 1 ' 

1 ( t l  - z l  + A1 ) ( t2  - Zl + A1 ) 

(tl - z2 - A2)(t2 - z2 - A2) (tl - Zl - A1 )(t2 - Zl - A1 ) 

tl -- ta 
X 

t z - t a + l  
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(2.20) Lemma.  The functions wt, I E ~7 ,  restricted to the fiber over z f o r m  
a basis in the rational hypergeometric space ~ ( z )  o f  the fiber provided that 
fo r  any s = O  . . . . .  E - l ,  

z l - - A I - - Z m  - A m + s : ~ = O ,  1 < 1 < m < n .  

Lemma 2.20 is proved in Sect. 9. 

(2.21) Lemma.  Let  ~: = 1. Then for  any I E ~ 7 _  1 the followin9 relation holds: 

(I,, + 1)(2Am - I m ) W l + e ( m )  = ~ Da[wt(t2 . . . . .  tl)]O.a) , 
m = t  a = l  

where ( 1 , a ) E S  b are transpositions. Moreover, i f  ~ ( z )  is the subspace in 
J ( z )  9enerated by the elements in the left hand side o f  the relations, then 

dim ~ ( z  )/ '~(z ) = ( n + - 2 2 )  

provided that zt - Al - zm - Am + s=~O, l < l < m < n, for  any s = O . . . . .  
E - 1 .  

The subspace ~ ( z )  C J~(z)  is called the coboundary subspace. 
The relations (2.21) induce relations 

k(lm + 1)(2Am - lm)wl+e(m)Dh A " "  ADtgJ = O, I E ~ _  1 , 
m = l  

in the cohomology group He(z) ,  where [~J denotes the cohomological class 
of  a form ~. For x = 1 under assumptions of  Theorem 2.17 we have 

(2.22) ~ ( z )  ~-- ~ ( z ) / g l ( z )  . 

For any permutation z E S "  define a basis {w{}teg; in the rational hyper- 
geometric space of  a fiber by similar formulae. Namely,  

(2.23) 

w~(tl . . . . .  tl ,zl . . . . .  Zn; At . . . .  , An) = w q ( h , . . . ,  te,zt, . . . . .  zt.; At, . . . . .  At , )  

where t[ = (It, . . . . .  I~,). 

Example. For E = 1 and permutation ~ = (n, n - 1 . . . . .  1) the functions have 
the form 

1 t - z l  + At 
W~e(m)(t, Zl  . . . . .  Z n )  = <I~l < 

t - -  zm  - A m m =n t - -  Zl  - -  A l  
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The trigonometric hypergeometric space 

In our study of the Gauss-Manin connection an important role is played by 
the following trigonometric hypergeometric space. The trigonometric hyper- 
geometric space is a trigonometric counterpart of the rational hypergeometric 
space introduced above. 

The trigonometric hypergeometric space ~q is the space of functions in 
variables t l , . . . , t : , Z l , . . . , z ,  which have the form 

(2.24) 

P(~1 . . . .  , ~:, ~l, . . . ,  ~n) 

sin(rc(ta - tb)/p) I~: exp(ni(Zm - ta)/p) ]-[ s i n ( - ~  ~ ~ T l ~ - p )  
f i  s in (--~-----z-,,-~" A---~7P )l__<a<0=<: 

X 

m = l  a = l  

where 

~a = exp(2xita/p), ~m = exp(2xizm/p) , 

and P is a polynomial with complex coefficients which is symmetric in vari- 
ables ~l . . . . .  4t and has degree less than n in each of the variables r . . . . .  i : .  

Introduce the singular trigonometric hypergeometric space ~qS'"gc O~q-aS 
the space of functions of the form (2.24) such that the polynomial P is divisible 
by the product ~l , . . - ,  ~:- 

The restriction of the trigonometric hypergeometric spaces to a fiber de- 
fines the trigonometric hypergeometric spaces ~qSing(z)C~q(Z) of the fiber. 
The trigonometric hypergeometric space ~q(z) is a complex finite-dimensional 
vector space of the same dimension as the rational hypergeometric space of 
the fiber. 

The trigonometric hypergeometric spaces of fibers over z and z ~ are natu- 
rally identified if the points z and z t lie in the same orbit of the 7Zn-action on 
the base space, since all elements of the trigonometric hypergeometric space 
are p-periodic functions. 

Introduce a new action of  the symmetric group S r on functions, 

(2.25) f ~--,~f]~, ~ rES: ,  

by the following action of simple transpositions: 

~f](a.a+l)(tl . . . . .  t:,zl . . . . .  zn ) 
sin(rc(ta - ta+l - 1 ) /p)  

= f ( q  . . . . .  t~+l, t~,..., t:, Zl . . . . .  z~) sin(rc(t~ - ta+l + 1)/p) 

a = 1 , . . . , : - 1 .  The trigonometric hypergeometric space is invariant with 
respect to this action. The action commutes with the restriction of  functions to 
a fiber. 

The trigonometric hypergeometric space of  a fiber has n! remarkable bases. 
The bases are labelled by elements of the symmetric group S ". First we define 
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the basis corresponding to the unit element of  the symmetric group. For any 
I EZ2 define a function Wt E ~ as follows: 

(2.26) Wt(q,. . . , t t ,z l  . . . . .  z,) 

m~sl~F[lsin(n/p) I ( e x p ( n i ( Z m - - t a ) / p )  
= =l = sin(ns/p) E ~ 1-[ s i n ( - ~  ----~-~----/l--~p) aESe m=l aEFm 

sin(n(ta -- zl + AI)/p) ~ 1 
• sin(n(t~ - zt - - - A / - ~ J  ~ 

where Fm= {1 + [m--I . . . . .  Ira}, m = 1 . . . .  ,n. Also for any IE..~e~ -1 define a 

function ciWl E ~q~,ng as follows: 

(2.27) 

ffzt(tl . . . . .  t < , z t , . . . , z , )  

.-1 I. sin(n/p) 
= I-[ I-[ sin(ns/p~) sin(n(Zm - Am - zm+l - Am+I + s - 1)/p)  m=l s=l 

X ~-.~ ~nl.~iI H ( 1 
~s< II m=laCr~ s i n ( n ( t ~ - z m -  Am)/p)s in(n( ta-zm+1-  Am+l)/p) 

sin(n(ta - zl + A,)/p)  ~ 
x 1-I s in(n(t~-zt  -----5-q5-~-~'-11l)/1-,~] l < l < m  

The functions WI and ~ are called the trigonometric weight functions. 

(2.28) Lemma.  The functions Wt, I E Z~, restricted to the fiber over z form a 
basis in the trigonometric hypergeometric space ~q(Z) o f  the fiber, provided 
that for any s -= 0 . . . . .  f - 1, 

z ~ - A l - z m - A m + s ~ p Z ,  1 < l < m < n .  

(2.29) Lemma.  The functions I7r n-1 m E ~ , restricted to the fiber over z 
form a basis in the singular trigonometric hypergeometric space ~qSing(z) of  
the fiber, provided that for any s = 0 . . . . .  E - 1, 

z t - A l - z m - A m + s ~ p Z ,  1 < l < m < n .  

Lemmas 2.28, 2.29 are proved in Sect. 9. 

Example. For E = 1 the functions WI have the form 

sin(n(t - zt + At)/p) 
exp(ni(zm - t)/p) 1--[ sin(n(t - z t  - - - ~  " W~(m)(t, zl . . . . .  Z,) = s in ( - -~Z~m A,~)/p) l<=t<m 
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The singular tr igonometric hypergeometr ic  space ~qSing(z)C~q(Z) has dimen- 
sion (n - 1) and is generated by the functions 

~/'e(m) ~ -  We(m) e x p ( - r c i A m / p ) -  We(m+l) e x p ( T r i A m + l / p ) ,  m = 1 . . . . .  n -  1 . 

E x a m p l e .  For  n = 1 the function W(t) has the form 

" exp(~i(zt - t a ) / p )  sin(~(ta - t b ) / p )  
W(<)(t~ . . . . .  t t , z l )  = ]-[ s i ~ = z ~  "---~1 ? p )  1-I s i n ( - ~  - ; ~ ] - ~ p )  " l<a<b<{ a= l  

E x a m p l e .  For { = 2 and n -- 2 the functions WI have the form 

W((z,0)(tt ,  tZ,Zl , z 2 )  

exp(r~i(2zl - tl - t z ) / p )  sin(Tz(tl - t z ) / p )  

sin(zc(h - zt  - A t  ) / p )  sin(z~(t2 - Zl - A t  ) / p )  sin(rc(h - t2 + 1 ) / p )  ' 

W(1,1)( t l ,  t 2 , Z l , Z 2 )  

e x p ( ~ z i ( z l  + z2 - t l  - t2)/p) s i n Q z ( t 2  - Zl + A1 ) /p)  
sin(Tz(tl -- Zl -- A1 ) / p )  sin(rc(t2 - -  z2 - -  AE)/p) sinQz(t2 - zl - A1 ) / p )  

+ 
e x p ( T z i ( z l  + z 2 - -  t l  - -  t2)/p) 

sin(re(t2 - Zl - A l  ) / p )  sin(Tz(tl - z2 -- A 2 ) / p )  

sin(zr(tl - zl  + A l  ) / p )  sin(zt(tl - t2 -- 1 ) /p)  
x 

sin(zfftl - zl  - A l  ) / p )  sin(~(tt - t2 + 1 ) /p )  ' 

W((0,2)(tl ,  t2,zl,z2 ) = 
exp(rei(2z2 - tl - t2 ) / p )  

sin(r~(tl - z 2 - A2 ) /p )  sin(re(t2 - z2 - A2) /p )  

sin(Tz(q - z 1 + AI ) / p )  sin(~z(t2 - z l  + A1 ) / p )  

sin(rc(tl - Zl + A1 ) / p )  sin(re(t2 -- zl  -- A I  ) / p )  

s in(n(q  - t 2 ) / p )  
x 

sin(rffq - t2 + 1 ) /p )  ' 

The singular tr igonometric hypergeometr ic  s p a c e  ~qSing(z)C~q(Z) is one- 
dimensional and is generated by the function 

I~(2) = W(2,0) exp(Tzi(1 - 2A1 ) / p )  - W(1,1) exp(rci(A2 - A l  ) / p )  

"~- ~((0,2)  exp(zci(2A2 - 1 ) / p ) .  
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For any permutation z E S" define a basis {Wlr}i~y; in the trigonometric 
hypergeometric space of  a fiber by similar formulae. Namely, 

(2.30) 

Wl~(tl . . . . .  t~,zl . . . . .  z,; A l  . . . .  , An)  = Wq(t l  . . . . .  t t , z , , , . . . , z , . ;  A,I , . . .  , As,) 

where *I = (I,~ . . . . .  1,.). 

Example .  For f = 1 and permutation z = (n,n - 1 , . . . ,  1) the functions have 
the form 

exp(rri(Zm - t ) / p )  r-r sin(n(t - zl + A t ) / p )  
W~(m)( t, zl  Zn) 

sinOz(t - Zm A m ) / p )  m l<t<n sin(rift -- Zl - -  A I ) / p )  
Q 

3. R-matrices and the qKZ connection 

Highes t  weight  Mz-modules 

Let E , F , H  be generators of  the Lie algebra ~12, [ H , E ] = E ,  [ H , F ] = - F ,  

[E, F]  = 2H. 
For an Mz-module V let V = @~ V~ be its weight decomposition. Let V* = 

@~ V~* be its restricted dual. Define a structure of  an slz-module on V* by 

<Erp, x> = (q),Fx>, (Fq),x> = (~o, Ex) ,  <H~o,x) = (<o,/-/x) . 

This ~12-module structure on V* will be called the dual module structure. 

Let VI . . . . .  V~ be ~I2-modules with highest weights As . . . .  , An, respectively. 
We have the weight decompositions 

| 1 7 4  z. = G ( v ~  | . . . |  v . ) t  
E=0 

and 

V.* (V~ |  |  = O (V~ |  | ,)~ 
~=0 

where ()~ denotes the eigenspace o f  H with eigenvalue E ~ = I  A m  - E. 
* ~ * Let F(Vt |  |  1 C (Vt |  @ n)t be the image o f  the operator F.  

V ,~sing Let (V1 | . . .  @ ,n~t C Vi | - . .  | V~ be the kernel o f  the operator E. There 
is a natural pairing 

~sing . . 
(3.1) (V1 | 1 7 4  nit | | 1 7 4  V~)r | 1 7 4  Vn)e_~ ~ C 

Let V1 . . . . .  V~ be Verma modules, then this pairing is nondegenerate 
provided 

n {--1 

I-I I-I (2Am -- s)=#O . 
m~] S:O 



520 V. Tarasov, A. Varchenko 

The rational R-matr ix  

Let Vl, Vz be Verma modules for ~12 with highest weights A1, Az and generat- 
ing vectors vl, v2, respectively. Consider an End(V1 | V2)-valued meromorphic 
function RVl v2(X) with the following properties: 

(3.2) [Rv, v2(x),F | id + id | F] = 0,  

Rv~ v2(x)(H | F - F | H + xF | id) = (F | H - H | F + xF | id)Rv, v2(x) , 

in End(Vl | V2) and 

(3.3) RVIVz(X)Vl | 131 = Vl | V2 �9 

Such a function Rv~v2(x) exists and is uniquely determined. Rv, v2(x) is called 
the M2 rational R-matr ix  for the tensor product V1 | V2. 

It turns out that Rv~v2(x) commutes with the standard diagonal action of 
~12 in V1 @ V2: 

(3.4) [Rv~v2(x),X @ id + id @X] = 0, X E s[2 �9 

In particular, Rv~v~(x) respects the weight decomposition of V1 | V2. Rv~ v2(x) 
also satisfies the following relation 

Rv~ v~(x)(E | H - H | E + xE @ id) = (H | E - E @ H + xE | id)Rv, v2(x) . 

The rational R-matrix Rv, v2(x) satisfies the symmetry relation 

Pr, v2Rv~ v2(x) = Rv2 vj (x)Pv~ v2 

where Pv~w.:V1 @ V2--* V2 | V1 is the permutation map: Pv, v2(v | v ' ) = v / |  v, 
and the inversion relation 

R v ,  v : ( x )  = . 

The following asymptotics holds as x --+ ec: 

Rv, v,.(x) 

= id | id +x- l (2A1A2id  | i d -  2H |  E |  F | E) + O(x -2)  . 

Let V1 | V2=~t~0  V(t) be the decomposition of the ~12-module VI| 
into the direct sum of irreducibles, where the irreducible module V (l) is gen- 
erated by a singular vector of weight A1 + A2 - l. Let //(t) be the projector 
onto V (t) along the other summands. Then we have 

f i  I_l x + AI + A2 _ s 
(3.5) Rv, v2(x) = 17(t)" H �9 

t=o s=O x - A1 - A2 + s 

Let V~, V2, V3 be Verma modules. The corresponding R-matrices satisfy the 
Yang-Baxter equation: 

(3.6) Rv, v 2 ( x -  y)Rv, v3(x)Rv#3(y) = Rv2v3(y)Rvtv3(x)Rv, v 2 ( x -  y ) .  

All of the properties of Rv, v,_(x) given above are well known (cf. [KRS], 
[FTT], [T]). 
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The Yangian Y(gl2) 

The rational R-matrix is connected with an action of  the Yangian Y(gI2) in 
a tensor product of d2-modules. The Yangian Y(gI2) is a remarkable Hopf 
algebra which contains U(d2) as a Hopf subalgebra. We recall the necessary 
facts about Y(g[2) in this section. 

The Yangian Y(gl2) is a unital associative algebra with an infinite set of 
generators T/(/), i , j  = 1,2, s = 1,2 . . . . .  subject to the relations 

(3.7) [T(or),T~+')]-[Ti~+'),T(k;)]= T(kfTff ) -  T(k})T~; ) , 

i , j , k , l  = 1,2, r,s = 1,2 . . . .  Here T/5~ 6ij and 6ij is the Kronecker symbol. 
The Yangian Y(gl2) is a Hopf algebra with a coproduct A:Y(gl2)--+ 

Y(gl2) | Y(gl2): 
�9 T ( S )  2 A " i j  ~-+ ~ k T~; ) | rlj  -r) " 

k = l  r = 0  

There is an important one-parametric family of automorphisms Px: Y(gl2)--+ 
Y(gl2): 

r = l  l xS-rTff) " 

The Yangian Y(gl2) contains U(d2) as a Hopf subalgebra; the embedding is 
given by 

E~-+ /'2(I ), F~-+ T~ ), H ~-+ ( T ~ I ) -  T(2~))/2. 

There is also an evaluation hornomorphism g : Y(gl2) ---+ U(~12): 

e: T~{) ~"+ E6,s, e: 7"(22 ) ~ - H a , , ,  

s = 1 , 2 , . . . .  Both the automorphisms Px and e restricted to the subalgebra 
U(~12) are the identity maps. 

Introduce the generating series Ti j (u )= 6ij + ~ s ~ l  T{,f ) u - s .  In terms of 
these series the coproduct, the automorphisms Px and the evaluation homo- 
morphism look like 

A : Tij(u) ~ ~ Tik(u) | Tkj(u) , 
k 

Px : T(u)  ~ T(u - x)  , 

e:Tll(U) r---~ Hu -1, e : T12(u)~-+ Fu -1 , 

g:T21(u)~--+ Eu - t ,  e: T22(u)~--+-Hu - 1  . 

Let eij, i , j  = 1,2, be the 2 • 2 matrix with the only nonzero entry 1 at the 
intersection of the i-th row and j-th column. Set 

2 

R(x) = ~ (xeii | ejj -}- e i j |  e j i ) .  
i , j= l  
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Then relations (3.7) in the Yangian Y(912) have the form 

R(x - y)T(l)(X)T(2)(y) = r(2)(y)r(1)(x)R(x - y ) ,  

where To)(u ) = ~ i j  eij | 1 @ Tij(u) and T(2)(u) = ~'~ij 1 @ eij | Tij(u). 
For any ~12-module V denote by V(x) the Y(gI2)-module which is obtained 

from the module V via the homomorphism e o Px. The module V(x) is called 
the evaluation module. 

Let V1, V2 be Verma modules for ~I2 with generating vectors vl, v2, respec- 
tively. For generic complex numbers x , y  the Y(gl2)-modules Vl(x)| V2(y) 
and V2(y)| Vl(x) are isomorphic and the rational R-matrix Pv~ v2Rv~ v2(x-  y)  
intertwines them IT], [DI]. The vectors vl | and vz | vl are respective 
generating vectors of the Y(gl2)-modules Vl(x)| V2(y) and V2(y)| Vl(x). 
The rational R-matrix Rv, v : ( x -  y)  can be defined as the unique element of 
End(Vl | 1"2) with property (3.3) and such that 

(3.8) Pv~vzRv~v~(x- y):V~(x)| Vz(y) ---+ V2(y)| V~(x) 

is an isomorphism of the Y(glz)-modules. 
For a Y(glz)-module V let V = (~z I5 be its weight decomposition as 

an Sll-module. Let V* = (~;. V~* be its restricted dual. Define a structure of 
a Y(gI2)-module on V* by 

(r~l(U)~O,x) = (q,, r~ (u )x ) ,  (r~2(u)q,,x) = (q,, r 2 ~ ( u ~ ) ,  

(T21(u)(p,x) = (q), r l2(U)X),  ( r 2 2 ( u ) r  -~- (fp, r22(u)x)  . 

This Y(glz)-module structure on V* will be called the dual module structure. 

The rational qKZ connection associated with ~12 

Let Vl,..., V~ be ~I2-modules. The qKZ connection is a discrete connection on 
the trivial bundle over (E n with fiber Vl | --- | V~. We define it below. 

Let V1 . . . . .  V~ be Verma modules with highest weights A1 . . . . .  An, respec- 
tively. Let Rv, vj(x) be the rational R-matrices. Let Rij(x) E End(V1 @ . . .  | V,) 
be defined in a standard way: 

( 3 . 9 )  Rij(x) = ~ id |  | r(x) |  | rt(x) |  | id 
i-th j-th 

provided that Rv~vj(x) = ~ r(x) | r'(x) E End(~ | Vj). For any X E ~I2 set 

Xm = i d | 1 7 4  X @ " - |  
m-th 

Let p , x  be complex numbers. For any m = 1, . . . ,n  set 

(3.10) 

g m ( z l , . . . , Z n )  =Rm, m-l(Zm - Zra-I "3v p) '"  "Rm, l(Zm -- Zl "Jr p)K A'-H'~ 

X Rm, n(Zm - Zn) ' ' "  Rm, m+l(Zm -- Zm+l ) ,  
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(3.11) Theorem. [FR] The linear maps Kin(z) obey the flatness conditions 

K l ( z  1 . . . .  , z m + p . . . . .  z,)Km(zl . . . .  , z , )  

= Km(z i , . . . , z t  + p . . . . .  zn)KI(zt . . . . .  zn), l ,m = 1 . . . . .  n .  

The maps K l ( z ) , . . .  ,K , ( z )  define a f lat  connection on a trivial bundle over 
C" with f iber VL | - . .  | V~. This connection is called the q K Z  connection. 

By. (3.4) the operators Km(z) commute with the diagonal action o f  H in 
V~ |174  

[Km(Zl . . . . .  zn),H] = O, m = I . . . . .  n ,  

and, therefore, preserve the weight decomposition o f  V1 |  @ V~. Hence the 
q K Z  connection induces the dual f lat  connection on the trivial bundle over 
IE" with f iber (VI | . . .  @ V~)*. This connection will be called the dual q K Z  
connection. 

Le t  ]13 C C n be the complement to the discriminant (2.10). 
(3.12) Lemma.  For any z E �9 the linear maps K~(z)  . . . .  , K ; ( z )  define iso- 
morphisms of(V1 |  @ V~)~. 

This statement follows from (3.5) and (3.10). 
I f  x = 1, then the dual q K Z  connection commutes with the diagonal action 

of  fil 2 in (V1 @ . . -  | V~)*: 

[Km(zl , . . . ,z~) ,X] = O, X E d2, m = 1 . . . . .  n ,  

and, therefore, admits a trivial discrete subbundle with fiber F(VI @ . . .  @ 
V~)~_ 1, moreover,  it induces a flat connection on the trivial bundle with fiber 
(Vl |  | V,)~/F(VI |  | Vn)~_t. 

Let / / I  . . . . .  V~ be ~I2-modules. The q K Z  equation for a V1 @ .- .  | Vn-valued 
function T(zl . . . . .  z , )  is the following system of  equations 

~[/(ZI . . . . .  Z m AV p , . . . , Z n )  = K r n ( Z l  . . . .  , Z n ) ~ ' t ( Z l  . . . . .  Zn), m = I . . . . .  n . 

The q K Z  equation is a remarkable difference equation, see [S], [FR], [JM], [Lu]. 

The trigonometric R-matrix  

Let q be a nonzero complex number  which is not a root o f  unity. Let 
Eq,Fq, q •  be generators of  Uq(~I2): 

qHq--H = q--HqH = 1, 

qH Eq = qEqq H, qH Fq = q - '  Fqq ~4 " 

q2H _ q--XH 
[Eq,Fq] = -1 q - q  
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A comultiplication A : Uq(~[2) ~ Uq(sl2) | Uq(~12) is given by 

A(q H) = q~ | q#, 

A(Eq) -= Eq | qH + q-at | Eq, 

The comultiplication defines a module 
Uq(~I2)-modules. 

A(q-H) = q-It | q-H , 

A(Fq) -~ Fq | qH + q - .  | . 

structure on the tensor product of 

Let VI,/I2 be Verma modules for Uq(sl2) with highest weights qA,,qA2 
and generating vectors Vl, v2, respectively. Consider an End(V1 | V2)-valued 
meromorphic function Rqv2(() with the following properties: 

(3.13) Rqg2(~)(Fq | +q-H @Fq) = (Fq @q-H +qH | Fq)Rqlvz(() 

Rq r.2 (~)(Fq @ q-H + ~qj4 @ Fq) ----- (Fq @ qH + (q-H | Fq)Rq v2 (~) 

in End(V1 | V2) and 

(3.14) Rq~v2(()vl | Vz = Vl | V2 �9 

Such a function Rqv2(~) exists and is uniquely determined. R q, v2(~) is called 
the 512 trigonometric R-matrix for the tensor product Vl | V2. 

The trigonometric R-matrix Rqll-Z(~) also satisfies the following relations 

(3.15) 

Rq, v2(~)(Eq | d "]- q-H | Eq) = (gq ~ q-H -4- qg | Eq)R q, vz(~ ) 

Rqv~(~)(~Eq @q-H ..k_qH | | +q-H | 

Rqv, v~ ( C )qg | q .  = qg | qZ4 Rqv~ v2 ( ( ) . 

In particular, Rqv2(~) respects the weight decomposition of V1 | V2. 
Rqv2(() satisfies the inversion relation 

Pr, ,2R q, v2(() = (Rq2v , (~-t ) )- l  pv ' v2 

where Pr~ v2 :/I1 | V2 --* /I2 | V1 is the permutation map. 
Let Vl | V2 = ~:)~0 V(O be the decomposition of the Uq(~12)-module Vt | 

into the direct sum of irreducibles, where the irreducible module V (t) is gen- 
erated by a singular vector of weight qA,+A2--I. Let //(0 be the projector onto 
V (/) along the other summands. Then we have 

t-I 1 - ~q2S--2Ai--2A2 
R~, # ~ )  = R q, # 0 )  ~ n ~t~ �9 H ;q2a,-~,2-z~ �9 

t=o s=O 1 
(3.16) 

where 

k 
Rq g2 ( O ) : q2A~ A2-- 2H | f i  ( q2 _ 1)2k H (1 -- q2S)-l(q'TFq Q q-tl Eq )IC . 

k = 0  s =  1 
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Let Vl, V2, V3 be Verma modules. The corresponding R-matrices satisfy the 
Yang-Baxter equation: 

(3.17) R q R q V I V 2 ( ~ / ~ )  v 1 v 3 ( ~ ) R q z v 3 ( ~ )  = q q q 

All of the properties of Rqv~(~) given above are well known (cf. [Y], [D1], 
[J], [CP]). 

Similar to the rational case one can define the qKZ connection associated 
with the trigonometric R-matrix (cf. [FR]). We study this trigonometric q K Z  
connection in [TV3]. 

The quantum loop algebra Uq(912) 

The trigonometric R-matrix is connected with an action of the quantum loop 

algebra Uq(gl2) in a tensor product of  Uq(~12)-modules. The quantum loop 

algebra Uq(gl 2) is a Hopf algebra which contains Uq(~12) as a Hopf subalgebra. 

We recall the necessary facts about Uq(gI2) in this section. 

Let q be a complex number, q +  • 1. The quantum loop algebra Uq(glz) 

L (+~ L(. -~ l < j < i < 2 ,  and is a unital associative algebra with generators ~j ' -s, ' = - 

L!O i , j  = 1,2, s = • 1 7 7  . . . . .  subject to relations (3.18) [RS], [DF]. q , 

Let e~j i , j  = 1, 2, be the 2 x 2 matrix with the only nonzero entry 1 at the 
intersection of the i-th row and j-th column. Set 

R(~) = (~q - q-I  )(ell | e H +  e22 | e22) + (~ - 1 )(el2 | el2 + e21 | e21 ) 

+~(q - q - l  )e12 | e21 + (q - q - l  )e21 | el2 �9 

Introduce the generating series Li~(u ) - L  (+~ o~ .(• • - -  i /  "q- ~ ' -~s= l  L i j  U . The relations 

in Uq(gl2) have the form 

(3.18) L(+O) (-0) (-o) (+o) ii L i i  = 1, L i i  L i i  = 1, i = 1,2,  

R( ~/~)L~)( ~)LS)( ~ ) = L~)(~)L~)( r ~/~) , 

R( ~/~)L~)( r = L~)(~)L~)( r ~/~) , 

R( ~/~)L~)( ~)L~)( ()  = L~)( ~)L~)( ~)R( ~/~) , 

where L~l)(~)= Y'~ij eij | 1 | L~j(~.) and L~2)(~ ) = ~ i j  1 @ eij | Lb(~), v= +. 

Elements L (+~176 L (+~176 # - ~ 1 7 6  r ( -~176  11 ~ 2 2  ' 22 a.,11 ' ~ I 1  ~ 2 2  ' ~ 2 2  ~ 1 1  are central in 
Uq(glz). Impose the following relations: 

L +~176 1, r(+~176 1, r ( -~176  1, r ( -~176  
11 ~ 2 2  ~ ~ 2 2  ~ 1 l  ~ -  ~11  L '22  ~ ~ 2 2  a - ' l l  ~ 1 

in addition to relations (3.18). Denote the corresponding quotient algebra by 

Uq(9I~). 
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The quantum loop algebra Uq(fll2) is a Hopf algebra with a coproduct 

Aq: U;(g[2)  -+  Uq(g[2) @ Uq(g[2): 

v v A ~ : Lij(~ ) ~ ~ Lkj(~ ) | L~k(~), v = + .  
k 

Remark .  Notice that we take the coproduct Aq for the quantum loop algebra 
Uq(glz) which is in a sense opposite to the coproduct A taken for the Yangian 
Y(gl2) (cf. Theorems 4.25, 4.26). 

There is an important one-parametric family of automorphisms p~ " U~(912 ) 

: v = •  

that is 

L(• (• L!.S) ~--~L(f) P ~ : - i j  ~ , L i j  and P ~ : - v  ~ -  -v ' s E 7 1 , o .  

The quantum loop algebra Uq(gI2) contains Uq(~lz) as a Hopf subalgebra; the 
embedding is given by 

~-+ f(+0)~, _ q-1  Eq --~21 / tq  ), Fq ~ L ~ ~  - q-1 ), qI4 ~ L]-(o). 

There is also an evaluation homomorph i sm eq : Uq(gl2) ---* Uq(s[2): 

8 q : Z+l(~)  w....> q -H  _ qH~, 

/~q : Z ~ - l ( ~ )  ~ - E q ( q  - q-l), 
e. q : L ~ ( ~ )  ~ qH _ q - - H ~ - l ,  

/3 q : L~(~) ~ Eq(q - q- t )~ - t ,  

8 q" Z~2(~ ) ~-> -Fq (q  - q - '  )~ ; 

8q.  Z~-2(~) ~ qH _ q- t4  ~ , 

aq : F q ( q -  

eq : L~2(r ~ q-14 _ qt4 ~ - t  , 

that is 

/~q . /-(+0) Eq l ( l )  •q . i (1) ~11 , + q - H ,  : ~tt ~.+ _qH,  " " t e  ~-+ - F q ( q - q - t )  , 

i (+o)  r(+o) qH, sq . r(1) _ q - H  
F'q " ~ 2 1  ~ - E q ( q  - q-l), /3q : ~ 2 2  ~ " ~ 2 2  ~ ' 

eq : L~Io} ~.+ q/4, 8q : L~ll) ~ _ q - U ,  eq : L~-o) ~__, Fq(q _ q - l ) ,  

�9 " s - -+  r ( + D  ~ _ q H  aq L~-~,) ~.+ E q ( q _ q - t ) ,  eq L~2o) q -H ,  eq:-22 

and e q " t,!s. ) ~-* 0 for all other generators -v " - - - / j  

Both the automorphisms p] and 8q restricted to the subalgebra Uq(~lz) are 
the identity maps. 

For any Uq(~lz)-module V denote by V(~) the Uq(gl2)-module which is 
obtained from the module V via the homomorphism e q o pq~. The module V(~) 
is called the evaluation module.  
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Let V1, V2 be Verma modules for Uq(sl2) with generating vectors vi,v2, 

respectively. For generic complex numbers ~,~ the Uq(glz)-modules VI(~)| 
V2(~) and V2(~)| VI(~) are isomorphic and the trigonometric R-matrix Pv~ 
R~v~(~/~) intertwines them IT], [CP]. The vectors vl | v2 and v2 | Vl are re- 

spective generating vectors of the Uq(glz)-modules VI(~) | V2(~) and V2(~) | 
V~(~). The trigonometric R-matrix R~ v2(~/~) can be defined as the unique ele- 
ment of End(Vl | V2) with property (3.14) and such that 

(3.19) | 5(r174 fi(r 

is an isomorphism of the U~(gl2)-modules. 

4. Tensor coordinates and module structures on the hypergeometric spaces 

In this section we identify the Gauss-Manin connection and the q K Z  connec- 
tion. In addition we also describe a structure of a Y(gI2)-module on the rational 
hypergeometric space and a structure of a Uq(glz)-module on the trigonometric 
hypergeometric space, respectively. 

The rational hypergeometric ,nodule 

The J~[/] be the rational hypergeometric space defined for the projection 
~t+n __~ tun. In particular, ~ [0 ]  = C and, in our previous notations, we have 
~[Y] = ~ .  Consider the direct sum 

= ~ ~ [ l ]  
l > 0  

which will be called the rational hypergeometric Fock space. 
Let Tij(u), i , j  = 1,2, be the generating series for the Yangian Y(gI2) in- 

troduced in Sect. 3. Set 

m=l u - zm - Am' i , j  = 1,2, 

where the rational function in the right hand side is understood as its Laurent 
series expansion at u = ~ .  It is clear that the coefficients of the series Tij(u) 
generate Y(gl2). Introduce an action of the coefficients of the series Tij(u) in 
the space 5 .  Namely, for any f E ~ [ / ]  set: 

(4.1) ( ~ ( u ) f ) ( t i  . . . . .  tl) = f ( t l  . . . . .  tt) ~I u - z , .  + Am 
m = l  U - -  Z m  - A m  

t U - t a - 1  ~ U - t a - 1  l 
• + . E 

a = l  U - -  t a a = l  u - -  t a  a = l  

[f(tL,..._,tl-l_,u) f i  t l -  Z m  .Jr Am] 
• L u - t l - 1  tlZz--~---A-~ ' m = l  ( a , l )  
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l U - - t a + l  
( T 2 z ( u ) f ) ( h  . . . . .  tl) = f ( h  . . . . .  t l)  1-I 

a=l  U -- t a 

1 u - t a + l ~  [ f (u , t .  )] 
- I-[  2 , . . . , t t  

a=l  U --  t a a=l  L u - tl + 1 J ( l ,a)  ' 

( T l x ( u ) f ) ( t l  . . . . .  t l + l )  

1+1 I f ( t2;"  ,//+l) ( fi ll--Zm+Zm lff_~ u--tb + l h - t b - 1  
= ~'-~ 2 tl tl - Xm - - A m  U-- tb tl - -  tb + l a=l m=l b=2 

f i  U - - Z m + A m l r I l u - - t b - - 1 ) ]  l + l u - - t a + l  
. . . . . . .  -I 

m=l U --  Z m Am b=2 U --  t b (l ,a) a=l  U --  ta 

~ [  f('--u't2""2~'''~'tlA f i t l+ l - -Z m- ' } -A_~ mm]  
x (u - tl + 1)(u - tt+~ + 1) m=l tt+] - Zm - -  ' a,b=l ~ab 

a4=b 

l--1 U - - t a - -  1 
( ~ l ( u ) f ) ( t ,  . . . . .  t t - l )  = f ( t l  . . . . .  t t - l ,U )  1-I , l > O, 

a=l U --  t a 

and ~ ( u ) f  = 0 for f E ~ [0 ] .  Here ( 1 , a ) , ( a , l )  are transpositions and a a b E  
S t+l is the following permutation 

(7 ab : i ~-* i for i = 2 , . . . ,  l, ff ab : 1 ~-+ a, a ab : l + 1 ~-~ b .  

The right hand sides of formulae (4.1) are rational functions in u, and the 
precise meaning of each of  the formulae is that the left hand side equals the 
Laurent series expansion of the respective right hand side at u = c~. 

(4.2) Lemma. Formulae  (4.1) define a Y(g l z ) -module  structure in the rational  
hypergeometr ic  Fock  space ~ .  

The proof is given by direct verification. 
Let ~ ( z )  = (~t__>0~,~[l](z) be the rational hypergeometric Fock space of a 

fiber. The Y(glz)-module structure in ~ clearly induces a Y(gl2)-module struc- 
ture in ~(z) .  This module will be called the rational  hypergeometr ic  module.  

For the action of the generators of  the subalgebra U(M2) (4.1) simplify 
and for f E ~ [ l ]  look as follows: 

(4.3) ( H f ) ( h  . . . . .  tt) = ( ~ Am - l~ f ( t l , . . . , t , ) ,  
\ l 

( F f ) ( t l  . . . . .  tl+t ) 

= ~ f ( t 2 , . . . , t j + l )  
a=t m=| tl - zm A m  b=2 tl - -  tb + 1 

( E f ) ( t b . . . , t l - 1 )  = ( t t f ( t l  . . . . .  t l ) ) l t t=oo,  l > O, 

and E f  = 0 for f E ~[0] .  Here (1,a)  E S l+l are transpositions. 

1)] 
(1,a) 
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Remark.  It is worth to mention that for any function wl we have 

Fw[ = f i  (lm q- 1 ) ( 2 A  m - lm)WI+e(m) . 
m=l 

cf. (2.21). Hence R[l](z) C F ( ~ [ I  - 1](z)), where R[l](z) is the coboundary 
subspace. 

Remark.  Let x = 1. Then for any function f c ~ [ f  - 1] we have 

(4.4) ( F f ) ( t l , . . . ,  to) = ~ D~[f( t2  . . . . .  tl)](:,a) �9 
a=l  

Tensor coordinates on the rational hypergeometric spaces o f  fibers 

Let VI . . . . .  V~ be ~I2 Verma modules with highest weights A1 . . . . .  An and gener- 
ating vectors v l , . . . v , ,  respectively. Consider the weight subspace (V1 |  | 
V~)t with a basis given by monomials  Ft'vl | . . . |  The dual space 
(VII | . . .  | V,)ff has the dual basis denoted by (Fl'Vl |  |  *. 

For any z E r  and for any z E S n denote by Be(z) the following homo- 
morphism: 

Be(z)" (V~, |  | V~~ ~ ~ - ( z ) ,  

Be(z) : (F"~ re, |  | F I" re,)* ~ w[(t ,z),  l E ~ , 

where ~- (z )  is the rational hypergeometric space of  a fiber (cf. (2.19), (2.23)). 
The homomorphisms BT(z) are called the tensor coordinates on the rational 
hypergeometric space of  a fiber. The composition maps 

* V, * ge, e,(z) : (Z~ |  | V~,)~ ~ (v~, |  | ~ , ) t ,  

B~,~,(z) = BT~(z) o Be,(z) , 

are called the transition functions, of. [V3]. 

(4.5) Lemma.  Let  zl + Al - zm + Arn~ {O . . . . .  g - 1 }  f o r  any 14=m, l ,m = 
1 . . . . .  n. Then for  any permutation z the linear map Br(z) : (VTI | " "  
Vr ---, ~ ( z )  is nondegenerate. 

The statement follows from Lemma 2.20. 
Consider the evaluation module Vr 1 (zel) | . . .  | V~,(ze,) over Y(gl 2) coin- 

ciding with Vr | . . -  | V~, as an ~12-module. 

K * (4.6) Lemma.  For any cp E (Vr 1 | . . .  | e,)t we have 

(q), T12(tl ) ' "  T12(te)vl • " " | Vn) 

ta-- tb + 1 
=(8~(~)q,)(t~ . . . . .  t , ) H  [I ( to--zm--Am)/ to H 

a=l  m=l l<a<b<=g ta --to 
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It is easy to see that the right hand side above is a polynomial in t l l , . . . ,  tZ 1, 
so the formula makes sense without additional prescriptions. 

(4.7) Theorem. For any permutation z E S ~ the map 

B~(z) : (v~ , (z~ , ) |  | v~.(z~.))* --, ~ ( z )  

is an intertwiner o f  Y(gl2)-modules. 

(4.8) Corollary. Let  zt + A z - z m  + A , ~  7l f o r  any l . m ,  l , m =  1 . . . .  ,n. 
Then for  any permutation z E S ~ the map B~(z) : ( V ~ ( z ~ ) @ . . .  | V~.(z~.))* 

~ ( z )  is an isomorphism o f  Y(gl2)-modules. 

The statement follows from Theorem 4.7 and Lemma 4.5. 

(4.9) Theorem. [V3] For any z E 5~ and any transposition (m, m + 1), m = 
1 . . . . .  n -  1, the transition function 

Bz, r .  (m,m+l)(Z) : ((Vz, |  | V%n+~ | Vzr n |  | Vz.) ' ) l  ~ (V~, | 1 7 4  VZn)~ 

equals the operator (Pv~v~,+tRv~v~,+,(z~,-z,.+~))* actin9 in the m-th and 
(m + 1 )-th factors. 

The theorem follows from Lemma 4.6 and (3.8). 

Each B~(z) induces a linear map (V~, |  @ V~,)~ ~ Yf(z) which also will 
be denoted by B~(z). 

(4.10) Theorem. Let  x+- 1. Le t  p < O. Le t  (2.12)-(2.14) hold. Then f o r  any 
z E S ~ the map Be(z) : ( ~  |  @ V~.)7 ~ ~ ( z )  is an isomorphism. 

This statement follows from Theorem 2.15 and Lemma 4.5. 

It is easy to see that for any z E S n the image of F(V~ | . . .  | V~.)7_ l 
under the map Be(z) coincides with the coboundary subspace ~ ( z )  C ~-(z). 

(4.11) Theorem. Let  ~: = 1. Le t  p < O. Let  (2.12)-(2.14) hold. I f 2  ~--~n=l Am 
- s ~ . p 7 l < o  f o r  all s = { - 1 . . . . .  2d - 2, then .for any z E S n the map Bv(z) 
induces an isomorphism 

(v~, |  | g . ) ; / F ( ~  |  | ~o )~_ 1 -~ g ( z ) .  

The statement follows from Theorem 2.17 and Lemmas 2.20, 2.21. 
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Taking into account (3.1) we get an isomorphism 

((VT ' @ | Vz" sing . - . -  ), ) - - ,  ~ ( z ) .  

(4.12) Theorem. [V3], [TV1] For any m = 1 . . . . .  n, the followin 9 diagram is 
commutative: 

(v,, |  | v~. ) ;  

B~(z~ , . . . , z .+  p . . . , z . )  

Yf(Zl,...,Zm + p . . . .  ,Z,) 

K;(z,...,z,) 
V, * ,(v,, |  | ~.)t 

I B~(z~,..,,z,) 

, ~ ( z l  . . . .  , z , )  
A~(z~,...,z, ) 

Here Am(Z ) are the operators o f  the Gauss-Manin connection, K~(z) are the 
operators dual to Km(z), and Kin(z) are the operators o f  the qKZ connection 
in (V~, |  | V~,)t defined by (3.10). 

(4.13) Corollary. The construction above identifies the qKZ connection and 
the Gauss-Manin connection restricted to the hypergeometric subbundle. 

The trigonometric hypergeometric module 

Let O~q[l] be the trigonometric hypergeometric space defined for the projection 
~t+, ___, ~ , .  In particular, .~q[O] = C and, in our previous notations, we have 
~q[{] = ~ .  Consider the direct sum 

l > 0  

which will be called the trigonometric hypergeometric Fock space. 
Let q = exp(ni/p). Let L~(u), j , k  = 1,2, be the generating series for the 

quantum loop algebra Uq(gl2) introduced in Sect. 3. Set 

~+ • n +i exp(• -- u)/p) 
mr]= - . ,.-.7--5,-.--7~ . . . . .  ~ L~(~) = L~(~) -1 2sm(n(U-Zm - A m ) / p )  j , k  = 1,2 

where ~ = exp(2rciu/p). The products in the right hand side are rational func- 
tions in ~. The precise meaning is that Z~(r equals the Laurent series ex- 

pansion of the corresponding fight hand side at ~ = c~z, and LJ~(~) equals the 
Taylor series expansion of the corresponding right hand side at ~ = 0. It is 
clear that the coefficients of the series L~(~) generate Uq(~22). Introduce an 

action of the coefficients of the series Lfk(~) in the space ~q. Namely, for any 
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f E ~q[l]  set: 

(4.14) ( Z ~ ( ~ ) f ) ( t l  . . . . .  tt) = f ( t t , . . ,  tl) f i  sin(~t(u -- Zm +___ Am)/p) 
' sin(Tc(u - Zm A,,)/p) m=i 

l s in ( z f fU- ta -  1)/p) 
• H s~-~-(;-~7)~ a=l 

I s i n ( ~ ( u - t ~ -  1)/p)  
+sin(~/p) H ~ i - ~ - ~ ) ~  

; I t u~ e x p ( ~ i ( u -  h)/P) 
x E f ( h  . . . . .  l-l,  ) s ~ -  h- -1- -~)  

a=l 

• h s in(r~( t t -z ,~  + A.~)/p)~ 
sin(n(tt  Zm + A,.)/p) ]] (~ l) ' m=l 

t s in(g(u  - t~ + 1)/p)  
(L~(~) f ) (h  . . . . .  h) = f ( q  . . . .  ,h) I'I s ~ n ( ~  - ~a))-P') 

a=l 

t sinOffu - t~ + 1 )/p) 
-~.(~/p) H s~n(~(d--ta)/p) a=l 

x a=l I t t~ exp(zci(u-tl)/p) ~ , 

t+ l  [ [ . , .  . , e x p ( z r i ( u  - h)/p) 
(L~(~)f)(t l , . . . , t ,+~)=sin(rc/p) ~ ~ j t t 2 , . . . , t t + ~ j  ~ ' - - t l f f p - )  

a=l 

• ( f i  sin(zffh - zm + Am)/p) 
m=l sin(zr(tl - zm Am)/p) 

t§ sinOr( u _ tb + 1 )/p) sin(rffq -- tb -- 1) /p)  

• I-I si--'~(u Z tb)/p) sin(~(t) tb ~ 1)/p)  b=2 

_ f i  s in(n(u - z m  +__Am)/p) 
sinOz(u - z~ A~)/p) m=| 

'+' sin(rffu -- tb--1)/p) ~ ~ 
• H ~n(~(~-tb)/p) /Jl(~,~> b=2 

t+l sin(rffu - t~ + 1 )/p) 
-~n~(~/p) H s~n(~(g--t~)/p) a=l 

l+1 I • ~ f (u ,  t2 . . . . .  tl) 
a,b=l 
a+-b 



q-hypergeometric functions, Yangians and quantum affine algebras 533 

exp(~i(2u - tl - tl+l )/p) 
s in (~(u-  fl + 1)/p)sin(Tc(u - tt+l + 1)/p) 

X fi  sin(zc(t/+l - - Z  m ~- Am)/p)~ 
,~=~ s i ~ ( ~ ( t t + t  - z , ,  - A - s  ~,~ ' 

t-t  sin(rffu - ta - 1 ) / p )  
( L ~ ( ~ ) f ) ( t l  . . . . .  t t - l )  = f ( t l , . . . , t l - b U ) a = ]  1-[ ~(U----~) ;p-) -  ' l > O, 

and 1 .~ (u ) f  = 0 for f E o~q[O]. Here ~ = exp(2rciu/p), (1 ,a) , (a , l )  are trans- 
positions and crab E S t+l is the following permutation 

G ab : i ~ i for i = 2 , . . . ,  l, (rab : 1 F.-+ a, ffab : l + 1 ~ b .  

The right hand sides of (4.14) are rational functions in 4, and the precise 
meaning of each of the formulae is that Lj~(~) equals the Laurent series ex- 

pansion of the corresponding right hand side at ~ = o% and ~.~(~) equals the 
Taylor series expansion of the corresponding right hand side at ~ = 0. 

N 

(4.15) Lemma. Formulae (4.14) define an Uq(gl2)-module structure in the 
trigonometric hypergeometric Fock space ~q. 

The proof is given by direct verification. 
Let ~q(Z) = ~)t=>0 ~q[l](z) be the trigonometric hypergeometric Fock space 

of a fiber. The Uq(gl2)-module structure in ~q clearly induces an Uq(glz)- 
module structure in ~q(Z). This module will be called the trigonometric hy- 
pergeometric module. 

For the action of the generators of the subalgebra Uq(MZ) (4.14) simplify 
and for f E ~q[l] look as fol!ows: 

(4.16) 

(q• f ) ( h  . . . . .  tt) = q+(~:=~Am-O f ( h , . . . ,  tl) , 

(Fqf)( t ,  . . . . .  tt+,) = exp ( - ~ i  ( l  + ~ Am)  / p )  ~ l f ( t2  . . . . .  tt+t) 
\ \ m=l / / /  a=I k 

m0 sin(rc(tl -- Zm + Am)/p) 
x exp(2rcil/p) 1 sin(rc(fl ---z--~--Am)/p) 

1+1 s i n ( ~ ( f l  - tb - 1 ) / p )  

X b=2H sin(Tz(tl tb -+ 1 )/p) 

\ m=] (],~) 
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( E q f ) ( t l ' " " t l - l ) = - ( 2 i s i n ( x / P ) ) - l e x p ( x i ( l - l + ~ A m ) / p ) m = l  

x f ( t l  . . . . .  tl)[exp(2rcit:/p)=O, l > O, 

and E q f  = 0 for f E ~ q [ 0 ] .  Here ( 1 , a ) E S  t+l are transpositions. 

Tensor coordinates on the trigonometric hypergeometric spaces o f  f ibers 

Let q = exp(ni/p) .  Let V1 q . . . .  , V~ q be Uq(~12) Verrna modules with highest 
q q respectively. Consider a weights qA~ . . . . .  qA, and generating vectors v I . . . . .  vn, 

weight subspace (V~ q |  | V,q): with a basis given by monomiats pl , .q  . q V l Q  
- -  ~ 1 .  q �9 -. ~9 r~  v,L For any z E IB and for any r E S n denote by Cz(z) the following 

homomorphism: 

C~(z) . ( v :  |  | v~q): --, ~%(z) , 

r  : F~'v q, | 1 7 4  ~ " q ,  - ,  r I ~ :  , 

where 
f i  t , - i  sin(x(s + 1 ) /p) sin(zff2Am - s) /p)  

ct = I-I s in(x/p) ' m=l  s=0 

where o~q(z) is the trigonometric hypergeometric space of  the fiber (cf. (2.19), 
(2.23)). The homomorphisms C,(z)  are called the tensor coordinates on the 
trigonometric hypergeometric space o f  a fiber. The composition maps 

v~q):, c~- c , , ( z )  c~: , (z ) :  ( v !  |  | v : ) :  ~ (v~ |  | r  = ,(~) o , 

are called the transition functions, of. IV3]. 

(4.17) Lemma. Let  zt + At - z,, + Am - s ~p7l  f o r  any s = 0 . . . . .  { - 1, and 
fo r  any l ,m -- 1 . . . . .  n. Then fo r  any permutation ~ the linear map C~(z) : 
(V~ q |  | v,~q): ~ ~q(Z) is nondegenerate. 

The statement follows from Lemma 2.28. 
Let ~ - - exp (2zc i z~ /p ) .  Consider the evaluation module v ~ q ( ~ ) |  | 

V, Tq(~,) over Uq(gl2) coinciding with Vl q |  | V~ q as an Uq(51z)-module. 

(4.18) Lemma. For any vE(V~ q |  | V~q~): we have 

L ~ ( r 1 6 2  = (Cr . . . .  , t : )  

: 2 sin(rffu - z,, - Am)/p)  

a = l  m=l  

sin(rC(ta - to + 1)/p) q 
• 17 | | vq, 

l < a < b < :  

where ~ = exp(2rcit~/p), a = 1 . . . . .  :. 
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It is easy to see that the right hand side above is a polynomial in ~ l , - . . ,  3: for 
the case of  the upper signs, and is a polynomial in ~ - l  . . . . .  ~-1 for the case of  
the lower signs, so the formula makes sense without additional prescriptions. 

(4.19) Theorem. For any permutat ion ~ E S n the map 

C~(z) : v~q(~, ) |  | v~q(~.) --, ~q(Z) 

is an intertwiner o f  Uq(gl 2)-modules. 

(4.20) Corollary.  Let  zt + At - Zm + Am - s d~ p ~  f o r  any sC77>__o, and f o r  
any l, m = 1 . . . . .  n. Then f o r  any permutat ion z E S n the map C~(z) : v~q(~ ) 

|  | v~q(~,) ---* ~;q(Z) is an isomorphism o f  Uq(glz)-modules. 

The statement follows from Theorem 4.19 and Lemma 4.17. 

(4.21) Corollary.  For any z C S n the homomorphism C~(z) maps (V~ q | . . .  | 
V. q ~sing ~.:: into the singular trigonometric hypergeometric space j~qS~ng(z) o f  a 

fiber. The map 

Vq~sing _...r ~s ing(z  ) C~(z) : (~q | 1 7 4  .~~ 

is an isomorphism provided that zt + AI - Zm + Am - s (fp7l f o r  any s = 
0 . . . . .  { -  1, and f o r  any l ,m = 1 . . . . .  n. 

The statement follows the last formula in (4.16). 

(4.22) Theorem. [V3] For any z E N n and any transposition (m, m + 1), m = 
1 , . . . , n  - 1, the transition funct ion 

Czz., (m,m+I)(Z) " w-qz~ O " "  | K qzm+l O K qz~ 0 " "  | g-qz. ----> V~ q |  ~ gfl~:n 

equals the operator Pv:,,§ v:~ Rq:q+l.~, v:(exp(2rci(z~+, -- z~ , ) /p) )  acting in the 

m-th and (m + 1)-th factors.  

The theorem follows from Lemma 4.18 and (3.19). 

Tensor products  o f  the hypergeometric modules 

Let ~ ' [z l , . . . ,Zm;  Al . . . . .  Am; l] and O~q[Zl . . . . .  Zm; A1 . . . . .  Am; l] be respectively 
the rational and the trigonometric hypergeometric spaces defined for the pro- 
jection C l+m ~ ~m. In particular, in our previous notations we have 

~ = ~ [ z l  . . . . .  zn;Al . . . . .  An;:]  and f f q - ~ - ~ q [ Z  1 . . . . .  z , ; A i  . . . .  , A n ; : ] .  

There are maps 

Z : ~ [ z l  . . . . .  zk; AI . . . . .  Ak; j ]  Q -~-[Zk+l,... ,Zk+m; A~+~ . . . . .  Ak+m; l] 

--* ~-[zl . . . . .  Zk+m; Al . . . .  , Ak+m;j + l] , 
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Zq : ~q[Zl . . . . .  zk; A1 . . . . .  Ak;j] ~ O~q[Zk+l . . . . .  Zk+m;Ak+l . . . .  Ak+m; 1] 

--~ ~q[Z~ . . . . .  Zk+m; A~ . . . . .  Ak+,n;j + t],  

which are respect ively defined by  Z : f | 9 ~ f *g and Zq : f | g ~ f * g, 
where 

( f  *9)(tl . . . . .  tj+t) 

= .,,, ~ f ( t l  . . . . .  tj)O(tj+l . . . . .  tj+l) 
J.t'. aESj+t ta+j zi--"Aii or" 

and 

( f  * g ) ( t l , . . . , t j + t )  = j ! l ! a ~ +  ' f ( t l  . . . . .  tj)g(tj+l . . . . .  t j+t) 

l s in(~(ta+j - zi + A i ) /p )~  

X i=11"I a=lI-[ s in(n(ta+j  - zi ~ 1  

We have the next  lemmas.  

(4.23) L e m m a .  Assume that ( z i -  A i - z k + j -  Ak+j+  s)~=O for  any i =  
1 . . . .  ,k, j =  1 . . . . .  m, s = O  . . . . .  l - 1 .  Then the map 

Z : ~ ~"[z1 . . . . .  zk;Al  . . . . .  Ak;i]((zi . . . . .  zk)) 
i+j=l 

| ~ ' [zk+l  . . . . .  zk+m; Ak+l . . . . .  Ak+m;j]((Zk+l . . . . .  Z~+r,)) 

~'[Zl . . . . .  Zk +m; At . . . .  , Ak +m; /]( (zl . . . . .  Zk +m ) ) 

defined by "linearity is an isomorphism o f  the rational hypergeometric spaces 
o f  fibers. 

(4.24) L e m m a .  Assume that (zi - Ai - zk+j - Ak+j + s) ~p7l  for  any i = 
1 . . . . .  k , j  = 1 . . . . .  m, s = 0  . . . . .  l -  1. Then. the map 

Zq : ~ o~q[Zl . . . . .  zk;AL . . . . .  Ak;i]((zL . . . . .  zk)) 
i+j=l 

Q ~q [zk+ 1 . . . .  ,Zk+m; A k + l , . . . ,  Ak+m;j]((zk+l,... ,Zk+m )) 

-'-* ~q[Zl . . . . .  Zk+m; A1 . . . . .  Ak+m; / ] ( ( z l , . . .  ,zk+m)) 

defined by linearity is an isomorphism o f  the trigonometric hypergeometric 
spaces o f  fibers. 
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Let 
f2<~ 

~ [ Z l  . . . . .  Zm; A1 . . . . .  Am] = ~ J [ z t  . . . . .  zm; A I , .  . . ,  Am; l] 
1=0 

and 

~q[Zl . . . . .  Zm; A1 . . . . .  Am] = ~ o'~[zl . . . . .  Zm; A1 . . . . .  Am; l] 
l=0  

be the rational and the trigonometric hypergeometric Fock spaces, respectively. 
Extend the maps Z, Zq to the respective maps 

Z : ~[zl . . . . .  zk; AI . . . . .  Ak]((zl . . . . .  Zk)) 

( ~ [ Z k + l  . . . . .  Zk +m, Ak+l . . . . .  A k  +m]( ( Zk + l . . . . .  Zk +m ) ) 

~[zl . . . . .  zk+,,; Al  . . . . .  Ak  +m]( (Z! . . . . .  Zk +m ) ) , 

~q : ~q[Zl  . . . . .  Zk; A1 . . . . .  Ak]((zl . . . . .  zk)) 

@ q~q[Zk + l, . . . ,Zk +m, Ak + l . . . . .  A k  +m]( ( Zk + l . . . . .  Zk +m ) ) 

~q[Zl . . . . .  Zk +m; A t  . . . . .  Ak +m ]( (zl . . . .  ,Zk +m ) ) . 

(4.25) Theorem. The m a p  

O P : ~ [ Z k +  1 . . . . .  Zk+m'~ A k + l , . . .  ,Ak+m]((Zk+l . . . . .  Zk+m)) 

|  zk; A I . . . . .  Ak]((zl . . . .  zk)) 

~ [ Z l  . . . . .  Zk +m, A1, . . . , A k  +m]( (Zi . . . . .  2k +m ) ) 

is an inter twiner  o f  Y(glz) -modules .  Here  P is the permuta t ion  map.  The  

m a p  Z o P is an isomorphism prov ided  that  (zi - Ai  - zk+j - Ak+j)  ~7f<=o f o r  

any i :  1 . . . . .  k, j :  1 . . . . .  m. 

(4.26) Theorem. The m a p  

~(q : ~q[21 . . . . .  Zk; A I  . . . . .  Ak] ( (Z l  . . . . .  Zk) )  

~ ~q[Zk + l . . . . .  Zk +m; A k  + l . . . . .  A k  +m]( ( Zk + l . . . . .  Zk +m ) ) 

----* ~ q [ Z 1 , . . .  ,Zk+m; Z l  . . . . .  Zk+m]((Z1 . . . . .  Zk+m)) .  

is an intertwiner o f  Uq(gI2)-modules. The  m a p  ~q is an i somorphism pro-  

vided that  (zi - Ai - zk+j - Ak+j + s)  ~ p7l  f o r  any i = 1 . . . . .  k, j = 1 . . . . .  m, 

s E 77 >>_o. 

It is clear that for any functions f , g , h  we have ( f  4t g) 4t h = f -/t (g 4t h) 
and for any functions f , g , h  we have ( J *  9) * h = f * (9 * h). Lemmas 4.23, 
4.24 and Theorems 4.25, 4.26 can be extended naturally to an arbitrary number 
o f  factors. 
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5. The hypergeometric pairing 

In this section we define the main object of  this paper, the hypergeomettic 
pairing. We define a pairing between the rational and the trigonometric hy- 
pergeometric spaces of  a fiber. For any functions w E ~ ' (z )  and W E O~q(Z) we 
define the hypergeometric integral by 

(5.1) I( W, w) = f ~(t)w(t) W(t) dtt 

where q~ is the phase function (2.5) and ~t is a suitable deformation of the 
imaginary subspace 

II r = {tECr = 0 . . . . .  Ret t  = 0}.  

We always assume that the step p is real and negative. The case of  arbitrary 
step can be treated by analytic continuation. 

The phase function �9 has a factor exp(/~ ~-~'~a=l ta/p) where the parameter # 
is connected with the parameter x in the definition of the connection coefficients 
by ~ = e ". We choose the parameter p so that it satisfies 

(5.2) 0 < I m p  < 2n .  

We define the hypergeometric integral as follows. First we assume that the 
real parts of  the weights A1 . . . . .  An are large negative and set 

(5.3) I(W, w) = f ~(t)w(t)W(t) d t t .  

(5.4) Lemma. Let 0 < Im~z < 2re. Let the real parts of  the weights At, . . . ,An 
be large negative. Then the hypergeometric integral I(W,w) is well defined 
for any functions w E ~ ( z )  and W E ~q(Z). 

Proof It follows from (2.5), (2.6) and (2.24) that the integrand of the hyper- 
geometric integral decays exponentially as t goes to infinity. [] 

Let ~ ing(z )  C ~q(Z) be the singular trigonometric hypergeometric space. 

(5.5) Lemma. Let Im # = 0. Let the real parts of  the weights Al . . . . .  An be 
large negative. Then the hypergeornetric integral I(W, w) is well defined for 
any functions w E ~ ( z  ) and W E ~qSing(z). 

The proof is similar to the previous lemma. 
The hypergeometric integral for genetic A1 .. . . .  An, zl .... ,Zn and arbi- 

trary negative p is defined by analytic continuation with respect to A l . . . . .  An, 
zl . . . . .  zn and p. This analytic continuation makes sense since the integrand is 
analytic in AI . . . . .  An, Zl . . . . .  zn and p, cf. (2.5),(2.t9),(2.26). More precisely, 
first we define the hypergeometric integral for basic functions wt, Wm and then 
extend the definition by linearity to arbitrary functions wE~(z ) ,  WE~q(Z). 
The result of  analytic continuation can be represented as an integral of  the 
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integrand over a suitably deformed imaginary subspace. Namely, the poles of 
the integrand of the hypergeometric integral I(Wt, wm) are located at the hy- 
perplanes 

(5.6) ta : Zm :~ (Am + sp), t~ = tb + (1 - sp),  

1 <= b < a  < : ,  m =  1 . . . . .  n, sE2g>__0. We deform At . . . . .  An, zl . . . . .  zn and 
p in such a way that the topology of the complement in C: to the union 
of hyperplanes (5.6) does not change. We deform accordingly the imaginary 
subspace lI: so that it does not intersect the hyperplanes (5.6) at every moment 
of  the deformation. The deformed imaginary subspace is denoted by ~: and 
called the deformed imaginary subspace. Then the analytic continuation of  the 
integral (5.3) is given by (5.1). 

(5.7) Theorem. Let 0 < Im # < 2zr. Then for any I, m C - ~  the hypergeo- 
metric integral I(Wt, wm) can be analytically continued as a holomorphic 
univalued function of complex variables p, At , . . . ,An ,z l  . . . . .  Zn to the 
region: 

p < O ,  (1 . . . . .  :}d~p7Z., 

2Am-s~ .pTl ,  m = l  . . . .  ,n, s = l - : , . . . , : - l ,  

z l q - A l - Z m + A m - s ~ p 7 Z ,  l , m = l  . . . . .  n, l :#m, 

for an arbitrary combination of  signs (ef  (2.14)). 

(5.8) Theorem. Let Im/~ O. Then for any l . - t  = E ~  , m E : ~  the hyper- 
9eometric integral I( l~'l, wm) can be analytically continued as a holomor- 
phic univalued function of complex variables p, Al . . . . .  An, zl . . . . .  zn to the 
region: 

p < 0 ,  {1 . . . . .  : } r  

2Am-sCfp7l ,  m = l  . . . . .  n, s =  l - : , . . . , : -  l ,  

z t q - A l - z m z k A m - s ~ p 7 Z ,  l , m =  l . . . . .  n, l + m ,  

for an arbitrary combination of  signs (cf  (2.14)). 

The theorems are proved in Sect. 9. 
Let N?(z) C J~(z) be the coboundary subspace. 
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(5.9) Lemma. Let # = O. Let p < O. Let (2 .12)-(2 .14)  hold. Then the hy- 
pergeometric integral I(W, w) equals zero for  any w E ~(z )  and W E O~qSing(z). 

The lemma is proved in Sect. 9. 
The hypergeometric integral defines a hypergeometric pairin9 

(5.10) I : ~q(Z) | ~-(z)  --* C 

for 0 < Im # < 2zc, and 

(5.11) I ~ : o~qSing(z) @ . ~ ( Z ) / , ~ g ( Z )  ""* 

for # = 0. According to (2.16) and (2.22) this can be written as 

(5.12) I : o~(z) | oVf(z) ~ C 

and 
(5.13) I ~ : ~qSing(z) @ .-~(z) ~ (I~, 

respectively. 

(5.14) Theorem. Let 0 < I m #  < 27z. Let  p < O. Let (2 .12)-(2 .14)  hold. Then 
the hypergeometric pairin9 I : ~q(Z) | ~ ( z )  --~ C is nondegenerate. More- 
over 

det[l(Wt, w,O]i,m~ 7 = (2i) ~ ,-~ )~!~ "-' ) 

x (e  ~ _ 1 ) - 2 E " ~ . , A . / p  �9 ("+~-')+2n/p �9 ("+~+7') 

xexp (#  ~_ z,,/P " (n  + : - l )  ) 

xexp ( (p  + z~i) (m=~ Am/p " ( n + ~ -  1)  

- n i p  ( n + d -  1)  
" n + X  ) )  

'-'[ fI x 1-I r ( - ( s  + 1 ) /p ) " r ( -1 /p )  - ~  r ( ( 2 A .  - s ) / p )  
s=O m = l  

x 1-I F((zt + At - Zm + Am - s)/p)] (~+~-~-2) 
l<l<m<n I'((Zl - -A l  -- Zm --Am -~ s)/p) j 

Here 0 < arg(e u - I)  < 2n. 

(5.15) Theorem. Let # = O. Let p <0 .  Let (2.12)-(2.14)  hold. I f  2 ~ n = l  
A~ - s ~p7/<0 for  all s = d - 1 . . . . .  2[ - 2, then the hypergeometrie pairin9 
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I ~ : ~ q S m g ( z )  @ o , ~ ( z ) / ~ ( z )  -"+ (~ is nondegenerate. M o r e o v e r  

o {t'n+g--2~t [n+{--2~ 
det[I( Wt, wm)]t,mc~2-1 = (2i) t .-2 ) f ! t  .-2 

Y--1 
x I-[ [C(- (s+  I ) /p )" -~r ( -1 /p )  ~-" 

s = 0  )-' 
•  ( l  + 2 ~ Am/p + (~ + 2 - r ( l  + (ZA. - s)/p) 

. - t  F((zt  § At -- zm + Am - s ) /p)]  ("+~"2~-3) 
x I-[ F((2Am - s) /p)  ~ -----~t -- A m - + S - ~ J  m=l l <=t <m~_. F( (zt zm 

Here  we identify m E ~  -1 with ( m , 0 ) E I Y  7. 

Theorems 5.14 and 5.15 are proved in Sect. 9. 

Example.  Theorem 5.14 for n = 1, E = 1 and Theorem 5.15 for n = 2, E = 1 
give 

(5.16) 
ioo 
f F(a + s )F(a  - s)u 2s ds = 2rciF(2a)(u + u -1 ) - 2 a  , 

--it:x) 

icx~ 
f r(a + s)r(b  + s ) r (e  - s ) r (d  - s) as 

- - i~  

= 27ziF(a + e )F(a  + d ) F ( b  + c)F(b + d)  
F ( a + b + c  §  ' 

which are formulae for the Barnes integrals [WW]. 

For arbitrary E, Theorem 5.14 for n = I and Theorem 5.15 for n = 2 give 
the following Mellin-Bames integrals, which are generalizations o f  the famous 
Selberg integral: 

(5.17) 

�9 " u Z S k F ( a + s k ) F ( a - s k )  1-I . . . . .  
--ioo --ic~ j=l  F (S j  -- Sk ) F ( s  k S j )  

t F(1 + k x ) , . , ~  
= (2rci)l( u + u - l )  -t(2a+(t-1)x) I I  F-(1 ~ x ' )  l t z a  + (k - 1)x) ,  

k = l  

"'" I I  F ( a + s k ) F ( b + s k ) F ( c - s k ) F ( d - s k )  
--i~x~ --ior k = l  

X k--lu F ( s j  . . . .  --sk +x )F( sk - s j_+X)~d~  S 
j=~ F(sj - sx )F(sk - s j )  j 
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{r(l +kx) 
= (2z~i)' k~I= 1 \ F(1 + x )  

F(a + c + (k - 1 ) x ) F ( a  + d + (k - 1 ) x )  
X 

F(a + b +  c + d  + ( 2 d -  k -  1)x) 

F ( b + c  + ( k -  1 ) x ) F ( b + d  + ( k -  1)x)'~ 

• �9 1 ,  

where Rea,  b , c , d , u , x  > O. 

Remark.  Aider this paper was written we found out that the second formula 
in (5.17) had appeared in [G]. In Sect. 9 we give a proof of  the first formula 
in (5.17) and use the formula to prove Theorems 5.14,5.15. 

Remark.  We also obtain determinant formulae similar to (5.14) and (5.15) for 
the hypergeometric pairing in the trigonometric case [TV3]. Under the same 
specialization as above, those formulae give multidimensional generalizations 
of  the Askey-Roy formula [GR, (4.11.2)], and, on the other hand, can be 
viewed as a generalization of the famous q-Selberg integral, cf. [Ka, AK]. 

Remark.  It is plausible that the assumptions on p, A~ . . . . .  An, z~ . . . . .  zn of  
Theorems 5.14 and 5.15 as well as of  Theorems 2.15,2.17,4.10,4.11,5.9,6.4, 
6.6, 6.7 could be replaced by the following weaker assumptions: the step p is 
such that {2 . . . . .  Y} C p Z > 0 ,  the weights A1 . . . .  ,An are such that 

2 A m - s ~ _ p 7 l ,  m = l  . . . . .  n, s = 0  . . . .  , Y - 1 .  

and the coordinates Zl . . . . .  zn obey the condition 

zt + At - Zm + Am - s f~ pZ ,  l, m = 1 . . . .  , n, l~-m , 

for any s = 0 . . . . .  { - 1, so that z E lB. 

Let W be any element of  the trigonometric hypergeometric space ~q. The 
restriction of the function W to a fiber defines an element W[zE~q(Z) of  the 
trigonometric hypergeometric space of the fiber. The hypergeometric pairing 
allows us to consider the element Wlz E~q(Z) as an element sw(z )  of the space 
~/g*(z) dual to the hypergeometric cohomology group Yf(z). This construction 
defines a section of the bundle over ~n with fiber ~ * ( z ) .  

There is a simple but important statement. 

(5.18) Theorem. Let  either 0 < I m #  <2~z and W E ~q or # = 0 and W E  

~qSmg. Let  p < O. Let  At . . . . .  An obey (2.13). Then the section sw is a peri- 
odic section with respect to the Gauss-Manin connection. 

The theorem is proved in Sect. 9. 
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The section see and the tensor coordinates B. induce a section 

(5.19) 7% :z ~ B~'. WI~ E(V~ , |  | V~,)e 

of  the trivial bundle with fiber (V~, | 1 7 4  V~,)e. Theorem (5.18) and 
Theorem (4.12) imply 

(5.20) Corollary.  The section ~w is a solution to the qKZ equation. 

The tensor coordinates B,(z) ,  C~,(z) induce a hypergeometric pairing 

(5 .2 l )  /~,~,(z) : (v~q @ �9 �9 �9 @ v~q)t | (V~, |  �9 - | V~,)~ ---~ C 

i f0<Imp<2n and 

(5.22) 
o ~q vq ~sing , . / s  | 1 7 4  | 1 7 4 1 7 6 1 6 2  

if  # = O, which also can be considered as maps 

L.~,(z) .(v~ 0 . . .  | v~q), ~ (v~, |  | v~.), (5.23) 

and 

(5.24) "---+ - - "  V, .~sing " "tsing ( ~ ,  O O -c. ]~ �9 
o . . 0  

I f  v E (V~ q |  | V~)g, then the hypergeometric pairing defines a section 

% :z ~ L,~,(z). v ~ (v~, |  | ho) ,  

vq ~sing and, if  V E (V! | . . .  |  ~, j~ , then the hypergeometric pairing defines a sec- 

tion 
v o Tr : z ~ Q~, (z  ) .  vE(V~, @ . . .  | Ez, jg~sing 

(5.25) Corollary.  Let  0 < I m  # < 2zr and, therefore, ~:Oel. Then for  any v E 
( V  q 0 . . .  | vzq)t the section Tv is a solution to the qKZ equation with val- 

ues in (V~ 1 |  | V~.)c. Under conditions o f  Theorem 5.14 all solutions are 
constructed in this way. 

Therefore, for ~c=l=l we constructed the hypergeometric maps 

L,~,(z): vq(~e,) |  | v~ (~ , )  ~ v~,(z~,) |  | &.(z~.) 

from quantum loop algebra modules to Yangian modules. Here ~m = exp(2niZm/ 
p) ,  m = 1 . . . . .  n. The maps have the following properties: 

i t .  (,n,m+l),e(z) = Pv,,,v,,+, Rv~,,v~=+~ (z~= - z,,.+, ) ) / z , , ' ( z ) ,  

[z,'r'. (m,m+l)(Z) =/~,,~, (z)P<+, v~ R~q+, < (exp(2ni(&.+, - z~. ) / p ) ) ,  

and as functions of  z they satisfy the qKZ equations: 

L,~'(zt . . . . .  z~. + p . . . . .  & )  = Kr~(z~ . . . . .  z~.)L,~,(zt . . . . .  z , )  . 
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(5.26) Corollary. Let  # = 0 and, therefore, x = 1. Then for  any v E (V~ q | 

Vq~sing the section ~v is a solution to the qKZ equation with values " " | "~' Jt 
V, ~sing in (V~ |  | ~, Jt . Under conditions o f  Theorem 5.15 all solutions are 

constructed in this way. 

Remark.  Let Vl | . . .  | V~ be a tensor product of ~12 Verma modules, I71 @ 
. . .  |  the tensor product of the corresponding irreducible ~I2-modules, and 
S : V1 |  | Vn --+ V1 | "'" | ITn the natural projection. If 7J(z) is a solution 
to the qKZ equation with values in Vl | . . .  | V, then S ~ ( z )  is a solution to 
the qKZ equation with values in TTI @- . .  | I7~. 

This observation shows that the previous constructions give all solution to 

the qKZ equation with values in (V1 |  | Wn )~ if f < dim 17m for all m = 
I,_. . ,n.  Moreover, the space of solutions to the qKZ equation with values in 
(V1 |  | lTn)t in this case is identified with the space (17q |  | | IF 

where V~ q |  | vq is the tensor product of the corresponding irreducible 
Uq(sl2)-modules, and IF is the space of functions in z l , . . . , zn  which are 
p-periodic with respect to each of the variables. 

In a separate paper we shall explain how the construction of this paper 
gives all solutions to the qKZ equation with values in a tensor product of  
irreducible ~12-modules. 

6. Asymptotic solutions to the qKZ equation 

One of the most important characteristics of a differential equation is the mono- 
dromy group of its solutions. For the differential KZ equation with values in a 
tensor product of representations of a simple Lie algebra its monodromy group 
is described in terms of the corresponding quantum group. This fact establishes 
a remarkable connection between representation theories of simple Lie algebras 
and their quantum groups, see [K, D2, K.L, SV, V2, V4]. 

The substitution of the monodromy group for difference equations is the set 
of transition functions between asymptotic solutions. For a difference equation 
one defines suitable asymptotic zones in the domain of the definition of the 
equation and then an asymptotic solution for every zone. Thus, for every pair 
of asymptotic zones one gets a transition function between the corresponding 
asymptotic solutions. 

In this section we describe asymptotic zones, asymptotic solutions, and their 
transition functions for the qKZ equation with values in a tensor product of 
~t2-modules when the parameter x is different from 1. A remarkable fact is that 
the transition functions are described in terms of the trigonometric R-matrices 
acting in the tensor product of the corresponding Uq(~12)-modules. This fact 
establishes a correspondence between representation theories of Yangians and 
quantum loop algebras, since the qKZ equation is defined in terms of the 
rational R-matrix action in the tensor product ~12-modules (and, therefore, in 
terms of the Yangian action), and the trigonometric R-matrix action in the 
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tensor product of  Uq(sl2)-modules is defined in terms of  the action o f  the 
quantum loop algebra. 

Let V be a vector space o f  dimension N for some N. Consider an integrable 
system of  difference equations for a V-valued function kU(z I . . . . .  z ,) :  

( 6 . 1 )  ~ - I ( Z l , . . . , z  m + p , . . . , z , )  = Am(z1 . . . . .  z,)TJ(zl . . . . .  zn), m = 1, . . . ,n . 

Let Zk be a domain in on. Say that a basis ~1 . . . . .  kUu of  solutions to system 
(6.1) form an asymptotic solution in the domain if 

(6.2) ~ ( z )  = exp ( ~ amjzm/p~ 1-I (Zl --  Zm)bjtm(vj + O ( 1 ) )  , 
\ / m = l  l < m < l < n  

where amj and bjlm are suitable numbers, Vl . . . .  , VN are vectors which form a 
basis in V, and o(1) tends to 0 as z tends to infinity in &. We will call the 
domain an asymptotic zone. 

Consider the qKZ equation with parameter m4=l and values in ( ~  |  | 
~ ) : .  We describe its asymptotic solutions in suitable asymptotic zones. 

For every permutation ~ E S n we consider an asymptotic zone in C n given 
by 

(6.3) &r = {zECn ]Rez~l < < " "  << Rez~,}.  

Say that z ~ cx~ in &, if Re(z,, - z,,+l) ~ - ~  for all m = 1 . . . .  ,n - 1. 
Recall that for every permutation r E S n we constructed a basis W{, I E ~.~n, 

in the trigonometric hypergeometric space. This basis defines a basis ~w:, 1E 
~ " ,  o f  solutions to the qKZ equation, cf. (5.19). 

(6.4) Theorem. Let p < O. Assume that the weights AI . . . . .  An obey condition 
(2.13). Let 0 < I m #  < 2r~ and, therefore, rc+l. Then for any permutation 
z C S n the basis ~w(, I E ~(t n, is an asymptotic solution in the asymptotic zone 
&~. Namely, 

m=l l < l < m < n  

• (Fl~Vl |  | + o(1)) 

as z ~ cxD in ~ so that at any moment assumption (2.14) holds. Here 
the branches of  the multivalued functions are fixed by the agreement that 
[a rg( (z~ , -z~ , ) /p)  I < n for l < m and OI is a constant independent of  the 
permutation v and given by 

(2 i ) : : !F( -  l /p ) - :  ~I [( ev - 1 )~I,~l,-l)--2[,~Am)/p Ot 
m=l L 

x exp((/~ + 7ci)(lmA,, - Ira(Ira - 1)/2)/p) 

[,,-- l ] 
• 1-I r ( ( Z A m  - s ) / p ) r ( - ( s  + m)/p) , 

s=O 

where 0 < arg(e u - 1 ) <  27z. 
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The theorem is proved in Sect. 9. 

Remark.  The qKZ operators Kin(z) have the following asymptotics in the 
asymptotic zone &,, 

Krn(Z) = ~cA"~-H"~(1 +O(1)),  m = 1 . . . . .  n .  

The vectors F t' Vl | . ' .  N F~"vn form an eigenbasis of the operator K A--H- with 
eigenvalues ~Im. 

Remark.  The qKZ equation and the basis of solutions 7%~, ! E ~n,  depend 
meromorphically on parameters kl, A b . . . , A ~ .  The asymptotics of  the basis 
~uw{, I E ~ " ,  determine the basis uniquely. Namely, if a basis of solutions 
meromorphically depends on the parameters #, A b . . . ,  A, and has asymptotics 
in N~ described in Theorem 6.4, then such a basis coincides with the basis 
7%(. In fact, elements of any such a basis are linear combinations of  the 

functions 7Jw( with coefficients meromorphically depending on #, A1 . . . . .  A, 
and p-periodic in zl . . . . .  z,. To preserve the asymptotics one can add to an 
element ~w( any other functions ~P~v~ having smaller asymptotics. If # < 0, 

then one can add only the functions k~w~ with I' lexicographically greater than l, 

and if # > 0, then one can add only the functions 7%~ with I t lexicographically 

smaller than I. Since the coefficients of added terms are meromorphic they have 
to he zero. 

Example. Theorem (6.4) allows us to write a trigonometric R-matrix as an 
infinite product of  rational R-matrices. Namely, consider the qKZ equation with 
values in the tensor product of two 512 Verma modules V1 | �89 Then there 
are two asymptotic zones Rezl << Rez2 and Rezl d~Rez2. Our result on the 
transition function from the first asymptotic zone to the second is the following 
statement. 

For any ~[2 Verma module V let V q be Uq($[2) Verma module corre- 
sponding to V. Let A be the highest weight of module V and let v, vq be the 
respective generating vectors of modules V, vq. Define a map G : V ~ vq: 

1--1 

G : F t v  ~--* Flq vq l-I F(1 + ( s  - 2 A ) / p ) r ( 1  + (s + 1)/p).  
s=0 

Let p, # be complex numbers such that p < 0 and 0 < Im # < 2n. Let q = e hi~p, 
Set 

R~ v2(x; #, p)  = exp(px(id | H)/p)Rv,  v2(x) exp(-gx( id  | H ) / p ) .  

and J(s,  #) = ( G | G) ( - i s (  e ~/2 - e -u/2 ) )2~| where [arg(-i( e u/2 - e-u/z))[ 
< n/2. Then 

(6.5) 

lira J ( s , # )  + r p ; # , p )  J ( s , # )  - I  = R qu(exp( -2n /x /p ) ) .  
S " +  O ~  y 
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Here the factors of  the product are ordered in such a way that r grows from 
right to left. 

Notice that the minus sign in the argument o f  the R-matrix in the fight 
hand side o f  (6.5) above reflects the fact that we use the cop roducts A and A q 
for the Yangian Y(gt2) and the quantum loop algebra Uq(gl2) which are in a 
sense opposite to each other. 

The restriction of  (6.5) to the weight subspace (/I1 | V2)l of  weight A1 + 
A 2  - 1 can be transformed to the infinite product formula for 2 x 2 matrices 
(el. [RF]), which looks as follows. 

Let a, b, c, d, 0 be complex numbers, Re ~ > 0. Set I = ~ - bc, 

h = (, 0) 1 (Oc+  
0 - 1  ' d + u  a - u  " 

and A(u; O) = O"hA(u)O -uh. Assume that -bcq-s(s + 2a) for any s e 7Z. Then 

lim (s-ahh'( fi A(u+r;O))hSsah)=Aq(u) 
where the factors of  the product are ordered in such a way that r grows from 
right to left and 

1 
A q ( u )  - -  sin(rffd + u)) 

X 

ub(O + 0 -1 )2~ ) 
sin(u(a + u))  / '(1 + a + 2)/"(1 -4- a - 2) 

~c(O + 0 - 1 )  -2~ 
F(1 + 2 - a)F(1 - 2 - a)  sin(zr(a - u)) 

Theorem (6.4) admits the following generalization. Fix a nonnegative integer 
k not greater than n. Let n0, . . . ,nk be nonnegative integers such that 

O = n o < n l < . . . < n k = n .  

Set 

and 

so that 

and 

~i[l]  = ~[z , ,_ ,+l , . . . , z , , ;  A,,_~+I . . . . .  A,,; l] 

O~q'[l] = ffq[z,,_,+ l . . . . .  z,,; A,,_~+I . . . . .  A,,; l] 

= @ 
4 +...+4=t 
4 >o,...,4 >o 

~lvd |174 gk[4] 

d+...+4=t 
4 >=o,...,tk >o 
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with respect to the tensor products introduced in Sect. 4. We consider an 
asymptotic zone in C" given by 

Rezm~ << "  .<<Rezm~, for all ml . . . . .  mk such that } 
Z~n = z E c n  hi-1 <mi  < ni, i = 1 , . . . , k  ~ 

We say that z --+ c~ in A '  if  Re(zl - z m )  --~ - e c  for all l ,m such that h i_  1 < 
l < n i < m < ni+l, i = 1 , . . . , k  - 1, and zl - zm remains bounded for all l ,m 
such that n i_ 1 < l, m < ni, i = 1 . . . . .  k. 

For any WEo~qi[l] let 7%(z~+~+1 . . . .  ,z,~) be the solution to the qKZ equa- 
tion with values in (V,,_~+I | - . .  | V~,)t corresponding to W (cf. (5.19)). 

(6.6) Theorem. Let  p < O. Assume that the weights A1 . . . . .  An obey condition 
(2.13). Let  0 < Im/~ < 2~ and, therefore, x ~ l .  Let  fl . . . . .  Ek be nonnegative 
integers such that g l + " ' + Y k  = { .  Let  W//EO~q;[g/], i =  1 . . . . .  k. Let  W =  
W1 * �9 .. * Wk. Then the solution 7Jw(zl,... , z , )  to the qKZ equation with values 
in (V1 |  | V~)t has the following asymptotics as z--+ 0o in Z~ ~ such that 
at any moment  assumption (2.14) holds: 

~! 1-I ((zn, --znj )/p)2(~ E,~./l~,+ 6 E.6riA.-{ i~) /p  
~Jw(Z1 . . . . .  Zn)= :1! . . . :n  ' ' ' - - - '~"  l <i<j~k 

• (~ew~(z~,...,z,,) |  | %vAz,~_, . . . . .  z ,)  + o(1)) .  

Here  I]. = (ni-1 + 1 . . . . .  ni} and [arg((z l -Zm)/P) l  < ~z for  l < m. 

Theorem 6.4 for ~ = id follows from Theorem 6.6 for k = n so that nj = j ,  
j = 0 . . . . .  n, and the first formula in (5.17). Theorem 6.4 for a general permu- 
tation z reduces to the same theorem for v = id. 

Theorem 6.6 follows from the next statement on asymptotics of  the hyper- 
geometric pairing. 

(6.7) Theorem. Let  p < O. Assume that the weights At . . . .  , A ,  obey condi- 
tion (2.13). Let  0 < I ra#  < 27~ and, therefore, K:~ I. Let  ft . . . .  ,:k and :( . . . . .  E~ 
be nonnegative integers such that El + . . .  + :k = ~ and :~ + . . ,  + :~ = :. 
Le t  w i E ~ i [ f i ]  and W/EJ~qi[E~], i =  1 . . . . .  k. Le t  w = w l * ' . . * w k  and W = 
W1 * . . .  * Wk. Then the hypergeometric integral I(IV, w)  has the followin O 
asymptotics as z ~ ~z in ~" so that at any moment  assumption (2.14) holds: 

d! . . . . .  2(~ E.6r .A.+~ E.EriA.--~Ej)/p 
[, (Zni - -  Znj ) / p  ) 17 I ( W , w ) =  t~! . . . t , !  ~__<~<j_<k 

x ( i=~6~t ; l (Wi ,  w i ) + ~  ) �9 

Here F / =  (n~_~ + 1 . . . . .  n~}, larg((zi - Zm)/p)[ < r~ for  i < m and 6tin is the 
Kroneeker symbol. 



q-hypergeometric functions, Yangians and quantum affine algebras 549 

R e m a r k .  In a separate paper we will describe asymptotic zones and asymptotic 
solutions for the q K Z  equation, if  the parameter ~ of  the equation equals 1. 
In this case the asymptotic zones are essentially the same as the asymptotic 
zones for the K Z  differential equation and the asymptotic solutions are similar, 
cf. [V4]. I f  ~ = 1, then the asymptotic zones o f  the q K Z  equation are labelled 
by permutations in S n and suitable planar trees T. For every permutation z and 
a tree T we define an asymptotic zone and a basis ~3T,~ in the space o f  singular 

V ~sing vectors (Vl | . . .  | ,n ~t , a basis o f  "iterated singular vectors", see [V4]. For 

every permutation t and a tree T we also define a basis Wr,~ in the singular 
trigonometric hypergeometric space. This basis defines a basis o f  solutions 

V hsing to the q K Z  equation with values in (V1 |  | "nit . This basis gives an 
asymptotic solution to the q K Z  equation in the asymptotic zone corresponding 
the permutation and the tree. Moreover, the leading terms of  asymptotics in 
this case are proportional to elements o f  the basis fl3r,~ and the coefficients o f  
proportionality are products of  powers o f  linear functions like in (6.2) with no 
exponential factors unlike in the case o f  x:~l. 

I f  ~: = 1 then the qKZ operators Kin(z) have the following asymptotics 

K m ( z ) = l + o ( 1 ) m ,  m =  1 . . . . .  n ,  

as all differences zi - z j  tend to infinity. In every asymptotic zone the leading 
terms of  o(1)m form a system of  commuting operators, see (2.2.3) in [V4]. The 
vectors o f  the basis ~Br,~ form an eigenbasis o f  those commuting operators. 

As an illustrating example consider the equation f ( z  + p )  = (1 + a / z ) f ( z ) .  
The equation has a solution F ( ( z  + a ) / p ) / F ( z / p )  with asymptotics ( z /p )  ~/p as 
z tends to infinity. 

7. Quasiclassical asymptotics 

Consider a system of  difference equations 

~(Zl . . . .  ,Zm + p  . . . . .  Zn) = A(m)(zl . . . . .  zn;h)~P(zl . . . . .  zn), m = 1 , . . . , n ,  

depending on a parameter h and assume that 

(7.1) A(m)(zl /h  . . . . .  zn/h; h)  = 1 + hB(m)(zl . . . . .  Zn) + o(h)  

as h -~ O. Introduce new coordinates Ym = hzm, m = 1 . . . . .  n, and a new func- 
tion 

~ ( Y l , . . . ,  Yn) = ~ ( y l / h  . . . .  , yn /h)  . 

Then the system of  difference equations takes the form 

~(Yl . . . . .  ym + hp . . . . .  Yn) = (1 + hB(m)(yl  . . . . .  y , )  + o(h ) )FP(yl . . . .  , y n ) ,  

m = 1,.. .  ,n, and turns into a system of  differential equations 

0 
p x - - - T ( y l , . . . , Y n )  = Btm)(Yl . . . . .  Y n ) T ( Y l  . . . . .  Yn), m = 1 . . . . .  n ,  

Oym 
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as h tends to zero. We call this system of differential equations the quasiclas- 
sical asymptotics of the initial system of difference equations. 

Consider the qKZ equation with values in (V1 | - .-  | V~)t and parameter 
x = e hn where r/is a given number and h is an additional parameter. Then the 
qKZ equation has property (7.1) and its quasiclassical asymptotics is the KZ 
differential equation 

p O@m~(yl . . . . .  Yn)=qHm~(Yl  . . . . .  Yn)+ l=l ~ YmI'2lm- Yl ~(Yl . . . . .  Yn), 
l +ra 

m = 1, . . . ,n,  where ~'~lm = 2AIAm - 2HtHm - ElFIn - FtEm. 
In the previous sections we constructed solutions to the qKZ equation. The 

solutions were labelled by elements of  a suitable subspace of a tensor product 
of  Uq(~lz)-modules. We show that these solutions have quasiclassical asymp- 
totics and turn into the hypergeometric solutions to the KZ differential equa- 
tion which are described in [SV1]. To show this fact we study quasiclassical 
asymptotics of  the hypergeometric pairing. 

Let h be a real positive number. Assume that Im r/ > 0. We connect the 
parameter p in the phase function (2.5) with the parameter r/ by an equation 
# = hi/. 

The case Im r /<  0 can be treated similarly. The parameters # and r/ have 
to be connected by an equation # = 21ri - hr/, if  Im r /<  0. 

The asymptotics (2.6) of the phase function of a primitive factor gives the 
following asymptotics for the phase function (2.5) as h ~ +0: 

(7.2) 

where 

(7.3) 

q~(u/h, y/h ) = h t(~- ~-2 E",=IA~)/p ~(u, y )(1 + o( 1 )) ,  

~(Ul . . . . .  ut, yb . . . ,Yn)  = exp r/ ua/p 1-[ ((Ua - ym)/p) 2A'/p 
= m = l  a = l  

X ['[ ((Ua -- ub)/p) -2/p . 
l _<a<b=<d  

Here we fix a branch of the function (x/p) ~ by ]arg(x/p)l < re. 
Consider a domain rg given by 

(7.4) Y = {yEIl~ n I Imy l  < . . .  < Imyn} .  

For every y E Y and each m = 1, . . . ,  n we consider an imaginary interval 

Um= {xEIElReu  = 0, Imym-1 < I m x  < Imym}, Y0 = -icxz, 

and a chain 

Um = }-~ exp (4rci }"~ Ak/p)  Ul. 
1=1 lN_k<l  
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For any I E LYz " we define a chain U~ in the imaginary subspace in ~ t  by 
- - - 

UI=  x . . . x  x - - .  x U,, x . . .  x U,, . 

For any I E-~r we also define a rational function v~(u, y)  by 

( 7 . 5 )  ~[(u,,...,uz, yl ..... Yn) = ~ ~1 ( l m ! )  - l  I'I (u~,~--Ym)-' 
aES r m=l aEF~ 

where s = {1 +lm--1,. . . , lm}, m = 1,.. . ,n. 

(7.6) Theorem. Let p < O. Let ReAm < 0 and let Re y m = 0  for all m = 
1 . . . . .  n. Let # = htl, Im r /> 0. Then for  any I, m E ~ "  the hypergeometric 
integral I(WI, win) has the following asymptotics as h ~ +0 and y E Y :  

l(Wl,wm) = (-2i)Z ~!h c(t-,-2F''"='Am)/p H ~ sin(n/p) 
m=l s=l sin(rcs/p) 

x exp ( rci ~ Am(lm-14- Im - 

x f ~(u,y)v~m(u,y)dCu(1 4- o(1)) .  

Remark. Recall that the hypergeometric integral l (Wl,wm) is defined by (5.3), 
the functions W~ and Wm are given by (2.26) and (2.19), respectively, and we 
replace in these formulae Zl . . . . .  zn by yl/h . . . . .  y,/h. 

For any 1E ~ n - l  consider a domain 1U1 in the imaginary subspace in C ~ 
defined by 

(7.7) 

1 U l = { U E c l ] R e u a = O ,  a = l  . . . . .  E, Imym <Imul+t, ,- ,  } 
< -. .  < Imulm < Imym+I, m = 1 , . . . , n -  1 " 

(7.8) Theorem. Let p < O. Let Re Am < 0 and let Re Ym = 0 for all m = 
1 . . . . .  n. Let # = hq, I m r / =  0. Then for any I E ~  n-1 and any m E ~  n the 
hypergeometric integral 1( IYv], Wm) has the following asymptotics as h ~ +0 
and yE~{: 

(m~--I ) I(I~UWm)=(2i)CE!h/(Z-l-2F'=tA')/Pexp 2Jz i  A m ( { -  [m--~)/p 

X f ~ (u ,y )#m(u ,y )dZu(1  + o(1)) .  
Ui 

Remark. Recall that the hypergeometric integral I (  l~l, win) is defined by (5.3), 
the functions ~ and wm are given by (2.27) and (2.19), respectively, and we 
replace in those formulae zl . . . . .  zn by yl/h . . . . .  yn/h. 

Theorems 7.6 and 7.8 essentially follow from (2.26), (2.27) and (7.2). 
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(7.9) Conjecture. The claims of Theorems 7.6 and 7.8 remain valid for any 
At . . . . .  An which obey condition (2.13) /f  other assumptions of the theorems 
hoM and the integrals in the right hand sides of (7.6),(7.8) are defined by 
analytic continuation. 

Remark. If  r /=0,  that is ~c= 1, then the limiting phase function (7.3) has no 
exponential factor and is a product of powers of  linear functions. In particular, 
if the numbers Am/p and 2/p are all rational, then the limiting integral is an 
integral of  an algebraic function. From this point of  view our initial hyperge- 
ometric integrals are a deformation of periods of algebraic differential forms, 
and the subject of  our study is a p-deformation of algebraic geometry. 

8. The one-dimensional case 

In this section we consider in detail the one-dimensional case t~ 1. So we 
consider the affine projection lr:lE l+n ~ I~ n and a discrete rational ~12-type 
local system on C t+n and study its de Rham complex. Our main goal of  doing 
this is methodological. Since this case is technically simpler than the general 
case, the ideas of  the proofs become more clear and visual. The case to = 1 can 
be viewed as a p-deformation of the following example:. 

Let zl . . . .  ,zn be pairwise distinct points in IE. Let ~" be the space of ra- 
tional functions in t which are regular in C\{zl, . . . ,zn}. Consider the holo- 

morphic de Rham complex f2 ~ on ffT\{Zl . . . . .  zn} with coefficients in ~ as- 
h sociated with the differential V = d + co A. ,  co = q dt + ~r~=l 2r~COm, where 

corn = dt/(t - zm). 

(8.1) Theorem. Let ~aeO. Then for generic 21,...,2n the forms col,...,con 
form a basis in H1(12",V). 

For q = 0  the differential of 1 gives a relation in HI( f2* ,V)  

(8.2) ~ ~mcom "~ O. 
m = l  

(8.3) Theorem. Let r/=0. Then for generic 21 . . . . .  2n the forms oat . . . . .  COn 
span HI(f2" ,V) .  Moreover, relation (8.2) is the only independent relation 
between them. 

Let z t , . . . , znEi~ ,  Imzl < . - - <  Imzn, z0 = - ioc ,  Z,+l = +ion. Consider 
the folIowing intervals: 

l k = { t E I E l R e t = O ,  Imzk < I m t < I m z k + l } ,  k = 0  . . . . .  n.  

Set 

Ik(co) = f exp(r/t) ~-I ( t -  Zm)}"co 
lk m=l 
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(the integral must be appropriately regularized). Here we assume that 0 < 
arg(t - Zm) < 2~, thus fixing a branch of  the integrand. The intervals Ik become 
linear functionals on the space o f  differential forms. For a function f we have 

I k ( V f )  = O, k = O . . . . .  n . 

This means that the linear functionals on differential forms defined by intervals 
Ik can be considered as elements o f  the space H I ( Q ' , ~ )  of  linear functionals 
on Hi(g2", V). 

(8.4) Theorem. Le t  21 . . . . .  2n be 9eneric. Then 

a) For any q, Imq  > 0 ,  the intervals I i , . . . , I ,  f o r m  a basis in Ht(Q~ 

b) For  any q, Im ~/< 0, the intervals Io . . . . .  In-1 f o r m  a basis in HI(Q ~ ~7). 

(8.5) Theorem. Le t  q = O. Le t  21 . . . . .  2~ be 9eneric. Then the intervals I 1 , . . . ,  

I , -1  f o r m  a basis in H l ( ~ ' , x T ) .  

Remark .  Theorems 8.4 and 8.5 follow from elementary topological consider- 
ations. Theorem 8.5 can be also deduced from the following formula [V1]: 

(8.6) det ' __2t (t  - zm) ~ dt 
z t - -  Z l m = l  l , m = l  

= F  l + ~ 2 m  ~ F ( l + 2 m )  I - [ ( Z t - - Z m )  ~~ 
m = l  m = l  14:m 

One-dimensional  discrete cohomologies  

Consider the affine projection ~ : C l+n -* ff~n and a discrete rational ~t2-type 
local system on ~?l+n. In this ease the connection coefficients are equal to 

n 
q~1( t , z )=~  1--[ t - z m  + Am 

m = l  t Zm - -  A m  ' 

t --Zm -- Am - p 
~o,n+l(t,z) = 

t - zm + Am - p ' 

m = 1 . . . .  , n, and the phase function takes the form 

(8.7) ~( t )  = exp(# t /p )  f i  
F ( ( t  Zm + A m ) / p )  

,,=1 r ( ( t  - Zm Am) /p )  " 

The functional space ~ is the space o f  rational functions in t and z1 . . . . .  z,  
with at most simple poles at the following hyperplanes 

t = zm - A, ,  + (s + l )p ,  t = zm + Am - sp , 
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m = 1 . . . . .  n, sEZ__>0. The rational hypergeometric space o~ C ~  is the sub- 
space consisting of functions of the form 

n 1 
P(t, zl Zn)ml=llr~ t - z m - Am 

where P is a polynomial of degree less than n in the variable t. The discriminant 
IB C C n is the union of the hyperplanes 

Zl - Zm -b Al + Am : pS, s E 7Z , 

l, m = 1 . . . . .  n, l ~ m, in the base space ~n. 
To simplify notations in this section we write Wm(t,z) instead of We(m)(t,z). 

Recall that 

I I-I t - z t + A t  m : l  . . . . .  n .  
(8.8) Wm(t'Zl . . . . .  Zn)--  t - - Z m - A m  l<l<m t - z t - - A t '  

(8.9) Lemma. (cf. (2.20)) For any z E IB the functions wl . . . . .  wn restricted to 
the fiber over z f o rm a basis in the rational hypergeometric space ~ ( z )  o f  
the fiber. 

Proo f  Consider functions 

gm(t,z) : tm-! f i  1 , m =  1 , . . . , n .  
m=l t - z m - Am 

Their restrictions to the fiber over z form a basis of  the space J~(z). Define 
a matrix M ( z )  by 

Wl(t,Z) = ~ MIm(Z)gm(t,z), l = 1 . . . . .  n .  
m=l 

The lemma follows from the formula 

(8.10) detM = I-I (zt - At - z m  - Am) .  
l < l < m ~ n  

The last formula is similar to the Vandermonde determinant formula. [] 

The coboundary subspace ~ (z )  is one-dimensional and is spanned by 
~ n =  1Amwm. Relation (2.21) has the form 

(8.11) D ( z ) .  1 = 2 ~ Amwmdt ,  
m=l 

where D(z)  is the differential of  the de Rham complex of the fiber over z. 
Consider the de Rham complex of a fiber, 

0 ~ ~2~ ~ f21(z) ~ 0 .  

Let )~ '~(z)CHI(z)  be the image of the rational hypergeometric space of 
a fiber. 
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(8.12) Theorem.  Let ~ = 1. Let ~:1.  Assume that p < 0 and 2Am ~ p Z  for  
any m = 1 . . . . .  n. Let zEIB. Then dim J r ( z )  = n, that is .]f(z) ~- ~ ( z ) .  

(8.13) Theorem. Let { = 1. Let ~c = 1. Assume that p < 0 and 2Am ~ p7] for  
any m = 1 . . . . .  n. Let zEIB. I f  2 }--~n=l Am ~ pT<0,  then d i m ~ ( z ) =  n -  1, 
that is ~ ( z )  ~-- ~ ( z ) / ~ ( z ) .  

Theorems 8.12 and 8.13 can be proved by rather straightforward calcula- 
tions. Nevertheless, we will give further another proof  which can be naturally 
extended to the general case. 

Remark. Assume that the weights A1 . . . .  ,A ,  are such that 2Am ~ pT>=o for 
any m = 1 , . . . ,n .  Let z E1B. Then it is easy to check the following. 

a) I f  x + l ,  then we have 9f~(z) = HI(z)  and dim A'~(z)=  n. 
b) I f  x = 1 and 2 ~-'~7~=1 Am ~ p T < 0 ,  then also ~ ( z ) = H l ( z ) ,  but dim oVf(z) 

= n - 1 .  

Otherwise, we have dimHl(z) f i ,~(z)  = 1 and dim ~/f(z) can be n - 2 or n - 1. 

One-dimensional discrete homologies 

The trigonometric hypergeometric space ~q is the space of  functions o f  the 
form 

n 
P(q, (1 . . . .  (n) I-I__t exp(Tzi(Zm - t) /p) 

' = s i n ' - ~ = z ' ~  A,,) /p)  

where 

= exp(2z~it/p), (m = exp(2rCizm/p), 

and P is a polynomial o f  degree less than n in the variable 4- 
We write Wm(t,z) instead o f  W~(m)(t,z) and ff'm(t,z) instead o f  l~e(m)(t,z). 

Recall that 

(8.14) Wm(t, zl . . . . .  z . )  

expOzi(Zm - t) /p) sin(rift --Zm + Am)/p) 

= sin('-~---~m Z A--s l--[ ~ - - - ~ - m - - -  Am)/p) '  l < l < r a  

m = 1 , . . . ,n ,  and 

(8.15) l~m =Wm exp(--TziAm/p) 

-Wm+1 exp(TriAm+i/p), m = l , . . . , n - 1 .  

(8.16) Lemma.  (cf. (2.28)) For any zEIB the functions WI,.. . ,  Wn restricted 
to the fiber over z form a basis in the trigonometric hypergeometric space 
~q(z) o f  the fiber. 
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Proof. Consider functions 

n 

Gm(t,z) = exp(2~i(m - 1)t/P)mlJ=t exp(-~it/p) 
: sin(zc-~----~m~--Am)/p)' 

m - -  1 , . . . , n .  

The restrictions of  these functions to the fiber over z form a basis of the space 
o~q(Z). Define a matrix Mq(z) by 

Wt(t,z) = ~ Mqm(z)Gm(t,z), l -- 1 . . . . .  n.  
m=l  

The lemma follows from the formula 

detMq=(2i)n('-n)/2 exp (Tri ~=lzm/p ) 1-I 
l < l < m < n  

sin(Tz(z/- At - -  Z m  - -  Am )/p), 

(cf. (8.10)). [] 

(8.17) Lemma. (cf. (2.29)) For any zEIB the functions 1~1 ..... I~-1 res- 
tricted to the fiber over z form a basis in the singular trigonometric hyper- 
9eometric space ~smg(z) of the fiber. 

The proof is similar to the proof of  Lemma 8.16. 
Let 1I be the imaginary axis in the space �9 with coordinate t oriented from 

-icx~ to +icx~. Recall that the hypergeometric integral l(W,w) for functions 
wE~(z),  WE~q(Z) is defined as the analytic continuation of  the integral 

(8.18) I(W, w) = f ~(t)w(t)W(t) dt 

with respect to AI,...,An and z~,...,zn, starting from large real negative 
Al . . . . .  An and imaginary, zt,...,Zn. The analytic continuation can be written 
as an integral over a deformed imaginary space 

(8.19) I(W, w) = f ~(t)w(t)W(t) dt. 

The deformation of the imaginary space is not unique. Below we describe an 
example of  the deformed imaginary axis ~ which is involved in the integral 
(8.19). 

The deformed imaginary axis ~ is a sum of three terms: 

(8.20) ~ = ] ' +  C + + C - ,  

which are defined below. First we assume that all the points 

(8.21) Zm'4-(Am+sp), m = 1 . . . . .  n, sET/>o,  
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are not imaginary. In this case we set I" = lI. To define the terms C • consider 
the following sets: 

Z + = {Zrn + Am + ps lRe(zm + Am + ps)  > O, m = 1 . . . . .  n, sE77>o} ,  

Z - =  { z m -  A m -  p s J R e ( z m -  A m -  p s ) < O ,  m =  1 . . . .  ,n, sETl__>0}, 

Z+ = {Zm - A m  - ps]Re(zm - A m  - ps)  > 0, m = 1 . . . . .  n, sEZ__>0}, 

Z - =  {zm + Am + pslRe(z,n + Am + ps)  <O, m =  1 . . . . .  n, sE7/>__0}. 

We define C + to be the sum o f  small circles with centers at the points o f  
Z + oriented anticlockwise. Similarly, C -  is the union of  small circles with 
centers at the points o f  Z -  oriented clockwise. We assume that the circles are 
so small that there are no points o f  the sets Z+, Z_ inside them and they do 
not intersect the imaginary axis. 

I f  some of  the points (8.2 1 ) are imaginary, then we take ]" to be an appropri- 
ate deformation of  the imaginary axis. Namely, if Re(zm + Am § ps)  ----- 0, then 
we replace the small interval R e t = 0 ,  IIm(t -Zm - A m  - ps)l < e, by a small 
semicircle [(t - zm - A,, - ps  I = e ,  Re(t - z,, - Am - ps)  > O. Similarly, if 
R e ( z m - A m -  p s ) = 0 ,  then we replace the small interval R e t =  0, I m ( t -  
z,, + A,, + ps)l < e, by a small semicircle I t  - Zm + Am § p s  I = 8, Re(t  - 
Zm + A,, § ps )  < O. The terms C • remain the same. 

Example. Let n = 1. In this case the deformed imaginary axis ~ looks like 

, , | * | * |  | (~ | 

where asterisks and dots stay for points zl + A1 + ps  and zl - ,41 - ps, s E 

Z>__0, respectively. 

(8.22) Lemrna. Let  0 < I m #  < 2g. Then .for any l, m = 1 . . . . .  n the hyper- 

9eometric integral I(Wt, Wm) can be analytically continued as a univalued 

holomorphic function o f  complex variables p, A1 . . . . .  An, zl . . . .  ,zn to the 
region 

p < 0 ,  zEIB, 2Am~pTl<=o, m =  1 . . . . .  n .  

Proo f  The only thing to be shown is convergence o f  the integral in the right 
hand side o f  (5.1) for functions W = WI, w = win. The convergence is clear 
since 

�9 (t) = t 2Z~='Am/p exp(l~t/p)(1 + o(1)), t --* -4-ice, 

and therefore, under the assumptions o f  the lemma the integrand decays expo- 
nentially as t goes to infinity. [] 
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(8.23) Lemma. Let Im# = 0. Then for  any l = 1 . . . .  ,n - 1, m = 1 . . . . .  n the 
hypergeometric integral l(l~t, Wm) can be analytically continued as a uni- 
valued holomorphic function o f  complex variables p, A l , . . .  ,An, Zl . . . .  ,zn to 
the region 

p < 0 ,  zEIB, 2Am~-pT/<o, m =  1 . . . . .  n .  

The proof is similar to the proof of the previous lemma. 
In what follows we need to consider thehypergeometric integral I ( W , w )  

for functions w from the functional space o~(z) of a fiber. The definition is 
similar to the definition of the hypergeometric integral for w Eo~(z). Below 
we describe explicitly the anal,zrtic continuation of the hypergeometric integral 
I (W,w)  for any function wEo~(z) as an integral over a suitable deformation 
of the imaginary line. 

For any integer s let ~[s] be the deformation of the imaginary axis which 
is defined similarly to 1I but the parameters A1,. . - ,An are replaced by A1 + 
ps . . . . .  An + ps, respect~ely. In particular, 1I[0] = 1I. 

For a function w E f t ( z )  we have 

(8.24) I (W,w)  = f 45(t)w(t)W(t)dt  

where the integer s is chosen so that the_integrand has no poles at the points 
Zm § (Am + pr)  for r < s, r E 7/. Under this assumption the right hand side of 
(8.24) does not depend on s. 

Let D~' ( z )  = {Dw I wEo~(z)}. 

(8.25) Lemma. Let either 0 < Im# < 2 ~  and WEO~q(Z) or # = 0 and W E  

o~qSmg(z). Assume that p < 0  and 2Am~p7Z. for  any m = 1 . . . . .  n. Let zEIB. 

Then 

a~ The hypergeometric integral I ( W , w )  is well defined for  any function 
w ~ ~ ( z ) .  

b) The hypergeometric integral I (W , w)  equals zero for  any function 
w E D ~ ( z ) .  

Proof  The proof of claim a) is similar to the proof of Lemma 8.22. Claim b) 
follows from the next observation. Let Up[S] be the contour obtained from lI[s] 

by the translation t ~ t + p .  Then for a given function w E b ' ( z )  and a large 
negative s the contour lI[s] and ~p[s] are homologous in the complement of 
the set of poles of the function ~( t )w( t )W(t ) .  [] 

(8.26) Lemma. Let # = O. Assume that p < 0 and 2Am dfp7l<=o for  any 
m = 1 . . . . .  n. Then the hypergeometric integral I(W, w) equals zero for  any 
w E ~ ( z )  and W E ~qSing(z). 

Proof  The lemma follows from formula (8.11) and Lemma 8.25. [] 
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The hypergeometric integral defines linear functionals I(W, �9 ) on the func- 
tional space o f  a fiber. Lemma 8.25 means that these linear functions can be 
considered as elements o f  the homology group Hi(z),  the dual space to the 
cohomology group of  the de Rham complex of  the discrete local system of  
the fiber. 

Let W be any element o f  the trigonometric hypergeometric space o~q. Let 
W[.-E O~q(Z) be its restriction to a fiber. Consider an element sw(z) = I( WI,_, �9 ) 
of  the homology group Hi(z).  

(8.27) Theorem. (cf. (5.18)) Let ~ =  1. Let either 0 < I m # < 2 r c  and 
W E ~q or # = 0 and W E ~ q  ~mg. Assume that p < 0  and 2Am ~ p2Z for  any 
m = 1,. . . ,n.  Then the section sw is a periodic section with respect to the 
Gauss-Manin connection. 

Proof. Let the contour ~m[s] be defined similar to ~[s] but the parameter Zm is 
replaced by Zm - p. The statement o f  the theorem means that for any function 
wEo~(z )  and each m = t . . . . .  n we have the equality 

I ( W , w ) =  f ~ ( t ) w ( t ) W ( t ) d t ,  
T.E,j 

where s is a sufficiently large negative integer. The last equality holds since 
the integrand ~( t )w( t )W( t )  has no poles separating the contours ~m[S] and 
~[s]. [] 

Consider a section %v of  the trivial bundle over llS n with fiber (V1 | �9 �9 �9 @ 
v,)l: 

~ew(z) = ~ I(Wl~,w,,I..)Vm @... | | " ' "  |  . 

m = l  

(8.28) Corollary. (cf. (5.20)) The section ~Pvr is a solution to the qKZ equa- 
tion. 

Our further strategy is as follows. First we show that if  0 < I m #  < 2re, 
then the basis o f  sections ~rvm, m = 1 . . . . .  n, is an asymptotic solutions to the 
qKZ equation, (cf. Theorem 8.29). Using this fact we prove that the hyper- 
geometric pairing I : ~q(Z) | o~(z) --* C is nondegenerate if  0 < Im # < 2r~ 
(cf. Theorem 8.33). Studying the asymptotic behaviour of  the hypergeomet- 
ric integral as/~ tends to zero we will show that for # = 0 the hypergeometric 
pairing I ~ : o~qSmg(z) | J ( z ) / ~ l ( z )  ~ IE is nondegenerate (el. Theorem 8.34). 
At the end of  the section we will describe the quasiclassical asymptotics o f  
the hypergeometric integral for d = 1 (cf. Theorems 8.39, 8.40). 

For every permutation z E S n, consider the asymptotic zone in IE n given by 

A~ = { zEC" lRez~ ,  << - . .  <<Rez~,},  

and say that z ~ ec in A~ if Re (z~ m - z~,.~ ) ---, - o e  for all m = 1, . . . ,  n - 1. 
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(8.29) Theorem. (cf. (6.4)) Le t  ~ = 1. Le t  0 < I ra#  < 2~ and, therefore, 
~ = 1 .  Assume that p < 0  and 2 A m ~ p Z  f o r  any m = 1 . . . . .  n. Then f o r  any 
permutat ion z E S n the basis ~w2, m = 1 . . . . .  n, is an asymptot ic  solution in 

the asymptot ic  zone As. Namely ,  

tYw~(z) = Om exp(#zm/p)  I-I ((zz, -- Zm)/p) 2A~' ]-I ((z m -- Z~, )/p)2a,, 
1 __< l <-r ,~,  ] ~J <l<=n 

• |174174 

as z--* cx~ in A s  so that zEIB  at any moment.  Here l a rg ( ( z k - z t ) / p ) [  < ~  
and Om is a constant independent o f  the permutat ion z and given by 

[~m = 2i( e~ - 1)-2A'n/P exp((# + ~zi)Am/p)F(2Am/p) , 

where 0 < arg(e ~ - 1) < 2~z. 

P r o o f  To simplify notations we will give a proof  only for z = id. A simple 
but important fact is that for any W E ~q 

(8.30) 7%(Zl + p  . . . . .  z, + p )  = KtYw(zl . . . . .  z , ) .  

It allows us to fix freely the real part of  one o f  the coordinates zl . . . . .  zn. 
Consider the hypergeometric integral I(Wm, Win). The corresponding inte- 

grand ~( t )w , , ( t )Wm( t )  can be rewritten as follows: 

(8.31) 

e( t )Wm(t)Wm(t)  = ( - r cp )  -1 exp((~ - rci)t/p + raZm/p) 

x r((t - z m -~- Am)/p)F((zm + A,, - t ) /p )  

_ r(( t  - zt + At)/p) 
x 1-I r ( ( z t + A t - t ) / p )  1-I r ( ( t - z t - ~  

l<t<m F((zt  At t ) / p )  re<t<=, 

This function has no poles at points z t -  A t -  sp, s E71, for l < m and has 
no poles at points zt + At + s p ,  sETl ,  for l > m .  Moreover, due to (8.30), 
without loss o f  generality, we can assume that z tends to infinity in Aia so that 
Rez t  ~ - o o  for l < m, Rezm remain finite, and Rezt --+ +oo  for I > m. Under 
this assumption the integrand has no poles at the points zt + At + sp, s E 7Z, 
for l < m in the halfplane Re t > 0 and has no poles at the points zt - At  - sp, 
s E Z, for l > m in the halfplane Re t > 0. Therefore, we can "straighten" the 
contour and write 

(8.32) 1(Win, win) = f ~( t )Wm(t )Wm(t )d t  

L 

where the contour ~m is the contour defined above for analytic continuation o f  
the integral 

f exp((# - n i ) t /p )Y( ( t  - z,, + Am)/p)F((Zm + Am - t ) / p ) d t .  
1I 
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The remaining part o f  the calculation is a standard exercise. We replace the 
integrand in the integral (8.32) by its asymptotics as z --* :xz in Aid and obtain 

I(Wm, w m ) = ( - n p ) - l  exp(#zm/P) 1-[ ((Zl-- Zm)/P) 2At/p 
l< l<m 

x H ((z~ --zt)/p):A'/Pfexp((l~ -- 7:i)(t--zm)/p) 
m<l<n ~ 

• r ( ( t  - z , ,  + Am)/p)F((Zm - t + Am/p)dt(1 + o ( 1 ) ) .  

The last integral reduces to the Barnes integral (5.16) and is calculated explic- 
itly. Finally, we have 

I ( Wm, win) = 2i( e ~ - 1 )-2Am/p exp((# § 7:i )A,~/p )F( 2Am/p ) exp(gzm/p ) 

• H ((ZI--Zm)/P) 2A'/p H ((Zm--ZI)/p)2A'/P(1-~-O(1)), 
l< l<m m<l<n 

as z --~ cc in ~kid. Here 0 < arg(e ~ - 1) < 2re. 
The hypergeometric integral I(Wm, wt) for l+m can be treated similarly to 

the hypergeometric integral I(Wm, win) considered above. The final answer is 

I(Wm, W~) = I(rVm, w~)o(1) ,  

which completes the proof  of  Theorem 8.29. [] 

(8.33) Theorem. (cf. (5.14)) Let E = 1. Let 0 < I m p  < 2?:. Assume that 
p < 0 and 2Am ~p2~<=o for any m = 1 . . . . .  n. Let zEIB. Then the hyper- 
9eometric pairin9 I : ,~q(Z) | ~ ( z )  ~ ~E is nondegenerate. Moreover, 

d e t [ I ( W / ,  Wm)]lnm=l = (2i)n(e ~ - 1)-2E~'=~a'/P 

( (#  + rti) ~ A , / p  + #  ~ zm/p) •  
\ rn=[ m=: ) 

• f i  F(2Am/p) 1--[ F ( ( z t + A t - z m + A m ) / p )  
m=l lZ l<m<n  l " ( ( Z l ~ - ' ~ l  Z m ~  " 

Here 0 < arg(e u - 1) < 2m 

W n Proof Denote by F(z) the determinant d e t [ I ( ~ ,  m)]t,m=I and by G(z) the 
right hand side of  the formula above. Since for every l = 1 . . . . .  n the section 
~u~ is a (V1 |  N V~ )l -valued solution to the qKZ equation, F(z) solves the 
next system of  difference equations 

(L) 
F(z~,... ,z,, + p . . . . .  z~) = det K,,,(z: . . . . .  z,)F(zl . . . . .  Zn) �9 
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(1) 
Here det Kin(z) stays for the determinant of  the operator Km(z) (3.10) acting 
in the weight subspace (V1 | ..- | Vnh. Using (3.5) we see that 

(1) 
det Km(zl . . . . .  zn)=~c 1-[ zm + Am - zl + Al + p 

1 <=l<m Zm - -  A m  - -  Z l  - A I  + p 

zm + Am - zt + At 
x 17 

m<l<=n Zm - -  A m  - z I  - A l  

Therefore, the ratio F(z)/G(z) is a p-periodic function in each of the variables 
Z I , . . . , Z n :  

F 
G(Zl . . . . .  Zm + p . . . . .  Zn) = -~(z l , . . . , z , ) .  

Theorem 8.29 implies that the ratio F(z)/G(z) tends to 1 as z tends to infinity in 
the asymptotic zone &id. Hence, this ratio equals I identically, which completes 
the proof. [] 

(8.34) Theorem. Let d = 1. Let # = O. Assume that p < 0 and 2Am ~ pZ  for 
any m = 1,.. . ,n. Let zEIB. I f  2y'~n=l Am ~pT/<0, then the hypergeometric 

pairin9 I ~ : ~qsing(z) | ~ ( z ) / ~ ( z )  ~ C is nondegenerate. Moreover, 

det[I~/),wm)]t,m=~ =(2i)~-~F 1 + 2  ~ Am/p F(1 + 2 A. / p )  
m=l 

n-I r((zt  + At - Zm + Am)/p) 
x 1-I r(2Am/p) 1--[ ----~l -- ~ "  m=l l < l < m < n  C ( ( Z l  Zm 

Proof Since both sides of the formula above are analytic functions in 
Ai . . . . .  An, it suffices to prove the formula under the assumption 

0 < 2  ~ Am/p< 1. 
m=l 

To prove the theorem we first assume that # 4:0 and study asymptotics of the 
W n determinant det[I(Wt, m)]/,m=~ as # tends to zero. We will show that 

(8.35) 

det[I(Wt, wm)]tnm=l = (ip/A,)exp (hi  m=l ~ Am/p)#-2E"~=~A,/p 

( m~l ) -1 x F 1 + 2 Am/p ~ n--1 det[l(Wl, wm)]t,m=l(1 + o(I) )  

as # ~ 0, 0 < arg# < n. Due to (8.33) the last formula will imply the required 
formula for det[I( I'~t,wm)]. 

First we change bases in the rational and trigonometric hypergeometric 
spaces of a fiber. We set 

Wtm=IfVm, m = l  . . . . .  n - l ,  Wn~ = Wn, 
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and 

We have 

t t ~ Amwrn Wrn = Wm,  m = l , . . . ,n--1 ,  win= 
m=l 

( ) (8.36) , ,  n n det[I(W l,wm)]t,m= l = Anexp -rci Am det[l(Wt, wm)]l,m=l �9 
l 

As # tends to zero, the entries l(Wl',w~), l,m = 1 . . . . .  n - 1, have finite limits 

l(17Vt, wm), respectively. Similarly, the entries I(W/,w'n), l = 1 . . . . .  n -  1, tend 

to zero since D(z). 1 = 2w~dt at/2 = 0 and, therefore, l(I~l, wn) = 0 at/2 = 0. 
More precisely, we have I(Wn~,W~) = O(#)  as # ~ 0. The behaviour o f  the 
entries I(W~ t, W~m), m = 1 . . . . .  n, is described in the next lemma. 

(8.37) Lemma. Let 0 < 2 ~ = l A m / p  < l. Let # --* 0, 0 < a rg#  < ~. Then 

I(Wn, Wm) = 2iexp(TziAn/p)#-2E'=~a'/PF (2  m=l ~ Am~p)(1 + o ( 1 ) ) .  

Proof. As t ~ - i ~ ,  the integrand of  the hypergeometric integral I(W~,Wm) 
has the following asymptotics: 

( ) ~(t)Wm(t)Wn(t) = (-2i/p)exp #tip - 7tiAn/p - 2~i ~ Am/p 
m = l  

• (t/p)-I+2E'='A'/P(1 § o(1) ) .  

Denote by F(t) the left hand side o f  the equality above and by G(t) the right 
hand side without the factor 1 + o(1). 

Let s be a positive number such that s > max(lz~l  . . . . .  Iz.I}. Let Bs be the 

part o f  the deformed imagina~ axis ~ in the halfplane Im t > - s .  We have 

0) i 
I ( ~ , w m ) =  - f  G(t)dt+ f ( F ( t ) - G ( t ) ) d t + f F ( t ) d t .  

--icx~ --is --ic~ ~s 

The first integral in the right hand side above can be calculated explicitly since 

0 

f exp(#t/p)(t/p) -l+2E'=~a'/p dt/p 

:-exp(2rcim~'~=lAm) f-2YT:=tA'/pF(2~=lAm/p) , 

and the three other integrals have finite limits as # ~ 0. The lemma is proved. 
[] 

A (8.38) Corollary. Let 0 < 2 ~--~m=l m/P < 1. Let # ~ 0, 0 < arg # < re. Then 

I(W~,w;) =2iexp(TziA,/p)#- Z-=~am/pr 1 + 2  A,,/p (1 + o ( 1 ) ) .  
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Finally, we have 

/ ! n / det [I( W t , w re)I,,,.=1 = det [I( l~t, Wm)]7,~ 11( Wn, W~m)( 1 + O( 1 ) ) .  

Using (8.36) and Corollary 8.38 we get (8.35). Theorem 8.34 is proved. [] 

Proof  o f  Theorems 8.12 and 8.13. Theorems 8.12 and 8.13 follow from 
Theorems 8.33 and 8.34, respectively, and Lemma 8.25. [] 

Quasiclassical asymptotics 

Recall that to study the quasiclassical asymptotics of  the hypergeometric inte- 
gral we introduced new parameters h and 17 = #/h, and new coordinates u = ht 
and Ym = hzm, m = 1 . . . . .  n. The quasiclassical asymptotics of  a hypergeometric 
integral is the asymptotics of  the integral as h ~ 0 while the coordinates 
yl . . . . .  y ,  and the parameter q remain fixed. 

For each m = 1, . . . .  n, we defined an imaginary interval 

U m = { u ~ C l R e u = 0 ,  Imym-1 < I m u  < Imym},  Y 0 = - i o c ,  

a chain .( U~ =t__~lexp 4rci ~ Ak UI .  
= l < k < l  

and a rational function 

1 
Wrn(U, Yl . . . . .  Yn ) = 

U -- Ym 

Set 

~(u, yl . . . . .  Yn) = expOlu/P) f i  ((u -- ym)/p) 2A'/p 
r n = l  

where [arg((u - Ym)/P)[ < re. 

(8.39) Theorem. (el. (7.6)) Let l = 1. Let p < O. Let ReAm < 0 and let 
R e y m = 0 f o r  all m =  1 . . . . .  n. Let #=hr l ,  I m r / > 0 .  Then for  any l , m =  
1 . . . . .  n the hypergeometric integral l(get, win) has the following asymptotics 
as h ~ +O and y E Y :  

I(WI'wm)=-2ih-2Fk='A~/Pexp ( - z c iA l /p -2 zc i  l__<k<, ~ Ak/pl/ 

• f ~(u,y)ff~m(U,y)du(1 + o ( 1 ) ) ,  

Remark. Recall that hypergeometric integral l(Wl, wm) is defined by (5.3) 
where l = 1, the functions Wt and w,, are given by (8.14) and (8.8), 
respectively, and we replace in these formulae zl . . . .  ,zn by yl /h  . . . . .  yn/h. 
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(8.40) Theorem. (cf. (7.8), (7.9)) Let  { = 1. Let  p < O. Let  Re A,, < 0 and 
let Re y,~ = 0 for  all m = 1 . . . .  ,n. Let  # = h~, Im r /=  0. Then for  any l = 
1 . . . .  , n -  1 and any m = 1 . . . . .  n the hypergeometric integral I ( ~ , W m )  has 
the followin 9 asymptotics as h ~ +0 and y E Y :  

I(Wl,  w m ) = 2 i h - ~ = l a k / P e x p  2rci ~ Ak/p 
l<_k<_l 

x f ~(u,y)~m(u,y)&(1 +o(1)). 
Ut+l 

Remark.  Recall that the hypergeometric integral I ~ , w m )  is defined by (5.3), 
the functions I~t and wm are given by (8.15) and (8.8), respectively, and we 
replace in these formulae zl . . . . .  zn by y l /h  . . . .  ,yn/h. 

Remark.  The claims of Theorems 8.39 and 8.40 remain valid for any A1 . . . . .  An 
such that Am ~ pZ__<0 for all m = 1 . . . . .  n, if the other assumptions of the the- 
orems hold and the integrals in the right hand sides of (8.39), (8.40) are reg- 
ularized in the standard way. We omit the proof since it is not essential for 
our purpose in this paper. 

The idea of the proofs of Theorems 8.39, 8.40 is simple. After a suitable 
renormalization, the quasiclassical asymptotics of the function ~ is given by 
a linear combination of the characteristic functions of the intervals UI , . . . ,  Ut 
with the coefficients defined by the chain Ul. Similarly, after a suitable renor- 
malization, the quasictassical asymptotics of  the function g;'t is given by the 
characteristic function of the interval Ut+l. Therefore, modulo renormalization 
factors the quasiclassical asymptotics of  the hypergeometric integrals I(Wl, win), 
I(l~l, win) are given by integrals of products of  powers of linear functions over 
the chain Ut or over the interval Ul+l, respectively. 

Proof  o f  Theorem 8.39. To simplify notations we will give a proof only for 
l = m. Consider the hypergeometric integral I(Wm, Win). It is given by 

(8.41) I(W,,, win) = f 4~(t)wm(t)W~(t) d t .  

Let h be a positive number. The factors of the integrand above have the fol- 
lowing quasiclassical asymptotics as h ~ +0 while the parameter q = #/h, the 
variable u = ht and the coordinates ym = hzm, m = 1 . . . . .  n, remain fixed: 

@(t, zl . . . . .  zn) = exp(#t/p)  ~ ((t - z,,)/p)2A'/P(1 + o(1) ) ,  
m=l 

1 
- - ( 1  + o(t)), 
t -- 2rn 

wm(t, za . . . . .  z , )  -- 

Wm(t, Z l , . . . , zn)  

= 2 i e x p ( 2 ~ i ( Z m - t ) / p +  rciAm/p+2rci y']l__k<m A k / p ) ( 1  + o(1)) 
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if Im Zm < Im t and 

Wm(t, zl . . . . .  Z.) 

=-2iexp(-niAm/p+2ni}-~l__<k</Ak/p--2rci}--~l<k<m Ak/p) ( l + o(1)) 

I f  Imzt < I m t  < Imzl+l, l = 0, . . . ,m  -- 1. Here z0 = - ioc .  
To compute the quasiclassical asymptotic of  the hypergeometric integral 

I(Wm, wm) we replace the integrand in the right hand side of  (8.41) by its 
quasiclassical asymptotics, and after simple transformations we obtain that 

I(Wt, wm) = - 2 i h  -2~k=' dPexp - rc iAt /p-  2zci ~ Ak/p 
l<=k<l 

x f~(u,y)ff~m(U,y)du(1 + o(1)) .  

This step can be justified in a standard way using the next lemma. 

(8.42) Lemma. Let Re c~ > 0. Then there is a constant A such that for any 
real s the followin9 estimates hold: 

z + sZ) exp(-rcls[)F(c~ + is)r(~ - is)[ < A ,  

I(~ 2 + sZ)-~Y(is + ~)/F(is - ~)1 < A .  

Proof The required formula follow from the next specialization of the Stirling 
formula 

K 
[log F(x) - (x - 1/2) logx + x - log v/-~[ < ~ e x '  Rex > 0 ,  

where K is some constant [WW]. [] 

Theorem 8.39 is proved. [] 

The proof of  Theorem 8.40 is similar to the proof of Theorem 8.39. 

9. The multidimensional case 

This section contains proofs of  the statements formulated in Sects. 2-7. We start 
from the lemmas which describe bases in the rational and trigonometric hyper- 
geometric spaces of  a fiber. 

Proof of  Lemmas 2.20, 2.28, 2.29. First we have to show that functions wi, WI 
and WI lie in the rational, in the trigonometric and in the singular trigonometric 
hypergeometric spaces, respectively. The arguments in all the cases are similar, 
so we will consider only the rational case. 
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It is clear from Definition (2.19) that the function wt( t , z )  has the form 

" 1 t 
Q( , , , . . . , , , , z ,  . . . . .  H 

=1 = ta --Zm -- Am l < a < b < : t a  - -  tb + 1 

where Q is a polynomial which has degree less than n + d -  1 in each of  the 
variables t l , . . . ,  t:. Furthermore, by construction the function w~ as a function of  
tl . . . . .  t: is invariant with respect to the action (2.9) of  the symmetric group S:,  
which means that the polynomial Q is skewsymmetric with respect to the 
variables tl . . . . .  t:. Hence, the polynomial Q is divisible by 1-Ii _-<a<b-<: ( t a  - tb) 
and the ratio is a polynomial which is symmetric in variables tl . . . .  , t: and has 
degree less than n in each of  the variables f i , . . . , t : ;  that is the function wi is 
in the rational hypergeometric space. 

For any I E ~ "  (cf. (2.18)), let Pl(Ul . . . . .  u:)  be the following symmetric 
polynomial 

1 y~ f l  I_i um_ 1 
PI(ut . . . . .  u : ) - -  ll! "[n"""'~" ,eS:m=la~rm G~ �9 

Here F m =  {1 + I m-1 . . . . .  In}, m = t . . . . .  n. Consider the following functions 

n ~" 1 ta  - -  tb  
gl ( t , z )  = Pt(tl . . . .  ,t~') l--[ I-I I-I - 

m = = l a = l  ta - -  zm - A m  l < a < b < d  ta "-~b + 1 ' 

P n d 
G I ( t , z )  -~ l ( ~ l  . . . . .  ~{) rot-I= 1 a_1~l e x p ( - T z i t ~ / p )  ------Am;p) 

X 
sin(rffta - tb)/p) V l  

1.1 sin(rc(ta - tb + l ) / p )  l<a<b<=d 

n d 
G ,( t ,z  ) = Pff ~ , ~: ) mlJ=, a~= l exp( ~it~/p ) 

. . . . .  = = s in(~(-~-- -~-- - -Am)/p)  

sin(rc(ta - tb)/p) 
• 1-I sin(rc(ta - tb + 1)/p) l < a < b < d  

where ~a =exp(2zcita/p),  a =  1 , . . . , d .  Restrictions of  the functions gt(t ,z) ,  
I E ~ n ,  to the fiber over z form a basis o f  the rational hypergeometric space of  

the fiber. Restrictions of  the functions Gift,  z), l E ~e 7, (resp.G ~ fit, z), l E ~ n - 1  ) 
to the fiber over z form a basis o f  the trigonometric (resp. the singular trigono- 
metric) hypergeometric space of  the fiber. 

Define matrices M ( z ) ,  Mq(z )  and31(z) by 

w i ( t , z ) =  ~ Mtm(z)gm(t ,z) ,  1 r  n , 

Wt( t , z )=  E~ Mq~(z)Gm(t ,z) ,  [ ~  ~ , 

E , 
rrtE.~7 - 1  
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(9.1) Lemma. 

E - 1  

de tM = I~ i-[ 
s=O l < d < m < n  

(ZI  - -  A I  - -  Zm - -  A m  + s )  ( " + r  , 

de tMq = (2i)n(l-n)/2 " ("+~-l) exp (TCim~=lZm/p . ( n  + ~ - l )  ) 

fl-- l n+ / -~ -2  
x [ I  I-I sin(n(zl - At - Zm - -  Am + s ) /p ) (  " ~ ) ,  

s = 0  l < l < m < n  

det)l~r = (2 i )  O - "  )(n- z )/2 " (.+~ 2 ) 

{- -  1 . + g - s - 3  
x I-I I-I s in(n(z t  - At  - Zm - Am + s ) /p ) (  ,-2 ) .  

s = 0  l < l < m < n  

P r o o f  The first and the second formulae are equivalent to Lemmas 5.2 and 2.2 
in [T], respectively. The third formula can be reduced to the second one by 
a suitable change of  variables. [] 

Lemmas 2.20, 2.28, 2.29 clearly follow from Lemma 9.1. [] 

P r o o f  o f  L e m m a  2.21. The right hand side o f  formula (2.21 ) can be rewritten 
a s  

(9.2) 

l-I (2Am - s ) /p  ~ tl - Zm + Am tl - t~ - 1 
m=l s=0 ~ m=L tl Zm~--~m ~=Z tl -- ta + l 1 

a~r'~ ta -- zm -- Am l < l <m ta Zl er 

where F~ = { 2 + l  m-1 . . . . .  [m,  1 + Im},  m = 1, . . . ,n .  Set 

t l - Z m + A m  ~ , t l - - t a - - 1  1 )  
f m ( t , z ) =  ~ z m - - A m a  tl t a ~  l 

l < l < m  - -  Z---1---- A l  aEl"/ t l  - - t a - " ~  ' 

so that 

1 
m = l  m=l  t t  zm - -  A m  a=2  tl  - t~ + l ' 
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and expression (9.2) equals 

t [,~--1 f1 r1 (2A.,-s)/p 
k=I m=I s=0 

[ • ~ fk(t ,z)  
a E S  e 1 aEF~m ta - -  Zm - -  A m  1 = m ta - -  Zl a " 

Lemma 2.21 now follows from the formulae 

(lk + 1)(2Ak - lk)wl+~ (k) 1(  
aES: m=l a -- 

, H 
z m - A m  l < l < m t a - - Z l  A I  a 

(cf. (2.19)). [] 

Lemmas 4.6, 4.18 follow from formulae (A.3),(A.5) in [IK], respectively, 
and the definitions of the evaluation modules, by induction with respect to the 
number of factors of the tensor products. 

Theorems 4.7,4.19 follow from formulae (A.5)-(A.8) in [Ko] and 
Lemmas 4.26, 4.18, respectively. 

Lemmas 4.23, 4.24 follow from formulae (2.19), (2.26) for the rational and 
trigonometric weight functions, respectively, and Lemma 9.1. 

The claims of Theorems 4.25, 4.26 that the maps Z o P and Zq are in- 
tertwiners can be verified directly from formulae (4.1) and (4.I4), respec- 
tively, though the calculations are cumbersome. These claims also follow from 
Theorems 4.7,4.19, respectively. The claims that the maps z o P  and Zq are 
isomorphisms follow from Lemmas 4.23, 4.24, respectively. 

The proof of Theorems 5.7 and 5.8 are based on the following simple 
lemma. 

(9.3) Lemma. Consider a configuration o f  hyperplanes in C t 

ta = Zm -q- Am + sp ,  t~ = t6 + l + sp  , 

1 < b < a < {, m = 1 . . . . .  n, s E 7Z. The dimensions of  all edges of  the con- 
figuration do not depend on p, A1 . . . . .  An, zl . . . . .  zn provided that assump- 
tions (2.12)-(2.14) hold. 

Proof. The initial configuration of hyperplanes induces a configuration of 
hyperptanes in any edge of the initial configuration. The dimensions of all 
edges of  the initial configuration remain the same if and only if all the in- 
duced configurations do not have nonstandard coinciding hyperptanes. This is 
obviously true if assumptions (2.12)-(2.14) hold. 
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This lemma implies that the topology of the complement of configura- 
tion (9.3) of hyperptanes in C: remains the same for all p, AI . . . . .  An and 
zl . . . . .  zn satisfying conditions (2.12)-(2.14). 

P r o o f  o f  Theorem 5. 7. The theorem is proved by induction with respect to 
the number of integration variables in the hypergeometric integral. 

Recall that the hypergeometric integral I(WI,  win) is defined by 

I ( W i , w m )  = f ~ ( t ) w m ( t ) W l ( t ) d : t ,  
M: 

if  A I , . . . , A n  are large negative. (el. (5.3)). We can replace the imaginary 
subspace lit in the last formula by any subspace of the form 

(9.4) ]ix = {tEff2: IReta =x~, a = 1 . . . . .  : } ,  

where xl . . . . .  x:  are small pairwise distinct real numbers without changing the 
integral. 

For the analytic continuation we move A1 . . . .  ,An, zl . . . . .  zn and p and 
preserve the integration contour lIx as long as it does not touch the hyperplanes 
of configuration (5.6). If a hyperplane /7 of configuration (5.6) goes through 
the integration contour ]Ix, the integration contour should be deformed to avoid 
the intersection. Deforming the integration contour we add a tube over the 
intersection of  lIx and the hyperplane H. The result of the deformation is the 
sum ]i, + IV x x Cn, where ]i'x C / 7  is a suitable subspace of  real dimension 
( { -  I), and Cn is a small circle around the hyperplane H. For example, 
i f / 7  is given by an equation t: - zn - An - ps  = 0, then /7 has coordinates 
q , . . . , t : _ l ,  in these coordinates 

I1' x = { t E / T l R e t a  = Xa, a = 1 . . . . .  : - -  1}. 

and the circle Cn is given by 

Cu = { t : E l ~ l ] t : - z n -  An - psi = p } ,  

p is a small positive number. The analytic continuation of the initial hyper- 
geometric integral I(Wi, win) equals the sum of two integrals 

f ~(t)wrn(t)W1(t)  d:t + f Res (~( t )wra( t )W~(t) )  d : - I t ,  

and the second integral is of the same type as the first one but of a smaller 
dimension. Therefore, under the analytic continuation the passage of a hyper- 
plane of the configuration through the integration contour results in appearance 
of a new hypergeometric integral with a smaller number of integrations. This 
reason shows that the hypergeometric integral can be analytically continued to 
the region described in the Theorem 5.7. 

Now we show the univaluedness of the hypergeometric integral by induc- 
tion on the number of integration variables. Denote the domain described in 
Theorem 5.7 by U. Consider its fundamental group ~l(U,z*). The generators 
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of the fundamental group can be chosen of a special form. Namely, for any 
hyperplane H lying at the boundary of the domain U choose a curve c~u in U 
from the base point z* to a generic point zu of the hyperplane H and fix a loop 
?u in U which goes from z* to H along c~u, then turns around H along a 
small circle flu and returns back to z* along the same curve c~u. The loops 
Yu generate the fundamental group. 

Let us show that the hypergeometric integral I(Wt,  wm) has the trivial 
monodromy under the analytic continuation along the curve ?ft. In fact, under 
the analytic continuation from the base point z* to the hyperplane H along 
the curve an we create smaller dimensional integrals each time one of  the 
hyperplanes of  singularities hits the integration contour. Under the analytic 
continuation of the integral along the circle/?n the hyperplanes of  singularities 
do not touch the integration contour if  the point zn is generic. Now under the 
analytic continuation along the curve c~u f rom/7  to z* we create again smaller 
dimensional integrals each time one of the hyperplanes of singularities hits the 
integration contour. But the corresponding integrals created on the way to H 
and on the way from H come with the opposite signs. Moreover, they are 
equal according to the induction assumptions. Hence the monodromy of  the 
integral along the loop ~'u is trivial. Theorem 5.7 is proved. [] 

The proof of  Theorem 5.8 is similar to the proof of  Theorem 5.7. 
As in the case ~ = 1 we extend the notion of the hypergeometric integral 

I ( W , w )  and consider the hypergeometric integral for any function w in the 
functional space o~(z) of  a fiber. Namely, let w ( t , z ) E Y ( z )  be a function of 
the form 

P(tl . . . . .  tt,Zl . . . . .  zn, A1 . . . . .  An) 

X - 

s=O m = l a = l ( t a - z m - A m + s p ) ( t a  z m + A m - ( s + l ) p )  

1 1 • 1-I (ta -- tb + 1 + sp)(t~ -- to I -- (s + 1 ) p )  l < _ a < b < = {  

where P is a polynomial. I f  the real parts of  the weights At . . . . .  An are large 
negative and p is small, then we define the hypergeometric integral I ( W , w )  
by (5.3). The hypergeometric integral is well defined if either 0 < I r a #  < 21z 
and W E ~ q ( Z )  or I m #  = 0 and WE'~qSiag(z), since the integrand exponen- 
tially vanishes at infinity. For generic A1 . . . . .  An, zl . . . . .  zn and p we define 
respectively the hypergeometric integral I ( W t , w )  or the hypergeometric in- 
tegral Iq, f / l ,w) by analytic continuation with respect to A1, . . . ,An ,  zl . . . . .  z, 
and p. Similar to the proof of  Theorem 5.7 one can show that these hyper- 
geometric integrals can be analytically continued as holomorphic univalued 
functions of  complex variables p, At . . . . .  An, ~ . . . . .  zn to the region described 
in Theorem 5.7. For arbitrary functions w E ~ ( z ) ,  W E ~ ( z )  we define the 
hypergeometric integral by l~earity. 

Let Do~(z) = {Dw I w ~ ( z ) } .  
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(9.5) Lemma. Let p < O. Let (2.12)-(2.14) hold. Let either 0 < Im# < 27z 
and W E o~q(Z) or # = 0 and W E ~qSmg(z). Then 

a~ The hypergeometric integral I(W, w) is well defined for any function 
w ~ ( z ) .  

b) The hypergeometric integral I (W,w)  equals zero for any function 
w E D S( z ) .  

Proof. Claim a) holds by the definition of the hypergeometric integral I(W, w). 
Claim b) is clear, if the real parts of the weights Al . . . . .  An are large negative 
and p is small. Then the analytic continuation of the integral gives Claim b) 
for generic p, Al . . . . .  An, zl . . . . .  zn. [] 

Lemma 5.9 follows from Lemmas 2.21 and 9.5. 
The hypergeometric integral defines linear functionals I(W, �9 ) on the func- 

tional space of  a fiber. Lemma 9.5 means that these linear functionals can be 
considered as elements of the top homology group He(z), the dual space to the 
top cohomology group of the de Rham complex of the discrete local system 
of the fiber. 

Proof of  Theorem 5.18. The section sw is defined by 

sw(z) = I ( W l z ,  �9 ) 

where Wlz denotes the restriction of the function W(t,z) to the fiber over z. 
The theorem is a direct corollary of the periodicity of the function W with 
respect to each of  the variables Zl,...,Zn: 

W(t, zl . . . . .  Zm + p . . . . .  Zn) = W(t, z l , . . . ,zn) ,  m = 1 . . . . .  n ,  

cf. the case E = 1 in Sect. 8. [] 

Our further strategy is the same as in the case { = 1. First we prove 
Theorem 6.7 which imply Theorem 6.4. Using Theorem 6.4 we prove that the 
hypergeometric pairing I : ~q(Z) | . J (z )  ~ C is nondegenerate if 0 < Im # < 
2re (cf. Theorem 5.14). Studying the asymptotic behaviour of the hypergeo- 
metric integral .as # tends to zero we show that for # = 0 the hypergeometric 
pairing 1 ~ : o~qSmg(z) | ~ ( z ) / ~ ( z )  --~ C is nondegenerate (cf. Theorem 5.15). 

Theorems 2.15 and 2.17 will follow from Theorems 5.14 and 5.15, respec- 
tively, and Lemma 9.5. 

Proof of  Theorem 6. 7. To simplify notations we will give a proof only for 
the case k = n, so that nm = m, m = 1 . . . . .  n. The general case is similar. 

Let wl~)) E ~[zm; Am; l] and ( m )  ~ -  . WiO E ~q[Zm, Am; l] be the following functions: 

(9.6) (m) ~ [1~i 1 ] w(l ) (tl,...,tl,Zm) = 
�9 o-ES I a=l t a -  Zm - - A m  ~ ' 

t sin(n/p) 3-' ~ ILl exp(rcffZ_m-- ta)/~v) 
W{l~)(tl . . . . .  tl,Zm) = s=11-I ~ ) j ~ '  It a=l sin(r~(ta--Zm- Am)/P)l l~ '  
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(cf. (2.19), (2.26)). We have the equalities 

w O ) . . . . . w  (") and W~ = W~III*. . .* / ,V (") wl = (l~) (I,) (I,) 

Therefore, we have to study the asymptotics of  the hypergeometric integrals 
I ( ~ , W m ) .  

Consider the hypergeometric integral I(Wt, win). Due to property (2.7) all 
the terms in the Definition (2.26) o f  the function Wt give the same contribu- 
tion to the integral. So we can replace the integrand ~(t)wm(t)Wff t )  by the 
following integrand 

( m~= 1 ) F ( ( t a - - t b - - 1 ) / p )  
F ( t )  = ~ - : : ! w m ( t ) e x p  7zi [mZm/p II  ~a-st-b-+-l)- ~ 

= l < a < b < :  

,n~ [ s ~  sin(re/p) x sin(ns/p) 1-I exp((# - ~i)ta/p)F((ta - z m + Am)/p) 
1 aEFm 

/ ' ( 1  - -  ( t  a - -  Z l  - -  A t ) / p )  

•  I I  r(1 (to z t -~A~) /p)  
l < l < m  

r((ta - z~ + Al) /p)  ]d:t_ _ 
x [1< F((ta z , - ~ ]  ' 

m < l = n  

where Fm= {1 + I ~ - I  . . . . .  Ira}, m = 1 . . . . .  n. 
Assume that the real parts o f  the weights A I , . . . ,An  are negative. I f  all 

zl . . . . .  z, are imaginary, then we have 

I (Wl ,wm) = f F(t)d<t.  
I t  

The analytic continuation o f  I (Wt,wm) to the region Rezl  < - . .  < Rezn is 
given by 

I(Wb wm) = f F( t )d: t  

where 

lI~ = {(tl+lm-~ . . . .  ,tlm)E(E Im ]Reta = R e z m ,  I m-I < a < 1 m} 

since the integrand has no poles at the hyperplanes ta = zt - At - sp, s E 71, 
for 1 m-I < a < I m, m > l, has no poles at the hyperplanes ta = zt + At + 
sp, sE71 ,  for 1 m-1 < a < I m, m < l, and has no poles at the hyperplanes 
ta = tb + l + sp, s E 71, for a > b. 

Let z --+ oc in Z~id SO that Re (Zm - Zm+l ) --* - o o  for all m = 1 . . . . .  n - 1. 
Consider the case I = m. Transform the hypergeometric integral I(W1, wl) as 
above and replace the integrand by its asymptotics as z ~ oe in Rid. Since 

w~(t~ . . . .  ,t<) le-I (m) = wo,)(h,-I+l . . . . .  tim) + o(1) 
m = l  
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as z ~ ec in Zkid and t E MI1 ~ x - . .  x ll~, we obtain that 

(n ) 
I(WI,wl) = n -e l i  exp n i ~  lmz m U ((ZI -- Zra)/P) 2(IIA'+I~AI-IIIm)/p 

\ m = l  l<l<m<n 

sin(ns/p) f wo')(tt'-~+I . . . .  ,tt.) 1"[ x p ( ( # - n i ) t ~ / p )  
m = l  L s = l  M~ aEFm 

x r((t,~ - z~ + Am)/p)F(1 - (ta - -  Z m  - -  A~)/p) 

x 1-I r(( tb- t~-  1)/P))dt.t](1 +o(1)), 
b<~ F((tb t ~ T 1 ) / p ) J  J 

bEr~ 

as z --+ c~ in &ia. Here [arg((zt - zm)/p)l < n. Due to (2.7) the integrals over 
1I~ are the hypergeometric integrals 1( ' "9")  (m). w(t.), w(t.) ) up to simple factors. Hence, 
we finally obtain that 

I ( W t , w l ) = ~  ~! H ((ZI -- Zm)/P) 2(ItA'+I'AI-III")/p 
l l !  �9 �9 " In!  l < l < m < n  

x ( , ,~,  I (Wi~ ,w l ,~  ) + o ( 1 ) ) .  

The hypergeometric integral I(Wl,wm) for I 4: m can be treated similarly to 
the hypergeometric integral I(WI, wi) considered above. The final answer is 

I (Wi ,wm)=I(Wl ,wt )o(1) ,  

which completes the proof  if  the real parts o f  the weights A L . . . . .  An are neg- 
ative. 

For general A1 . . . . .  A,  the proof  is similar. The analytic continuation of  
I(W~,wm) to the region Rezl << - . .  << Rez ,  is given by 

l (WI,w, , )  = f F( t )dt t  
T; • • 

where II,, is the respective deformation of  1I~. On every contour ~I,, 7 the 
quantities R e ( t a -  z,,) remain bounded as z ~ oo in ~/kid for all a such that 
I m-a < a < l m, and the rest part o f  the proof  remains the same as before. 

Theorem 6.7 is proved. [] 

Further in the proofs we will make use of  the following identities: 

(9.7) ~ H Y~k - flY~j _ I-I 1 - fl" 
~ES'l~j<k<=t Y~k--Y~j s=t ] - - f l '  
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(9.8) 

~_~ ( f l  1~ I-I ya~-flyaj']__ _ _ .  fJ=l 1 o. 
a~s, ~c:, Y,, - PYa,_, l<=j<k<t Ya,----Yaj ] = Yk -- PYo 

(TO 

Proof o f  formula (5.17). Consider the integral in the left hand side of (5.17) 
as a function in u and denote it by F(u). We will show that F(u)  satisfies a 
differential equation 

(9.9) ( u + u - 1 ) f f ~ F ( u ) = { ( 2 a + ( ~ ' - l ) x ) ( 1 - u - 2 ) F ( u ) .  

The right hand side of (5.17) solves the same differential equation. Therefore 
both sides are proportional. The proportionality coefficient equals 1 since, as 
it is shown below, both sides have the same asymptotics as u ---+ +0. 

Denote by f (u;  S l . . . .  , s~) the integrand of integral (5.17): 

~ F ( s k - - s j + x )  
f(U;Sl . . . . .  St) = II  u2SkF( a + Sk)F(a --Sk) 1-[ 

k=l j,k=t F(sk -- sj) 
j ~ k  

so that 

(9.10) F ( u ) =  f . . .  f f (u;s l  . . . .  ,s[)dts.  
--icx~ --icx~ 

Differentiating the integral with respect to u and using the identity 

t t t s k - s j + x  
{(a + ( t ' -  1)x/Z) + ~ sk = ~ (a+sk)  ]-I 

k=l  k=l  j = l  S k - -  S j  
jg=k 

we obtain that 

where 

Fk(u) = 

( d) l 
g'(2a + (# - 1)x) + u--~u F(u) = 2 ~  Fk(u) 

k=l 

•cf• ~ Z sic -- sj + x 
�9 . .  f ( a + s k )  FI 

- - i ~  --ic~ j = l  S k - -  S j  
j * k  

f (u;  S 1 . . . . .  S t )  dts. 

The space {(sl . . . . .  st)  E IE g I Resk = 1, Resj = 0, j , gk}  is homologous to the 
imaginary space in the complement of the poles of  the integrand for F~(u). 
Therefore, changing the k-th integration variable sk-+ s k -  1 and using the 
functional equation for the gamma-function we obtain that 

ioo t 
F k ( u ) = u  -2 . . .  f ( a - s ~ ) I - I  s j - s k + X f ( u ; s l  . . . . .  s t )dts .  

- - i ~  --ia,~ j = l  S j  - -  S k 
j + k  
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Now the identity 

implies that 

t t [ 
E ( a + ( f - l ) x / 2 ) -  ~ se=  ~ ( a - s k )  l-[ s j - s k  + x  

k=l  k=l  j=X Sj -- S k 
j+k 

(9.11) 

where 

2 ~ F k ( u ) = u  -z  f ( 2 a + ( g - - 1 ) x ) - U - ~ u  F(u) ,  
k=l  

which complete the proof of  equality (9.9). 
To compute asymptotics o f  the integral (5.17) as u --+ + 0  we first suitably 

transform the integrand. Taking identity (9.8) for l = {, /3 = exp(2nix) and 
yk = exp(2nisk), k = 0 . . . . .  {, we obtain that 

g 

1 = exp(ni{(Y - 1)x/2) 1-I sin(n(& - a) )  
k=l  

• z =x)) I] 
k=t s i n ( n ( s ~ k  --X))l<j<k<=d ~ - - S a j ) )  / aES r Sak-i 

where 6o = O, so = a - x. Substitute the right hand side of  the identity above 
into the integral (9.10). Since f (u;s l  . . . . .  s t)  is a symmetric function in the 
variables sl . . . . .  st and the imaginary space is invariant under permutations o f  
sl . . . . .  st,  we can keep in the integral only one term of  the sum, multiplying 
then the result by f! .  Taking the term corresponding to the identity permutation 
we obtain that 

F(u) = f g(u;sl . . . . .  s t)dis  
Hi 

g(u; sl . . . . .  st)  = nQ! exp(nif ({  - 1 )x/2) 

{ F(a + s~) exp(ni(a - sk-i - x))  
X 1-I u2Sk 

k=l \ F(1 + s k  - a )  sin(n(sk_l --Sk + X ) )  

k-~ (sk - s j ) r ( s k  - sj + x)  "~ 
• FI - r -OT-g-+-x)  } j = l  

Here we use a notation 

llCy = {(s , , . . . , s r  E ~r IResk = y, k = 1 . . . . .  E}. 

To compute the proportionality coefficient which we are interested in, it suffices 
to study the asymptotics o f  F(u) as u ~ + 0  only for small real x and real 
a because both sides o f  (5.17) are analytic functions in x and a. Moreover, 
we can assume that u is real. To find the asymptotics of  F(u) we deform 
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continuously the integration contour in integral (9.11). Namely we replace 
there lI0 l by lily and move y from zero to the positive direction. 

Since R e a  > 0 and Rex  > 0, there are no obstacles for the deformation 
of  the integration contour until y becomes equal to a. At this moment the 
integration contour touches the singularity hyperplane of  the integrand given 
by Sl = a. The next intersection o f  II~y with a singularity hyperplane o f  the 
integrand appears at y = a + 1 with the hyperplane sl = a + 1. Therefore, we 
have 

F(u) = -2~i  f Res g(u;sl .... ,s:)dt-[s + f g(u;sl . . . . .  st)dis,  
]i~_ I s t = a  ~: 

where 0 < 6 < 1 and lily -1 = {(s2 . . . . .  s t )  ~ ~ : - ~  I Resk = y, k = 2 , . . . , : } .  We 
can estimate the second term from above 

f g(u;sl .... ,s:)dts <= u ~+~ f g(1;sz . . . . .  s:)dZs. 

In the first term we continue the deformation of  the integration contour; we 
replace there II~ : -1 by lI:y -1 and move y from a to the positive direction. The 

first obstacle to the deformation appears at y = a + x; at this moment lI:y - I  
touches the hyperplane s2 = a + x .  Repeating the consideration : times we 
finally obtain the following asymptotics for F(u) as u --~ +0:  

F(u) = (-2~zi):  Res g(u; sl . . . . .  s:)(1 + o(1) ) ,  
a , ~ x  

where Resa~x means the residue at the point sk = a + ( k -  1)x, k = 1 . . . . .  : .  
Calculating the residue explicitly we find that 

F(u) = (2~zi)lu t(2a+(t-l)x) l-I F(2a + (k - 1)x)(1 + o (1 ) ) ,  
k=l 1(1 +x)  

as u --+ +0 ,  which clearly coincide with the asymptotics o f  the right hand side 
o f  (5.17). This means that the proportionality coefficient between F(u) and the 
right hand side o f  (5.17) equals 1. Formula (5.17) is proved. [] 

Proof of  Theorem 5.14. The proof  is similar to the proof o f  Theorem 8.33. 
Since both sides o f  formula (5.14) are analytic functions in A1 . . . .  ,An, it suf- 
fices to prove the formula only for real negative A1 . . . . .  An. 

Denote by F(z) the determinant det[I(Wbwm)]l:,s~ and by G(z) the 
fight hand side o f  (5.14). Since for every lE~e~ the section 7Jw~ is a 
(V1 |  N V~)<-valued solution to the qKZ equation, F(z) solves the next 
system o f  difference equations 

(:) 
F(zl,... ,z,, + p . . . . .  z , )  = det Kin(z1,... ,zn)F(Zl .. . . .  zn). 
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(:) 
Here det Kin(z) stays for the determinant of the operator Km(z) (3.10) acting 
in the weight subspace (Vl |  | V~):. Using (3.5) we see that 

(t) 'fi [ n - - 
det Kin(z1 . . . . .  zn) = x ("+~"-~) z~ + A,n - zt + At + s + p 

s=O Ll<l<mZm Am zl A l + s +  p 

• I-I z m + A m - z t + A t - s ]  ("+I"-~-2) 
m<l<nZ"-mm ~ h m  ~ ~ Z  

Therefore, the ratio F(z)/G(z) is a p-periodic function in each of the variables 
ZI, �9 ,Z n" 

F 
F(z l  . . . . .  Zm + p . . . . .  z,,) = ~(zz . . . . .  zn). 

Theorem 6.4 implies that the ratio F(z)/G(z) tends to 1 as z tends to infinity in 
the asymptotic zone Aid. Hence, this ratio equals 1 identically, which completes 
the proof. [] 

Proof of Theorem 5.15. The idea of the proof is the same as in the case : --- 1. 
Since both sides ('5.15) are analytic functions in Al . . . . .  An and p, it suffices 
to prove the formula for large negative A1 . . . . .  An and large negative p. More 
precisely, we assume that 

2 n (9.12) 0 <  ~ A m / p - : ( { - 1 ) / p < l .  
m = l  

We will construct certain bases in the rational and the trigonometric hyper- 
geometric spaces of  fibers such that in these bases the hypergeometric pairing 
has triangular asymptotics as # --* 0. Using this fact we will show that 

�9 .(.+, ) (9.13) det[l(WI, wm)]t,m~; = .~#-2E7.=, A.,/p ("+~.-')+2n/p "+:-' 

o 
x 1-I det [I(14~,wi)]~.ic~k,,-,(1 + o(1)) ,  

k=l 

where 0 < arg# < n, i E ~ - l  is identified with (i,0) E ~ ,  and ~ is a con- 
stant given by 

(9.14) 

Z=(2i)("+t"-')exp(ni(m=~tAm/p'(n +n-: 1) _n/p.(n+:-l)n+l ) )  

:-,  ( [p(: - ~)r(-(~ + 1)/p)] (~ 
• L j 

• 1-[ F 1 + 2  L Am/p(s+2-2r ) /p  
s<r<: rn=l 

Formulae (9.13) and (9.14) imply Theorem 5.15. 
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In the proof  we use the ~12-module structure in the rational hypergeometric 
Fock space which was defined in Sect. 4. We define functions wt, ~ for an 
arbitrary vector 1 E 7Z~0 respectively by (2.19),(2.26), where we replace : in 

the left hand sides by the sum Ii + . . - +  In. Similarly, we define functionsl,~ 
n--I for arbitrary vector t EZ__> 0 by (2.27) replacing there : in the left hand side 

by the sum ll + . . .  + t ,-1.  
For any vector 1 = ( l l , . . . , l , )  set I' = (11 . . . . .  I ,_ i ,0 )  and 1 ! = (ll . . . . .  In-l).  
The required bases in the rational and the trigonometric hypergeometric 

spaces o f  a fiber are given by functions w[, I E ~ " ,  and Wt p, I E ~ " ,  respec- 
tively. The functions w( are defined by rule: 

t : F I . w v  w I 

where F is the generator of  ~I2 acting in the rational hypergeometric Fock 
space ~ (cf. (4.3)). The functions W~' are given by 

(9.15) W i t ( t  1 . . . . .  t :)  

1 ~ sin(n/p) 
i 

( :  - [,)! s=tti sin(rcs/p) 

( e x p ( r c i ( Z n - - t ~ ) / p )  
! ( /1 , ' . . , t : - t , )  I-I k.sin(Tz(ta -- z, -- A , ) / p )  

• 

aES: : - I ~  < a < :  

n-1 sin(Tz(ta--Zm + Am)/p) ~ ~ 
• ,.=11-I s in(~(t~-  ~m-- A- - -2~ )  II ~ ' 

By Lemmas 2.20, 2.28, for any z E IB there are matrices N(z ) ,Nq(z )  such that 

w[(t,z) = ~ N~(z)wm(t ,z) ,  l E ~", 
mE~" 

Wi'(t,z) = ~ Nlq.(z)W.a(t,z), [ e :~n. 
ttl E ~ n 

(9.16) Lemma. 

:--1 
detN(z)  = ]--[ ((s + 1)(2A, - s))("+:,-]-2), 

s=0 

(n,  (n+: 1)+.,,. (.+: ,)) 
det Nq(z) = exp xi m~=l Am/p �9 n n + 1 " 

Now we study asymptotics of  the hypergeometric pairing as # ~ 0. We will 
consider the total family of  hypergeometric pairings I : o~q[/] | ~-[/] ~ C, l = 
0 . . . . .  : ,  not indicating explicitly dependence on l. Recall, that we assumed that 
A1 . . . . .  An are large negative. 
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The first observation is that for any w E ~[ l ] ,  W E o~qSing[l] the hyper- 
geometric integral I(W, w) has a finite limit as # ~ 0, cf. Lemma 5.5. Further- 
more, for any w E , l l -  1] and WEo~qSing[l] we have 

(9.17) I(W, Fw) = 0(#) 

as #--* 0, because F ( ~ [ I -  1](z)) is the coboundary subspace ~ [ l ] ( z )C  
~[l](z) ,  cf. (4.4) and Lemma 5.9. The asymptotic behaviour of the hypergeo- 
metric integral I(W, w) for a general function W is described by the following 
lemma. 

(9.18) Lemma. Let A l, . . . ,  An be large negative. Assume that condition (9.12) 
hold. Then for any I E ~  n and for any wE.~  the hypergeometric integral 
I(W(,w) has the following asymptotics as p ~ 0, 0 < arg p < 7r: 

~ 1  - -  __  - -  n o 

i(mllt, W) = : / . / [ . ( 2 {  I. I zE.=,A.)/PI(WI,,EI.w)(1 +o(1)). 

Here E is the generator of ~12 acting in the rational hypergeometric Fock 
space ~ (cf. (4.3)) 

_ ,  (2i)l"d! 
= = (-d~n)! exp(zriln(An- ( I n -  1)/2)/p) 

~,-~ [ F ( - ( s  + 1)/P)F { 2 ~ A "  ) ]  
x s=01-[ L F - - - ~ - l / p - ) ~  2~__, m / p + ( 2 l , - 2 d - s ) / p  . 

To obtain the required formulae (9.13),(9.14), we also need the next lemma. 

(9.19) Lemma. Let # = O. Then for any k, l E T >=o we have 

det [I( l~l, EkFkwm)]l. me~"-' 

k - l (  ( ~ ) )("+~2) act [1( iyVll, wva)]l,,~6.~_ ~ = H ( s + l )  2 A m - 2 l - s  
s=0  m =l  

Here we identify m e a l  "-1 and (m,0)E~]L 

Now we will complete the proof of Theorem 5.15 assuming that 
Lemmas 9.16,9.18 and 9.19 hold, and then we will prove the lemmas. 

Consider a matrix U with the entries 

Utm=I(W(,wm), l, mE~q,t " . 

Lemmas 4.7,9.18 and (9.17) imply that the matrix U has a block-triangular 
asymptotics as # ~ 0, namely 

Uim = 0(# ~"), for I. > m . ,  

and 
UIm=O(#  l+~),  for l~ < m~, 



q-hypergeometric functions, Yangians and quantum affine algebras 581 

where 6l = l(2{ - l - 1 - 2 ~~2=1Am)/p. Therefore, we see that 

detU=O(#~,:=oa,&) d ,=  ( n + : - l - 2 )  
' n - 2  ' 

as # ~ 0, where do . . . . .  d: are the dimensions of  the diagonal blocks. Further- 
more, the leading term of  the asymptotics o f  det U is given by the product of  
the determinants of  the diagonal blocks, which are described by Lemma 9.19. 
Finally, formula (9.13) follows from a simple relation 

det U 
det [ I ( ~ ,  wm]t,me~, - det N det Nq 

and easy calculations. [] 

Proof of Lemma 9.16. The formula for de tN  is a corollary of  Lemma 4.7. 
To prove the formula for detNq, consider the points y0)ECE: defined be- 

low: 
y(a 1) ~ - z m - A m §  l m-1 < a < I m, a =  1 . . . . .  { .  

Recall that I m = I1 + --.  + Ira, m = 1 . . . . .  n. Let L and U be the matrices with 
the entries 

Lira = Wt(y(rn)), L~m ---- Wit(y(ra)), l ,m  E ~ n ,  

respectively. The matrices L and L'  are triangular with respect to the follow- 
ing lexicographical order in .~:" : I < m if I1 < ml or 11 = ml, t2 < m2 etc. 
Namely, Lira = 0 and L~m = 0 for 1 < m. Since L~I = exp(Tzilm((Im -- 1)/2 -- 
Am)/p)Ltl and N = L% -l, the formula for detN q is proved. 

Proof of Lemma 9.19. By Theorem 4.7 the rational hypergeometric module 
is isomorphic to (Vl |  | Vn)*. We also have I(W, Fw)= 0 for any w E 
~ - [ l -  1] and W'E~sing[l]. Therefore, the coefficient o f  proportionality equals 
the determinant of  the operator EkF k acting in the quotient space ((V1 | �9 �9 �9 | 
Vn)*)t/F((Vll |  | Vn)* )1-1. This operator is isomorphic to the operator EkF k 

V ~sing acting in the space o f  singular vectors (V1 @ . . .  @ ,n:t . The last operator is 
k-1 1 n simply the multiplication by 1-I~=o ((s + )(2 )-'~,.=1 Am - 2l - s)) in the space 

o f  dimension (n+l-2~ The lemma is proved. [] 
\ n- -2  ] "  

Proof of Lemma 9.18. First we will give another expression for the function 
W~' which will be more convenient for our purpose. 

Taking identities (9.7), (9.8) for fl = exp(-2rci/p) and Yk = exp(-2ni&/p), 
k = 0 . . . . .  l, we transform them respectively to the following form 

t sin(ns/p) sin(r~(tj - &),/p) 
E ~I]~ = 1-[ sin(~z/p) 1-[ s i ~ - - - & +  1)/p) ' 

a E S  l s = l  1 < j < k < l  
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I 1L[ exp(Tzi(tk-1 _-tk__+ 1) /p)~  
~ s  ~ k=l sin(~(tk-i - tk + 1)/p) .~ 

t exp(zci(z. + A.  - tk)/p) 
: exp(zcil(l - 1) /(2p))  k=lI-[ ~ ~ - A n n  -- t k - ~  

sin(~z ( tj - tk )/p ) 
x 1-I sin:zt : t  l<=:<k~l ~ ~ : - - t k + l ) / p ) '  

where to = zn + A n -  1. Subsequently using the identities above we replace 
expression (9.15) for the function WI p by the following expression: 

(9.20) Wt'(fi . . . . .  t:) 

(-1)~o 
-- ( :  - In)! exp(~iln((1 - In)/2 - An)/p))  

II4~t ( exp(xi(ta~_, _-t; +_ 1 )/p) 
x ~ ~(ti . . . . .  t : - t , )  r I  \ sin(rc(t'a_ 1 - t~ + 1)/p) 

aES" d--I. < a ~ d  

, - I  sin(z(ta - Zm + Am)/p) ~ ~ 
x 1-I s i n ( r c ( t a - - Z m - - ~ J _ ~  " 

r a = I  a 

t where t a = t ~  for : - I n < a < :  andt:~_t, = z n + A n - 1 .  

Consider the hypergeometric integral I(W(, w), 

I(WI', w) = f ff)(t)w(t) W((t) act. 
I :  

The imaginary space is invariant under permutations of  the variables tl . . . . .  td. 
By property (2.7) o f  function ~(t) ,  we can keep in the integral only the term 
of the sum in the right hand side of  (9.20) which corresponds to the identity 
permutation, multiplying then the result by :!.  Hence 

(9.21) I (W( , w )  = f F ( t ) d : t ,  
I t  

F(tl  . . . . .  t:) = 
(-1)~.:! 
( :  - 1 . ) !  

exp(zciln(( 1 - In)/2 - An)/p))  

o 

x ~( th  . . . , t : )w(q  . . . . .  t:) Wv (tl . . . . .  t_:-l,) 

, -1 sin(rC(ta - Zm + Am)/p) 
x 1"I 1-I sin(rr(ta - z m - -  Am)/p) 

d--in <a<d  m ~ l  

exp(rri(t~_ I - t~ + 1)/p) 
• 1-I 

d - t < a < d  

with the same convention about the variables t:_1,t. . . ,  t~ as in (9.20). 
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Consider the asymptotics of  the integrand F(t )  for large t. Namely,  assume 
that 
(9.22) t~ = i ( x~ -Aua) ,  Imua  = 0 Imx~ = 0, a = 1 . . . . .  { ,  

and A ~ +oe .  From the Stirling formula we find that F( t )  exponentially decays 
for any u = (u t , . . . , u<)  which does not belong to the cone 

{ u  ~ lg<[  0 = ul  . . . . .  u<_l~ < u<_~.+l  < - . .  < u < } .  

The decay takes place for any # including # = 0. On the contrary, if u belongs 
to the cone 

(9.23) {u E IRtl 0 = ul . . . . .  u~.-t. < uc'-l,+i < ""  < u<}, 

then the asymptotics of  F(t )  essentially depends on if /~ equals zero or not. 
{ 

I f  #=~0, then F(t )  exponentially decays due to the factor exp(/~ ~--~=1 ta/p) and 
integral (9.21) converges. I f  # = 0, then F(t )  grows as a positive power o f  A 
and integral (9.21) diverges. 

So the leading term of  the asymptotics of  the hypergeometric integral 
I(Wt ~, w) as # ~ 0 is given by the integral o f  the asymptotics o f  the inte- 
grand F( t )  for large t in the cone (9.23) (the justification of  this fact is given 
below). Explicitly computing the asymptotics of  F( t )  for large t, we obtain 
that 

F(tl  . . . .  ,t~) 

• ~[<-l.l(tl . . . . .  t<-l. )(Et"w)(tl . . . . .  t<-i. )~,(tl . . . .  , t{-l, ) 

X 1-I exp(#ta/p)(ta/p)2E".=~ A~/p--2C<--I.)/p--1 
{ - l .  <a<~ 

• ]"I ((ta -- t6)lp)-2/P(1 4- O(1 ) ) ,  
g - l  <a,b<{ 

as A ~ + o o  and t l , . . . , t t  are described by (9.22). Here the function ~F] 
(tl . . . . .  tt) is defined by (2.5) where { is replaced by /. 

Denote by G(t) the right hand side of  the formula above without the factor 
1 + o(1 ). Thus we have 

(9.24) I ( W ' l , w )  = f G ( t ) d t ( 1  + o ( 1 ) ) ,  
l-In X ~ 

as /2 ~ 0, where II~ = {(t<-t,+l . . . . .  t< IRet~ < 0, Imt~ = 0, { - In < a < {}. 

The integral with respect to the variables tl . . . . .  t<-l, clearly gives I (  I~v, 
Et"w). The integral with respect to the variables t<-i,+l . . . .  , t< can be calculated 
explicitly via the Selberg integral and we obtain formula (9.18). 
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The asymptotic (9.24) can be justified in a standard way. The main idea 
is the same as in the one-dimensional case, cf. Lemma 8.37. We explain the 
details for the example n = 1, d = 2. The general case is similar. 

To make formulae shorter we cahnge notations and consider the following 
integral 

J (a )  = f F(sl ,s2)exp(--ct(sl  + 2s2))dsl  ds2 , 
~2 

F(Sl ,S2)= 
F(a + ~1) F(b + &2) C(c + ~1 + ~2) 

F(1 - a + i s l ) F ( - b + i s 2 ) F ( 1  - - c  + i s l  q-is2) 

exp0z(s 1 + s 2 -~- ia + ib)) 
4 sin h(rc(sl + ia)) sin h(rffs2 + ib)) 

Our assumptions mean that parameters a, b, c are small positive numbers such 
that 

O < a + b + c < l / 2 .  

For sl =Aul ,  s2 = Au2 and A ~ + ~  the function F(sl , s2)  has the following 
asymptotics: 

F(sl ,s2 ) = s~a-l s~b(sl + s2)2c-1(1 + 0(1))  

if  u l>O and u2>O, and F(ShS2)  decays exponentially if  either ul < 0  or 
u2 < O. We have to show that 

(9.25) J (~)  -~- f s~a-ls~b(s1 4- $2) 2c-1 exp(--~(Sl + 2s2))dsl ds2 (1 4- o ( l ) )  

~ o  

as ~ --~ 0, Re ~ > 0,  

Fix a small positive number e and decompose ~2  into four parts: 

Q l ( g ) = { ( U l , U Z ) E ] R z [ u l  ~" O, u 2 ~ O, u 1 ~- F, u2, u 2 ~ gUl} , 

Q2(8) = {(u l ,u2)ElR2]ul  > lu2l/e} , 

Q3(~) = {(Ul,U2)SlR2[u2 3> lull/e} 

and Q4(e) is the closure of  I R 2 \ ( Q I ( e ) u  Q2(~)tA Q3(e))- The respective de- 
composition o f  the integral J ( 7 )  is 

J(ot) = f s2a-ts2b(s, 4- s 2 )  2 c - I  exp(--~(sl  + 2s2))ds,  ds2 
QI(~) 

+ f (F(sl ,  s2) -- s 2a- 1 s~b (S 1 q_ $2 )2c-- 1 ) exp(--ct(sl + 2s2)) dSl ds2 
QI(~) 

The first integral equals 

2a- l s~O(s 1 + s2)2c- 1 e x p ( - s l  - 2s2 )) dsl ds2 , ~--2(a+b+c) f SI 
Ql(C) 
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the second and the fifth integrals have finite limits as e ---* 0, the third and the 
forth integrals can be respectively estimated from above by 

-~-C<) 

A le2b+l Ol--2(a+b+c) f S21(a+b+c)-1 exp(--si ) ds 
o 

and 

AZ82ao~-2(a+b+c) f s~(a+b+c)-I exp(--2sz) ds 
0 

as e ---, 0, and the constants A1,A2 do not depend on e. The estimates can be 
obtained by means of  Lemma 8.42. Therefore, 

i 

lim (~2(a+b+c)J(o~)) f 2a-1 2b/ -- Sl S2 tSl + sz) 2~-1 exp(--sl -- 2s2))dsl d-s2 
I e---~0 Q,(~) 

< ,g2b+1%_ A2g2a. 

Moving e to zero we see that 

J(o~) O~-2(a,-b+c) f 2a-1 2b/ S2)2c-1 = S I S 2 I.SI -I- exp(--sl - 2 s 2 ) ) d s l d s 2 ( l  + o ( 1 ) ) ,  
lR~o 

which coincide with (9.25). 
Lemma 9.18 is proved. [] 

Proof  o f  Theorem 7.8. Let h be a positive number. Consider the hyper- 
geometric integral 

I ( ~ , w m )  = f q~(t,z)wra(t,z)~l~(t,z)dtt, 
uc 

where we substitute into formulae (2.5),(2.19),(2.27),  defining the functions 
�9 ,w.,, ~ ,  a new parameter q and new coordinates Yl . . . . .  yn: 

It --- hrl, Zm = ym/h, m = 1 . . . . .  n . 

We study the quasiclassical asymptotics of  the hypergeometric integral 
I ( t ~ , w ~ )  as h---, +0  while the parameter r/ and the coordinates y[ . . . . .  Yn 
remain fixed. 

For any [E ~ , - 1  consider a region Ut and a domain lUt in the imaginary 
subspace IIt given by 

~ = { u E i i  < Imym<Imul+~m-,  < . . .  <Imu~m < I m y m + ~ , }  
m -= 1 , . . . , n -  1 

l[II = { u ~ l l t  mlmym= 1,...,n<Imua-- 1< Im ym+t, [ m - l < a ~ [ m , ) .  

Recall that I m = II + . . .  + Ira. 
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Let St c S  r be the following subgroup isomorphic to S t, x . . .  x SI.: 

S 1 = { o ' E S : [ l  m - I  - (  o" a ~ I m for I m - 1  "~ a ~ I m, m = 1 . . . .  ,n} . 

Set Ut = {u E C:  [(u~ . . . .  ,u, ,)EIUI for some a E s t } .  
The imaginary subspace 1I: is invariant under permutations of  the variables 

tt . . . . .  t:. Using the property (2.7) of  function q~(t) we see that 

(9.26) 1 ( ~ , w , , )  = {! f #( t , z )wm(t ,z ) -~( t , z )dt ,  
le 

where 

Wl(tt . . . . .  t:,zl . . . . .  Zn) 

n--1 t. sin(n/p) sin(n(Zm Am Am+t + s  1)/p) 
= m=tI-I s=IH sin(rcs/p) - - z m + t -  - 

n-t ( 1 
• 1--[ ~ s in(~( ta-zm-Am)/p)s in(n( ta  zm+t m=t aet'. -- -- Am+t )/P) 

sin(n(ta -- zt + At)/p) ) 
x l'-[t<,'<m sinOz(ta z , - ~ J -  

and F m =  { I  ' ' -1  + 1 . . . . .  W},  m = 1 , . . . ,n .  
The factors of  the integrand above have the following quasiclassical asymp- 

totics as h--~ §  while the parameter q, the coordinates Yt, . . . ,Yn and the 
variables Ua = hta, a -- 1 . . . . .  t ~, remain fixed: 

,l>(u/h, y/h) = h :(:- t -2 ~=1 A,.)/p t~(u, y)(  I + o( 1 ) ) ,  

w,~(u/h, y/h) = h:~(u, h)(1 + o(1 )), 

~ (u /h ,  y/h) : I--[ exp i 2 Am([ - -  [m--1 ) _ [m([ m __ I )/2 
m=l m=l  

I, sin(n/p) "~ 
• s=ll-[ s ~ J  (1 t o ( 1 ) )  

for uEl01 and - ~ ( u / h , y / h ) -  o(1) for u ~ 1 .  Here the functions T(u ,y )  
and ~m(u,y) are given by (7.3) and (7.5), respectively. 

The quasiclassical asymptotics of the integral (9.26) is given by the integral 
of  the quasiclassical asymptotics of the integrand, that is 

(9.27) 

I ( ~ , w m ) = l - [  exp ni 2 A m ( { - l m - 1 ) - I m ( l m - 1 ) / 2  
m=l l 

t, sin(n/p) "~ 
• s=,l-[ ~ ) j  f. ~(u,y)ff:(u,y)d:u(1 § o(1)) .  
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Taking into account that 

. - I  ( t~ sin(re/p) 
f r ~ exp(rcilm(1 - l , . ) / (2p))  I-I sin(Tzs/p)) 

IJl m = l  s = t  

x f ~(u, y)ff~(u, y) du 
IJ1 

where Ut  is given by (7.7), we obtain (7.8). 
Formula  (9.27) can be justified in a standard way, similarly to the proof  

of  formula (9.25). 
Theorem 7.8 is proved. D 
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