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1. Introduction

In this paper we consider the rational quantized Knizhnik—Zamolodchikov equa-
tion (gKZ equation) associated with the Lie algebra sl, and solve it. The
rational gKZ equation associated with sl, is a system of difference equations
for a function ¥(zi,...,z,) with values in a tensor product ¥ ® --- Q@ ¥, of
sl;-modules. The system of equations has the form

Y(z1,..esZm + Dy 3Zn) = Rmm—1(Zm — Zm—1 + P) -+ - Ry 1(Zn — 21 + p)K‘H’"
XRm,n(Zm — 2n) - - “Romt1Zm = Zms1 ) P(21,. .-, 20)

m=1,...,n, where p and ¥ are parameters of the gKZ equation, H is
a generator of the Cartan subalgebra of sl;, H,, is H acting in the m-th factor,
R; n(x) is the rational R-matrix Ry, (x) € End(V; ® V,,) acting in the /-th and
m-th factors of the tensor product of sl;-modules. In this paper we consider
only the negative steps p. The case of other values of the step can be treated
by analytic continuation.

The gKZ equation is an important system of difference equations. The gkZ
equations had been introduced in [FR] as equations for matrix elements of ver-
tex operators of the quantum affine algebra. An important special case of the
gKZ equation had been introduced earlier in [S] as equations for form factors
in integrable quantum field theory; relevant solutions for these equations had
been given therein. Later, the gKZ equations were derived as equations for cor-
relation functions in lattice integrable models, cf. [JM] and references therein.
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In the quasiclassical limit the gKZ equation turns into the differential
Knizhnik-Zamolodchikov equation for conformal blocks of the Wess—Zumino—
Witten model of conformal field theory on the sphere.

Asymptotic solutions to the gKZ equation as p tends to zero are closely
related to diagonalization of the transfer-matrix of the corresponding lattice
integrable model by the algebraic Bethe ansatz method [TV2].

We describe the space of solutions to the gKZ equation in terms of rep-
resentation theory. Namely, we consider the quantum group U,(sly) with
g =¢e"P and the Uy(sly)-modules V7,..., %7 where ¥/ is the deformation
of the sl,-module ¥,,. For every permutation 7 € §" we consider the tensor
product V1 ®---® Vi and establish a natural isomorphism of the space S
of solutions to the ¢KZ equation with values in /4 ® --- ® ¥, and the space
Vi®. - -® Vi ®F, where IF is the space of functions in zi,...,z, which are
p-periodic with respect to each of the variables,

C:Vi® - @VIQF S,

Notice that if P(z) is a solution to the gKZ equation and F(z) is a p-periodic
function, then also F(z)¥(z) is a solution to the gKZ equation.

We call the isomorphisms C; the tensor coordinates on the space of solu-
tions. The compositions of the isomorphisms atre linear maps

Coo(Z1,...52n) V;?®-~®VTZ—> Vie---@Vs

depending on zj,...,z, and p-periodic with respect to all variables. We call
these compositions the transition functions. It turns out that the transition
functions are defined in terms of the trigonometric R-matrices RY ), ({) €
End(¥} ® V) acting in tensor products of U,(slz)-modules. Namely, for any
permutation 7 and for any transposition (m,m + 1) the transition function
Cr,r . (m,m+l)(zl,---7zn): V1:?®® Ve & VTZ®® V;—Z - V;‘{@@ V;:I

Tm+1

equals the operator PVJ:,H il R',’,‘,, v (exp(2mi(z,,,, — z,)/p)) acting in the m-th
and (m+ 1)-th factors, here ;;VI,VM is the transposition of the tensor factors;
cf. Theorem 4.22.

We consider asymptotic zones Rez;, < --- €Rez,, labelled by permutations
7 € 8", For every asymptotic zone we define a basis of asymptotic solutions
to the gKZ equation. We show that for every permutation t the basis of the
corresponding asymptotic solutions is the image of the standard monomial basis
in ¥?®---® V! under the map

Vi@ @V =Vie- - 0VieluVie -0VieFS

cf. Theorem 6.4. The last two statements express the transition functions be-
tween the asymptotic solutions via the trigonometric R-matrices.

The rational R-matrix Ry,y,(x) € End(V; ® ¥},) is defined in terms of the
action of the Yangian Y(gl,) in the tensor product of sl,-modules. The
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Yangian Y(gl,) is a Hopf algebra which contains the universal enveloping alge-
bra U(sl,) as a Hopf subalgebra and has a family of homo-
morphisms Y(gl,) — U(sl;) depending on a parameter. Therefore, each
sl,-module ¥, carries a Y(gl,)-module structure ¥,(x) depending on a para-
meter. For irreducible sl,-modules ¥, ¥, the Yangian modules V(x) ® ¥,(»)
and V,(y) ® Vj(x) are irreducible and isomorphic for generic x, y. The map

Py Ryy,(x = y) 1 Vi(x) @ Va(y) — Vuly) @ Vilx)

is the unique suitably normalized intertwiner [T], [D1].
Similarly, the trigonometric R-matrix R}, ({) € End (¥ ® V;{) is defined

!
in terms of the action of the quantum loop algebra U;(éf;) in the tensor prod-
uct of Uy(sly)-modules. The quantum loop algebra Uy(gl,) contains U,(sl,)
as a Hopf subalgebra and has a family of homomorphisms U;(glz) — Uy(slz)
depending on a parameter. Therefore, each U,(sl;)-module %, has a U,;(glz)-
module structure V(¢ )Ndepending on a parameter. For irreducible U,(sl,)-

modules %, ¥, the U;(gl,)-modules ¥¥(£) ® ¥{({) and ¥{({) ® V(&) are ir-
reducible and isomorphic for generic &,{. The map

Pry, Ry, (E/0) : VAE) ® KAL) — VI ® (&)

is the unique suitably normalized intertwiner [T], [CP].

QOur result on the transition functions between asymptotic solutions to-
gether with the indicated construction of R-matrices shows that the gKZ
equation establishes a connection between representation theories of the Yan-
gian Y(gl,) and the quantum loop algebra Uq’(glz). Our result is analogous
to the Kohno-Drinfeld theorem on the monodromy group of the differential
Knizhnik-Zamolodchikov equation [K], [D2].

The differential Knizhnik—Zamolodchikov equation (KZ equation) with
values in a tensor product of sly-modules V =/ ®---®V, is a system of
differential equations for a ¥-valued function ¥(z,,...,2,) and has the form

d'P-_—l Z le
PismZl — Zm

¥ d(zi — zm)

where p is a parameter of the equation, Q;, € End(¥; ® V},) is the Casimir
operator. The KZ equation defines an integrable connection over the comple-
ment in C" to the union of the diagonal hyperplanes. The fundamental group
of the complement is the pure braid group IP,. The monodromy group of the
equation is the representation IP, — End(}) defined by analytic continuation
of solutions over loops. The Kohno—Drinfeld theorem says that this represen-
tation is isomorphic to the R-matrix representation of IP, in the tensor product
of U,(sly)-modules V7 =V!®---® V;},q = e"/P, where the R-matrix repre-
sentation is defined as follows. Let R}, < End(¥}! ® ¥;¥) be the action of
the universal R-matrix of the quantum group U,(sl;) in the tensor product of



504 V. Tarasov, A. Varchenko

U,(sl;)-modules. Then the R-matrix representation of P, in V¢ is defined by
elementary transformations

P R
Yom Vimat Vi Vet

re---e Vi@ e eV e o]

The Kohno-Drinfeld theorem establishes a connection between representation
theories of a Lie algebra and the corresponding quantum group, see [D2]. Using
the ideas of the Kohno-Drinfeld result it was proved in [KL] that the category
of representations of a quantum group is equivalent to a suitably defined fusion
category of representations of the corresponding affine Lie algebra. Similarly to
the Kazhdan—Lusztig theorem one could expect that our result for the difference
gKZ equation could be a base for a Kazhdan-Lusztig type result connecting
certain categories of representations of Yangians and quantum affine algebras,
cf. [KS].

In this paper we consider the rational gKZ equation. There are other types
of the gKZ equation: the trigonometric gKZ equation [FR] and the elliptic
gKZB equation [F]. Here KZB stands for Knizhnik-Zamolodchikov-Bernard,
and the difference gKZB equation is a discretization of the differential KZB
equation for conformal blocks on the torus.

The trigonometric gKZ equation with values in a tensor product of Uy(sl;)-
modules V9 = qu ®---® V! is a system of difference equations for a V9-
valued function ¥(zy,...,2z,) and has the form

P(z1- > PZms--12n) = Ry o\ (DZm/2m—1) - R, ((PZm/21 )i~ FIm

XRE n(Zm/zn) - - -an’mﬂ(zm/zmﬂ Y (z1,...,2,) ,

m=1,...,n, where p and k are parameters of the gKZ equation, g7 is a
generator of the Cartan subalgebra of U,(sly),H, is H acting in the m-th
factor, Ry »(x) is the trigonometric R-matrix R‘f,lq e (x) € End(¥}! ® ¥;}) acting
in the /-th and m-th factors of the tensor product of U,(sl;)-modules. In the
next paper [TV3] we will describe for the trigonometric gKZ equation the
analogues of the above results for the rational gKZ equation. Namely, we will
describe the space of solutions to the trigonometric gKZ equation in terms of
modules of the elliptic quantum group associated to the Lie algebra sl, [F],
[FV] and will get the transition functions between asymptotic solutions in the
same way as we did for the rational case. This result for the trigonometric gKZ
equation gives a chonnection between representation theories of the quantum
loop algebra U;(glz) and the elliptic quantum group associated to sl;.

In the paper [FTV] we will describe solutions to the elliptic difference
gKZB equation. The construction of solutions for the elliptic ¢gKZB equation is
similar to the construction of solutions to the rational gKZ equation described
in this paper and to the solutions of the trigonometric gKZ in [M], [R], [V3],
[TV1]. Nevertheless, we do not know yet how to define asymptotic solutions
for the elliptic ¢gKZB equation and what could be an elliptic analogue of our
result on transition functions.
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There are three different proofs for the Kohno-Drinfeld theorem. Roughly
speaking, they are analytic [K], algebraic [D2], and geometric [SV2], [V2].
In the initial proof [K], Kohno expands a monodromy operator as a series
of iterated integrals and studies such expansions. Drinfeld in [D2] formalizes
algebraic properties of transition functions between asymptotic solutions and
proves that the monodromy group could be nothing else but the R-matrix rep-
resentation.

The leading idea of the geometric proof [SV2], [V2], [V4] was the princi-
ple that the monodromy of a differential equation could be computed only if
the differential equation is the equation of the Gauss—Manin connection. The
Gauss—Manin connection is a connection associated to a locally trivial bundle
of algebraic manifolds with a local system on the space of the bundle. One
considers the associated holomorphic vector bundle which fiber is the homo-
logy group of the fiber of the initial locally trivial bundle. Then the vector
bundle has a canonical connection called the Gauss—Manin connection. Having
a trivialization of the vector bundle one realises the connection as a system of
differential equations. Its solutions are parametrized by elements of the homo-
logy group of the fiber. The monodromy group of that differential equation is
the monodromy group of cycles of the fiber of the initial locally trivial bun-
dle under continuous deformations over loops in the base. The description of
the monodromy group of cycles is a geometric problem which is easier than
studying analytic continuation of solutions of an abstract differential equation.
In order to apply this idea to the proof of the Kohno-Drinfeld theorem the
differential KZ equation was solved explicitly in terms of multidimensional
hypergeometric integrals and solutions were represented as integrals of closed
differential forms over cycles depending on parameters, then the space of cycles
was identified with a tensor product of Ug(sl;)-modules and the monodromy
of cycles was computed in term of R-matrices.

In this paper, in order to establish a connection between representation theo-
ries of Yangians and quantum loop algebras we quantize the geometric picture
for the XZ equation. First we solve the gKZ equation in terms of suitable
multidimensional hypergeometric integrals of Mellin—Barnes type. We define a
discrete analogue of a locally trivial bundle and a local system on the space
of bundle. We define a discrete analogue of the Gauss—Manin connection for
the discrete locally tirvial bundle with a discrete local system and consider the
corresponding difference equation. We identify that difference equation with the
difference gKZ equation. To realize this idea we introduce a suitable discrete de
Rham complex and its cohomology group in the spirit of {A], then we define
the homology group as the dual space to the cohomology group and construct
a family of discrete cycles, elements of the discrete homology group, using
ideas of [S]. We construct the space of discrete cycles as a certain space of
functions. Having a representative of a discrete cohomology class (a function)
and a discrete cycle (a function again) we define the pairing (the hypergeomet-
ric pairing) between the cohomology class and the cycle as an integral of their
product with a certain fixed “hypergeometric phase function” over a certain
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fixed contour of the middle dimension. We show that there is enough discrete
cycles and they form the space dual to the quotient space of the space of our
discrete closed forms modulo discrete coboundaries. To prove this we com-
pute the determinant of the period matrix and surprisingly get an explicit for-
mula (5.14) for the determinant analogous to the determinant formulae for the
“continuous” hypergeometric functions [V1], cf. the Loeser determinant for-
mula for the Frobenius transformation [L]. The form of our discrete cycles
suggests a natural identification of the space of our discrete cycles with a
tensor product of U,(sl;)-modules and this identification allows us to prove
the result on transition functions between asymptotic solutions.

As we know the gKZ equation tumns into the differential KZ equation under
the quasiclassical limit. We show that our discretization of geometry under the
quasiclassical limit turns into the geometry of the differential KZ equation:
representatives of our discrete cohomology classes turn into closed differential
forms, our discrete cycles turn into “honest” topological cycles.

Note in conclusion, that our solutions to the gKZ equation in the special
case considered in [S] are close to the solutions constructed therein, but dif-
ferent. It is also worth mentioning that our description of transition functions
indicates quantum loop algebra symmetries in the model of quantum field the-
ory considered in [S].

The paper is organized as follows. Sections 2—7 contain constructions and
statements. In Sect. 8 we consider the special case of one-dimensional hyper-
geometric functions of the Mellin-Barnes type to illustrate ideas and proofs.
Section 9 contains proofs in the multidimensional case.

Parts of this work had been written when the authors visited the University of Tokyo, the Kyoto
University, the University Paris VI, Ecole Normale Supérieure de Lyon, the MSRI at Berkeley.
The authors thank those institutions for hospitality. The authors thank G. Felder and P. Etingof
for valuable discussions.

2. Discrete flat connections and local systems
Discrete flat connections

Consider a complex vector space €" called the base space. Fix a nonzero
complex number p called the step. The lattice Z" acts on the base space by
translations z ~ z + p/ where [ € Z" C C". Let B be an invariant subset of
the base space. Say that there is a bundle with a discrete connection over B
if for any z € IB there are a vector space ¥ (z) and linear isomorphisms

Az, Z0) V(2o s Zm + DyeesZn) — V(zZ1,-..,2,), m=1,...,n.

The connection is called flat (or integrable) if the isomorphisms Ai,...,4,
commute:

2.1) Azl Z0)Am(Z1, -2+ Py 2y)
=An(z1,..., 200421, Zm + Py sZn) -



g-hypergeometric functions, Yangians and quantum affine algebras 507

Say that a discrete subbundle in B is given if a subspace in every fiber is
distinguished and the family of subspaces is invariant with respect to the con-
nection.

A section s:z+— 35(z) is called periodic (or horizontal) if its values are
invariant with respect to the connection:

(22) An(z1,-..,20)5z1, o sZm + Dy oszZn) = 8(21,...,2,), m=1,...,n.
A function f(zi,...,z,) on the base space is called a quasiconstant if

fz1,. zm+ DyeoszZn) = f(21,..520), m=1,...,n.

Periodic sections form a module over the ring of quasiconstants.
The dual bundle with the dual connection has fiber ¥*(z) and isomorphisms

Ar(z1,..20) V(21 20) = V(215 32 + Dy vy Zn) -

Let sy,...,5y be a basis of sections of the initial bundle. Then the isomorphisms
A, of the connection are given by matrices 4™):

N
Am(Zh"'9Zn)sk(zly"-’zm + p,"'szn) = ZAi'ln)(zla-'-azn)sl(zl,---,Zn) .

For any section {r : z — y(z) of the dual bundle, denote by V¥ :z +— P(z) its
coordinate vector, ¥;(z) = (Y(z), 5 (2)).

The section ¥ is periodic if and only if its coordinate vector satisfies the
system of difference equations

Y(Zl,..sZm + DyevvsZn) =AMz, .z)P(z1,...,2,), m=1,...,n.

Moreover, all solutions to the system have this form. This system of difference
equations is called the periodic section equation.

Say that functions ¢,,...,@, in variables z|,...,z, form a system of con-
nection coefficients if

OUZtsesZm+ Doee s Zn)Om(Z1, . 20) = Om(Z15- 521 + Py Z)@1(24, -5 20)

for all /,m. These functions define a connection on the trivial complex one-
dimensional vector bundle.

There is a simple construction of connection coefficients. Fix arbitrary func-
tions @y, [ <m, in one variable and nonzero complex numbers x,,. Set

-1

Om(Z1,...12n) = K H Gi1m(z1 — 2m — P) Omi(zm — 21) .

1gi<m m<lZn

The system of connection coefficients of this form is called decomposable, the
functions ¢, are called primitive factors and k,, are called scaling parameters.
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A function &(zy,...,z,) is called a phase function of a system of connection
coefficients if

D(z1,..sZm+ Dy s Zn) = Om(Z1,. ., 20)P(21,...,2,), m=1,...,n.

Similarly, a function @(x) is called a phase function of a function ¢(x) in
one variable if &(x + p) = ¢(x)P(x). Note that the phase functions are not
unique.

If the connection coefficients are decomposable, if @,, are phase functions
of primitive factors, and if K,, are phase functions of scaling parameters, then

D(z1,...,2n) = [| Kn(zm) [ Pimlzi — zm)
m=1 l<m

is a phase function of the system of connection coefficients.
For any function f(zi,...,z,) define new functions Q,f,...,Q,f and
le,...,D,,f by

Onf)21,. . s20) = Om(21,.. s20) (21, 2w+ Dy Z0)

and
Duf =0nf~f.

The functions D f,...,D,f are the discrete partial derivatives of the function
f. We have D;D,,,f = DD, f.

Let F be a vector space of functions in z,...,z, such that the operators
QO1,...,0y induce linear isomorphisms of F:

On:F—F.

Say that the space F and the connection coefficients ¢,...,¢, form a one-
dimensional discrete local system on C*. F is called the functional space of
the local system.

Define the de Rham complex (Q*(F),D) of the local system in a standard
way. Namely, set

.....

F. Define the differential of a function by Df =3, _ Dy fDzy, and the dif-
ferential of a form by

Dw= % Dfy. i NDzgy N---ADz, .
&

The cohomology groups H',...,H" of this complex are called the cohomology

groups of C" with coefficients in the discrete local system. In particular, the

top cohomology group is H" = F/DF where DF = Y _| D,F. The dual spaces

H, = (H%)* are called the homology groups.
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There is a geometric construction of bundles with discrete flat connections.
This is a discrete version of the Gauss—Manin connection construction.

Let 7 : €™ — €" be an affine projection onto the base with fiber C7.
T/ will be called the total space. Let zy,...,z, be coordinates on the base,
ti,...,t, coordinates on the fiber, so that ¢,...,t, zi,...,2, are coordinates on
the total space. When it is convenient, we will denote the coordinates zy,...,z,
by tr41,. . tran.

Let F, ¢1,...,0z4n be a local system on C€’*". For a point z € C" define
a local system F(z), @,(-;2z), a=1,...,¢, on the fiber over z. Set

F(Z) = {f ln—'(z)l f € F} and (pﬂ(' ;Z) = qoa’n—'(z) .
The de Rham complex, cohomology and homology groups of the fiber are

denoted by (2°(z),D(z)), H(z) and H,(z), respectively.
There is a natural homomorphism of the de Rham complexes

(Q°(C7*",F),D) — (@°(),D(z)), ® > wlyigy,

where the restriction of a form is defined in a standard way: all symbols
Dzy,...,Dz, are replaced by zero and all coefficients of the remaining mono-
mials Dt A --- A Dty are restricted to the fiber.

For a fixed a the vector spaces H%(z) form a bundle with a discrete flat
connection. The linear maps

An(z1y...s2n) t H (215 sZm + Pyeeyzn) — H(21,...,20)

are defined as follows. Define Q,, : Q4(C/*",F) — Q4(C/*",F) by

W — Z mekl ,,,,, kaDzkl/\"'/\Dzk,,-
ki

Then Q,, induces a homomorphism of the de Rham complexes

(%@, sZm+ PreesZa) D21, y2Zm + Pyee ey Zn))
- (Q.(Z],...,Z"),D(Z],...,Zn)) M

We set Apy(z1,...,2,) to be equal to the induced map of the cohomology spaces.
This connection is called the discrete Gauss—Manin connection.

The Gauss—Manin connection on the cohomological bundle induces the dual
flat connection on the homological bundle:

Ar(z1,. . 0zn) t Ho(21, . ,20) = Hy(2z1, oo 0Zm + Dyeeoy2n) -

In this paper we study the Gauss-Manin connection for a class of discrete
local systems.
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Connection coefficients of local systems

There are three important classes of local systems: rational, trigonometric and
elliptic.

Consider a local system with decomposable connection coefficients and
primitive factors of the form

T(x + ogp)
(x + ﬁab)

where t(x) is a function in one variable and ag, fp are suitable complex
numbers. A local system is called rational, trigonometric or elliptic if

Pap(x) =

) =x,  wx)=sin(px),  (x)=6(w),

respectively. Here 8(x) is a theta-function and y is a nonzero complex number.
Note that 7(x) = yx for all y3=0 gives the same primitive factors.

Say that a decomposable system of comnection coefficients on the total
space is of the sly-type if the constants agp, Bap, and the scaling parameters
Ki,...,Ksen have the following form:

(2.3) ogp = —Pap = —h for a<b <7,
Ogp=—Pap =Ap—y for a < ¢ <b,
Ogp = —Pap =0 for /<a<b,
Kg=K for a<?,
Ke=1 for /<a.

Such a system of connection coefficients depends on # + 2 complex numbers
/11,...,/1,,, K,h.

In this paper we study rational systems of the sl-type, for the trigonometric
case see [TV3] and for the elliptic case see [FTV].

The primitive factors of a rational sl;-type local system have the form

x—h
= <
Gap(x) oy for a<b ¢,
Pap(x) = i“—‘_+ jllb~( for a £/<b,
— Ap—y¢
Pap(x)=1 for /<a<b.

Rescaling Ay,..., A4, and x we can set & = 1, so we assume that the primitive
factors of a rational sl;-type local system have the form

-1
¢ab(x)==;c_+1 for a<b </,
¢ab(x)=w for a<¢<b,
x—Ap—y

dap(x)=1 for /<a<b.
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The connection coefficients of a rational sl,-type local system have the form

"oty —Zm+ Ap ta—tp— 1
@a(t,z) = x ]|
¢ m=1 ta = Zm — Am a<bgl fa—tp+1

t—tp— 1
x [ Bl *P L_1.. .,
lsbeala—t+1+p

‘ ta—2Zm—Ap—p
t+m(bZ) = ,
Geen(t2) al;[lta_zm+/1m_p

m=1,...,n.

A phase function of a primitive factor (x 4+ a)/(x — &) has the form

I'((x +a)/p)
I'((x — a)/p)

and, therefore, a phase function of the system of connection coefficients is
given by

2.4) D(x;0) =

/ n £
(2.5)  D(t1,...,8,,Z1,--.,2n) = EXP <u > ta/p) [T IT ®(t2 — zm; Am)
a=1

m=1 a=1

x JI @t~ tp;—1)
1<a<bs/
where parameters x and p are connected by the equation x = e*.

The Stirling formula gives the following asymptotics for the phase function
-(2.4) of the primitive factor as x — oc:

(2.6) B(x;0) = (x/p)*(1 +o(1)), |arg(x/p)| <m.

This formula defines asymptotics at infinity of the phase function of the system
of connection coefficients.
The phase function (2.4) of the primitive factor has a symmetry property

(x + a) sin{n(x + o)/p)

P(—x;0) = P(x; “)(x — a)sin{z(x — &)/p)

which leads to a symmetry property

(27) @([1,...,ta_H,ta,...,tg,Zl,...,Z,,)
(ta —lgt1 — I)Sil'l(ﬂ.'(ta S 1)/]’)
(ta = tay1 + 1) sin(n(ta — tay1 + 1)/p)

= @(tl,...,t;,zl,...,z,,)

of the phase function of the system of connection coefficients. This property
later motivates definitions (2.9) and (2.25) of certain actions of the symmetric

group.
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The functional space of a rational sly-type local system

Define the functional space Z of a rational sl,-type local system as the space of
rational functions on the total space with at most simple poles at the following
hyperplanes

(2.8) ty =2p—An+(s+ 1)p, th=2Zm+ An—Sp,
L=t —1—-(s+ 1)p, ta=t-+1+sp,

l1<b<ag?l,m=1,...,n s €Ly It is easy to check that the functional
space is invariant with respect to all operators QF!.
Define an action of the symmetric group S’ on the functional space:

o~

(2.9) 0:F-F, [l ce¥,
by the following action of simple transpositions:

la — lat1 -1

[f](a,a.*.])(t],...,t{,Z],...,Zn) = f(t],.--,ta+1,ta,...,t[,Z],-..,Zn)—‘—— ’
la —ta+1 + 1

a=1,...,¢ — 1. The operators Qy,...,Qs4n and Dy,...,Ds,, commute with
the action of the symmetric group. )

We extend the S’-action to the de Rham complex assuming that it respects
the exterior product and

o : Dt, — Dt,,, 6:Dzy— Dz, c€S°.

The same formulae define an action of the symmetric group on the de Rham
complex of a fiber. The homomorphism of the restriction of the de Rham
complex of the total space to the de Rham complex of a fiber commutes with
the action of the symmetric group. The action of the symmetric group induces
an action of the symmetric group on the homology and cohomology groups.
The Gauss-Manin connection commutes with this action.

If a symmetric group acts on a vector space ¥, we will denote by Vs
the subspace of invariant vectors and by ¥4 or by ¥ the subspace of skew-
invariant vectors.

In this paper we are interested in the skew-invariant part H/(z) of the
top cohomology group of a fiber. This subspace is generated by forms fDt
A--- ADt; where f runs through the space #z(z) of invariant functions.

Introduce an important rational hypergeometric space & C Fz as the sub-
space of functions of the form

Pt i fa b
1"“3 {321""32 Y D ——
M =t amt o = Zm — Am 1<a<berla — b+ 1

where P is a polynomial with complex coefficients which is symmetric in
variables #,,...,1,, and has degree less than » in each of the variables #1,...,t.
The restriction of the hypergeometric space to a fiber defines the rational
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hypergeometric space F (z)C%(z) of the fiber which is a complex finite-
dimensional vector space. A form f Dt A--- A Dt, with the coefficient in the
hypergeometric space is called a Aypergeometric form.

The subspace #(z)C H’(z) of the top cohomology group of a fiber gen-
erated by the hypergeometric forms is called the Aypergeometric space or the
hypergeometric cohomology group.

The union of the hyperplanes

(2.10) zi+ A —zm+Ay=r+ps, r=90,...,£—1, seZ,

I,bm=1,...,n, I£m, in the base space " is called the discriminant. The com-
plement to the discriminant will be denoted by B.

(2.11) Theorem. [V3), [TV1] The family of subspaces {#(z)}.cB is invariant
with respect to the Gauss—Manin connection and, therefore, defines a discrete
subbundle.

This subbundle will be called the hypergeometric subbundle.
Later on we often make the following assumptions. We assume that the
step p is real negative and such that

(2.12) n,..,}¢pZ,

the weights A;,..., A, are such that

(2.13) 2 —s€pZ, m=1,...,n, s=1~4¢,....,/~1,
and the coordinates zy,...,z, obey the condition

(2.14) zZ1k A —zpt Ap~s€pZ, ILm=1,...,n I+m,

for any s =1—¢,...,/ — 1 and for an arbitrary combination of signs.

(2.15) Theorem. Let x+1. Let p<0. Let (2.12)—(2.14) hold. Then

dim #(z) = dim F(z) = (””" ‘) .

n—1

This means that
(2.16) H(z)~= F(z).

(2.17) Theorem. Let x=1. Let p<0. Let (2.12)—(2.14) hold If 237" _,

Am—5s EpLog for all s=¢ —1,...,2¢ = 2, then dim #(z) = ("177?).

Theorems 2.15 and 2.17 are proved in Sect. 9.

Theorem 2.15 means that if the scaling parameter x is not equal to 1, then
every nonzero hypergeometric form defines a nonzero cohomology class. On
the contrary, if k = 1, then by Theorem 2.17 there are exact hypergeometric
forms. We describe them in Lemma 2.21.
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Bases in the rational hypergeometric space of a fiber

The finite-dimensional rational hypergeometric space #(z) of a fiber has n!
remarkable bases. These bases will allow us to identify geometry of an sl;-type
local system with representation theory. The bases are labelled by elements of
the symmetric group S”. First we define the basis corresponding to the unit
element of the symmetric group.

Let

(2.18) 2= {I € 7%,

S 1 =/} :
m=1

Set I" = ;" L. In particular, P=0,1"=¢. Forany leZ "' define a rational
function w; € # as follows:

(2.19) wi(ty,.. b2l sZn)

LS| 1 ta—z1+ A
o‘gg/ I:ml;[ | ale_ll" (ta—zm“/lm 1§Il—l<m la—z1— A .

where [, = {1 +I’"‘1,...,I'"}, m=1,...,n. The functions w; are called the
rational weight functions.

Example. For £ = 1 the functions have the form

1 t—z;4+ A
t—Zm—Am 1 gicmt — 21— A

We(m)(t,Z],...,Z,,) =
where e(m) = (0,..., lym,...,0), m=1,....n

Example. For n = 1 the function has the form

4 )
wier(tly .. str,21) _ -t 2
@O 1;[ e =21 — A1 1ga<pgrta— o+ 1

Example. For £ =2 and n = 2 the functions have the form

1 t— b
tH—zn—A) -z —A)th—hH+1°

w0t 12,21,22) =

1 L —zy+ A4
—zn—M)h—z—-M)b—z1 — A4

wa (s t,21,22) =

+ 1 h—z1+A4 41—t —1
(b—n—A)h—zn—A))th—z1— A h—t+ 17

1 (t1 —zy + A )ty — 21 + Ay)
ti—z—M)a—22~A) (G ~z1 ~ A )2 —z1 — A1)
-t
th—t+1 )

weo,2)(t1, 82,21,22) =
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(2.20) Lemma. The functions w, 1€ %}, restricted to the fiber over z form
a basis in the rational hypergeometric space % (z) of the fiber provided that
forany s=0,...,0 -1,

z1— A —zZy—Ap+s¥0, 12l <mZn.
Lemma 2.20 is proved in Sect. 9.

(2.21) Lemma. Let k = 1. Then for any 1€ Z]_, the following relation holds:

n

4
(Im + 1)(2Am - Im)wlwte(m) = Z Da[wl(tZ, cees tt’)](l,a) s
1 a=1

m=

where (1,a)€S’ are transpositions. Moreover, if #(z) is the subspace in
F(z) generated by the elements in the left hand side of the relations, then

dim 7 (2)/ R(z) = (””“2)

n—2

provided that zi— A} —zy — Ap+s%0, 1ZI1<m<n, for any s=0,...,
£ — 1.

The subspace %(z) C F(z) is called the coboundary subspace.
The relations (2.21) induce relations

Z I_(Im + 1)(2/1,,, - Im)wl+e(m)Dtl AN /\Dt(J =0 » Iéff;’_1 ’

m=1

in the cohomology group H’(z), where |a] denotes the cohomological class
of a form a. For k = 1 under assumptions of Theorem 2.17 we have

(2.22) H(z) = F(2)|R(z) .

For any permutation t€S”" define a basis {w{}ie 27 in the rational hyper-
geometric space of a fiber by similar formulae. Namely,

(2.23)

Wit st 21, g Al Ay) = w,‘(tl,...,t;,z,,,...,zt";An,...,Arn)

where 1= (,...,[,).

Example. For £ =1 and permutation 7 = (n,n — 1,...,1) the functions have
the form

1 t—z; 4+ Ay

T
w, 5L,Z1,...,2p) = —————— .
E(M)( ! 'l) t—2zZpy ~ Am m<lgn t—2z "AI
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The trigonometric hypergeometric space

In our study of the Gauss—Manin connection an important role is played by
the following trigonometric hypergeometric space. The trigonometric hyper-
geometric space is a trigonometric counterpart of the rational hypergeometric
space introduced above.

The trigonometric hypergeometric space % is the space of functions in

variables ¢,,...,¢,z21,...,2, which have the form
(2.24)
P(él)"ﬂé(a(l’“'scn)
% ﬁ ﬁ exp(mi(zm — ta)/P) sin(n(t; — 1)/ p)

m=1a=1 SI(A(ls — Zm — Am)/P) 1<a<p<s SIN(T(tas — ty + 1)/p)

where
o = exp(2mity/p),  {m = exp(27izy/p) ,

and P is a polynomial with complex coefficients which is symmetric in vari-
ables ¢y,...,¢, and has degree less than »n in each of the variables &,...,¢&,.

Introduce the singular trigonometric hypergeometric space %3 C %, as
the space of functions of the form (2.24) such that the polynomial P is divisible
by the product &i,...,&,.

The restriction of the trigonometric hypergeometric spaces to a fiber de-
fines the trigonometric hypergeometric spaces % °(z)C F,(z) of the fiber.
The trigonometric hypergeometric space %(z) is a complex finite-dimensional
vector space of the same dimension as the rational hypergeometric space of
the fiber.

The trigonometric hypergeometric spaces of fibers over z and z’ are natu-
rally identified if the points z and z’ lie in the same orbit of the Z"-action on
the base space, since all elements of the trigonometric hypergeometric space
are p-periodic functions.

Introduce a new action of the symmetric group S’ on functions,

(2.25) f =l aes’,

by the following action of simple transpositions:

Ukaarvy(tis .. s tr,21,. .0, 20)

sin(n(ts — tar1 — 1)/p)
:f(tla'--7ta+l’ta1'")t(azly"wzn) - -

sin(n(ts — tay1 + 1)/p)’

a=1,...,/ — 1. The trigonometric hypergeometric space is invariant with
respect to this action. The action commutes with the restriction of functions to
a fiber.

The trigonometric hypergeometric space of a fiber has n! remarkable bases.
The bases are labelled by elements of the symmetric group S”. First we define
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the basis corresponding to the unit element of the symmetric group. For any
[€Z} define a function W€ %, as follows:

(226) Wltr,...,t521,.. . 2n)
_ [ S0 Hﬁ . ( exp(i(zm — 14)/P)

m=1s=]| Sil’l(TES/p) cEeS’! m=1a€cl, Sin(n(ta —Zm — Am)/p)

I sin(n(t, — z; + Az)/p))ﬂ

1<i<m SIN((ty — 21 — A1)/ P)

where [, = {1+I"‘_1,...,[”'}, m=1,...,n Also for any Iefif;"l define a

function cilVi€ Z;" as follows:

(2.27)
I/f/[(tl,...,t/,ZI,...,zn)

_ " g s

= i —Ap— - A -1
ot o sin(ns/p) SIn(n(Zm Zm+1 m+1+ S )/P)

n—1 1
Xaezsl H,El agll”m (Sin(n(ta —Zm — Am)/p) sin(n(ty, — Zm+1 — Amt1 )/p)

sin(n(t, — z; + Al)/P))H

1gli<m sin(n(t, — z; — A1)/p)

The functions W; and W, are called the trigonometric weight Jfunctions.

(2.28) Lemma. The functions Wi, 1€ Z}, restricted to the fiber over z form a
basis in the trigonometric hypergeometric space %(z) of the fiber, provided
that for any s =0,...,/ — 1,

zi—Aj—zm—Ap+sépZ, 1Z]l<mZn.

(2.29) Lemma. The functions W, meZ ;"1, restricted to the fiber over z

Jform a basis in the singular trigonometric hypergeometric space Zsmg(z) of
the fiber, provided that for any s =0,...,¢ — 1,

z1—Aj—zZp—Am+sépZ, 1 Zl<m<n.

Lemmas 2.28,2.29 are proved in Sect. 9.
Example. For £ = 1 the functions W| have the form

exp(mi(zm — t)/P) sin(n(t —z; + A;)/p)
sin(n(t — zm — Am)/P) 1gi<m sin(n(t — z; — A;)/p) .

We(m)(taZb' . -:Zn) =
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The singular trigonometric hypergeometric space %,

sion (n — 1) and is generated by the functions

() C F(z) has dimen-

Wemy = Weemy eXp(—1idm/ D) — Weims1y €Xp(Tidmp1/p), m=1,....n—1.

Example. For n = 1 the function W) has the form

_ & exp(mi(zi — ta)/p) sin(n(¢; — 1)/p)
Wolti,-ste,z) = al_=11 sin(n(ty — z1 — A1)/P) 1za<h<e SIN(M(ts — 1, + 1)/p)

Example. For £ =2 and n = 2 the functions W; have the form
W2, 0)(t1, 12,21,22)

_ exp(ni(2z) — ty — £)/p) sin(m(t) — 1)/ p)
sin(n(ty — zy — Ay)/p)sin(n(ty — z) — Ay)/p) sin(n(t; — &, + 1)/p)’

Wan(t,t2,21,22)

_ exp(ni(z1 + 22 — 1 — h)/p) sin(n(t; — z1 + A,)/p)
sin(n(ty —z1 — A1)/ p)sin(n(ty — z2 — Az)/p) sin(a(t, — zy — A)/p)

exp(mi(zy + 22 ~ ty — b)/p)
sin(n(t; — z1 — Ay)/p) sin(n(t — z2 — A2)/p)

. sin(n(t; — z; + A1)/p) sin(n(t; —~ t, — 1)/p)
sin(n(t; — z; — Ay)/p) sin(n(ty — 12 + 1)/p)’
exp(ni(2z, — 6 — )/p)
sin(n(t; — z2 — A)/p) sin(n(t; — z2 — A2)/p)

Wo,2)(t1,t2,21,22) =

y sin(n(t; — z1 + Ay)/p)sin(n(t, — z1 + A1)/ p)
sin(n(t; —z1 + Ay)/p)sin(n(ty — 2z, — Ay)/p)

sin(n(t; — ©)/p)
sin(n(t; —t, + 1)/p)’

The singular trigonometric hypergeometric space %
dimensional and is generated by the function

ing(z)C?'q(z) is one-

Wy = Wa,0yexp(mi(l — 241)/p) — W11y exp(ri(Az — A1)/ p)
+Wo,2) exp(mi(24; — 1)/p) .
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For any permutation © € S” define a basis {#[ }ic2; in the trigonometric
hypergeometric space of a fiber by similar formulae. Namely,

(2.30)
VKI(ll,...,t/,Zl,...,Z,,;Al,...,/l,,) = er(l‘l,...,t/,Z-,;l,...,Zrn;Arl,...,Afn)
where I = (I;,....1;).

Example. For £ =1 and permutation t = (n,n — 1,...,1) the functions have
the form

exp(mi(zn — t)/p) sin(n(t ~z; + A;)/p)
sin(n(t —Zm — Am)/p) m<lgn sin(n(t — z; — Al)/p) ’

W:(,,,)(t,zl,..‘,z,,) =

3. R-matrices and the ¢KZ connection
Highest weight sly-modules

Let E,F,H be generators of the Lie algebra sl,, [H,E]=E, [H,F]=-F,
[E,F]=2H.

For an sl,-module V let V' = D, V; be its weight decomposition. Let V* =
€, ¥ be its restricted dual. Define a structure of an sl,-module on ¥* by

(E@,x) = (¢, Fx), (Fo,x) = (o, Ex), (Ho,x) = (¢, Hx) .

This sl,-module structure on V™ will be called the dual/ module structure.
Let 11,..., ¥, be sly-modules with highest weights A,,..., A,, respectively.
We have the weight decompositions

D3

Ne---h=MNe- -0

£=0

and
>0
MR- W)= W)
£=0

where (), denotes the eigenspace of H with eigenvalue 3., _ A, — 7.
Let FOi @ -~ Q V)i C(V1 ®---® ¥,); be the image of the operator F.

Let (Vi ® - Q@ V) CVi®---®V, be the kernel of the operator E. There
is a natural pairing

Bl K h)EERU @ - QW/FH®---@V);  —C

Let ¥,...,¥, be Verma modules, then this pairing is nondegenerate
provided

I1 T @4 — )40

m=1 s=0
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The rational R-matrix

Let ¥, V> be Verma modules for sl, with highest weights A;, A; and generat-
ing vectors vy, v, respectively. Consider an End(V; ® V;)-valued meromorphic
function Ry, y,(x) with the following properties:

(3.2) Ry p(x),F®id+i1d®F]=0,
RVJVZ(X)(H®F—F®H+XF®id)=(F@H"H@F'{“XF@id)RVIVZ(X),
in End(¥; ® ¥;) and

(3.3) Ryy(x)v1 @ua =01 Q0,2 .

Such a function Ry,p,(x) exists and is uniquely determined. Ry,,(x) is called
the sly rational R-matrix for the tensor product V; ® V3.

It turns out that Ry,y,(x) commutes with the standard diagonal action of
sl in V1 ® V3!

(3.4) [Ryy,(x), X ®id +id®X]=0, X€sl,.

In particular, Ry,y,(x) respects the weight decomposition of ] ® Va. Ry,p,(x)
also satisfies the following relation

Ry, GXEQH —H®E +xE®id) = (H®E —E®H +xE ®id)Ry, 1, (x) -
The rational R-matrix Ry,y,(x) satisfies the symmetry relation
PVI VZRVI Vz(x) = RVZ V] ('x)PV1 Vz
where Py,y, Vi ® V2— V> ® V; is the permutation map: Py,,(v Q@ v')=v @,
and the inversion relation
Ry (x) = Ry, (=) .
The following asymptotics holds as x — oc:
Ry py(x)
=idgid +x'QA;AidQiId—2H®H —EQF -FQE)+ O(x7?).
Let 1 ® Vo=@, V) be the decomposition of the sh-module Vi Q7>
into the direct sum of irreducibles, where the irreducible module ¥V is gen-

erated by a singular vector of weight A, + A, — [. Let IT") be the projector
onto V") along the other summands. Then we have

X Il x4+ Ay + A4y —s
3.5 R =3 9. _
(3.5) n(x) EO g)x—/11~A2+s

Let ¥4, V2, V3 be Verma modules. The corresponding R-matrices satisfy the
Yang-Baxter equation:

(3.6) Ry, (x — )Ry 1, (X)Rv,1,(¥) = Ry, (V)Rv 1, (X)Ry vy (x — ) -

All of the properties of Ry,y,(x) given above are well known (cf. [KRS],
[FTT], [TD).
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The Yangian Y(gl,)

The rational R-matrix is connected with an action of the Yangian Y(gl,) in
a tensor product of sly-modules. The Yangian Y(gl,) is a remarkable Hopf
algebra which contains U(sl;) as a Hopf subalgebra. We recall the necessary
facts about ¥(gl,) in this section.

The Yangian Y(gl,) is a unital associative algebra with an infinite set of

generators 7}(}-‘), iL,j=12, s=1,2,..., subject to the relations

(3.7) [t

(s+1) (r+1) s}y _ (r)p(s) (s) (r)
i T ]“[Tij Tl = T;c; Iy — Tkj Ty,

i,j,k,1=12, r,s=12.... Here T,-S.O) = J;; and §;; is the Kronecker symbol.
The Yangian Y(gl,) is a Hopf algebra with a coproduct 4:Y(gl,) —
Y(gh) ® Y(gly):

6) o S ) g =T
AT = 3 Y Ty ©Tg
k=1r=0
There is an important one-parametric family of automorphisms p,:Y(gl,) —

Y(gl):
d -1 s—rp{r
SLEDY <S )x T

r=1 r—1

The Yangian Y(gl,) contains U(sl) as a Hopf subalgebra; the embedding is
given by

EmTy, FeTh, He(T) -T2,
There is also an evaluation homomorphism ¢ : Y (gl,) — U(sh):
a:Tl(f)n——»Héls, 8:T1(;)»—+F515,
e: T = Edy,  e:TG) v —Hd,
s=1,2,... . Both the automorphisms p, and ¢ restricted to the subalgebra

U(sly) are the identity maps.

Introduce the generating series Tj;(u) = & + 3 ooy T,-g.‘)u‘s. In terms of

these series the coproduct, the automorphisms p, and the evaluation homo-
morphism look like

A:Ty(u) = 3 Tu(u) ® Tii(u),
pot T(u) = T(u - 1),
e:Ti(u)— Hu™!, g1 Tia(u) — Fu™!,
e:Toy(u) — Eu!, e: Toolu) — —Hu ' .

Let e, i,j = 1,2, be the 2 X 2 matrix with the only nonzero entry 1 at the
intersection of the i-th row and j-th column. Set

2
R(x) = Z (xeii Xej; + ey ®ej,») .
ij=1
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Then relations (3.7) in the Yangian Y(gl,) have the form
R(x = »)Ty(x) T 2y)(¥) = Toy(W)Tiy(x)R(x — y),

where Ty(u) =3, e; ® 1 ® Tyy(u) and Toy(u) = 2 1 ®ey ® Ty(u).

For any sl,-module V' denote by V(x) the Y(gl,)-module which is obtained
from the module ¥ via the homomorphism ¢ o p,. The module V(x) is called
the evaluation module.

Let ¥, V2 be Verma modules for sl; with generating vectors vy, v, respec-
tively. For generic complex numbers x, y the Y(gl;)}-modules #i(x) ® V2(y)
and ¥,(y) ® Vi(x) are isomorphic and the rational R-matrix Py, y,Ry,»,(x — ¥)
intertwines them [T], [D1]. The vectors v; ® v, and v; @ v; are respective
generating vectors of the Y(gl,)-modules " (x) ® V2(y) and V2(y) ® Vi(x).
The rational R-matrix Ry,y,(x — y) can be defined as the unique element of
End(¥; ® V,) with property (3.3) and such that

(3-8) PrinRyn(x = y):Vi(x) ® Va(y) — Vay) @ Vi(x)

is an isomorphism of the Y(gl,)-modules.

For a Y(gl,)-module V let V' =&, ¥, be its weight decomposition as
an sh-module. Let V* =@, V;* be its restricted dual. Define a structure of
a Y(gl,)-module on V" by

(T11(w)e,x) = (@, Tui(u)x), (Ti2(w)@,x) = (@, To1(u)x) ,

(TZI(u)(p’x> = (‘P, T12(u)x>7 <T22(u)¢7x> = <(p7 TZZ(u)x) .
This Y(gl,)-module structure on V* will be called the dual/ module structure.

The rational gKZ connection associated with sl

Let ¥,..., ¥, be sl;-modules. The ¢KZ connection is a discrete connection on
the trivial bundle over €” with fiber V} ® - -- ® ¥,. We define it below.

Let #,..., ¥, be Verma modules with highest weights A,..., A,, respec-
tively. Let Ry,y,(x) be the rational R-matrices. Let R;(x) € End(11 ® --- ® V)
be defined in a standard way:

(3.9) Rj(x)=Yid® - ®r(x)® - @r(x)®---®id
i-th Jte

provided that Ry,y (x) = 3 r(x) ® r'(x) € End(¥; ® ¥}). For any X € sl, set
Xp=1d® - ® X ® --®id.

m-th
Let p,x be complex numbers. For any m = 1,...,n set
(3.10)
Kn(zy,...,20) =Rm,m—l(zm —Zm+ p)-- 'RM,l(Zm —-z1+ P)KAM

X Rm,n(zm —Z,,) o 'Rm,m+l(zm —Zm+1) ’

—Hp
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(3.11) Theorem. [FR] The linear maps Kn(z) obey the flatness conditions

Ki(ziy. . s2m+ Py 20)Kim(21, .., 20)
=Kn(21,..-,21 + Dy, Z0)Ki{Z1,.. 525), Im=1,....n.

The maps Ki(z),...,Ka(2) define a flat connection on a trivial bundle over
C" with fiber | ® --- ® V,. This connection is called the gKZ connection.
By (3.4) the operators K,(z) commute with the diagonal action of H in
N ---QV,:
[Kn(z1,-..,2,),H]=0, m=1,...,n,

and, therefore, preserve the weight decomposition of Vi ® --- ® V,. Hence the
gKZ connection induces the dual flat connection on the trivial bundle over
C" with fiber (1 ® --- ® V,)*. This connection will be called the dual gKZ
connection.

Let B C C" be the complement to the discriminant (2.10).
(3.12) Lemma. For any z € B the linear maps K (z),...,K;(z) define iso-
morphisms of (1 @ --- ® V,)}.

This statement follows from (3.5) and (3.10).
If x =1, then the dual gKZ connection commutes with the diagonal action
of shin(V® - -® V)"

[K,:(Zl,...,z,,),X]ZO, Xesh, m= ,...,n,

and, therefore, admits a trivial discrete subbundle with fiber F(¥ ® --- ®
V.);_,, moreover, it induces a flat connection on the trivial bundle with fiber
N @V [FN @ QW)

Let ¥,..., ¥, be sl-modules. The gKZ equation fora V, ® - - - ® V,-valued
function ¥(zy,...,z,) is the following system of equations

Yz, sZm+ Do rzn) = K21, ..., 20) P (21, ,20), m=1,...,n.

The ¢gKZ equation is a remarkable difference equation, see [S], [FR], [JM], [Lu].

The trigonometric R-matrix

Let g be a nonzero complex number which is not a root of unity. Let
E,, F;, g be generators of Uy(sh):

g =q"g"=1,
qHquqquH’ qHFq:q_IE]qH:

2H _ . —2H
(B Fyl=1—1
q—4q
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A comultiplication 4:U,(sh) — Uy(sla) ® Uy(shy) is given by

AgH=4d"0d", MHgH=q"0q",
ME)=E,®¢" +¢ " QE, 4F)=Foq¢d +¢73F,.
The comultiplication defines a module structure on the tensor product of
U,(sly)-modules.

Let J4,%, be Verma modules for U,(sl;) with highest weights g/, g%
and generating vectors vy, ;, respectively. Consider an End (V] ® V5 )-valued
meromorphic function R}, ,,({) with the following properties:

(3.13) R, (OFE e +¢7 @R =FH e +4" @ F)R] ()
Ry (OFeq ™+l @ F)=(F@q" + (¢ @ F)R}, ()

in End(} ® V3) and

(3.14) R}, (v ®@un=0Q0n.

Such a function R‘{,} y,({) exists and is uniquely determined. R‘{,l v, ({) is called
the sly trigonometric R-matrix for the tensor product ¥V} ® V5.
The trigonometric R-matrix R‘{,l,»z (¢) also satisfies the following relations

(3.15)
Ry, (OE;®q"+q " QE)=(E,0q7" + 4" ® E)RY, . (D)

R?q r,(O(CE; ® ‘I_H +4q7 ®E;)=(lE;® 7+ q-H ® Eq)R?q &),
R, (0Od" @ ¢ =47 @ ¢"RY, (0 -

In particular, R‘{,l y,({) respects the weight decomposition of V} ® V5.
R}, . ({) satisfies the inversion relation

Py, VzR?/l VZ(C) = (R?/ZV,((_.I))_IPVW;

where Py,y,: V1 ® Vo — V2 ® 1) is the permutation map.

Let i@V, = @2, V) be the decomposition of the U,(sl; )-module ¥ @ 7>
into the direct sum of irreducibles, where the irreducible module ¥ is gen-
erated by a singular vector of weight g/4'*42=/, Let IT¥ be the projector onto
V¥ along the other summands. Then we have

g g o0 o -1 1 — CqZS—ZAl—ZAz
(3.16) R @) =Ry O L T 1 57 s

where

o0 k
By (0) = g0 3 (¢ - 1P [T - )7 (6 Ry @
> i
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Let 7, V;, V3 be Verma modules. The corresponding R-matrices satisfy the
Yang—Baxter equation:

GBI Ry CIORY 1 (R, (O = R,y (DR, 1, (ORF, 5, (E/0) -

All of the properties of R‘{,l v,({) given above are well known (cf. [T], [D1],
U1, [CPD).

Similar to the rational case one can define the gKZ connection associated
with the trigonometric R-matrix (cf. [FR]). We study this trigonometric ¢gKZ
connection in [TV3].

The quantum loop algebra Ué(gl;)

The trigonometric R-matrix is connected with an action of the quantum loop
algebra U(;(glz) in a tensor product of U,(sl)-modules. The quantum loop
algebra Uy(gl,) is a Hopf algebra which contains Uy(sl,) as a Hopf subalgebra.
We recall the necessary facts about U;(glz) in this section.

Let g be a complex number, g+ + 1. The quantum loop algebra Uq(gﬁ;)
is a unital associative algebra with generators LE;’O), Ljf ” 1 <j<i=Z2, and

LY, i,j=1,2, s=+1,%2,..., subject to relations (3.18) [RS], [DF].

Let e;; i,j = 1,2, be the 2 X 2 matrix with the only nonzero entry 1 at the
intersection of the i-th row and j-th column. Set

RE)=(Eg—qg ' Nen®en +en®@en)+ (& —1)en®en + e ®ey)
+eg—g Den®en+(@—qg Ne®en .

Introduce the generating series Lij?(u) = ng-io) +32 L,(-jis)uis. The relations

in Uq(évlz) have the form

(3.18) LY =1, LFYG9 =1, i=1,2,
REIOLE (LG = L OLE(ORE) |
REIDLE LG = Loy OLE(ORE/D) |

REEIOLG(EL) () = L (OLG(OREL) ,
where L{[)(£)=ZU e; ® 1®L}(¢) and L(VZ)(f)zzij 1Qe; ®LY(L), v==+.
Elements L(ITO)LSO), LSO)L(ITO), L(JO)LSO), Lf,_;O)L(“_O) are central in
Ug(gly). Impose the following relations:
MO = AL A0 = 00 =

mn afl\c/iition to relations (3.18). Denote the corresponding quotient algebra by
Ul(aly)-
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The quantum loop algebra U,;(éf;) is a Hopf algebra with a coproduct
47: Uy(aly) — Uy(9h) ® Uy(aly):

A9 L&) - }k:L;j(c)@aLfk(é), V=4

Remark. Notice that we take the coproduct 47 for the quantum loop algebra

Ué(gl;) which is in a sense opposite to the coproduct 4 taken for the Yangian
Y(gl,) (cf. Theorems 4.25,4.26).

There is an important one-parametric family of automorphisms pg : U;(EI;_)
— Uylgh):
ol s L(E) = L&), v=1x,
that is

£0 +0 _
pg:ng )»—»ng ) and pg:ngs)r—»C‘Lg), s€Zyog.

The quantum loop algebra U,;(EI;) contains U,(sl;) as a Hopf subalgebra; the
embedding is given by

Egm =I5 —-q7"),  F-LG%g-q7"), - I177.
There is also an evaluation homomorphism &9 : Ué(gl;) — Ug(sh):

& LH (&) - ¢ = g"¢, e L) - ~Flg—a7 ")

e LH ()~ —Efg—q7"), & LpE)—q" —q7He,

e L&)~ g" —gHE & L (&) - Flg—q7"),

e Ly(8)— Efg—q ) L@ - g — gt
that is

0 - 1 1 _
aq:L(lT)r—-»q H s":L(“)H—qH, eq:L(lz)r-—»—F(,(q—q N,

L0 —Eg-q ), LY =g, L e g

& :L(”_O) — qH, el : L(l'l_l) — —-q_H, & L(IEO) — Fy(g - q_l) ,

-1 - -0 — 1
sq:L(Zl)r—» «q—q by, EqIL(ZZ)HqH, eq;L(z";)}-—»—qH,

and &7 :ng) — 0 for all other generators Lf-;) .

Both the automorphisms pg and &7 restricted to the subalgebra U,(sl,) are
the identity maps.

For any U,(sl;)-module V' denote by V' (¢) the U;(;lz )-module which is
obtained from the module ¥ via the homomorphism &9 o pg. The module V(&)

is called the evaluation module.
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Let ¥,V be Verma modules for Uy(sl;) with generating vectors vy, vs,
respectively. For generic complex numbers & { the U,;(g[;)-modules néo e
V5(¢) and W5(L) ® V(&) are isomorphic and the trigonometric R-matrix Py,
R‘,’,IV2 (¢/0) intertwines them [T], [CP]. The vectors v ® v; and v; ® v; are re-
spective generating vectors of the Ué(&f;)-modules M) @ Kh({) and KD @
Vi(&). The trigonometric R-matrix R‘{,l 5(&/C) can be defined as the unique ele-
ment of End(}] ® V5) with property (3.14) and such that

(3.19) Py RS, (E10) - (&) ® Ba(0) — () ® V(&)

is an isomorphism of the U;(gl;)-modules.

4. Tensor coordinates and module structures on the hypergeometric spaces

In this section we identify the Gauss—Manin connection and the gKZ connec-
tion. In addition we also describe a structure of;g Y (gl )-module on the rational
hypergeometric space and a structure of a Ué(glz )-module on the trigonometric
hypergeometric space, respectively.

The rational hypergeometric inodule

The #[/] be the rational hypergeometric space defined for the projection
C*+* — €. In particular, #[0] = € and, in our previous notations, we have
F[¢] = . Consider the direct sum
¥ =0 7]
1z0

which will be called the rational hypergeometric Fock space.

Let T;(u), i,j = 1,2, be the generating series for the Yangian Y(gl;) in-
troduced in Sect. 3. Set

Ty = Ty [T =

E i’ ] = 1,2 bl
—Zp — Ap J
where the rational function in the right hand side is understood as its Laurent
series expansion at u = oco. It is clear that the coefficients of the series Tj;(u)
generate Y(gly). Introduce an action of the coefficients of the series Tj(u) in
the space . Namely, for any f € F[I] set:

Tou— 2z, + Ay

(4.1) @x@nqum=ﬂm”wag

S U= Zm — Ay

=1 U= a=1 Ul g3

X f(tb'-"t]—-]’u) 1 tl_zm+/1m
u—t1—-1 poti—zm—A ’
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- ta+1
(BZ(u)f)(tlsatl):f(tla ’tI)H ___—G___
a=1 [l 7
Lu—t,4+1 2 f(u,lz,...,tl)
-ty | M)
a=1 U—1l u—t +1 (1.a)

(T )ty i)
"lil f(tz,-..,t1+1)< "o~z A u—ty 1 —tp—1
u—1h mel = Zm = Amjy u—1ty H—tp+1

a=1

—f[ z,,,+A,,,1+1u—t,,~1>] f'_[u—ta—}—l
m=1 U — - Am b=2 Uu— tb (L,a) a=1 u— tu

y HZI [ fluty,... 1) rot) = Zp + Am
a1 L=+ Du—~tin+ 1) go sl — 2w — Am aab’
a£b

~ u——t,,——l

() ), i) = f(t,-. - 1,M)H a—— >0,

ami

and ?zx(u)f =0 for f € #[0]. Here (1,a),(a,!) are transpositions and ¢? ¢
S**! is the following permutation

6®:i—i fori=2,...,1, 6% 1+ g, 6?1 +1m—b.

The right hand sides of formulae (4.1) are rational functions in u, and the
precise meaning of each of the formulae is that the left hand side equals the
Laurent series expansion of the respective right hand side at u = oc.

(4.2) Lemma. Formulae (4.1) define a Y(gly)-module structure in the rational
hypergeometric Fock space .

The proof is given by direct verification.

Let §(z) = @, F[1(z) be the rational hypergeometric Fock space of a
fiber. The Y(gly)-module structure in § clearly induces a Y(gl;)-module struc-
ture in §(z). This module will be called the rational hypergeometric module.

For the action of the generators of the subalgebra U(slh) (4.1) simplify
and for f € #[I] look as follows:

(4.3) HN)(1,....t) = ( i—, i 1)’ P
(Ff)(tla-~-;tl+l)
=Ii1 [f(tz,...,t1+])(ﬁ tl—z”l+AmHﬂltl—tb"1_l>J ,
- (1,a)

m=1{ 4 "Zm_Am =2 &1 _fb+1

(Ef)(tla"-’tl-—l) = (tlf(tls'--9t1))‘t1=005 >0 )
and Ef =0 for f € #[0]. Here (1,a) € S'*! are transpositions.
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Remark. It is worth to mention that for any function wi we have
n
Fwi= 3" (In + D Q2Ap — ln)Wisegm) -
m=1
cf. (2.21). Hence R[/1(z) C F(%[! — 1}(z)), where R[/](z) is the coboundary

subspace.

Remark. Let k = 1. Then for any function f € #[¢ — 1] we have

¢
(4.4} (FOY(, .. t0) = ;Da{f(fz,-..,f/)](x,a) .

Tensor coordinates on the rational hypergeometric spaces of fibers

Let V1,..., ¥, be sl, Verma modules with highest weights A,,..., A4, and gener-
ating vectors vy,... U, respectively. Consider the weight subspace (] ® - -+ ®
V,); with a basis given by monomials F''v; ® --- ® Flp,. The dual space
(Vi ®---®V,); has the dual basis denoted by (Fl'v; ® - -+ ® Fv,)*.
For any z € €" and for any 7 € §" denote by B,(z) the following homo-
morphism:
B(2): (Vo @@ V) — F(2),

B.(z): (Frivo, ® - ®@Fuv, ) —wi(tz), leZ},

where #(z) is the rational hypergeometric space of a fiber (cf. (2.19), (2.23)).
The homomorphisms B,(z) are called the tensor coordinates on the rational
hypergeometric space of a fiber. The composition maps

Biw@): (V@@ Vy)s — (V@ ® V)5,
B u(z) = B:I(z) °Bu(z),
are called the transition functions, cf. [V3].

(4.5) Lemma. Let z;+ A; —zpy + A€ {0,...,£ — 1} for any I+m, L,m=
l,...,n. Then for any permutation t the linear map B.(z): (V;, ® - ®
V..); — F(z) is nondegenerate.

The statement follows from Lemma 2.20.
Consider the evaluation module ¥;,(z;,) ® - -+ ® ¥, (z;,) over Y(gl,) coin-
ciding with ¥, ® --- @ ¥;, as an sl;-module.

(4.6) Lemma. For any p € (V;; ®---® V;,); we have
(@, Tiaty) -+ Ta(tr)v1 @ - - - @ vp)

{ n _
= (B-:(Z)@)(f{,..‘,![)n H (ta — Zy — Am)/ta H t, ty + 1 .

a=1m=1 1Sa<bzs la— 1
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It is easy to see that the right hand side above is a polynomial in 7 L t;l,
so the formula makes sense without additional prescriptions.

(4.7) Theorem. For any permutation © € S" the map
Bi(z): (%, (2:,)® - @ Vo (2,)) — §(2)
is an intertwiner of Y(gl,)-modules.
(4.8) Corollary. Let z;+ A;—z + A& Z for any lxm, Im=1,...,n
Then for any permutation 1 € S" the map B(z): (V;,(24,)Q -+ ® V1, (2.,))*

— §(z2) is an isomorphism of Y(gl,)-modules.

The statement follows from Theorem 4.7 and Lemma 4.5.

(4.9) Theorem. [V3) For any T € S§" and any transposition (m,m + 1), m =
1,...,n— 1, the transition function

Br,r . (In,m-H)(Z) : ((Vtx QK- V‘tmﬂ S Vrm ®--® V‘tn)*)/ - (V‘Cl @---® th);

equals the operator (Py, v, Ry v, (2, —2,,))" acting in the m-th and
(m + 1)-th factors.

The theorem follows from Lemma 4.6 and (3.8).

Each B.(z) induces a linear map (¥;, ® --- ® ¥;,); — #(z) which also will
be denoted by B.(z).

(4.10) Theorem. Let x=1. Let p < 0. Let (2.12)—(2.14) hold. Then for any
1€ S" the map B(z) : (V;, ®--- @ V,,); — H(z) is an isomorphism.

This statement follows from Theorem 2.15 and Lemma 4.5.

It is easy to see that for any 1 € §" the image of F(V;, ® ---® I, )},
under the map B.(z) coincides with the coboundary subspace %(z) C %(z).
(4.11) Theorem. Let x = 1. Let p < 0. Let (2.12)~(2.14) hold. If2%") _| Am

—s&pZ.p forall s=¢—1,...,2¢ -2, then for any 1 € S" the map B,(z)
induces an isomorphism

Ve @@V, o /F(Ve ® - ® V)5 — #(z2).

The statement follows from Theorem 2.17 and Lemmas 2.20, 2.21.
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Taking into account (3.1) we get an isomorphism
(Ve ® - @F);") — #(z).

(4.12) Theorem. [V3], [TV1] For any m = 1,...,n, the following diagram is
commutative:

K (21 p0mr2n)
&Ky — 0 -8k,
Be(21 00 Zmt Proes Za) Be{z1,0120)
H(Ziy--isZmt Dyeeryzn) —— H(2),...,2n)
Am(Z1srZn}

Here A,(z) are the operators of the Gauss—Manin connection, K(z) are the
operators dual to K, (z), and K,,(z) are the operators of the qKZ connection
in(V;, @ ---Q® W, ), defined by (3.10).

(4.13) Corollary. The construction above identifies the gKZ connection and
the Gauss—Manin connection restricted to the hypergeometric subbundle.

The trigonometric hypergeometric module

Let #,[/] be the trigonometric hypergeometric space defined for the projection
C*" — C". In particular, #,[0] = € and, in our previous notations, we have
F,[¢1 = #. Consider the direct sum

@ Zl1]

which will be called the trigonometric hypergeometric Fock space.
Let g = exp(ni/p). Let Lji(u), J»k = 1,2, be the generating series for the

quantum loop algebra U;(é-f;) introduced in Sect. 3. Set

+iexp(£ni(zy — u)/p)
1 2sin(n(u — zn — A)/p)’

50 = Lo I1 jk=12,

where & = exp(2niu/p). The products in the right hand side are rational func-
tions in £. The precise meaning is that L;(é) equals the Laurent series ex-

pansion of the corresponding right hand side at £ = oo, and L (&) equals the
Taylor series expansion of the correspondmg right hand sxde at £=0.1Itis
clear that the coefficients of the series Lk(ﬁ) generate U/ (gIz) Introduce an

action of the coeflicients of the series L (&) in the space §,. Namely, for any
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S € FI] set

~4 _ i Sil’l(ﬂ(ﬂ —Zy + Am)/p)
R AC tl)mgx sin((u — zZw — Am)/p)

sin(n(u — 1, — 1)/p)
. ﬂl sin(n(u — 1,)/p)
' 1 sin(a(u — t; — 1)/P)
+sin(p) 1 =Gt — o)
) exp(ni(u — 1;)/p)
> H:f(tl,...,tl—l,u)sin(n(u_tl_ 1)/p)

nosin(n(l; — zpy + Am)/P)B
(a,) ’

X
a

mt STt = Zm + Am)/P)

-, _ I sin(rm(u — t, + 1)/p)
UnON st = S0, [T —mm e S

— sin(n/p) III sin(n(u — t, + 1)/p)

o=t Sin(n(u — 12)/p)
’ exp(ni(u — 11)/p)
= [[f(u, e tI)Sin(”(" —h+ 1)/17)]](1,«:) ’
~ . I+1 i(u —
LEEN (1., 1) =sin(n/p) E [[f(tz,...,tm)w

y ( 1 Sin(n(ty — zm + Am)/P)
m=1 SIN((ty = Zw — Am)/P)
« I sin(m(u — &, + 1)/p) sin(n(t; — & — 1)/p)
pez  SI(m(u — t)/p) sin(n(t — t, + 1)/p)
n o sin(7w(u — zm + Am)/pP)
m=1 sin{r{u — z; — Am)/P)

i sin(r(u — 6 — 1)/p))J]
(1,a)

b=z Sin(w(u — #,)/p)

il el sin(n(u — t, + 1)/p)
i (w/P) 1 e = 1))

1+1
X Z |[f(u,t2 ..... )
a,b=1
a%xb
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exp(ni(2u — t; — t141)/p)
sin(n(u — £ + 1)/p) sin(n(u — ti41 + 1)/p)

m SRty — 2+ Am )/p)ﬂ
=t Sty = 2 — Am)/P) f| s

= =t sin(n(u ~ t, - 1)/p)

L contiz) = (.t ,

(LN, —1) = f(& -1 u)al;[l Sin(n(u — 52)/p)

and Zg:](u)f =0 for f € #[0]. Here ¢ = exp(2niu/p), (1,a),(a,!) are trans-

positions and ¢% € S/*! is the following permutation

, >0,

e i—i fori=2,...,1, 6% : 10 g, 6®:14+1—0b.

The right hand sides of (4.14) are rational functions in £, and the precise
meaning of each of the formulae is that Lj;(é) equals the Laurent series ex-
pansion of the corresponding right hand side at £ = oo, and Z;,;(:f) equals the
Taylor series expansion of the corresponding right hand side at & = 0.

(4.15) Lemma. Formulae (4.14) define an Uq’(a;)-module structure in the
trigonometric hypergeometric Fock space §,.

The proof is given by direct verification.

Let §,(z) =D 120 F4l1](z) be the trigonometric hypergeometric Fock space
of a fiber. The Uy(gly)-module structure in §, clearly induces an Ué(gl;)-
module structure in §,(z). This module will be called the trigonometric hy-
pergeometric module.

For the action of the generators of the subalgebra U,(sl;) (4.14) simplify
and for f € #[!] look as follows:

(4.16)
G f)t,... 1) = g= A=D1, 1)

n I+
(F;If)(tl,...,tp,.l) = €Xp (—-TEi <i+ Z Am)/p) Z:l [f(tz,...,t[,H)

m=1 a=I1

o sin(a(ty — zm + An)/P)
x (e"p@””/p B o v

><1+1 sin(n'(l[ -y — 1)/P)
pn SIN((t, — 5 + 1)/p)

—exp | 27> Am / p ,
m=] (1,a)
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m=i

(E ), tiy) = —(2isin(n/p))_lexp (m‘ (1 -1+ i A,,,> /p)

X f(t, ..o t)lexpmitgipy=0, >0,

and E, f = 0 for f€%,[0]. Here (1,a)€S'*! are transpositions.

Tensor coordinates on the trigonometric hypergeometric spaces of fibers

Let ¢ = exp(ni/p). Let V7,..., ¥ be U,(sl,) Verma modules with highest
weights ¢?,...,g"" and generating vectors vf,..., v, respectively. Consider a
weight subspace (V7 ®---® V), with a basis given by monomials F,'v{ ®
~~®F}~v§. For any z€B and for any 7€ S” denote by C,{z) the following
homomorphism:

C2): (V@ -®@ V) = F(2),

C:(z): F};” e ®F‘}["‘v’§n —aWi(tz), lez},

where

ﬁ ‘mﬁ‘ sin(n(s + 1)/p) sin(n(24,, — s)/p)
m=1 5=0 sin(7/p)

where %(z) is the trigonometric hypergeometric space of the fiber (cf. (2.19),
(2.23)). The homomorphisms C.(z) are called the tensor coordinates on the
trigonometric hypergeometric space of a fiber. The composition maps

Cor@): (V@ @V = (V1@ @I,  Coowl(z)=C7'(2)0 Cu(2),

Cr =

>

are called the transition functions, cf. [V3].

(4.17) Lemma. Let z;+ A; —zp + Ay — s ¢ pZ for any s =0,...,/ — 1, and
for any I,m=1,...,n. Then for any permutation t the linear map C.(z):
(V1 Q- ® V) — F4(2) is nondegenerate.

The statement follows from Lemma 2.28.
Let {, = exp(2miz,/p). Consider the evaluation module Vi ({;)® - - ®
V2({r,) over Uy(gly) coinciding with V7 ® --- ® V! as an Uy(sl;)-module.

(4.18) Lemma. For any ve (V7 ® ---Q V1), we have
LE(E) - L3 (&) = (C2)0)(trs -5 t2)

Lo ZSin(n(u —Zm — Am)/p)
Xarzll m1_=II Liexp(£mi(zn — u)/p)

sin(n(t, — t, + 1)/p)
<¢ Sin(n(t; — 1)/p)

x 1
a<b

Iz

Ug]®”'®vzn’

where &, = exp(2nit,/p), a=1,...,7.
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It is easy to see that the right hand side above is a polynomial in &,,...,&, for
the case of the upper signs, and is a polynomial in 51‘], ...,5;1 for the case of
the lower signs, so the formula makes sense without additional prescriptions.

(4.19) Theorem. For any permutation 1€S" the map
Col2): Vi) ® -+ @ V(L) — §yl2)
is an intertwiner of Ué(gl;)-modules.

(4.20) Corollary. Let z;+ A; — zp + A — s € pZ for any s€Zy, and for
any I,m=1,...,n. Then for any permutation T€S" the map C.(z): V;/({;))

® - V(L) — 8,(2) is an isomorphism of U;(gl;)-modules.
The statement follows from Theorem 4.19 and Lemma 4.17.

(4.21) Corollary. For any t€S" the homomorphism Cy(z) maps e -
VIY,"™ into the singular trigonometric hypergeometric space 73 "°(z) of a
fiber. The map

Cl2): (K@ @ K™ — F7(z)

is an isomorphism provided that z;+ A —zy + Ay —s € pZ for any s =
0,....0—1,and for any Im=1,...,n

The statement follows the last formula in (4.16).

(4.22) Theorem. [V3] For any t€S" and any transposition (m,m + 1), m =
l,...,n — 1, the transition function

Cz,z-(m,m-&-l)(z):K?®"'®KZ+,®V;3®”'®VI§_-)Vt?®"'®yrf

equals the operator Pys ps R?
Tm+1 " tm

e e (exp(2mi(ze,,, — z.,)/p)) acting in the
Tm+1 "Tm
m-th and (m + 1)-th factors.

The theorem follows from Lemma 4.18 and (3.19).

Tensor products of the hypergeometric modules

Let Flz1,....2m At,..., Am; [] and Flz1,...,zm; A1, ..., Ap; I] be respectively
the rational and the trigonometric hypergeometric spaces defined for the pro-
jection C!*™ — ™. In particular, in our previous notations we have

F =F[z1,...25 A1, As ] and  Fy = Fplzy, .. 205 A1, A £
There are maps
x:'g:[Zb""Zk;Ah""Ak;j]®'é/_;[zk+la""zk+m;Ak+1!~~~:Ak+m; l]

- 'gf-[zl,---,zkﬁ—m;Al,---,Ak+m;j + l] El
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and

Xa : Fqlzv, -z vy, A J1® Flzests - oo Zkams Aists - - Akrms 1]

- %{le“-,Zk+m;A17--~’Ak+m;j + g] ’

which are respectively defined by x: f®@g~ fxg and g, : f®g— f *g,
where

(fxg)(tr,-- - tjsr)
1 kLo A
= [f(tla-n,tj)g(tj+1,---,tj+1)1—[ 12t
geS/H

jiu i=la=1la+j — 2 — Ai |

and

1
(f*g)(tl,-~-,tj+1)=ﬂ7 > ﬂ:f(tla---stj)g(tj+l,---:tj+1)

. 0€Sj+/
% ﬁ Losin(a(tyy; — 2z + Ai)/P)H
iml gt SIN(R(tasj — 20 = AD)/PY Y,

We have the next lemmas.

(4.23) Lemma. Assume that (z; — A; — Zpyj — Aky; +5)£0 for any i=
L.,k j=1,...,m s=0,...,0 — 1. Then the map

1 B Fla,..zs A A iz, 7))
i+j=!

®F (k15 s Zkams Akrts oo o5 A JI(Zk415 - - - 5 Zkem )
= Flzt,. o Zkrm Al Apms (215 - -0 Zh4m))

defined by linearity is an isomorphism of the rational hypergeometric spaces

of fibers.

(4.24) Lemma. Assume that (z; — Aj — zg1j — Agsj +5) € pZ for any i=
L....kj=1,....m, s=0,...,1 — 1. Then. the map

Xe: D Flzi,....z; A1, A iz - -, 20)
=l

®‘97q[zk+l7' . -7zk+m;Ak+1a' . '7Ak+m;j]((zk+1" .. 7Zk+m))
= Flz1, . zeymy Ay e Ao 121 - Zkm)

defined by linearity is an isomorphism of the trigonometric hypergeometric
spaces of fibers.
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Let

oo
Tzt sz Al Al = B Flzr, 2w Al ey A 1]
=0

~

and -
Tzt oz Ay An]l = @ FHlzrs 2w Ars o A ]
1=0

be the rational and the trigonometric hypergeometric Fock spaces, respectively.
Extend the maps y, x, to the respective maps

¥ &2tz Ay AW zh, -0 21))
QF[2k+15 -+ > Zkrms Akt1s -+ o> Arm) (@15 -5 Zhtm))
= Flzts s Ziwms Al oo Akrm (215 -5 Zkrm)) 5
Xq : Bqlzts- sz A, (215 -5 20))
®Fylzk+15- -5 Zktms Akt ls -+ s Akrm]((Zks 15 -+ > Zktm)
= 8lzto- s Zerms Ao kw20, - Ziesm) -
(4.25) Theorem. The map
X0 P Flzksts s Zoam Aksts ooy Akrm)(Zks1s -+ - Zk4m))
QFz0rr sz Al oy A2 22))

- 8{215‘--,Zk+m;Ala-‘-aAk+m]((le~~-’Zk+m))

is an intertwiner of Y{(gl,)-modules. Here P is the permutation map. The
map y o P is an isomorphism provided that (z; — Aj — zxy; — Axy;) €Z <o for
any i=1,....k j=1,...,m.

(4.26) Theorem. The map
Xg : 8qlzts ez Avy o Az - 20)
®Fq[Zk+15- - - sZktms Akt1s- - s Akam}((Zkt15 -+ -5 Ztm))
= Bqlzts s Zkms Aty Akrm)((Z15 - -5 Zktm)) -

is an intertwiner of U‘;(g;l;)-modules. The map y, is an isomorphism pro-
vided that (z; — A — zikyj — Akrj +8) §pZ for any i =1,.. .k j=1,...,m,
SEZgo.

It is clear that for any functions f,g,2 we have (f % g)* h= f % (g % h)
and for any functions f, g,k we have (f *g)*h = f x(g* h). Lemmas 4.23,
4.24 and Theorems 4.25, 4.26 can be extended naturally to an arbitrary number
of factors.
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5. The hypergeometric pairing

In this section we define the main object of this paper, the hypergeometric
pairing. We define a pairing between the rational and the trigonometric hy-
pergeometric spaces of a fiber. For any functions we % (z) and W € %,(z) we
define the hypergeometric integral by

(5.1) I(W,w) = [ &(t)w(t)W(t)d"t
1

where @ is the phase function (2.5) and I/ is a suitable deformation of the
imaginary subspace

I’ = {tcC’|Ret; =0,...,Ret, = 0} .

We always assume that the step p is real and negative. The case of arbitrary
step can be treated by analytic continuation.

The phase function ¢ has a factor exp(u Zi:x t,/p) where the parameter y
is connected with the parameter x in the definition of the connection coefficients
by k = e*. We choose the parameter u so that it satisfies

(5.2) 0<Imp<2n.

We define the hypergeometric integral as follows. First we assume that the
real parts of the weights A,,...,4, are large negative and set

(5.3) I(W,w) = [ S(Ew()W(t)d’t .
) (4

(5.4) Lemma. Let 0 <Imyu <2r. Let the real parts of the weights Ay,..., A,
be large negative. Then the hypergeometric integral I{W,w) is well defined
for any functions we F(z) and W € Fy(z).

Proof. 1t follows from (2.5),(2.6) and (2.24) that the integrand of the hyper-
geometric integral decays exponentially as ¢ goes to infinity. |

S

Let 7 "8(z) C F(z) be the singular trigonometric hypergeometric space.

(5.5) Lemma. Let Impu = 0. Let the real parts of the weights A,,...,A, be
large negative. Then the hypergeometric integral I(W,w) is well defined for
any functions we F(z) and W € Z""%(z).

The proof is similar to the previous lemma.

The hypergeometric integral for generic A,,...,A4,, z),...,z, and arbi-
trary negative p is defined by analytic continuation with respect to A4,,...,4,,
21,...,Z, and p. This analytic continuation makes sense since the integrand is
analytic in Ai,..., 4,4, 21,...,2, and p, cf. (2.5),(2.19),(2.26). More precisely,
first we define the hypergeometric integral for basic functions wi, Wy, and then
extend the definition by linearity to arbitrary functions we % (z), W € %(z).
The result of analytic continuation can be represented as an integral of the



g-hypergeometric functions, Yangians and quantum affine algebras 539

integrand over a suitably deformed imaginary subspace. Namely, the poles of
the integrand of the hypergeometric integral /(W) w,) are located at the hy-
perplanes

(5.6) tg = Zp £ (Ap + sp), t, =1t (1—sp),

lZb<as/t, m=1,...,n s€L>y. We deform A,,...,A4,, z1,...,z, and

p in such a way that the topology of the complement in €/ to the union
of hyperplanes (5.6) does not change. We deform accordingly the imaginary
subspace I so that it does not intersect the hyperplanes (5.6) at every moment
of the deformation. The deformed imaginary subspace is denoted by I’ and
called the deformed imaginary subspace. Then the analytic continuation of the
integral (5.3) is given by (5.1).

(5.7) Theorem. Let O <Imu <2rn. Then for any [, me2Z] the hypergeo-
metric integral I{Wi,wm) can be analytically continued as a holomorphic

univalued function of complex wvariables p,Ay,...,Apzi,...,zz to the
region:

p<0, {1,..../}dpZ,
WUp~s&pl, m=1,...m, s=1—¢,.... L1,

zix A ~2znt Ap—s&¢pZ, Im=1,...,n l+m,
Jor an arbitrary combination of signs (cf. (2.14)).
(5.8) Theorem. Let Imyu = 0. Then for any 1€Z}™', meZ! the hyper-
geometric integral I( Wi, wm) can be analytically continued as a holomor-

phic univalued function of complex variables p,Ay,...,An, z1,...,24 (0 the
region:

p<0, {1,..../}dpZ,
2Am —s&pZ, m=1,...,n, s=1—-4¢,...,{ -1,

i+t A —zntAn—se&pZ, Im=1,...,n I+m,
for an arbitrary combination of signs (cf. (2.14)).

The theorems are proved in Sect. 9.
Let %(z) C #(z) be the coboundary subspace.



540 V. Tarasov, A. Varchenko

(5.9) Lemma. Let p=0. Let p<0. Let (2.12)—(2.14) hold. Then the hy-
pergeometric integral I(W,w) equals zero for any we R(z) and W € F;"5(z).

The lemma is proved in Sect. 9.
The hypergeometric integral defines a hypergeometric pairing

(5.10) [:F2)9F(z)—C
for 0 <Imu <27, and
(5.11) I°: F5"%(2) @ F(2)/R(z) —» €

for ;1 = 0. According to (2.16) and (2.22) this can be written as

(5.12) 1:%(2)®#(z)—C
and

(5.13) I°: F3%2)®@ #(z) - C,
respectively.

(5.14) Theorem. Let 0 <Impu <2n. Let p <0. Let (2.12)—(2.14) hold. Then
the hypergeometric pairing I : #(z) ® #(z) — C is nondegenerate. More-
over

n+d—1

det[I(Wi, W) lime 2y = iS5

(e — 1)~ 2 tnlp + (7 o - (L

)

X exp <(u + i) ( i_l Amlp - (" * i - 1)

- ("107))

{1 n
X l:[o [F(—(S + 1)/p)* I (=1/p)™" l:[l r((24m —s)/p)
. =)
((Zl + Al ~Zm+ Am - S)/p)

X
1<i<men T((z1 — Ay — 2 — A + 5)/P)

Here 0 < arg(e” — 1) <2m.

(5.15) Theorem. Let u=0. Let p<O0. Let (2.12)—(2.14) hold. If 23, _,
Am ~5s&pZog for all s =¢ —1,...,2¢ — 2, then the hypergeometric pairing
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I° : "8 (2) ® F (2)/#(z) — C is nondegenerate. Moreover
/=2 n+f— 2
det[ (Wi, W) le -1 = (20 (=010

£—1
IR D/pY ' (=1/p)' "

n —1

xT (1 425 Aplp+(5+2 - 2/)/p) I'(1+Q24, —s)/p)
m=1

(n+{—3—3

n=l _ F((ZH‘Az—Zm-i'Am'—S)/P)
><m];[] F((zAm S)/p)léll;lmgn F((zl - Al —Zm — Am + S)/P)

Here we identify me 27" with (m,0)€ 27
Theorems 5.14 and 5.15 are proved in Sect. 9.

Example. Theorem 5.14 forn =1, £ = 1 and Theorem 5.15 forn =2, £/ =1
give

(5.16) jo Fa+ sy (a—suPds =2milQaYu+u"') 2,

}o I'(a+$)[(b+s)(c—s)[(d—s)ds
I'(a+c)[(a+d)[(b+c)(b+d)
Ta+b+c+d)

=27

’

which are formulae for the Barnes integrals [WW].

For arbitrary ¢, Theorem 5.14 for n = 1 and Theorem 5.15 for n = 2 give
the following Mellin—Barnes integrals, which are generalizations of the famous
Selberg integral:

(5.17)

T T fiere e P s
= 2ni) (u +u~)~/@HI=DR) kl;[l %—kf)—)l"(Za + (k- 1x),

_Z : —Z kill <f(a +80)T(b + 50 — )T — 51

k=L I'(s; — s¢ +x)(sp — 55 +x)>d/s

% JI;Il I'(s; —s)I(si —55)
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_ N
=@ I\ Farm

¢ <F(1+kx)

I'a+c+(k—Dx)(a+d+(k—1)x)
I'a+b+c+d+Q27—k—1)x)

I(b+c+(k—Dx)b+d+ (k- 1)x)>

Fra+b+c+d+ 2 —k—1)x)
where Rea, b,c,d,u,x > 0.

Remark. After this paper was written we found out that the second formula
in (5.17) had appeared in [G]. In Sect. 9 we give a proof of the first formula
in (5.17) and use the formula to prove Theorems 5.14,5.15.

Remark. We also obtain determinant formulae similar to (5.14) and (5.15) for
the hypergeometric pairing in the trigonometric case [TV3]. Under the same
specialization as above, those formulae give multidimensional generalizations
of the Askey—Roy formula [GR, (4.11.2)], and, on the other hand, can be
viewed as a generalization of the famous g-Selberg integral, cf. [Ka, AK].

Remark. 1t is plausible that the assumptions on p, A,,...,A4,, z1,...,2, of
Theorems 5.14 and 5.15 as well as of Theorems 2.15,2.17,4.10,4.11,5.9,6.4,
6.6,6.7 could be replaced by the following weaker assumptions: the step p is
such that {2,...,¢} ¢ pZ -, the weights A;,..., A, are such that

2Apn—s&pZ, m=1,....n, s=0,...,/—1.
and the coordinates z1,...,z, obey the condition
Zi+Aj—zm+ A —SEpZ, Im=1,...,n I+m,
for any s =0,...,/ — 1, so that z€ B.

Let /¥ be any element of the trigonometric hypergeometric space 4. The
restriction of the function # to a fiber defines an element W|, € %(z) of the
trigonometric hypergeometric space of the fiber. The hypergeometric pairing
allows us to consider the element W |, € %(z) as an element sy (z) of the space
H#*(z) dual to the hypergeometric cohomology group #(z). This construction
defines a section of the bundle over €" with fiber 5#*(z).

There is a simple but important statement.

(5.18) Theorem. Let either 0 <Imu<2n and WeF or py=0 and We

F™ Let p<0. Let Ay,...,A, obey (2.13). Then the section sy is a peri-
odic section with respect to the Gauss-Manin connection.

The theorem is proved in Sect. 9.
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The section sy and the tensor coordinates B, induce a section
(5.19) Yz Bl -W|€(Vy, @ QW)

of the trivial bundle with fiber (V;, ®---® ¥, ),. Theorem (5.18) and
Theorem (4.12) imply

(5.20) Corollary. The section Wy is a solution to the qKZ equation.
The tensor coordinates B.(z), Cr(z) induce a hypergeometric pairing
(5.21) e (@ QY ® (8 @) - C
if 0 <Impyu <2n and
(5.22)
() @ @V @ @V F (Ve ® - @V, );_, — €

if u = 0, which also can be considered as maps

(5.23) Lo@:( @ QW) = (i ®-- W,
and
(524) j:,r’(z):(Z{I R --® Z,’? ;ing N (Vn ®---® Vt,, ;ing )

fre(V'® @ V1)s, then the hypergeometric pairing defines a section
1 n
Y:iz— ir,r’(z)° ve(Vy, ® - ® 1)
and, if vG(VT? ® -’V S then the hypergeometric pairing defines a sec-
tion .
Yoz 1D (2) vV, @--- @V, );™

(5.25) Corollary. Let 0 <Imu < 2n and, therefore, k1. Then for any ve
V' Q--- @ V1), the section ¥, is a solution to the gKZ equation with val-
1 "

ues in (V;, ® --- ® V;,),. Under conditions of Theorem 5.14 all solutions are
constructed in this way.

Therefore, for k+1 we constructed the hypergeometric maps
jr,r'(z): I{?(gr;)® Y I{ZI(CT,',) - Vr;(zrl)® e ® V;:,.(zt,,)

from quantum loop algebra modules to Yangian modules. Here {,, = exp(2nizm/
p), m=1,...,n. The maps have the following properties:

[ - (mym+1),0(2) = Py, Vzm+‘R’/rm Vo (ze, — Zep N 2w (2) s
Lo e mmey (@) =Ty w(@)Pys_y, Ry g (exp(2milz,.,, = 22,)/P))
and as functions of z they satisfy the gKZ equations:

Ir,‘c’(zl;---,zr,,. +p;---,zn) = Km(zrp--~3zr,,)11:,t’(zl3---,zn) .
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(5.26) Corollary. Let u =0 and, therefore, x = 1. Then for any vE(Vt',lq ®

-® V(’)Smg the section W, is a solution to the qKZ equation with values

in (VTl ® 9N, )s'"g. Under conditions of Theorem 5.15 all solutions are
constructed in this way.

Remark. Let V} @ - ¥, be a tensor product of sl; Verma modules, Vi ®

-® V, the tensor product of the corresponding irreducible sl;-modules, and
S N QV,—=rNe---® ¥, the natural projection. If ¥(z) is a solution
to the qKZ equation with values in 1 ®---QV, then S¥(z) is a solution to
the gKZ equation with values in V1 @ --- ® V.

This observation shows that the previous constructions give all solution to
the ¢KZ equation with values in (171 Q- ® 17 ) if £ £ dim 17 for all m =
1,...,n. Moreover, the space of solutlons to the gKkZ equatlon with values in
(V1 ® Q@ V, )¢ in this case is identified with the space (Vq @ Vi )y ®F
where Vq ®---® ¥V is the tensor product of the correspondmg irreducible
Uq(slz)-modules, and IF is the space of functions in zj,...,z, which are
p-periodic with respect to each of the variables.

In a separate paper we shall explain how the construction of this paper
gives all solutions to the ¢gKZ equation with values 1n a tensor product of
irreducible sl;-modules.

6. Asymptotic solutions to the gKZ equation

One of the most important characteristics of a differential equation is the mono-
dromy group of its solutions. For the differential XZ equation with values in a
tensor product of representations of a simple Lie algebra its monodromy group
is described in terms of the corresponding quantum group. This fact establishes
a remarkable connection between representation theories of simple Lie algebras
and their quantum groups, see [K,D2,KL,SV,V2,V4].

The substitution of the monodromy group for difference equations is the set
of transition functions between asymptotic solutions. For a difference equation
one defines suitable asymptotic zones in the domain of the definition of the
equation and then an asymptotic solution for every zone. Thus, for every pair
of asymptotic zones one gets a transition function between the corresponding
asymptotic solutions.

In this section we describe asymptotic zones, asymptotic solutions, and their
transition functions for the ¢gKZ equation with values in a tensor product of
sly-modules when the parameter « is different from 1. A remarkable fact is that
the transition functions are described in terms of the trigonometric R-matrices
acting in the tensor product of the corresponding U,(sl;)-modules. This fact
establishes a correspondence between representation theories of Yangians and
quantum loop algebras, since the gKZ equation is defined in terms of the
rational R-matrix action in the tensor product sl,-modules (and, therefore, in
terms of the Yangian action), and the trigonometric R-matrix action in the
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tensor product of Uy(slz)-modules is defined in terms of the action of the
quantum loop algebra.

Let ¥ be a vector space of dimension N for some N. Consider an integrable
system of difference equations for a V-valued function ¥(z|,...,z,):

(6.1) Y¥(zi,--sZm+ Dy-eeszn) = Am(z1,.. ., 2)P(21,...,24), m=1,...,n.

Let A be a domain in C". Say that a basis ¥,..., Py of solutions to system
(6.1) form an asymptotic solution in the domain if

(62) ¥i(z) =exp ( )Y amjzm/P> [T @ —za)m(;+0(1)),
m=1 1=sm<isn

where a,; and bj, are suitable numbers, vy,...,vy are vectors which form a
basis in ¥, and o(1) tends to O as z tends to infinity in A. We will call the
domain an asymptotic zone.

Consider the gKZ equation with parameter k%1 and values in (N ® --- ®
V,)s,. We describe its asymptotic solutions in suitable asymptotic zones.

For every permutation 7€S” we consider an asymptotic zone in C" given
by
(6.3) A, ={zeC"|Rez;, € --- < Rez,}.

Say that z — oo in A if Re(z,, — z;,,,) = —cc forall m=1,...,n— 1.

Recall that for every permutation 1€S" we constructed a basis W}, [€ 2,
in the trigonometric hypergeometric space. This basis defines a basis ‘PW;, le
%, of solutions to the gKZ equation, cf. (5.19).

(6.4) Theorem. Let p < 0. Assume that the weights Ay, ..., A, obey condition
(2.13). Let 0 <Impu <2n and, therefore, x+1. Then for any permutation
1€ S" the basis ‘I’W[r, le 2, is an asymptotic solution in the asymptotic zone
A.. Namely,

n

m=1 1gl<mzn
X (Flio) @ - ® Fv, + (1))

as z — oo in A, so that at any moment assumption (2.14) holds. Here
the branches of the multivalued functions are fixed by the agreement that
larg((zy, — 2o, )/p)| <@ for | < m and Oy is a constant independent of the
permutation t and given by

@I=(2i)f/!F(—l/p)_( ﬁ [(e# _ 1)(Im(lm—l)—21mAm)/P

m=1

x exp((p + 1) (lnAm — ba(lm — 1)/2)/p)

=1
x [I T((24m = 5)/p)[ (—(s + 1)/P)} )

s=0

where 0 < arg(e* — 1) <2m.
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The theorem is proved in Sect. 9.

Remark. The gKZ operators X,{(z) have the following asymptotics in the
asymptotic zone A,

Kn(z) = k¥ (1 +0(1)), m=1,...,n.

The vectors Fl'v; @ - - - @ Fl"v, form an eigenbasis of the operator k/» /= with
eigenvalues K,

Remark. The gKZ equation and the basis of solutions 'I’er, le %}, depend
meromorphically on parameters u, A,,...,/4,. The asymptotics of the basis
‘I’W;, 1€ 2, determine the basis uniquely. Namely, if a basis of solutions
meromorphically depends on the parameters u, Aj,..., A, and has asymptotics
in A, described in Theorem 6.4, then such a basis ceincides with the basis
ler. In fact, elements of any such a basis are linear combinations of the
functions ‘PW[r with coefficients meromorphically depending on u, A,,..., A,
and p-periodic in z,...,z,. To preserve the asymptotics one can add to an
element 'I’W{ any other functions lpW['/ having smaller asymptotics. If u <0,
then one can add only the functions ‘I’W[; with I’ lexicographically greater than [,
and if u > 0, then one can add only the functions ‘I’W‘; with [ lexicographically
smaller than L. Since the coefficients of added terms are meromorphic they have
to be zero.

Example. Theorem (6.4) allows us to write a trigonometric R-matrix as an
infinite product of rational R-matrices. Namely, consider the gKZ equation with
values in the tensor product of two sl; Verma modules ¥} ® ¥;. Then there
are two asymptotic zones Rez; <« Rez; and Rez; ¢ Rez;. Our result on the
transition function from the first asymptotic zone to the second is the following
statement.

For any sl; Verma module V let V7 be Uy(sl;) Verma module corre-
sponding to V. Let A be the highest weight of module ¥ and let v,v? be the
respective generating vectors of modules ¥, V9. Define a map G: ¥V — V4:

-1
G:Flom FJof T T(1+ (s = 24)/p)I (1 + (s + 1)/p) .
s=0
Let p, u be complex numbers such that p <0 and 0 <Imp < 2% Let ¢ = ™/,
Set

Ry (x; p, p) = exp(ux(id @ H)/p)Ry, 15 (x) exp(—ux(id ® H)/p) .

and J(s, ) = (G ® G)(—is(et? — e ) HOHIP where |arg(—i(e#? — e™#2))|
< n/2. Then

(6.5)

Jim (J (s, 1) ( fI Rywnlx + rp; 1, p)) J (s,ﬂ)“) = R"qu,,zq(eXP(—mx/p)) .

r=-—s
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Here the factors of the product are ordered in such a way that » grows from
right to left.

Notice that the minus sign in the argument of the R-matrix in the right
hand side of (6.5) above reflects the fact that we use the coproducts 4 and 4¢
for the Yangian Y(gl,) and the quantum loop algebra U;(glz) which are in a
sense opposite to each other.

The restriction of (6.5) to the weight subspace (V) ® V5), of weight A; +
Ay — 1 can be transformed to the infinite product formula for 2 x 2 matrices
(cf. [RF]), which looks as follows.

Let a,b,c,d, ¥ be complex numbers, Re¥ > 0. Set 1 = Va2 — bc,

1 0 1 a+tu b
h = , A(u) = .
<O —1> () d+u( c a—u)

and A(u; 9) = 9 4(u)9~*". Assume that —bcs(s + 2a) for any s€Z. Then

lim <s-“"h~‘ ( I1 AQu+r; 19)) hssah> = A9(u)

where the factors of the product are ordered in such a way that » grows from
right to left and

1
A1) = sin(n(d + u))
nb(9 + 9~ 1)*

sin(7(a + u)) Il +a+ ) (1+a—2)

ne(d + 971~
Fr+i-a)yf(1—1i-a)

sin{m(a — u))

Theorem (6.4) admits the following generalization. Fix a nonnegative integer
k not greater than n. Let ng,...,n; be nonnegative integers such that

O=nm<m<---<m=n.

Set
9—;‘[1] = 'gb-[zn,'_1+19'":Zni;An,'_I-FIs"'aAn,'; l]
and
9’;’[1] = %[Zn;_l-s\-ly s Zny An_ 15 ~a/1n,-; /]
so that
F= @ Fle--0FN4]
htootb=t
620,420
and
FH= @ Fle--F 4]
et o=t

A20..,420
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with respect to the tensor products introduced in Sect. 4. We consider an

asymptotic zone in C" given by

ni_1 < m; é n;, 1= 1,...,k

/Anz{zea:n

Rez, K-« Rezy, for all my,...,m; such that}

We say that z — oo in A" if Re(z; — z,,) — —oo for all /,m such that n;_; <
I <nj<m £y, i=1,...,k—1, and z; — z,, remains bounded for all /,m
such that ni_ < l, msn, = 1,...,k.

For any WEQ';" [71 let Yw(zn,,+1,---,2n) be the solution to the gKZ equa-
tion with values in (V,,_,+1 ® --- ® ¥,,); corresponding to W (cf. (5.19)).

(6.6) Theorem. Let p < 0. Assume that the weights A, ..., A, obey condition
(2.13). Let 0 <Imyu <27 and, therefore, ksl. Let 4,...,4 be nonnegative
integers such that H+---+ &4 =¢. Let WeF/[4), i=1,... k. Let W=
Wi * -+ - « W. Then the solution Yy (zy,...,2,) to the gKZ equation with values
in (N ®---®WV,)e has the following asymptotics as z — oo in A" such that
at any moment assumption (2.14) holds:

£ 24 A+t An—tt;
By(arenzn)= oy [ (=2, p) @ Eret i Eonen il
/1"”/”'1§i<j§k

X (¥ (21,..-.20) @ - - @ Pwlzn, ... 20) + 0(1)) .
Here I; = {n;—1 + 1,...,m} and |arg((z; — zn)/p)| <7 for | < m.

Theorem 6.4 for ¢ = id follows from Theorem 6.6 for £ = n so that n; = j,
j=0,...,n, and the first formula in (5.17). Theorem 6.4 for a general permu-
tation t reduces to the same theorem for 7 = id.

Theorem 6.6 follows from the next statement on asymptotics of the hyper-
geometric pairing.

(6.7) Theorem. Let p <0. Assume that the weights Ay,..., A, obey condi-
tion (2.13). Let 0 <Imyu < 27 agnd, therefore, k*1. Let £\,..., ¢ and £],..., 0]
be nonnegative integers such that H+---+ G =¢ and £+ -+4, =1
Let w,-eg';"[/,-] and VKE%;’[{,’»], i=1,...,k. Let w=wy%---%xw; and W =
Wy *---x W, Then the hypergeometric integral I{W,w) has the following
asymptatics as z — oo in &' so that at any moment assumption (2.14) holds:

£l . . _t¢
I w)= 5= TT (@@= p) Emet /b Encide=tl

1..../,,! 1§1<]§k

k
X ( 6,;;;1(W,,w,)+o(l)) .
1

f=

Here T; = {ni— + 1,...,m}, |arg((zi — zw)/p)| <7 for i < m and dim is the
Kronecker symbol.
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Remark. In a separate paper we will describe asymptotic zones and asymptotic
solutions for the gKZ equation, if the parameter x of the equation equals 1.
In this case the asymptotic zones are essentially the same as the asymptotic
zones for the KZ differential equation and the asymptotic solutions are similar,
cf. [V4]. If k = 1, then the asymptotic zones of the ¢gKZ equation are labelled
by permutations in S” and suitable planar trees 7. For every permutation t and
atree T we define an asymptotic zone and a basis Br, in the space of singular
vectors (] @ - - ® V,);"%, a basis of “iterated singular vectors”, see [V4]. For
every permutation 7 and a tree T we also define a basis Wr. in the singular
trigonometric hypergeometric space. This basis defines a basis of solutions
to the gKZ equation with values in (¥, ®---® ¥,),"®. This basis gives an
asymptotic solution to the gKZ equation in the asymptotic zone corresponding
the permutation and the tree. Moreover, the leading terms of asymptotics in
this case are proportional to elements of the basis Br,. and the coefficients of
proportionality are products of powers of linear functions like in (6.2) with no
exponential factors unlike in the case of x#l1.
If k =1 then the gKZ operators K,,(z) have the following asymptotics

Kn(z)=140(1),, m=1,...,n,

as all differences z; — z; tend to infinity. In every asymptotic zone the leading
terms of o(1),, form a system of commuting operators, see (2.2.3) in [V4]. The
vectors of the basis By, form an eigenbasis of those commuting operators.

As an illustrating example consider the equation f(z + p) = (1 + a/z) f(z2).
The equation has a solution I'((z + a)/p)/I'(z/p) with asymptotics (z/p)*? as
z tends to infinity.

7. Quasiclassical asymptotics
Consider a system of difference equations
q’(Zl,. . ->Zm +P, . -,Zn) = A(M)(zla' ..,Z";h)W(Zl, .. .,Z,,), m = 1’ .- -:n B

depending on a parameter ~# and assume that

(7.1) Az /b, .. zafhy h) = 1+ hB™(z,,. .., 2,) + o(h)
as & — 0. Introduce new coordinates y,, = hz,, m = 1,...,n, and a new func-
tion

PG1oees ) = CON/hy yulB) -
Then the system of difference equations takes the form

P(P1seees Im +ADs s yn) = (L + BB (3, . ya) + oW1, s Va)

m=1,...,n, and turns into a system of differential equations

0 ~ ~
Pay lP(J’l,---,)’rz)zB(m)(yly--~,J’n)lp(}’1,-~,J’n), m = 1"'-”15
m
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as h tends to zero. We call this system of differential equations the quasiclas-
sical asymptotics of the initial system of difference equations.

Consider the ¢KZ equation with values in (/; ® --- ® V,), and parameter
k = eM where 1 is a given number and 4 is an additional parameter. Then the
gKZ equation has property (7.1) and its quasiclassical asymptotics is the KZ
differential equation

n -Ql ~
Z mqul(yl’”-ayﬂ),

=1 Ym ™
I+m

0 = ~
Py PO 0n) = HA P, ) +

m= 1,...,n, where le = 2A1Am — ZHle — E[Fm -—FlEm.

In the previous sections we constructed solutions to the gKZ equation. The
solutions were labelled by elements of a suitable subspace of a tensor product
of U,(sl2)-modules. We show that these solutions have quasiclassical asymp-
totics and turn into the hypergeometric solutions to the KZ differential equa-
tion which are described in [SV1]. To show this fact we study quasiclassical
asymptotics of the hypergeometric pairing.

Let & be a real positive number. Assume that Im#n = 0. We connect the
parameter y in the phase function (2.5) with the parameter # by an equation
U= hn.

The case Im#n < 0 can be treated similarly. The parameters u and 5 have
to be connected by an equation u = 27 — Ay, if Im#n < 0.

The asymptotics (2.6) of the phase function of a primitive factor gives the
following asymptotics for the phase function (2.5) as # — +-0:

(7.2) B(u/h, y/h) = K2 R P Gy, y)(1 + (1)),

where

~ 4 n ¢
(7.3)  O(U1,..., Uz, Y1s---s ¥n) = €XP (’1 > ua/p> [T 1 (4a = ym)/p)*nP

a=1 m=1 a=1
x [T ((a—us)/p)™2P.

1Sa<bst

Here we fix a branch of the function (x/p)* by |arg(x/p)| < =.
Consider a domain Y given by

(7.4) Y={yeC'|Imy <---<Imy,}.
For every y€Y and each m = 1,...,n we consider an imaginary interval
Up={x€C|Reu=0, Imyp— < Imx < Imy,}, y=—ico,

and a chain

U =

M=

I}

exp <4m' > Ak/p> U .
1 1sk<!
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For any [€ 2] we define a chain Ty in the imaginary subspace in €’ by

U=Ux---xUX--xU,x---xU,.
N————— N e’
i I

For any [ € %" we also define a rational function Wi(u, y) by
n
(7.5)  wilurs--up Y-y = 30 I G TT (s, — Y) ™!
ces’ m=1 a€l,
where I}, = {1 +1""1,..,I"}, m=1,...,n.

(7.6) Theorem. Let p<0. Let ReA,, <0 and let Re y,,=0 for all m=
l,...,n. Let y=hn, Imn>0. Then for any ,me 2" the hypergeometric
integral I(Wi,wy) has the following asymptotics as h — +0 and y€Y:

1) = (20 2012 s T [ S2OVP)
m=] s=1 Sm(ns/P)

X exp (ni i Ap(I™ 417 — 2/)/p>

m=1

x_f B(u, Y)Wy, y)diu(l + o(1)).
U, )

Remark. Recall that the hypergeometric integral I( W], wy,) is defined by (5.3),
the functions W; and w,, are given by (2.26) and (2.19), respectively, and we
replace in these formulae zy,...,z, by »i/h,..., ya/h.

For any IE:Z}"—' consider a domain WU; in the imaginary subspace in €/
defined by

(7.7)
U, = {z;ed:f

Reu, =0, a=1,....7, Imy, £ Imuj jm-
- ZEImuym EImyyey, m=1,...,n— 1}‘

(7.8) Theorem. Let p <0. Let ReA, <0 and let Re y,=0 for all m=
l,...,n. Let p=hn, lTmy =0. Then for any IEEZ}"—I and any me 2] the
hypergeometric integral I(I/f/[,w,,,) has the following asymptotics as h — +0
and yeY:

o n n
(Wi w) = Qi)Y O 172 Z0n AP ek (2;::‘ 3 At -1 )/p)

m=1

X [ ®(uy y o, ) du (1 4 0(1)).
Uy

Remark. Recall that the hypergeometric integral I( Wy, wy) is defined by (5.3),
the functions W and wy, are given by (2.27) and (2.19), respectively, and we
replace in those formulae zi,...,2z, by yi/h,..., Yu/h.

Theorems 7.6 and 7.8 essentially follow from (2.26),(2.27) and (7.2).
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(7.9) Conjecture. The claims of Theorems 7.6 and 7.8 remain valid for any
Ay, ..., A, which obey condition (2.13) if other assumptions of the theorems
hold and the integrals in the right hand sides of (7.6),(7.8) are defined by
analytic continuation.

Remark. If n=0, that is k=1, then the limiting phase function (7.3) has no
exponential factor and is a product of powers of linear functions. In particular,
if the numbers A,,/p and 2/p are all rational, then the limiting integral is an
integral of an algebraic function. From this point of view our initial hyperge-
ometric integrals are a deformation of periods of algebraic differential forms,
and the subject of our study is a p-deformation of algebraic geometry.

8. The one-dimensional case

In this section we consider in detail the one-dimensional case £/=1. So we
consider the affine projection n:C!*" — C" and a discrete rational sl,-type
local system on C'*™" and study its de Rham complex. Our main goal of doing
this is methodological. Since this case is technically simpler than the general
case, the ideas of the proofs become more clear and visual. The case /=1 can
be viewed as a p-deformation of the following example,

Let zy,...,2z, be pairwise distinct points in €. Let &% be the space of ra-
tional functions in ¢ which are regular in C\{z,...,z,}. Consider the holo-
morphic de Rham complex Q* on €\{z,,...,z,} with coefficients in Z as-
sociated with the differential V=d+wA:, w=ndt+ 3, _| inwm, Where
Wp = dt/(t — zm)-

(8.1) Theorem. Let n+0. Then for generic Ay,...,4A, the forms w,..., o,
form a basis in H'(Q®,V).

For 7=0 the differential of 1 gives a relation in H'(Q*,V)
n
(8.2) > Ay ~ 0.
m=1

(8.3) Theorem. Let n=0. Then for generic A,...,4, the forms wi,..., o,
span HY(Q°,V). Moreover, relation (8.2) is the only independent relation
between them.

Let z(,...,z,€iR, Imz <--- <Imz,, zy = —io0, zp4 = +ico. Consider
the following intervals:

Ii={reCjRet =0, Imz £ Im¢ £ Imz1}, k=0,...,n.

Set
I(w) = [ exp(nt) Hl (t—zn)mw
Ik m=
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(the integral must be appropriately regularized). Here we assume that 0 £
arg(t — z, ) < 27, thus fixing a branch of the integrand. The intervals /; become
linear functionals on the space of differential forms. For a function f we have

I(Vf)=0, k=0,..n.

This means that the linear functionals on differential forms defined by intervals
I can be considered as elements of the space H(Q2°®,V) of linear functionals
on H'(Q*,V).

(8.4) Theorem. Let Ay,...,4, be generic. Then

a) For any n, Imn >0, the intervals I,,...,1, form a basis in H(Q°,V).
b) For any n, Imn < 0, the intervals Iy,...,1,— form a basis in H\(2°,V).

(8.5) Theorem. Let n = 0. Let Ay,..., A, be generic. Then the intervals I, ..
L,y form a basis in Hi(Q°,V).

L1

Remark. Theorems 8.4 and 8.5 follow from elementary topological consider-
ations. Theorem 8.5 can be also deduced from the following formula [V1]:

T+ n i =l
(8.6) det | f il I1¢—zn)™ dt]
% £~ 2] p=i Lm=1

n

" -1
=F<1+Zlm> [T 71+ 4m) T] 21 =z )™ .
m=1 m=1

I+m

One-dimensional discrete cohomologies

Consider the affine projection n:C'*" — € and a discrete rational sl,-type
local system on C!*”. In this case the connection coefficients are equal to
nt—Zy+ A
QDI(t,Z):K H —# )
m=l ! —Zm — A
t—zZy—Au—0p

t =
(Pm+1(’z) t—z,,,+Am-p’

m=1,...,n, and the phase function takes the form

B n Tt —zm+ Am)/D)
(8.7) o) = exp(ue/p) 1 o =453

The functional space Z is the space of rational functions in ¢ and zj,...,z2,
with at most simple poles at the following hyperplanes

t=2zm—An+(s+1)p, b =2zm+ Ay —sp,
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m=1,...,n, S€EZ>p. The rational hypergeometric space & CF is the sub-
space consisting of functions of the form

n 1
P(t,zy,..., _
(721 Zn)mI;I]t—Zm—Am
where P is a polynomial of degree less than # in the variable ¢. The discriminant
B C C" is the union of the hyperplanes

ZI_Zm+AI+Am=pSs SGZ’

I,Lm=1,...,n, [$m, in the base space C".

To simplify notations in this section we write wy(¢,z) instead of we(m)(2,2).
Recall that

1 t—z+ Ay

8.8 LZ1yennsZy) = —————— —_— =1,...,n.
(8.8) Wi(t,2) Z,) (—z,— A, 1§I11<mt"zl"/11 m n
(8.9) Lemma. (cf. (2.20)) For any z€ B the functions wy,...,w, restricted to
the fiber over z form a basis in the rational hypergeometric space F(z) of
the fiber.

Proof. Consider functions

n 1
gm(t,2) = ! H

—_—, m=1,...,n.
m=t L= Zm — Am

Their restrictions to the fiber over z form a basis of the space %(z). Define
a matrix M(z) by

wi(t,z) = ) Min(2)gm(t,2), I=1,...,n.

m=1

The lemma follows from the formula

(8.10) detM = [] (z1—A1~zm— An).
1€l<mgn
The last formula is similar to the Vandermonde determinant formula. d

The coboundary subspace %(z) is one-dimensional and is spanned by
S | AmWnm. Relation (2.21) has the form

m=

(8.11) D(z) 1=23 Apwndt,

m=1

where D(z) is the differential of the de Rham complex of the fiber over z.
Consider the de Rham complex of a fiber,

0— Q%%:)— QY(z) — 0.

Let #(z) C H'(z) be the image of the rational hypergeometric space of
a fiber.
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(8.12) Theorem. Let £ = 1. Let x#1. Assume that p <0 and 2A,, & pZ for
any m=1,...,n. Let z€B. Then dim s#(z) = n, that is #(z) = F(z).

(8.13) Theorem. Let £ = 1. Let k = 1. Assume that p <0 and 2A,, ¢ pZ for
any m=1,...,n. Let zeB. If 2 Z;=1 Am § pZ <, then dim H#(z) =n — 1,
that is #(z) ~ F(2)/R(z).

Theorems 8.12 and 8.13 can be proved by rather straightforward calcula-
tions. Nevertheless, we will give further another proof which can be naturally
extended to the general case.

Remark. Assume that the weights A,..., 4, are such that 24,, ¢ pZ>, for
any m = 1,...,n. Let z€IB. Then it is easy to check the following.

a) If k+1, then we have #(z) = H'(z) and dim #(z) = n.
b)Ifk=1and2 3, _| Am ¢ pZ <o, then also #(z)=H'(z), but dim #(z)
=n—1

Otherwise, we have dim H#'(z)/#(z) = 1 and dim #(z) canbe n — 2 or n — 1.

One-dimensional discrete homologies

The trigonometric hypergeometric space %, is the space of functions of the
form

. _ exp(mi(zn — t)/p)
P voisln :
(gs Cl’ 9C )mI-_T-} Sln(TC(t —Zy — Am)/p)
where
¢ = exp(2nit/p), Cm = exp(2nizn/p),
and P is a polynomial of degree less than n in the variable &.

We write W,(t,z) instead of W, (n)(t,2) and W,,,(t,z) instead of We(m)(t,z).
Recall that

(8.14)  Wu(t,z1,...,2n)
— CXp(T[i(Z,,, — t)/p) sin(ﬂ(t —Zm + Am)/p)
sin(n(t — zp — Am)/P) 1gi<m sin{n(¢ ~ zm — Am)/P) ’

m=1,...,n, and
(8.15) Wy, = Wy exp(—TiAm/p)

~Wpe1 exp(idpmsi/p), m=1,...,n—1.

(8.16) Lemma. (cf. (2.28)) For any z€B the functions Wi,..., W, restricted
to the fiber over z form a basis in the trigonometric hypergeometric space
Fy(z) of the fiber.
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Proof. Consider functions

Gn(t,2) = exp(2ni(m — Vtp) T] ——RZT1/P)

i , m=1,...,n.
me=1 SIN(T(t = Zpy — Ap)/pP)

The restrictions of these functions to the fiber over z form a basis of the space
F4(z). Define a matrix M7(z) by

Wit,z)= 3 ML (2)Gu(t,z), 1=1,...,n.
m=1

The lemma follows from the formula

det M7 =(2i)"" " exp (m‘ > zm/p) [1  sin(n(zi~A1~zn—An)/p).

m=1 1gl<m=n

(cf. (8.10)). =

(8.17) Lemma. (cf. (2.29)) For any z€B the functions WAi,...,W,_, res-
tricted to the fiber over z form a basis in the singular trigonometric hyper-
geometric space Fy °(z) of the fiber.

The proof is similar to the proof of Lemma 8.16.

Let I be the imaginary axis in the space € with coordinate ¢ oriented from
—ico to +ioco. Recall that the hypergeometric integral I(W,w) for functions
wEF(2), W € Fy(z) is defined as the analytic continuation of the integral

(8.18) I(W,w) = [ ®(t)w()W(t)dt

1
with respect to Aj,...,A, and z,...,z,, starting from large real negative
Ar,..., A, and imaginary zy,...,z,. The analytic continuation can be written

as an integral over a deformed imaginary space
(8.19) IW,w) = [ ®()w(t)W(1)dt.
T
The deformation of the imaginary space is_not unique. Below we describe an
example of the deformed imaginary axis I which is involved in the integral
(8.19). _
The deformed imaginary axis I is a sum of three terms:
(8.20) I=T+C*+C,

which are defined below. First we assume that all the points

(8.21) Zmt(An+sp), m=1,...,n s€Zyy,
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are not imaginary. In this case we set T=1. To define the terms C* consider
the following sets:

2" ={zw+ An+ ps|Re(zp + An + ps)>0, m=1,...,n, s€ZLxp},
27 ={zp — Ay — ps|Re(@zn — A — ps) <0, m=1,....n, s€Zxy},
Zy={zw— A — ps|Re(zn — A — ps)>0, m=1,...,n, SEZ3xp},
Zo={zm+ An+ ps|ReGm + An + ps) <0, m=1,...,n, s€ZLxq} .

We define Ct to be the sum of small circles with centers at the points of
Z* oriented anticlockwise. Similarly, C~ is the union of small circles with
centers at the points of Z~ oriented clockwise. We assume that the circles are
so small that there are no points of the sets Z,, Z_ inside them and they do
not intersect the imaginary axis. '

If some of the points (8.21) are imaginary, then we take I to be an appropri-
ate deformation of the imaginary axis. Namely, if Re(z, + Ay + ps)=0, then
we replace the small interval Ret=0, [Im(¢ — z, — A, — ps)| < ¢, by a small
semicircle (¢t — zy — A, — ps|=¢, Re(t —~zp — Ay — ps) = 0. Similarly, if
Re(zy — Am — ps) =0, then we replace the small interval Ret= 0, Im(t —
Zm + Am + ps)| £ ¢, by a small semicircle |t —z, + A, + ps|= & Re(r—
Zm + Am + ps) < 0. The terms C* remain the same.

Example. Let n = 1. In this case the deformed imaginary axis I looks like

where asterisks and dots stay for points z; + A; + ps and z; — A, — ps, s€
Z >, respectively.

(8.22) Lemma. Let 0 <Imu <2n. Then for any I,m=1,...,n the hyper-
geometric integral I(W),,wy) can be analytically continued as a univalued
holomorphic function of complex variables p, Ay,..., Ay, z1,...,2, to the
region

p<0, z€B, 24népZ<y, m=1,...,n.

Proof. The only thing to be shown is convergence of the integral in the right
hand side of (5.1) for functions W = W,, w = w,,. The convergence is clear
since

B(t) = 12 Zm= 4P exp(ut/p)(1 + 0(1)), ¢ — =ico,

and therefore, under the assumptions of the lemma the integrand decays expo-
nentially as ¢ goes to infinity. O
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(8.23) Lemma. Let Imu =0. Then for any I=1,....n—1, m=1,...,n the
hypergeometric integral 1(W;,wy) can be analytically continued as a uni-
valued holomorphic function of complex variables p, Ay,..., Ay, 21,...,2, t0
the region

p<0, zeB, 2Qnépley, m=1,...,n.

The proof is similar to the proof of the previous lemma.

In what follows we need to consider the hypergeometric integral I(W,w)
for functions w from the functional space % (z) of a fiber. The definition is
similar to the definition of the hypergeometric integral for we& % (z). Below
we describe explicitly the analytic continuation of the hypergeometric integral
I(W,w) for any function w€ %(z) as an integral over a suitable deformation
of the imaginary line.

For any integer s let I[s] be the deformation of the imaginary axis which
is defined similarly to I but the parameters A,,..., 4, are replaced by A; +

., A, + ps, tespectively. In particular, I[0] =

For a function we& % (z) we have

(8.24) I(W,wy= [ S(Oyw()W(1)dt
I's]

where the integer s is chosen so that the integrand has no poles at the points
Zm = (Am + pr) for r <s, r€Z. Under this assumption the right hand side of
(8.24) does not depend on s.

Let DZ(z) = {Dw|we ZF(z)}.

(8.25) Lemma. Let either 0 <Impu <2m and We F(z) or u=0 and We

.%Si"g(z). Assume that p <0 and 2A,, ¢ pZ for any m=1,...,n. Let z€B.
Then

a) The hypergeometric integral I(W,w) is well defined for any function
weF(z).

b) The hypergeometric integral I(W,w) equals zero for any function
weDF(z).

Proof. The proof of claim a) is similar to the proof of Lemma 8.22. Claim b)
follows from the next observation. Let Ilp[s] be the contour obtained from ]I[s]
by the translation ¢ — ¢ + p. Then for a given function wE./'(z) and a large
negative s the contour ]I[s] and 1 p[s] are homologous in the complement of
the set of poles of the function di(t)w(t)W(t) O

(8.26) Lemma. Let pu=0. Assume that p<O0 and 2A, & pZ<o for any
m=1,...,n. Then the hypergeometric integral I(W,w) equals zero for any
weER(z) and W e F;"8(2).

Proof. The lemma follows from formula (8.11) and Lemma 8.25. (W]
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The hypergeometric integral defines linear functionals I(#, - ) on the func-
tional space of a fiber. Lemma 8.25 means that these linear functions can be
considered as elements of the homology group H(z), the dual space to the
cohomology group of the de Rham complex of the discrete local system of
the fiber.

Let W be any element of the trigonometric hypergeometric space 4. Let
W|. € Z(z) be its restriction to a fiber. Consider an element sy (z) = I(W|., -)
of the homology group H(z).

(8.27) Theorem. (cf. (5.18)) Let £ =1 Let either 0<Imu<2n and
We, or u=0 and WeF;"®. Assume that p <0 and 24, ¢ pZ for any
m=1,...,n. Then the section sy is a periodic section with respect to the
Gauss—Manin connection.

Proof. Let the contour I,[s] be defined similar to II[s] but the parameter z,, is
replaced by z, — p. The statement of the theorem means that for any function
we F(z) and each m = 1,...,n we have the equality

I(Wowy= [ o(Oww(n)de,
Im(s]

where s is a sufficiently large negative integer. The last equality holds since
the integrand @(s)w(¢)W(¢) has no poles separating the contours I,[s] and
Ifs]. |

Consider a section ¥y of the trivial bundle over C* with fiber (V1 ® --- ®
Vade:

TW(Z)z ZI(leawmlz)vl®"'®va®"'®vn-

m=1

(8.28) Corollary. (cf. (5.20)) The section Ww is a solution to the qKZ equa-
tion.

QOur further strategy is as follows. First we show that if 0 <Impyu <2x,
then the basis of sections Wy, m = 1,...,n, is an asymptotic solutions to the
gKZ equation, (cf. Theorem 8.29). Using this fact we prove that the hyper-
geometric pairing [ : %(z) ® #(z) — € is nondegenerate if 0 <Imp <2=n
(cf. Theorem 8.33). Studying the asymptotic behaviour of the hypergeomet-
ric integral as y tends to zero we will show that for ;1 = 0 the hypergeometric
pairing 7° : %, "%(z) ® F(2)/%#(z) — C is nondegenerate (cf. Theorem 8.34).
At the end of the section we will describe the quasiclassical asymptotics of
the hypergeometric integral for £ = 1 (cf. Theorems 8.39, 8.40).

For every permutation 7€ S”, consider the asymptotic zone in €* given by

A, ={zeC"|Rez,, « --- KRez,},

and say that z — oo in A, if Re(z,, — z;,,, ) — —cc forall m=1,...,n — 1.
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(8.29) Theorem. (cf. (6.4)) Let £ =1. Let 0<Imu<2n and, therefore,
k+1. Assume that p <0 and 2A, & pZ for any m = 1,...,n. Then for any
permutation 1€ S" the basis Yy, m =1,...,n, is an asymptotic solution in
the asymptotic zone A.. Namely,

Pu:(z) = Onexp(pzm/p) 11 (@ —za)/pY™  T1  (GEm—z:)/p)™
1gi<ty! .l <lgn
X Q@ QFu, ® - Qv, +0(l1)).

as z— 00 in A; so that z€B at any moment. Here |arg((zx — z;)/p)l <=
and 6, is a constant independent of the permutation © and given by

O = 2i(e" — 1) exp((p + 1) Am/P)T (2 An/P) »
where 0 < arg(e* — 1) < 2m.

Proof. To simplify notations we will give a proof only for t =id. A simple
but important fact is that for any W €%,

(8.30) Yw(zi + Dy s2n + D) = KPw(z1,...,2,) .

It allows us to fix freely the real part of one of the coordinates zy,...,z,.
Consider the hypergeometric intcgral [(W,, wn). The corresponding inte-
grand @(¢)w,(t)W,(t) can be rewritten as follows:

(8.31)
B Wyu(t) = (—7p) ™" exp(( — 1i)t/p + Tizm/p)
X T((t = zm + An)/P)T ((2m + Am — t)/P)

N I'((zi1 + A; = t)/p) r((t—zi+ A))/p)
1i<m Pzt = A1 = 8)/D) m<i<n Tt —21 — AD/P)

This function has no poles at points z; — A; — sp, s€Z, for / <m and has
no poles at points z; + A; +sp, s€Z, for | > m. Moreover, due to (8.30),
without loss of generality, we can assume that z tends to infinity in Aiq so that
Rez; — —oo for [ < m, Rez, remain finite, and Rez; — +oo for / > m. Under
this assumption the integrand has no poles at the points z; + A; + sp, SEZ,
for / < m in the halfplane Re? > 0 and has no poles at the points z; — A; — sp,
se€Z, for | > m in the halfplane Ret > 0. Therefore, we can “straighten” the
contour and write

(8.32) I(Wp,wi) =~f D(YW(YWu(2) dt
In

where the contour I, is the contour defined above for analytic continuation of
the integral

nf exp((4 — /D)Lt = zm + Am)/PI((2Zm + Am — 1)/p) dt .
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The remaining part of the calculation is a standard exercise. We replace the
integrand in the integral (8.32) by its asymptotics as z — oo in Ay and obtain

I(Wy, W) = (—7p) " exp(uz,/p) 1 [T (2= zm)/p)* P

<l<m

x 1 (zm —20)/pY"P [ exp((u — mi)t = zw)/p)

m<lgn L,

X T((t = z2m + Am)/P)T (2 — t + Am/p) dt (1 + (1)) .

The last integral reduces to the Bames integral (5.16) and is calculated explic-
itly. Finally, we have

I(Wy, wy) = 2i(* — 1) 2452 exp((p + 160) A /D) (2 A /D) €xp(tiz /D)

X (1= za)pP P T1 ((zm—2)/p)*MP(1 4 o(1)),

1Zl<m m<l!Zn

A

as z — oo in Ajg. Here 0 < arg(e# — 1) < 2m.
The hypergeometric integral I(W,,, w;) for I#m can be treated similarly to
the hypergeometric integral I(W,,, w,,) considered above. The final answer is

I(mewl) = I(W”me)o(l) ]
which completes the proof of Theorem 8.29. g
(8.33) Theorem. (cf. (5.14)) Let £ =1. Let 0 <Impu<2m. Assume that

p<0 and 2An€pZy for any m=1,...,n. Let z€B. Then the hyper-
geometric pairing I : F(z2) @ #(z) — C is nondegenerate. Moreover,

et (Wr, W)l ey = (20)"(eH — 1) 2 Zaminlp

X exp ((u + i) f An/p+ 1 Z zm/p)

m=1 m=1

n T'((z1 + A; — z + An)/pP)
< ICAP) Tl R A=z = Amip)

Here 0 S arg(e* — 1) <2m.
Proof. Denote by F(z) the determinant det[/(W),wn)]] ,—; and by G(z) the
right hand side of the formula above. Since for every / = 1,...,n the section

WYy, is a (V] ® - -- @ ¥, )1-valued solution to the gKZ equation, F(z) solves the
next system of difference equations

(N
F(z1,.oosZm + Poevoszn) =det Knp(zy, .. 20)F(21,...,2,) .
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[4)]
Here det K,,(z) stays for the determinant of the operator K,,(z) (3.10) acting
in the weight subspace (V] ® --- ® ¥, )1. Using (3.5) we see that
W Zy+ Ap—z1+ A1+ p

det K,.(z1,..-,2Zn) =K
@ ) ]gl;LmZm_Am"Zl“‘Al‘i“p

H Zm +Am — 2z + Ay
m<iZn Zm — Am — 21— A '

Therefore, the ratio F(z)/G(z) is a p-periodic function in each of the variables
ZyyanesZpe

F F
6(21,...,zm+p,...,z,,) = 5(21,...,2,,).

Theorem 8.29 implies that the ratio F(z)/G(z) tends to 1 as z tends to infinity in
the asymptotic zone Ajq. Hence, this ratio equals 1 identically, which completes
the proof. ]

(8.34) Theorem. Let £ = 1. Let u = 0. Assume that p <0 and 2A,, ¢ pZ for
any m=1,...,n. Let zeB. If 25" _| An & pZ o, then the hypergeometric
pairing I° : ;' "8(z) ® F(z)/R(z) — C is nondegenerate. Moreover,

n —1
detlI 0, wa )y = QiY'T (1 +2y Am/p> (1 +24,/p)

m=1

g I'((zi + A — zm + An)/p)
8 ml—=Il F(ZAM/P) 1§II<_Im§n F((Z[ - AI —Zm — Am)/p) '

Proof. Since both sides of the formula above are analytic functions in

Ai,..., Ay, it suffices to prove the formula under the assumption

n
0<2) Am/p<l.

m=1

To prove the theorem we first assume that x=+0 and study asymptotics of the

determinant det{Z(#}, wn)]] 4=, as u tends to zero. We will show that
(8.35)
n "
det{I(Wi, W )i et = (ip/An)exp <m' 2 Am/p) 2 B elp
m=1

n -1
x T (1 +2 ; A,,,/p) det[I(W), wa)]} ey (14 0(1))

as p— 0,0 <argu <m. Due to (8.33) the last formula will imply the required
formula for det[/( W], ww)].

First we change bases in the rational and trigonometric hypergeometric
spaces of a fiber. We set
We=Wy m=1,.,n-1, W =W,

m
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and

n
! 7
W, =Wn, m=1,...,n—1, W =3, AnWn .
m=1

We have
n—1

(8.36)  det[I(W], w;,,)]',"m=l = A,,exp<—m’ > A,,,) det[l(W,,w,,,)]’],,,l=1 .
m=1

As u tends to zero, the entries I(W/,w),), I,m = 1,...,n — 1, have finite limits
I( W, wm), respectively. Similarly, the entries /(W/,w.), I =1,...,n — 1, tend
to zero since D(z) - 1 = 2w, dt at u = 0 and, therefore, I{ Wi, wy)=0atu=0.
More precisely, we have I(W,/,w;,) = O(u) as u — 0. The behaviour of the
entries I(W,,w.), m = 1,...,n, is described in the next lemma.

(8.37) Lemma. Let 0<2) ) _An/p<1l. Let u—0,0<argu<m Then

(Wi W) = 21 exp(rtiAnp)u=2 Tnminlo (2 > Am/p) (1+o(1)).
m=1

Proof. As t — —ioo, the integrand of the hypergeometric integral I(W,,w,)
has the following asymptotics:

n—1
B ywm(O)F(1) = (~2ip)exp <ut/p — midyfp = 2ni 3 Am/p)
X (tfp)” 2 Em (1 4 0(1)).

Denote by F(t) the left hand side of the equality above and by G(¢) the right
hand side without the factor 1 + o(1). B

Let s be a positive number such that s > max{|z|,...,|z|}. Let I be the
part of the deformed imaginary axis Il in the halfplane Im? > —s. We have

0 0 —~is
I(Wp,wp) = ( [ - f) Gydt+ [ (F(t)—G(t))dt+ [F(t)dr.
—ioco —is —ioo E
The first integral in the right hand side above can be calculated explicitly since

o n
S exp(ut/p)(t/p) ™"+ e nle ditp

—ioo
—_ ; - ‘—22;=1Am/P <
=—exp (2% 3 An)u r{2 A./p},
m=1 m=1

and the three other integrals have finite limits as u — 0. The lemma is proved.
O

(8.38) Corollary. Let 0 <23 _An/p<1. Let p— 0, 0<argp <n. Then

(W, wy) = 24 exp(mid,/p)u~2 Eminip L (1 +2 }E Am/p) (1+0o(1)).

m=1
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Finally, we have

detlI (W] , W)} ey = detlI(W, w52l I(W,, W) )(1 + 0(1))

I m=

Using (8.36) and Corollary 8.38 we get (8.35). Theorem 8.34 is proved. O

Proof of Theorems 8.12 and 8.13. Theorems 8.12 and 8.13 follow from
Theorems 8.33 and 8.34, respectively, and Lemma 8.25. a

Quasiclassical asymptotics

Recall that to study the quasiclassical asymptotics of the hypergeometric inte-
gral we introduced new parameters 4 and n = u/h, and new coordinates u = At
and y, = hz,, m = 1,...,n. The quasiclassical asymptotics of a hypergeometric
integral is the asymptotics of the integral as 2 — 0 while the coordinates
Y1,..., Vs and the parameter n remain fixed.

For each m = 1,...,n, we defined an imaginary interval

Up={ueC|Reu=0, Imyp_; < Imu < Imy,}, y=—icc,

a chain

U, = iexp (47{:’ > A;Jp) U .

I=1

and a rational function

W, V1yeoey Yn) = pr——
m

Set
B, y1,..., ya) = exp(nu/p) l'_I1 ((u = ym)/p)*mP

where |arg((u — ym)/p)| <.

(8.39) Theorem. (cf. (7.6)) Let £/ =1. Let p<0. Let ReA,, <0 and let
Reyn,=0 for all m=1,...,n. Let y=nhy, Imn>0. Then for any I,m=
1,...,n the hypergeometric integral I{(W),wy) has the following asymptotics
as h— +0 and yeY:

(W, wa) = —2ih™2 Z:2=1A"/"exp <—7riA,/p —2mi 3y, Ak/p>

1£k<!

X [ B, y)om(u, y)du (1 + o(1)),
7/

Remark. Recall that hypergeometric integral /(W;,wy,) is defined by (5.3)
where 7 =1, the functions W; and w, are given by (8.14) and (8.8),
respectively, and we replace in these formulae zy,...,2, by yi/A,..., ya/h.
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(8.40) Theorem. (cf. (7.8),(7.9)) Let £/ =1. Let p<0. Let Re A,, <0 and
let Rey, =0 forall m=1,...,n Let uy="hn, Imn=0. Then for any | =
I,....n—1 and any m = 1,...,n the hypergeometric integral I(W;, wy) has
the following asymptotics as h — +0 and y € Y:

H(Wy, W) = 2ih~2 Xk 4P exp | 27 Alp
12kl

X [ D(u, y)Wm(u, y)du(1 + 0(1)) .
Ui

Remark. Recall that the hypergeometric integral / 0%, wp) is defined by (5.3),
the functions W, and w,, are given by (8.15) and (8.8), respectively, and we
replace in these formulae zy,...,z, by yi/h,..., y,/h.

Remark. The claims of Theorems 8.39 and 8.40 remain valid for any A,,...,4,
such that A, ¢ pZ<q for all m = 1,...,n, if the other assumptions of the the-
orems hold and the integrals in the right hand sides of (8.39),(8.40) are reg-
ularized in the standard way. We omit the proof since it is not essential for
our purpose in this paper.

The idea of the proofs of Theorems 8.39,8.40 is simple. After a suitable
rencrmalization, the quasiclassical asymptotics of the function W; is given by
a linear combination of the characteristic functions of the intervals Ui,..., U;
with the coefficients defined by the chain TU,. Similarly, after a suitable renor-
malization, the quasiclassical asymptotics of the function W, is given by the
characteristic function of the interval U,,;. Therefore, modulo renormalization
factors the quasiclassical asymptotics of the hypergeometric integrals /( Wi, wp,),
I (W ,Wn) are given by integrals of products of powers of linear functions over
the chain U, or over the interval Uy, respectively.

Proof of Theorem 8.39. To simplify notations we will give a proof only for
[ = m. Consider the hypergeometric integral /(W,, w,). It is given by

(8.41) I(Wywim) = [ B()Wn(t)W(2) dr .
I

Let 4 be a positive number. The factors of the integrand above have the fol-
lowing quasiclassical asymptotics as # — +0 while the parameter n = u/h, the
variable u = At and the coordinates y,, = hz,, m = 1,...,n, remain fixed:

O(t,21,....2a) = exp(uat/p) 11 ((t — zn)/p)*7(1 + o(1)) ,

m=1

1
t— 2y,

Wm(f,Zh...,Zn) =

(1+0o(1)),

Wm(t,Z],...,Zn)

1ghk<m

= 2iexp <2m'(z,,, —t)/p+ widn/p + 27 Y Ak/p> (14 0(1))
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if Imz, <Im¢ and

me(t’Zh"'9zn)

= —2iexp (—m’Am/p—i-Zm' S My/p—2mi 3 Ak/p> (14 o(1))
!

1gk<! <k<m

IfImz; <Imt<Imz;, [=0,...,m— 1. Here z; = —ioc.

To compute the quasiclassical asymptotic of the hypergeometric integral
I (W, wn) we replace the integrand in the right hand side of (8.41) by its
quasiclassical asymptotics, and after simple transformations we obtain that

I(W), W) = —2ih~2 Lk 4P exp <—7ti/11/p -2 3 Ak/p>

1gk<!

X [ ®(u, y)m(u, ) du(1 + 0(1)) .
[

This step can be justified in a standard way using the next lemma.

(8.42) Lemma. Let Rea > 0. Then there is a constant A such that for any
real s the following estimates hold:

(a2 + 52) "% exp(—n|s| ) (& + is)[(x — is)| <A,
[(e? +s2)*I'(is + a)/T(is — )| <A.
Proof. The required formula follow from the next specialization of the Stirling
formula

K
[log I'(x) — (x — 1/2) logx + x — log V21| < Rev’ Rex>0,

where K is some constant [WW].

Theorem 8.39 is proved.

The proof of Theorem 8.40 is similar to the proof of Theorem 8.39.

9. The multidimensional case

This section contains proofs of the statements formulated in Sects. 2—-7. We start
from the lemmas which describe bases in the rational and trigonometric hyper-
geometric spaces of a fiber.

Proof of Lemmas 2.20, 2.28, 2.29. First we have to show that functions wy, ¥,
andW[ lie in the rational, in the trigonometric and in the singular trigonometric
hypergeometric spaces, respectively. The arguments in all the cases are similar,
so we will consider only the rational case.
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It is clear from Definition (2.19) that the function w(¢,z) has the form

1 1
Qo to 21, z,,)”g‘ }:I1 ta = 2Zm — A 1za<bzr ta— o+ 1
where Q is a polynomial which has degree less than n + /¢ — 1 in each of the
variables ¢y, ...,t,. Furthermore, by construction the function w| as a function of
t1,...,t; is invariant with respect to the action (2.9) of the symmetric group S7,
which means that the polynomial Q is skewsymmetric with respect to the
variables ¢1,...,¢. Hence, the polynomial Q is divisible by [, <, cp<,(ta — )
and the ratio is a polynomial which is symmetric in variables ¢,...,¢, and has
degree less than n in each of the variables #,...,; that is the function w; is
in the rational hypergeometric space.
For any 1 €2} (cf. (2.18)), let P(uy,...,us) be the following symmetric
polynomial
Pi(ug,...,uz) = I' 3 H I «
n: eS¢ m=1a€l,
Here I, = {1 +1"!,...,1"}, m = 1,...,n. Consider the following functions
gu(t,z) = Pulty,....tr) H H : =l

m=1a=1 ta = Zm — Am 1ga<bze la =t + 1

"z .
Gi(t,z2) =Py(&\,..., ) [T T = exp(—7ite/p)

m=1a=1 Sln(n(ta —Zm— Am)/p)

sin(n(t; — £&)/p)
1<a<bze SIN(R(ts — tp + 1)/p)

X

o n exp(Tit,/p)
Gi(t,z)=P(&y,...,E -
6=k I G, 2 — AP
sin(n(ts — #)/p)
1<a<bss SI(R(ta — tp + 1)/p)

where &, = exp(2nit,/p), a=1,...,¢. Restrictions of the functions g((t,z),
le 2}, to the fiber over z form a basis of the rational hypergeometric space of
the fiber. Restrictions of the functions G(t,z), [ € 27, (resp.G 1(4,2), leﬁ‘;"-l)
to the fiber over z form a basis of the trigonometric (resp. the singular trigono-

metric) hypergeometric space of the fiber.
Define matrices M(z), M9(z) and M(z) by

W[([,Z) = Z M[m(Z)gm(t,Z), Iee‘?’/n s
mez?

Witz)= Y M} (2)Gm(tz), 1€Z7,
mez”

X

Witz)= ¥ Mum(EGn(tz), ez,
mEiz;"_l
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(9.1) Lemma,

£—=1 n+d— 5= 2
detM=1] [l @—A41—zn—An + )72

s=01</<mgn

det M = (202 (7 exp (ni 5 Znfp- (" " i - l))
1

m=
et — \‘ -2

x [l:[l [T sin{a(zr — A —zw — Ap +S)/P)(

s=01<!<mZn

n+d — 2
detM = (21)“ mn=22 - (",
n+f— s -3

x H [T sin(n(zi— A} =z — A + S)/P)(

s=01g]/<mzn

Proof. The first and the second formulae are equivalent to Lemmas 5.2 and 2.2
in [T], respectively. The third formula can be reduced to the second one by
a suitable change of variables. |

Lemmas 2.20,2.28,2.29 clearly follow from Lemma 9.1. a

Proof of Lemma 2.21. The right hand side of formula (2.21) can be rewritten
as

(9.2)

ﬁ H(Z/l —s)/szﬁtl—zm-g-Am Lh—tg—1 )

m=1 s=0 oS’ m=t {1 = Zm — Am a=2 t1 — 1a +1

1 ty—2z;+ A
< 15 il A
ael’\ la = Zm — Am1g1<mla — 21 — Ay .

where [ = {2 +1"71 1" 141"}, m=1,...,n. Set

- —t—1
fm(t,Z)= (tl Zm + Am h a _ 1)

t]-Zm—‘AMaer”/ltl—ta-‘}-l

th—z+ A4 th—t,—1
11—21—A1a€ﬂ/t1—ta+1

Igli<m

xn[

so that
d i I —2p + Am

> futt2) = 11 [qizfa-l

m=1 m—ltl_zm—Ama=2tl‘ta+1




g-hypergeometric functions, Yangians and quantum affine algebras 569

and expression (9.2) equals
n n l,—t
Z H H (2Am "S)/p
k=1 | m=1 5=0

z 1 fa—2z;+ Ay
X W(tz) )
Ug’[f ”glag“m’ (ta_z'"*/lm1§1;I<mfa—zl—/11>}a}

Lemma 2.21 now follows from the formulae

(e + DAk = LW (6

= 2 {fk(t,z)ﬁ L [T (;;_‘Z—l—'“ [1 Mﬁ)

seS’ m=1 Im!aef”’, —Zp — An 1<l<m ta —z1 — Ay

G

(cf. (2.19)). O

Lemmas 4.6, 4.18 follow from formulae (A.3),(A.5) in [IK], respectively,
and the definitions of the evaluation modules, by induction with respect to the
number of factors of the tensor products.

Theorems 4.7,4.19 follow from formulae (A.5)-(A.8) in [Ko] and
Lemmas 4.26,4.18, respectively.

Lemmas 4.23,4.24 follow from formulae (2.19),(2.26) for the rational and
trigonometric weight functions, respectively, and Lemma 9.1.

The claims of Theorems 4.25, 4.26 that the maps yo P and y, are in-
tertwiners can be verified directly from formulae (4.1) and (4.14), respec-
tively, though the calculations are cumbersome. These claims also follow from
Theorems 4.7,4.19, respectively. The claims that the maps y o P and g, arc
isomorphisms follow from Lemmas 4.23, 4.24, respectively.

The proof of Theorems 5.7 and 5.8 are based on the following simple
lemma.

9.3) Lemma. Consider a configuration of hyperplanes in C/
ty =2z, £ An + sp, t,=thxl+sp,

1Zb<a £/, m=1,...,n, s€Z. The dimensions of all edges of the con-
figuration do not depend on p, Ay,..., Ay, 2\,...,2, provided that assump-
tions (2.12)—(2.14) hold.

Proof. The initial configuration of hyperplanes induces a configuration of
hyperplanes in any edge of the initial configuration. The dimensions of all
edges of the initial configuration remain the same if and only if all the in-
duced configurations do not have nonstandard coinciding hyperplanes. This is
abviously true if assumptions (2.12)-(2.14) hold. |
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This lemma implies that the topology of the complement of configura-
tion (9.3) of hyperplanes in €’ remains the same for all p, A,,...,4, and
zy,...,2, satisfying conditions (2.12)-(2.14).

Proof of Theorem 5.7. The theorem is proved by induction with respect to
the number of integration variables in the hypergeometric integral.
Recall that the hypergeometric integral [(W, w,) is defined by

I(W,wm) = [ &(Own(W(1)d,
G

if Ay,...,A, are large negative. (cf. (5.3)). We can replace the imaginary
subspace I in the last formula by any subspace of the form

(9.4) I, ={teC’|Ret, =x, a=1,...,¢},

where x,...,x, are small pairwise distinct real numbers without changing the
integral.

For the analytic continuation we move Ay,...,A,, z1,...,z, and p and
preserve the integration contour II, as long as it does not touch the hyperplanes
of configuration (5.6). If a hyperplane IT of configuration (5.6) goes through
the integration contour I, the integration contour should be deformed to avoid
the intersection. Deforming the integration contour we add a tube over the
intersection of I, and the hyperplane II. The result of the deformation is the
sum I, + I x Cpy, where I, C IT is a suitable subspace of real dimension
(¢/—1), and Cp is a small circle around the hyperplane II. For example,
if 17 is given by an equation #; — z, — A, — ps = 0, then IT has coordinates
t,...,t,—1, in these coordinates

I,={tell|Rety =xs a=1,...,0 —1}.
and the circle Cpy is given by
Cp= {I[E(EI]I/—Z,,—A" —ps] :p} ,

p is a small positive number. The analytic continuation of the initial hyper-
geometric integral [(W, wy) equals the sum of two integrals

[ S(Own( )W)t + [ Res((O)wl)F(6))d 't
I, It

and the second integral is of the same type as the first one but of a smaller
dimension. Therefore, under the analytic continuation the passage of a hyper-
plane of the configuration through the integration contour results in appearance
of a new hypergeometric integral with a smaller number of integrations. This
reason shows that the hypergeometric integral can be analytically continued to
the region described in the Theorem 5.7.

Now we show the univaluedness of the hypergeometric integral by induc-
tion on the number of integration variables. Denote the domain described in
Theorem 5.7 by U. Consider its fundamental group =,(U,z*). The generators
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of the fundamental group can be chosen of a special form. Namely, for any
hyperplane IT lying at the boundary of the domain U choose a curve oy in U
from the base point z* to a generic point z;; of the hyperplane IT and fix a loop
yp in U which goes from z* to IT along oy, then turns around IT along a
small circle B and returns back to z* along the same curve ay. The loops
v generate the fundamental group.

Let us show that the hypergeometric integral /(W),wy) has the trivial
monodromy under the analytic continuation along the curve yg. In fact, under
the analytic continuation from the base point z* to the hyperplane IT along
the curve ay we create smaller dimensional integrals each time one of the
hyperplanes of singularities hits the integration contour. Under the analytic
continuation of the integral along the circle S the hyperplanes of singularities
do not touch the integration contour if the point zj7 is generic. Now under the
analytic continuation along the curve «y from IT to z* we create again smaller
dimensional integrals each time one of the hyperplanes of singularities hits the
integration contour. But the corresponding integrals created on the way to I1
and on the way from II come with the opposite signs. Moreover, they are
equal according to the induction assumptions. Hence the monodromy of the
integral along the loop yjy is trivial. Theorem 5.7 is proved. g

The proof of Theorem 5.8 is similar to the proof of Theorem 5.7.

As in the case £ = 1 we extend the notion of the hypergeometric integral
I(W,w) and consider the hypergeometric integral for any function w in the
functional space #(z) of a fiber. Namely, let w(t,z)€%#(z) be a function of
the form

P(ty, ... t0,21,. 02, Aty oo Ay)
r n ¢ 1

[T | IT11

s=0 | m=1a=1 (ta —Zm Am +Sp)(ta —Zm+ Apm — (S + I)P)

1

X
lgal;lbgf (ta—tp+1+3p)ta—ts—1 —(s+1)p)

where P is a polynomial. If the real parts of the weights Ay,..., A, are large
negative and p is small, then we define the hypergeometric integral I(W,w)
by {5.3). The hypergeometric integral is well defined if either 0 <Imyu < 2=
and WeFy(z) or Impu =0 and W €% "®(z), since the integrand exponen-
tially vanishes at infinity. For generic Ay,..., Ay, z1,...,z, and p we define
respectively the hypergeometric integral /(W;,w) or the hypergeometric in-
tegral I(Vf/[,w) by analytic continuation with respect to Ay,..., A, 21,...,2,
and p. Similar to the proof of Theorem 5.7 one can show that these hyper-
geometric integrals can be analytically continued as holomorphic univalued
functions of complex variables p, Ai,..., 4y, zy,...,2, to the region described
in Theorem 5.7. For arbitrary functions we%(z), W € #(z) we define the
hypergeometric integral by linearity.
Let DF (z) = {Dw|weF(z)}.
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(9.5) Lemma. Let p<0. Let (2.12)—(2.14) hold. Let either 0 <Imyu <2r
and W e Z(z) or p=0 and W€ % "(z). Then

a) The hypergeometric integral I(W,w) is well defined for any function
WEF (z).

b) The hypergeometric integral I(W,w) equals zero for any function
weDZ (z).

Proof. Claim a) holds by the definition of the hypergeometric integral I(W, w).
Claim b) is clear, if the real parts of the weights A,,..., A, are large negative
and p is small. Then the analytic continuation of the integral gives Claim b)
for generic p, Ay,...,An, Z1,..., 25 O

Lemma 5.9 follows from Lemmas 2.21 and 9.5.

The hypergeometric integral defines linear functionals (W, + ) on the func-
tional space of a fiber. Lemma 9.5 means that these linear functionals can be
considered as elements of the top homology group H,(z), the dual space to the
top cohomology group of the de Rham complex of the discrete local system
of the fiber.

Proof of Theorem 5.18. The section sy is defined by
sw(z) =1(W];, -)

where W|, denotes the restriction of the function W (t,z) to the fiber over z.
The theorem is a direct corollary of the periodicity of the function W with
respect to each of the variables zj,...,z,:

W(t,z1,oosZm+ Pse-oszn) = W(t,21,...,2y), m=1,...,n,
cf. the case £ =1 in Sect. 8. O

Our further strategy is the same as in the case £ = 1. First we prove
Theorem 6.7 which imply Theorem 6.4. Using Theorem 6.4 we prove that the
hypergeometric pairing [ : #,(z) ® #(z) — C is nondegenerate if 0 < Imp <
27 (cf. Theorem 5.14). Studying the asymptotic behaviour of the hypergeo-
metric integral as p tends to zero we show that for u = 0 the hypergeometric
pairing I° : % "%(z) @ #(z)/#(z) — C is nondegenerate (cf. Theorem 5.15).

Theorems 2.15 and 2.17 will follow from Theorems 5.14 and 5.15, respec-
tively, and Lemma 9.5.

Proof of Theorem 6.7. To simplify notations we will give a proof only for
the case k = n, so that n,, =m, m = 1,...,n. The general case is similar.
Let wg';) € Flzm; Am; [] and W((,';') € F[zm; Am; 1] be the following functions:

. 1 ! 1
(9.6) Wit sty 2m) = T [1‘[

- I 3
seS/ a=1 ta —Zm — Am:I Ps

(m) _ ¢ sin(w/p) II L exp(ri(zm — ta)/P) ]]
W(l) (t,.. st 2m) = 5131 _—_Sin(ns/p)desz al;ll Sin(7(ty — 271 — A )/2) i s
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(cf. (2.19), (2.26)). We have the equalities

W= ke oww(y and = W s W
Therefore, we have to study the asymptotics of the hypergeometric integrals
I(W1, wn).

Consider the hypergeometric integral J(W,wy ). Due to property (2.7) all
the terms in the Definition (2.26) of the function W give the same contribu-
tion to the integral. So we can replace the integrand @(¢)wn,(¢)Wi(¢) by the
following integrand

10 I((ta — 1 — 1)/p)

F(t):n_//!wm(t)e’(p(nii_] I'"Z'"/p> 1ga<bss ((ta =t +1)/p)

n [ sin(n/p) _
<1 [Hl sntrslpy L X = 7Dle/P) (ta = 2 + An)/p)
I'(l = (ta — 21— A;)/p)
—\la T 4ém — Am
=l )/p)léll—[<m (1 —(t; —z;+ A))/p)

I'((ta —z1 + A)/P)]
xmggn I((ta —z1 — Az)/p)]d -

where I, = {1 +1""L,..,I"}, m=1,...,n
Assume that the real parts of the weights A;,..., A, are negative. If all
zi,...,2, are imaginary, then we have

I(W,we) = [ F(t)d’.
)

The analytic continuation of I(W,wy,) to the region Rez; < --- < Rez, is
given by
I(Wwn)= [ F(t)d%

i 1
I X xIL?

where
I = {(tisin-1,---,tim)EC™ |[Ret; = Rezy, "' <a £ 1™}

since the integrand has no poles at the hyperplanes ¢, =z, — A; — sp, s € Z,
for ™! <a £ 1™, m > I, has no poles at the hyperplanes ¢, = z; + A; +
sp, s€EZ, for ™! <a £ 1™, m < [, and has no poles at the hyperplanes
t; =ty+1+sp, s€Z, for a>b.

Let z — oo in Aj4 so that Re(z, —zpy) — —oco forallm=1,...,n— 1.
Consider the case | = m. Transform the hypergeometric integral I(W;,w;) as
above and replace the integrand by its asymptotics as z — oo in Ay. Since

n
wilts,.. oo t2) = T W tmmrstaeon ) + 0(1)
m=1
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as z — oo in Ay and ¢t € ]Ill‘ X -ee X 111;', we obtain that

n
I(WI,wl)=n—‘ﬂexp<mZImzm) [T (@ —zp)pytmtinti=lilnllp

m=1 1gl<mgn

« I'l[ [ = sin(7/p)

m=1

(m) .
- Wi (Bt - -5 8,) (exr)((# — wita/p)
s=1 sm(nS/P) H{; (n) ! ag’m P

xI'((tg = zm + AP (1 = (ts — zm ~ An)/p)

I'((ty —ta — 1)/p)
8 bga T'((ty —ta+1)/p)
bel,

)d‘mt}(1+o(1)),

as z — oo in Ay. Here |arg((z; — zm)/p)| < ®. Due to (2.7) the integrals over
= are the hypergeometric integrals /( W((l':i, wE[':" ))) up to simple factors. Hence,
we finally obtain that

F T (@ =z py ik

Lo -I,,. 1€l<mg&n

¢
W)= 7=
1
™ m 1
X H]( () Wety) T (1) ) -
m=

The hypergeometric integral /(W,wp) for | & m can be treated similarly to
the hypergeometric integral 7(J#], w;) considered above. The final answer is

I(W, wm) = I(W, wi)o(1),

which completes the proof if the real parts of the weights A4,,..., 4, are neg-
ative.

For general A,,...,A, the proof is similar. The analytic continuation of
I{(Wi,wy) to the region Rez; < --- < Rez, is given by

IW,wa)= [ F(t)d

Iy e
I} x-xIy

where Tl» is the respective deformation of Iz. On every contour I the

quantities Re(t, — z,;) remain bounded as z — oo in Ay for all a such that

I"~! < g £ 1™, and the rest part of the proof remains the same as before.
Theorem 6.7 is proved. |

Further in the proofs we will make use of the following identities:

ya;‘_ﬂyo} =IlI l—ﬂs

(9.7) .
ocS! 1€j<kzl Yo — Vo, s=1 1 - 18
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9.8)

! 1 ! 1
I — — “‘*“’“—‘Byaj =l ——F—, 00=0.
€S \ k=1 Yo — Byo,_, 1gj<kgl Yo = Yo, =t Yk — Byo

Proof of formula (5.17). Consider the integral in the left hand side of (5.17)
as a function in u and denote it by F(u). We will show that F(u) satisfies a
differential equation

(9.9) (u+u" )C-?;F(u) =¢Qa+ (¢ —1)x)(1 —u~2)Fu).

The right hand side of (5.17) solves the same differential equation. Therefore
both sides are proportional. The proportionality coefficient equals 1 since, as
it is shown below, both sides have the same asymptotics as # — +0.

Denote by f(u;s),...,s¢) the integrand of integral (5.17):

¢ 2 sy —s:
F51,r5) = T] w2 Ta+ sl (a ) [] Lk =5+X)
=1 k=1 T(sx —s5)
jEk
so that ' _
e o] 00
(9.10) Fuwy= [ - [ f(wsi,...,s,)d%.
—ioo —foo

Differentiating the integral with respect to u and using the identity
1 £ ‘S — 8 +x
La+(—Dx2)+ X si= (a+s)[] 2—L=

k=1 k=1 j=1

JEk

Sk —5;
we obtain that

(/(2[1 +(-Dx)+ u%) F(u) = Zi Fr(w)

k=1

where
Fie(w)= T f (a+st) H f(u Siy..e582)d's .

j*k

The space {(s,...,5¢) € €’ |Resg = 1, Res; =0, j+k} is homologous to the
imaginary space in the complement of the poles of the integrand for Fi(u).
Therefore, changing the k-th integration variable sy — s — 1 and using the
functional equation for the gamma-function we obtain that

_, fo® — Sk +x
Few) =u"" f f (a—sk)H kk flu;si,...,80)d’s .
ioco _/:#k
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Now the identity

[ PRe—
t’(a+(/—1)x/2)—kzlsk=é(a_sk)ﬁl sj—sk_ﬂ
= j=

k=1 Sj — Sk

j®k
implies that
¢ d
2 Fi(u) =u™? (/(2a +(¢—1)x)— u—) F(u),
k=1 du
which complete the proof of equality (9.9).
To compute asymptotics of the integral (5.17) as u — 40 we first suitably

transform the integrand. Taking identity (9.8) for I =/, f = exp(2mix) and
yi = exp(2mis;), k =0,...,£, we obtain that

1 =exp(nit(¢ — 1)x/2) f[ sin(n(sy — a))
k=1

X 2

ces’

( ¢ exp(ri(a —sq_, — %)) sin(n(sq, — 55 — x))>
k

21 Sin(n(sg, — S_, *x))1§j<kg/ sin(m (s, — Sa,))

where g9 = 0, so = a — x. Substitute the right hand side of the identity above
into the integral (9.10). Since f(u;sy,...,S,) is a symmetric function in the
variables si,...,s, and the imaginary space is invariant under permutations of
S1,-.-,5¢7, we can keep in the integral only one term of the sum, multiplying
then the result by #!. Taking the term corresponding to the identity permutation
we obtain that

(9.11) F(u)y= [ g(u;s1,...,5,)d’

I
where

g(u;s1,...,50) =L exp(rif (¢ — 1)x/2)

¢
x 1
k

(um F(a+sy) exp(mi(a —sp—; —x))
=1

I'(l +s¢ —a) sin(n(sg—1 — Sk +x))

x 1

=t T(1+sp—s;—x)

kb (sg = s;) (s = s; +X))

Here we use a notation
I ={(s1,...5,) €T’ |Resy =y, k=1,...,7}.

To compute the proportionality coefficient which we are interested in, it suffices
to study the asymptotics of F(u) as u — +0 only for small real x and real
a because both sides of (5.17) are analytic functions in x and a. Moreover,
we can assume that u is real. To find the asymptotics of F(u) we deform
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continuously the integration contour in integral (9.11). Namely we replace
there I by 1/, and move y from zero to the positive direction.

Since Reag > 0 and Rex > 0, there are no obstacles for the deformation
of the integration contour until y becomes equal to a. At this moment the
integration contour touches the singularity hyperplane of the integrand given
by s; = a. The next intersection of IIf, with a singularity hyperplane of the
integrand appears at y = a 4+ 1 with the hyperplane s; = a + 1. Therefore, we
have

F(u) = —2ni [ Res g(u;s1,...,5.)d s+ [ glus,...,s.)d’%,
“:_I s=a “Z-HS

where 0 <é < land I57! = {(s,...,5,) € C " |Resp = y, k =2,...,¢}. We
can estimate the second term from above

[ g(u;si,...,s0)d% | < u [ g(L;s1,...,5.)d%s .
H;«s ]IZ+5

In the first term we continue the deformation of the integration contour; we
replace there I4~! by ]If;“l and move y from a to the positive direction. The
first obstacle to the deformation appears at y = a + x; at this moment Hi“
touches the hyperplane s, = a +x. Repeating the consideration / times we
finally obtain the following asymptotics for F(u) as u — +0:

F(u) = (=2mi) Resg(u;s1,...,50)(1 +o(1)),

where Res,q, means the residue at the point s, =a+ (k—1)x, k= 1,...,7.
Calculating the residue explicitly we find that
¢ (1 + kx)

— (2 1V f A= 1))
F(u)=Q2niYu kI=I1 O

I'2a+ (k- Dx)(1+0o(1)),

as u — +0, which clearly coincide with the asymptotics of the right hand side
of (5.17). This means that the proportionality coefficient between F(u) and the
right hand side of (5.17) equals 1. Formula (5.17) is proved. 0

Proof of Theorem 5.14. The proof is similar to the proof of Theorem 8.33.
Since both sides of formula (5.14) are analytic functions in Ay,..., A,, it suf-
fices to prove the formula only for real negative Ay,..., A,.

Denote by F(z) the determinant det[/(W, wm)li,mez: and by G(z) the
right hand side of (5.14). Since for every [€Z] the section Wy, is a
(N ®---® V)s-valued solution to the gKZ equation, F(z) solves the next
system of difference equations

£}
F(zi,...;zn+ p,-..,2q) = det K(z1,-..,2,)F(z1,...,2,) .
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)
Here det K,,(z) stays for the determinant of the operator K,(z) (3.10) acting
in the weight subspace (V] ® --- ® ;),. Using (3.5) we see that
2 we—1y6=] Zm+Am—zi+ A +s+p
det Ky(z1,...,22) =KkCn ) “ z
n( 2 sl-:-% lgllmzm-Am_zl_Al+s+p

a+l—s—2

1 Im+Am—z1+ A1 —s (i
m<l§nzm—/1m—zl_/1['“s

Therefore, the ratio F(z)/G(z) is a p-periodic function in each of the variables
ZlyeesyZye

F F
—G—(zl,..‘,z,,, + pyan2Zy) = 5(21,‘..,2,,),
Theorem 6.4 implies that the ratio F(z)/G(z) tends to | as z tends to infinity in

the asymptotic zone A;4. Hence, this ratio equals 1 identically, which completes
the proof. O

Proof of Theorem 5.15. The idea of the proof is the same as in the case £ = 1.
Since both sides (5.15) are analytic functions in A,,..., A, and p, it suffices
to prove the formula for large negative A,,..., 4, and large negative p. More
precisely, we assume that

(9.12) 0<23 Aulp—£(6 - 1)fp<1.

m=1

We will construct certain bases in the rational and the trigonometric hyper-
geometric spaces of fibers such that in these bases the hypergeometric pairing
has triangular asymptotics as y — 0. Using this fact we will show that

n+d—1

(9.13) dot [I(Wis W)l ey = Ep=2Enm Anlo = (77 )20+ (7

/ a
x 1 det (7, Wil jep=2(1 + (1),

where O <argu<m, j € ff,:'_l is identified with (j,0) € 27, and Z is a con-
stant given by

(9.14)

nit—1 n —1 -
R R D))

t=1 ({p(/ ~ SI(—(s + 1)/p)] =)

x (24, —(=1/p)

s=0

n (2
x T1 r(1+22 A,,,/p(s+2—2r)/p) )

s<rsf m=1

Formulae (9.13) and (9.14) imply Theorem 5.15.
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In the proof we use the sl;-module structure in the rational hypergeometric
Fock space which was defined in Sect. 4. We define functions wy, W for an
arbitrary vector [ € Z% , respectively by (2.19),(2.26), where we replace £ in
the left hand sides by the sum [ + - -- 4+ I,. Similarly, we define functions/
for arbitrary vector IEZ"Z‘Ol by (2.27) replacing there £ in the left hand side
by the sum [, + - 4+ L_1.

For any vector [ = ([j,...,L;) set I/ = (I},...,L,_;,0) and I' = (1;,..., L,—}).

The required bases in the rational and the trigonometric hypergeometric
spaces of a fiber are given by functions w{, 1€2, and W/, 1€ 2}, respec-
tively. The functions w{ are defined by rule:

w{ = F["W[I .

where F is the generator of sl; acting in the rational hypergeometric Fock
space § (cf. (4.3)). The functions ¥ are given by

(9.15) W/ (t,...,t)

B 1 L sin(n/p)
- (/ - [rz)l s=1 Sin(”S/P)

x ¥ |Wen,ney) 1 (eXp(”i(Zn*ta)/p)

eSS’ (L, <agt Siﬂ(TC([a —Zn — An)/p)

nt sin(n(ty ~ zm + Am)/p)>
8 m=1 Sty — Zm — Am)/P) o ’

By Lemmas 2.20,2.28, for any z€IB there are matrices N(z), N%(z) such that

wi(t,z)= 3 Nm(z)wm(t,z), 1€ 2",
meZ’

W2 = T N @Walba), 1€27.
iy

(9.16) Lemma.

=1

detN(z) = T] ((s + )24, — s
5s=0
det N(z) = exp(—m'ni1 Am/p (n +i’— 1) - i(n— 1)p - <n :i; 1)) .
m=1

Now we study asymptotics of the hypergeometric pairing as g — 0. We will
consider the total family of hypergeometric pairings / : #[/1® F[I] = C, [ =
0,...,7, not indicating explicitly dependence on /. Recall, that we assumed that
Ay,..., A, are large negative.
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The first observation is that for any w € #[I], W € % "8[I] the hyper-
geometric integral (W, w) has a finite limit as 4 — 0, cf. Lemma 5.5. Further-
more, for any we F[I — 1] and W € %, "¥[I] we have

(9.17) I(W,Fw) = O(p)

as p — 0, because F(F[/— 1](z)) is the coboundary subspace Z[!/](z) C
F[1(2), cf. (4.4) and Lemma 5.9. The asymptotic behaviour of the hypergeo-
metric integral J(W,w) for a general function W is described by the following
lemma.

(9.18) Lemma. Let A,,..., A, be large negative. Assume that condition (9.12)
hold. Then for any 1€ %' and for any we % the hypergeometric integral
I(W', w) has the following asymptotics as £ — 0, 0 < arg u < 7:

IOF',w) = Epn@ 12 Zaa P [ (i, ERw)(1 + o(1)) .

Here E is the generator of sly acting in the rational hypergeometric Fock
space § (cf. (4.3))

. ln
2= ((;l_) I/)!! exp(nil, (A, — (I, — 1)/2)/p)
b=t [T(=(s + 1)/p) ( " )]
2T (2 A -2/~ :
% sgo [ 1) El p+ (2, —2¢ —5s)/p

To obtain the required formulae (9.13),(9.14), we also need the next lemma.
(9.19) Lemma. Let u=0. Then for any k,1 € Z>q we have

det T, E*F*Wun)); ez
- n+l-22
_ n n— o
=T (e (5 aem21-)) 7 st e
5= =

Here we identify me 2" and (m,0)€ 27.

Now we will complete the proof of Theorem 5.15 assuming that
Lemmas 9.16,9.18 and 9.19 hold, and then we will prove the lemmas.
Consider a matrix U with the entries

U = (W, ww), lmeZ.

Lemmas 4.7,9.18 and (9.17) imply that the matrix U has a block-triangular
asymptotics as y — 0, namely

U = O(.uél" ), forl, =zm,,

and )
U = O(u'*), for I, < m,,
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where 8; = [(2¢ —1—1—=2% " _| An)/p. Therefore, we see that

o) an(11)

as u — 0, where dy,...,d, are the dimensions of the diagonal blocks. Further-
more, the leading term of the asymptotics of det U is given by the product of
the determinants of the diagonal blocks, which are described by Lemma 9.19.
Finally, formula (9.13) follows from a simple relation

detU

I " ——
det [T(# wmez, detN det N9

and easy calculations. |

Proof of Lemma 9.16. The formula for det N is a corollary of Lemma 4.7.
To prove the formula for det N9, consider the points y € €/ defined be-
low:
yf,l) =zp— Ay +1"—a, "V <a<1™ a=1,...,¢.

Recall that " =1y +---+1,, m=1,...,n Let L and L’ be the matrices with
the entries

Ly = m(y(m))’ L{m = W’()’(m)), [Lme &-;n >

respectively. The matrices L and L’ are triangular with respect to the follow-
ing lexicographical order in Z" : [ < mif [, <my or j = my, [ < my ete.
Namely, Ly, =0 and L{, =0 for [ <m. Since L{; = exp(nily((ln — 1)/2 —
Am)/p)Lyy and N = L'L™!, the formula for det N7 is proved.

Proof of Lemma 9.19. By Theorem 4.7 the rational hypergeometric module
is isomorphic to (JJ ® --- ® ¥;)*. We also have I(W,Fw) =0 for any w €
F[l— 1] and W € %#; "¢[1]. Therefore, the coefficient of proportionality equals
the determinant of the operator EXF* acting in the quotient space (V| ® --- ®
VY W/F((Vi ® - - ® ¥,)*)1-1. This operator is isomorphic to the operator EXF*
acting in the space of singular vectors (/] ® - -- @ ¥;,);"®. The last operator is

simply the multiplication by Hf;ol ((s+1)2>,_; An — 21 —5)) in the space
of dimension (**'3?). The lemma is proved. O

Proof of Lemma 9.18. First we will give another expression for the function
W' which will be more convenient for our purpose.

Taking identities (9.7),(9.8) for § = exp(—2ni/p) and y; = exp(—27ity/p),
k=0,...,1, we transform them respectively to the following form

[, = llI sin(7ns/p) sin(n (¢; — t)/p)

wos © st sin(/p) g <jek<s sin(r(t; — t + 1)/p)
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2

a8/

[[ Loexp(mi(ti—y — & + 1)/1))}]
=1 Sin(m(te—1 — &+ 1)/p) 1,
. L exp(mi(z, + Ap — &)/p)
— — 2
exp(milll = /2P e, 74, —0ip)
sin(z (¢ — #)/p)
1<j<ics ST — e+ 1)/p)°

X

where fy =z, + A, — 1. Subsequently using the identities above we replace
expression (9.15) for the function ¥’ by the following expression:
(920) W'ty 1)
IV
= ———exp(nil,((1 — 1,)/2 — 4,)/p))

(¢ -1
. exp(mi(t,_, — t, + 1)/p)
x 2 [{WV(“’"-J/-‘J I ( sin(n(,_, — t, + 1)/p)

seS! {—la<asst
y =1 sin(n(t, — zm + Am)/P))]]
m=1 Sin(ﬁ({a —Zym— AM)/p) ¢ ’

where t; =, for £ — [, <a</and f;_| =2z, + 4, - 1.
Consider the hypergeometric integral I(#', w),
I, w) = [ &)W () d’t .
][/
The imaginary space is invariant under permutations of the variables #,...,,.
By property (2.7) of function ®(¢), we can keep in the integral only the term

of the sum in the right hand side of (9.20) which corresponds to the identity
permutation, multiplying then the result by #!. Hence

(9.21) (W' ,w)= [F(t)d",
][/

(=121
(£ -

X Dty ..t )W(tse o te) Wi (B, tpm)

F(ll,...,t/)z

exp(nily((1 — 1,)/2 — A4)/p))

n=t sin(n(ta — zm + Am)/P)
¢l <ast m=l sin(n(ty, — z2m — Am)/pP)

X

exp(ri(t,_; — 1, + 1)/p) ,
t—t<aze SIN((E,_, =t +1)/p)

with the same convention about the variables t}_ln,...,t} as in (9.20).
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Consider the asymptotics of the integrand F(¢) for large ¢. Namely, assume
that
(9.22) t, = i(xg — Auy), Imu, =0 Imx,=0, a=1,...,7,

and 4 — +o00. From the Stirling formula we find that F(¢) exponentially decays
for any u = (uy,...,us) which does not belong to the cone

(ueRI|O=uy = =ur, Sup41 < -+ Su}.

The decay takes place for any u including x4 = 0. On the contrary, if u belongs
to the cone

(9.23) MeR|0O=uy = =ury, <thp_i41 < -+ <ur},

then the asymptotics of F(¢) essentially depends on if y equals zero or not.
If u+0, then F(¢) exponentially decays due to the factor exp(u Zi=1 t,/p) and
integral (9.21) converges. If 4 = 0, then F(¢) grows as a positive power of A4
and integral (9.21) diverges.

So the leading term of the asymptotics of the hypergeometric integral
I(W',w) as p— 0 is given by the integral of the asymptotics of the inte-
grand F(t) for large ¢ in the cone (9.23) (the justification of this fact is given
below). Explicitly computing the asymptotics of F(¢) for large ¢, we obtain
that

F(ty,....t)

_ G2yt (niln ((1 SWR2HA- 1)+ A -2 AM’)
(¢ —T)! "

X Brr—t,1(t, -+ s te—t, NE WY1, ot Yt )

x T exp(uta/p)(tap)? Znm Anlp=2=1p=1

{—l,<asl

x [1  Wa—=1)p) (1 +0(1)),
¢~l<abst
as A — +oo and #,...,ts are described by (9.22). Here the function @y
(t1,...,4) is defined by (2.5) where 7 is replaced by /.
Denote by G(¢) the right hand side of the formula above without the factor
1+ o(1). Thus we have

(9.24) IWLw)y= [ G@)dt(1+0o(1)),

W—Mxﬂﬁ

as u — 0, where ]I'-"r ={(tr-(,+1,---,t7|Ret; =0, Imt, =0, £/ -1, <a =/}
The integral with respect to the variables #,...,t,_, clearly gives I( Wi,
E%w). The integral with respect to the variables t,_{ 11,...,#, can be calculated
explicitly via the Selberg integral and we obtain formula (9.18).



584 V. Tarasov, A. Varchenko

The asymptotic (9.24) can be justified in a standard way. The main idea
is the same as in the one-dimensional case, cf. Lemma 8.37. We explain the
details for the example n = 1, £ = 2. The general case is similar.

To make formulae shorter we cahnge notations and consider the following
integral

J(@) = [ F(s1,s2)exp(—a(s) +2s2))ds1 dss ,
R2

IFla+isy) TI'(b+isz) TI(c+isy+isz)

F =
(s1,52) T(1 —a+is;) I[(=b+isy) (1 — ¢ +is) + isy)

exp(n(s; + 52 + ia + ib))
4 sin h(z(s; + ia)) sin h(n(s; + ib))

Our assumptions mean that parameters a,b,c are small positive numbers such
that
O<a+b+c<l/2.

For sy =Au;, s, = Au; and A — +oc the function F(sy,s;) has the following
asymptotics:

F(s1,57) = *'s3(sy 4+ 52)* (1 + 0(1))
if ;>0 and u;>0, and F(s|,s2) decays exponentially if either u; £0 or
u; £ 0. We have to show that

(9.25) J(@) = [ si*7'sP(s1 + 507" exp(—als) + 252))dsy dsy (1 + o(1))
Ry,

as oo — 0, Rea >0,
Fix a small positive number ¢ and decompose R? into four parts:

O1(&) = {(u, ) ER? |4y 20, uy 20, uy = eup, uy = w1},
0a(8) = {(u1,w2) eR? [ uy 2 |ual/e},
03(e) = {(u,u2) ER? | uy = |uy|/e}
and Qu(e) is the closure of R?*\(Q(e) U Q2(¢) U Q3(¢)). The respective de-
composition of the integral J(«) is
J@)= [ s (st + 5207 exp(—alsy +252)) dsy ds;
Q1(e)

+ [ (F(s1,5) — 537 s (s1 + 5207 Py exp(—alsy + 2s52)) dsy ds,
Q1(e)

+< f + f + f)F(Sl,S2)eXp(—a(S1+2Sz))ti§'1ds‘2.
Q2(e)  Os(e)  Qal®)

The first integral equals

“—2(a+b+c) f S%a—lsgb(é‘] -+ Sz)zc-l exp(—s; — 2s57))ds dsa
Qi{e)
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the second and the fifth integrals have finite limits as o — 0, the third and the
forth integrals can be respectively estimated from above by

+0o0
—~ 2Aat+b+c)—1
A|62b+ld 2(a+b+c) f Sl(a+ +¢) eXp(—SI)dS
0

and

+00
AZBZaa—Z(a-HH'L‘) f S;(H‘HH'C)_I exp(_zsz)ds
0

as o — 0, and the constants 4;,4> do not depend on &. The estimates can be
obtained by means of Lemma 8.42. Therefore,

3in}) (2@ )y - | s?“"ls?’(s] +5) Vexp(—s; — 252)) ds, dsa
- Qi(e)

< 82b+l +A282a .
Moving ¢ to zero we see that

J(a) = q~2arbro) f sf“_ls%b(sl +52)  Lexp(—s; — 2s57))dsy ds2 (1 + o(1)),
IRzgo

which coincide with (9.25).
Lemma 9.18 is proved. O

Proof of Theorem 7.8. Let h be a positive number. Consider the hyper-
geometric integral

I(Wi,wa) = [ Ot 2)walt,2)Wi(t,2) d’ ,
]][

where we substitute into formulae (2.5),(2.19),(2.27), defining the functions
®,wy,, W, a new parameter # and new coordinates yi,..., y,:

uw=hn, Zm = ym/h, m=1,...,n.

We study the quasiclassical asymptotics of the hypergeometric integral
I{ W,wy) as h — +0 while the parameter n and the coordinates yi,..., ¥,
remain fixed.

For any Ie;’Z/”_l consider a region U and a domain ff]l in the imaginary
subspace I/ given by

Ui={uer Imy, <Imuj i < <Imuypw < Im ypet,

{ m=1,...,.n—1 ’
o~ Imy, £Imu; £ Imypyy, P l<a (™
U= g = = =0

! {ue m=1,...,n—1

Recall that 17 =1, + -+ + L.
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Let S'CS? be the following subgroup isomorphic to S" x ... x Sh:
S'={geS|I" <, 1" for "' <a <", m=1,..,n}.

Set Uy = {u € € | (ug,,...,u5,) €Uy for some ceS'}.
The imaginary subspace I/ is invariant under permutations of the variables
ti,...,ts. Using the property (2.7) of function &(¢) we see that

(9.26) I( Wi, we) = 21 [ ®(t,2)we(t, 2)TH(t,2) d%
1

where
m(tl"' -,t[,ZI,...,Zn)

_ ”ﬁ‘ ﬁ sin(#/p)

m=1s=1 sin(rcs/p)

<1 ( 1

m=1 a€l,, sin(n(ts — zm — Am)/p) sin(n(ts — Zmy1 — Ams1)/P)

SIN(T(Zm — Am — Zm+1 — Ams1 +5 — 1)/p)

sin(n(t, —z; + A;)/p)
1€i<m sin(n(t, —z; — A;)/p)
and I, = {I""1+1,..,1"}, m=1,...,n
The factors of the integrand above have the following quasiclassical asymp-

totics as A — +0 while the parameter 7, the coordinates yi,...,y, and the
variables u, = ht,, a = 1,...,¢, remain fixed:

B(u/h, y/h) = h*C=12 T AP Gy, y)(1 + 0(1))

wm(ufh, y/h) = K (u, h)(1 + o(1))

Ficufn, vy = T[ (exp <7ri (2 S Al = 1Y) = ln(l — 1 )/2) /p)
m=1

m=1
ln  sin(nt/p)
<1 sin(ns/p))“““”

for ucl; and W(u/h, y/h) = o(1) for u ¢ U;. Here the functions ¥(u, y)
and win(u, y) are given by (7.3) and (7.5), respectively.

The quasiclassical asymptotics of the integral (9.26) is given by the integral
of the quasiclassical asymptotics of the integrand, that is

(9.27)
1Fwm) =TI (eXP (m‘ (2 S Al = 1"1) = Tn(ly — 1)/2%’ )
m=1 m=1
bosin(n/p)\ ,
XE W) J @, yYo(u, yydu(l+o(1)).

U,
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Taking into account that

[ B, yyi(a, vy du="T| (exp(nilm(l LTI ____Si“(”/l’))

U m=1

s=1 sin(7s/p)

x [ ®(u, y)i(u, y)du
U,

where Uy is given by (7.7), we obtain (7.8).
Formula (9.27) can be justified in a standard way, similarly to the proof
of formula (9.25).

Theorem 7.8 is proved. O
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