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0 Introduction 

We work over C. 

0.1 Statement 

We prove the following theorem: 

Theorem 0.1 (Fibered power theorem). Let X --+ B be a smooth family of  pos- 
itive dimensional varieties of  general type, with B irreducible. Then there exists an 
integer n > O, a positive dimensianal variety of  general type Wn, and a dominant 
rational map X~---~ Wn. 

Specifically, let m, : X~-- ,  Wn be the n-pointed birational-moduli map. Then 
for sufficiently large n, W~ is a variety of general type. 

The latter statement will be explained in Sect. 3. This solves "Conjecture H" 
of [CHM], Sect. 6. l as well as the question at the end of Remark 1.3 in [lq-V]. 

Following Viehweg's suggestions in [V3], the fibered power theorem is 
proved by way of the following theorem: 

Theorem 0.2. Let X ---+ B be a smooth family of  positive dimensional varieties 
of  general type, with B irreducible, and Var(X /B  ) = dim B. Then there exists an 
integer n > 0 such that the fibered power X~ is of  general type. 

0.2 Main ingredients 

The starting point is a theorem of Koll~r, which roughly speaking says that given 
f : X --~ B a morphism between smooth irreducible projective varieties, whose 

Partially supported by NSF grant DMS-9503276 



482 D. Abramovich 

generic fiber is a variety of general type, and Var(X/B) = dim B, then for large 
m the saturation off.(c~} ~) has many sections. A very useful trick of Viehweg 
shows that this implies that for large m the sheaf co~ itself has many sections, 
that is, o:f is big. 

Following [CHM], one would like to use these sections pulled back to the 
fibered powers fn : X~ --* B of X over B to overcome any possible negativity 
in we. Unfortunately, the fibered powers may become increasingly singular, and 
it is not easy to tell who wins in the race between the positivity of wf, and the 
so called adjoint conditions imposed by the singularities of X~. The fact that wf 
may have positivity "by accident", as shown by the example in [CHM], Sect. 6.1 
of plane quartics, shows that something more is needed - the fiber space X ---+ B 
should be "straightened out" before we can use sections coming from Kollfir's 
theorem. 

Semistable reduction would be sufficient for this purpose, but unfortunately 
semistable reduction for families of fiber dimension > 2 over a base of dimension 
> 1 is yet unknown. It is not known whether unipotent monodromies would 
suffice. The case of curves was done in [CHM] using the moduli space of stable 
curves, and the case of surfaces was done in [Has] using the moduli space of 
stable surfaces. 

Lacking such constructions in higher dimensions, we will use a variant of 
semistable reduction, introduced by de Jong [dJ]. This variant involves, after a 
suitable base change and birational modification, a Galois cover Y --* X, such 
that Y ~ B is a composition of families of curves with at most nodes. The fibers 
now are much better controlled, but we are left with descending differential forms 
from Y~ to X~. This is done by studying the behavior of the ramification ideals 
in the fibered powers. 

0.3 Arithmetic background and applications 

Results of this type are motivated by Lang's conjecture. See, e.g., [CHM], [Has], 
[R], [R-V], [Pac]. 

Let K be a number field (or any field finitely generated over Q), and let X be 
a variety of general type over K. According to a well known conjecture of Lang 
(see ILl, Conjecture 5.7), the set of K-rational points X(K)  is not Zariski dense 
in K. In [CHM], it is shown that this conjecture of Lang implies the existence 
of a uniform bound B(K,9)  on the number of K rational points on curves of 
genus 9 (a stronger implication arises if one assumes a stronger version of Lang's 
conjecture). This result was later refined in [~], and the ultimate result of this 
type was recently obtained by Pacelli in [Pac], to wit: 

Theorem 0.3 (Paeelli [Pae], Theorem 1.1). Assume that Lang's conjecture is 
true. Let 9 > 2 and d >_ 1 be integers, and let K be a field as above. Then 
there exists an integer Px(d, 9), such that for any extension L of K of degree d, 
and any curve C of genus 9 defined over L, one has 

#C(L) <_ Px(d,  9). 
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The main geometric ingredient in the above mentioned results is the "Correlation 
Theorem" of  [CHM], which is Theorem 0.1 for curves. In [CHM], Sect. 6, a 
version of  Theorem 0.1 was conjectured ("Conjecture H"), with the suggestion 
that strong uniformity results would follow from such a theorem. This was further 

investigated in [R-V], where it is shown that Theorem 0.1 gives an alternative 
proof  for Pacel l i ' s  theorem, as well as other strong implication results for curves 
and higher dimensional varieties. The general result may be stated as follows: 

Lang 's  conjecture ~ uniform Lang ' s  conjecture. 

As an example of a result about curves, which does not follow from Pacel l i ' s  
theorem, we have (see [R-V], Corollary 3.4 and Theorem 1.7): 

C o r o l l a r y  0.4. Assume that the weak Lang conjecture holds. Fix a number field 
K and an integer d. Then there is a uniform bound N for  the number of  points of  
degree d over K on any curve C of  genus g and gonality > 2d over K. In fact, 
N depends only on 9, d and the degree [K : Q]. 

It would be interesting to obtain analogous statements using the geometric 
case of  Lang ' s  conjecture (see some results for curves in [Pac], Corollary 5.4, 
and [lq-V] Sect. 3). Another possible direction for extending the results is the 
logarithmic case (see [~ql] for definitions and results for stably integral points on 
elliptic curves). One suspects that in the future a fibered power theorem will  be 
available for log-varieties. At the moment,  the main difficulties seem to lie in 
obtaining an appropriate generalization of  the theorems of  K o l l ~  and Viehweg. 

Acknowledgement. I would like to thank F. Hajir and R. Gross, whose question kept me thinking 
about the problem through a period when no significant result seemed to be possible. Thanks to 
B. Hassett, J. de Jong, J. KollAr, P. Pacelli, R. Pandharipande, E. Viehweg and F. Voloch, for 
helpful discussions. The realization that pluri-nodal families have mild singularities was inspired by 
Hassett's results in [Has], Sect. 4. The understanding of the utility of such fiber spaces was reinforced 
by Pacelli's results. 

1 Preliminaries 

1.1 Definitions 

A variety is called a rational-Gorenstein variety i f  it has only rational Gorenstein 
(and hence canonical) singularities. For  a Gorenstein variety X to be rational- 

Gorenstein, it is necessary and sufficient that for any resolution of  singularities 
r : Y ~ X one has r . w r  = wx (see [E], II). 

We say that a flat morphism of irreducible varieties Y --~ B is mild, if  for any 

dominant B1 ~ B where B1 is rational - Gorenstein, we have that YI = Y x s  B1 
is rational - Gorenstein. Note that, by induction, if  Y ---. B is mild then the 
fibered powers Y~ --~ B are mild as well. 

An alteration is a projective, surjective, generically finite morphism of  ir- 
reducible varieties. This is slightly different from the definition in [d J], where 
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properness is assumed rather than projectivity. An alteration Bl ---, B is Galois 
if  there exists a finite group G C AUtBB1 such that B1/G --* B is birational. 

A fiber space is a projective morphism of  irreducible normal varieties whose 
general fibers are irreducible and normal. 

Given a fiber space X --~ B and an alteration B1 ~ B we denote by X Y<BB1 
the main component of X XB B1. Namely,  if  r/B, is the genetic point of B1, then 

X ~<BBl = X x~ ~B~. 
A flat family is a fiat fiber space. 

A flat family Y ~ Y1 is called a nodal family if every fiber is a curve with 
at most ordinary nodes. A flat family Y --~ B is called a pluri-nodalfamily if  it 
is a composi t ion of  nodal families Y ---, Yt ---* " "  --~ B. Note that while nodal  
families are generically smooth, this is not the case with pturi-nodaI families.  

Given a line bundle L and an ideal sheaf ~ on a variety X, we say that 
L | ~ is big if  for some k > 0 the rational map associated to H~ L | Q 3 k) 
is birational to the image. It readily follows that, if  L | 3 is big, and J is an 
ideal sheaf, then for sufficiently large k we have that L | | ~Tkj is big. The 
definition differs somewhat from Kollfir 's definition in [Ko]. In Sect. 3 we will 
refer to sheaves which are "big" in KollAr's sense as weakly big: we say that a 
sheaf 3 "  is weakly big, if for any ample L there is a positive integer a such that 
Sy ma( ~  ") | L (-1) is weakly positive (see [Ko], p.367, (vii)). 

1.2 Group theory 

For a finite group G let e(G) = lcm{ord(9)]9 E G}. We will use the fol lowing 
obvious lemma: 

Lemma 1.1. Let G be a finite group. Then for any n, we have e(G ~) = e(G). 

2 Ramification 

Let V be a quasi projective rational - Gorenstein variety, G C Aut(V) a finite 
group: Let  W = V / G ,  and q : V ~ W the quotient map. Let r : W1 ~ W 
be a resolution of  singularities. Note that W is normal, therefore it is regular  
in codimension 1. We can pull back sections of  pluricanonical sheaves on the 

nonsingular locus Wns and extend them into the pluricanonical sheaf of V. Thus, 
�9 n w~,, which is an for an integer n > 0 we have a morphism r : q r.Wwl 

i somorphism away from the fixed points of  G.  

Define the n-th ramification ideal ~ = A,qT~ (G, V) = AnnCoker  r 

Lemma 2.1. 1. We have ~ | w~ ~ q*r.co~,/torsion. 
2. For any integer k > 0 we have ~'n k C ~'~k. 
3. The ideals ~n are locally defined: if V ~ C V is a G-invariant open subset, 
then : ~  (G, V ' )  = ~ n ( G ,  V)Iv'. 
4. The ideals :~ are independent of the choice of resolution r : Wt ~ W. 
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5. The ideals ~ can be also obtained if we use a partial resolution r : Wt ~ W 
where W1 is rational - Gorenstein. 

Proof. Since cov is by assumption invertible, we have (1). For the same reason 
(2) follows: if co ----- H~=I Wi where coi are local sections of c@ and i f f  = Hi=lj~k 
where fi E ;,~, then we can write f- "col = ~ g i d  " (q*r.7?ij) and expanding we 
get thatfco is a local section of �9 nk r r.cow,). It would be nice to have an actual 
equality for high n. Part (3) follows by definition. Parts (4) and (5) follow by 
noticing that for a birational morphism r ~ : W2 --~ Wl with W2 nonsingular, we 

,' n _ n in both cases. [] have r.ww2 - COw, 
Traditionally, one studies ramification by reducing to the case where both V 

and W are regular. Most of the results below follow that line, with the exception 
of Proposition 2.7, where the author finds it liberating, if not essential, to avoid 
unnecessary blowups. 

The ideals ~ give conditions for invariant differential forms to descend to 
regular forms on the quotient: 

Proposition 2.2. Given an integer n > 0 we have 

(q.(CO~ | ~ ) ) c  = r.CO~v . 

Proof. A local section of (q.(CO~, |  can be written as ~ q.(~)r .(s i) ,  where 
3} are G invariant, thereforefi = q*9i. [3 

The above property of an ideal, giving sufficient conditions for  invariant n- 
differentials to descend, can be bounded below in terms of multiplicities (here 
we first use the assumption on rational singularities): 

Proposition 2.3 ([CHM] Sect. 4.2, Lemma 4.1). Let &a,v = S C V be the 

locus o f  f ixed points: 

S = {x ~ v139  ~ G ,g (x )  =x},  

viewed as a closed reduced subscheme, with ideal 57E. Then (q. (CO} | )c 
n 

C r.OdWl. 

Proof  Let V1 be the normalization of WI in C(V). Let W( C W1 be the open 
subset over which both Vl and the branch locus Bv,/w~ are nonsingular. The 
codimension of W1 \ W[ is at least 2. Let V[ be the inverse image of W(. We 
have a diagram 

V[ -L V 
J. ql l q  

w( 
Let CO be a G-invariant n-canonical form on V, vanishing to order n - (e(G) - 1) 
on 27. To show that CO descends to W 1 it suffices to descend it to W[, since the 
codimension of the complement is at least 2. Since V is rational - Gorenstein, 
J = s'co is a regular n-canonical form on V[, vanishing to order n �9 (e(G) - 
1) on Bv,/w,. The subgroup fixing a general point of a component of Bv,/w, 
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is cyclic, and the action is given formally by ul ~ (kUl,Ui ~-~ ui for some 
root of  unity Ck,k < e(G),  where ui are local parameters, ul a uniformizer for 
Bv~/w~. Formally at such a point, the quotient map is given by wt = u~, wi = 
ui, i > 1. By assumption, J can be written in terms of local parameters as 
a~ = f (u ) (uk - ldUl  A " " A dum) n = f ( u ) q l * ( d w l  A " " A dwm) n. The invariance 
implies t h a t f ( u )  = ql*9(w) and therefore w' = ql*9(w)(dWl A . . .  A dwm) n. [] 

Remark. It is not difficult to obtain the following refinement of this proposition 
(see analogous case in [Ko], Lemma 3.2): let B = q(Z)red, and let ~ be the 

defining ideal. Then q-lS78LnO-'c-~)J gives sufficient conditions for invariant n- 
differentials to descend. 

Recall that if a group G acts on a variety V, a line bundle L and an ideal 
then the ring of invariant sections ~3k>__oH~ ~k | ~.~k)G has the same 

dimension as the ring of sections ~k>_oH~ | | ~ k ) .  This allows us to 
have: 

Corol la ry  2.4 (See more  general  s t a t ement  in [Pac], L e m m a  4.2). L e t X  be a 
variety o f  general type and let G = Autc(C(X))  be its birational automorphism 
group. Then for  some n > 0 the quotient variety Xn /G,  where G acts diagonally, 

is o f  general type. 

Proof. Applying Hironaka's  equivariant resolution of  singularities, we may  as- 
sume that X is regular and G = AutX. Let Pi : Xn --r X be the projection onto 
the i-th factor. Choose n large enough so that ~ | ~s(e(~ )-1) is big. Therefore 

W~ | (~'~p[-l,9"~G,x )(e(G)--l)n is big. But 

(~--~pZI~,~G,X) (e(G)-l)n C ,~(e(G!-l,n 

and 2.3 gives the result. [] 
Let S C V be the locus of  fixed points, and let S = $1 t_/S~ be a closed 

decomposition. Then ;,qT, is supported along S ,  and can be written as ~,qg~ = 
~ , E ,  t-1 ~,qT~,s :. Applying 2.3 we obtain: 

Corol la ry  2.5. The ideal ( . ~ c ~ ) n .  ,qT~,s ~ gives sufficient conditions for  invariant 
n-differentials to descend. 

Our goal is to apply our propositions to powers of  mild families. First, let 
f : V ---, B be mild. Assume that B is rational - Gorertstein. As before, let 
G C Auts(V) ,  W = V / G ,  and q : V ~ W the quotient map. 

Let pi : V~  --~ V be the i-th projection. We naturally have G '~ C AutB(V~) 
acting on all components. We denote by qm : V ~  ~ W ~  the associated map. 
Let r : Wt --~ W be a resolution of singularities. 

Define ~,~,~ = I ' Ip[- l~ 'n .  

L e m m a  2.6. Assume that Wt --+ B is mild. Then ~,~,n,~ C ~ n ( G  '~, V~). 

Proof. Denote rm : Wm= (W1)'~ --* W~' and pi,w : Wm ~ W1 the i-th projection. 
Since V --~ B and W1 ~ B are mild, we have that 
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60~ /B = @i Pi* (COV and COw,./Bn ..= @i Pi,w(OdWffB).. n 

n Suppose a local section w of Wv:/~ is a monomial written as w = l-Ip*zui, and 

suppose f E ~,Cgm,n is a monomial written a s f  = 1-IPTfi. T h e n f w  = 1-~P~O~wi) 
is a local section in the image of qmrm.WW~/B.* n [] 

Proposi t ion  2.7. There exists a closed subset F C B such that (~F eCa)n �9 ~'m,n) 6 
gives sufficient conditions for invariant n-differentials to descend. 

Proof Let F C B be the discriminant locus of  W1 --+ B, and U = B \ F .  Now 
apply 2.6 and 2.5. [] 

Remark. It follows from the remark after 2.3 that already 

(~Ln( I- ,-~G))J ). ~'m,n 

suffices. 
We will need to perform base changes for fiber spaces. We need to find a 

condition on the base changed fiber space which guarantees that the original 
variety is of  general type. This is provided by the following proposition (which 
is probably well known): 

Proposi t ion  2.8. Given an alteration p : B1 --+ B between smooth projective 
varieties, there exists an ideal sheaf ~ C ~ with the following property: given 
a fiber space f : Y ~ B, with Y1 -'* Y ~<BB1 a resolution of  singularities, 
f t  : Y1 --~ BI the induced projection, such that w A | f 1 - 1 ~  is big, then Y is of  
general type. 

First a lemma: 

L e m m a  2.9. 1. Let 9 : Y1 --~ Y be a generically finite morphism of  smooth 
projective varieties. Let B C Y be the branch locus. Then there exists an effective 
9-exceptional divisor E on Y1 and an injection w},, ( -9*B)  ~ 9*wr | G},~ (E). 
2. I f  wr , ( -9*B)  is big, then oJr is big as well. 

Proof The pull-back morphism 9*Wy --~ cdy, gives g*Wy = Wy, (--R -- E )  where 
E is an effective exceptional divisor and R is the ramification divisor. Clearly 
R < g*B. 

Assume that O~r~ ( -9*B)  is big. Then 9*o~r | (E) is big. Let YI ~ Y'  -L y 
be the Stein factorization. Since Y' is normal and E is 91-exceptional we have 
that s*oJ}, @ 91 .~ , , (E )  = s*uJr therefore s*uJr is big. Since s is finite we have 
that o Jr  is big. 

Proof of  2.8. Choose a nonzero ideal ~o C ~ ,  with an injection ~0 C wBi, 
and an ideal 5711 C ~)~ such that ws, | p-1~c71 C p*wB. Given a fiber space 
f : Y ~ B, with 9 : YI ~ Y as above, we have that the ideal ~11 vanishes on the 
branch locus of  9- Set ~Z7 = ~ p - I ~ 2 .  Assume that wry~B, | 9 - 1 ~  is big, then 
wr, | (p o 9)-1.~22 is big, therefore wr, ( - 9*B)  is big, and by the lemma we have 
that Wr is big. [] 
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3 Maximal variation and Koll~ir's theorems 

3.1 Pointed birational moduli 

The following is an immediate generalization of Koll&' s genetic moduli theorem 
([Ko], 2.4): 

Theorem 3.1 (Pointed birational moduli theorem). Let f : X ~ B be a 
smooth family of varieties of general type. There exist open sets U C B and 
V C f - l U ,  and projective varieties Z and Wn, n > 1, with a diagram: 

V?~ ~ V?~ - 1  - - ,  . . .  - ~  U 

J. mn J. mn-1 ~mo 
W n - " + W n _  1 - " + " "  - " ~ Z  

satisfying the following requirements: 
1. The morphisms mn are dominant. 
2 . / f P  = (P I , . . .  ,Pn),P'  = (P( , . . .  ,Pn ~) E V~,fn(P) = b,fn(P') = b' E U, then 
m~(P) = mn(P ~) if and only if there exists a birational map 9 : Vb---rVb, which is 
defined and invertible at Pi, such that g(Pi)  = P[. 
3. For general b E U, let G be the birational automorphism group of Xb, then 
the fiber of Wn over mo(b) is birational to X~ /G, where G acts diagonally. 
4. There are canonical generically finite rational maps Wnk---~(W~)~. 

Sketch of proof. Parts (3) and (4) follow from (2). The proof of (1) and (2) is a 
simple modification of [Ko], 2.4, where we let PGL act on the universal family 
over the Hilbert scheme and its fibered powers. [] 

3.2 Reduction of Theorem 0.1 to Theorem 0.2 

Recall by Corollary 2.4 that for sufficiently large n the general fiber of W, ---* Z 
is of general type. Also, a simple lemma below shows that for large n the family 
Wn ~ Z is of maximal variation. Assuming that theorem 0.2 holds true, we 
have that for large k the variety (W~)~ is of general type, therefore W,k is of 
general type. For any n' > nk, applying the additivity theorem (Satz III of [V1]) 
to W~,---~W,k we have that the variety Wn, is of general type. Therefore X~' 
dominates a variety of general type. 

Lemma 3.2. Suppose X ~ B is a flat family of varieties of general type, where 
dimB = Vat(X/B)  = 1, and G C AutBX. Then for sufficiently large n, the 
quotient by the diagonal action Wn = X~ /G ---* B has Var(Wn/B) = 1. 

Proof This is immediate from the theorems of Kobayashi-Ochiai (see [D-M]) 
and Maehara ([Mae], appendix; see also [Mor]). Using Proposition 2.4, choose 
n so that the general fiber of Who over B is of general type. We show that 
Var(Wno+l/B ) = 1, and by induction this follows for any higher n. Assume the 
opposite. We have the projection map W~0+l ~ W~ o. The theorem of Maehara 
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implies that Var(Wno/B) = O: a family of  varieties of  genral type dominated by 
a fixed variety is isotrivial. The theorem of Kobayashi-Ochiai (which is also 
included in Maehara's paper) implies that the map Wno+l ---, Wn0 is birationally 
isotrivial: a family of rational maps from a fixed variety to a fixed variety of  
general type is isotriviat. But the general fiber of  (Wno+l)b "--+ (Wno)b is isomorphic 
to Xo (one only needs to avoid the fixed point set of  the group action) - implying 
that Var(X / B )  = O. [] 

3.3 Kolldr's bigness theorem 

Here we introduce the main source for global sections. 

Theorem 3.3 (Kollfir 's bigness theorem, [Ko], I, p. 363). Suppose that Tr:X--~ 
B is af iber space ofpositive dimensional varieties o f  general type, and Var (X /B)  = 
dim B. Assume both X and B are smooth. There is an integer n > 0 such that the 
sheaf  Tr.~o n is weakly big. [] 

Ko l l~ ' s  use of weakly big requires saturations, which means that the sections 
obtained may have poles over exceptional divisors of  the map X --+ B. From this 
one first deduces: 

Corollary 3.4 ([V2], Corol lary  7.2). Suppose that 7r : X --~ B is as above. There 
is a divisor D on X such that codim(Tr(suppD)) > 1, and such that ~ r ( D  ) is big. 

[] 

We still have the annoying divisor D. Our method below will allow us to 
ignore it, but actually a trick of Viehweg ([V2]; 'Lemma 7.3) makes it easier. 
Viehweg simply applies the theorem above to X I ~ B / where X '  is a desin- 
gularization of  a flattening of  X, where any exceptional divisor for X ' / B  ~ is 
exceptional for X~/X.  Since ws,/8 is effective, one immediately obtains: 

Theorem 3.5 (Kollfir-Viehweg). Suppose that 7r : X --~ B is as above. Then a:~ 

is big. [] 

4 Pluri-nodal reduction 

4.1 Statement 

Let X0 ~ B0 be a fiber space. We need to dominate it by a pluri-nodal family, 
so that it becomes a quotient by the action of  a finite group. 

To this end, we prove the following lemma, which is a variant of  de Jong's  
results in [dJ], Sects. 6 and 7. The proof is based on that of de Jong. 

Lemma 4.1 (Galois pluri-nodal reduction lemma). There exists a diagram 
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Y --~ Xo 

Bl --~ Bo 

and a finite group G C Autxo~8oBtY such that B1 --~ Bo is an alteration, Y / G  --* 

XoxBoBI is birational and Y -+ B1 is a pluri-nodal family.  

Proof. We proceed by induction. The setup is as follows: suppose we have X --* 
Z --~ B a pair  of  fiber spaces, where X --~ Z is pluri-nodal,  and a finite group 

Go C AutB(X --+ Z).  We also assume that we have a birational morphism 

X / G o  -~ Xo~<8o B.  We will produce a diagram 

X t ~ Z tt ~ Z I ~ B I 

X ~ Z ~ B 

with the fol lowing properties: 

1. the vertical arrows are alterations, 

2. the horizontal arrows are fiber spaces, 
3. the morphism Z 't ~ Z '  is a nodal family, 
4. X '  = X •  Z t', and therefore X '  --~ Z ~ is pluri-nodal,  

5. there is a finite group G '  = Go x G "  C A u tw (X '  --* Z "  ~ Z~), and 
6. the morphism X ' / G "  ~ X x B B '  is birational,  and therefore X ' / G '  

Xof<BoB' is birational. 

The basis of  the induction is X0 --* X0 --+ B0 with Go trivial. The induction ends 
with Z ~ --* B '  being birational, in which case we set Y := X' ,  B1 := Z ~, G := 

G' and the lemma will be proved. 
Let Gz C AutnZ be the image of Go, and denote W = Z / G z .  

L e m m a  4.2. There exists a dominant rational map Z / G z - - * P  --+ B, where P --+ 

B is a projective bundle, such that dim(P)  = d im(Z)  - 1, and such that the generic 

f iber o f  Z over P is geometrically irreducible. 

Proof  This is obvious in case rel. d i m ( Z / B )  = 1, so assume r e l . d i m ( Z / B )  > 

1. Denote this relative dimension by r .  Since we are looking for a rational 

map, we may replace B by its generic point 77, and replace Z by Z, r Let  W = 
Z / G ,  choose an embedding W C ~ v ,  and let f : Z ~ ~ be the induced 
morphism. According to [J], 6.3(4), for general hyperplane H C IF v we have 
f - i l l  geometrically irreducible. Continuing by induction, there is a linear series 
(~zr--1)* of  dimension r - 1 of  hyperplanes in ]F v such that the general fiber of  
Z._.+]~r-1 is a geometrically irreducible curve. 

The normalization of  the closure of  the graph of  the rational map Z---~P gives 
a Gz-equivariant resolution of  indeterminacies 

Z1 ~ P 

Z 
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L e t  X I  = X X Z Z 1 . Then X1 --* Z1 is pluri-nodal, and the action of Go on X lifts 
to X1 ( i fxl  = (x ,z t )  E X1 and 9 E Go then (9(x),9(zl))  E Xt as well). 

We will now perform a canonical nodal reduction for ZI ---* P using the 
Kontsevich space of  stable maps. The genetic fiber of  Z1 ---* P is a normal 
curve, and therefore smooth. Choose a projective embedding Z1 C ~ .  Let 
d be the degree of the generic fiber of  Z1 ~ P and let 9 be its genus. By 
[B-M], Theorem 3.14, there exists a proper Deligne-Mumford stack dgg,0(Zl ,  d) 
parametrizing stable maps C ~ Z1 of  curves of  genus 9 and degree d. By [F-P] 
this stack admits a projective coarse moduli space. In particular, this implies that 
there is a finite cover p : M ~ Jgg ,0 (Z l ,  d) where M is a projective scheme 
admitting a stable map (C ~ M , f  : C --* Zl) whose moduli map is p. 

Let 7/E P be the generic point. The pair ((Z0n --* 7/, (Z1),7 ~ Z 0  is a stable 
map of  genus 9 and degree d, therefore we have a rational map P--*Jgg,o(Z1,  d). 

We can choose a normal resolution of  indeterminacies 

P2 ---* M 
+ 
P 

such that there is a finite group G1 C AutpP2 with P2/G1 ---+ P birational. Let 
Z2 = C x M P2- We have an induced stable map (Z2 ---* Pz,.h : Z2 --* Z0 ,  in 
particular Z2 ~ P2 is nodal. Over the genetic point of  P2 this coincides with 

ZI x p P2. 
Since stable reduction over a normal base is unique when it exists (see [dJ-O], 

2.3), the action of  GI lifts to Z2, and it lifts to X2 = Xt Xz, Z2 as well by pulling 
back as before. Let P2 ~ B2 ~ B be the Stein factorization. Since the Stein 
factorization is unique we have canonically an action of  Gt on B2. Let G2 C GF 
be the subgroup acting trivially on B2. Then G = Go x G2 C Aut82(X2 ~ P2). 
We have X2 ~ P2 pluri-nodal, and X2/Gz ~ X ~<sBz birational. I f  we denote 
X t :=X2, Z "  :=Z2, Z ~ :=P2 ,  B ~ :=B2 a n d G "  :=G2 we have obtained 
the goal of  the induction step. [] 

4.2 Mild singularities 

We want to show that pluri-nodal families are mild. This seems to be well known 
(see [Has], Sect. 4), but in our case we can give a proof which is sufficiently short 
to include here. The following lemma is well known (see [V2], Lemma 3.6): 

L e m m a  4.3. Let Y --* B be a nodal family such that B is smooth and the dis- 

criminant locus is a divisor o f  normal crossings. Then Y is rational - Gorenstein. 

(The proof is by taking formal coordinates near a singular point of  the form 
xy t~ * kr . . . .  t r , and either resolving singularities explicitly or noting that this is 
a toroidal singularity.) 

Proposi t ion 4.4. Let Y ~ B be a nodal family such that B is rational - Goren- 

stein. Then Y is rational - Gorenstein. 
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Proof. Let r : B1 ~ B be a resolution of singularities, Yl --~ B1 the pullback, and 
assume that the discriminant locus of Y1 ---' B1 is a divisor of  normal crossings. 
L e t f  : Y1 ~ Y be the induced map. Then r.c~o, = con a n d f * a ; r / 8  = a;r~/B~, and 
by the projection formula we obtain that f ,a&, = a&. [] 

By induction we obtain: 

Corol la ry  4.5. I f  Tr : Y -~ B is a pluri-nodal  f ami l y  where B is rational - Goren- 

stein, then Y is rational - Gorenstein. In par t icu lar  the n-th f ibered p o w e r  Y~ is 

rational - Gorenstein. 

Thus pluri-nodal families are mild. 

5 Proof  of  the theorem 

Let X0 ---, B0 be a smooth projective family of  varieties of  general type of 
maximal variation. Choose a model X --, B where both X and B are projective 
nonsingular. By 4.1 we may assume, after an alteration B1 --~ B, that we have a 
birational morphism 90 : Y / G  = X1 --~ X~<sBI where 7rr : Y --~ Bl is a pluri- 
nodal family and G C Auts~ Y a finite group. Choose a resolution of singularities 
r : X2 --, X1 and denote by 7r2 : X2 ~ B1 the projection. We have a diagram: 

Y 
~q 

(1) X2 r , X l  9o , X 

B1 ~ B 

According to 2.7 (where we set V = Y and W = Xl) there is an ideal ~ C ~ 
r ~ gives sufficient conditions for invariant n-differentials such that ~ F  : " d"m,n 

tO descend from ym For arbitrary integer rn > 0 let ~ ---+ X~ be a resolution BI" 
of singularities of  the main component, and let ~ --~ (Xt)~t be a resolution 
of singularities, dominating LZ,~. According to 2.8 (applied to Bl --~ B) there is 
an ideal 3"  C ~ , ,  such that for any m, if  w ~ / 8 ,  | ~ is big then ~ (and 
therefore X m (0)80)  is of  general type. 

By the Kollfir-Viehweg Theorem 3.5, w~r2 is big. Therefore q* r.oJ~2/torsion is 
big. We have by definition that O~ry |  Y) is big. Therefore, for sufficiently 
large n we have that o~r | i s  big. Pulling back along all the projections 

n Pi : yms, --~ Y we have that wr~/8, | ~ , ~ m , " 3 " ~  m'~(c) is big. In particular, if 

n ~ ~ is big. By 2.7, taking invariants m > n, we have that wr~/BI | ~ m , , ~ "  ~'F 

we have that w~zg/8, |  is big, and by 2.8 we have that (X0)Sm0 is of general 
type for large m. 

5.1 An  alternative approach 

The following argument gives a variation on the proof which is more in line 
with [Ko] and [V2]. Having chosen the diagram (1), we can alter it as follows: 
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using semistable reduction in codimension 1 (see [KKMS] II, and [Ka], theorem 
17), we can find a nonsingular alteration B~ --- B1, a variety X~ ~ B;, and a 
birational morphism Xzt ~ X2 xB, B ' satisfying the following conditions 
1. The discriminant locus A of X~ --- B; is a divisor of normal crossings. 

2. There is a closed subset F C A with codim(F,B~) _> 2, and U = B ~ k F  ~ B~, 
such that the restriction X~Iv ---* U is semistable. In particular, this restriction is 
mild (see [V2], Lemma 3.6). 

In fact, using the techniques introduces by de Jong, one should be able to 
show that F C Sing(A). 

Let X[ = X1 xB~ B~ and Y: = Y x m B~. We can replace B1,X1,X2, Y by 
B~, X~, X~, Y' and assume that conditions (1) and (2) are satisfied. 

Let 7r x : X(m) --~ B1 be the main component of (X1)~. Choose a resolution 
�9 ( m )  

of singularities Wm ~ X(m), and let 7rw, : Wm ~ BI be the associated projection. 
Denote -~m,n = 7rw m.~o~W m and ~ , n  = (~m:)**. Since the restriction of Wm to 
U is mild, we have that ~<'~,n = i . i * ~ , n .  Applying 2.6, we obtain: 
1. We have natural morphisms 

(by pulling back sections to Wm~+m2 over U, multiplying and extending). 
2. We have natural morphisms 

(by multiplying sections). 
3. We have 

"~m,n <9 ~F n(e(G)-l) C ~ , n  C ~m,n 

(by 2.7. Notice that the remark after 2.7 shows that 27v~ suffices). 
By Kol l~ ' s  theorem ~ , ,  is big for sufficiently large n. We can choose an 

ideal .~  as in 2.8. By (2) above, for sufficiently large n we have that ~ , ,  <9 
. .~F e(6) is big, and using (1) above we have that for sufficiently large m, ~ , ,  <9 
�9 57'n,~/z'e(G) is big, therefore by (3) , ~ , n  | ~ ,n  is big, which is what we need. 
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