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Abstract. Given a lattice polytope Q c ]R n, we define an affine scheme ,//~ 
that reflects the possibilities of  splitting Q into a Minkowski sum. Denoting by 
Y the toric Gorenstein singularity induced by Q, we construct a flat family over 
J / ~  with Y as special fiber. In case Y has an isolated singularity, this family is 
versal. 

1 Introduction 

(1.1) The whole deformation theory of  an isolated singularity is encoded in 
its so-called versal deformation. For complete intersection singularities this is a 
family over a smooth base space obtained by certain perturbations of  the defining 
equations. 

As soon as we leave this class of  singularities, the structure of  the family, 
and sometimes even the base space, will be more complicated. It is well known 
that the base space may consist of  several components or may be non-reduced. 
In (9.2) we will present a (three-dimensional) example of  a singularity admitting 
a fat point as base space of its versal deformation. 

For two-dimensional cyclic quotient singularities (coinciding with the two- 
dimensional affine toric varieties), the computations of  Amdt, Christophersen, 
Kollfir/Shepherd-Barron, Riemenschneider, and Stevens provide a description of  
the versal family - in particular, the number and dimension of  the components 
of  the reduced base (these components are smooth) are computed. 

Christophersen observed that the total spaces over these components are toric 
varieties again (cf. [Ch]). This suggests that the entire deformation theory of  affine 
toric varieties might remain inside this category. It should be a challenge to find 
the versal deformation, its base space, or the total spaces over the components 
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by purely combinatorial methods. 

(1.2) Affine toric varieties are constructed from rational, polyhedral cones cr C_ 
~n+l: One takes the dual cone 

~v := {r �9 (N"+I)* I (a, r) _> 0 for each a E ~r}, 

and Ya is defined as the spectrum of the semigroup algebra C[~r" N (En+t)*]. 
In particular, equations of Y~ are induced from affine relations between lattice 
points of crv C_ (lR~+t) *. In the following we will no longer differentiate between 
I~ n§ and its dual space; however, for vectors, we will try to use parentheses 
and brackets for primal and dual ones, respectively. See [Ke] or [Od] for an 
introduction into the subject of toric varieties. 

For investigating versal deformation spaces, Gorenstein singularities could 
serve as the first class to study beyond complete intersections. Ishida gave a 
nice description of this class inside toric varieties (cf. [Ish], Theorem 7.7): Y,, is 
Gorenstein if and only if er equals the cone over some lattice polytope Q c_ IR ~ 
(i.e. its vertices are lattice points) embedded into height one. 

Therefore, our point of view will be the following: Given a lattice polytope 
Q c_ N n, we want to study the deformation theory of the affine, toric variety 
Y,, with tr := Cone(Q) c_ I~ ~+1. Examples of these singularities are Del Pezzo 
surfaces of degree > 6 (cf. (9.1)). 

(1.3) The main tool to describe our results is the notion of Minkowski sums: 

Definition. For two potytopes P, pt  C ~n we define their Minkowski sum as the 
polytope P + pi  := (p + p,  [ p E P ,pl E pt} .  Obviously, this notion also makes 
sense for translation classes of  potytopes. 

(See (9.3) for another illustration of this notion.) Each Minkowski summand of 
a given polytope Q c I~ n (or some multiple of Q) contains, up to the length, the 
same edges as Q itself. This fact enables us to handle the "moduli space" C(Q) 
of Minkowski summands which is a polyhedral cone (cf. (2.2)). 

Attaching each Minkowski summand at the point that represents it in C(Q) 
yields the so-called tautological cone C (Q) together with a projection onto C (Q). 
Its construction is very similar to that of a universal bundle, and indeed, apply- 
ing the functor that makes toric varieties from cones will provide the main step 
toward constructing the versal base space of Y,, (cf. Sect. 4). 

(1.4) For a given lattice polytope Q c_ ~n with primitive edges, i.e. they do 
not contain any interior lattice points, we begin in Sect. 2 with describing an 
affine scheme ~/~ which seems to be interesting independently from the toric or 
deformation context. It describes the possibilities of splitting Q into Minkowski 



The versal deformation of an isolated toric Gorenstein singularity 445 

summands. The underlying reduced space is an arrangement of planes corre- 
sponding to those Minkowski decompositions involving summands that are lattice 
polytopes themselves. Since all the proofs are based on quite the same method, 
we have collected them in a separate section. Each theorem of Sect. 2 can be 
translated into an easier language and correspbnds to a certain lemma of Sect. 3. 

In Sect. 4 we study the tautological cone C(Q). This leads in Sect. 5 to the 
construction of a fiat family over ~/~ with Y~ (~r = Cone(Q)) as special fiber. 
Note that for Y~ the assumption of Q having primitive edges means smoothness 
in codimension two. Computing the Kodaira-Spencer map (in Sect. 6) as well as 
the obstruction map (in Sect. 7) shows that for isolated singularities the family is 
versal (nevertheless trivial for dim Q > 3, cf. (6.3)). Its components are described 
in Sect. 8. 

In the general case, the Kodaira-Spencer map is an isomorphism onto the 
homogeneous part of T~ with the most interesting multidegree (cf. Theorem 
(6.2)), and the obstruction map is still injective (cf. Theorem (7.2)). 

Throughout the paper, an example accompanies the general theory. Further 
examples can be found in Sect. 9. 

(1.5) Acknowledgements: I am very grateful to Duco van Straten and Theo de 
Jong for constant encouragement and valuable hints. 

This paper was written during a one-year stay at MIT. I would like to thank 
Richard Stanley and all the other people who made it possible for me to work 
at this very interesting and stimulating place. 

2 The Minkowski scheme of a lattice polytope 

(2.1) Let Q c_ ~"  be a lattice polytope, i.e. the vertices are contained in Z". We 
will always assume that the edges do not contain any interior lattice points. Hence, 
after choosing orientations they are given by primitive vectors d ~ , . . . ,  d N E Z". 

Definition. For every 2-face e < Q we define its sign vector r = ( e l , . . .  ,eN) E 
{0, -+'1 } N by 

-4-1 i f  d i is an edge o f  e 
Ei "= 0 o therwise  

such that the oriented edges ei �9 d i fit into a cycle along the boundary o f  e. This 
determines r up to sign, and we choose one o f  both possibilities. In particular, 
E i  Eidi = O. 

Example. Let us introduce the following example, which will be continued 
throughout the paper: For Q we take the hexagon 

Q6 := Conv {(0, 0), (1,0), (2, 1), (2, 2), (1,2), (0, 1)} C ~;~2. 
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(1,2) (2, 2) 

(0, 
1 ) ( / /  Y (2, 1) 

1.1i/ 
(0, O) (1, O) 

hexagon Q6 

Starting with d I := (0, 0)(1,0), the anticlockwise oriented edges are denoted by 
d 1 , . . . ,  d 6. As vectors they equal 

d l = ( 1 , 0 ) ;  d 2 = ( 1 , 1 ) ;  d 3 = ( 0 , 1 ) ;  

d 4 = ( - 1 , 0 ) ;  d 5 = ( - 1 , - 1 ) ;  d 6 = ( 0 , - 1 ) .  

Q6 is 2-dimensional, hence, it is its own unique 2-face ~ = Q. For Q we take 
Q = (1 , . . . ,  1). 

(2.2) We define the vector space V C ~lv by 

V := v ( a )  := { ( q , . . . ,  tN) l ~ ti r d i = 0 for every 2-face ~ < Q}. 
i 

Then, C(Q) := V f3 IRU>o is obviously a rational, polyhedral cone in V. 

Lemma. The points of C (Q) correspond to the Minkowski summands of positive 
multiples of Q. 

Proof. For an element ( q , . . .  ,tN) E C(Q), the corresponding summand Qt is 
built by the edges ti .d i (i = 1 , . . .  ,N)  as follows: Assume that 0 E I~" coincides 
with some vertex of the lattice polytope Q. Then, each vertex a of Q can be 
reached from 0 by some walk along the edges of Q. We obtain 

N 

a = ~ _ A i d  i 
i=1 

for some A = (A1,. . . ,AN),  Ai E 2~. 

Now, given an element t E C(Q), we may define the corresponding vertex at_ by 

N 

at := Z ti Ai d i . 
i=1 

The linear equations defining V = spanC(Q) ensure that this definition does 
not depend on the particular path from 0 to a through the 1-skeleton of Q. The 
polytope Qt- is defined as the convex hull of all the at. Finally, it is clear that all 
Minkowski summands arise in this way. [] 
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For a particular Minkowski summand Q~ we will denote the corresponding point 
in the cone by o(Q') E C(Q).  

Example. 1) Applying Q, the two splittings of Q6 drawn in (1.3) become 

(1 ,1 ,1 ,1 ,1 ,1)  = ( 1 , 0 , 1 , 0 , 1 , 0 ) + ( 0 , 1 , 0 , 1 , 0 , 1 )  

= (I,0,0,  I ,0 ,0 )+(0 ,0 ,  1,0,0, 1)+(0, 1,0,0, 1,0). 

2) In any ease we have O(t �9 Q) = (t , .  . . , t )  E C(Q)  c v c ~N. 

(2.3) For each 2-face e < Q and for each integer k > 1 we define the (vector 
valued) polynomial 

N 

9~,k(t) := Z tik ei d i �9 
i=1 

Using coordinates of En, the 9r become regular polynomials; for each pair 
(e, k) we will get two linearly independent ones. We obtain an ideal 

57 := (9~,kle < Q, k > 1) c_ C[tl,... ,tN] 

which defines an affine closed subscheme 

:= SpecC[t]/~,~. C Vr C_ ,jg/~ C N . 

Example. For our hexagon Q6 introduced in (2.1) we obtain 

~ = ( t ~  + t ~ -  t4~-  t~, t~ + t ~ - t ~ -  4 1  k _> 1 )  

Of course, finitely many polynomials are sufficient to generate the ideal ~,~ - but 
we can even give an effective criterion to see which equations may be dropped: 

Proposition. Let e < Q be a 2-face. Then e is contained in a two-dimensional 
subspace o f  N n, and this vector space comes with a natural lattice (the restriction 
o f  the big lattice Y~" ). 

I f  e is contained in two different strips defined by pairs o f  parallel lines o f  
lattice-distance <_ ko each, then the equations 9e,k (k > ko) are contained in the 
ideal generated by 9~, 1 , . . . ,  9e,ko. 

Proof  cf. (3.3). 

Example. Obviously, Q6 is contained in at least three different strips of thickness 
2. Hence, ~7" is generated by polynomials of degree _< 2: 

~ z  = (tl + ,2  - t4 - ts, t2 + t3 - t5 - ,6, t? + 4 - t 2 - t2, 4 + 8 - tg - 4 ) .  

(2.4) Denote by g the canonical projection 
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g ]  C N >> c N / c . ( 1 , . . . , 1 )  = c N / c .  ~(Q) .  

On the level of  regular functions this corresponds to the inclusion C[ti - tj [ 1 <_ 
i , j  < N] C C [ t l , . . . , t N ] .  

Theorem.  (See also Remark (4.4)) 

(1) .f7 is generated by polynomials from C[ti - tj ], i.e. ~/~ = g-l (.~/~) for some 

affine closed subscheme d ~  C VC/C " $(Q) c C'7C " ~(Q)..~/~ is defined 

by the ideal f ~  A C[ti - tj]. 

(2) ~ C_C_ C [ t i , . . . ,  tN] is the smallest ideal that meets property (1) and, on the 
other hand, contains the "toric" equations 

N N 

H t/7--  1-[ tail- 
i=1 i=1 

with 

d ~ Z N Aspan {[ (e ld l , c ) , . . . ,  (eudN,c)]l e < Q 2-face, c E Rn}. (For an 
integer h we denote 

h+ := 0 

Proof cf. (3.4). 

i f h > 0  . ~" 0 i f h > _ 0  
otherwise ' h -  := ]. - h  otherwise ") 

Example. Toric equations for Q6 a r e  for instance tl t2 -- t4 t5, t2 t3 --  t5 t6, and 

t l t6 - -  t3 t4. 

(2.5) We want to describe the structure of  the underlying reduced spaces of  
~//~ or ~/~. Let Q = R0 + . . .  + R,, be a decomposition of  Q into a Minkowski 
sum of  m + 1 lattice polytopes. Then, the N-tuples o(R0),. �9 �9 #(Rm) have entries 
0 and 1 only, and they sum up to ( 1 , . . . ,  1). In particular, the (m + 1)-plane 
C �9 o(Ro) + . . .  + C �9 Q(R,,) C_ C N is contained in J /g .  It is given by the linear 
equations ti - tj = 0 if d i , d j belong to a common summand R~. 

Refinements of  Minkowski decompositions (they form a partially ordered set) 
correspond to inclusions of the associated planes. 

Theorem.  ~/~red  equals the union of those flats corresponding to maximal 
Minkowski decompositions of Q into lattice s u m m a n d s .  J,Z~re d consists of their 
images via g. 

Proof cf. (3.5). 

Example..--//g(Q6) and ,~/~(Qr) are reduced schemes (for non-reduced examples 
cf. Sect. 9). Let us study them directly: 



T h e  v e r s a l  d e f o r m a t i o n  o f  a n  i s o l a t e d  t o r i c  G o r e n s t e i n  s i n g u l a r i t y  4 4 9  

- The linear equations allow the following substitution: 

t := t l  

Sl := tl -- t3 
S2 := t4 -- t2 
s3 1= tl -- t4 

tl = t 
t2 = t - -  S 2 - -  S 3 

t3 = t -- sl 
t4 = t - -  S 3 
t5 = t -- SZ 
t 6 ----- t - -  S1 - -  S3 �9 

- The two quadratic equations transform into sl s3 = sz s3 = 0. 

In particular, ~/~ is the union of  a line and a 2-plane - corresponding to the 
Minkowski decompositions 

06 = Cony {(0, 0), (1,0), (1, 1)} + Conv {(0, 0), (0, 1), (1, 1)} and 
Q6 = C o n v  {(0, 0), (1,0)} + C o n v  {(0, 0), (0, 1)} + Conv {(0, 0), (1, 1)} 

already mentioned in (2.2) and depicted in (1.3). 

(2.6) ~//~ (or , / ~  = ~-- 1 ( / ~ ) )  reflects the possibilities of  Minkowski decompo- 
sitions of  Q: 

- The underlying reduced space encodes the decompositions of  Q into lattice 
summands. 

- Extremal decompositions into rational summands are hidden in the scheme 
structure of  J ' ~ .  
Its tangent space in 0 (the smallest affine space containing ~//~) equals 

Ve/C.  - it is the vector arising from the cone C(Q) of Minkowski o(Q) space 

summands by killing the summands homothetic to Q. 

Therefore, we will call J ~  the (affine) Minkowski scheme of Q. 

3 P r o o f s  o f  t h e  s t a t e m e n t s  o f  S e c t .  2 

(3.1) Using vectors c E 2~ Iv (or certain c E ~N) we can evaluate the edges 
d J , . . . ,  d N to get integers 

dl := (Eldl ,c ) , . . . ,dN := (~NdN,c) 

for every given 2-face e < Q. Doing so, the statements of  Sect. 2 can be reduced 
to much simpler lemmas which will be presented here. Then, all these lemmas 
are proved using the following recipe: 

(i) Assume di = •  - then the lemmas reduce to well known facts concerning 
symmetric functions. 

(ii) Move to the general case by specialization of  variables. 
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(3.2) For the whole Sect. 3 we use the following notation: 

Let d l , . . . , d u  E Z such that d t , . . . , d M  >__ O, dM+l ,  . . . , d N  < O, a n d  ~ N = I  di = 

0.  
ffk(t_) := 9d,k(/') := ff'~4N=l d i ti k , 

p(t_) := pu(t_) := t a t ' ' . . ,  �9 tam M - t ~ ] '  " . . . " taN ~. 

Denote by ~rk and sk the k-th elementary symmetric polynomial and the sum of 
the k-th powers of  a given set of  variables, respectively. 

R e m a r k .  For 1 < i , j  < M or M + 1 < i , j  < N,  identifying the two variables ti 

and tj (i.e. switching from C[L] to Ct[ !J / t  i _ t ) )  yields the following situation: 

- ti, tj are replaced by a common new variable ? (i.e. N is replaced by N - 1), 
- d i ,  ~ .  are replaced by at := di + d j ,  but 
- 9 k ( t ) , p ( t _ )  keep their shapes in the new set up. 

In particular, the general situation can always be obtained via factorization from 
the special case dt . . . . .  dM = 1; dM+l . . . . .  d N =  --1 (and N = 2M). 
Renaming ti = x i ,  tM+i = Yi  ( i  < M )  it looks like 

M k gk(x ,y)  = (z/M_-IX/k) - - ( Z i = l Y i  ) = sk(X--) - - S k ( y ) ,  

p ( x , y )  = (X1" . . . " X M )  --  ( y l  " . . . " y M )  = a ~ ( x _ )  - a M ( y ) -  

V ' N  d.  (3.3) L e m m a .  I f k o  := Y']~l di = - z_,i=M+l ,, t h e n  t h e  p o l y n o m i a l s  9k ( k  > ko)  

a re  C t[t_]-linear c o m b i n a t i o n s  o f  g l , . . .  , 9ko. (This implies Proposition (2.3).) 

P r o o f  As previously discussed, we may regard the special c a s e  di = 5:1. In 
particular, /co = M .  Now, for an arbitrary k ( >  M),  the expression sk(x) is a 
polynomial in sl(x__),..., sM(x_), say 

Sk(X_) = Pk  ( s l ( x D , . .  . ,  sM x(~_)). 

Then, 

g~(~, y__~ = s~(x__) - ~ ( y ~  = P~ (s, ( x ) , . . . ,  s~, ( ~ )  - P~ (s~ (y_~,. . . ,  sM ~ ) ) ,  

r. ru occurring in Pk, we have and for each monomial  s~ t s 2- . . .  s M 

SI(X.) rl " . . .  " SM(X_.) TM - -  SI(N) rl " . . . 'SM(.N) TM = 

M rv 

- -  Z )j . s, r, sv(x i-1 
v=l i=1 
�9 s~(y)  ~o- '  s ~ + l ( y y  ~-' . . .  s M ( y r  ~ 

M rv 
= ~--~ ffv(X,y___)" ( ~  SI(X___) r. . . .Sv--I(X___) r v - I  Sv(X___) i - '  

v=l i=l 

.s~(y_)~o - ,  s~§176 sM ( y _ ) ~ ) ,  
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proving the lemma. [] 

(3.4) Lemma. (implying Theorem (2.4)) 

(1) The  ideal  f ~  := (gt] k > 1) _C C [ t l , . . . ,  tN] is g e n e r a t e d  by  p o l y n o m i a l s  in 

ti - tl (i = 2 , . . . , N )  only. 

(2) ~f~ is the sma l l e s t  ideal  g e n e r a t e d  by  p o l y n o m i a l s  in ti - t l ,  w h i c h  add i t iona l l y  

con ta in s  p .  

Proof .  (1) Replacing ti by ti - tl as arguments in 9t yields 

9 t ( t l - - t l , . . . , t N - - t l )  = Z d i ( t i - t l ) t = Z d i  �9 ( - 1 ) v t ~ t ~  - v  

i=1 i=1 \ v=0  / 

= ( - 1 )  t I di t k -v  = ( - 1 )  ~ t 1 gt-~(t__). 
v---0 \ i=1 / v---0 

In particular, (g t ( t_ ) Ik  > 1) and ( g t ( t  - tl)[ k > 1) are the same ideals in C t[t]. 

(2) Each polynomial q(t) can be written uniquely as 

q ( t )  = ~...~ qv(t2 -- h ,  . . . , tN -- t l )  " t~. 
v>O 

If J _C C[t]  is an ideal generated by polynomials in t - tl only, then for each 
q(t) E J the components qv are automatically contained in J ,  too. Hence, we 
should look for the components o f  the polynomial p.  In the polynomial ring 
C[X, Y, T] we know that 

p ( T  + X , T  + Yy_) = ( T  + X D . . . .  �9 ( T  + X M )  - ( T  + Y1)" . . .  �9 (T + YM) 

has ~rt(X__) - err(Y) as coefficient of  T M- t  (k = 1 , . . .  ,M).  On the other hand, 
there is a polynomial Pt  and a non-vanishing rational number ct (not depending 
on M)  such that 

crt (X_) = Pk (st (K), - �9 �9 s t -  I (X__)) + ct - sk (K). 

As in the proof of  the previous lemma we obtain 

Ok(X___ ) - -  CVk(Y ) "= P k ( S l ( X _ . ) , .  . . ,  S k - l ( X _ _ ) )  - -  P k ( s I ( Y . _ ~ , . . . ,  S k - 1  (Y._~)) 

+ct " Sk (X)  -- c t  . s t  (Y_) 
k--1 

= ~ q ~ ( X , g _ ) . g v ( K , g _ ) + c t . g t ( - g , g _ )  
V=I 

for some coefficients q~. Specialization (first by T ~ x t ,  Xi  ~ xi - x t ,  Yi ~ 

yi - Xl ,  then followed by the usual one) shows that the ideal generated by the 
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components p~(t - q)  of p equals ~ ' .  [] 

(3.5) L e m m a .  Let c C_ = ( c l , . . . , c u )  E C N be a point such that 9~(c_) = O fo r  
each k > 1. Then, for  every fixed c E C, we have ~c~=c di = 0. (This implies 
Theorem (2.5).) 

Proof. The equations y'~ui= 1 di c~ = 0 present 0 as a linear combination of the vec- 
2 3 tors (ci, c i , ci , . . . ) .  On the other hand, the Vandermonde tells us that this linear 

combination has to be a trivial one, i.e. the sum of the coefficients di belonging 
to equal variables vanishes. [] 

4 The  tautological  cone over  C ( Q )  

(4.1) In (2.2) we have introduced the cone C ( Q )  of Minkowski summands of  
ITS>0. Q. For an element ( t l , . - .  , tN) E C ( Q )  the corresponding summand Qt 
was built by the edges ti -d; (i = 1 , . . .  ,N) .  Now, we paste the summands at the 
points they are assigned to: 

Definition. The tautological cone C ( Q )  c ~" x V C ]~n+N is defined as 

C(Q) := {(a, t_)J t E c ( a ) ;  a E a t} .  

it comes with a natural projection C (Q ) --+ C (Q ). 

C(Q)  is (as C(Q))  a rational, polyhedral cone. It is generated by the pairs 
(@,  t_J) with 

�9 a i a vertex of Q and 
�9 tJ a fundamental generator of  C(Q) .  

This follows from the simple rule (at_+t_,, t_ + t/) = (at, t) + ( a t , , / )  for vertices 
a E Q and t , /  E C(Q).  Defining cr := Cone(Q) C_ ~,+l  by putting Q into 
the hyperplane (t = 1), we obtain a fiber product diagram of rational polyhedral 
c o n e s :  

[d(Q) c_ • v]  P'", [ c ( e )  c_ v] . 

T t .0,o  
(The horizontal maps are projections onto the V and the (n + 1)-th component,  

respectively. The inclusion i is given by ( t .  a;  t) ~ (t - a ;  t , . . . ,  t).) 

(4.2) Assigning toric varieties to polyhedral cones is functorial, i.e. we can 
proceed so with the whole diagram. We obtain affine toric varieties Y, X, and 
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S with coordinate rings A(Y)  = C[c#  fq 2~n+1], A(X) = C[C(Q)  ~ M (2~ ~ x V~*)], 
and A(S) = C[C(Q) ~ A V~], respectively. (Recall that Y = Y~ is the toric 
Gorenstein singularity we want to deform.) The varieties are arranged in the 
following commutative diagram: 

~r P ~N l Xe(Q) , S c ( Q )  , , ~ N / ( 1 , . . . , 1 )  

~'~ , r ~ { o }  

In (4.4) and (4.7) we will see that Y ~ X is the pull back of the closed 
embedding C '---, S. Notice that p : S --~ C N defines functions q , . . . ,  tN on S. 

(4.3) To study the toric varieties Y, X, and S it is important to understand the 
dual cones of  or, C(Q), and C(Q), respectively. Beginning with the dual cone of 
a,  to each non-trivial c E 2~ ~ we associate a vertex a(c) of Q and a non-negative 
integer r/0(c) meeting the properties 

(Q, - c )  < r/0(c) and (a(c), - c )  = ~7o(c). 

With respect to Q, c # 0 is the inner normal vector of  the affine supporting 
hyperplane ( o , - e )  = r/o(c) through a(c). In particular, ~70(c) is uniquely deter- 
mined, while a(c) is not. For c = 0 we define a(0) := 0 E It~" and r/0(0) := 0 E Z. 
Recall that the dual cone of cr is defined as crv := {r E I~ "§ ] (cr, r)  > 0}. Hence, 
by the definition of r/o, we have 

o ~  v n z  "+1 = { [c ,~o (c ) ]  I c ~ z " } .  

Moreover,  if  c l , . . . ,  c TM E ~" \ 0 are those elements producing irreducible pairs 
[c,~70(c)] (i.e. not allowing any non-trivial lattice decomposition [c,r/0(c)] = 
[c', 77o(C')] + [c", r/0(c")]), then the elements 

[c 1 , r /o (c l ) ] , . . . ,  [c ~~ 77o(c~')], [0, 1] 

form the minimal generator set for crv N Z "§ as a semigroup. Among them are 
all pairs [c, ~70(c)] corresponding to facets (i.e. top dimensional faces) of  Q. We 
obtain a closed embedding Y ~ C ~+l. The coordinate functions of  C w+l will 
be denoted by z l , - . . ,  zw, t corresponding to [c 1, r /o(Cl)] , . . . ,  [c TM, r/0(c~)], [.0, 1], 
respectively. 

Example. We continue our example Q6 from Sect. 2. Here, the facets of  06 equal 
its edges d 1 . . . ,  d 6, and they are sufficient for producing all irreducible pairs 
[c 1, r~o(ct)] , . . . ,  [c 6, r/o(c6)]. We have 

c x = [ 0 ,  1] ,  c z = [ = 1 ,  1] ,  c 3 = [ - 1 , 0 ] ,  c 4 = [ 0 , - 1 ] ,  c 5 = [ 1 , - 1 ] ,  C 6 = [ 1 , 0 ] .  

The corresponding vertices are (for instance) 
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a(c  2) = a(c  3) = (2,1),  a (c  4) = a(c  5) = (1,2), 

~0(C 1) = 0, ~0(C 2) = 1, Wo(c 3) = 2, ~0(C 4) = 2, ~0(c 5) = 1, ~0(C 6) = 0 .  

(4.4) Thinking of C(Q) as a cone in 1~ N instead of V allows dualizing the 
equation C(Q)  = 11~o N V to get C(Q)  ~ = ~ o  + V•  Hence, for C(Q)  as a 
cone in V we obtain 

C(Q) ~ -  I~>~ V • 1 7 7  = i m [ ~ o  , V*]. 

(As with IR n, we do not use different notation for  lt~ iv and its dual space. Let 
e l , . . . , e ~  be the canonical basis of  the latter one.) The surjection I1~o , 

, C(Q)  ~ induces a map N N ~ C(Q)  ~ N V~, which does not need to be 
surjective at all. This leads to the following definition: 

Definition. On V~ W e introduce a partial ordering " ~ "  by 

rl >'- rf *--4- rl-- rf E im[NN --~ Vz*] C_ C(Q)V M V~. 

On the geometric level, the non-saturated semigroup im [I~ Iv ---, V~*] C C(Q)  ~ N 
V~* corresponds to the scheme theoretical image S of p : S ~ C ~, and S ~ ~{ 
is its normalization (cf. (5.2)). The equations of  S C C Iv are collected in the 
kernel of  

C[t l , . . . ,  tN] = C ~  N] ~', C[C(Q) v n v~] c_ r 

and it is easy to see that 

ker ~ = 

V • = 

t~' - I l  tai'- d E Z N n V • with 
i=1 

s p a n { t { ~ l d ' , c ) , . . . , ( ~ N d N , c ) ] l  ~ < a is a 2-face, c E I ~ } .  

Remark. Using our new notation, we can reformulate Theorem (2.4) as: J / /J  C_ 
C N is the largest closed subscheme that is contained in S and, additionally, comes 
from cN/Q(Q) via g-1. 

On the other hand, dualizing the embedding ~_>0 ~ C(Q)  yields 

C(Q) v M V~ , I~ 

at the level of  semigroups. This map is surjective, even after restricting to the 
subset im [l~ N ~ V2~]: All vectors ei corresponding to the functions ti map onto 
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1 E N. Geometrically this means that both maps C --* S and C --* S are closed 
embeddings, and the corresponding ideals are 

( x E - x ~ '  I z / , 7 / ' E C ( Q ) N V ;  with ~'~iTli=~-~irl; ) and ( t i - t j [  1 <_ i , j  < 
N), respectively. In particular, we have made a first step towards proving the 
claims made in (4.2). 

(4.5) In the next two sections we take a closer look at the dualized cone ff(Q)V. 

Definition. For c E zn let Ac = (A~, . . . ,  A~) E zN describe some path from 
0 E Q to a(c) E Q through the 1-skeleton of Q (similar to that in (2.2)). Then, 

~(c) := [ - : ~ { ( d ' , c ) , . . . , - ~ ( d ~ , c ) ]  e z "  

defines an element ~(c) E V~ not depending on the choice of the particular path 
)~c. 

(Let ~c be a different path from 0 to a(c). It will differ from Ac by some 
linear combination ~ < Q  9e e__ (g~ E Z for 2-faces e < Q) only. In particular, 

A~(di,c) - A ~ ( d i , c ) =  ~-~<Q g~Iei d i, c), and we obtain ~_(c) x -~_(c);~ E V•  

L e m m a .  (i) 71(0) = 0 E V~. 

(ii) For all c E Zn we have ~_(c) 5- 0 (in the sense of Definition (4.4)). 
(iii) r 1 is convex: ~ v  g~ ~(cv) ~- ~ ( ~ v  gv cV) f or natural numbers gv E I~. 

(iv) ~'~=1 rli(c) = ~7o(c) for arbitrary c E Z". 

Proof (ii) a(c) is a vertex of Q providing the minimal value of the linear function 
(e ,c) .  In particular, we can choose a path Ac from 0 E Q to a(c) such that this 
function decreases in each step, i.e. A~ Id i, c) < 0 (i = 1, . . .  ,N). 

(iii) We define the following paths through the 1-skeleton of Q: 

- __A := path from 0 E Q to a ( ~  9~ c~) E Q, 
- ~_~ := path from a(ff-~g~c ~) E Q to a(c ~) E Q such that #~(di ,c  ~) < 0 for 

each i = 1 , . . . , N .  

Then, _A ~ := _A+~ v 

E v  gv ?~i(Cv) 

is a path from 0 E Q to a(c~), and for i = 1 , . . .  , N  we obtain 

-V , (E .g~c  ") = -- ~ v  gv (hi + Iz~) (d  i , c v) 

+Ai(di,~vffV cv) 
= - E v g ~  (d~, cv) --- 0. 

(iv) By definition of _~c we h a v e  ~f--1 )~c d i = a(c). In particular, 

N N 

~i(c)-- - ~ / ~  d/, c/--- - /a(c) ,  c /--~0(c)  
i=1 i=1 
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[] 

Example. In our hexagon Q6 we choose the following paths from (0, 0) to the 
vertices a(c t ) , . . . ,  a(c6), respectively: 

_~6=~1 :=0, A2=_~ 3 := [1,1, 0, 0, 0, 0], .k.__4=_~ 5 := [1,1,1,1,  0, 0] . 

They provide 

r/(c 1) = [0 ,0 ,0 ,0 ,0 ,0 ] ,  r/(c 2) = [1 ,0 ,0 ,0 ,0 ,0 ] ,  
T](C 3) = [1, l, 0, 0, 0, 0] ,  T](C 4) = [0, 1, 1,0, 0, 0],  
r/(c 5) = [ -  1,0, 1, 1,0, 0], T](C 6) = [0, 0, 0, 0, 0, 0].  

Since [ 1 , 0 , - 1 , - 1 , 0 ,  1] = [(d 1, [ 1 , - 1 ] ) , . . . ,  (d 6, [1 , -1])]  E V -t-, the vector 
~(c 5) can be transformed into [0, 0, 0, 0, 0, 1]. 

Remark. The definitions of a(c), ~70(c), and ~(c) also make sense for general 
c E 11~ n. However, r/0(c) E ~ and ~_(c) E V* no longer need to be contained in 
the lattices. The previous lemma will remain valid (even for g~ E I1~_>0 in (iii)), 
if the relation " ~  0" is replaced by the weaker version "E C(Q) v''. 

(4.6) Proposition. (1) ~ ( Q ) V  = { [c, ~_] E IR n x V* [ 77 - 77(c) E C ( Q )  v } 

(2) In particular, [c,rl(c)] E ~(Q)V, and moreover, it is the only preimage of 
[c, r/0(c)] E cr v via the surjection i v : ~(Q)V ,, crv. 

(3) [c l, r / (c l ) ] , . . . ,  [c w, ~_(cW)] together with C(Q) v M V~ (embedded as 
[0, C(Q)V]) generate the semigroup ~(Q)V M (zn • V~). (For the definition 
of c l , . . . ,  c w, cf (4.3).) 

Proof (1) Let [c,_~] E Rn x V* be given; if some representative of _~ in ~N 
is needed, then it will be denoted by the same name. We have the following 
equivalences: 

[c, 21 E ~(Q)V *=* ((Qt, t), [c,r/]) >__ 0 for each t E C(Q) 

r (Qt, c) + (t, r/) _> 0 for e a c h t E C ( Q )  

(a(c)L, c) + (t, ~) >_ 0 for each t E C(Q). 

Using some path ~c we obtain: 

[c,rt]  ~ g ' (O)  ~ 

N 
c i (t_, r/t > 0 for each t E C(Q) 

_ 

i=1 

N 
Zti'(/~c(di, c)+r]i) ~0 for each t_ E C(Q) 
i=1 

r  [A~ (d 1, c) + r / l , . . . ,  A~v (d N, c) + rlu] E C(Q)". 
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(2) By part (1) we know that for each [c,_~] E C(Q)"  it is possible to choose 
I~N-representatives of  ~ ,~(c)  such that ~7i >- *li(c) for i = 1 , . . .  ,N .  On the other 
hand, the two equalities Y'~i ~Ti(c) = r/0(c) (cf. (iv) of  the previous lemma) and 
~ i  r/i = T0(c) (corresponding to the fact [c, z/] ~ [c, V0(c)]) imply ~7 = r/(c). 

(3) Let [c, 2] E C(Q)" .  Then, [c, ~o(c)] is representable as a non-negative linear 
combination [c,z/o(C)] = ~ l P ~  [c~',~10(c~)] (P~ E fq if c E Zn). Since both 

- -  C v - -  V elements [c, ~7(c)] and Y'~vPv[ , rl(c )] are preimages of  [c, r/o(c)] via t ~, they 
must be equal by (2), and we obtain 

[c,  ~] = [c,  ~(c)]  + [o, ~ - v (c ) ]  = ~--~ p~ [c ~, q(c~)]  + [o, ~ - ~ ( c ) ] .  

(4.7) Finally, we will take a short look at the geometrical situation reached at 
this point. The linear map 

~,(Q)V n ( z  n X E l )  >) a v n z "+' 

[C, 7]] ~ [C, ~-'~i T]i] 

is surjective ([c,~(c)] ~ [c,~10(c)]; [0, ei] ~ [0, 1]). Since x tr - x [c'v'] - 

x k,_~(c)]. (x [o,_~-~r - x  [0,7' -~(c)]), the kernel of  the corresponding homomorphism 
between the semigroup algebras equals the ideal 

i i 

In particular, Y ~ X is a closed embedding. Moreover, looking at the similar 
statement concerning C(Q)"  and N at the end of (4.4), we see that this map 
equals the pull back of  C ~ S as claimed in (4.2). 

The elements [c 1, ~/(c l ) ] , . . . ,  [c ~', ~(cW)] E C(Q)  induce some regular func- 
tions Z l , . . . ,  Zw on X. They define a closed embedding X ~-* C ~ • S lifting the 
embedding Y '---* C w+l of  (4.3). 

X ~ C ~ ~  

t T 
Y ~ C ~ x C  

Moreover, for i = 1 , . . . ,  N,  Zi is the only monomial function lifting zi from Y 
to X. 

5 A fiat family over ~/,g 

(5.1) Theorem.  Denote by X and S the scheme theoretical images o f  X and S 
in C z~ • C N and C N, respectively. Then, 

(1) X --~ ~f and S --~ S are the normalization maps. 
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(2) 7r : X ~ S induces a map ~r : X ~ S. and 7r can be recovered from # via 
base change S --~ S. 

(3) Restricting to ~//~ C S and composing with e turns # into a family ff • 

d ~  # ~//~ .e j ~ .  it is flat in O E ~/~ c C N-t,  and the special fiber 
equals Y. 

The proof  of  this theorem will fill Sect. 5. 

(5.2) The ring of  regular functions A(S) is given as the image of the map 
C [ t l , . . . ,  tN] ~ A(S). Since 2~ N >> V~ is surjective, the rings A(S) C A(S) C_ 
C[V~] have the same field of  fractions. On the other hand, while t -monomials  
with negative exponents might be involved in A(S), the surjectivity of R~0 " 
C(Q) ~ tells us that sufficiently high powers of  these monomials always come 
from A(S). In particular, A(S) is normal over A(S). 

A(.~) is given as the image A(.~) = i m ( C [ Z 1 , . . .  ,Z~o,tl,. . .  ,tN] --~ A(X)). 
Since A(X) is generated by Z l , . . . ,Z~o  over its subring A(S) (cf. Proposition 
(4.6)(3)), the same arguments as for S and S apply. Hence, Part (1) of  the pre- 
vious theorem is proved. 

(5.3) Recalling that z l , . . . , z ~ ,  t E A(Y) stand for the monomials with expo- 
nents [c I , 77o(CI)] . . . . .  [c ~', ~70(cW)], [0, 1] E cr ~ N Z  ~+l, respectively, we obtain the 
following equations describing Y as a subset of  C~:+1: 

v=l v=l 

with a , b E N  w: ~ v a v c  v = ~ v b v c  v and 

Defining c := ~"~v a~ c ~ = ~ by c ~ we can lift ~a,b,c~,~) to the following ele- 
ment of A(S)[Z l , . . . ,  Z~o] (described via the map C [ Z t , . . . ,  Z~, t l , . . . ,  tN] 
A(S) [Z1 , . . . ,  Z~]): 

F(a,b,a,/3)(Z, t)  : = f a , b , a , / 3 ) ( Z ,  t l )  - -  Z[C'r/(c)] " (/_. aet+~'~v 
dv T/(c v ) 

_tf3el+ y~., b,n_(c ") ) . _t-rT~c)- 

Remark. (1) The symbol Z tc'E(c)l means IIvW_l Z p~ with natural numbers Pv E N 
such that [c, r/(c)] = ~ , ,  Pv [c ~, ~(c~)] or equivalently 
[c,rl0(c)] = ~ v P v  [ cv, r/0(c~)] �9 This condition does not determine the coeffi- 
cients pv uniquely. Any choice satisfying the equation will do. Choosing other 
coefficients q~ with the same property yields Z p* �9 . . . .  Z p~ - Z q' . . . .  �9 Z q~ = 

F~p,q,0,o)(Z, t_) =f{p,q,O,o)(Z, t), anyway. 
(2) By part (iii) of Lemma (4.5), we have ~ , ,  avrl(c~), y ~  b~_(c ~) >- ~(c). 

In particular, representatives of  the r/ 's can be chosen such that all t-exponents 
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occurring in monomials of F are non-negative, i.e. F indeed defines an element 
of A(S)[Z~, . . . ,  Z~]. 

Lemma.  The polynomials  F~o,b,a,r generate ker (A(S)[Z__] --, A(X)), i.e. they can 

be used as equations f o r  f f  C C w x S.  

Proo f  Recall first that the map from A(S)[Z] to A ( X )  = e[r Cx[r , where 

[c,~] runs through all elements of C(Q)~ N (2~ ~ x Vs sends Z~ ~ x [C'n-~r 
and t~ ~ x [O,e,l. Hence, 

F(a ,b ,or,13) = 
b~ ~(c" )-- rT(c ) - ( ,  - _ _  _ ,  _ _ )  

k / 
_(x~[O,e,]+Evb,,[c' ,rl(cV)]__x[C,~(c)]+fl[O,e,]+E, bv[O,o(c')]-[O,rl(c)] ) 

0 - 0 = 0 .  

On the other hand, ker (A(S)[Z] --~ A(X) )  is obviously generated by the binomials 

t_n-- Z p  . . . . . Z~  ~ - t_s Z ~  . . . . �9 Z ~  ~ such that 

E v  av[cV,~(cV)] + [0,~_] = ~ v  bv[cV,~_(c~)] + [0, ~] ,  

i.e. �9 c : = E v a v c V = E ~ b v c  v 

�9 ~ v a v ~ ( c V ) + r l = ~ v b v ~ ( c V ) + ~ .  

However, 

t~  Z"  - t~- z ~ = t_~. ( I - Iv  Z a v  -- Z[c'r/(c)] t E v  avrl(CV)--r?(c)) -- 

- t~-" ( I -L z~ ~ - z[~'-~)] t- }--]~ b"-n(c~)--n(c)) 

-~ l__~. F(a,p,O,cQ -- t_ t~ " F(b,p,O,~) 

with p ~ H ~ such that ~ v p v [ c  v, 2(cV)] = [c, r3_(c)], ~ = ~ v  a~7o(cv) - 7/o(c), 
and 13 = ~ bvzlo(c ~) - r/0(c). [] 

(5.4) Using exponents ~7, # E Z N (instead of I~N), the binomials t r l Z  a --  t I~Z  b 

generate the kernel of the map 

A(S)[Z__] = A(S) Z[Z_] ~A(S) A ( S )  ~ A ( X )  ~A(S)  A ( S )  ,, A ( X )  . 

Since Z a |  b | 1 6 3  = Z[C'-n(c)]| ( tExaco-  (c")-~ t E ~  b~n-(c~)-"Cc)+~) = 0 
% 

in A(.~) | A(S), this implies that the surjection A(X) @A(3) A(S)  ~ A ( X )  is 
injective, too. In particular, part (2) of  our theorem is proved. 

(5.5) We are going to use the following well known criterion of  flatness: 
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Theorem.  ([Ma], (20.C), Theorem 49) Let ~- : )f ~ C ~+~ x ~.,,/,~ - ~ / ~  be 
a map with special fiber Y = ~--t(0); in particular, Y C_ C w+l is defined by the 
restrictions of  the equations defining X C C w§ • J / ~  to 0 ~ ~/;~. Then, "Tr is flat 
if  and only if  each linear relation between the (restricted) equations for  Y lifts to 
some linear relation between the original equations for  X. 

For our special situation take X := .g • J / 8  (and ~;/~ := .//~, Y := Y); in 
(5.3) we have seen how the equations defining Y ~ C ~ • C can be lifted to 
those defining )f ~ C TM • S, hence X • 8 ~ ~ C ~ • ~//~ _Z~ C~o • C x J /~ .  
In particular, to show (3) of Theorem (5.1), we just have to determine the linear 
relations between thej~a,b,c~,B)'S and lift them to relations between the F(~,b,,~,~)'s. 
There are three types of relations between the j~,b,,~,~)'S: 

(i) ]~,~,,~,.y) +~r,o,n,;~) ----f(a,b,cl,~) 
with �9 ~ a~c~ = ~ r~c~ = ~ b~c~ and 

~ ~"~v avrlo(c') + c~ = ~-~.v rvTlo(cv) + "[ = ~-~.v bvrlo(c~) +/5. 
For this relation, the same equation between the F ' s  is true. 

(ii) t "~,b,~,~) =S~,b,,~+l,~+l) lifts tO tl �9 F(a,b,~,Z) = F(a,b,~+l,Z+l). 
(iii) Z r " f(a,b,,~,Z) = ~a+~,b+~,,~,Z). 

With c := ~--~. a~c ~ = ~'~ b .c  ~, ~ := c + ~ ~  r~c ~ we obtain 

Z r �9 F(a,b,ot.~) --  F(a+r,b+r,a,~3) = 

= Z [~,r/(~)] . (totel+~-~vavrl(cV)+Evrorl(cV) - t~el+~"~vbvrl(cV)+~vrvrl(cV) ) 

. t - r / ( c '  .Z[C,r/(c'] Z r . ( t_ctel+Ev avrl(cv, _ t ~ e l + ~ v b v r l ( c V ) )  . t - r l (  c, 

= (t~ a'~rl(c')-rl(c) __ t~3el+E,,b~rl(cV'--~_(c'). 

Now, the inequalities 

avrl(cV), ~ bvrl(c v) ~ ~(c) and ~(c) + ~ rv~(C v) - ~_(~) >-_ 0 
V V V 

imply that 
- the first factor is contained in the ideal defining 0 E J ~ ,  and 
- the second factor is an equation of X C C w • 3 (called F(p,p+r,~,o) in 

(7.4)). 
In particular, we have found a lift for the third relation, too. 

The proof of  Theorem (5.1) is complete. 

(5.6) Example. The singularity Y6 induced by the hexagon 06 equals the cone 
over the Del Pezzo surface of degree 6 obtained by blowing up three points of  
(~2, ~ (3 ) ) .  As a closed subset of C 7, it is given by the following 9 equations: 
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J~el ,e6+e2,1,0) = Zl  t - z6 z2~ J~e2,el+e3,1,0) = Z2 t - -  Z l  Z3~ 

J~e3,e2+e4,1,O) ----- Z3 t - -  Zo2 Z4 ,  J~e4,e3+es, l ,0)  = Z4 t - -  Z3 ZS~ 

J~es,e4+e6,1,0 ) = Z5 t - -  Z4 Z6 ,  J~e6,es+el , l ,0)  = Z6 t - -  Z5 Zl  

J~0_,ej+e4,2,0) = t2 --  Zl Z4,  J~0.,e2+es,2,0) = t2 -- Z2 ZS, 

J~_0,e3+e6,2,0) = t2 --  Z3 Z6 �9 

Then ,  the  cons t ruc t i on  d e s c r i b e d  in  (5.3) y ie lds  the l i f t ings  

F(e,,e6+e2,1,0) = (Zl tl - Z6Z2)  - Z l ( t l  - t l )  

= Z I t I - Z 6 Z 2 ,  
F(e~,e,+e3,1,0) = (Ze tl - Z1Z3) - Zz(t  2 - tl t z ) t{  -I 

= Z z t z - z l Z 3 ,  
F(e3,e2+e4,1,O) = (Z3 tl - Z2Z4)  - Z3(t2t2 - tl t2 t 3 ) t l l t 2 1  

= Z 3 t 3 - Z 2 Z 4 ,  
f (e4,e3+es,l,o ) = (Z4t l  - Z 3 Z s )  - Z4(tl  t2 t3 - t2 t3 t4) t21 t31  

= z 4 t 4 - z 3 z s ,  
F(e,,e4+e6,1,O) = (Z5 tl - Z4Z6)  - Zs( t l  t6 - t2 t3 ) t61  

= Z s t 5 - Z 4 2 6 ,  

F(e~,es+el,l,O) = (Z6 tl - -  Z5 Z l )  - Z6(tl  - t6) 

= Z 6 t 6 - Z 5 Z l ,  
F(o_.,e,+e4,2,o) = (t? - Z1 Z4) - ( t  2 - t2 t3) = t2 t3 - ZI Z4 

= t 5 t 6 - - Z t Z 4 ,  
F(o,e2+es,2,0) = (t? --  Z 2 Z5) - ( t? - t 3 t4) 

= t 3 t 4 - Z 2 Z s ,  
F ( o , e 3 + e o , 2 , 0 )  = ( t ?  - Z3 Z6) - ( t ?  - tt t2) 

= t l t 2 - Z 3 Z 6  . 

T o g e t h e r  w i t h  the fou r  e q u a t i o n s  m e n t i o n e d  at the  e n d  o f  (2.3),  t hey  d e s c r i b e  a 

f a m i l y  c o n t a i n e d  in C 6 x C 6 Pr---L C 6 / C .  ( 1 , . . . ,  1)" 

6 The Kodaira-Spencer map 

(6.1) D e n o t e  by  E _C crv n ~ n + l  the  m i n i m a l  g e n e r a t i n g  set  

E := { [ c 1 , ~ 7 o ( c l ) ] , . . . ,  [cW, ~7o(c~~ [.0, 1]} 

m e n t i o n e d  in (4.3).  To  e a c h  v e r t e x  aJ E Q (or  iden t i ca l ly  n a m e d  f u n d a m e n t a l  

g e n e r a t o r  a j := (aJ, 1) E or) and  e a c h  e l e m e n t  R E Z n+l w e  a s soc ia t e  the  subse t  

Ej  R : = E ~  : = { r  E E l  <aJ,r) < ( a J , S ) ) .  

T h e o r e m .  (cf.  [A1 1]) The vector space T~ o f  infinitesimal deformat ions  o f  Y is 
Z n+ l -g raded ,  and in degree - R  it equals 

rr~(_R) = Lc (UjE) Le(E2) , 
J 
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where L(. . .) denotes the vector space of linear relations. 

(6.2) There is a special degree R* = [_0, 1] E Zn+t corresponding to the affine 
hyperplane containing Q. The associated subsets of E equal 

E F = E N (aJ) • = {[cV,~7o(c~')] [ (a j,  - c  v) : r/o(cV)}. 

In (4.5), for each c E 25 ~, we have defined the linear form ~7(c) E V~. Restricted 
to the cone C(Q), it maps t to Max(Qt_,-c) = (a(c)L,-c) .  This induces the 
following bilinear map: 

: Vz/ (1 , . . . ,  1) x L~,(E N Ocrv) ~ Z 
t 'o t_ q ~ Ev , i  i qv77 i(c )" 

(Indeed, for t := 1 we obtain Y'~,i q v~li(cv) = ~ v q  v~lO(cv) = 0 since q E 

Lz(E n 0~r~).) Moreover, if q comes from one of the submodules L~,(Efl') C_ 
L~.(E A Oa~), we obtain 

�9 ( t ,q)  = Z q v ' M a x ( Q t ' - c V )  = Z q v "  (a~ , -c  ~) 
v 

= ( a ~ , - Z q o c V ) = O .  

Theorem. The Kodaira-Spencer map of the family ff • JIg ~ ~//~ of Sect. 5 
equals the map 

ToJ/~ =Vc/(I, . . . ' 1) ' ( Lc(E N O c r ~ ) / Z  Lc(Ejm))* = T I ( _ R  ,) 
J 

induced by the previous pairing. Moreover, this map is an isomorphism. 

Proof Using the same symbol ~"  for the ideal ~ C C [ q , . . . ,  tN] and the 
intersection ~"  n C[ti - tj [ I < i , j  < N] (cf. (2.4)), our family corresponds to 
the flat C[ti - t j ] / ~ - m o d u l e  C[Z,t__]/(~,~, F.(Z,  t_))" Now, we fix a non-trivial 

tangent vector t o E Vc. Via ti ~ t + t o e it induces the infinitesimal family given 
by the fiat C[e]/~z-module 

Ato := C[z, t, e]/(r ' F , (z ,  t + t o ~))" 

To obtain the associated A(Y)-linear map 1/12 ~ A(Y), where 1 := (fo(Z, t)) 

denotes the ideal of Y in C ~~ we have to compute the images offo(Z, t )  in 
cA(Y)  C_ Ato and divide them by e: Using the notation of (5.3), in At0 

F(a,b,,~#3)(Z, t + t ~ e) 

J~a,b,ct,/3)(Z, t + t o g)--  
--Z [c'r/--(c)] " ( ( t  +/_0 e)o~el+Ev avrl(cV)--rl(c) - - (t  + t o e ) ~ e ' + ~ -  ~ . 
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The relation r = 0 yields 

f(a,b,c~,f~)(~_, t q- toe) = f(a,b,~,3)(Z, t) + e . (a t ~- l  t o z a - / 3  t 3-1 t o Z.b) , 

and similarly we can expand the other terms. Eventually, we obtain 

3~a,b,~,3)(z,t) = - -gtO(ceta- lza  --/3t/3-1Zb) + ~Z [c'-~(c)] 

tc~+~'~a'rl~176 " [ to (~ -- t )  + ~ i  tO (~-~v(av -- bv)rli(cV)) ] 

= g .x~ .~ ' [c"r~~176176  

(In eA(Y )  we were able to replace the variables t and zi by x [0'1] and x I~',v~ 
respectively.) 

On the other hand, we use Theorem (3.4) of  [A1 3]: Fixing R* E Z ~§ the 
element of  Le(E N &r~) * given by q ~ ~ i ,~  t~ ~i(c~) corresponds to the 

infinitesimal deformation of  T~ ( - R * )  defined by the map 

1/12 
tC~za - - t 3 Z  b 

A(Y)  

[] 

(6.3) To discuss the meaning of  the homogeneous part T~(-R*)  inside the 
whole vector space Tr 1 , we have to look at the results of  [A1 2], (6.5): If  dim Tr 1 < 
oo (for instance, if Y has an isolated singularity), then 

(1) Tr = T~(-R*) ,  but 

(2) Tr ~ = 0 f o r d i m Y  > 4 .  

In particular, the interesting cases arise from 2-dimensional lattice polygons Q 
with primitive edges only. The corresponding 3-dimensional toric varieties Y 
have an isolated singularity, and the Kodaira-Spencer map T 0 J ~  ~ T 1 is an 
isomorphism. 

If  Tr l has infinite dimension, then this comes from the existence of  infinitely 
many non-trivial homogeneous pieces T I ( - R ) .  Whenever (a j ,  R) _< 1 holds for 
all vertices aJ E Q, we have 

T r  = Ve(conv{d I (aJ,R) = 1}), 

i.e. T ~ ( - R )  equals the vector space of  Minkowski summands of  some face of  Q, 
whereas T ~ ( - R )  = 0 for all other R E Z,+I. In particular, T(,(-R*) is a typical, 
but nevertheless extremal and perhaps the most interesting part of  Tr ~ . 



464 K. Altmann 

7 The obstruction map 

(7.1) Dealing with obstructions in the deformation theory of Y involves the 
A(Y)-module Tv z. Usually, it is defined in the following way: 

Le tm:={( [a , c~ l , [b , /~ ] )EN w+' xNw+l I Z a v c V  = Z b v c V ;  
v v 

Zav~7o(c~ ' )+~  = ~ b ~ 7 o ( c ~ ) + f l }  

denote the set parametrizing the equations 3~a,b,(~,f~) generating the ideal I C_ 
C[z, t] of Y. Then, 

. .~ := ker (C[z, t] m ~ I) 

is the module of linear relations between these equations; it contains the sub- 
module ~ 0  of the so-called Koszul relations. 

Definition.  T2 := Hom(' ' /O?~o,A(Y))/Hom(C[z, t]m,A(y))  . -  

Now, we have a similar theorem for T 2 as we had in (6.1) for T~; in par- 
ticular, we use the notation introduced there. 

Theorem. (cf. [A1 3]) The vector space T 2 is Z n+l-graded, and in degree - R  it 
equals 

ker (OjLe(E/r , Le(E)) '~* 
Tzr ( -R)= im (O<a~,~>~-nE:)~TLc(E:)) ) 

(7.2) In this section we build up the so-called obstruction map. It detects all 
possible infinitesimal extensions of our family over .,/r to a flat family over 
some larger base space. We follow the explanation given in Sect. 4 of [JS]. As 
before, 

= ( g ~ , k ( t -  t l) l  e < Q, k > 1) 

= (ga_,k(t_ - q)l  d �9 V • n ~N, k > 1) _C C[ti - tj] 

denotes the homogeneous ideai of the base space .//g. Let 

aqg := (ti - tj)id "~,~ + ~ "C[ti - tj] C_ C[ti -- tj I 1 < i , j  < N].  

Then, W := ~ ; ~ / ~  is a finite-dimensional, Z-graded vector space (W = 

(gk>_2Wk, and Wk is generated by the polynomials 9a_,k(L -- h)). It is the ker- 
nel of the exact sequence 
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0--+ W > C [ t i - t j ] / :  > C [ t i -  t j ] / )  7 ~ O .  

Identifying t with tl and z with Z, the tensor product with C[z, t] (over C) yields 
the important, exact sequence 

/: C [ Z , t ] / :  
O ~ W |  C[Z, t ]  -C[Z , t ]  ~ - - -  -C[Z , t ]  4 0 .  

Now, let s be any relation with coefficients in C[z, t] between the equations 

J~,b,~,~), i.e. 

Z S(a'b'a':3)f(a'b'c~'/3) = 0 in C[z, t] .  

By flatness of our family (cf. (5.5)), the components of s can be lifted to C[Z, t] 
obtaining an g such that 

A ( S )  : =  Z~(a,b,c~,/3) F(a,b,a,13) ~-+ 0 in C~-'t-]//.5 ~- -C[Z,t_] " 

In particular, each relation s E ~ induces some element A(s) E W | C[z, t], 
which is well defined after the additional projection to W | A(Y) .  This pro- 
cedure describes a certain element A E T 2 | W = Hom(W*, T r 2) called the 
obstruction map. 

Theorem. The obstruction map A : W* ~ T 2 is injective. 

Corollary. I f  dim TIt < cx:~, our family equals the versal deformation o f  Y. In 
general, we could say that it is "versal in degree - R *  " 

Proof In (6.2) we have proved that the Kodaira-Spencer map is an isomorphism 
(at least onto the homogeneous piece Tr 1 (-R*)).  By a criterion also described in 
[JS], this fact combined with injectivity of the obstruction map implies versality. 

[] 

The remaining part of Sect. 7 contains the proof of the previous theorem. 

(7.3) We have to improve the notation of Sects. 4 and 5. Since J ~  C S C C N, 
we were able to use the toric equations (cf. (2.4)) during computations modulo 
~ ' .  In particular, the exponents ~_ E Z ~: of t only needed to be known modulo 

V•  it was enough to define ~(c) as elements of V~*. However, to compute the 

obstruction map, we have to deal with the smaller ideal . ~  C_ :~'. Let us start 
by refining the definitions of (4.5): 

(i) For each vertex a E Q we choose the following paths through the 1-skeleton 
of Q: 

�9 _ A ( a ) : = p a t h f r o m 0 E Q  t o a  E Q .  
�9 /z~(a) := path from a E Q to a(c ~) E Q such that :z~(a)(d i, c ~) < 0 for 

each i = 1 , . . . , N .  
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(ii) 

�9 _~(a) := A_(a)+~'(a) is then a path from 0 E Q to a(c~), which depends 
on a. 

For each c E Z" we use the vertex a(c) to define 

tiC(c) := [ - -Al (a(c) ) (d i ,c} , . . . , - -AN(a(c) ) (dN,c)]  E 2 N 

and 

S ( c  v) := [-A~(a(c))(d ' ,  c V ) , . . . ,  -A~v(a(c))(d N, cV)] E 77, N . 

(iii) For each c E Z" we fix a representation c = ~ p~ c ~ (p{ E N) such that 
r/0(c) = ~ p~ r/0(c~). (That means, c is represented only by those generators 
c ~ that define faces of  Q containing the face defined by c itself.) 

Remark. Let a E N w. Denoting c := }-~ a~c ~ we obtain }-~ a~ ~~ - ~_~(c) E 
N N by arguments as in Lemma (4.5). Moreover,  for the special representation 

c v c = ~-~p~c , the equation }--~ p~ ~ ( c  ~) = ~ ( c )  is true. 

Now, we improve the definition of the polynomials F . (Z ,  t_) given in (5.3). 
Let a ,b  E N~,  a , /3  E N such that 

c : = Z a ~ c  ~ = Z b v c  ~ and Z avrl~ v) + a = Z bvrlo(c ~) + /3. 
v 13 v v 

Then, 

(7.4) 

F(a,b,~,;~)(Z, t__) :=3~a,b,a,/3)(Z, q)  -- Z__ / " ( t  ae'+y'~'" avrlC(cV)-rl-f(c) 

_tge, + ~  b~ ~2(~ ~ . 

We have to discuss the same three types of  relations as we did in (5.5). 
Since there is only one single element c E Z" involved in the.relations (i) and 
(ii), calcul~tting modulo _7 instead of ~ makes no difference in these cases - 
we always obtain A(s) = 0. 
Let us regard the relation s := [z r "J~a,b,oq,~) - - f (a+r ,b+r ,oql3)  = 0] (r E I~W). We 
will use the following notation: 

- c : = ~ a ~ c ~ ' = y ' ~ b , c ~ ;  p : = p ~ ;  ~_ :=r f ;  
- ? . :=y'~v(a~+rv)cV=~-~.v(bv+rv)cV=~v(pv+r~)cV; p_:=p_e; ~ := r / e ;  

- { := Y~4 ( (~v (P~  + rv)gTi(cV)) - gli(e)) = Y'~.v(Pv + rv)rlo(c~) - rlo(c). 

Using the same lifting of s to ~ as in (5.5) yields 

~(s) = z r  " F(a ,b ,~ ,5 )  - F ( a + r , b + r , o ~ , ~ )  - -  

_ 

= _a +r + 
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_ (tc~el+~v(av--Pv)rl(cv) __ [13e,+~-'~v(bv--pv)rl(cV) ) 

, (~ t~ '~v(Pv+rv- 'v ' f l (cV)__zp+r)  

= Z..._ p (t_.cte'+Ev(av+rv-Pv)gl'cV)--teeei+~v(Pv+rv-pv)gl'cV'+~v'av-ev)rl(cV)) 

_Z..._p , ( []3el+ ~v (bv  +rv-pv)~-(cV) _ [flel+ ~v(pv  +r.--Pv)gl(c~)+ ~v(bv--Pv)rl(cV) ) 

As in (5.5)(iii), we can see that A(s) vanishes modulo ~ (or even in A(.~)) 
merely by identifying 7/and _~. 

(7.5) In (7.2) we have already mentioned the isomorphism 

W |  C[z,  t] ~ ,  -~g" C[-Z-,t]/)7. " 
C~_, t_] 

obtained by identifying t with tl and z with Z. Now, with A(s), we have obtained 
an element of  the right hand side, which has to be interpreted as an element of 

W @e C[z,  t]. 

Lemma.  L e t A ,  B E N u such that d := A - B  E V l ,  i.e. t A -  tB E f ~ .  
C[Z, t_]. Then, via the previously mentioned isomorphism, t A - t_ B corresponds to 
the element 

Z ck �9 9g,k(t - q)"  t k~ e W | C[_Z., t], 
k>l 

where ko := }-'~4 A i ,  and ck are the constants occurred in (3.4). In particular, the 
coefficients from Wk vanish for  k > ko. 

Proof First, we remark that we may assume that A - d + B = d - ,  i.e. t A - -  t B 
pd_(t_) (cf. (3.2)). Otherwise we could write this binomial as 

tA--t_ B = t  c "  (t_ d+-t_ d--) (C E NN) ,  

and since 

t c = ( q + [ t - t t ] )  c - t  ' (mod (ti - tj)), 

we would obtain 

t_ A - t f  =--t~'  ci .  (t_d_. _ td_- ) (mod j ' ) .  

In (3.4) we have seen that 

ko k--1 / 
pa_(t_) = Z tlk~ (v~--1 qv,k(t -- tl) " gd,v(t -- tl) + Ck " gd,k(t -- tl) 

d + with ko := Y'~i i �9 Since qv,k(t - tt) E ( t i  - -  t ] )  . C [ t i  - -  t j ] ,  this implies 
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ko 
ps = ~ tl k~ Ck" gd,k(t_ -- tl) (mod ~ ) .  

k=l 

On the other hand, for k > ko, Lemma (3.3) tells us that gd_,k(t_--tl) is a C[ti - t j ] -  
linear combination of the elements gd_,l([ -- t l) , .  �9 �9 9d_,ko (t_- t l ). Then, the degree 

k part of the corresponding equation shows 9d_,k(t -- tt) E ~i7. [] 

Corol lary.  Transferred to W Nc C[_g., t], the element A(s) equals 

~ _ c k . g d , t ( t - - h ) . z P . t  k~ with d := ~ v ( a v - b v ) . ( ~ ( c V ) - T l ( C ~ ) ) ,  
k>l ko := a+~1/(av+rv)r lo(cV)-r lo(r ' ) .  

The coefficients vanish for k > ko. 

Proof. We apply the previous lemma to both summands of the A(s)-formula of  
(7.4). For the first one we obtain 

V 

--[o~et + Z ( p v  +rv--~v)~_(cV)+ ~(av - -pv ) r I ( cV)]  

--- ~ ( a 1 / -  p ~ ) - ( ~ / ( c  ~) - r l ( c~) )  and 
I /  

ko = Z (ael + ~ ( a v  +rv-pv)~(cV)) i  
i v 

= a + ~ _ , ( a v  + rv  - -  p v )  rlo(c ~) 
V 

= ~ + y~(a1/+ r~) ~o(c ~) - rto(~). 
V 

k0 has the same value for both the a-  and b-summand,  and 

d = d a - d b = Z ( a v  - p1/). (fl(C v) - rl(cV)) 
1/ 

-  (bv - p v ) .  v) - S ) )  
~J 

= ~-~(a1/ -  b1/). (fl(C v) - r l (cV)) .  [ ]  
V 

(7.6) Now, we try to approach the obstruction map A from the opposite direction. 
Using the description of T~ given in (Z1), we construct an element of  T~ | W 
that afterwards will turn out to equal A. 

For a path 0 c Z N along the edges of Q, we denote by 

d(~o,c) := [(cOld 1, C),...,(cONd N, C)] E ~.N 
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the vector measuring the behavior of  c E ~n passing each particular edge. If, 
moreover, O comes from a closed path, d(0, c) is also contained in V • On 
the other hand, for each k _> 1, we can use the d ' s  from V • to get elements 
gd_,k (t_ - -  t 1) E Wk  generating this vector space. Composing both procedures we 
obtain, for each closed path 0 E 2~ u,  a map 

g(k) (o  , O) : ]~n ) V_l_ ) W k  

c ~ gd(e,c),k(t- q ) .  

Lemma.  (1) Taking the sum over all 2-faces we get a surjective map 

Z g(k)(e-' *) : ( ~ e < Q C n  7, W k . 

e<Q 

(2) Let c E Z" (having integer coordinates is very important here). I f  p I , 0 2 E ~ N  

are two paths each connecting vertices a, b E Q such that 
�9 I ( a , c )  - ( b , c ) [  < k - 1 and 
�9 c is monotone along both paths, i.e. (0~ d i ,  c ) ;  " 2 d i c" ~0i , ) >_ 0 for  i = 

1 , . . . , N ,  
then 01 _ 02 E Z jv will be a closed path yielding 9(k)(01 - ~2, c) = 0 in W~. 

Proof (1) is a consequence of  the fact that the elements d (e , c )  (e < Q 2- 
face; c E Z n) generate V • as a vector space. For the proof of  (2), we look at 
d := d(p  L - 0 2, c). Since di = (Q] d i, c) - (Q2 d i, c) is the difference of  two 
non-negative integers, we obtain d + < (Q~ d i, c). Hence, 

Z d  + <_ Z ( Q )  d i, c) = (b,c)  - (a ,c)  <_ k - 1, 
i i 

and as in (7.5) we obtain 9d,k(t -- q)  E ~ by Lemma (3.3). [] 

(7.7) Using the notation introduced in (6.1) we obtain for R := k R*, k > 2 

E~*  = {[cV, ~o(cV)] I (aJ,c v) + rlo(c v) < k -- l} U {R*} _C crv MZ n+' . 

Then, we can define the following linear maps : 

, 

q H ~']~v qv" 9 (k) (A_(aJ) + #_V(aJ) - A_(a(cV)), c v) . 

(The q-coordinate corresponding to R* E Ej ~* is not used in the definition of  
r)k).) 

Lemma.  Let (ai ,a))  < Q be an edge of  the polyhedron Q. Then, on L(Ei ~* M 
EfR')  = L(Ei ~*)  M L(EfR*), the maps ~I k) and ?oJ k) coincide. In particular (cf 

Theorem (7.1)), the V~k)'s induce a linear map ~o (~) : TZ( -kR*)  * ~ Wk. 
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Proo f  Let q E L ( E f f "  N E y  e') ,  and denote by O ij E ZU the path consisting of 

the single edge running from a i tO a j . Then, 

~lk)(q) _ ~ k ) ( q )  = ~-~, qv " g (k) (A_(a i) + Izv(ai)  - A_(aJ) - #_V(aJ), c v) 

= 9 (k) (A_(a i) - A_(aJ) + oij, ~ v  q,~ c")  + 

+ q v .  a (k) - - d J ,  c , 

and both summands vanish for several reasons. The first one is killed simply by 
the equality ~ qv c v = 0. For the second one we can use (2) of  the previous 
lemma: If  q~ r 0, then the assumption about q implies the inequalities 

0<_ (a i , c  v) - ( a ( c v ) , c v )  ; (a j , c  v) - ( a ( c v ) , c  v) < k - 1. 

Hence, assuming w.l.o.g. (a i , c  ~') >_ (aJ,cV) ,  we can take 01 := - i zV(a  j )  - O  ij 
and 6 2 := --lzV(a i) to see that 9 (k) (]zV(a i) - ~V(aJ) - Lo ij , c v) = O. [] 

(7.8) Proposi t ion.  ~-]~k>_l Ck ~O (k) equals A*, the adjoint  o f  the obstruction map. 

P r o o f  In Theorem (3.5) of [A1 3] we gave a dictionary between the two T ~-- 
formulas mentioned in (7.1). Using this result we can find an element of  

Hom( ' / ~ o '  Wk | A ( Y ) )  representing ~v (k) E T 2 | W~. It sends relations of  

type (i) (cf. (5.5)) to 0 and deals with relations of type (ii) and (iii) in the 
following way: 

[~r  t 'r " f ( a ,b , c t ,~ )  - -  f(a+r,b+r,c~+7,13+~) - -  0 ]  

~k) (a  - b ) .  xY"~,, ('~'§176 

if 
((Q, 1), Z ( a v  + rv) [c ~, ~/o(c')] + (a  + ~ / -  k )R*)  >_ 0 

v 

and j is such that 

((a j ,  1), Z a v  [cV, ~7o(c~)] + ( a  - k)R*)  < 0;  
u 

otherwise the relation is sent to 0 (in particular, if there is not any j meeting the 
desired property). 

On Q, the linear forms c := ~-']~v a~ c ~ and ~ = ~ ( a ~ + r v ) c  ~ admit their minimal 
values at the vertices a(c)  and a(6), respectively. Hence, we can transform the 
previous formula into 

[zr t'y "f(a,b,a,~) - -  f ( a + r , b + r , c ~ + ' y , 1 3 + " / )  - ~  O] 
. (k ) . -- b) �9 x ~ ' ( a ~  +r~)[c ~'~~ v) ]+( a+'y-k )R* 

~-~ ~a(c)(a 

if Z ( a ~  + r~)~o(c "~ - ~7o(c) + (a  + 7 - k)  = 
v 
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= ( ( a ( c ) '  l ) '  Z ( a o  + r~)[cV'ri~ + ( a  + 7 -  k ) R * t  >- 

av rio(c ~) - rlo(c ) + (a  - k)  = 
v 

(or mapping to 0 otherwise). Adding the coboundary h E Horn (C[z, t] m, Wk | 
A ( Y ) )  

~1, ( k )  (,'1 - -  h h  . v E  a v [ c V ' ~ ~  

h(a,a),(b,/3) : =  for ~-~ a~ rio(c v) - rio(c) + a _> k ,  

0 otherwise 

does not change the class in T2y(-kR*) ,  which still represents ~(k), but it does 

improve the representative from Hom( '/oip~o, Wk @ A(Y) ) ,  It still maps type- 
(i)-relations to O, and moreover 

[z r t'y -J~a,o,~,~) --fa+r,b+r,~+'r ,~+'y) = O] 

(k) ,(k) (a -- b)  X ~--~v(av+rv)[cvJI~ (~) a,c)(a --b)--'~Pa(~)" ) "  

for ko + 3' > k 

0 otherwise 

with ko = a + ~--~,,(av + rv) rio(d;) - rio(c). By definition of  ~jk) and 9 (~) we obtain 

r(k) . b) (~) " b) a(c)(a -- --~oa(e)[a -- = 

= Z ( a v  - by ) .  9 (k) (A_(a(c)) + p_V(a(c)) - A(a(e)) - #V(a(5)) ,  c ~) 
V 

= Z ( a v  - by ) .  9(/') (~_V(a(c)) - A~(a(~)), c v) 
v 

= gd, k(t_ - -  tl) 

with d = Z ( a ~  - b , ) .  d (AV(a(c))  - _A~(a(~)), c ~) 

= ~-~(a~ - b~) .  (~_(c v) - ~_(cV)), 
v 

and this completes our proof. Indeed, 

- for relations of  type (ii) (i.e. r = O; 5' = 1) we know c = ~, hence, these 
relations map onto O; 
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- for relations of  type (iii) (i.e. 3' = 0) we compare the previous formula with the 
result obtained in Corollary (7.5) - the coefficients coincide, and the monomial  
~_P t k~ E C[7~, t] maps onto X ~(a'~+r~)[c~'rl~ E A ( Y ) .  [] 

(7.9) It remains to show that the summands V(k) of  A* are indeed surjective maps 
from T ] ( - k R * ) *  to Wk. We will do so by composing them with auxiliary sur- 
jective maps pk : Gs<QCn ~ T 2 ( - k R * )  * yielding ~(~) o p  ~ = ~ < O  9(k)(s o). 
Then, the result follows from the first part of  Lemma (7.6). 

In Sect. 6 of [AI 3] we used a short exact sequence of complexes called 

0 --+ L~(ER)~ , (CER)o , spane(ER)o ---+ 0 

to obtain from Theorem (7.1) an isomorphism 

im [@*<QCn+ l ----+ @(ai,aJ)<Q~. n+l] ) *  
T ~ ( - R )  ~ . _ _ I _ _ _ _ ~ _ _  n+l 

\ l m [ |  e ( N w ~ E j )  @(a,,~O<QC ] 

| C "+1 Since R* = [0, 1] E E f  R~ for k > 2, the induced surjective map e<Q 

T Z ( - k R " )  * factorizes through @e<QCn+1/C . R .  = G~<QC" yielding the 
auxiliary map pk just mentioned. Taking a closer look at the construction of 
[A1 3] Sect. 6, we can give an explicit description of pk; eventually we will be 
able to compute ~(k) o pk. 

Let us fix some 2-face e < Q. Assume that d i , . . . ,  d M are its counterclockwise 
oriented edges, i.e. the sign vector e__ looks like ei = 1 for i = 1 . . . .  , M and ej = 0 
otherwise. Moreover, we denote the vertices of  e < Q by a l , . . . , a  M such that 
d i runs from a i to a i§ (M + 1 := 1). Starting with a [c, ~70] E C "+l (and, as just 
mentioned, only the c E C ~ is essential) we have  to proceed as follows: 

(i) For i = I , . . . ,  M we represent [c, 770] as a linear combination of elements of  
kR* Ei ~ "  n Ei+ 1 , which corresponds to the lifting from spanc(ER)~ to (CER)~ 

[C, 70] = Z qiv [ cv,  'rlo(cV)] + qi [0, 1], 
V 

(ii) 

and qiv r 0 implies [c v, rl0(cV)] E E i  kn* n Ei~*, i.e. 

(a i , c v) + no(c v) < k - 1; ( a  i+l , c ~) + n0(c ~) < k - 1 .  

M E kR* We map the result to @i=lC , by taking successive differences, corre- 

sponding to the application of the differential in the complex (CeR).. The 
result is automatically contained in ker ( |  ~* )  ~ L (E) ) ,  and its i-th 
summand is the linear relation 

~"~(qi,v -- q i - l , v )  " [ cv,/]o(cV)] 4" (qi -- q i - l )  " [0, l] -- O. 
12 
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(iii) Finally, we apply ?~(k) to obtain 

~3(k)(pk(c)) = EiMI ~ v ( q i , v  -- q i - l , v )  " g(k) (A(a i)  _ A(a(cV))  + p__v(ai), c ~) 

= ~ i , v  g(k) (A__(a i) _ A__(a(cV)) + #_v(ai), qi,v c v) -- 

- ~-~,i,v g(k) (A(ai.l) _ A(a(cV)) +l,~V(ai+l), qi,v c ~) 

= ~ i , v  if(k) (~(a i) _ /~(ai+l)  + l~v(ai) _ ~ v ( a i + l ) ,  qi,v c v) �9 

Similar to the proof of  Lemma (7.7) we introduce the path ~i consisting of  the 
single edge d i only. Then, if qiv ~ 0 and w.l.o.g. (a i, c v) >_ (a  i+1, cV), the pair 
of  paths IzV(a i) a nd / Y(a  i+l) + pi meets the assumption of  Lemma (7.6)(2) (cf. 
(i)). Hence, we can proceed as follows: 

~(k)(pk(c)) = E i , v  g(k) (~(a i) _ /k(a i+l)  + ~o i ' qiv c v) + 

+ ~-~i,~ 9(k) (#_v(ai) _ #v(ai+i ) _ Qi, qiv c v) 

= E M I  g(k) (~(a i)  _ ~(ai+l) + Qi, ~-~v qiv cV) 

= E M I g  (k) (~ (a i )  - /~(ai+I)+ L9 i, C) 

-- g,,, c) 

= 9(*)(~, c) .  

Hence, Theorem (7.2) is proven. 

8 The components of the reduced versal family 

(8.1) The components of  the reduced base space J ' ~ a  correspond to maxi- 
mal decompositions of  Q into a Minkowski sum Q = R0 + �9 �9 �9 + Rm with lattice 
polytopes R~ C_ K n as summands. Intersections of  components are obtained by 
the finest Minkowski decompositions of  Q that are coarser than all the maximal 
ones involved. 

Theorem. Fix such a Minkowski decomposition. Then, the corresponding com- 

Cm+~/C . . . ,  ponent (or intersection of  components) ~ o  is isomorphic to �9 (1, 1), 
and the restriction Xo --~ C m of  the versal family can be described as follows: 

(i) Defining the cone 

m 

:=   one x 

k=O 

it contains cr = Cone(Q • {1}) C_ ~n+I via the diagonal embedding 
~n+l ~ ~n+m+l ((a, 1) ~ (a; 1 , . . . ,  1)). The inclusion c~ C 6- induces a 

closed embedding o f  the affine toric varieties defined by these cones, giving 

Y ~-~ Xo. 
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(ii) The projection ~n+m+l , ~m+l provides m + I regular functions on Xo, i.e. 
we obtain a map Xo ---+ C m+z. Composing this map with 

g : C m+l >)cm+l/~ �9 ( 1 , . . . ,  1) yields the family. 

The theorem is a straight consequence of knowing the versal deformation. 
Hence, we omit the proof here. 

(8.2) Example. At the end of (2.5) we presented two decompositions of Q6 into 
a Minkowski sum of lattice summands. Let us describe now the restrictions of 
the versal family to the associated components of ~//~: 

(i) Putting the two triangles R0, RI into two parallel planes contained in ~3 
yields an octahedron as the convex hull of the whole configuration. Then, 6. is 
the (4-dimensional) cone over this octahedron 

6. = ((0,0; 1,0), (1,0; 1,O), (1, 1; 1,0), (0,0;0, 1), (0, 1;0, 1), (1, 1;0, 1)). 

(ii) Looking at the second decomposition, we have to put three line segments 
Ro, R1, R2 on three parallel 2-planes in general position inside the affine space 
~4. Taking the convex hull of this configuration yields a 4-dimensional polytope 
that is dual to (triangle)• (triangle). Again, 6" is the (5-dimensional) cone over 
this polytope 

6" = ((0,0;1,0,0) ,  (1,0;1,0,0),  (0 ,0;0,1 ,0) ,  

(0, 1;0, 1,0), (0,0;0,0, 1), (1, i;0,0,  1)}. 

The total spaces over the components arise as the toric varieties defined by 6". 
In our example, they equal the cones over ~l x ~1 • ~l and ~2 x L ~2, respectively. 

9 Further examples 

(9.1) Three examples of toric Gorenstein singularities arise as cones over the 
Del Pezzo surfaces obtained by blowing up (I~ 2, r in one, two, or three 
points, respectively. They correspond to the following polygons: 

Polygon Q4 Polygon Q5 Polygon Q6 

Let us discuss these three examples: 
(iv) The edges equal 

d ~ = (1,0), d ~" = (1,2), d 3 = ( - 2 , - 1 ) ,  d4 = ( 0 , - 1 ) ,  
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and they imply the following equations of the versal base space as closed sub- 

scheme of  C4/C . (1, 1, 1, 1): 

t, + t2 = 2t3, t3 + t4 = 2t2, tl 2 + t2 2 = 2t 2, t 2 + t4 2 = 2t 2 . 

Using the two linear equations, only two coordinates t := q ,  ~ := h - t3 are 
sufficient. (We get the ti's back by tl = t, t2 = t - 2~, t 3 = t - -  C, t4 = t - -  3 r  

Then, the two quadratic equations transform into 2e 2 = 0, i.e. the versal base 
space is a fat point. 
On the other hand, Q4 does not allow any splitting into a Minkowski  sum involv- 
ing lattice summands only. This reflects the triviality of  the underlying reduced 
space. (Cf. (9.2).) 

(v) The polygon Q5 allows the decomposit ion into the sum of a triangle and 
a line segment. In particular, the reduced base space of  the versal deformation 
of  I15 has to be a line. We compute the true base space: d 1 = (1, 1), d 2 = ( - 1 ,  1), 
d 3 = ( - 1 , 0 ) ,  d 4 = ( 0 , - - 1 ) ,  d 5 = ( 1 , - 1 )  yield the equations 

t , - t 3 = t 2 - t s = t 4 - t ,  and t 2 1 - q = t ~ - t ~ = q - t ~ .  

With t := tl,  sl := h- t3 ,  s2 := tl --t2 and t~ = t, t2 = t - s 2 ,  t3 = t - s 1 ,  t 4 = t+s~, 
t5 = t - sl - s2, they turn into 

s 2 = 2 s I s 2 = 0 .  

(vi) This example was spread throughout the paper. 

(9.2) We will use the polygon Q 4  : =  Cony{(0 ,0 ) ,  (1,0),  (2,2),  (0, 1)} of 
(9.1)(iv) for a more detailed demonstration of  how the theory works. In par- 

ticular, we will describe the versal family of  Y4 over Spec C[s]/e2: 
(1) The (t, e)-coordinates of  V correspond to the linear map 

1 
1 
1 
1 

0 

- 2  : 1~ 2 
- 1  
- 3  

~ '  V ~----~ R 4 . 

We obtain 

C ( Q 4 )  = {(a,b) EI~Z[a>O, a - 2 b > 0 ,  a-b>__O, a - 3 b > 0 }  

= {(a,b) EIRZla>O, a - 3 b > 0 }  

= ( [1 ,0] ,  [ 1 , - 3 ] )  v = ( ( 0 , - 1 ) ,  (3, 1)) C IN 2,  

and the map 1~ 4 -"+ C(Q4) v f'q V~* sends e l ,e2 ,e3 ,e4  to [1,0], [ 1 , - 2 ] ,  [ 1 , - 1 ] ,  
[1, - 3 ] ,  respectively. In particular, this map is surjective, i.e. $4 = $4 and X4 = 24. 

(2) To compute the tautological cone C(Q4), we need the Minkowski  sum- 
mands associated to the two fundamental generators of  C(Q4): 
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Hence, 

114: 

(Q4)(o,-~) = Conv{(O,O), (2,4),  (0,3)}, 

(Q4)o,l/ = Conv{(O,O), (3,0), (4 ,2)}.  

C(Q4)  = ( (0 ,0 ;0 , - -1 ) ;  (2 ,4 ;0 , - -1 ) ;  (0 ,3 ;0 , - -1) ;  

(0 ,0 ;3 ,  1); (3 ,0;3,  1); (4,2;3,  1 ) ) .  

(3) Now, we have all the information needed to obtain the versal family of  

- Restrict the family Spec C[C (Q4 )  v N Z  4] ---+ Spec C[C(Q4) v N Z  2] C C 4 tO 
the subspace C 2 ,.o Ve C_ C 4, i.e. use the (t, e)-coordinates instead of ( t l ,  t2, t3, t4). 

- Compose the result with the projection C 2 ~ C 1 ((t, e) ~ e). That means 
we no longer regard t as a coordinate of  the base space. 

- Finally, we restrict our family to the closed subscheme defined by the 
equation e 2 = 0. 

(4) To obtain equations, we could either take a closer look to the family 
constructed so far, or we can proceed more directly as described in (4.5) and 
(5.3): 

- Computing the minimal generator set of  the semigroup Cone (04)  v N •3, 

we get the elements [c~;/10(c~)]: 

[cl;/101l = [0, 1;01, [6'2;/121 = [--1, 1; 11, [c3;/1031 = [ - 2 ,  1;21, 

[6"4;/14 1 ~- [ -1 ,0 ;21 ,  [c5;/1o51 = [ 0 , - 1 ; 2 ] ,  [r 1 = [1 , -2 ;21 ,  

[c7;/171 = [ 1 , - 1 ;  1], [c8;/108] = [1,0;01. 

Z3 Z2 Z 1 

�9 * Z4 t�9 Z8 

�9 ~ Z 7  �9 

Z6 

Polygon Q~' 

Together with [0, 0; 1], they induce coordinates z l , . . . , z 8 ,  t on 114, i.e. we have 
obtained an embedding ti4 ~ C 9- (The sums of  the three components of  the 
vectors are always I. In the figure we have drawn the first two coordinates.) 

- 114 C C 9 is defined by the following 20 polynomials: 

t 2 - -  Z4Z8,  t 2 - -  Z I Z S ,  t 2 - -  Z2Z7 ,  Z l  t - -  Z2ZS,  Z2 t - -  Z3Z8,  

Z2 t - -  ZlZa, Z 3 t  - -  Z2Za,  Z4 t  - -  Z3Z7, Z a t  - -  Z2Z5,  Z5 t - -  Z4Z7,  

Z5 t - -  Z2Z6,  Z6 t  - -  Z5ZT, Z 7 t  - -  Z5Z8,  Z7 t - -  Z l Z 6 ,  Z8 t - -  Z l Z 7 ,  

2 Z 2 ,  Z4Z6 Z 2 ,  Z 6 Z 8 - - Z  2 ,  Z 3 Z 6 - - Z 4 Z 5 .  Z lZ3  - -  Z 2 , Z3Z5 - -  
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- Choos ing  paths f rom (0, 0) E Q4 to the other vert ices,  we obta in  the list 

21 = [ 0 , 0 , 0 , 0 ] ,  
7~ 4 ---- [1, 1 , 0 , 0 ]  = [ 0 , 0 , 2 , 0 ] ,  
21]6 = [ 0 , 0 , 0 , 2 ] ,  

2 2 = [ t , 0 , 0 , 0 ] ,  

2 5 = [ 0 , 2 , 0 , 0 ]  = [0,0,  1, 1]. 

f = [0,0,o,11, 

23 = [2, 0, 0, 0], 

77 s = [0, 0, 0, 0], 

- Now,  we can lift our 20 po lynomia l s  to the r ing C [ Z I , . . . ,  Zs,  h , - - . ,  t4]: 

t l t 2  - -  Z 4 Z 8 ,  t22 - Z I Z 5 ,  t l t 4  - -  Z 2 Z 7 ,  Z a h  - Z 2 Z s ,  Z 2 t l  - Z 3 Z s ,  

Z 2 t 2  - Z 1 Z 4 ,  Z 3 t 2  - Z 2 Z 4 ,  Z n t 3  - Z 3 Z T ,  Z a t 2  - Z 2 Z s ,  Z s t 3  - Z 4 Z T ,  

Z 5 t 2  - -  Z 2 Z 6 ,  Z 6 t 3  - Z 5 Z 7 ,  Z 7 t 3  - Z 5 Z 8 ,  Z v t 4  - Z l Z 6 ,  Z 8 t 4  - Z l Z 7  , 

z ,  z3 - z L  z3z5 - z L  z4z6  - z L  z6z8 - ~ 2  z3z6 - ZaZ5 

- Final ly ,  we restrict  the fami ly  to the versal  base  space by swi tch ing  to the 
(t,  e ) -coord ina tes  and obeying  the equat ion  e 2 = 0. Moreover ,  t is no longer  a 
coordina te  of  the base space: 

t ( t  - 2~) - zazs, 

Z l t  - -  Z2Z8~ 

z 3 ( t  - 2E) - z 2 z 4 ,  

z s ( t  - e )  - -  Z4Z7,  

Z 7 ( t  - -  ~ )  - -  Z5Z8,  

ZlZ3 - -  Z 2 ,  

Z6Z8 - -  Z 2 ,  

t ( t  - 4e)  - z l z s ,  

Z2t  - -  Z3Z8,  

Z4(t --  G) - -  Z3Z7, 

z s ( t  - 2e) - z2z6, 

Z 7 ( t  - -  3e) - Z l Z 6 ,  

Z3Z5 - -  Z 2 , 

Z3Z6 - -  Z4Z5. 

t ( t  - 3e) - z2zT, 

z z ( t  - 2e) - zlz4, 
Zn(t - 2e) - z2zs, 
Z 6 ( t  - -  E)  - -  ZSZ7, 

z s ( t  - 3e) - Z l Z 7 ,  

Z4Z6 - -  Z 2 ,  

(9.3) At  last we want  to present  an example  invo lv ing  more  than on ly  quadrat ic  
equat ions  for  the versal  base  space.  Let  Q8 be the "regular"  lat t ice 8-gon;  it  is 
con ta ined  in two strips of  lat t ice th ickness  3. 

Po lygon  Q8 

Qa admits  three maximal  Minkowsk i  decompos i t ions  into a sum of  lat t ice sum- 
mands:  

(i) Q8 = I + i i  + + k/.  

(ii) 0 8  = 
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(iii) Q8 = + K + Y 

The decompositions (i), (ii) and (i), (iii) are refinements of the coarser decom- 
positions 

and e 8  = + ) / ( .  , 

respectively. These facts translate directly into the geometry of the reduced base 
space of the versal deformation of Qs: 

- It is embedded in some affine space C 5 and equals the union of a 3-plane 
with two 2-planes (through 0 E C5). 

- The two 2-planes each have a common line with the 3-dimensional compo- 
nent. However, they intersect each other in 0 E C 5 only. 

On the other hand, we can write down the equations of the true versal base space 

(as a closed subscheme of C8/C . ( 1 , . . . ,  1)): 

t ~ + t ~ + t ~ = t 4  k + t ~ + t ~ ,  t~+t3 k+t4 k : t ~ + t 7  k+t8 k ( k = 1 , 2 , 3 ) .  
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