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Abstract. The circle packing theorem is used to show that on any bounded
valence transient planar graph there exists a non constant, harmonic, bounded,
Dirichlet function. If P is a bounded circle packing inR2 whose contacts graph
is a bounded valence triangulation of a disk, then, with probability 1, the simple
random walk onP converges to a limit point. Moreover, in this situation any
continuous function on the limit set ofP extends to a continuous harmonic
function on the closure of the contacts graph ofP; that is, this Dirichlet problem
is solvable. We define the notions of almost planar graphs and manifolds, and
show that under the assumptions of transience and bounded local geometry these
possess non constant, harmonic, bounded, Dirichlet functions. Let us stress that
an almost planar graph is not necessarily roughly isometric to a planar graph.

1. Introduction

In this paper we study several aspects of harmonic functions on planar graphs and
generalizations. Our main results are concerned with the solution of the Dirichlet
problem for infinite transient planar graphs via circle packings. We also prove
the existence of non constant, bounded, harmonic functions with finite Dirichlet
energy on an even wider familiy of almost planar graphs and manifolds.

In the study of a non-compact Riemannian manifoldM , several “type prob-
lems” are natural and widely studied.M is said to betransient, if Brownian
motion is transient onM (or, equivalently,M admits a Greens function). IfM
is not transient, then it isrecurrent. Let OG denote the collection of all recurrent
manifolds.M is said to beweak-Liouville, if every bounded harmonic function
on M is constant, and we then writeM ∈ OHB. Let OHD denote the class of man-
ifolds M such that every harmonic function onM with finite Dirichlet integral
is a constant.

The following inclusions are valid
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OG ⊂ OHB ⊂ OHD .

Moreover, if there is a non-constant harmonic function onM with finite Dirichlet
integral, then there is also such a function which is bounded. (The proofs of these
and the following statements can be found in the book [24], which is also the
source of our above notations.) Here are some examples. The Euclidean planeR

2

is in OG, Euclideann-spaceRn is in OHB −OG whenn > 2, hyperbolicn-space
H n is in OHD −OHB whenn > 2, and the hyperbolic plane is not contained in
OHD ; that is, H 2 admits non-constant, harmonic functions with finite Dirichlet
integral.

Suppose now thatS is a Riemannian surface, which is topologically pla-
nar; that is, it is homeomorphic to a domain inR2. ThenS is also conformaly
equivalent to a domain in the complex planeC. Recall that in dimension 2
the composition of a comformal mapping and a harmonic function is harmonic.
Hence, using Riemann’s mapping theorem it is not hard to see thatS ∈ OG

iff S ∈ OHD . In other words, a transient topologically planar surface admits
non-constant, bounded, harmonic functions with finite Dirichlet integral.

These problems on manifolds are very closely related to analogous problems
on graphs. LetG = (V ,E) be an infinite connected, locally finite graph. A
basic question in discrete potential theory is to decide what classes of harmonic
functions onG are non-trivial. In order to study that question for a transient
planar graphG, we will use a bounded disk packingP in R

2 whose contacts
graph isG. The latter means that the disks ofP are indexed by the vertices of
G and two disks inP are tangent iff the corresponding vertices neighbor. The
existence of such a disk packing inR2 follows from the Circle Packing Theorem
(4.2), first proved by Koebe [16], and the existence of such abounded packing
follows from [12].

Suppose thatG is the contacts graph of a bounded disk packingP ⊂ R
2.

We may then embedG in the plane by mapping each vertex to the center of the
corresponding disk, and drawing each edge as the straight line segment between
the corresponding centers. This embedding is called thegeometric nerveof P. We
can consider the closure ofV in this embedding, and thus get a compactification
of G.

1.1. TheoremLet G = (V ,E) be a planar, bounded valence, transient graph.

(1) There are non-constant, bounded, harmonic functions on G with finite Dirich-
let energy.

(2) Suppose further that G is (the1-skeleton of) a triangulation of a disk. Let P
be a bounded disk packing with contacts graph G, and identify G with the
geometric nerve of P. Let̄V be the closure of V inR2. Then with probability
1 the simple random walk on G converges to a point inV̄ − V .

(3) Under the assumptions of (2), any continuous function onV̄ − V can be
continuously extended to a harmonic function on G.
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Remarks.1. The definitions of most of the above terms appear below in Sect. 2.
Woess’s [29] is a useful survey of results on random walks on graphs. Soardi’s
recent [28] deals with the potential theory of infinite networks. Doyle and Snell’s
book [8] also gives a light introduction to random walks and electrical networks.
2. S. Northshield [22] proved the existence of non constant bounded harmonic
functions on bounded valence planar graphs with rapidly decaying Green’s func-
tion, and studied their boundaries. From D. R. DeBaun’s work [7] it follows that
a bounded valence triangulation of a disk has non constant harmonic functions
with finite Dirichlet energy, if it is transient. Cartwright and Woess [5] have
shown that a graph which satisfies a strong isoperimetric inequality (positive
Cheeger constant), and is uniformly embedded in the hyperbolic plane, admits
nonconstant harmonic functions with finite Dirichlet energy. They also prove the
existence of solutions to certain Dirichlet problems on the boundary at infinity.
3. The bounded valence assumption is necessary. For example, consider the graph
on the natural numbers where 2n edges connect eachn with n + 1. Though this
graph is transient and planar, any bounded harmonic function on it is a constant.
This example can easily be modified to have no multiple edges.

1.2. Definition [14] Let (X, dX ), (Y , dY ) be metric spaces, and letκ < ∞. A κ-
rough isometry f from X to Y is a (not necessarily continuous) map f: X → Y
such that

κ−1dX (x1, x2)− κ ≤ dY
(
f (x1), f (x2)

) ≤ κdX (x1, x2) + κ

holds for all x1, x2 ∈ X , and for every y1 ∈ Y there is some x1 ∈ X such that

dY (y1, f (x1)) ≤ κ.

If such an f exists, we say that X and Y are roughly isometric.

M. Gromov [11] uses the term quasi-isometry for Kanai’s rough isometry.

1.3. Definition Let (X, dX ), (Y , dY ) be metric spaces, and letκ < ∞. A (not
necessarily continuous) map f: X → Y is a κ-quasimonomorphism if the
following two conditions are satisfied.

1. dY (f (x0), f (x1)) ≤ κ(1 + dX (x0, x1)) holds for every x0, x1 ∈ X , and
2. for every open ball B= B(y0, 1) with radius1 in Y , the inverse image f−1(B)

can be covered byκ open balls of radius1 in X .

A quasimonomorphism is a map which is aκ-quasimonomorphism for some finite
κ.

It may seem somewhat unnatural that we have given special status to balls
of radius 1. But we shall use this definition only in the context of metric spaces
that have the following property.
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1.4. Definition A metric space X is said to have the C(R, r ) property if for any
two positive numbers R, r there is some finite C= C(R, r ) such that any ball of
radius R in X can be covered by C balls of radius r.

For example, a connected graph with its natural metric has theC(R, r ) prop-
erty iff there is a global bound on the degrees of its vertices.

1.5. Definition A metric space X satisfying the C(R, r ) property isalmost planar,
if there is a bounded valence planar graph G= (V ,E) and a quasimonomorphism
f : X → V , where V is equipped with the distance metric in G. A graph G◦ =
(V ◦,E◦) is almost planar, if V ◦ with the distance metric of G◦ is almost planar.

We wish to stress that almost planarity is a much weaker property than being
roughly isometric to a planar graph. For example, take two copies ofZ

2 and
identify them along thex-axis {(n, 0)}. The resulting graph is easily seen to be
almost planar, but is not roughly isometric to a planar graph.

As explained below, ifG1 is a planar graph, andG2 is finite, then any
subgraph ofG1 × G2 is almost planar. This can be used to construct many
examples of almost planar graphs.

The following theorem gives an equivalent definition for almost planarity.

1.6. TheoremLet X be a metric space that satisfies the C(R, r ) property. Then
X is almost planar iff there exists a topologically planar, complete, Riemannian
surface S with bounded curvature, and a quasimonomorphism f: X → S .

An easy, but useful, observation is:

1.7. FactIn the category of metric spaces satisfying the C(R, r ) property, a rough
isometry is a quasimonomorphism, and the composition of quasimonomorphisms
is a quasimonomorphism. Hence, for such spaces, almost planarity is invariant
under rough isometries. ut

This, in particular, shows that whenG1 is an almost planar graph andG2 is
a finite graph, then any subgraph ofG1 ×G2 is almost planar.

Regarding almost planar graphs, we have the following geometric criterion.

1.8. TheoremLet G be a connected, bounded degree graph. Then G is almost
planar iff there is some finiteκ such that G can be drawn in the plane in such a
way that every edge has at mostκ crossings.

We shall now clarify the statement of the theorem, by defining what a crossing
is. Given a graphG, we let |G| denote the metric space constructed as follows.
Start withV , and for every edgee ∈ E, with verticesv, u, say, glue the endpoints
of an isometric copyIe of the interval [0, 1] to the two verticesv, u. Let |G| be
the union∪eIe∪V modulo the identifictions, with the path metric. Adrawing of
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G in the plane is a continuous mapf : |G| → R
2. A crossing in such a drawing

is a pair (p, q) of distinct points in|G| that are mapped by the drawing to a
single point:f (p) = f (q). We say that the crossing is in the edgee ∈ E if one of
the pointsp, q is in Ie.

1.9. TheoremLet G◦ = (V ◦,E◦) be a transient, connected, almost planar graph
with bounded vertex degree. Then there are non-constant bounded harmonic func-
tions on G◦ with finite Dirichlet energy.

This implies, for example, thatZ3 is not almost planar, since it is transient
and weak-Liouville.

1.10. TheoremLet M be a connected, transient, n-dimensional, almost planar,
Riemannian manifold with bounded local geometry. Then there are non-constant
bounded harmonic functions with finite Dirichlet energy on M .

The condition ‘M has bounded local geometry’ means that it is complete,
the injectivity radius ofM positive and the Ricci curvature is bounded from
below. Note that a Riemannian manifold with bounded local geometry satisfies
the C(R, r ) property [14].

A consequence of Theorem 1.10 is that hyperbolic 3 spaceH 3 and Euclidean
3 spaceR3 are not almost planar. We do have a more direct proof forR

3, but
not for H 3. Conjecturally, every simply connected 3-manifold with non positive
sectional curvature (Cartan-Hadamard manifold) is not almost planar, but we
cannot provide a proof.

For the reader familiar with Gromov-hyperbolicity, we would like to end the
introduction with a conjecture, replacing planarity by hyperbolicity. That is,

1.11. ConjectureLet M be a connected, transient, Gromov hyperbolic, Rieman-
nian manifold with bounded local geometry, with the property that the union of
all bi-infinite geodesics meets every ball of sufficiently large radius. Then M ad-
mits non constant bounded harmonic functions. Similarly, a Gromov hyperbolic
bounded valence, transient graph, with C -dense bi-infinite geodesics has non con-
stant bounded harmonic functions.

Since every Dirichlet-finite, harmonic function onH 3 is constant, this would
seem to make the conjecture harder to prove.

The example of a horoball inH 4 shows that the requirement that geodesics
areC-dense is necessary.

A. Ancona [1] proved the conjecture for graphs, but with a strong isoperi-
metric condition replacing the assumption on the density of geodesics. A strong
isoperimetric inequality, even for simply connected manifolds with bounded lo-
cal geometry, is not sufficient to imply the existence of non constant bounded
harmonic functions. This was shown by Benjamini and Cao [2].

Acknowledgements.We wish to thank G. Kalai, G. Mess, Y. Peres, P. M. Soardi and B. Weiss for
helpful conversations. We are grateful to Weiss for joining us.
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2. Notations and terminology

Let G = (V ,E) be a graph. For convenience, we usually only consider graphs
with no loops or multiple edges (but the results do apply to multigraphs). The set
of vertices incident with an edgee will be denoted∂e; this is always a subset of
V that contains two vertices. We sometimes use{v, u} to denote the edge with
endpointsv, u.

Initially the graphG is unoriented, but for notational reasons we also consider
directed edges. When{v, u} ∈ E, we use [v, u] to denote the directed edge from

v to u. The set of all direceted edges will usually be denoted
−→
E ;

−→
E = {[v, u] :

{v, u} ∈ E}.
The graphs we shall consider will be connected and locally finite. The latter

means that the number of edges incident with any particular vertex is finite.
Given any vertexv ∈ V , the collection of all edges of the form [v, u] which

are in
−→
E will be denoted

−→
E (v). Thevalence, or degree, of a vertexv is just the

cardinality of
−→
E (v). G hasbounded valence, if there is a finite upper bound for

the degrees of its vertices.

Let f : V → R be some function. Thendf is the functiondf :
−→
E → R

defined by
df ([v, u]) = f (u)− f (v).

We also define the gradient off to be equal todf ,

∇f (e) = df (e).

(The reason for the multiplicity of notation should become clear when we intro-
duce the gradient with respect to a metric onG.)

A function j :
−→
E → R is a flow on G if it satisfies

j ([u, v]) = −j ([v, u])

for every {v, u} ∈ E. For example, for anyf : V → R, df is a flow. The
divergenceof a flow j is the function divj : V → R, defined by

div j (v) =
∑

e∈
−→
E (v)

j (e).

If div j = 0, thenj is divergence free.
For anf : V → R we set

4f = div∇f ,

then4f : V → R is known as thediscrete laplacianof f . If 4f = 0, thenf is
harmonic, while if 4f = 0 on a subsetV ′ ⊂ V , we say thatf is harmonic inV ′.
Equivalently,f is harmonic iff its value at anyv ∈ V is equal to the average of
the values at the neighbors ofv.
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For a flowj and ane ∈ E we let|j (e)| denote|j (v)−j (u)|, where∂e = {v, u}.
The norm of a flowj is defined by

‖j ‖2 =
1
2

∑
e∈
−→
E

j (e)2 =
∑
e∈E

|j (e)|2.

The collection of all flows with finite norm is then a Hilbert space with this
norm. TheDirichlet energyof a functionf : V → R is defined by

D(f ) = ‖df ‖2.

A Dirichlet function is an f : V → R with D(f ) < ∞. The space of all
Dirichlet functions onG is denotedD(G).

The simple random walkon a locally finite graphG = (V ,E) starting at a
vertex v0 is the Markov process (v(1), v(2), . . .) on V such thatv(1) = v0 and
the transition probability from a vertexv to a vertexu is the inverse of the

cardinality of
−→
E (v). A connected graphG is said to betransient, if there is a

positive probability that a random walk that starts at a vertexv0 will never visit
v0 again. It is easy to see that this does not depend on the initial vertexv0. A
non-transient graph isrecurrent.

A metric mon a graphG = (V ,E) is a positive functionm : E → (0,∞). The
random walk on(G,m) is the Markov process where the transition probability
from v to u is equal toc(v, u)/c(v), wherec(v, u) = m({v, u})−1, and c(v) is
the sum ofc(v, u) over all neighborsu of v.

The gradient of a functionf : V → R with respect to a metricm is defined
by

∇mf (e) = df (e)/m(e).

f is said to be harmonic on (G,m) if 4mf = div∇mf is zero. It is clear thatf
is harmonic on (G,m) iff for every v ∈ V , f (v) is equal to the expected value
of f (u), whereu is the state of the random walk on (G,m) that starts atv after
one step.

The natural metric on G is the metric where each edge get weight 1. In
the absence of another metric, all metric related notions are assumed to be with
respect to the natural metric. It is easy to check that ifm is the natural metric
then a random walk on (G,m) is the same as a simple random walk onG, and
the harmonic functions on (G,m) are the harmonic functions onG.

Two metricsm,m′ aremutually bilipschitz, if the ratiosm/m′ andm′/m are
bounded.

Let G = (V ,E) be a connected, locally finite graph, and letm be a metric
on G. The m-length of a pathγ in G is the sum ofm(e) over all edges inγ,

lengthm(γ) =
∑
e∈γ

m(e).

We define them-distancedm(v, u) between any two verticesv, u ∈ V to be the
infimum of them-lengths of paths connectingv andu. Then (V , dm) is a metric
space.
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3. Stability and instability of harmonic functions on graphs

A graphG is said to have theweak-Liouville propertyif every bounded harmonic
function onG is constant.

M. Kanai [15] and Markvorsen et al [21] have shown that recurrence on a
bounded valence graph is invariant under rough isometries. The weak-Liouville
property is not: T. Lyons [19] constructed two mutually bilipschitz metricsm,m′

on a graphG, such that (G,m) is weak-Liouville, while (G,m′) is not. (Replacing
the edges by tubes produces a Riemannian example). We will describe below a
relatively easy recipe for making such examples.

While the weak-Liouville property is not stable under rough isometries,
Soardi [27] has shown that the existence of non-constant, harmonic functions
with finite Dirichlet energy is invariant. Below, we introduce the notion of a
resolvable graph, and will see that a transient resolvable graph has non-constant,
bounded harmonic functions with finite Dirichlet energy. Moreover, the property
of being resolvable is very stable: iff : G◦ → G is a quasimonomorphism and
G is resolvable, then so isG◦.

Definitions. Let G = (V ,E) be some graph, and letΓ be a collection of (infinite)
paths in G. ThenΓ is null if there is an L2(E) metric on G such thatlengthm(γ) =
∞ for everyγ ∈ Γ . It is easy to see thatΓ is null iff its extremal length

EL(Γ ) = sup
m

inf
γ∈Γ

lengthm(γ)2

‖m‖2
,

is infinite. (Extremal length was imported to the discrete setting by Duffin [9].
See [28] for more about extremal length on graphs.) WhenΓ is a collection of
paths and a property holds for everyγ ∈ Γ , except for a null family, we shall say
that the property holds foralmost everyγ ∈ Γ .

Let m be a metric on G, and recall that dm is the associated distance function.
Let Cm(G) denote the completion of(V , dm), and let the m-boundary of G be
∂mG = Cm(G)−V . We use dm to also denote the metric of the completion Cm(G).

The metric m will be calledresolving if it is in L2(E) and for every x∈ ∂mG
the collection of half infinite paths in G that converge to x in Cm(G) is null. G is
resolvable if it has a resolving metric.

Note that if m is a resolving metric andm′ is anotherL2 metric satisfying
m′ ≥ m, thenm′ is also resolving.

Theorem 3.2 below shows that any recurrent graph is resolvable, in fact,
there is a metricm with ∂mG = ∅. On the other hand, the next theorem shows
that a transient graph with no non-constant, harmonic functions inD(G) is not
resolvable, for example,Z3 or any lattice in hyperbolicn-spacen > 2 is not
resolvable. We shall see that any bounded valence planar graph is resolvable.

3.1. TheoremLet G = (V ,E) be an infinite, connected, locally finite, resolvable
graph.
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1. If G is transient, then there are non-constant, bounded, harmonic functions
on G with finite Dirichlet energy.

2. If f : G◦ → G is a quasimonomorphism, where G◦ is a connected, bounded
valence graph, then G◦ is resolvable.

We shall need the following results.

3.2. Theorem (Yamasaki)Let G be a locally finite connected graph, and letΓ
be the collection of all infinite paths in G. Then G is recurrent if and only ifΓ is
null.

This is proven in Yamasaki’s [30], [31]; see also [29, Theorem 4.8]. (There
they consider only paths that start at a fixed base vertex, but this is equivalent.)

The following result is the discrete version of [10, Corollary 8].

3.3. Theorem (Yamasaki [32, Sect. 3])There are non-constant, harmonic, Di-
richlet functions on G if and only if there is an f∈ D(G) such that for every
c ∈ R the collection of all one-sided-infinite pathsγ in G with limn f (γ(n)) /= c
is not null.

Proof (of 3.1). Assume thatG is transient, andm is a resolving metric onG.
Let Γ be the collection of all infinite pathsγ = (γ(0), γ(1), . . .) in G. Almost all
pathsγ in Γ have a limit limn γ(n) in ∂mG, since them-length of those that do
not is infinite. (The limit is in the metricdm, of course.)

We now define supp(Γ ), the support of Γ in ∂mG, as the intersection of
all closed setsQ ⊂ ∂mG such that for almost everyγ ∈ Γ the limit limn γ(n)
is in Q. Because there is a countable basis for the topology of∂mG, and a
countable union of null collections of curves is null, almost everyγ ∈ Γ satisfies
limn γ(n) ∈ supp(Γ ).

Since G is transient, we know from 3.2 that the extremal length ofΓ is
finite. Consequently, supp(Γ ) is not empty. Moreover, the assumption thatm is
resolving shows that supp(Γ ) consists of more than a single point. Letx0 be an
arbitrary point in supp(Γ ). Define f : V → R by settingf (p) = dm(x0, p). It is
clear that|df (e)| ≤ m(e) holds fore ∈ E. Consequently,f ∈ D(G).

Pick someδ > 0 that is smaller than thedm-diameter of supp(Γ ). Consider
the setAδ = {x ∈ supp(Γ ) : d(x0, x) < δ}, and letΓδ be the set ofγ ∈ Γ such
that limn γ(n) ∈ Aδ. Since supp(Γ ) is not contained in̄Aδ or in ∂mG−Aδ, from
the definition of supp(Γ ) it follows that bothΓδ andΓ − Γδ are not null. For
everyγ ∈ Γδ, we have limn f (γ(n)) < δ, while for almost everyγ ∈ Γ −Γδ, we
have limn f (γ(n)) ≥ δ. Since bothΓδ andΓ − Γδ are non null, it follows that
for every constantc ∈ R the set ofγ ∈ Γ with limn f (γ(n)) /= c is not null.

Now 3.3 implies that there are non-constant, harmonic, Dirichlet functions
on G. This then shows that there are bounded, non-constant, harmonic, Dirichlet
functions, by [31] (see also [28, Theorem 3.73]).
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For the proof of (2), the following lemma will be needed.

3.4. Lemma Let f : G◦ → G be aκ-quasimonomorphism between bounded
valence graphs G◦ = (V ◦,E◦) and G = (V ,E). Let m : E → (0,∞) be a metric
on G, and let m◦ : E◦ → [0,∞) be defined by

m◦({v◦, u◦}) = dm
(
f (v◦), f (u◦)

)
,

for any{v◦, u◦} ∈ E◦ Then‖m◦‖ ≤ C‖m‖, where C is a constant that depends
only onκ and the maximal valence in G and G◦.

Proof. For every edgee◦ = {v◦, u◦} in G◦, let γe◦ be some path of combinatorial
length at most 2κ in G from f (v◦) to f (u◦). Then

m◦(e◦)2 ≤ lengthm(γe◦ )2 =

(∑
e∈γe◦

m(e)

)2

≤ 4κ2
∑

e∈γe◦

m(e)2.

Therefore,
‖m◦‖2 ≤ 4κ2

∑
e∈E

m(e)2 |{e◦ ∈ E◦ : e ∈ γe◦}| .

Since each of the pathsγe◦ has length at most 2κ and
∣∣f −1(v)

∣∣ ≤ κ for every
v ∈ V , it is clear that for anye ∈ E the cardinality of{e◦ ∈ E◦ : e ∈ γe◦} is
bounded by a number that depends only onκ and the maximal valence inG◦.
Hence, the lemma follows. ut
Proof of 3.1(2).Let m◦ : E → [0,∞) be as in Lemma 3.4, and letm◦

1 : E →
(0,∞) satisfy m◦

1 (e) > m◦(e) for every e ∈ E, while still m◦
1 ∈ L2(E). (The

reason for usingm◦
1 rather thanm◦, is that, strictly speaking,m◦ may not be

a metric; it may happen thatm◦(e) = 0 for somee ∈ E.) Note that f is a
contraction from the metric space (V ◦, dm◦

1
) to the metric space (V , dm). The

straightforward proof thatm◦
1 is a resolving metric forG◦ is again based on 3.4,

and will be omitted. ut

Instability of the weak-Liouville property

As promised, we shall now provide a simple example showing that the
weak-Liouville property is not invariant under rough isometries.

Let G = (V ,E) be a countable transient graph, letA⊂ V , let m be the natural
metric onG, and letm′ be a metric bilipschitz tom. Suppose that with proba-
bility 1 the random walk on (G,m) hits A infinitely often, but with probability
1 the random walk on (G,m′) hits A only finitely many times. T. Lyons [19]
observed that one can find suchA and m′ when G is an infinite regular tree
(which is notZ). For example, on the binary tree consisting of all finite se-
quences (ε1, ε2, . . . , εn) of 0’s and 1’s, where an edge appears between each
(ε1, ε2, . . . , εn−1) and (ε1, ε2, . . . , εn), one can letA be the set of all (ε1, ε2, . . . , εn)
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such that
∑n

j =1 εj > n/3, and letm′((ε1, . . . , εn−1), (ε1, . . . , εn)
)

= 1 +cεn, where
c > 0 is a sufficiently large constant.

We now construct a new graphH whose vertex set is the disjoint union ofV
andZ4. Let X be the set{(x, 0, 0, 0) : x ∈ Z} ⊂ Z

4, and letφ : A→ Z
4 be any

injective map fromA into X. Let the edges ofH consist of the edges inG, the
edges inZ4, and all edges of the form [a, φ(a)] with a ∈ A. Extend the metrics
m,m′ to H by letting m(e) = m′(e) = 1 for any edge ofH that is not inE.

3.5. Theorem (H ,m) is weak-Liouville, but(H ,m′) carries non-constant,
bounded harmonic functions.

Sketch of proof.With probability 1, the random walk on (H ,m) will be in Z
4

infinitely often. But there is some constantc > 0, such that the probability that
a random walk onZ4 that starts at any vertex inX will never reachX again is
c. Hence the random walk on (H ,m) will be absorbed inZ4; that is, it will be
in V only finitely many times. Since we may couple [17] the random walk on
(H ,m) with the random walk onZ4, it follows that (H ,m) is weak-Liouville.

On the other hand, letf (v) be the probability that the random walk on (H ,m′)
that starts at a vertexv will be absorbed inZ4. Thenf is a non-constant, bounded
harmonic function on (H ,m′).

4. Harmonic functions on planar and almost planar graphs

4.1. Theorem Any planar bounded degree graph G= (V ,E) has a resolving
metric.

The proof will use the circle packing theorem, which we state shortly. Sup-
pose thatP = (Pv : v ∈ V ) is an indexed packing of disks in the plane. This just
means thatV is some set, to eachv corresponds a closed diskPv ⊂ R

2, and
the interiors of the disks are disjoint. LetG be the graph with verticesV such
that there is an edge joiningv and u iff Pv and Pu are tangent. ThenG is the
contacts graphof P. (There are no multiple edges inG). It is easy to see that
G is planar, the circle packing theorem provides a converse:

4.2. Circle Packing TheoremLet G = (V ,E) be a finite planar graph with no
loops or multiple edges, then there is a disk packing P= (Pv : v ∈ V ) in R2 with
contacts graph G.

This theorem was first proved by Koebe [16]. Recently, at least 7 other proofs
have been found; some of the more accesible ones can be found in [20], [6],
[4].

We shall also need the following lemma.
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4.3. Lemma Let G be a connected, planar, bounded valence graph, with no
multiple edges. Then there is a triangulation T of a domain inR2, which has
bounded valence, and such that G is isomorphic to a subgraph of the1-skeleton
of T .

The lemma is surely known (but we have not located a reference), and not
hard to prove, so we leave it as an exercise to the reader. (Hint: for the finite
case, surround the graph by cycles, and triangulate the annular regions formed.
Continue the process in the untriangulated disks bounded by the cycles.)

Proof of (4.1). We assume thatG is the 1-skeleton of a triangulationT. Because
of 4.3 and 3.1.(2), there is no loss of generality. The claim is trivial ifG is finite,
so assume that it is not. Letv0, v1, v2 be the three vertices of a triangle inT. Let
V 1 ⊂ V 2 ⊂ V 3 ⊂ . . . be subsets ofV such thatv0, v1, v2 ∈ V 1 and∪nV n = V .
For eachn let Gn be the graph spanned byV n, and letEn be its set of edges.

Let B1,B2,B3 be any three mutually tangent disks inR2, and letD be the
bounded component ofR2−B1∪B2∪B3. The circle packing theorem tells us that
for eachn there is a packing of disksPn = (Pn

v : v ∈ V n) in the planeR2 with
contacts graphGn. By normalizing with a M̈obius transformation, we assume
with no loss of generality thatPn

vj
= Bj for each j = 1, 2, 3 and n = 1, 2, . . .,

and that all the other disks in the packingsPn are contained inD̄ .1 Take some
subsequence of the packingsPn, so that each of the the disksPn

v , v ∈ V has a
(Hausdorff) limit, and call the limitPv. SetP = (Pv : v ∈ V ). Clearly, eachPv

is either a disk or a point, each of the sets inP is disjoint from the interior of
the others, andPv intersectsPu whenv and u neighbor. We want to show that
eachPv is really a disk, not a single point. (Compare [12], [26].)

Let V ′ be the set of allv ∈ V such thatPv is a single point. Clearly,
v0, v1, v2 /∈ V ′. Suppose thatV ′ is not empty, and letV ′′ be a connected compo-
nent ofV ′. Then all the setsPv, v ∈ V ′′, are the same point, sayp. A triangulation
of any surface is 3-vertex connected (this is an easy and well known fact), so the
removal of any 2 vertices fromG does not disconnectG. Sincev0, v1, v2 /∈ V ′′,
it follows that there are at least three vertices outside ofV ′ that neighbor with
some vertex inV ′′; suppose these area, b, c. Then Pa,Pb,Pc are three disks,
whose interiors are disjoint, and all must contain the pointp. This is clearly
impossible, and this contradiction tells us thatV ′ = ∅. So thePv are true disks.

Take anye ∈ E, and let its vertices beu, v. We setm(e) = diameter(Pu) +
diameter(Pv). This defines a metricm : E → (0,∞), Because the packingP
is contained inB1 ∪ B2 ∪ B3 ∪ D , its total area is finite, and this implies that
m ∈ L2(E).

1 Here, a M̈obius transformation is a composition of inversions in circles; that is, orientation
reversing transformations are included. The fact that is used here is that for any three mutually tanget
disks B′

1, B′
2, B′

3 and any componentD ′ of the two components ofR2 − B′
1 ∪ B′

2 ∪ B′
3, there is an

(actually unique) M̈obius transformation taking eachB′
j to Bj and takingD ′ to D . If pi ,j denotes the

intersection point ofBi and Bj , i /= j , and similarly forp′
i ,j , then the transformation is the one that

takes eachp′
i ,j to pi ,j , pre-composed, if necessary, by the inversion in the circle passing through the

three pointsp′
i ,j .
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We shall now show thatm is resolving. For anyv ∈ V we letz(v) denote the
center of the diskPv. Let p be any point in∂mG. Let v1, v2, . . . be a sequence
in V that converges top in Cm(G). Then limn,k→∞ dm(vn, vk) = 0. This easily
implies that limn,k→∞ |z(vn) − z(vk)| = 0. We therefore conclude that the limit
limn z(vn) exists, and denote this limit byz(p). If w1, w2, . . . is another sequence
in V that converges top, then the limit limn z(wn) will still be z(p). This follows
from the fact that any ordering of the union{vn} ∪ {wn} as a sequence which
will still converge top. Hencez(p) does not depend on the sequence chosen.

Let Γp be the collection of all half-infinite paths inG γ = (γ(0), γ(1), . . .)
that converge top in Cm(G). We need to show thatΓp is null. This will be done
by producing anL2(E) metric mp such that lengthmp

(γ) = ∞ for everyγ ∈ Γp.
The argument will be similar to an argument in [25] and [12].

Our next objective is to show thatz(p) does not belong to any of the disks
Pv, v ∈ V . Consider a triangle inT with verticesu1, u2, u3. Let a(u1, u2, u3)
denote the boundary of the triangle whose vertices arez(u1), z(u2), z(u3). Because
T is a triangulation of a surface, it follows that the removal of{u1, u2, u3} from G
does not disconnectG. This implies that all the sets in

(
Pv : v ∈ V−{u1, u2, u3}

)
are in the same connected component ofR

2−a(u1, u2, u3). Let ã(u1, u2, u3) denote
the union ofa(u1, u2, u3) with the connected component ofR2−a(u1, u2, u3) that
is disjoint from everyPv, v /= u1, u2, u3. Suppose now thatv is any vertex inV .
It is easy to see that the union of the sets ˜a(v, u, w) for all consecutive neighbors
u, w of v contains the diskPv in its interior. Each one of these sets intersects
only three sets in the packingP. HencePv does not contain any accumulation
point of centers of disks inP. This showsz(p) /∈ Pv, as required.

We now inductively construct a sequence of positive numbersr1 > r2 >
r3 > . . .. For r > 0 let B(r ) denote the disk{z ∈ R

2 : |z − z(p)| < r }.
Take r1 = 1. Suppose thatr1, r2, . . . , rn−1 have been chosen. Letrn be in the
range 0< rn < rn−1/2 and be sufficiently small so that the two sets of vertices
{v ∈ V : z(v) ∈ B(2rn)} and{v ∈ V : z(v) /∈ B(rn−1)} are disjoint and there is
no edge inG connecting them. To see that this can be done, observe that for any
r > 0 there are finitely many verticesv ∈ V such that diameter(Pv) ≥ r . Since
z(p) /∈ ∪vPv, for everyr > 0 there is aρ(r ) ∈ (0, r /2] such that the closure of
B(ρ(r )) does not intersect any of the setsPv satisfying diameter(Pv) ≥ r /2. This
implies that there will be noPv that intersects both circles∂B(r ) and∂B(ρ(r )).
Hence we may takern = ρ(ρ(rn−1))/2.

For r ∈ (0,∞) let ψr : R2 → [0, r ] be defined by

ψr (z) =


r if |z − z(p)| ≤ r ,
2r − |z − z(p)| if r ≤ |z − z(p)| ≤ 2r ,
0 if |z − z(p)| ≥ 2r .

In other words,ψr is equal tor on B(r ), equal to 0 outsideB(2r ), and in the
annulusB(2r ) − B(r ) it is linear in the distance from its centerz(p). For each
n = 1, 2, . . . andv ∈ V , we define

φn(v) = ψrn (z(v)).
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The construction of the sequencer1, r2, . . . insures that the supports ofdφn and
dφn′ are disjoint whenn /= n′. It is easy to see that the definition ofφn shows
that there is a finite constantC such that

|dφn(e)|2 ≤ C area((Pu ∪ Pv) ∩ B(3rn)),(4.1)

where{u, v} = ∂e. Let Ω be an upper bound on the degrees of the vertices in
G. Since the interiors of the sets inP are disjoint, (4.1) implies

‖dφn‖2 =
∑
e∈E

φn(e)2 ≤ 9πCΩr 2
n .

Now set

φ =
∞∑

n=1

φn

nrn
.

As we have noted, the supports of the differentdφn are disjoint, and therefore,

‖dφ‖2 =
∞∑

n=1

‖dφn‖2

n2r 2
n

,

and the above estimate for‖dφn‖2 shows that|dφ| ∈ L2(E). Therefore, there is
some metricmp ∈ L2(E) such thatmp(e) ≥ |dφn(e)| for every e ∈ E. (Tech-
nically, we cannot takemp = |dφ|, since |dφ| is not positive, and hence not a
metric.)

Now let γ = (γ(1), γ(2), . . .) be any path inΓp, and letE(γ) denote its edges.
We have limn z(γ(n)) = z(p). Therefore,

lim
n
φ(γ(n)) = lim

z→z(p)

∑
j

ψrj (z)

jr j
=
∑

j

1
j

= ∞.

This gives
lengthmp

(γ) =
∑

e∈E(γ)

mp(e) ≥
∑

e∈E(γ)

|dφ(e)| = ∞.

SoΓp is null, andm is resolving. ut
Proof of 1.9 and 1.1.(1).These follow immediately from 4.1 and 3.1.ut

5. The Dirichlet problem for circle packing graphs

Let G = (V ,E) be the 1-skeleton of a triangulation of an open disk, and suppose
that G has bounded valence. Suppose thatP = (Pv : v ∈ V ) is any disk packing
in the Riemann spherêC whose contacts graph isG. A point z ∈ Ĉ is a limit
point of P if every open neighborhood ofz intersects infinitely many disks
of P, and the set of all limit points ofP is denotedΛ(P). The carrier of P,
carr(P), is the connected component ofĈ − Λ(P) that containsP. It is easy to
see that carr(P) is homeomorphic to a disk. From [12] we know that∂ carr(P) is
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a single point iffG is recurrent. Moreover, ifG is transient andD is any simply
connected proper subset ofC, then there is a disk packingP with contacts graph
G that has carrierD .

For eachv ∈ V we let z(v) denote any point inPv. The following theorem
includes 1.1.(2).

5.1. TheoremAssume that G is transient, and has bounded valence. Letv0 be
an arbitrary vertex in G, and let(v(0), v(1), v(2), . . .) be a simple random walk
starting atv0 = v(0). Then, with probability1, the limit z∞ = limn z(v(n)) exists,
and is a point inΛ(P).

Moreover, suppose that z∈ W ∩ Λ(P), where W is open. Let u1, u2, . . . be
a sequence in V such thatlim j z(uj ) = z . Let pj be the probability that for the
simple walk(v(0), v(1), v(2), . . .) starting atv(0) = uj the limit z∞ = limn z(v(n))
is in W . Then pj → 1 as j →∞.

Note that the topological notions in the theorem are induced by the topology
of Ĉ. In particular,Λ(P) is compact even when it includes∞.

The main corrolary is 1.1.(3), which we now restate, as follows.

5.2. Corollary The Dirichlet problem on V∪Λ(P) has a solution for every con-
tinuous function f: Λ(P) → R. That is, there exists a harmonicf̃ : V → R such
that limn f̃ (vn) = f (z) whenevervn is a sequence in G such thatlimn z(vn) = z .

Proof of (4.1). Let v ∈ V . Let µv be the probability measure that assigns to
every measurableH ⊂ Λ(P) the probability that the simple random walk
(v(0), v(1), v(2), . . .) starting atv(0) = v will satisfy limn z(v(n)) ∈ H . Then
define f̃ (v) =

∫
f dµv. It is clear that this gives the required solution.ut

The theorem will easily follow from the following lemma.

5.3. Convergence LemmaSuppose that∞ /∈ carr(P). Letv0 be some vertex in V ,
and letδ be the distance from z(v0) to ∂ carr(P). Let t > 1. Then the probability
that the simple random walk on G starting atv0 will ever get to a vertexv ∈ V
satisfying|z(v) − z(v0)| > tδ is less than C/ log t , where C is a constant that
depends only on the maximal degreeΩ in G.

Proof. There is nothing to prove if max{|z(v)| : v ∈ V} ≤ tδ, so assume that
this is not the case. By applying a similarity, if necessary, assume thatδ = 1,
z(v0) = 0 and the point 1 is in∂ carr(P). The Ring Lemma of [23] tells us that the
ratio between the radii of any two touching disks inP is bounded by a constant
C1 = C1(Ω). It follows that there is a constantC2 = C2(Ω) such that the radius
of any disk inP is less thanC2 times its distance from 1. From this we conclude
that the following inequality is valid for everyv ∈ V :

max{|z| : z ∈ Pv} ≤ (4C2 + 2) max
(
1,min{|z| : z ∈ Pv}

)
.(5.1)

Let T = R/2πZ, the circle of length 2π, and consider
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log : C− {0} → R× T,

it maps the punctured plane onto a cylinder. Forx1 < x2, let proj[x1,x2] be the
projectionR→ [x1, x2]; that is,

proj[x1,x2] (s) = max
(
x1,min(x2, s)

)
.

Also let Proj[x1,x2] : R× T → [x1, x2] × T be defined by

Proj[x1,x2] (s, θ) =
(
proj[x1,x2] (s), θ

)
.

Setτ = log t . Finally, for v ∈ V let

φ(v) = proj[τ/2,τ ] log |z(v)| = Proj[τ/2,τ ] logz(v) .

We now estimateD(φ). Consider first somePv such that
√

t ≤ |w| ≤ t for
everyw ∈ Pv. Since the derivative of log is 1/z, (5.1) implies that there is a
constantC3 = C3(Ω) such that| log′ w1|/| log′ w2| < C3 for everyw1, w2 ∈ Pv.
It follows that there is aC4 = C4(Ω) such that

C4 area
(
Proj[τ/2,τ ] logPv

) ≥ diameter
(
Proj[τ/2,τ ] logPv

)2
,

which implies

C4 area
(
Proj[τ/2,τ ] logPv

) ≥ (
max{proj[τ/2,τ ] log |w| : w ∈ Pv}
−min{proj[τ/2,τ ] log |w| : w ∈ Pv}

)2
.(5.2)

The latter is true also for an arbitraryPv, since in every diskB that intersects
the interior of the annulusA = {w :

√
t ≤ |w| ≤ t}, there is a diskB1 ⊂ A∩ B

with {|w| : w ∈ B1} = {|w| : w ∈ B} ∩ [
√

t , t ].
If v1, v2 are neighbors inG, then the two disksPv1,Pv2 intersect. Hence,

from (5.2) it follows that

|φ(v1)−φ(v2)|2 ≤ 4C4 max

{
area

(
Proj[τ/2,τ ] logPv1

)
, area

(
Proj[τ/2,τ ] logPv2

)}
.

We sum this inequality over all edges{v1, v2} in G. Since the interiors of the
sets Proj[τ/2,τ ] logPv are disjoint, we get,

D(φ) ≤ 4ΩC4 area
(
Proj[τ/2,τ ] log(C− {0})

)
= 4πΩC4τ.(5.3)

Now let K ⊂ V be a finite collection of vertices. LetφK : V → R be the
function that is equal toφ outside ofK and is harmonic inK . Clearly,

D(φK ) ≤ D(φ).(5.4)

We want to estimateφK (v0) from above. Letρ be in the range 1< ρ <
√

t .
For all v ∈ V − K such that|z(v)| < √

t , we haveφK (v) = τ/2. Therefore,
it follows from the maximum principle that there is somevρ ∈ V with Pvρ

intersecting the circle{|w| = ρ} andφK (vρ) ≥ φK (v0). Since the circle{|w| = ρ}
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separates 1 and∞, it intersects infinitely many of the disks inP. Consequently,
there is a finite pathγρ in G connectingvρ to some vertex outside ofK , such
that Pv intersects the circle{|w| = ρ} for every v ∈ γρ. (Here we are using
the fact thatG is a triangulation to conclude that if there is an arc of the circle
{|w| = ρ} whose endpoints are inPv1 andPv2 and the arc does not intersect any
other disk inP, thenv1 andv2 neighbor inG.)

Let uρ be a vertex ofγρ that is outside ofK . ThenφK (uρ) = τ/2. So we get,

φK (v0)− τ/2≤ φK (vρ)− φK (uρ) ≤
∑

e∈E(γρ)

|dφK (e)|,

whereE(γρ) denotes the set of edges inγρ. This implies,

φK (v0)− τ/2≤
∑
e∈Eρ

|dφK (e)|,

whereEρ denotes the set of all edges{v1, v2} ∈ E such thatPv1 and Pv2 both
intersect the circle{|w| = ρ}. We multiply the above inequality by 1/ρ, and
integrate from 1 to

√
t . This gives,

(φK (v0)− τ/2)τ/2≤
∑
e∈E

|dφK (e)|m(e),(5.5)

where

m(e) = max{proj[0,τ/2] log |w| : w ∈ Pv} −min{proj[0,τ/2] log |w| : w ∈ Pv}
for v any of the two vertices ine. Following the argument in the previous
paragraphs, it is easily seen that∑

e∈E

m(e)2 ≤ πC4Ωτ

Using this and the Cauchy-Schwarz inequality in (5.5), we get

(φK (v0)− τ/2)τ/2≤
√
πC4ΩτD(φK ).

Together with (5.3) and (5.4), this gives

φK (v0) ≤ 4πC4Ω + τ/2.(5.6)

This is the estimated we wanted forφK (v0).
Now let K1 ⊂ K2 ⊂ K3 ⊂ . . . be a sequence of finite subsets ofV , such that

∪nKn is the set of all verticesv ∈ V with z(v) ≤ t . Let p be the probability
that the simple random walk that starts atv0 will ever reach a vertexv with
|z(v)| > t . It is easy to see that

lim sup
n

φKn (v0) ≥ (1− p)τ/2 + pτ.

Using (5.6), this gives
p ≤ 8πC4Ω/τ,

as required. ut
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Proof (of 5.1). The statement of the theorem is invariant under Möbius trans-
formations, hence we may normalize so that∞ /∈ carr(P). To prove that the
limit lim n z(v(n)) exists almost surely, it is enough to show that the diameter
of {z(v(k)), z(v(k + 1)), . . .} tends to zero with probability 1 ask → ∞. Let
ε > 0. The lemma implies that there is at1 < ∞ so that the probability that
|z(v(k))| > t1 for any k is less thanε. There are finitely manyv ∈ V with
|z(v)| ≤ t1 and with d(z(v), Λ(P)) > ε. SinceG is transient, this implies that
there is somen0 so thatd(z(v(n0)), Λ(P)) ≤ ε with probability at least 1− 2ε.
Then the lemma shows that with probability at most 2ε + C/ log t the diameter
of {z(v(n0)), z(v(n0 + 1)), . . .} is greater thantε. Choosingt = ε−1/2, then shows
that the limit limn z(v(n)) exists almost surely.

The second part of the theorem follows immediately.ut

Remarks.1. The methods of this section are really not particular to circles, they
would apply to a large class of other, well behaved, packings.
2. It turns out that for some purposes it is better to consider a square tiling
associated with the graph, rather than a circle packing. In particular, one can get
similar results for an especially constructed square tiling whenG is not assumed
to be a triangulation. We intend to study this in a forthcoming paper [3].
3. The Convergence Lemma gives information about the hitting measure. Let the
situation be as in the lemma. Suppose thatp is some point on∂ carr(P), and
r > 0. Let d = |p − z(v0)| be the distance fromz(v0) to p. The probability that
the random walk starting atv0 will ever reach a vertexv satisfying|z(v)−p| < r
is less thanC/ log(d/r ). This follows from the lemma by inverting the packing
in the circle{|z − p| = r }.

5.4. ProblemsConsider the random walk(v(1), v(2), . . .) starting at some vertex
v0 ∈ V . Then with probability1 the limit z∞ = limn z(v(n)) exists and is a point
in ∂ carr(P). Letµ denote the hitting measure; that is,µ(A) is the probability that
z∞ ∈ A. Suppose for example thatcarr(P) = U , the unit disk. When isµ absolutely
continuous with respect to Lebesgue measure on∂U ? (By further triangulating
some of the faces of the triangulation, one can insure that the hitting measure is
singular.) In general, whencarr(P) /= U , is it true thatµ is supported by a set of
Hausdorff dimension1, as for the harmonic measure for Brownian motion.

6. Harmonic functions on almost planar manifolds

In this section we shall prove Theorem 1.10. Namely, we shall show that a
transient, bounded local geometry, almost planar manifold admits non constant
Dirichlet functions. This will be an easy corollary of Theorem 1.9 and the fol-
lowing very recent theorem.

6.1. Theorem (Holopainen-Soardi)[13] Let X1 be a connected, bounded local
geometry, Riemannian manifold, and suppose that X1 is roughly isometric to a
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bounded valence graph X2. Then there are non-constant harmonic functions with
finite Dirichlet energy on X1 iff there are non-constant harmonic functions with
finite Dirichlet energy on X2.

Proof (of 1.10).By Kanai’s [14], [15],M is roughly isometric to some transient
bounded valence graphG (e.g., a net inM ), and 1.7 implies thatG is almost
planar. Theorem 1.9 tells us that there are non-constant harmonic functions on
G with finite Dirichlet energy, and Theorem 6.1 implies that the same is true for
M . It then follows that there are also such functions that are bounded.ut
Remark.By applying Theorem 6.1, one can get yet another proof for the existence
of non constant Dirichlet harmonic functions on planar bounded valence transient
graphs (1.1.(1)). Following is a sketch of the argument. To each vertexv in
G associate a copy of the regularΩ-gon with side length 1, whereΩ is the
maximal degree of any vertex inG. To each edge ofG associate a copy of
the unit square. Glue two opposite sides of every such square to sides of the
Ω-gons corresponding to the vertices of the edge. If the gluings are preformed
correctly, the resulting Riemman surfaceS will be topologically planar. LetS′

be the subset of all pointsp ∈ S so that the open ball of radius 1/5 aboutp in
S is isometric to a Euclidean ball. ThenS′ is a Riemann surface with boundary.
By Koebe’s uniformization theorem, there is a conformal embeddingf : S → Ĉ
of S into the Riemann sphere. SinceG is transient,S′ is also transient, and
hence ¯f (S′)− f (S′) contains more than a single point. It then follows that there
are non constant harmonic Dirichlet functions onf (S′) with Neumann boundary
conditions onf (∂S′). The same then applies toS′, and Theorem 6.1 shows that
the same is true forG.

7. Characterizations of almost planarity

Proof (of 1.8). Suppose thatG = (V ,E) is almost planar. Then there is a bounded
degree planar graphG◦ = (V ◦,E◦), and aκ-quasimonomorphismf : V → V ◦

with someκ <∞. Using Lemma 4.3, we assume without loss of generality that
G◦ is the 1-skeleton of a triangulationT◦ of a domainD in the plane. Recall
that |G| is the union of intervalsIe, e ∈ E, with the natural identifications, and
a drawing ofG in the plane is a continuous mapg : |G| → R

2. For every
edgee ∈ E, with enpointsv, w, say, there is a path, sayf̃ (e), of length at most
2κ, joining f (v) and f (w) in G◦. BecauseG◦ has bounded valence andf is
a quasimonomorphism, it follows that there is a finiteC such that every edge
e◦ ∈ E◦ appears in the path̃f (e) for at mostC edgese in E.

In the domainD one can replace each edgee◦ in the triangulationT◦ by C
‘parallel’ edges joining the same endpoints, such that there are no intersection
between edges, except at the endpoints. LetG∗ = (V ∗,E∗) denote the resulting
graph. Since inG∗ there areC edges for every edge inG◦, it is possible to find
for every edgee ∈ E, with endpointsv, w, say, a pathf ∗(e) in G∗ of length
at most 2κ, such that all these paths are edge-disjoint. Define now the drawing
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g : |G| → D , by letting g map eachIe into the pathf ∗(e). It is easy to verify
that the number of crossings for each edge in the drawing is bounded byC times
2κ + 1 times the maximal degree ofG◦. Hence there is a drawing ofG in the
plane in which the number of crossings in any edge is bounded.

Now suppose that there is a drawingg : |G| → R
2 of G in the plane so that

every edgee ∈ E has at mostκ <∞ crossings. LetX be the set of all crossing
points in|G|; that is, the set of allx ∈ |G| such that there is somey ∈ |G|−{x}
with g(x) = g(y). Define V ◦ = g(V ) ∪ g(X). It is clear thatG◦ = g

(|G|) is a
connected, bounded valence graph embedded in the plane, with vertex setV ◦.
Moreover,g induces an obvious quasimonomorphism fromG to G◦. HenceG
is almost planar. ut

Proof (of 1.6). Note that a bounded curvature complete Riemannian surface sat-
isfies theC(R, r ) property. Hence, using 1.7, we see that it is enough to show
that any planar, connected, bounded valence graph admits a quasimonomorphism
into a topologically planar, complete, Riemannian surface with bounded curva-
ture, and conversely, every topologically planar, complete, Riemannian surface
with bounded curvature admits a quasimonomorphism into an almost planar,
connected, bounded valence graph.

Let G = (V ,E) be a planar, connected, bounded valence graph. From 4.3
we know thatG is isomorphic to a subgraph of the 1-skeleton of a bounded
valence triangulationT of a domainD in R2. Take a metricm on D in which
every triangle ofT is isometric to a euclidean triangle with edges of length
1. This metric is complete, and locally is a flat Riemannian metric, except for
singularities near the vertices. Since the 1-skeleton ofT has bounded valence, it
is clear that one can modifym in the (1/3)-neighborhood of the vertices, to get
a complete Riemannian metricm′ with bounded curvature. TakeS to beD with
the metricm′. The isomorphism fromG to a subgraph of the 1-skeleton ofT
induces a quasimonomorphism fromG to S, as required.

Now suppose thatS is a topologically planar, Riemannian surface, with
bounded curvature. LetV be a maximal set of points inS with the property
that the distance between any two points inV is at least 1. LetG = (V ,E) be
the graph onV where two vertices are connected if the distance between them is
at most 3. LetV be equipped with the distance metric inG. From [14] we know
that V is roughly isometric toS, and the fact that the curvature inS is bounded
implies thatG has bounded valence. To see thatG is almost planar, drawG in S
by connecting the verticesv, u of an edge by any of the shortest paths between
them. It is clear that there will be at most one crossing between any two edges,
unless the edges overlap in nontrivial intervals. The latter possibility is avoided
by a generic choice of the pointsV , hence we assume that this does not happen.
If there is a crossing between two edgese1, e2, then the distance inS from the
vertices ofe1 to the vertices ofe2 is less than 6. Hence we have an upper bound
on the number of crossings of any edge in this drawing. Hence Theorem 1.8
implies thatG is almost planar. ut
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7.1. TheoremLet G = (V ,E) be a finite genus, connected, locally finite graph.
Then G can be drawn in the plane with finitely many crossings. In particular, if
G has bounded valence, then it is almost planar.

Proof. Let S be a closed (compact, without boundary) surface such thatG em-
bedds inS. We assume, with no loss of generality, thatG is a triangulation of a
domainD ⊂ S. Recall that the genus of any boundaryless surfaceX is the max-
imum cardinality of a collection{γ1, . . . , γg} of disjoint simple closed curves
in X such thatX − ∪j γj is connected. Since the genus ofD is bounded by the
genus ofS, it is finite. Hence there is a finite collection of edgesE0 ⊂ E such
that any simple closed path inG − E0 separatesD . SinceG is a triangulation
of D , this implies that there is no simple closed non-separating path inD − E1,
where E1 is the set of all edges inG that share some vertex with some edge
in E0. Therefore every component ofD − E1 has zero genus, and is planar. In
particular,G − E1 is planar. LetE′ ⊂ E1 be a minimal set of edges subject to
the property thatG−E′ is planar. (Here,G−E′ contains all the vertices ofG.)
Clearly, G − E′ is connected, andE′ is finite.

Let f be an embedding ofG−E′ in the plane so that for every edge or vertex
j of G−E′ there is an open setA containingf (j ) that intersects at most finitely
many of the vertices and edges off (G − E′). Now suppose thate is some edge
in E′, and letv, w be its vertices. SinceG − E′ is connected, there is a pathγ
in f (G−E′) joining f (v) andf (w). We may definef (e) to be a simple path that
follows alongsideγ and intersectsf (G − E′) in finitely many points. Similarly,
all the edges inE′ may be drawn in such a way that there are finitely many
crossings. ut

Almost planar graphs and separation properties

It is known [18] that any planar graphG = (V ,E) has the
√

n separation property.
That is, there arec0 < ∞, c1 < 1, so that for any finite setW ⊂ V of n
vertices, there is a subsetW ′ ⊂ W containing at mostc0

√
n vertices, such

that any connected subset ofW − W ′ has at mostc1n vertices. Clearly almost
planar graphs have this

√
n separation property too. A natural question is whether√

n separation is equivalent to almost planarity. And if not, do transient graphs
with the

√
n separtion property always admit non constant bounded harmonic

functions?

Examples.Let T be a tree, and denote byT × Z the product ofT by Z. In
Lemma 7.2 below, we show thatT×Z has the

√
n separation property. Coupling

shows that any bounded harmonic functionh on T×Z must be constant on every
fibre of the form{t}×Z. Hence the only harmonic Dirichlet functions onT×Z
are the constants. By Theorem 1.9 it then follows thatT×Z is not almost planar,
if it is transient. In particular, whenT is the binary tree,T×Z is a graph having
the

√
n separation property, which is not almost planar. Hence,

√
n separation

does not imply almost planarity.
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Let C be the following tree. Start with an infinite ray, then to every vertex
on that ray add another infinite ray, rooted at that vertex. One can show [21]
that C × Z is a transient graph. YetC × Z admits no non constant bounded
harmonic functions. Hence,

√
n separation and transience do not together imply

the existence of bounded non constant harmonic functions.
To date, we did not manage to prove thatT×Z is not almost planar whenever

T is a tree with infinitely many ends.

7.2. LemmaLet T be a tree, then T× Z has the
√

n separation property.

Proof. Let W be a set ofn vertices inT × Z. Let j0 ∈ Z be such that there are
at leastn/2 vertices inW of the form (t , i ) with i ≤ j0 and at leastn/2 vertices
with i ≥ j0. Let j+ be the leastj ≥ j0 such that there are less than

√
n vertices

in W ∩T ×{j }, and letj− be the largestj ≤ j0 such that there are less than
√

n
vertices inW ∩ T × {j }. Clearly, 0≤ j+ − j− ≤

√
n.

It is easy to see that there is at0 ∈ T so that for every componentT1 of
T − {t0} the number of vertices inW ∩ (T1 × Z) is at mostn/2. (Just choose
t0 ∈ T to minimize the maximum of|W ∩ (T1 × Z)| over all componentsT1 of
T − {t0}.) Now set

W ′ = {(t0, j ) ∈ W : j− < j < j+} ∪ {(t , j ) ∈ W : j = j− or j = j+}.
ThenW ′ contains at most 3

√
n vertices, and any component ofW−W ′ contains

at mostn/2 vertices. ut
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