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Abstract. The circle packing theorem is used to show that on any bounded
valence transient planar graph there exists a non constant, harmonic, bounded,
Dirichlet function. If P is a bounded circle packing ifi® whose contacts graph

is a bounded valence triangulation of a disk, then, with probability 1, the simple
random walk onP converges to a limit point. Moreover, in this situation any
continuous function on the limit set d extends to a continuous harmonic
function on the closure of the contacts graptPgfthat is, this Dirichlet problem

is solvable. We define the notions of almost planar graphs and manifolds, and
show that under the assumptions of transience and bounded local geometry these
possess non constant, harmonic, bounded, Dirichlet functions. Let us stress that
an almost planar graph is not necessarily roughly isometric to a planar graph.

1. Introduction

In this paper we study several aspects of harmonic functions on planar graphs and
generalizations. Our main results are concerned with the solution of the Dirichlet
problem for infinite transient planar graphs via circle packings. We also prove
the existence of non constant, bounded, harmonic functions with finite Dirichlet
energy on an even wider familiy of almost planar graphs and manifolds.

In the study of a non-compact Riemannian manifld several “type prob-
lems” are natural and widely studie¥ is said to betransient if Brownian
motion is transient oM (or, equivalently M admits a Greens function). M
is not transient, then it ilecurrent Let Og denote the collection of all recurrent
manifolds.M is said to beweak-Liouvillg if every bounded harmonic function
onM is constant, and we then wrid € Oyg. Let Oyp denote the class of man-
ifolds M such that every harmonic function & with finite Dirichlet integral
is a constant.

The following inclusions are valid
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Moreover, if there is a non-constant harmonic functiorMbmwith finite Dirichlet
integral, then there is also such a function which is bounded. (The proofs of these
and the following statements can be found in the book [24], which is also the
source of our above notations.) Here are some examples. The Euclideai®plane

is in Og, Euclideam-spaceR" is in Oyg — Og whenn > 2, hyperbolicn-space

H" is in Oyp — Opg Whenn > 2, and the hyperbolic plane is not contained in
Oup; that is,H?2 admits non-constant, harmonic functions with finite Dirichlet
integral.

Suppose now thab is a Riemannian surface, which is topologically pla-
nar; that is, it is homeomorphic to a domaini?. ThenS is also conformaly
equivalent to a domain in the complex plafie Recall that in dimension 2
the composition of a comformal mapping and a harmonic function is harmonic.
Hence, using Riemann’s mapping theorem it is not hard to seeShatOg
iff S € Opp. In other words, a transient topologically planar surface admits
non-constant, bounded, harmonic functions with finite Dirichlet integral.

These problems on manifolds are very closely related to analogous problems
on graphs. LetG = (V,E) be an infinite connected, locally finite graph. A
basic question in discrete potential theory is to decide what classes of harmonic
functions onG are non-trivial. In order to study that question for a transient
planar graphG, we will use a bounded disk packirfg in R? whose contacts
graph isG. The latter means that the disks Bfare indexed by the vertices of
G and two disks inP are tangent iff the corresponding vertices neighbor. The
existence of such a disk packingitf follows from the Circle Packing Theorem
(4.2), first proved by Koebe [16], and the existence of sutivanded packing
follows from [12].

Suppose thaG is the contacts graph of a bounded disk packihg- k2.

We may then embe in the plane by mapping each vertex to the center of the
corresponding disk, and drawing each edge as the straight line segment between
the corresponding centers. This embedding is called¢oenetric nervef P. We

can consider the closure ¥f in this embedding, and thus get a compactification

of G.

1.1. TheoremLet G = (V, E) be a planar, bounded valence, transient graph.

(1) There are non-constant, bounded, harmonic functions on G with finite Dirich-
let energy.

(2) Suppose further that G is (tHeskeleton of) a triangulation of a disk. Let P
be a bounded disk packing with contacts graph G, and identify G with the
geometric nerve of P. Lat be the closure of V ift2. Then with probability
1 the simple random walk on G converges to a pointin- V.

(3) Under the assumptions of (2), any continuous functiorvor V can be
continuously extended to a harmonic function on G.
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Remarksl. The definitions of most of the above terms appear below in Sect. 2.
Woess's [29] is a useful survey of results on random walks on graphs. Soardi's
recent [28] deals with the potential theory of infinite networks. Doyle and Snell's
book [8] also gives a light introduction to random walks and electrical networks.
2. S. Northshield [22] proved the existence of non constant bounded harmonic
functions on bounded valence planar graphs with rapidly decaying Green'’s func-
tion, and studied their boundaries. From D. R. DeBaun’s work [7] it follows that
a bounded valence triangulation of a disk has non constant harmonic functions
with finite Dirichlet energy, if it is transient. Cartwright and Woess [5] have
shown that a graph which satisfies a strong isoperimetric inequality (positive
Cheeger constant), and is uniformly embedded in the hyperbolic plane, admits
nonconstant harmonic functions with finite Dirichlet energy. They also prove the
existence of solutions to certain Dirichlet problems on the boundary at infinity.
3. The bounded valence assumption is necessary. For example, consider the graph
on the natural numbers wheré 2dges connect eachwith n + 1. Though this
graph is transient and planar, any bounded harmonic function on it is a constant.
This example can easily be modified to have no multiple edges.

1.2. Definition [14] Let (X, dx), (Y, dy) be metric spaces, and let < oco. A k-
rough isometry f from X to Y is a (not necessarily continuous) map¥ — Y
such that

Kl (X, %) — £ < dy (F(x0), T (%)) < Kl (X, Xp) + 5
holds for all x,x, € X, and for every y€ Y there is someixe X such that

dy (y1, f(x1)) < k.

If such an f exists, we say that X and Y are roughly isometric.
M. Gromov [11] uses the term quasi-isometry for Kanai's rough isometry.

1.3. Definition Let (X, dx), (Y, dy) be metric spaces, and let < oco. A (not
necessarily continuous) map f X — Y is a k-quasimonomorphismif the
following two conditions are satisfied.

1. dv(f (%), f (X1)) < k(1 +dx (X, X1)) holds for every ¥ x; € X, and
2. for every open ball B= B(yp, 1) with radius1in Y, the inverse imagef(B)
can be covered by open balls of radiud in X.

A guasimonomorphism is a map which is-guasimonomorphism for some finite
K.

It may seem somewhat unnatural that we have given special status to balls
of radius 1. But we shall use this definition only in the context of metric spaces
that have the following property.
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1.4. Definition A metric space X is said to have th€r) property if for any
two positive numbers R there is some finite G C(R, r) such that any ball of
radius R in X can be covered by C balls of radius r.

For example, a connected graph with its natural metric ha€{fer) prop-
erty iff there is a global bound on the degrees of its vertices.

1.5. Definition A metric space X satisfying the(R, r) property isalmost planar,

if there is a bounded valence planar graph<§V , E) and a quasimonomorphism
f : X — V, where V is equipped with the distance metric in G. A graph=G
(V°,E®)is almost planar, if V ° with the distance metric of Gis almost planar.

We wish to stress that almost planarity is a much weaker property than being
roughly isometric to a planar graph. For example, take two copieg2oéind
identify them along thex-axis {(n, 0)}. The resulting graph is easily seen to be
almost planar, but is not roughly isometric to a planar graph.

As explained below, ifG; is a planar graph, ane, is finite, then any
subgraph ofG; x G, is almost planar. This can be used to construct many
examples of almost planar graphs.

The following theorem gives an equivalent definition for almost planarity.

1.6. TheoremLet X be a metric space that satisfies th@RCr) property. Then
X is almost planar iff there exists a topologically planar, complete, Riemannian
surface S with bounded curvature, and a quasimonomorphisk £ S.

An easy, but useful, observation is:

1.7. FactlIn the category of metric spaces satisfying th@RQr) property, a rough
isometry is a quasimonomorphism, and the composition of quasimonomorphisms
is a quasimonomorphism. Hence, for such spaces, almost planarity is invariant
under rough isometries. O

This, in particular, shows that whe®, is an almost planar graph ar} is
a finite graph, then any subgraph ®f x G, is almost planar.
Regarding almost planar graphs, we have the following geometric criterion.

1.8. TheoremLet G be a connected, bounded degree graph. Then G is almost
planar iff there is some finite such that G can be drawn in the plane in such a
way that every edge has at mestrossings.

We shall now clarify the statement of the theorem, by defining what a crossing
is. Given a graplG, we let|G| denote the metric space constructed as follows.
Start withV, and for every edge € E, with verticesv, u, say, glue the endpoints
of an isometric copy. of the interval [01] to the two vertices, u. Let |G| be
the unionUele UV modulo the identifictions, with the path metric.dkawing of
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G in the plane is a continuous ma&p |G| — 2. A crossingin such a drawing
is a pair 0,q) of distinct points in|G| that are mapped by the drawing to a
single point:f (p) = f(q). We say that the crossing is in the edge E if one of
the pointsp, g is in le.

1.9. TheoremLet G° = (V°, E®) be a transient, connected, almost planar graph
with bounded vertex degree. Then there are non-constant bounded harmonic func-
tions on G with finite Dirichlet energy.

This implies, for example, thak? is not almost planar, since it is transient
and weak-Liouville.

1.10. TheoremLet M be a connected, transient, n-dimensional, almost planar,
Riemannian manifold with bounded local geometry. Then there are non-constant
bounded harmonic functions with finite Dirichlet energy on M.

The condition M has bounded local geometry’ means that it is complete,
the injectivity radius ofM positive and the Ricci curvature is bounded from
below. Note that a Riemannian manifold with bounded local geometry satisfies
the C(R,r) property [14].

A consequence of Theorem 1.10 is that hyperbolic 3 spitand Euclidean
3 spacel® are not almost planar. We do have a more direct proofiférbut
not for H 2. Conjecturally, every simply connected 3-manifold with non positive
sectional curvature (Cartan-Hadamard manifold) is not almost planar, but we
cannot provide a proof.

For the reader familiar with Gromov-hyperbolicity, we would like to end the
introduction with a conjecture, replacing planarity by hyperbolicity. That is,

1.11. ConjectureLet M be a connected, transient, Gromov hyperbolic, Rieman-
nian manifold with bounded local geometry, with the property that the union of
all bi-infinite geodesics meets every ball of sufficiently large radius. Then M ad-
mits non constant bounded harmonic functions. Similarly, a Gromov hyperbolic
bounded valence, transient graph, with C -dense bi-infinite geodesics has non con-
stant bounded harmonic functions.

Since every Dirichlet-finite, harmonic function &h® is constant, this would
seem to make the conjecture harder to prove.

The example of a horoball ikl # shows that the requirement that geodesics
are C-dense is necessary.

A. Ancona [1] proved the conjecture for graphs, but with a strong isoperi-
metric condition replacing the assumption on the density of geodesics. A strong
isoperimetric inequality, even for simply connected manifolds with bounded lo-
cal geometry, is not sufficient to imply the existence of non constant bounded
harmonic functions. This was shown by Benjamini and Cao [2].

AcknowledgementsWe wish to thank G. Kalai, G. Mess, Y. Peres, P. M. Soardi and B. Weiss for
helpful conversations. We are grateful to Weiss for joining us.
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2. Notations and terminology

Let G = (V,E) be a graph. For convenience, we usually only consider graphs
with no loops or multiple edges (but the results do apply to multigraphs). The set
of vertices incident with an edgewill be denotedde; this is always a subset of
V that contains two vertices. We sometimes {iseu} to denote the edge with
endpointsv, u.

Initially the graphG is unoriented, but for notational reasons we also consider
directed edges. Whefv,u} € E, we use §, u] to denote the directed edge from

v to u. The set of all direceted edges will usually be denoﬁdf ={[v,u] :
{v,u} € E}.
The graphs we shall consider will be connected and locally finite. The latter
means that the number of edges incident with any particular vertex is finite.
Given any vertex € V, the collection of all edges of the forne,[u] which

are in E will be denotedE)(v). Thevalence or degree of a vertexw is just the

cardinality ofE(v). G hasbounded valencdf there is a finite upper bound for
the degrees of its vertices.

Letf : V — R be some function. Thedf is the functiondf : E — R
defined by
df (Ju,u]) = f(u) — f (v).

We also define the gradient 6fto be equal talf,
Vi (e) = df(e).

(The reason for the multiplicity of notation should become clear when we intro-
duce the gradient with respect to a metric @r)

A functionj : E — R is aflow on G if it satisfies

J([u,v]) = =i (v, u])

for every {v,u} € E. For example, for any : V — R, df is a flow. The
divergenceof a flow] is the function diy : V — R, defined by

diviw)= Y i)
eEE(v)

If divj =0, thenj is divergence free
For anf : V — IR we set

Af =div Vi,

thenAf : V — & is known as thaiscrete laplacianof f. If Af =0, thenf is
harmonicg while if Af =0 on a subse¥’ C V, we say thaf is harmonic inV'.
Equivalently,f is harmonic iff its value at any € V is equal to the average of
the values at the neighbors of
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For a flowj and are € E we let|j (e)| denotelj (v)—j (u)|, wherede = {v, u}.
The norm of a flowj is defined by

iP=3 Y i@ =Y lie?

— ecE
ec E

The collection of all flows with finite norm is then a Hilbert space with this
norm. TheDirichlet energyof a functionf : V — R is defined by

D(f) = ||df ||

A Dirichlet functionis anf : V — R with D(f) < co. The space of all
Dirichlet functions onG is denotedD (G).

The simple random wallon a locally finite graphG = (V, E) starting at a
vertex vg is the Markov processv(1),v(2),...) onV such thatv(1) = vy and
the transition probability from a vertex to a vertexu is the inverse of the

cardinality ofE(v). A connected graplG is said to betransient if there is a
positive probability that a random walk that starts at a vergwill never visit
vg again. It is easy to see that this does not depend on the initial vegteX
non-transient graph igcurrent

A metric mon a graphs = (V, E) is a positive functioim : E — (0, o). The
random walk on(G, m) is the Markov process where the transition probability
from v to u is equal toc(v, u)/c(v), wherec(v,u) = m({v,u})~%, andc(v) is
the sum ofc(v, u) over all neighborai of v.

The gradient of a functionf : V — R with respect to a metrim is defined
by

Vinf (€) = df (e)/m(e).
f is said to be harmonic orG( m) if Anf = divVf is zero. It is clear that
is harmonic on G, m) iff for every v € V, f(v) is equal to the expected value
of f(u), whereu is the state of the random walk o (m) that starts at after
one step.

The natural metricon G is the metric where each edge get weight 1. In
the absence of another metric, all metric related notions are assumed to be with
respect to the natural metric. It is easy to check thahifs the natural metric
then a random walk on@, m) is the same as a simple random walk@nand
the harmonic functions or{, m) are the harmonic functions da.

Two metricsm, m’ aremutually bilipschitz if the ratiosm/m’ andm’/m are
bounded.

Let G = (V,E) be a connected, locally finite graph, and fetbe a metric
on G. Them-length of a pathy in G is the sum ofm(e) over all edges iny,

length, (1) = > m(e).
ecy

We define them-distancedny (v, u) between any two vertices, u € V to be the
infimum of them-lengths of paths connectingandu. Then ¥, dy) is a metric
space.
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3. Stability and instability of harmonic functions on graphs

A graphG is said to have theveak-Liouville propertyif every bounded harmonic
function onG is constant.

M. Kanai [15] and Markvorsen et al [21] have shown that recurrence on a
bounded valence graph is invariant under rough isometries. The weak-Liouville
property is not: T. Lyons [19] constructed two mutually bilipschitz metnigsn’
on a graphsG, such thatG, m) is weak-Liouville, while G, m’) is not. (Replacing
the edges by tubes produces a Riemannian example). We will describe below a
relatively easy recipe for making such examples.

While the weak-Liouville property is not stable under rough isometries,
Soardi [27] has shown that the existence of non-constant, harmonic functions
with finite Dirichlet energy is invariant. Below, we introduce the notion of a
resolvable graph, and will see that a transient resolvable graph has non-constant,
bounded harmonic functions with finite Dirichlet energy. Moreover, the property
of being resolvable is very stable:fif: G° — G is a quasimonomorphism and
G is resolvable, then so i6°.

Definitions. Let G = (V, E) be some graph, and Idt be a collection of (infinite)
paths in G. Therd" is null if there is an (E) metric on G such thaength, (v) =
oo for everyy € I'. It is easy to see thal' is null iff its extremal length

- lengthy, (1)?
EL(I) =s nf
()=S0l m2

b

is infinite. (Extremal length was imported to the discrete setting by Duffin [9].
See [28] for more about extremal length on graphs.) Wheis a collection of
paths and a property holds for evetye I', except for a null family, we shall say
that the property holds foalmost every~ € I'.

Let m be a metric on G, and recall that,ds the associated distance function.
Let G, (G) denote the completion ¢V, dy), and let the mboundary of G be
OmG = Cn(G) —V . We use g to also denote the metric of the completiog(G).

The metric m will be calledesolvingif it is in L2(E) and for every x€ G
the collection of half infinite paths in G that converge to x i(G) is null. G is
resolvableif it has a resolving metric.

Note that ifm is a resolving metric and’ is anotherl.? metric satisfying
m’ > m, thenm’ is also resolving.

Theorem 3.2 below shows that any recurrent graph is resolvable, in fact,
there is a metrian with 9,G = (. On the other hand, the next theorem shows
that a transient graph with no non-constant, harmonic functioi3(@) is not
resolvable, for exampleZ® or any lattice in hyperbolim-spacen > 2 is not
resolvable. We shall see that any bounded valence planar graph is resolvable.

3.1. TheoremLet G = (V, E) be an infinite, connected, locally finite, resolvable
graph.
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1. If G is transient, then there are non-constant, bounded, harmonic functions
on G with finite Dirichlet energy.

2. Iff : G° — G is a quasimonomorphism, where @& a connected, bounded
valence graph, then Gis resolvable.

We shall need the following results.

3.2. Theorem (Yamasaki)Let G be a locally finite connected graph, and let
be the collection of all infinite paths in G. Then G is recurrent if and only i§
null.

This is proven in Yamasaki's [30], [31]; see also [29, Theorem 4.8]. (There
they consider only paths that start at a fixed base vertex, but this is equivalent.)
The following result is the discrete version of [10, Corollary 8].

3.3. Theorem (Yamasaki [32, Sect. 3]There are non-constant, harmonic, Di-
richlet functions on G if and only if there is an € D(G) such that for every
c € IRk the collection of all one-sided-infinite pathsin G with lim,, f (v(n)) # ¢

is not null.

Proof (of 3.1). Assume thaiG is transient, andn is a resolving metric orG.
Let I" be the collection of all infinite pathg = (v(0),v(1),...) in G. Almost all
pathsy in I" have a limit lim, v(n) in G, since them-length of those that do
not is infinite. (The limit is in the metricl,, of course.)

We now define supg(), the supportof I" in 9nG, as the intersection of
all closed set$) C 9,G such that for almost every € I" the limit lim, y(n)
is in Q. Because there is a countable basis for the topology«, and a
countable union of null collections of curves is null, almost every I" satisfies
limn y(n) € supp().

Since G is transient, we know from 3.2 that the extremal lengthiofis
finite. Consequently, supp{ is not empty. Moreover, the assumption thats
resolving shows that suppj consists of more than a single point. begtbe an
arbitrary point in supp(). Definef : V — R by settingf (p) = dm(Xo, p). It is
clear that|df (€)] < m(e) holds fore € E. Consequentlyf € D(G).

Pick someé > 0 that is smaller than thd,-diameter of supp(). Consider
the setAs = {x € supp(") : d(Xo,X) < 6}, and letls be the set ofy € I" such
that lim, v(n) € As. Since suppl) is not contained iMAs or in 9,G — As, from
the definition of suppl) it follows that bothI’s andI" — I's are not null. For
everyy € I's, we have lim f (v(n)) < 6, while for almost everyy € ' — I's, we
have lim, f (v(n)) > é. Since bothl’s and I" — I's are non null, it follows that
for every constant € R the set ofy € I" with lim, f (v(n)) # ¢ is not null.

Now 3.3 implies that there are non-constant, harmonic, Dirichlet functions
on G. This then shows that there are bounded, non-constant, harmonic, Dirichlet
functions, by [31] (see also [28, Theorem 3.73]).
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For the proof of (2), the following lemma will be needed.

3.4. Lemmalet f : G° — G be ax-quasimonomorphism between bounded
valence graphs G=(V°,E°) and G=(V,E). Let m: E — (0, c0) be a metric
on G, and let M : E° — [0, o) be defined by

m° ({v°,u°}) = dm (f (v°), F (U)),

for any {v°,u°} € E° Then||m°|| < C||m||, where C is a constant that depends
only onx and the maximal valence in G and®°G

Proof. For every edge® = {v°,u°} in G°, let~e. be some path of combinatorial
length at most 2 in G from f (v°) to f (u°). Then

2
m°(e°)? < lengtty, (er)? = (Z m(e)) <452 Y m(e)

(ISR} e€ygo

Therefore,
Im°|? < 452y " m(e)* [{e° € E° e € yes}|.
ecE
Since each of the pathg. has length at most2and |f ~*(v)| < « for every
v € V, it is clear that for anye € E the cardinality of{e® € E° : e € e } iS
bounded by a number that depends onlyxoand the maximal valence iG°.
Hence, the lemma follows. O

Proof of 3.1(2).Let m° : E — [0, 00) be as in Lemma 3.4, and let} : E —
(0, 00) satisfy mP(e) > m°(e) for everye € E, while still m¢ € L%(E). (The
reason for usingm; rather thanm®, is that, strictly speakingm® may not be
a metric; it may happen than°(e) = 0 for somee € E.) Note thatf is a
contraction from the metric spac¥ {, dme) to the metric space\(, dm). The
straightforward proof thatny is a resolving metric foG® is again based on 3.4,
and will be omitted. O

Instability of the weak-Liouville property

As promised, we shall now provide a simple example showing that the
weak-Liouville property is not invariant under rough isometries.

Let G = (V, E) be a countable transient graph, AetC V, letm be the natural
metric onG, and letm’ be a metric bilipschitz tan. Suppose that with proba-
bility 1 the random walk on@, m) hits A infinitely often, but with probability
1 the random walk onG, m’) hits A only finitely many times. T. Lyons [19]
observed that one can find suéhand m’ when G is an infinite regular tree
(which is notZ). For example, on the binary tree consisting of all finite se-
guences dj, €2, ...,€,) Of O’'s and 1's, where an edge appears between each
(€1,€2,...,en_1) @nd €1, €2, ..., €n), One can leA be the set of alldy, e, . . ., €n)
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such thath”:l ¢ >n/3,and letm’((ex, . . ., €n—1), (€1, - - ., €n)) = 1+Cen, Where
¢ > 0 is a sufficiently large constant.

We now construct a new grapth whose vertex set is the disjoint union \6f
andZ* Let X be the sef(x,0,0,0) : x € Z} C Z4 and let¢ : A — Z* be any
injective map fromA into X. Let the edges oH consist of the edges 6, the
edges inZ*, and all edges of the forma[ ¢(a)] with a € A. Extend the metrics
m, m’ to H by letting m(e) = m’(e) = 1 for any edge oH that is not inE.

3.5. Theorem (H,m) is weak-Liouville, but(H,m’) carries non-constant,
bounded harmonic functions.

Sketch of proofWith probability 1, the random walk orH(,m) will be in Z*
infinitely often. But there is some constamt> 0, such that the probability that
a random walk orZ* that starts at any vertex X will never reachX again is
c. Hence the random walk om(, m) will be absorbed irZ*; that is, it will be
in V only finitely many times. Since we may couple [17] the random walk on
(H, m) with the random walk orZ?, it follows that H , m) is weak-Liouville.

On the other hand, lét(v) be the probability that the random walk ar (m’)
that starts at a vertexwill be absorbed irZZ4. Thenf is a non-constant, bounded
harmonic function onH , m’).

4. Harmonic functions on planar and almost planar graphs

4.1. Theorem Any planar bounded degree graph & (V,E) has a resolving
metric.

The proof will use the circle packing theorem, which we state shortly. Sup-
pose thaP = (P, : v € V) is an indexed packing of disks in the plane. This just
means thal is some set, to each corresponds a closed digk, ¢ R?, and
the interiors of the disks are disjoint. L& be the graph with vertice¥ such
that there is an edge joining andu iff P, andP, are tangent. Thef is the
contacts graphof P. (There are no multiple edges (). It is easy to see that
G is planar, the circle packing theorem provides a converse:

4.2. Circle Packing TheoremLet G = (V, E) be a finite planar graph with no
loops or multiple edges, then there is a disk packing (P, : v € V) in R? with
contacts graph G.

This theorem was first proved by Koebe [16]. Recently, at least 7 other proofs
have been found; some of the more accesible ones can be found in [20], [6],
[4].

We shall also need the following lemma.



576 I. Benjamini, O. Schramm

4.3. Lemma Let G be a connected, planar, bounded valence graph, with no
multiple edges. Then there is a triangulation T of a domairf) which has
bounded valence, and such that G is isomorphic to a subgraph df-#keleton

of T.

The lemma is surely known (but we have not located a reference), and not
hard to prove, so we leave it as an exercise to the reader. (Hint: for the finite
case, surround the graph by cycles, and triangulate the annular regions formed.
Continue the process in the untriangulated disks bounded by the cycles.)

Proof of (4.1). We assume thds is the 1-skeleton of a triangulation Because
of 4.3 and 3.1.(2), there is no loss of generality. The claim is triviéd i finite,
so assume that it is not. Leg, v1, vo be the three vertices of a triangleT Let
V1 cV2cV3c... besubsets of such thatg,vi, v, € VI andu,V" =V.
For eachn let G" be the graph spanned ", and IetE" be its set of edges.

Let By, By, Bz be any three mutually tangent disks itf, and letD be the
bounded component @2 —B; UB,UBs. The circle packing theorem tells us that
for eachn there is a packing of diskB" = (P! : v € V") in the planeR? with
contacts graptG". By normalizing with a Mbbius transformation, we assume
with no loss of generality tha‘?{)j = Bj for eachj = 1,2,3 andn =1,2,...,
and that all the other disks in the packing8 are contained irD.! Take some
subsequence of the packing$, so that each of the the diskg, v € V has a
(Hausdorff) limit, and call the limiP,. SetP = (P, : v € V). Clearly, eachP,
is either a disk or a point, each of the setsArs disjoint from the interior of
the others, andp, intersectsP, whenv andu neighbor. We want to show that
eachP, is really a disk, not a single point. (Compare [12], [26].)

Let V' be the set of allv € V such thatP, is a single point. Clearly,
vo, v1,v2 ¢ V. Suppose tha¥’ is not empty, and le¥” be a connected compo-
nent ofV’. Then all the setB,, v € V", are the same point, say A triangulation
of any surface is 3-vertex connected (this is an easy and well known fact), so the
removal of any 2 vertices fror® does not disconne€. Sincevg, vy, v, ¢ V",
it follows that there are at least three vertices outsid& bthat neighbor with
some vertex inV'; suppose these am@e b,c. ThenP,, Py, P. are three disks,
whose interiors are disjoint, and all must contain the p@infThis is clearly
impossible, and this contradiction tells us thét= ). So theP, are true disks.

Take anye € E, and let its vertices ba,v. We setm(e) = diameterp,) +
diameterP,). This defines a metriecn : E — (0, ), Because the packing
is contained inB; U B, U B3 U D, its total area is finite, and this implies that
m € L%(E).

! Here, a Mvbius transformation is a composition of inversions in circles; that is, orientation
reversing transformations are included. The fact that is used here is that for any three mutually tanget

disks B;, B, B} and any componer®’ of the two components ak? — B U BJ U Bj, there is an
(actually unique) Mbius transformation taking eaBj1 to B; and takingD’ to D. If p; j denotes the

intersection point oB; andB;, i #j, and similarly forpi’.j, then the transformation is the one that
takes eacﬂn(Aj to p; j, pre-composed, if necessary, by the inversion in the circle passing through the
three pointsg:)i"j .
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We shall now show than is resolving. For any € V we letz(v) denote the
center of the disk,. Let p be any point ind,G. Let v1,v,, ... be a sequence
in V that converges t@ in Cy(G). Then lim, k— o0 dm(vn, vx) = 0. This easily
implies that limh k—o |Z(vn) — Z(vk)| = 0. We therefore conclude that the limit
limy, z(vy) exists, and denote this limit k¥(p). If wy, wo, ... is another sequence
in V that converges tp, then the limit lim z(wy,) will still be z(p). This follows
from the fact that any ordering of the unidm,} U {wn} as a sequence which
will still converge top. Hencez(p) does not depend on the sequence chosen.

Let I, be the collection of all half-infinite paths iG v = (v(0),v(1),...)
that converge t@ in C,(G). We need to show thdf, is null. This will be done
by producing arL?(E) metric m, such that Iengt,qy(y) = oo for everyy € Ip.
The argument will be similar to an argument in [25] and [12].

Our next objective is to show tha{p) does not belong to any of the disks
P,,v € V. Consider a triangle irmT with verticesu, Uy, us. Let a(ug, Uy, Us)
denote the boundary of the triangle whose verticezérg, z(u,), z(us). Because
T is a triangulation of a surface, it follows that the remova{of, u,, uz} from G
does not disconne@. This implies that all the sets ifP,, : v € V —{u, U, Us})
are in the same connected componerik®f-a(uy, U, Uz). Letd(uy, Up, Us) denote
the union ofa(uy, U, us) with the connected component&f —a(uy, Uy, uz) that
is disjoint from everyP,, v # Uz, Uz, Uz. Suppose now that is any vertex inVv.

It is easy to see that the union of the sefs, U, w) for all consecutive neighbors
u,w of v contains the disk, in its interior. Each one of these sets intersects
only three sets in the packing. HenceP, does not contain any accumulation
point of centers of disks if. This showsz(p) ¢ P,, as required.

We now inductively construct a sequence of positive numbers- r, >
r3 > .... Forr > 0 let B(r) denote the disk{z € R? : |z — z(p)| < r}.
Taker, = 1. Suppose thaty,r,,...,r,_1 have been chosen. Let be in the
range 0< r, < rp—1/2 and be sufficiently small so that the two sets of vertices
{veV :z(w) eB(2ry)} and{v € V : z(v) ¢ B(rn—1)} are disjoint and there is
no edge inG connecting them. To see that this can be done, observe that for any
r > 0 there are finitely many verticas€ V such that diametdp(,) > r. Since
z(p) ¢ U,P,, for everyr > 0 there is ap(r) € (0,r /2] such that the closure of
B(p(r)) does not intersect any of the séts satisfying diameteR,) > r /2. This
implies that there will be n®, that intersects both circle2B(r) and 9B (o(r)).
Hence we may take, = p(p(rn—1))/2.

Forr € (0,0) let 4 : R? — [0, r] be defined by

r if |z—z(p)| <r,
Y(@)=q2r—[z—z(p) ifr<|z—z(p)|<2r,
0 if |z—z(p)| > 2r.

In other words;y; is equal tor on B(r), equal to O outsid&(2r), and in the
annulusB(2r) — B(r) it is linear in the distance from its cente(p). For each
n=12...andv € V, we define

Pn(v) = ¥y, (2(v))-
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The construction of the sequencer,, ... insures that the supports df, and
d¢n are disjoint whem # n’. It is easy to see that the definition ¢f shows
that there is a finite consta@ such that

(4.1 [d¢n(@)* < C area(Py U P,) N B(3ry)),

where{u,v} = de. Let 2 be an upper bound on the degrees of the vertices in
G. Since the interiors of the sets B are disjoint, (4.1) implies

Idnl® = " én(e)* < 9rCarZ.

ecE

Now set
_\~ ¢n
0= nr,’
n=1
As we have noted, the supports of the differdiit, are disjoint, and therefore,

[eS) d . 2
n=1

n2r2 ’

and the above estimate fid¢n ||2 shows thatd¢| € L?(E). Therefore, there is
some metricm, € L%(E) such thatmy(e) > |d¢n(e)| for everye € E. (Tech-
nically, we cannot taken, = |d¢|, since|d¢| is not positive, and hence not a
metric.)

Now lety = (v(1),7(2),...) be any path in},, and letE(y) denote its edges.
We have lim z(~(n)) = z(p). Therefore,

. I Ui (@) =1 _
n;ncb(v(n))—zggn(p)zjj i —J_Z =
This gives
length, (v) = D mp(e) > D [dg(e)] = oo

ecE(y) ecE(v)
So I} is null, andm is resolving. O

Proof of 1.9 and 1.1.(1)These follow immediately from 4.1 and 3.10

5. The Dirichlet problem for circle packing graphs

Let G = (V, E) be the 1-skeleton of a triangulation of an open disk, and suppose
thatG has bounded valence. Suppose that (P, : v € V) is any disk packing

in the Riemann spher@ whose contacts graph 3. A pointz € C is alimit

point of P if every open neighborhood dof intersects infinitely many disks

of P, and the set of all limit points oP is denotedA(P). The carrier of P,
carrP), is the connected component of— A(P) that containsP. It is easy to

see that carR) is homeomorphic to a disk. From [12] we know tliatarrP) is
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a single point iffG is recurrent. Moreover, i6 is transient andD is any simply
connected proper subset ©f then there is a disk packirfg with contacts graph
G that has carrieb.

For eachv € V we letz(v) denote any point iP,. The following theorem
includes 1.1.(2).

5.1. TheoremAssume that G is transient, and has bounded valencevd_be
an arbitrary vertex in G, and lefv(0), v(1), v(2),...) be a simple random walk
starting atvg = v(0). Then, with probabilityl, the limit z, = lim, z(v(n)) exists,
and is a point inA(P).

Moreover, suppose that 2 W n A(P), where W is open. Letiuus, ... be
a sequence in V such thln; z(y) = z. Let p be the probability that for the
simple walk(v(0), v(1), v(2), . . .) starting atv(0) = y; the limit z, = lim, z(v(n))
isSiNW.Thenp— lasj— occ.

Note that the topological notions in the theorem are induced by the topology
of C. In particular,A(P) is compact even when it includes.
The main corrolary is 1.1.(3), which we now restate, as follows.

5.2. Corollary The Dirichlet problem on WU A(P) has a solution for every con-
tinuous function f: A(P) — R. That is, there exists a harmoniic: V. — IR such
thatlim, f (vy) = f () whenevemw, is a sequence in G such thian, z(v,) = z.

Proof of (4.1).Let v € V. Let u, be the probability measure that assigns to
every measurabled C A(P) the probability that the simple random walk
(v(0), v(1),v(2),...) starting atv(0) = v will satisfy lim, z(v(n)) € H. Then
definef (v) = J fdu,. Itis clear that this gives the required solutiort]

The theorem will easily follow from the following lemma.

5.3. Convergence Lemm&uppose thato ¢ carrP). Letvg be some vertexinV,
and leté be the distance from(zy) to 0 carr(P). Let t > 1. Then the probability
that the simple random walk on G starting @t will ever get to a vertex € V
satisfying|z(v) — z(vo)| > té is less than @' logt, where C is a constant that
depends only on the maximal deg@dan G.

Proof. There is nothing to prove if mgxz(v)| : v € V} < t§, so assume that
this is not the case. By applying a similarity, if necessary, assumedthat,
z(vo) = 0 and the point 1 is i@ carr®). The Ring Lemma of [23] tells us that the
ratio between the radii of any two touching disksRnis bounded by a constant
C1 = C1(£2). It follows that there is a consta@, = C,({2) such that the radius
of any disk inP is less tharC, times its distance from 1. From this we conclude
that the following inequality is valid for every € V:

(5.1) max{|z|:z € P} < (4C; +2)max(1, min{|z| : z € P, }).

Let T =R/2rZ, the circle of length 2, and consider
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log:C—{0} =R xT,

it maps the punctured plane onto a cylinder. kor< x, let proj, ., be the
projectionR — [Xg, Xo]; that is,

Projix, x,](S) = max(xg, min(x, s)).
Also let Proj,, ,; 1R x T — [x1, %] x T be defined by
Projy, (s, 6) = (proj[xl’XZ] (s),0).
Setr = logt. Finally, forv € V let
@(v) = proj, , ;1 l0g|z(v)| = Proj, , ;;logz(v) .

We now estimateD(¢). Consider first som®, such thatyt < |w| <t for
everyw € P,. Since the derivative of log is/Z, (5.1) implies that there is a
constantCs = C3(¢2) such that| log’ w1|/|log’ wy| < Cs for everywy, w, € P,,.

It follows that there is &4 = C4(£2) such that

C,area(Proj, /, ,,logP,) > diameter(Proj, ,, ., log Pv)z,
which implies
Csarea(Proj, , ,,l0gP,) > (max{proj;, . loglw|:w € P,}
(5.2) —min{proj, , ;;log|w| : w € Pv})z.

The latter is true also for an arbitraf,, since in every diskB that intersects
the interior of the annulug = {w : V/t < |w| < t}, there is a diskB; Cc ANB
with {|w| : w € By} = {Jw| : w € B} N [V1,1].

If v1,v, are neighbors irG, then the two disks,,, P,, intersect. Hence,
from (5.2) it follows that

|p(v1)—(v2)|? < 4C4 max{ area(Proj, /, ,; 1ogP.,, ), area(Proj, ,, .1 10gP,,) }

We sum this inequality over all edg€s;,v,} in G. Since the interiors of the
sets Prqj. ,, - 10gP, are disjoint, we get,

(5.3)  D(¢) < 402C,area(Proj, /, ,109(C — {0})) = 472C,r.

Now let K C V be a finite collection of vertices. Letx : V — R be the
function that is equal t@ outside ofK and is harmonic irK. Clearly,

(5.4) D(¢k) < D(¢).

We want to estimatey (vo) from above. Letp be in the range k p < v/t.
For all v € V — K such that|z(v)] < vt, we havegg (v) = 7/2. Therefore,
it follows from the maximum principle that there is somg € V with P,
intersecting the circlg¢|w| = p} and¢k (v,) > ¢k (vo). Since the circlg|w| = p}
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separates 1 ansb, it intersects infinitely many of the disks . Consequently,
there is a finite pathy, in G connectingv, to some vertex outside d€, such
that P, intersects the circlg|w| = p} for everyv € ~,. (Here we are using
the fact thatG is a triangulation to conclude that if there is an arc of the circle
{Jw| = p} whose endpoints are i,, andP,, and the arc does not intersect any
other disk inP, thenv; andwv;, neighbor inG.)

Letu, be a vertex ofy, that is outside oK. Then¢x (u,) = 7/2. So we get,

ok (vo) — 7/2 < ¢k (vp) — Pk (Up) < Z |dek ()],
ecE(y,)
whereE(y,) denotes the set of edges-p. This implies,
¢k (vo) —7/2< > [dex (e,
ecE,

whereE, denotes the set of all edg¢s;,v,} € E such thatP,, andP,,, both
intersect the circle{|w| = p}. We multiply the above inequality by/p, and
integrate from 1 to/t. This gives,

(5.5) (6K (o) — 7/2)7/2 < " |dgx (€)Im(e),
ecE
where
m(e) = max{projy .z log|wl| : w € P, } —min{projq , 5 l0g|w| : w € Py}

for v any of the two vertices ire. Following the argument in the previous
paragraphs, it is easily seen that

Z m(e)2 < 7Ca27

ecE

Using this and the Cauchy-Schwarz inequality in (5.5), we get
(6K (vo) — 7/2)7/2 < \/7Caf27D (k).

Together with (5.3) and (5.4), this gives

(5.6) Pk (vo) < 4mCaf2 +7/2.

This is the estimated we wanted fox (vo).

Now letK; € K, € Kz C ... be a sequence of finite subsets\bf such that
UnKpn is the set of all vertices € V with z(v) < t. Let p be the probability
that the simple random walk that startsat will ever reach a vertex with
|z(v)] > t. It is easy to see that

lim supgx, (vo) > (1 — p)7/2 +pT.

Using (5.6), this gives
p < 8rCyf2/T,

as required. O
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Proof (of 5.1). The statement of the theorem is invariant undesbiMis trans-
formations, hence we may normalize so that¢ carr(P). To prove that the
limit lim, z(v(n)) exists almost surely, it is enough to show that the diameter
of {z(v(k)),z(v(k + 1)),...} tends to zero with probability 1 as — co. Let
e > 0. The lemma implies that there ista < oo so that the probability that
|z(v(k))| > t; for any k is less thane. There are finitely many € V with
|z(v)| <t and withd(z(v), A(P)) > €. SinceG is transient, this implies that
there is somay so thatd(z(v(nog)), A(P)) < e with probability at least - 2e.
Then the lemma shows that with probability at most2ZC /logt the diameter
of {z(v(no)), z(v(ng + 1)), ...} is greater thate. Choosingt = ¢~%/2, then shows
that the limit lim, z(v(n)) exists almost surely.

The second part of the theorem follows immediately

Remarksl. The methods of this section are really not particular to circles, they
would apply to a large class of other, well behaved, packings.

2. It turns out that for some purposes it is better to consider a square tiling
associated with the graph, rather than a circle packing. In particular, one can get
similar results for an especially constructed square tiling w@&da not assumed

to be a triangulation. We intend to study this in a forthcoming paper [3].

3. The Convergence Lemma gives information about the hitting measure. Let the
situation be as in the lemma. Suppose thas some point orv carrP), and

r > 0. Letd = |p — z(vo)| be the distance from(vg) to p. The probability that

the random walk starting a will ever reach a vertex satisfying|z(v) —p| <r

is less tharC /log(d/r). This follows from the lemma by inverting the packing

in the circle{|z —p|=r}.

5.4. ProblemsConsider the random walfo(1), v(2), . . .) starting at some vertex

vp € V. Then with probabilityl the limit z, = lim, z(v(n)) exists and is a point

in 0 carr(P). Let . denote the hitting measure; that js(A) is the probability that

Z,, € A. Suppose for example thegrrP) = U, the unit disk. When ig absolutely
continuous with respect to Lebesgue measur@dr? (By further triangulating
some of the faces of the triangulation, one can insure that the hitting measure is
singular.) In general, whenarrP) # U, is it true thaty is supported by a set of
Hausdorff dimensiod, as for the harmonic measure for Brownian motion.

6. Harmonic functions on almost planar manifolds

In this section we shall prove Theorem 1.10. Namely, we shall show that a
transient, bounded local geometry, almost planar manifold admits non constant
Dirichlet functions. This will be an easy corollary of Theorem 1.9 and the fol-
lowing very recent theorem.

6.1. Theorem (Holopainen-Soardi)[13] Let X be a connected, bounded local
geometry, Riemannian manifold, and suppose thatsXoughly isometric to a
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bounded valence graph,XThen there are non-constant harmonic functions with
finite Dirichlet energy on Xiff there are non-constant harmonic functions with
finite Dirichlet energy on X

Proof (of 1.10). By Kanai's [14], [15],M is roughly isometric to some transient
bounded valence grapB (e.g., a net inM), and 1.7 implies thaG is almost
planar. Theorem 1.9 tells us that there are non-constant harmonic functions on
G with finite Dirichlet energy, and Theorem 6.1 implies that the same is true for
M. It then follows that there are also such functions that are bounded.

RemarkBy applying Theorem 6.1, one can get yet another proof for the existence
of non constant Dirichlet harmonic functions on planar bounded valence transient
graphs (1.1.(1)). Following is a sketch of the argument. To each vertiax

G associate a copy of the regulét-gon with side length 1, where is the
maximal degree of any vertex i@. To each edge ofs associate a copy of

the unit square. Glue two opposite sides of every such square to sides of the
2-gons corresponding to the vertices of the edge. If the gluings are preformed
correctly, the resulting Riemman surfaBewill be topologically planar. LeS’

be the subset of all poings € S so that the open ball of radiug/3 aboutp in

S is isometric to a Euclidean ball. The8i is a Riemann surface with boundary.

By Koebe’s uniformization theorem, there is a conformal embedtiing — €

of S into the Riemann sphere. Sin is transient,S’ is also transient, and
hencef (S’) — f(S’) contains more than a single point. It then follows that there
are non constant harmonic Dirichlet functionsfq®’) with Neumann boundary
conditions onf (0S’). The same then applies &, and Theorem 6.1 shows that
the same is true foB.

7. Characterizations of almost planarity

Proof (of 1.8). Suppose that = (V, E) is almost planar. Then there is a bounded
degree planar grap6° = (V°,E®°), and ax-quasimonomorphism : V — V°

with somex < oo. Using Lemma 4.3, we assume without loss of generality that
G° is the 1-skeleton of a triangulatioh® of a domainD in the plane. Recall
that |G| is the union of intervalde, e € E, with the natural identifications, and

a drawing of G in the plane is a continuous map: |G| — 2. For every
edgee € E, with enpointsv, w, say, there is a path, seije), of length at most
2k, joining f (v) and f (w) in G°. BecauseG° has bounded valence arfdis

a quasimonomorphism, it follows that there is a fin@esuch that every edge
e® € E° appears in the patﬁ(e) for at mostC edgese in E.

In the domainD one can replace each edgein the triangulationT° by C
‘parallel’ edges joining the same endpoints, such that there are no intersection
between edges, except at the endpoints.&et (V*,E*) denote the resulting
graph. Since irG* there areC edges for every edge iB°, it is possible to find
for every edgee € E, with endpointsv, w, say, a path *(e) in G* of length
at most 2, such that all these paths are edge-disjoint. Define now the drawing
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g |G| — D, by letting g map each into the pathf *(e). It is easy to verify
that the number of crossings for each edge in the drawing is bound€dtinyes
2x + 1 times the maximal degree &°. Hence there is a drawing @ in the
plane in which the number of crossings in any edge is bounded.

Now suppose that there is a drawing |G| — B2 of G in the plane so that
every edgee € E has at mosk < oo crossings. LeX be the set of all crossing
points in|G|; that is, the set of alk € |G| such that there is somee |G| — {x}
with g(x) = g(y). DefineV° = g(V) U g(X). It is clear thatG® = ¢ (|G|) is a
connected, bounded valence graph embedded in the plane, with vertéx.set
Moreover,g induces an obvious quasimonomorphism fr@rmo G°. HenceG
is almost planar. O

Proof (of 1.6). Note that a bounded curvature complete Riemannian surface sat-
isfies theC(R,r) property. Hence, using 1.7, we see that it is enough to show
that any planar, connected, bounded valence graph admits a quasimonomorphism
into a topologically planar, complete, Riemannian surface with bounded curva-
ture, and conversely, every topologically planar, complete, Riemannian surface
with bounded curvature admits a quasimonomorphism into an almost planar,
connected, bounded valence graph.

Let G = (V,E) be a planar, connected, bounded valence graph. From 4.3
we know thatG is isomorphic to a subgraph of the 1-skeleton of a bounded
valence triangulatioT of a domainD in 2. Take a metrian on D in which
every triangle ofT is isometric to a euclidean triangle with edges of length
1. This metric is complete, and locally is a flat Riemannian metric, except for
singularities near the vertices. Since the 1-skeletoh bfs bounded valence, it
is clear that one can modifiyn in the (1/3)-neighborhood of the vertices, to get
a complete Riemannian metna’ with bounded curvature. Tak& to be D with
the metricm’. The isomorphism fronG to a subgraph of the 1-skeleton ®f
induces a quasimonomorphism fraito S, as required.

Now suppose tha is a topologically planar, Riemannian surface, with
bounded curvature. Le¥ be a maximal set of points i with the property
that the distance between any two pointsvins at least 1. LetG = (V,E) be
the graph orV where two vertices are connected if the distance between them is
at most 3. LeV be equipped with the distance metric@ From [14] we know
thatV is roughly isometric tdS, and the fact that the curvature $is bounded
implies thatG has bounded valence. To see t@ais almost planar, dravi in S
by connecting the vertices, u of an edge by any of the shortest paths between
them. It is clear that there will be at most one crossing between any two edges,
unless the edges overlap in nontrivial intervals. The latter possibility is avoided
by a generic choice of the points, hence we assume that this does not happen.
If there is a crossing between two edggse,, then the distance i6 from the
vertices ofe; to the vertices ok, is less than 6. Hence we have an upper bound
on the number of crossings of any edge in this drawing. Hence Theorem 1.8
implies thatG is almost planar. O
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7.1. TheoremLet G = (V,E) be a finite genus, connected, locally finite graph.
Then G can be drawn in the plane with finitely many crossings. In particular, if
G has bounded valence, then it is almost planar.

Proof. Let S be a closed (compact, without boundary) surface suchGhain-
bedds inS. We assume, with no loss of generality, tats a triangulation of a
domainD C S. Recall that the genus of any boundaryless surkde the max-
imum cardinality of a collection{~s,...,v,} of disjoint simple closed curves
in X such thatX — Uj+; is connected. Since the genusfis bounded by the
genus ofS, it is finite. Hence there is a finite collection of eddesC E such
that any simple closed path B8 — Ey separate®. SinceG is a triangulation
of D, this implies that there is no simple closed non-separating pafh-ng;,
whereE; is the set of all edges i& that share some vertex with some edge
in Eg. Therefore every component & — E; has zero genus, and is planar. In
particular,G — E; is planar. LetE’ C E; be a minimal set of edges subject to
the property thaG — E’ is planar. (HereG — E’ contains all the vertices d&.)
Clearly, G — E’ is connected, ané’ is finite.

Letf be an embedding d& —E’ in the plane so that for every edge or vertex
j of G — E’ there is an open sé containingf (j) that intersects at most finitely
many of the vertices and edgesfdqfc — E’). Now suppose that is some edge
in E’, and letv, w be its vertices. Sinc& — E’ is connected, there is a path
in f (G — E’) joining f (v) andf (w). We may defind (e) to be a simple path that
follows alongsidey and intersect$ (G — E’) in finitely many points. Similarly,
all the edges irE’ may be drawn in such a way that there are finitely many
crossings. O

Almost planar graphs and separation properties

Itis known [18] that any planar gragh = (V, E) has the,/n separation property
That is, there are&y < oo, ¢; < 1, so that for any finite setv C V of n
vertices, there is a subs®&/’ C W containing at mosty,/n vertices, such
that any connected subset \&f — W’ has at most;n vertices. Clearly almost
planar graphs have thign separation property too. A natural question is whether
\/n separation is equivalent to almost planarity. And if not, do transient graphs
with the \/n separtion property always admit non constant bounded harmonic
functions?

Examples.Let T be a tree, and denote by x 7 the product ofT by Z. In
Lemma 7.2 below, we show th#@tx Z has the,/n separation property. Coupling
shows that any bounded harmonic functioon T x 7 must be constant on every
fibre of the form{t} x Z. Hence the only harmonic Dirichlet functions @nx Z
are the constants. By Theorem 1.9 it then follows thatZ is not almost planar,
if it is transient. In particular, whef is the binary treeT x 7Z is a graph having
the \/n separation property, which is not almost planar. Herge,separation
does not imply almost planarity.
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Let C be the following tree. Start with an infinite ray, then to every vertex
on that ray add another infinite ray, rooted at that vertex. One can show [21]
that C x Z is a transient graph. Y&€ x Z admits no non constant bounded
harmonic functions. Hence/n separation and transience do not together imply
the existence of bounded non constant harmonic functions.

To date, we did not manage to prove thiat Z is not almost planar whenever
T is a tree with infinitely many ends.

7.2. Lemmalet T be a tree, then &k Z has the,/n separation property.

Proof. Let W be a set oh vertices inT x Z. Let jo € Z be such that there are
at leastn/2 vertices inW of the form ¢,i) with i < jo and at leash/2 vertices
with i > jo. Letj. be the leasf > jo such that there are less thgm vertices
inWNT x {j}, and letj_ be the largest < jo such that there are less thgfm
vertices iNnW NT x {j}. Clearly, 0<j. —j_ < /n.

It is easy to see that there ist@a € T so that for every component; of
T — {to} the number of vertices iW N (T1 x Z) is at mostn/2. (Just choose
to € T to minimize the maximum ofW N (T, x Z)| over all componentd; of
T — {to}.) Now set

W' ={(to,)) EW :j_ <] <Js}U{(t,j)) eW ] =]_orj =j:}.

ThenW' contains at most.3n vertices, and any componentW — W’ contains
at mostn/2 vertices. O
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