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Let X be a closed subvariety of an abelian variétyand assume that both are
defined over some number fiekd Then a conjecture of Lang [L 1] states that
the set of rational points is as small as one might reasonably expect:

Theorem 0.1. The set Xk) is contained in a finite uniol B; (k), where each B
is a translated abelian subvariety of A contained in X.

In [F 1], Faltings proved this in the special case wh¥re k contains no
nontrivial translated abelian subvarieties &fxy k; the conclusion in that case
simplifies to the assertion that(k) is finite. He proved this in general in [F 2].
This proof is also described in detail in [V 4]; we will follow the latter exposition
closely here.

In this paper we generalize Theorem 0.1 to cover the corresponding statement
for integral points on closed subvarieties of semiabelian varieties:

Theorem 0.2. Let k be a number field, with ring of integers R. Let S be a finite
set of places of k, containing the set of archimedean places, andleeRhe
localization of R away from (non-archimedean) places in S. Let X be a closed
subvariety of a semiabelian variety A; assume both are defined over kZLet

be a model for X oveBpedRs. Then the set?’(Rs) of Rs-valued points inZ”
equals a finite unionJ.#} (Rs), where each#, is a subscheme of2" whose
generic fiber Bis a translated semiabelian subvariety of A.

A future paper will address similar questions for certaen subvarieties of
A

Theorem 0.2 partially proves a conjecture of Lang ([L 2], p. 221): Aet
be a semiabelian variety, and |€t be a finitely generated subgroup Af Let
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I" be the division group of’; i.e., the group of alix € A such thatnx € I

for some positive integen. Then Lang conjectures that the intersection/of

with any closed subvarietX of A is contained in the union of finitely many
translated semiabelian subvarietiesfotontained inX. Theorem 0.2 does not
apply to this more general conjecture, but it is equivalent to a similar statement
where one does not take the division group. Indeed, the set of integral points on
Ais a finitely generated group. More recently, M. McQuillan [McQ] has proved
Lang’s conjecture in full generality, by using methods of M. Hindry to reduce
the general statement to the special case proved here.

| doubt that this result can be generalized to a larger class of group varieties:
consider, for example, Pell's equation 88 ~ G2.

By a standard result on subvarieties of abelian varieties (Theorem 4.2), The-
orem 0.1 gives an affirmative answer, in the case of subvarieties of abelian
varieties, to a question posed by Bombieri [N 2]: if the varigtys of general
type, then is the seX(k) contained in a proper Zariski-closed subset? Similarly,
in the semiabelian case, Theorem 0.2 provides a partial answer to ([V 1], 4.1.2).

Moreover, by the Kawamata structure theorem (Theorem 4.3), the nontrivial
B; occurring in the conclusion of Theorem 0.2 must lie in a proper subvari-
ety which is geometrical in nature. This supports a conjecture of Lang which
strengthens the question posed by Bombieri: Lang conjectures in [L 3] tKat if
is of general type then the higher dimensional componen¥(kf must lie in a
subvariety which is independent kf

Section 14 proves a corollary of Theorem 0.2 which generalizes ([V 1],
Theorem 2.4.1). The proof essentially reduces to showing that the given variety
embeds into a semiabelian variety.

Corollary 0.3. Let X be a projective variety defined over a number field k, and
let p denote its Picard number. Let D be an effective divisor on X, also defined
over k, which has at leastimX — h(X, %) + p + 1 geometrically irreducible
components. Then any set of D-integral points on X is not dense in the Zariski

topology.

Acknowledgements.thank S. Lang, M. Nakamaye, G. Faltings, and D. Bertrand for fruitful dis-
cussions concerning this paper. | especially thank the referee for many helpful comments on the
manuscript.

1. Notation

We use the notational conventions of ([V 4], Sect. 5), which for convenience are
summarized here.

For placesv and absolute value§ - || on a number fieldk, we use the
conventions of ([V 1], 1.1); in particular, for a placecorresponding to a real or
complex embedding : k — €, the absolute valugx||, equals|a(x)| or |o(x)|?,
respectively, and the product formula reads
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[Tl =1

for all nonzerox € k. Let C, denote the completion of the algebraic closure of
the completiork, of k atv; this field is algebraically closed. tf is archimedean
then it is isomorphic taZ. The absolute values- || extend fromk, to C,.

For p > 0 and for a giverv let

Dp={zeCylllzll <p} and 0Ob,={zecC,|lz]=p}.

Note that these differ from the usual notatiorwifis a complex place, and that
0D, is not the topological boundary if is non-archimedean. L& = ;.

We will also use the notations and conventions of arithmetic schemes, as in
for example [V 2] or [V 3], except that complex conjugate pairs of fibers at an
archimedean place will be identified, to conform with the above convention on
absolute values. This is possible because in the GilletéStilory, all objects at
complex conjugate places are assumed to be taken into each other by conjugating.

In particular, we assumé” is an integral arithmetic scheme which is quasi-
projective and flat over Sp& with generic fiberX. This assumption onZ”
differs from that used in the statement of Theorem 0.2, but the change does not
affect the set#'(Rs). The exact choice of#" is made in the beginning of Sect.

10.

Throughout this paper we will refer t@-divisors (divisors with rational coef-
ficients) andQ-divisor classes. The latter are taken to be elements of)iw(Q
modulo principal g-)divisors, as opposed to PKX) ® Q. If D is a Q-divisor,
then writing ¢@(dD) shall implicitly assume thatl is sufficiently divisible to
cancel all of the denominators D.

If ¢g is a Green function or Weil function with respect to a divigdr then
we sayD = div(g) and Supg = Supp divg).

In this paper, avariety is an integral scheme of finite type over a field. All
schemes in this paper are assumed to be separated. As in [V 4], we use the
notationline sheafand vector sheafto mean invertible sheaf and locally free
sheaf, respectively.

We uselN = {0,1,...}.

And finally, on any product (such &' or X"), let pr denote the projection
onto thei ™" factor.

2. Structure of semiabelian varieties

A semiabelian variety is a group variety for which there exists an exact se-
qguence

(2.1) 0— G —-ALA)— 0,

whereAy is an abelian variety. By ([l 2], Lemma 4} is commutative. In general
the kernel ofp need not be a split torus, but we may assume this to be the case
by enlarging the number field; this will not weaken Theorem 0.2.
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Lemma 2.2. For fixedu and A, the set of semiabelian varieties (2.1), modulo
isomorphisms fixing the factof$, and Ay, is in 1-1 correspondence with the set
Pic’(Ao)~, via the function taking a tuple 71, ... ,7¢,,) 1o the product

(221) P (Cry & 002) X - g (O @40,

whereP’ denotes the open subseti{f’a, & . #,) obtained by removing the sec-
tions corresponding to the projections onto each factof’gf & . #,. Moreover,
Pic(A) = Pic(Ao).

Proof . Whenp = 1 the first assertion follows by ([L 2], Ch. 11, Sect. 6); the
general case then follows by ([S 1], Ch. VII, Sect. 1, (10)). The second assertion
is then a consequence of ([H 2], Il, Ex. 7.9a). See also ([S 1], Ch. VII) for a
treatment of this topic in full generality. O

The group law oA can be described in terms of this construction; see the
proof of Proposition 2.6.

The fact that the Zn lie in Pic is vital here: it implies that, althoughA
may not equal a product & andGh, it is close enough to a product that some
of the properties of the product still apply. _

We will also frequently use a completion #fto a proper varietyA, which
will be chosen as the completion

(2.3) A= Oy © A1) Xpg - - Xpg P(Chg @A)

The morphisnp: A — Ay extends in the obvious manner. This completion was
originally defined by Serre, ([S 2], 1.3). It has a canonical exact sequence

(2.4) 0 — Pic(Ag) — Pic(d) — 7Z* — 0,

whereZ* = Pic((®*)*). Also let [cc]m and [0}, denote the divisors corresponding
(respectively) to the projections

(2.5) Cng ® Am — On, and  Opy & M — A .
By (2.2.1) the divisorﬂ\ Ais the sum)_/_ ([0]m + [oc]m). Also, note that
O ([0lm — [0lm) = p*- A
so that in particular we have the numerical equivalence
[Olm = [<]m , m=1...,u.

Note also that by ([l 1], Theorem 2), any morphism of semiabelian varieties
is the composition of a group homomorphism and a translation. Thus, in the
wording “translated semiabelian subvariety,” it is not necessary to specifically
state that the group law on the subvariety is obtained from the group ladv on

The above completed semiabelian varieties have a natural choice of Green
function for the divisors [Q} and [poo]m.
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Proposition 2.6. LetA be the completion of a semiabelian variety A defined over
a local or global field k. Then for n¥ 1,..., u there is a unique Weil function
Am for [O]m — [oo]m satisfying

(26.1) Am(P +Q) = Am(P) + Am(Q)

for all P,Q € A(C,) and all placesv of k. Moreover, ifv is archimedean, then
Am IS C>,

Proof . We may assumg@ = m = 1; the general case follows by pulling back to
A. Thus we may assume that= 1" (5, @ .#4), and omitm from the notation.

It is well known that points orP(¢%, ® ..Z4) correspond bijectively to pairs
consisting of a poinP’ € Ay and a surjection(eAO|P,) ® (A|5) = Cpr, UP
to multiplication by a nonzero constant. Letbe a local generator farZ in
a neighborhood of’; then points inA(C,) lying outside the support ofop]
correspond to pairs(, z), whereP’ € Ay(C,) andz € C,, corresponding to a
surjection {y, f2s) — zfi — f,. Regardingz as a rational function o, we then
have the equality of divisors

(26.2) () =[0] — [o0] = p*(s) -

For divisorsD on Ay, let \p denote a Mron function as in ([L 2], Ch. 11, 1.1
and 1.5). Letl" = @, & denote the group d¥l,-constants; then &ron functions
have the properties:

1. Ap+p’ =D +>\b mod [

2. Afy,» = —log||f|, modI’; and

3. Ag*p = Ap o ¢ mod I for all morphisms¢ between abelian varieties for
which ¢*D is defined.

Moreover, these functions are unique modaloThen we may define
(26.3) A(P) = (= log||z]ls + Aw) © p) — (= l0g [|z(0)][» + A()(0)) ,

provideds is chosen so as to genera# at 0 Ay. By (1) and (2) and (2.6.2),
this definition does not depend on the choicesof

Before showing (2.6.1), we first describe the group lawAgd,) explicitly.
Let P, and P, be points inA(C,), and lets be a rational section of#2 which
generates# in neighborhoods of 0p(Py1), p(P2), and p(P1) + p(P2). Then for
i = 1,2 there existz € C, such thatP; corresponds ta(P;) € As(C,) and the
surjection {, gs) — zf — g. Let z5 be the element of’, for which 0 A(C,)
corresponds to & Aq(C,) and the surjectionf(gs) — zf — g. Finally, for
i =12letr: Q — Q+P; denote translation bf;. The theorem of the square
then gives an isomorphism

TETE N E T MR T M M

which varies algebraically if?; and P, and which is the obvious isomorphism
if P, =0 or P, = 0. Therefore there is a rational functiondefined by
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_S ® T{T5S
TIS®T15S
We claim thatP; + P, corresponds t@(P;) + p(P2) and the surjection
(f, 98) — (2222/ 20U (O))f — g .

Indeed, this defines a rational mapx A --+ A. Replacings by s’ = hs changes
ztoz' =z/handu to v =u- (hrr5h)/(rFh - 5h). Therefore this map is
independent of the choice & and hence it extends to a morphism on all of
A x A. Checking its value on & A and A x 0 then shows that it must be the
group law.

Now by (2.6.3), the identity (2.6.1) is equivalent to

A (P(P1) + p(P2)) = A(5)(p(P1)) + A5)(p(P2)) — A5)(0) — log [[u(O)]|., -

But the proof of the theorem of the square, viewed in the context @il
functions, gives exactly this identity. O

At times it will be convenient to use a multiplicative version &f: the
function ay, ;= e*m satisfies

2.7) am(P +Q) = am(P)am(Q)

for all P,Q € A(C,) and all places of k.
Therefore, for archimedean the functions

(2.8) “log o™ and  —log

1+am 1+am

can be taken as Green functions for [Ohnd [o]y, respectively. Since the
metrics on._#/y, defined by Neron functions are flat,

(2.9) amdd®anm = dam A d%am ,

and the curvatures of the above Green functions are both equal to

C —_
dd®log(1 +am) = (1 +am)?

(2.10) _ dd°ap
- (1 +am)2 .

Also let am; = pr* am on A"

3. The divisor

Once and for all, fix an ample symmetric divisor cldgson Ag, let

m

L= Z([O]m + [Oo]m) )

m=1
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and let
L= p*Lo +Lg.

The following lemma implies that is ample OnA.

Lemma 3.1. Letp: A — Ay be a morphism of complete schemes, all of whose
closed fibers are isomorphic. Let be a nef divisor class oA whose restrictions

to closed fibers op are the same under the above isomorphisms, and which is
ample on those fibers. Leg be an ample divisor class omAThen L:= p*Lo+L;

is ample.

Proof. This is a straightforward application of Seshadri’s criterion for ampleness
([H 1], Ch. I, Sect. 7). For curve€ on A and pointsP € C let mp(C) denote

the multiplicity of P on C, and letm(C) = sug,.c mp(C). Seshadri’s criterion
implies that there exist§ > 0 depending only o, Lo, andL,, such that (a) if

C lies in a fiber ofp, then (1 .C) > ém(C), and (b) otherwise,L( . p(C)) >
m(p(C)). Now for any curveC on A we have [.C) > ém(C): if C liesin a
fiber of p then this follows from (a); otherwise

(L.C)>(p"Lo.C) =(Lo.p(C)) = ém(p(C)) > ém(C)
sincel, is nef. O

For this sectionXy, ..., X, will be closed subvarieties ok and Xy, ..., X,
will denote their closures i\,

Lets=(s,...,S) be a tuple of positive integers, and leandj be integers
with 1 <i <j <n. We lets - pr; —5 - pr; denote the morphism from@" to A
(or from Aj to Ay if it is clear from the context) defined using the group law.
In the semiabelian case this leads to a problem, because the group law does not
extend to a morphism x A — A unlessy = 0. _

Therefore we will need a blow-up df] X;. Let ¢s: [[X; -—» A"=1/2 pe
the rational map whose components are the restrictiorss -gfr; —s - pr; asi
andj vary over integers with X i <j < n. Let W; be the closure of the graph
of this rational map. We have a proper birational morphismWs — [] X;.

For n-tupless of positive integers and for rationalwe define

(32) Los= > (A" (s-Pr =5 -pr) Lo+ Y (S2-pr —S2-pr) La+s > s2priL

i<j i<j i=1

as a(Q-divisor class on\s. Also let

n n
(33) Mss=> (0" (s P —5 -pr) Lo+(n—1) > _§?-priLy+6 > s™prilL.

i<j i=1 i=1

It is a Q-divisor class o] X;.

The major part of the proof of Theorem 0.2 will consist of showing that
there exists some > 0 andd € N such that”(dL_. s) has certain properties,
uniformly in s. Hered depends ors, but e may not.
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Let ¢/ be a positive integer. Multiplication by extends to a morphism
e A — A; moreover,u;[0]m = ¢[0]lm and uj[oo]m = £[oc]m for all m. This,
together with the theorem of the cube, implies that and Ms s are homoge-
neous of degree 2 isy,..., S, (up to pulling back by the obvious morphism
Ws — Ws). Thus it is natural to extend these definitions to tuged positive
rational numbers: for such, let ¢ be the lowest common denominator. Then
defineWs = W, Lg}s = f_zl_gygs, and M&,S = €_2M57g5.

Ideally, one would prefer to work entirely withs s, but for technical reasons
it is easier to introducéMss (see (10.1)). We now describe the divisor class
TeMs,s — Ls,s.

Definition 3.4. Lets be a tuple of positive integers and l#t< m < p and
1<i,j <n beintegers. We define
(3.4.1)

Um = &P ([0]m+[0c]m)+§7 -Pr ([0]m+ [oc]m) — (8P —57-PK)* ([01m+[oc]m)

as a divisor on W This is homogeneous of degreén s (up to pulling back, as
before). Therefore i§is a tuple of positive rational numbers with lowest common
denominator’, we define the)-divisor Qim = £71Qj .
Proposition 3.5. The Q-divisor Qg‘m is effective. Its support is contained in the
exceptional set of.

Proof . We may assume thatis a tuple of integers. To shorten notation, let
a =g andb = §?. Using the expression (3.4.1), the divisor can be given the
Green function

a b a . /ob
B |og am’, , - |Og mg , +] Oém,l /Oém; ,
(1+af;) (1+ap) (L+af;/on;)
(O‘?n,i + 0‘21,1' )2

2 2"
(L+af) (1 +an,))

The result then follows immediately from the fact that this function is bounded
from below and is smooth except near the sets

pr[0]m N pr[0lm  and  pfloc]m N pr[oc]m -

These sets have codimension two, so they must come from the exceptional set
of 7s. O

Thus we have

“w
(3.6) Los=miMss— > > QL

m=1i<j
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where the last term is effective. For the bulk of the proof it will be convenient
to regardLs s as a subsheaf of;Ms s and replace the notion of section bf s
with the notion of section oM; s satisfying certain vanishing conditions.

4. Reductions

First of all, we may assume that is relatively closed inA and geometrically
irreducible. In the latter case this may involve extending the ground Kighlit
such a change will not weaken the theorem.

The next set of reductions follows from some standard results on subvarieties
of abelian varieties defined ovér, which carry over directly to the semiabelian
case.

Definition 4.1. Let B(X) be the identity component of the subgroup
{aceA|X+a=X}

in A. Then the restriction of the quotient map-AA/B(X) to X exhibits X as a
fibering with fiber BX). This map is called th&Jeno fibration associated to X.
It is trivial when BX) is.

Theorem 4.2 ([N 1], Sect. 4) If X has trivial Ueno fibration then it is of loga-
rithmic general type.

Theorem 4.3 ([N 1], Lemma 4.1) The union ZX) of all nontrivial translated
semiabelian varieties of A contained in X is a finite union of irreducible subvari-
eties of X, each of which has nontrivial Ueno fibration.

By a simple Galois theoretic argument,Xf and A are defined ovek, then
so areB(X) andZ(X).

The general plan, then, is the same as in ([V 4], Sect. 10): we may assume
that B(X) is trivial; this implies thatZ(X) # X. It then suffices to show that
2'(Rs) \ Z(X) is finite. To do so, let

n=dmX+1

and choose pointBy, . . ., Py in . Z"(Rs)\Z(X) satisfying condition€p (1, Cy, €1):

4.4.1. hL(Pl) > C1.

442 h(P+)/h(P)>c>1foralli =1,...,n—1.

4.4.3. Py, ...,P, all point in roughly the same direction iRs) ®7 R, up to a
factor 1— ¢; (see (13.2) and (13.3)).

The main part of the proof involves closed subvarieigs. . ., X, of X. We
start with X; = ... = X, = X and successively find collections wifh, dimX;
strictly smaller. At each stageXs,..., X, are assumed to satisfy conditions
Cx(Cg, Cy, Pl, ey Pn):
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4.5.1. Each X; containsP; (and hence has trivial Ueno fibration sinXg g
Z(X)).

4.5.2. EachX; is geometrically irreducible and defined oJer

4.5.3. The degrees deg satisfy ded( < cs.

4.5.4. The heightsh(X;) will be bounded by the formula

Here and throughout the proof, constaatandc; depend only on?", . 4, n, kK,

S, L, and sometimes the tuple (difa, ..., dimX;), but not onP;, X;, ors.
Eventually, this inductive process reaches the point where sgnie zero
dimensional; i.e.X; = P;. As in ([V 4], 10.6), this leads to an upper bound on

h_(P1), contradicting (4.4.1).
The following gives the rigorous description of the main step of the proof.

V C3,C4 andV 61,...,0nh € N
3 ¢, ¢y, €1, C5, €4 Such that
V Py1,..., Py e (X\ Z(X))(k) satisfyingCp(cy, Cz, €1) and
V Xq,...,Xp C X satisfyingCx(cz, C4, P1,...,Pn) and dimX; =6 Vi
I X{, ..., Xo with X' € X Vi andX’ # X for somei,
and satisfyingCx (cj, ¢y, Py, ..., Pn) .
In Sects. 12 and 13 will be taken to be rational numbers close to/l

vh (P;). The main step of the proof starts by constructing a small section of
(dL_. ) for all large and sufficiently divisible integers

5. Self-intersections ofLs s

Lemma 5.1. If n > dimX + 1, then the rational map f []X; --» AM1-1/2
given by(xi, ..., %) — (X — X )i<; is generically finite.

Proof. If X is a closed subvariety &% andP € X, then the tangent spadg p
may be identified with a linear subspace of the tangent spaget the origin of
A via translation. Via this identification, the intersection of all sdghe equals
Tex),0. (This fact is proved by passing to the analytic category and using the
universal covering space; details are left to the reader.)

Since allX; have trivial Ueno fibration, there exists a po@t= (Qq, ..., Qn)
€ [I X such thaf is smooth aQ, such thatQ; lies in (X;).eg for all i, and such
that

ﬂTXi Qi ~ (O) .
i=1

Then any tangent to the fiber 6fat Q must be zero, sb is a finite map there.
(I
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Proposition 5.2. If n > dimX +1, then(L(%: mXy S o,

Proof . Note thatLg1 = >, <j(pr, —pr)"L. Thus it is the pull-back, to some
blowing-up of [] X;, of an ample divisor class 0A""~Y/2 via a generically
finite morphism (see ([KI], Ch. 1, Sect. 2, Proposition 6)). O

The remainder of this section is devoted to proving a homogeneity result in
s.

Lemma 5.3. Fix an embedding of k int@. Then the cohomology class in
H " (Ag) corresponding to the divisor class

A = (pr +pr) Lo — pri Lo — pri Lo
is represented overgfC)" by a form in

pri & %(A0) @ pry & *H(Ag) + pri £ 0% (Ao) @ pri £0(Ao) © EHH(AY) -

Proof. See ([V 4], Lemma 11.3). O
By counting degrees we immediately obtain:

Proposition 5.4. Let X, ..., X, be closed subvarieties ofAThen any intersec-
tion product

n
JIEAE | L™
i<j i=1
of maximal codimension ofy X; vanishes unless
2e.+Zqi+Zaj:2dimXi, i=1....n.
j<i j>i
Consequently, since
(5.4.1) (5 -pr—5 -pr)Lo=5pr Lo+s7prlo—s§4 ,
it follows that if x = 0 then the highest self-intersection number gt is homo-
geneous of degre2dimX; in each §.
The argument in the semiabelian case is not as straightforward.
Theorem 5.5. The highest self-intersection number qfslis homogeneous of

degree2 dimX; in each .

Proof . First note that this self-intersection number is independent of the scheme
on which Lss is taken to be defined. Indeed, given any birational morphism,
Chow’s moving lemma allows us to move the corresponding 0-cycle away from
the exceptional set.
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As before, we begin by writing the self-intersection numkl%(d'mx‘) as a
sum of terms, each of which is a product of eithér, pr* Lo, pr([O]m + [00]m),
or (s?-pr, fqz‘prj )*([0]m +[oc]m)- Such products can be evaluated by integrating
suitably chosen Chern-like forms ovEf X;. For &4 and pf Lo we use the same
forms as in the proof of Lemma 5.3; i.e., obtained from a translation-invariant
metric on?(Ly). For the terms gi([0]m + [coc]m) we use (2.10). Finally, for the
terms & - pr, =2 - pr)*([0]m + [oc]m) we use

i
2 2 /ey 2
s?/e ;S /e)

m,i m,j

2 2
ddc(ad /e a) /e
(5.5.1) 2. <m" / )
(1 +a

foree Z,e>0.

Fixing e for the moment, each of these terms now has,d)orm attached
to it; this defines a (11)-form = corresponding tds s. Now = is not necessarily
smooth over any scheme birational[tpX;, so in general it is not a Chern form
for Lss. However, it is sufficiently close to a Chern form in the sense that the
integral of its top exterior power still equals the highest self-intersection number
of Lss. This is proved as follows. Let = n(n —1)/2 and recall the rational map
st [IXi --+ A* used in definingVs. Let f : A2 — A2 be the morphism given
on each factor by multiplication bg. LetV be a desingularization & x za A2,
and letg: V — W; be the projection.

vV o AR
g f

W, 25 An

Theng is generically finite. Moreover the forms (5.5.1) come from formsA8n
which pull back viaf to smooth forms which are indeed Chern forms associated
to Green functions as in (2.10). Thy3= is a Chern form representingLs s
and therefore the equality between the integral and the intersection number holds
after pulling back to/ . By formal properties of intersection theory (see ([KI], Ch.
1, Sect. 2, Proposition 6)) and integration, the desired property therefore holds
on Ws. Note in particular that the integral in question is independerg; dhe
proof proceeds by breaking the integral into parts and for each part taking the
limit as e — co.

However, if one breaks this integral further into subterms in thgenavay,
one obtains divergent integrals. Therefore some care is needed.

Replacing eaclX; with a desingularization such thiat pulls back to a normal
crossings divisor does not affect the integral. Therefore it suffices to work on a
bounded open se® C CN such that eaclyy; is of the form

N

Pmi H |z ‘meij )

j=1
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wherefn; € Z and pmi is a nonzero smooth function on the closurefafwWe
may further assume that for eathC {1,...,N}, the boundary of? intersects
the coordinate subspace defineddy= 0V i € | in a set of measure zero in
CN=# . We also assume eaghcomes from a function on son.

To fix notation, let 0< p < N and let¥ be a smoothN — p,N — p)-form,
which we may assume to be of the form

(smooth function) dz, A... Adz,_ Adz  A...AdZ_ .

Let F = (fj) be ap x N matrix with entries inZ, and fori =1,...,p let

N
y =[]z .
=1

For all suchi let p; be a positive smooth function, bounded away from zero on
the closure of2, and lets = pj~i. We will consider integrals

/ oA eddpy’® 200/
o @A g
whereg; are of the formﬁm/a‘gm (cf. (5.5.1)). Thus, as in (2.9),

eddpYe _ 1 pYe 9B . Bk,

(L+5Ye2 e (L+pveR 50 B
and therefore the integral can be rewritten as

1/e 1/e o o
(5.5.2) e—p/ L e ﬂple o0\, OB, O
2 (1 +ﬁ1/ )2 a +ﬁp/ )2 B1 B1 5p /Bp

Lemma 5.5.3. For each positive ec Z, let ¢o: {2 — C be a function which is
measurable and bounded uniformly in e and 2. Let p, F,~i, pi, and 5 be
as above, and let
P
Ki :H|Zj|2fij :
j=1

Then for each e the integral

1/e 1/e
e‘p/¢e- L e ﬁpl
(5.5.3.1) o @+ A+
om a’Yp dz dzy
. Ao A Ad Ao ANDZWA AN
71 Tp Bt A a N

converges to a value bounded uniformly in e. Moreover, leb& the matrix
consisting of the first p columns of F and assume that ¢, is independent of
e and is C on the closure of2. Then as e~ oo these integrals approach the
finite limit
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(5.53.2)
_1\N(N=1)/2 N c 2
(V-1 on{a=.=z=0y  |Zp+al
/ K1 Kp dd°\21|2/\ /\dd°|zp|2
w(L+r1)27 (L+kp)2 |z2 T (B2
Proof. Since
N
0y d
DR
Vi = Z

it follows that (5.5.3.1) equals

1/e 1/e
B 3
p . 1
© /n% L+67%2 (1+055%)2

-(detF’)dzzl/\.../\dz'z)p/\d2p+1/\.../\dZNAd_Zl/\...
1

Al

Hence ifF’ is singular then the integral vanishes.
Otherwise there exidt, ..., t, € [-1, 1] such that, letting

p
€ = ngztﬂq forj=1,...,N,

P. \Vojta

dd®|zy |2
|z |

45
A
N

we haveg; > 0 forj =1,...,p. But now note that fox > 0 andt € [-1,1],

<x'.

1+x)2 —
In particular, we apply the facts that

;/e
K e, <A i=1.p
(1+5°)2

to bound the absolute value of the integral by
(5.5.3.3)

2n)N ‘ detF’| (H supp; (2)" /e)

1Z€
[ 2
/| |¢e|H|z,|ﬂ/e [T fgore. 07
j=p+1 2|

The first assertion of the lemma is then clear, since

dd®|z/?
[ <o
iy

dd°|zy[?
)2
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The second assertion follows from the fact that for a regidnC CP, for
positive smootty; : 2/ — R, for smooth¢: 2" — C, and fork; as above,

(Plfil)l/e (Pp“p)l/e ddc|21|2 dd°|zp|2
e'L”Joep/ ¢()1+<pm)1/9)2'“(1+(ppnp)1/9)2 af N P
Ko ddC|z? dde|z,|?
0 P A A
YO e [l 2

This is proved by replacmg with z® and applying straightforward arguments.
By (5.5.3.3), we may then use Fubini’'s theorem to reduce the second assertion
of the lemma to the above limit. O

Corollary 5.5.4. The same conclusions hold with (5.5.3.1) replaced by
1/e 1/e

eip/(ﬁe' 11/62... pl/ez
(5.5.4.1) ‘; (1”318; 1+57) - -
b1 P 4] AN
A ANdZgri AL ADy A " ALUA
&) Bp frt 4} N
Proof. We use the identity
3ﬁi:5Pi+3Vi7 i=1...p
Bi pi i

and expand (5.5.4.1) into a sum df ibtegrals. Each such integral can be written
as a sum of integrals of the form (5.5.3.1) by expanding out any smooth forms
dlogp; in terms ofdz, ..., dz, incorporating them int@e, and permuting the
indices 1...,p. This gives the convergence. But now each term involving a
dlogp; vanishes ag — oo, due to the extra factor/& which appears whep
decreases. This proves the assertion on taking a limit. O

Continuing with the proof of Theorem 5.5, consider again the integral (5.5.2).
BreakingV into its components, we may assume that

=1 dz AL AdZ_ AdZ AL A

Permuting coordinates, we may assufhe. .. ,in—p} = {p+1,...,N}. Then we
may also assume thdfs,...,jn—p} ={p+1,...,N}. Indeed, if, for example,
1 e {j1,....in—p}, then¢ in (5.5.4.1) vanishes along = O since¥ has a
termdz;, while (5.5.4.1) only requiredz; /z;. This causes the limit (5.5.3.2) to
vanish. Thus we are reduced to considering

(5.5.5)

/ LP/ VT Zam/\.../\anp/\am/\
QN {z=...2=0} pe (1 +51) (L +kp)? K1 Kp K1

2% 2 (detFry? / v
Kp 2n{z=...=2,=0}

pp L+ A+kp)2 a3 21 z
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Now consider how this expression changes as the mbatwaries. Suppose
fij = slzgi,- . Then def’ is quadratic in each oy, . ..,s,. Also, letting

N
wi = H |ZJ |29ij )
j=1

we find that the factor
/ K1 Kp dz /\dzp/\dz_l/\ /\dZ_p
o @tk Wt N 2 7 NN g
1 d d dz dz,
=, 2/ R T il il W i
St... S5 Jup (1 +wy) (1+wp)® za Zy Z1 Zy

2
by replacing eaclz with zjl/s’ . Thus the expression (5.5.5) is quadratic in each
of 51,...,%. As in (5.4.1), however, the forn¥ is also quadratic in each of
Sp+1, - - -, SN Therefore, keeping track of whick eachz comes from gives the
theorem. N

6. A lower bound on h°

The goal of this section is to prove a lower boundhd(\Ws, 7 (dL . s)) for some
fixed e > 0 and sulfficiently large (and divisible) > 0.

Lemma 6.1. For all (rational) 6 > 0, the ()-divisor class Is s is ample.

Proof . We may regard\Vs as a closed subscheme AF-1)/2 in an obvious
way, andLs s extends in an obvious manner. The lemma then follows by applying

Lemma 3.1 to the morphis@™n(-1)/2 _, pT*n=1/2 0

Proposition 6.2. There exist constants & 0 and ¢ > 0, depending only on
X, A, L, dimXg,...,dimX,, and the bounds odegX;, such that for all tuples
s=(sy,...,S) of positive rational numbers,

n
hO(Ws, CO(dL_.g) > ch dimX; H 32 dimX;
i=1

for all sufficiently large d (depending cs).

Proof . By Lemma 6.1Ls s is ample. Riemann-Roch therefore implies that, as
d — oo, .

W
(L ™)
(dimW)!
Choose such thatL is very ample; then for each indéxet H; be the subscheme
of Ws cut out by some section df(X;, @' (¢L)). As before,

hO(Ws, ¢ (dLs,5) = d9m % (1+0(2)).
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dimWs—1
ho(H;, @ (dLs 9| y=aommea(h-bos ™ Do)
DTN (dimWs — 1)!
. (pre L. LImWs—Ty
— dimWs—1 [ »S
= (a7 @dimw, — 1y o).

These two estimates replace the first two estimates in the proof of ([V 4], Propo-
sition 11.5); the proof then continues as in that case, with a little extra care
because of the variable O

7. Generalized Weil functions

This section gives some preliminary results on Weil functions in preparation for
Sect. 9.

For a general reference on Weil functions, see [L 2] or [L 4]. Instead of
working overX x M (for a schemeX of finite type overk), however, we will
work over] ], X(C,). This will be denoted by (My). Also, Weil functions will
be normalized so that log||f || is @ Weil function for the principal divisorf §.

The results of [L 2] carry over into this situation.

Definition 7.1. A generalized Weil functionon a scheme X of finite type over
k is an equivalence class of paifd, g). Here U is a dense Zariski-open subset
of X andg: U (M) — R is a function such that there exists a schexhand a
proper birational morphisn® : X — X such thaty o @ extends to a Weil function
for some divisoD on X. Pairs (U, g) and (U’, ¢’) are equivalent ify = ¢’ on

(U NU")(My). We say thay is effectiveif D is an effective divisor. Thsupport

of g, written Suppg, is defined as the séi(Suppf)).

Proposition 7.2. Generalized Weil functions on a scheme X form an abelian
group under addition. If: X -—» Y is a dominant rational map anglis a gen-
eralized Weil function on Y , thett ¢ (defined in the obvious way) is a generalized
Weil function on X.

Proof . Obvious. O

Proposition 7.3. Letg; and g, be generalized Weil functions on a proper scheme
X/k. Thengs := min(g1, ¢g2) is also a generalized Weil function on X.gif and
g2 are effective, then so ig, and Suppgs C Suppgi N Suppgz.

Proof . Since ming1, g2) = g2 + min(g1 — g2, 0), we may assume thags = 0. By
blowing up X, we may assume that is a Weil function. Moreover, we may
further blow upX to the point where components occurring with positive mul-
tiplicities in div(g1) do not intersect those occurring with negative multiplicities.
This is accomplished as follows. LEX = div(g1), and letU, ..., U, be a finite
cover ofX by open affines such th&t = (fi) on U; for eachi. Then we replace
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X with the graph of the rational may --+ (PY)" given by €, ..., f,). The first
assertion then follows by standard properties of Weil functions.

To prove the other assertion, assugaeand g, are effective. Leth: X — X
be a proper birational morphism such thitg; and #*g, are Weil functions.
Moreover, writing divp*gi) = > nip - D for i = 1,2 we may assume that prime
divisors D for which njp > nyp do not meet prime divisors with;p < nyp.
Thend*g; is also a Weil function, associated to the diviS5omin(nip, nxp)-D.
This easily gives Supp*gz = Supp?*g1 N Suppd*g,. Pushing it down tax
gives the desired inclusion (which may become strict). O

Proposition 7.4. Letf: X — Y be a morphism of proper schemes over k and let
g be a generalized Weil function on X whose restriction to a generic closed fiber
of f is effective. Then there exists a generalized Weil fungfian Y such that
Suppg’ does not contain (X) and such that fg’ < g. If f is surjective then we
may choosg’ such thatSuppg’ = f (Suppg).

Proof. ReplacingX with a suitable nonsingular blowing-up, we may assume that

g is a Weil function, relative to a divisdD. The condition then implies that the
restriction ofD to the generic fiber of is effective. Then there exists a divisor

D’ onY such thatD — f*D’ is effective onX. Let ¢’ be a Weil function forD’

onY; then the desired inequality holds up to the addition olaaconstant (i.e.,

an element ofp, ). We may then adjusy’ by such a constant to obtain the
inequality without constants. To prove the last assertion, we may assume after
blowing up X andY that X andY are nonsingularg is a Weil function (as
above), and that (Suppg) is a divisor. Then the above choice Bf may be
made such that Sufp’ = f (SuppD). O

Definition 7.5. Let X be a variety. Anin-min generalized Weil function on X
is a generalized Weil function on X which can be written in the form
(7.5.1)

min(—log [[¢1]], .- ., —10g |¢n]) — min(=log||¢1]], .. ., —10g [|¢m]]) + c,

for some M-constant(c,), where ¢y, ..., ¢n, Y1, ...,y are nonzero rational
functions on X. Ify is a min-min generalized Weil function, then we also say that
g is of min-min type. A min-min Weil function is a Weil function of min-min

type.

Definition 7.6. Letg be a generalized Weil function on a variety X and leEFX

be a finite set. We say thatis nicely defined atF if Suppg is disjoint from F,

if g is of min-min type, and i§ can be written as an expression (7.5.1) in which
é1,- - Pn, W1, ..., Y, are all regular at all P € F, and in which some fixeg;
and some fixeqy; are nonzero at all Pc F.

Proposition 7.7. Min-min generalized Weil functions on a variety X form a
subgroup of the group of generalized Weil functions on X. The same assertion
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holds for generalized Weil functions nicely defined at some fixed finite subset
F CX.

Proof. Additivity of min-min generalized Weil functions follows from the identity

ming; + minb; = min(a; +1by) .
! J 1)

The other assertions are ftrivial. O

Proposition 7.8. If ¢: X --+ Y is a dominant rational map of varieties agds
a min-min generalized Weil function on Y, thgty is also of min-min type. I
is regular at all P € F for some finite subset E X andg is nicely defined at
o(F), theng*g is nicely defined at F.

Proof . Obvious. O

Proposition 7.9. If g; and g, are min-min generalized Weil functions on a given
variety, then so arein(gs, g») andmax(gs, g2). If g1 and g, are nicely defined at
some finite subset E X, then so aranin(gs, g2) andmax(gs, g»).

Proof . The assertions regarding min(g») follow from the identity
mm(milnai — n}m by, rr}(mck - melndg)
= mm(rmn(ai +dy), rm(n(b,- + ck)> — rmn(b,- +dp) .
The result for maxfy, g2) is similar. O

Proposition 7.10. Let X be a projective variety, D a Cartier divisor on X, and
F C X a finite set disjoint fronBuppD. Then there is a Weil functiop with
divisor D which is nicely defined at F.

Proof . First assumeX = P" andD is the hyperplane at infinity. Lets, ..., X,

be the standard coordinate functions ¥\ D. By applying a suitably chosen
automorphism of?" fixing D, we may assume thag is nonzero at alP € F.
Theng := max<i<n(log|x ||) has the required properties. By Proposition 7.8
this extends to the case wheXeis arbitrary andD is very ample. The general
case then follows by writindd as a difference of two very ample divisors not
passing througt. O

8. Metrics at non-archimedean places

This section introduces metrics on line sheaves at non-archimedean places, to
parallel the theory at infinite places.
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Definition 8.1. Let K be a local field with valuation ring R, let X be a proper
scheme oveBpedR, let.~ be a line sheaf on X, let U be a Zariski-open subset
of X xgr K, and lety € I'(U, %). For closed points R U we defind|y(P)|| as
follows. Let Kk = K(P) and let R be its valuation ring. The valuative criterion
of properness implies that P extends to a sectionSped?; — X overSpedR.
Theno*~ is a rational section of*.~’; letting g be a generator of*.~ we have
o*v = ag for some ac K;. We then defingy(P)| = ||al|; this is independent of
the choice of.

This defines a metric o7, in the sense that f is a function that is regular
atP then|[(fy)(P)] = [IF(P)] - In(P)I|.

Proposition 8.2. With notation as above, the function-P ||(P)|| is continuous
on U(K) (in the topology induced by the valuation).

Proof . Fix a pointPy € U(K). Let V be an open neighborhood of the point
wherePq passes through the special fiberxafwe may assume that s trivial

on V. Then there exists a rational functibron V, regular onU NV, such that
[lv(P)|| = |If (P)|| for all P € (U NV)(K) entirely contained inV. Since allP

in a sufficiently small neighborhood &, satisfy this condition, it follows that
P — ||v(P)]|| is continuous in this neighborhood. This implies continuity. O
Definition 8.3. If U and v are as above, then we defitje(P)| on U(K) by
continuity.

Lemma 8.4.

(a) The above definition is functorial: if, in addition to the above notation,
f: X, — X is a morphism of proper schemes ovgpedR and B €

f=4(U)(K), then|[f “y(P2)|| = [~ (f (P2))II- ~
(b) If v € I'(X, £) then||4(P)|| < Lfor all P € X(K).
(c) Ifa € K thenllay(P)|| = [[al| - [|v(P)].
(d) If 4 is another line sheaf on X ang € I'(U, %5) then

(v @ 2)PY = lIv(P)I[ - [[72(P)]] -

Proof . Obvious. O
We also note that the converse of (b) holdXifs normal.

Definition 8.5. If X is a proper scheme over a localization of the ring of integers
of a number field, then we defitje(P)||,, for non-archimedean placasby base
change to the completed local ring at

Lemma 8.4 holds also in the context of number fields.
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Proposition 8.6. Let R be as in Definition 8.1 (resp. 8.5), let X be a proper
scheme oveBped, let. ~ be a line sheaf over X, and lete I'(U, %) be a
nonzero global section over an open subset U . Théwog ||| (resp.— log||7]].)
defines a Weil function on X relative to the divisor associategl. to

Proof. If £ = % then this is trivial. If%4 and~ are trivial on the generic fiber
then this follows from parts (b) and (d) of Lemma 8.4. By combining these two
facts with Chow’s lemma and functoriality, we may reduce the problem to the
case whereX = PR, 4 = @(1), andy = xo. In that case it can be checked by
direct computation. O

9. An analytic result

This section proves an analytic result which will be needed in Sects. 10 and 11.

For the latter section, it will be important to establish bounds having a uni-
formity asv varies over all places of a number field. This uniformity is provided
by the formalism of Weil functions.

We start with some lemmas.

Lemma 9.1. Let X C PN be a smooth projective variety of dimension n and let
Py € X. Then for generic linear subspaces L of codimensiensit 1, the linear
projection from L induces a smooth morphismip — P"~= for a Zariski-open

U C X such that X\ U meets the fiber pt(p(Po)) at only finitely many points.
Moreover, L meets X transversally. Finally, if=s0 then U contains the entire
fiber over gPo).

Proof . By a minor adaption of the proof of Bertini’s theorem, one can show
that the generic hyperplane passing throigltrossesX transversally except at
finitely many points. This holds evenXf has finitely many singular points. Thus,
by induction, the generic linear subspdcg of codimensionn — s containing

Po meetsX transversally except at finitely many points.UfC Ly is any linear
subspace witlPy ¢ L and dimL = dimLy — 1, then the corresponding projection
satisfies the first assertion of the lemma, by ([H 2], Ill 10.4(iii)). The second
assertion is satisfied for a generic choiceLafithin Ly, by Bertini's theorem.

To prove the last assertion, we first assume %ds a curve (possibly re-
ducible) andPq € X, and show that the generic hyperplatiehroughP, crosses
X transversally. Indeed, it is sufficient thidt is not tangent toX at Py and that
it avoid the (finitely many) singular points and the poiftss X \ {Py} such that
the line PoQ is tangent toX at Q. Any irreducible component aX containing
infinitely many suchQ must be a line througPRy, which the generic hyperplane
avoids. For such generic projectiomsis étale at all ofp~*(p(Po)). This proves
the last assertion. O
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Lemma 9.2. Let Y C X be affine schemes of finite type over k and let F be
a finite subset of Y such that X and Y are regular at aleF- and such that
dim@ x — dim© vy is independent of P for = F. Let r equal this constant.
Then there existf. .., f, € @7(X) which generate the sheaf of ideals of Y in

X in a neighborhood of F.

Proof. If r = 0 then this is immediate. if > 0 then for eactP € F there exists
gp € .7 which lies in the maximal ideahp x C % x, but not inm%,x. There
exists a suitable linear combinatidn:= Y ¢pgp for ¢p € 7(X) which lies in
mp X \m%% for all P. Let X’ = Spea?(X)/(f1); by induction onr there exist
fo,...,fr € @(X’) generating the sheaf of ideals ¥f in X'. Lifting the f; to
fi e &k fori =2,...,r then gives the required factors. O

For vectorsz = (z,...,%z) € C}, we define|z||, = max|z|, if v is

non-archimedean; otherwise we use the standard definjipre (|z)? + ... +
|Zr ‘2)[kv:]k&]/2.

Definition 9.3. Let Y be a projective scheme over k andddte an effective
generalized Weil function on Y . For each placéet

Au(9) = {(P,2) € Y(CT,) x T, | ||2|| < €79}

and
To(9) ={(P,2) e Y(C,) x CL | ||z]| <e™® i=1. . r}.

Here, if P € Suppg then we takgy(P) = oo so that e 9) = 0,

Note that these two definitions coincide «f is non-archimedean. Strictly
speaking, the value af should be specified in the notation, but its value will
always be clear from the context. Often these sets will be identified with subsets
of P, (C,).

The goal of the rest of this section is to construct certain rigid analytic maps
with domain4,(g) or T, (¢). For our purposes, though, it suffices to regard them
as maps such that, for @ € Y (C,) with P ¢ Suppyg, the restriction to the disc
or polydiscA,(g) N {P} x C, or 7,,(g) N {P} x CI, is given by a power series.

The following lemma does most of the work that will be needed.

Lemma 9.4. Let p: I' — Y be a morphism of equidimensional projective k-
schemes with a regular section: Y — I', let q: I' — I, be a generically
finite morphism such that g ¢ equals the canonical section of the natural map
m: P, — Y with image Yx {[1:0:...:0]}, and letz = (#,...,Z%) denote
the coordinate functions oA" = " \ {x, = 0}. Let F be a finite subset of the
image ofo such thatl" is regular at all P € F and such that q i®tale in a
neighborhood of F. Then:

(a) There is an effective generalized Weil functigron Y with support disjoint
from p(F) such that, for each, the mapl'(C,) — P (C,) has arigid analytic
partial sectiond, : A,(g1) — I" whose image contains(Y \ Suppgi).
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(b) Let¢y, ..., ¢s be rational functions od” which are regular on F. Thepy can
be chosen such that there exist effective generalized Weil fungtions , g2
on'Y such that for alb, all (P,z) € A,(g1), and all i,

(9.4.1) 11 (B (P, 2)) — 1 (6,(P,0))]| < e%® -z .

Moreover,Suppg;* is disjoint from F) for all i.

Proof . First consider non-archimedean plaee$ix a finite cover ofY by open
affines such thap(F) lies in each open set. L&t be any element of this cover,
and letys,...,y, be a generating set faf’(V) over k. After adjustingy; by
constant factors, we may assume that for all non-archimeddha sets

{QeV(Cy) | lyi(Q)| <1foralli}

coverY(C,) asV varies over the chosen cover. For each sucfix an open
affineU C g~1(V) containingF and letxy, ..., xu be a generating set fa?'(U)
overk. We may assume that =y, op fori =1,...,¢. By Lemma 9.2, there
exist polynomialsfy.1(X) = fr1(Xe, ..., Xn),- .., fu_r(X) which generate the
sheaf of ideals of " in AM near allP ¢ F. We may assume that the coefficients
of fps1,...,fw_r all lie in R (the ring of integers ok). Let fyy _r+1,...,fw be
polynomials inR[Xy, ..., Xw] which equala -z ocq on U for someg; € k* and
alli=1,....r.

Fix a non-archimedean placeandQ € V (C,) with % (Q)|| < 1foralli. For
i=1...,¢letfi(X) =X —x(Q); then all offy,...,fy lie in R,[Xy,..., Xu],
whereR, is the valuation ring of”,,. Let J denote the matrixdfi /0X)1<i j<m -

All entries in this matrix lie inR[Xy, ..., Xu] and are independent ef and Q.
The assumption thaj is étale neaf implies that def # 0 at allP € F.

For anM x M matrix A with entries inC, we let [|Al| = inf, =1 [|Ab]|. It
follows that if A is nonsingular the{A||~ equals the largest absolute value of
an entry ofA=1. If all entries ofA lie in R, then||A|| > || detA].

By ([V 4], Corollary 15.13a), there is a rigid analytic lifting af over the
subset|z|| < [|3((Q))||?/ max||a || of #~1(Q) which maps0 to o(Q). (More-
over, asQ varies, the lifting varies rigid analytically since the convergents vary
algebraically inQ.)

Let gy = max(0, —log(]| detd o o||?/ max||a|)). This is an effective gen-
eralized Weil function onY. Its support is disjoint fronF since detl (P) # 0
for all P € F. By construction, for all non-archimedearthere exists a unique
lifting of g over

A(gv) N H{Q e V(C) | [y (Q)ll < L for alli}) .

Let g; be the maximum of allgy. Then g; satisfies part (a) for all non-
archimedean.

The proof for archimedean placesis essentially the same, except that it
requires a little more care due to the archimedean property @e will work
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with | - | instead ofi| - | for consistency with [V 4]. We defing| foranM x M
matrix A by the same formula as before. We then have

| detA|

Al > .
Al = M! - max|g; M—1

We will use ([V 4], Lemma 15.8 and Corollary 15.13b), with= 1/3. We
will use the same open subséisandV as before; for each sucl let C be a
compact subset 0¥ (C,) such that the union of all these coverY(C,). Let

M M

0%f(c)
B= max<su%z Z % 0 Vi Wj
i=1 j=1

here the first supremum is taken over the set of all paingsU (C,,) of distance
< 1 from ¢(C) and the set of all unit vectors andv in CM. In the second term
in the above maximum,

(9.4.2) o = :) (g)‘ (z)zi_l .

(This second term ensures thak 1 in the statement of ([V 4], Lemma 15.8).)
This variant of Hensel's lemma then gives a unique complex analytic fpap
over the set

3 apeo(C)

S sup \J(ao)D ;

' [3(a(@Q)
{(Q,z)erC |z| < 3B .
with the desired properties. Letting
_ of;
°= aOSeLiE)C) 1Srir}jaSXM X (o))
we have | deto(Q)
eto
BE@)I = ) D

and thereforey; will also satisfy part (a) for the archimedean places after adding
the constantslq, : R]log(3B(M! - DM~1)?) to g, for v | co.

To prove (b), we may assume that, .. ., ¢s were included among the gen-
eratorsxy,...,xy of @@(U) in the proof of part (a). Then the application of
Hensel's lemma bounds the variation ¢f. Indeed, ifv is non-archimedean,
then ([V 4], (15.5)) implies that

2]l

and in the archimedean case the same inequality holds up to multiplication by
¢’ orc’? by ([V 4], (15.11)) and (9.4.2). So we may takg = — log|| detJ(P)|,
with [k, : R]log ¢’ added at archimedean places. O
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Definition 9.5. Let A be a nonsingular projective variety over k. Axtended
model of A is a model 2 of A which is proper and flat ove8pedR plus, for each

v | oo, @ hermitian metric on the tangent bundle dfC4). For a given extended
model we define distance functiong(-d-) on A(C,) for eachv as follows. If

v | oo then g, is the distance relative to the chosen metric on the tangent space of
A(C,). For non-archimedean, suppose P and Q lie in(&,). Let R, denote the
valuation ring ofC,,; then P and Q define sections.of xgr R,. If these sections

do not meet on the closed fiber, then le{R, Q) = 1. Otherwise let B be the
local ring of .4 xg R, at the point where these sections meet the closed fiber,

and let d,(P, Q) = sup,cg [[¢(P) — ¢(Q)]|-

Remark 9.6. If v is non-archimedean and is an open affine in# xgrR, which
contains the images of the sections corresponding &nd Q, then the above
local ring B may be replaced witlt”(U). This holds even if the corresponding
sections do not meet on the closed fiber.

Lemma 9.7. Let f: Z — X be a birational projective morphism of integral
schemes, quasi-projective and of finite type over k. Then there exists a coherent
sheaf of ideals7 on X such that f Z — X is isomorphic to the blowing-up of

X with respect ta7. Moreover, there exists a finite collection, . . . ,.7% of such
sheaves of ideals such that the intersection of the corresponding subschemes of
X equals the set over which f fails to be an isomorphism.

Proof . The first assertion follows from the proof of ([H 2], Il 7.17). It is stated
there only for quasi-projective varieties ovier but the proof can be adapted
to the present situation as follows. First replace ([H 2], Il 5.20) with ([H 2],
Il Remark 8.8.1). Next, when proving th& and T agree in all large enough
degrees in Step 2, replace the use of finiteness of the integral closure with an
adaptation of the proof of ([H 2], Ill 5.2).

To prove the second assertion, it suffices to show that given any PainX
such thaf is an isomorphism over a neighborhood”Ryfone can choos€ such
that its corresponding subschemeXofdoes not contaif®. This can be done by
choosing the mag’x — 7 @ .Z2" to be an isomorphism &. O

Proposition 9.8. Let A be a nonsingular projective variety over k,.let and. 4’
be two projective models for A over R, and letahd d, be the corresponding
distance functions on (&,) for non-archimedean. Then there exists an M
constant(c,) such that

dy(P,Q) < e™d/(P,Q)

for all non-archimedean and all P,Q € A(C,).

Proof . It will suffice to show that if there exists a morphisp. . 4 — .4’
which restricts to the identity oA, then there existsc() such that

d;(P,Q) < d,(P,Q) < e*d,(P,Q)
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for all v, P, andQ as above.

The first inequality holds becauseinduces a homomorphism of local rings
on.-¢' into their corresponding local rings or¥.

To prove the second inequality, Lemma 9.7 implies that there exist sheaves of
ideals. 7, ...,.7% on.-¢' such that for ali, . 4 is isomorphic to the blowing-up
of .4 at A%, and such thaf), Z(.%) is contained in the special fiber of#’.
This latter condition implies that the sheaf of ideald (. ..,.7%) contains some
nonzeroa € R.

Let P,Q € A(C,) for some non-archimedean We will show that

d(P.Q)

9.8.1 dy(P.Q) <

If P andQ correspond to different points on the special fiber éf xg R, then
this is obvious sincel, (P, Q) = d; (P, Q) = 1. Otherwise let Spe8 be an open
affine such that Spe& @r R, contains this point on the special fiber. Wré =
B®grR,. Foralli letl; be the ideal irB’ corresponding to7 and letl; = |; @grR,.
SinceR, is flat overR (it is a torsion free module over the local ring, which is
principal), I C B’ for all i, and the restriction of)’: . 4 xg R, — .4’ xg R,
to (') "1(Sped’) equals ProfP, . (/)" for all i. Sincea € (Iy,...,I), there
exists some and someb € |; such that|b(P)| > |all,. Let by,...,bs be
generators forl;; we may assume thdtbi(P)|| > ||b(P)| forj = 1,...,s;
therefore||by(P)|| > [jall,.. Now if [|by(Q)|| # [[bx(P)|| then||by(P) — by(Q)| >
llallo, and if by (Q)]| > [[b1(P)|| for somej then|lb;(Q) — by (P)|| = [lall.; in
either case we haw# (P, Q) > ||a||, which implies (9.8.1) sincd, < 1 always.
So we may assume thgih;(Q)|| > ||b; (Q)]| for all j and that|b,(P)|| = ||b.(Q)]].
In that case the open affine Sg&¢b, /by, ..., bs/bi] C .4 xgr R, contains the
liftings of the sections determined B andQ. Thus

d,(P,Q) = sup [p(P) — Q)|
¢€B/[by/by,...,bs /]
b(P) b(Q) H)

= max (;euBQ [oP) = o(Q- max|jy, oy ~ by(Q)

= max(d;(P, Q), mjaXHbj P) - @I,

1
[[b2(P)]|
d,(P,Q)
G
_dP.Q)
— all

Thus (9.8.1) holds. O
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Lemma 9.9. Given a nonsingular projective variety A with an extended model,
a morphismy: I — A, and an M-constant(c,), one may choosg; in Lemma
9.4 such that

(99.1) du(¥(0,(P, 2)), ¥ (0,(P, 0))) < e .

Proof . We may assume tha is embedded int@\ in such a way that)(F)
is disjoint from the hyperplane at infinity. Leg, ..., Xy denote the coordinates
on AN C PN, We may assume thag, ..., xy were included among the; of
part (b) of Lemma 9.4; ley;, ..., g5 be the corresponding generalized Weil
functions.

First consider archimedean fix such av. There exists a constanf such
that )

dy(P, Q) < e max|[x (P) — x (Q)|

for all P,Q € (An AN)(C,). By (9.4.1), inequality (9.9.1) will hold fop if

g1 > miaxgi* +c —c,.

Now let v be non-archimedean. Taking the closurefoin PR defines a
different model forA; relative to this model we have

(99.2) d,(P, Q) < max|jx (P) — x (Q)]

for all P,Q € (An AN)(C,) such that the right-hand side is strictly less than
one. If [x(P)[| < 1 for all i then this holds because the sections g
corresponding td® and Q do not meet the hyperplane at infinity, so the in-
equality follows by Remark 9.6. Otherwise we may assumxgP)| > ||x (P)||

for all i; preceding assumptions then imply that (P)|| = ||x(Q)|| > 1 and
[IX1(Q)]] > |Ixi(Q)]| for all i. Then the sections are contained in the open affine
SpedR,[1/X1,%2/Xa, - .., XN /Xa], @and (9.9.2) follows from the inequality

% (P) _ x(Q)| _ max(x (P)[Ixu(P) = xa(Q)I; [xa(Q)IHIxi (P) — % (Q)I))
x(P)  x(Q) 1% (P)]?

and from a similar inequality for /x;. Then (9.9.1) follows from (9.9.2) if

|-

g1 > maxg' +c, —c,;
1
in this casec] comes from Proposition 9.8. O

Lemma 9.10. Letw: I' — C be a projective morphism whose generic fiber is
smooth, and let B...,D; be divisors onI" whose restrictions to the generic
fiber of = are prime, are smooth, and meet transversally. &t,..., 9o be
Weil functions for I, . . ., Dy, respectively. Then there exists effective generalized
Weil functiongys andgz 1, . . ., g2, on DiN...ND, and generalized Weil functions
g3.1,---,g3r ON I whose support does not contain D ... N D;. Letting



160 P. \Vojta

2, ={(P,2) e D1N...ND)(Cy) x C" | ||z]| <e9® i=1.r},

there is also an injectior, : X, — I'(C,). These objects have the following
properties for all places of k. From now on we omit from the notation.

i. There exists an pconstant(c,) such that for all i and all(P,z) € X with
z 70,

(9.10.1) l9p,i(O(P,2)) +log ||z || — g2, (P)| < c, .

ii. iIf Q € I' satisfies Q¢ Suppgs; and gp i (Q) > g3,;(Q) for all i then Q =
6(P, z) for some(P,z) € X' and P ¢ Suppyg,; for any i.

iii. Suppgs,; 2 Suppgi U Suppgy, -

Moreover:

(a) For any prescribed Pe D1N...N D, with 7w(Pg) suitably generic, the above
choices can be made such that iB not in the support of any of the above
generalized Weil functions.

(b) For any prescribed generalized Weil functiogls . . ., gr, on I" with Py ¢
Suppgj’ for any j, g1 may be chosen sufficiently large such that there exists
an M-constant(c,) with

(9.102) |9/(0(P,2)) — g/(P)| < c,

forallj and all (P,2) € X.

Proof . We assume is sufficiently generic thaC is regular at¢; 7€) is
regular; andDy, ..., D, meetr—1(¢) transversally, and remain prime, remain
smooth, and still meet transversally there.

If v is archimedean and real I&, = 1; if archimedean and complex, let
N, = 2; otherwise leN, = 0.

Let ' C P} for someN. Letd be the relative dimension of. Let L be a
linear subspace of codimensian— r + 1 satisfying the conclusions of Lemma
9.1 forX =I"ands =r and also forX = D;N...ND, ands = 0. After blowing
up L in P} (and replacingl” with its strict transform in the blow-up), the linear
projection fromL extends to a morphism: I' — Y = ]Pg*r whose restriction
toD1N...NDy is étale atF := p~(p(Py)) ND1N...N D, and which is smooth
on I except at a set which meets the fiber contairffagat only finitely many
points. We also assume thiatis chosen such that Supgpis disjoint fromF for
all'i.

Let z,...,z be rational functions on” whose principal divisors equal
Ds,..., Dy, respectively, nedf. By Bertini's theorem (writingD; as a difference
of two very ample divisors) we may assume that all components of all polar and
zero divisors of theg are distinct and have multiplicity 1 on the fiber pfcon-
taining Py, and that their union is a normal crossings divisor on that fiber. After
further blowing upI” (but leaving a neighborhood &% unchanged) these func-
tions define a morphism: I" — P, which isétale atg~*(q(Po)). Then Lemma
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9.4 gives a partial section of the canonical miagy (D1N...ND;) — Y defined
over [ ], A,(ga); this can then be composed with the projectior/ toMoreover
g4 i1s effective and Supg, is disjoint fromF.

Next consider (b). We may assume thét. .., g, are nicely defined dft. It
will suffice to consider the casa = 1, and (by Proposition 7.10) to assume that
g1 is of the form

g1 = min(—log ¢, ..., —log|lsl) ,

with all ¢; regular at allP € F and ¢,(P) # 0 for all P € F. We now assume
ga was constructed so that (9.4.1) holds 16y, ..., ¢s. Replacegs with the
generalized Weil function

max(gs, maxg" — log||¢1]| + N, log 2).
|

At non-archimedean places, (9.4.1) and the fact {ff@Et < e 9 imply that

the right-hand side of (9.4.1) is strictly less thd@,(P)|. If ||#i(P)| >
[lp2(P)|| then this implies that| i (0, (P, 2))|| = ||¢i(P)|; otherwise it implies

that ||¢i (0,(P,2)|| < |l¢2(P)]|. Thus g1(6,(P,2)) = g1(P). At archimedean
places, a similar argument shows that the right-hand side of (9.4.1) is less than
lp1(P)||/2Nv, which in turn gives

191(04(P,2)) — g1(P)| < N, log 2.

Thus if g1 is nicely defined aF then (9.10.2) holds witlt, = N, log 2. (For
arbitrary g1, (c,) will be different.)

Now let g; = g4 + (N,,/2)logr; this implies thatl’,(91) C A,(ga4) for all v.
Note that Supp; is still disjoint fromF.

The above also implies (9.10.1), singg, +log|/z || is a generalized Weil
function onI" for eachi.

Next consider condition (ii). LeU be an open affine subset 6f such that
q|U is étale, such thatt) containsg—%(q(Po)), such thap(U) is contained in an
open affineV C Y, and such thab; = (f;) on U, for somefy,... f, € @(U).
Let Y =g (Y x[1:0:...:0]). Another application of Lemma 9.4 gives
an effective generalized Weil functiogs on Y’ such that the injectiory’ C
I' extends for eachv to a rigid analytic partial sectiofl : A,(gs) — I'(Cy).
Moreover, there exists a generalized Weil functignon Y’ such that

(9.10.3) [f1(0, (P, 2)) — f1(6, (P, 0))|| < e%®) - |z]|

holds for all P,z) € A,(gs). Furthermore, the coordinate functions &h
are bounded as in (9.4.1). And finally, Suppand Supgs are disjoint from

q-*(a(Po)).
By Proposition 7.4 there exists a generalized Weil functipon Y such that
(aly,) g7 > gs (identifying Y with Y x [1:0:...: 0]), butq(Po) ¢ Suppg7.

We may also assume théq|Dlm“nDr)*g7 > g;. Likewise there existgg on
Y such that(q]Y,)*gg > ge and q(Py) ¢ Suppgs. Let Y be the closure of
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Y’\(D1N...NDy). By the choice of. made previously, no irreducible component
of Y” is contained inD;. Therefore there is a generalized Weil functignon
Y such that(q|Y,/)*99 > —log||f1||, butq(Po) ¢ Suppgo.

Let g1p = max(gs + go + N, l0g 2, g7). Then

93,1 := max(p,1+log||fy||+p*ge+N, l0g 2, gp 1+l0g||z1 || +p* g10+ (N, /2) logr, 0)

and
g3i = max(p,i +10g|/z| +p*g0+ (N,/2)logr,0), i=2,...r

satisfy the requirement of part (ii). To see this, first note that neifhyenor
Supp¢-log ||z ||) contain any fiber o, so Supmai 2 p~1(Suppgio) for all i.
Now suppos& € I'(C,) for somew, andQ ¢ Suppgs, for anyi. If q(Q) ¢
Ay (g10) theng(Q) ¢ 7., (g10 + (N, /2) logr) and therefore, trivially,

—log ||z (Q)[l» < g10(P(Q)) + (N, /2) logr

for somei; thus g3 (Q) > ¢p.i(Q). OtherwiseQ = ¢, (P, z) for someP ¢ Y’
and, by (9.10.3),

1f26(P, 2)) — f1(6/,(P, 0)) | < e98(UPY~910a(P) < g=99(a(P)~Nulog2

and therefore
[f1(Q)|| < e~ 9P / 2N

if and only if Q lies in the image of thé, constructed earlier. In particular, if
Q is outside the image df, then —log ||f1(Q)]] < go(p(Q)) + N, log 2, which
again impliesgs; (Q) > ¢p i (Q). Thus (i) holds.

Finally, we may increasgsz; such that Supps; 2 Suppgi U Suppg.; for
alli. This gives (iii). O

A divisor with simple normal crossingsis a divisor whose components are
smooth, meeting transversally. Here we allow the components to be multiple.

Proposition 9.11. Letw: I — C be a projective morphism to a projective variety
over k, let D be a Cartier divisor od” which is effective on the generic fiber,

and letgp be a Weil function for D. LetZ, ..., %4, be line sheaves of and let
Cluv,---,CLpand g,,...,c , be constants such thatforallD < ¢, < ¢,

for all v, G , = ¢, for almost allv, and ¢, < ¢, if v is archimedean. Then
there exists a generalized Weil functignon C with the following properties.
For each Q € I'(C,) there exists an integer > 0 and a power series map
¢: D" — 771(€)(C,) such that

i. the image ofp contains Q;
ii. there exist positive integers,f .., f; (depending on) such thatp*D equals
the principal divisor(z{1 ..z
iii. forall ze D" withz ...z #0,

|9p(¢(2) +frlog||ze]| + ... +f log]z ||| < g(&);
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and
iv. for all i and all v there exist sections; € I'(D", ¢*%4;) whose norms satisfy

Go <l <d,

on all of D'.

Moreover, asp varies, the tupl€fy, . . ., f;) takes on only finitely many values.
If in addition the generic fiber af is smooth, if the restriction of D to that generic
fiber has simple normal crossings, and ifs suitably generic, then the image of
¢ crosses D transversally.

Proof . First, we immediately reduce to the case where the generic fiber of
is smooth, and the restriction &f to this fiber is a divisor with simple normal
crossings.

LetDsy,..., D, be the components & . Applying the lemma t®1N...ND;
with variousPg gives variousyyj, g2, j, andgs ;i j such that; U; Suppgs;; ; does
not meeD;N...ND, on the generic fiber af. Then the generalized Weil function

r‘r}in miaxmin(gs,i,j ,9D,1,9D,2,- -, 9D.r)

has no support along the generic fiber, so by Proposition 7.4 it is bounded
from above by some generalized Weil functighcoming fromC. Therefore

if go.1,...,9p, are all greater than or equal 0 at some poinQ, then there
exists somg and someP € D;N...N D, as in condition (ii) of Lemma 9.10.

By condition (iii) of Lemma 9.10g; + g2 is also bounded from above (as well

as from below) aP for eachi; regarding the map as being a family of poly-
discs and dilating the polydisc attachedRdhen gives the map required for the
proposition.

If, however, some ofjp 1,...,9p IS less thang’, one can apply Lemma
9.10 with a smaller value of (taking care by (9.10.2) that the discardgsl;
remain small in that polydisc).

Part (iv) of the proposition can be guaranteed by fixing a local generator for
each.Z; at Py and applying (9.10.2) to the logarithm of its metric. O

Proposition 9.12. Given a nonsingular projective variety A with an extended

model, a morphismy: I" — A, and an M-constant(c,), one may choose, r,
and ¢ in Proposition 9.11 so that

dy (¥(6(2), (6(0))) < €

forall ze D'.

Proof . This follows immediately from Lemma 9.9 by choosingappropriately
in Lemma 9.10. O
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10. Models and complexes

This section defines models overfor A, A, X, X;, and the line sheaved_, s to
models over SpeR. ExtendingL_. s would lead to technical difficulties, how-
ever, so instead of doing that we spend the bulk of this section working around
that difficulty. L

To begin, we choose a mode¥ for A, as follows. Fix a model-Zq for Ag
such that the line sheaf'(Lo) and the line sheaves#,, of Sect. 2 extend as
line sheaves to-Zq. Then the construction (2.3) gives a moded for A. Again
let [oc]m and [0}, correspond to the projections (2.5); they are the closures in
.4 of the corresponding divisors iA. Let . 4 denote the complement of their
union; it is therefore a model foh.

Let .2" be the closure oX in .¢; it is a model forX. Of course, this
model is not necessarily the same as the maoéélchosen in Theorem 0.2. To
fix this discrepancy, the extended line sheavé4, can be tensored with some
fractional ideal inR; then finitely many modified models obtained from these
modified. ZZ, will have the property that the union of their sets of integral points
will contain the set of integral points?’(Rs) from Theorem 0.2. Or, one can
also fix this discrepancy by enlarging the &bf exceptional primes. In either
case, we assume from now on thaf’ is the closure ofX in the model. 4
constructed above, and th&t” is the closure o in . 2.

Now let Z; be the model forAj constructed as in ([V 4], Sect. 13); we may
assumezy dominates 4. Let

Z]_: ((% XSpeR - - - XSped?w’?)) X, gg %

Let Xy, ..., X, be closed subvarieties of satisfying (4.5.1-4.5.4). LeX; be the
closure ofX; in X, and let.Z; and.Z"; be the closures ok andX; in.-Z and
.74, respectively. LetZ" be the closure of [ X; in 7.

Since the. 7, extend as line sheaves i&/, the extended divisors [Q]
and o] on. 4 are Cartier. These extensions, together with (5.4.1) and ([V 4],
Lemma 13.2), define an extension Mf s to a line sheaf orZ". Let ¢ be as in
Proposition 6.2.

A logical next step might then be to define a modgl for the schemean,
defined in Sect. 3. One would then extehd, s to that model and construct
a suitably small section € I'(#,dL_.s). However, this presents a number
of difficulties since the natural extensions of the divis@¥, to 7 may con-
tain fiber components over SpRcinstead, we will identify/ (", dM_. s) and
I'(Ws, dL_. s) with R-submodules of '(Ws, d7iM_. ¢) via ms and (3.6), and work
with sections

(10.1) v € N7, dM_cg) N T(Ws,dL_) .

Such a section will be constructed in Sect. 12, for sufficiently ladgeThis
will be done by applying geometry of numbers arguments to various terms in
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a modified Faltings complex. This section and the next develop the machinery
necessary for dealing with the vanishing conditions in that complex.

Let £ be an integer such that (/L) and?({L,) are generated by their global
sections oveA and Ay, respectively. Then the sheaves

(10.2) 2 (e S0 (s pri+s pR) Lo+ n - 1) s pry L)

i<j
and
(10.3)
% (z SO (s P - - prj)*Lo) ®0 (z SO (s - pr+ -prJ-)*Lo)

i<j i<j

~ <2€(n 1)) §pr p*Lo)

are generated by their global sections o#er and remain so when pulled back
to Ws. Letting

L'=2(n - 1)p*Lo+(n— DL+ (N —1—e)L

and
L"=4(n — Dp*Lo+(n—1)L1+(n—1— €L,

we can create a Faltings complex as in ([V 4], Sect. 9):
(10.4)

0— (7, dM_@S)LF(?/', d> spr L’)aif(@”, d> spr L”) "

Here the maps and 3 are defined by tensoring with sections of the sheaves in
(10.2) and (10.3), respectively. Alsoandb are independent af ands.

To construct the desired section, then, we use the Faltings complex to con-
struct a suitable set of sections {7, dM_. ), and then show that one can
obtain a section ot”(dL_. s) by imposing certain vanishing conditions on the
sections of”(dM_.s). These vanishing conditions will be treated in the next
section; the remainder of this section compares the modules’, dM_. s) and
I'(Ws, dL_, ). First of all, the difference between the two divisor classes in ques-
tion is an effective divisor, so the modulg(Ws, dL_. s) can be regarded as a
submodule ofl"(Ws, dM_ s).

We now compare their metrics. This will be done in the slightly more general
context of singular metrics of?' (dM_ s). These will be metrics of the form

(105) I-1"=
Hle (Zielj exp(-e; pry gj ))

Here each; is a nonempty subset ¢fl, ..., n}, eachg; is some effective Green
function onA, and eachg; is a positive integer. Moreovel;, gj, andeg; /ds?
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are independent af ands. In the case at hand, we use the Green functions (2.8)
and the inequality

(o + 7 A LARAA)
(10.6) (1+0)2(1 + )2 >< (1+a+1+ﬁ) (1+a+1+5)

to find a singular metric of the form (10.5) which is equivalent to the metric on
(dL_.s). Here all constants are of the form dxg>" s?), with ¢ depending
only onA. In particular note that ify € I'(Z",dM_.¢) lies in I'(Z", dL_. s) then

its singular metric is bounded. This immediately gives the following corollary of
Proposition 6.2:

Proposition 10.7. Let I"(7",dM_.s) be the subset of (7", dM__ ) consist-
ing of sectionsy whose norm| - || is bounded. Then there exist ¢ aads in
Proposition 6.2 such that for all tuples

n
dimy I''(7”, dM_g) > Cdz dimX; H §2d|mxi
i=1

for all sufficiently large d (depending cs).
We now compare these singular metrics with the original one.

Lemma 10.8. Letv € S, let k,...,1; be as above, lefig ( =1,...,3,i €],
k=1,...,r) be nonnegative integers, lét= max/jx, and let

J r
(10.8.1) AP I EARE

j=liel k=1

Then every power series 0 — C, such that||f (z,...,z)| / ¥ is bounded
satisfies

f
supH | < c’sup||f||
mwr W mr
for some constant ¢ depending only onr and 1., l;.

Proof. LetQ € D" and fixp € (1/2,1) with p > max||z(Q)]|. It will suffice to
show that

FQI _ o gup I

(10.8.2) o) <SPy

After rearranging coordinates, we may assume {fm(Q)| < p for k =
1,...,sand|%(Q)||=pfork=s+1 ... r. We prove (10.8.2) by induction on
s. If s =0 then we are done. Otherwise, find integexs> 0, numbersy € C,
with p < |lwk]|| < 2, and¢ € D such that

% (Q) = wi &M
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for k = 1,...,r. Note that the restrictions offw| imply thatme > 0 if and
only if k < 's. Letting ¢ vary defines a curve irp on which

J

v [T - llglm
j=1

for some integem > 0; moreover the constants are of the foah (even if
¢ = 0). By the maximum principle applied fo(wi&)?, . . ., wép¥)/E™, we may
move Q to a point with one more of its coordinates lying i, but affecting
[f]| / ¥ by at most a factor o€’. This then gives (10.8.2) by induction. O

Lemma 10.9. Let ly,...,lj andgj (j € I;) be as above. For = 1,...,n let
m . I — C; be morphisms of projective varieties, and gt I; — A be mor-
phisms. Then there exist generalized Green functigns. ., g, on C, ..., C,,
respectively, and an Mconstant(c,) with the following properties. For each
v, for each&y, ..., & in Cy,...,Cy with & ¢ Suppg for all i, and for each
P e [[Xi(C,) (whereX; := wi‘l(gi )) there exists an integer i 0 and a power
series mapp: D" — [] X;(C,) such that:

i. the image ofp contains P;
i. all ¢* pr 4 g; are of the formr — 3, fix log||z|| with i € Z and |7| <
gi(&)onD'; and
iii. For all rational ¢ and all tupless of positive rational numbers, let M be the
Q-divisor class or{ | I defined by, . .., v, and (3.3). Then for sufficiently
divisible d > 0, ¢*@'(dM_. s) has a power series section @i whose metric
is bounded from below byxp(-c,d > s?) and from above by.

Moreover, asg varies, the tuplefi) takes on only finitely many values. If
in addition the generic fibers aofy, ..., m, are smooth, if the restrictions of all
U Supr(zj gij) to those generic fibers have simple normal crossings, and if
&1,..., & are suitably generic, then the images @f cross the above divisors
transversally.

Proof . By Proposition 9.11, for = 1,...,n there exist integers; > 0, power
series maps; : D — X;(C,), and generalized Weil functiong on C; such
that:

(a) the image ofp; containsP; for all i;

(b) all ¢fg; are of the formr — >", fix log||z|| with fix € Z and|7| < ¢ (&)
onD'; and

(c) for all i the sheave®;p*(Lo) and ¢;¢?(L1) have sections ofd'i whose
metric lies in the interval (12, 1) if v is archimedean or is identically equal
to 1 if v is non-archimedean.

Indeed, (a) follows from condition (i) of Proposition 9.11, (b) follows from
(i), and (c) follows from (iv). Moreover, for any prescribed extended model of
Ao and for any prescribed > 0, r; and¢; can be chosen such that
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dy (i (i (61 (2)), pi (¥ (41 (0)))) < €

for all ze D" and alli. This holds by Proposition 9.12.

The above mapg; combine to give a map: D' — []X;(C,) (with r =
>~ ri). This map automatically satisfies (i) and (ii) above. To show (iii), it suffices
to show that for ali andj with 1 <i <j < n, the Poincé sheafp* 4 has a
section onD" whose metric lies in the interval (2,1) if v is archimedean or is
identically 1 if v is non-archimedean. To see this, fix any extended modeifor
and letd' denote the corresponding distance &{C,)". If v is archimedean,
then a compactness argument shows that there existsO such that for all
P € Ao(C,)" there exists a rational section off whose metric on the set

{Q € A(C)" | d}(P,Q) < c}

lies in the range (12, 2). If v is non-archimedean, an analogous constant0
exists by Proposition 9.8: if we replagk' with the distance associated to the
model %4, then we may take = 1. Now (iii) is immediate, by (3.3).

Note that the tuple only occurs in (iii). O

Proposition 10.10. Lety € I'(Z",dM_. ) and letv € S. If ||v]|/, is bounded,
then

—10g |7/l = —10g 7 lsupe +cd > ?h(X) +c'd S8 .

Here ¢ and ¢ depend only on A, XdimX; (i = 1,...,n), and the bounds on
degXi (i=1,...,n).

Proof. For this proof, aradmissible multiplicative constantis a constant of the
form exped >~ s?h(X) +c’d > s?). Herec andc’ depend only om, X, dimX;
for all i, and the bounds on the degreesXpf but not ons.

Let P = (Py,...,Pyn) be a point on]] X;(C,) where |||/’ comes close to
its maximum, and letp: D' — [[X;(C,) be as in Lemma 10.9. Her€; is
an appropriate Chow varietyl;; is the corresponding family of varieties, and
& is the point onC; corresponding toX;. If & € Suppgi, then we proceed by
Noetherian induction.

Let
v = H(Z expej ¢* pr; gj )) -
j i €lj

By condition (iii) of Lemma 10.9, it suffices to show thatfifis a power series
on D' satisfying
It <,

then

f
(10.10.1) supH | < sup||f|
" !p or



Integral points on subvarieties of semiabelian varieties, | 169

up to an admissible multiplicative constant. By condition (ii), repla@mngith the
expression (10.8.1) changes it by at most an admissible multiplicative constant;
after doing so (10.10.1) follows immediately from Lemma 10.8. O

11. Vanishing conditions

This section describes how to use derivative conditions to define the set
I'(7°,dM_. ) of sectionsy € I'(Z", dM_. s) whose metric (10.5) is bounded.

For this section let, be the union of the supports of the Green functions
pri gj in (10.5). By an embedded resolution of singularities we may replace each
X; with a smooth propef(i such that the support af;, on [ X; is a divisor with
simple normal crossings; i.e., components of the support are smooth and cross
transversally.

Definition 11.1. Let Ry denote the set of nonnegative real numbers, Ife
}Rgo, then we say < f if the inequality holds for all components. Then:

(a) Aleading setin RY is a subsetr such thate € o andf < e impliesf € o.

(b) A leading set iboundedly generatedif it can be written as a union of sets
pri oy, as | varies over subsets ¢i,...,N}, where eachy, is a bounded
subset oft? .. (Herepr, denotes the projection %, obtained by throwing
out coordinates not in |.) -

(c) A leading setr is boundedly generated of multiweight< (dy,...,dyN) if
moreover each set; as above is a subset §f; [0, d;].

This is a big generalization of the notion of the index. The situation here
is complicated by the fact that the sheaf defined||by||’ is a tensor product
of sheaves defined by the index, but with varying sets of multiplicities and
involving different subsets of the variables. This happens because the restrictions
of prf[0]m and pf[oo]m to X; can involve several componentslofwith different
multiplicities.

In this section and the next, such leading sets will be used to indicate the
required vanishing of the corresponding power series coefficients. The reason
for the o is that one can ensure the vanishing of all coefficients froprby
considering finitely many partial derivatives alofiy_, {z = 0}. The orders of
these derivatives also need to be bounded; hence the notion of multiweight.

Lemma 11.2. Fix an embedding of k int@. Then there exists a constant c

with the following property. Let UC [] X (C) be a coordinated open subset such
that the support of 4 is contained in the union of the coordinate hyperplanes,
and such that all coordinates, are pull-backs of local coordinates frobﬁ(k).

Let v be a local generator o(//'(dM_E,s)|U. Then there exists a leading subset
o C RY,, boundedly generated of multiweight (cds?,), - . . , cdsfy,), such that

a local sectiony € I'(U,dM_. ) lies in I (U, dM_. ) if and only if



170 P. \Vojta

o\" aN™ (v _
(112.1) <821> "'(82N> (%>(o,...,0)_o

forall (ry,...,ry) € o NNV,

Proof . Up to a bounded function, eagh in (10.5) satisfies

N
gi =Y —fix log||z]
k=1

for some integer§ . Leto be the complement of the setof all (..., ry) € ]Rgo
such that

N N
112.2 t max . ik
(11.2.2) gk«fj[ie,j Q]lk

for all (t1,...,tn) € [0, 1]N.

With this o, if v satisfies (11.2.1) then € I'(U,dM_.s). Conversely, if
r € o then the derivative (11.2.1) must vanish, by an appropriate use of Cauchy’s
inequalities.

Next consider the question of the boundednessroiVe show thato is
boundedly generated of multiweigkt (dy, . .., dy), where

di = JZ rifg'}xaj fijk -

Indeed, we show that if € ¢ andry > dj, thenN x (rp,...,ry) € o (and
likewise for the other coordinates of. This follows from the fact that if; > d;
then (11.2.2) holds for allt{, ..., ty) if and only if it holds for all (1 to, ..., tn).
To finish the proof, first note that ffi # 0 theni =i (k). Sinceg; is a fixed
multiple ofds12 asd andsvary, it follows that alldy are fixed multiples otls ).
Moreover, asU varies, the integer§y have only finitely many possibilities,
so this multiple may be taken independent Wf Likewise, it can be taken
independent of th&i if their degrees are bounded. O

The conditions (11.2.1) are equivalent to the vanishing of certain partial
derivatives along the components lof. The remainder of this section proves
uniform upper bounds on the heights of those vanishing conditions aX;the
vary.

In order to obtain these uniformities, we assume that)NQ;hased above have
been defined in the following manner. As in ([V 4], Sect. 16)debe a projective
arithmetic scheme over SpB¢let C; denote its generic fiber over Specand
let I be a family of projective varieties ovef;. We perform an embedded
resolution ofL,; := >, Suppgj on the generic fiber of; overCj, and extend
I; so as to dominate the origindl. We may also assume that each irreducible
componeij0 of Ly extends to a Cartier divisor ofi. For eachDJ-0 choose
metrics at all archimedean places (i.e., choose Green forms for the @{&)es
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For& € G let X be the fiber inl; and let.2; be the closure oK; in I3.
(Note that.#; may be singular.) Then fofy, . .., &, in nonempty Zariski-open
subsets ofC;, )N(i will be irreducible and smooth, and the restrictionlgf to )~(i
will still be a divisor with simple normal crossings with tlﬁlf still irreducible.
Outside of these Zariski-open subsets@f the situation can be handled by
Noetherian induction.

In this situation we have partial derivatives, as follows. 4.dte a global sec-
tion onH)N(i of @(dM_.g), letD;, ..., Dy be some subset of thei*ﬂbjo, and let
£ = ({1,...,4;) be a tuple of nonnegative integers describing a leading term.
Then we have a global section

Diy(Din...0Dy) € T[T % mﬂDj,ﬂ‘ﬁ‘(dM_e,s—élle...feJDJ)|nDj) .

The chosen metrics db; determine metric§ - ||, on @ (D;) for archimedean
v; for non-archimedeamn assign metricq| - ||, by Definition 8.5. Proposition
8.6 then determines Weil functions 1,...,gp.5 for Dy,...,D;. Similarly, the
extension ofM_.s to 7" defines metricg| - ||, on @' (dM_.s) for all v. The
product of these metrics then gives a metricc@(@dM_. s — ¢1D1 — ... — ¢;Dj)
at all v.

We now determine upper bounds for the heights of these partial derivatives.

Lemma 11.3. There exist effective generalized Weil functigns .., g; on][ Ci
and an M-constant(c,) such that the inequality

—log|[Dey(D1N...N DJ)Hsupv
> — |09 HfYHSURU - Elgl,v(g) e T EJQJ,’U(E) - Cvd ZSZ

holds for all tupless, all 41, ..., ¢; € N, all sufficiently divisible d, and all places
v of k. Moreover, if each Pis the pull-back of a metrized divisor afig), then
eachg; can be taken as the pull-back of a generalized Weil function;gn C

Proof . Let v be a place and Ie® ¢ H)~<i (C,) be a point where the supremum
on the left is attained. Applying Lemma 10.9 with thg’s corresponding to
go.1,---, 90,3 (appropriately collated) gives an integet> 0 and a power series
map ¢: D" — H)~(i (C,) satisfying the conditions of the lemma. In particular,
divide v by the section in condition (iii). This gives a power serfemn D'
which satisfies

(113.1) —10g [ [|sup > —10g | Vlsupe — o0 Y57 -

For eachj, the Cartier divisor¢*D; is some multipleyy of some coordinate
hyperplanez = 0; thusz;* is a local generator af*¢”(—Dj). Recall thatgp ;
is defined as minus the logarithm of the metric of the sectienc@ — '(D;).
Therefore the metrid - ||; of z € @' (—¢*D;) equals—yy log||z|| — ¢*gp j. By
condition (ii) of the lemma it follows that

(113.2) |~ logllzcli| < 4 (&),
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whereg; is a generalized Weil function o@; x . .. x C,. Moreover, let be such
thatD; is the pull-back of a divisor oi;; theng; is the pull-back of a generalized
Weil function onC;. We may decrease so thatr = J; sinceP € D;n...NDy,
it follows that ¢~1(P) = {0}. We also assume th&t=j above.

The inequality (11.3.2) holds in particular @t 1(P). Writing

f(Z) - Z a(i)z(i)

=0

with agy € C,, it follows that the derivativdD,vy(D1 N ... N Dy) corresponds to
the term

azt.

By (11.3.1) and (11.3.2) it therefore suffices to show that

llag|| < supl[f|| .
]]])I'

This inequality holds by Cauchy’s inequalities ([V 4], Lemma 15.1). O

Summing this inequality over all placesof k and applying Lemma 8.4 (f)
then gives the following bound of heights.

Theorem 11.4. There exist height functiong h..,h; on[] C; and a constant
¢ such that, for any tuplé, we may clear denominators in the map— D,y to
obtain an R-module map/Grom the appropriate subset 6f(I] .27, ' (dM_. s))
to the R-module

{ver(I1-# 0D EM s~ 6Ds — ...~ 503)| 4, )
‘ [17]lsupo < 1 forall v ¢ Soo} .

For archimedean places we metrize this module via the supremum norm on the
line sheaf”(dM_. s — ¢1D1 — ... — £, DJ)]nD_ : then
]

1141 JTIole < I Il ~exp(elh1(§)+...+4th(§)+chsz) :

v|oo v|oo

Moreover, if each Dis the pull-back of a metrized divisor dh), then each h
can be taken as the pull-back of a height function g CHere ¢ depends only
on the familiesly,..., I, over G,...,C,, the divisors D, ..., Dj;, their Weil
functionsgp 1, . .., go 3, the modelZ”, and the extensions of various line sheaves
to 7.

In the next section, the above theorem will be combined with the following
proposition to show that existence of a small sectiod 6%/, dM__ ) implies
the existence of a small section {7, dL__ ).

Proposition 11.5. Let 1, ..., &, be projective arithmetic schemes o\&pedR
with generic fibers ¢, ..., C, respectively, oveSpedk. Fori = 1,...,n let
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mi . It — % be surjective projective morphisms. LetL ., Lyand L, ..., L; be
metrized divisor classes df, . . ., I, respectively. Let Abe an abelian variety
defined over k, and for+ 1,....n letp;: I} xg k — Ag be a morphism. Let P

be a Poincaé divisor class on Ax Ag; fori < j let My be a metrized divisor
class on/; xg Ij which equalgp; x pj)*P on the generic fiber (over k). LeOh
denote logarithmic height functions on C. ., C, relative to ample divisors.
Then there exist nonempty Zariski-opend C;, i = 1,...,n, with the fol-
lowing property. Forg € Ui (k) let X denote the varietyrfl(gi). Letd,...,d,
be positive integers such tha;/di d € Z for all pairs (i,j), let {,...,¢, be
positive integers witlf; < rd; for all i, and lety be a nonzero global section in

F(Hxi,Zdi pre L +Z€i prr L +Z Vdidi (pr; x prj)*Mij) )

i<i
Then
(115.1)
| = eXp<—CZdi h(&) —c ) Vdidh@)heg) —c” Zd) :
v i=1 i<j i=1

Here the constants ¢, cand ¢’ depend only onry, ..., m,, r, and the metrized
divisor classes.

Proof. For alli letm =diml; —dim ¢ and lety;: I7 — ]Pr}‘ be a generically
finite rational map which is finite over the generic point@}fI After expanding

I3, we may assume thaf; is a morphism. The proof of ([V 4], Corollary 18.3)
shows that there exist generically finite surjective morphigarinsl}’i — I such

that the metrized divisor classksandL/ define norms*._iti and (/)" on FiTi which
agree with suitable multiples af*y*'(1) up to divisors supported on fiber
components over Sp&and, correspondingly, changes of metrics at archimedean
places. This proof also constructs norM$ associated td/; on Fiﬂ XR Fjﬂ; the
following lemma characterizes these norms.

Lemma 11.5.2. Fori = 1,2 let #’: I — C; be a surjective morphism of
complex projective varieties, let Ae abelian varieties, and Ieif: Fiu — A be
morphisms. Let P be a divisor class op>AA; whose restrictions t§0} x A, and

A; x {0} are algebraically equivalent to zero, and let M(p% x p3)*P. Assume
that G, and G are normal, and that the restriction of M to the generic fiber of
7 x 7} is trivial. Then some positive integral multiple of M equét$ x 73)*M’

for some divisor class Mon C; x C,. Moreover, the restrictions of Mo {£;} xC,
and G x {&} are trivial for £&; € C; and &, € Cs.

Proof . Fori = 1,2 let B; be the smallest translated abelian subvarietyAof
containing p?(I7%). Also for all & € C; let D;(¢) denote the smallest abelian
subvariety ofA; such thal;o?((wi”)—l(gi )) is contained in a translate &f; (&;). For
generic, D(&) equals its maximal value; let this be denofed SinceM =0
on fibers ofr? x 7, it follows thatP = 0 on p ((7%)~1(¢1)) x ph((rh)~(£2)). For
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generic €1, &), ph((rh)~1(€1)) x ph((rh)~1(£2)) spans the corresponding translate
of D1 x D3 as an abelian variety (for any choice of origin); hence some positive
multiple mP is trivial on this translate. Moreover, there exists om&hich works

for all (£1,&2). Fori =1,2letq;: B — E; be the quotient under the action[of;

then by ([H 2], Il Ex. 12.4) there exists a divisor cla®son E; x E, such that

mMP = (a1 X a2)*Q. Since fibers ofr}t are collapsed by;, there exist morphisms

G . Ci — Ej making the following diagram commute:

rr B oc A

R

G — E

Let M’ = (681 x 32)*Q. It then follows thatmM = (71 x m)*M’.

Finally, the restrictions oM to {1} x I’} and I'} x {n,} (for ;; € I'} and
M € thi) are numerically equivalent to zero; hence a similar statement is true
for M’. The last assertion of the lemma then follows from [Ma]. O

The statement of the proposition is unchanged if we multiply all divisor
classes by a positive integer and raiséo that same power. Therefore we may
assume thals/lijﬁ is a pull-back of a metrized divisor class @ x Cj, as in the
lemma, up to changes at fiber components over Bpaed changes in metrics.
When applying the lemma, note that = A°%"

Corresponding to the sectionthere is a nonzero global section

e F(HI}”, STdipr i+ apr Lt + > did(pr, prj)*MU—ﬁ) :

i<j
The above divisor class coincides with a product of multiples pippey@'(1)
up to fiber components over Specchanges of metrics, and a divisor class
Z \/did; (pr; x p"j)*(Wiﬁ X Wjﬁ)*Mijl )
i<j
whereM is as in the lemma. However, we note that Poigelédte divisorsMy
satisfy

(115.3) LY GRISPES c¢’vh&)heg) -
The proof then concludes as in ([V 4], Lemma 13.9) by pulling up a suitable
point froml‘[ﬂbgi and applying (11.5.3). O

12. Construction of a global section

Let I" be a metrized, torsion free finitely generated module of ramver the
ring of integersk of k. For all archimedean placasof k, let the completion
I, .= I ®r k, of I" at v be given a Haar measure such that the unit ball has
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measure 1, and let covdlj denote the covolume of in ][, I',. Define a
length function/(y) = I, |7/, and fori = 1,...,6 define successive minima
Ai to be the minimum\ such that there exidR-linearly independent elements
M,---,% € I such that!(y) < Aforallj =1,...,i.

Lemma 12.1. In this situation, there exist constantsand ¢ depending only on
k such that

1 Ao X s
1211 < < clslkws/z
( ) clolk@s/2 = covol(I') — %

Proof . This follows from ([V 1], Theorem 6.1.11 and Remark 6.1.12). (When

k = (O this is Minkowski’s “second theorem.”) The factafsk@¢/2 come from

the factorials inloc. cit. and from the volume of the unit ball in Euclidean space.
(I

Lemma 12.2. Let3: I1 — I be a homomorphism of metrized R-modules. Let
6o and 6, be the ranks (over R) of the kernel and imagespfespectively. For
all v | co assume that Cis a constant such that

(122.1) 1B()Nle < Collylle  forall y € I,

and let C= HU‘OO C,. Then

(12.2.2) covol(l}) > 2~ kWb covol(KerB)C ~%2 covol(Images) .

Proof. See ([Ko], Lemma 5). O

These lemmas, together with the results of Sect. 10, provide us with the
main tools needed to construct a small section. At this point we introduce the
assumption that

1
S ~ .
Vhe(Py)
Theorem 12.4. Lete be as in Proposition 10.7, let M s be as in (3.6), and let
| - ||" denote a metric as in (10.5). Then for all tuples (s, . .., s,) of positive
rational numbers satisfying (12.3) and for all sufficiently large (and divisible)

d (depending ors), there exists a section € I'(Z",dM_. ) such that||~|" is
bounded and such that the inequality

n
(124.1) T I lsupe < exp(cd Zsz>
v|oo i=1

holds. Here the constant c is independensahd d.

(12.3)

Proof . This proof is a matter of obtaining bounds for covolumes of various
modules in the diagram
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0 —  I'(Z,dM_.y)
< r(7axspry) Lor(7aseer)
) SR - 7 ZS pr; L )
U U .
r@,a.)  — r'(7.dLsery)

where the top row is the Faltings complex (10.4) and the symbblin the
bottom row denote the submodules of sectignf®r which ||y||" is bounded.

First, note that ifF is a divisor class o ].2Z", then F(H Fi,dF) —
I'(7”,dF) and the cokernel is annihilated by an integer independedt dhere-
fore we may pass between the two modules a few times without affecting the
estimates.

To shorten notation, lefp, I3, and I'> denote the modules in the top row,
and I'j and I'] the modules in the bottom row. For all excefit, we shall use
metrics induced by the injections intb;; on I3 and I the metrics shall be
those induced by the largest of the sup norms on the direct summands. Also let
61 = rankr7.

First, by ([V 4], Lemma 13.8),

covol(ly) < exp((sl edY 512) L glkisy/2

< exp(él ccd) S«z) :

where from now ort is a constant which is independentafands, but whose
value may change from line to line. The extra factor in the first step appears
because we are using the first half of (12.1.1); it disappears bedaugews
only polynomially ind, so this factor can be absorbed into the other factar if
is sufficiently large. This argument will be used implicitly several times in this
proof.

Next we show a similar bound for covdl(), as follows. LetX; be a resolution
as in Sect. 11, and regafd as a submodule af ([T X, d > s?pr L’). We have

IN=ItmClIm1C...Clog=1I1,

where eacll’; ¢ is the kernel of a mag; from Iy s _; to some module determined
by certain partial derivatives, as in Lemma 11.2. We will apply Lemma 12.2 to
B . First consider (11.4.1). Since eabh in Theorem 11.4 is the pull-back of a
metrized divisor on somx, the corresponding height satisfleg;) < ch(Xg))+

c¢’. Moreover by Lemma 11.2 the factofs are bounded bygds’, so by (4.5.4)
and the condition (12.3) os the bound (11.4.1) is at most eiqul " s?). Thus
(12.2.1) holds withC = exp(cd }_ s?). Similarly, (4.5.4) and (12.3) (with; =

ds?) imply that the right-hand side of (11.5.1) is not smaller than(exqa >° 5?).

This gives

covol(3 (I 1)) > exp(— ranks (Iy-2) - cd > s?) .

By (12.2.2), therefore,
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covol(ly 1) 2
) < .
covol(lyf_1) = exp(él cd Z S )

and thus, by descending induction bn

covol(Iy) < exp(51 ccd ) 312) .

Here we note that some steps can be done in parallel: in fact, the above bounds
on the; imply that we can taken < cd " s? so the power of 2 in (12.2.2)
does not affect the shape of this estimate.

Next, it is an easy matter to bound coudlf; this argument is the same as
in [F 1]. Indeed, by ([V 4], Lemma 13.9),

covol(3(I7)) > exp(— rank(17) - cd S §2> ,

and by construction (12.2.1) holds wifh < exp(cd ) s?). Thus by (12.2.2)

(12.4.2) covol([3) < exp(él ced ) 32) .

Now let §; = ranklj. By Proposition 10.75,/6; is bounded, so (12.4.2)
holds (after adjusting) with é; replaced byé;. Then, by the second half of
(12.1.1), there exists a nonzero sectipg I with

TT ikl < exp(cd Y s?) -

v|oo

This formula still refers to the norm ohy; however, by ([V 4], Lemma 13.2b
and Corollary 13.7), the same bound holds using the norf'@#", dM_¢ ).
(I

Applying Proposition 10.10 then gives the following result:

Proposition 12.5. Let P € [] X (k) and lety be a global section as in Theorem
12.4. Then we have
(125.1)
d ds® \ 2
n > " (avii + avﬁnij)
TPl <expledd s |- TTTITI @
i=1

2 dﬁZ 27
vES vESM=1i<j (1 +avmi) (1 +avmj>
wherea,mi = pri am as defined in (2.7), relative ta,k
Proof . This is immediate from Proposition 10.10 and (10.6). O
Remark 12.6. Theorem 12.4 can also be used to find a section whose norm is
bounded with respect to a given finite set of singular metrics. Indeed, one only

needs to repeat the fifth paragraph of the proof for each of the metrics. This fact
will be used in a subsequent paper.
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13. End of the proof

The next few steps of the proof of Theorem 0.2 are much the same as have
appeared previously; therefore they can be described very quickly.

To begin, for places € S let A, be the Weil function defined in Proposition
2.6. The set4(Rs) can be embedded into the finite dimensional vector space

V = (Ao(k) @z R) & RH#S

via the map
P = (p(P), Am,v(P)m,v) -

On the first factor, the canonical height defines a length function

00(P) = /Lo (p(P) ;

on the second factor, let

m
BP)= oy 2D PP

vES m=1

Both length functions are nondegenerate. We note &h@) is related to the
height functionh,, (P). Indeed, the functions max ,,0) and max{Am,.,0)

are Weil functions for the divisors [f]and [pc]m, respectively, at the place
although they may differ by a bounded amount from the metrics (2.8). However,
this fact still implies that

(131) h,(P) =41(P)+0(1).

(This equality requires the fact thBt € . 4(Rs). It will be needed for (13.7).)

This argument uses the same sphere packing argument as in [V 4], except
that now it must take place simultaneously on two spheres, due to the fact that
h., behaves quadratically in the group law, wheréas behaves linearly. But
note that bothh, andh, are bounded from below, artd = h.j +h,. Then,
for pointsP € . 4(Rs), the points

1
-p(P) € Ag(k) ®z R
Uy PP E Aol @

and .

A ,U(P)) cR¥*H,

(hL(P) " veS, 1<m<pu
both lie in the unit balls relative to the length functiofysand ¢;, respectively.
Now we assume that for some predetermingd> 0, the pointsPy, ..., Py

have been chosen such that

1 1
(132) o <\/hL(Pi) (P = V(@) 'p(Pj)> =a
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and
1 1
133 14 P - P <
(133) 1<hL(Pi) ) J) =a
for all i < j. For such a tupleR;,...,P,) choose rational numbess, ..., s,
sufficiently close to i\/hL(Pi), i =1,...,n, such that
(13.4) lo(s - p(P) =5 - p(F)) < @1
and
(135) 6(sfP—5P)<a
foralli <j.

Let E be the arithmetic curve o# " corresponding toKy, . . ., Py). Applying
(13.4) to the definition (3.3) oM_. s gives
(13.6)
1
[k - Q] 2
This follows as in ([V 4], 17.2). But also (13.5) implies thafds*-P; —ds*-P}) <
de;; combining this with the inequality

(a+ By
(1+a)*(1+py

implies that
(13.7)
ds’he, (Pi) +ds’h, (Py)

1 S
< ko) 22 o (1+af) (14

vmi

n
deg_of < " Per ner (093 ¢h, Py 0 ().
i=1
- I\ mi 1Y dlioga/m)
< min @ min ﬁ,ﬂ el'°d , a>0 >0

adqz- adﬁzA ’
() pvofe)

vmj

Therefore

p (dqz d’ \ 2
n 1 avmi+avmj)
(n—1)) ds’h,(P) < kO] > )Y —log

i=1 ’

2 ds2 \ 2
vES M=1 i<]j (1 +a?}ii> (1 +O‘1jnj)
n(n — 1)d 2
+ , a+O (d Z s ) .
Combining this with (13.6) and (12.5.1) then gives

" _lQ] 3" —log|yc |, < dn((n — ez — ) + o(d ZSIZ) .
’ v¢S

If ¢ ande; > 0 are chosen sufficiently small and if the height¢P;) are
sufficiently large, then this bound becomes
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1
i g 2= 1ol lell, < —dez.

vgS

These bounds depend only oti" C . 4. Asin [F 1] and ([V 4], Proposition 16.1),
we obtain a positive lower bound for the index-pfalongE:

t(FYa(le"aPn)7d§a"'7d§) 2635

wherees = e3(ez, & C . A4).

The last step of the proof consists of applying Faltings’ product theorem, as
was done in ([F 1], Sect. 6) or [V 4]. This implies that at least on@gf . ., P,
lies in a strictly smallerX;, still satisfying (4.5). The inductive step of Sect. 4
may then be carried out.

14. Proof of Corollary 0.3

Let g = h1(X, ). Then the Albanese variety AlKj has dimensiony. By the
condition on the number of components of Sipghere are at least di—g+1
linearly independent divisoris; such that Supf; C SuppD, and such that each
E; is algebraically equivalent to zero. The line shea¥e;) can be used to
define a semiabelian variefy; which X\ D maps into. But since dirA > dim X,

the image ofX \ D is a proper subvariety, to which we can apply Theorem 0.2.
This implies Corollary 0.3. O
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