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0 Introduction

Let M and M ′ be real analytic hypersurfaces in CN and CN ′
respectively and

H :M → M ′ a su�ciently smooth CR mapping. Under what conditions does
H extend holomorphically to a neighborhood of M in CN ? In this paper we
prove that if M and M ′ are algebraic hypersurfaces in CN ; i.e. both de�ned by
the vanishing of real polynomials, then any su�ciently smooth CR mapping
with Jacobian not identically zero extends holomorphically provided the hyper-
surfaces are holomorphically nondegenerate (see de�nition below). Conversely,
we prove that holomorphic nondegeneracy is necessary for this property of CR
mappings to hold. For the case of unequal dimensions, we also prove that if
N ′ = N +1; M ′ is the sphere, and M is an algebraic hypersurface which does
not contain any complex variety of positive codimension, extendability holds
for all CR mappings with certain minimal a priori regularity.
Our approach uses the work of Webster [W1, W2], on holomorphic map-

pings between algebraic hypersurfaces, and the recent generalizations in [H1,
H2] and [BR6]. The question of holomorphic extendability of CR mappings be-
tween real analytic hypersurfaces has attracted considerable attention since the
work of Lewy [Lw] and Pincuk [P]. For more recent work in the case N = N ′;
see Diederich–Webster [DW], Jacobowitz, Treves, and the �rst author [BJT],
Bell and the �rst and third authors [BBR, BR1, BR2], Diederich–Fornaess
[DF, BR3], and the references therein, as well as the survey paper Forstneri�c
[Fo2]. We note here that the results for N = 3 cited above require nonva-
nishing conditions on the normal component of the mapping and require the
�rst hypersurface to be essentially �nite. (See [BR3] for more general results
for the case N = 2 and Meylan [Me1, Me2] for some extensions of this to
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higher dimensions.) In the algebraic case, studied in this paper, we are able
to omit these assumptions. A recent example given by Ebenfelt [E] shows that
holomorphic extendibility may fail if the hypersurfaces are not assumed to be
algebraic. The authors know of no other example of real analytic hypoellipticity
which holds in the algebraic category but not in the real analytic category.
For the case where N-N ′ an important �rst result was given by Webster

[W2], who proved that any CR map of class C3 from a strongly pseudoconvex
real analytic hypersurface in CN to the sphere in CN+1 admits a holomor-
phic extension on a dense open subset. Generalizations were later given by
Faran [Fa1, Fa2], Cima–Su�ridge [CS1, CS2], Cima–Krantz–Su�ridge [CKS],
Forstneri�c [Fo1], and [H2]. Recently, the second author in [H1, H2] proved
that any CR mapping of class CN ′−N+1 between two strictly pseudoconvex
real analytic hypersurfaces in CN and CN ′

(N ′ = N ¿ 1) respectively, is
real analytic on a dense open subset of M; and is algebraic if both M and
M ′ are algebraic. In Theorem 5 below we prove that holomorphic extension
holds everywhere under weaker di�erentiability assumptions than those given in
[H2].
We now introduce some notation and de�nitions which are needed to state

precisely our main results. By a germ at p0 of a holomorphic vector �eld in
CN ; we shall mean a complex vector �eld of the form

∑N
1 aj(Z) @

@Zj
; where

the aj(Z) are germs at p0 of holomorphic functions. Let M be a real an-
alytic hypersurface in CN . For p0 ∈ M we say that M is holomorphically
degenerate at p0 if there exists a nonzero germ of a holomorphic vector �eld
tangent to M in a neighborhood of p0 (see Stanton [Sta, BR6]). We say that
M is holomorphically nondegenerate if it is not holomorphically degenerate
at any p0 in M . Recall that by Theorem 1 of [BR6], a connected real an-
alytic hypersurface is holomorphically nondegenerate if and only if there is
a point p1 at which it is not holomorphically degenerate. A CR function on
M is a function which is annihilated by the tangential Cauchy–Riemann op-
erators; a mapping from M into CN ′

is CR if its components are CR func-
tions.

Theorem 1. Let M and M ′ be two algebraic hypersurfaces in CN and assume
that M is connected and holomorphically nondegenerate. If H is a smooth
CR mapping from M to M ′ with JacH ≡| 0; where JacH is the Jacobian
determinant of H; then H extends holomorphically in an open neighborhood
of M in CN .

The fact that M and M ′ are algebraic plays an important role. Indeed,
as mentioned before, a recent example given by Ebenfelt [E] shows that the
conclusion of Theorem 1 need not hold if M is real analytic, but not algebraic.
(See Example 2.10 below.)
The following is a re�nement of Theorem 1 in which H is assumed to

have only a previously prescribed number of derivatives, depending only on
M and M ′. The degree of an algebraic hypersurface is the total degree of the
irreducible real polynomial de�ning M .
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Theorem 2. Let M and M ′ be two algebraic hypersurfaces in CN of degrees
d and d′ respectively; and assume that M is connected and holomorphically
nondegenerate. Then there exists a positive integer k = k(d; d′; N ) (depending
only on d; d′ and N ) such that if H is a CR mapping from M to M ′ of class
Ck with JacH ≡| 0; then H extends holomorphically in an open neighborhood
of M in CN and is algebraic.

Note that if the Jacobian of a nontrivial CR map is 0, then M ′ must contain
a complex variety (see [BR5]). Therefore we obtain the following corollary of
Theorem 1.

Corollary 1. Let M and M ′ be two algebraic hypersurfaces in CN and assume
that M is connected and holomorphically nondegenerate. If H is a smooth
CR mapping from M to M ′ and if M ′ contains no complex analytic variety of
positive dimension, then H extends holomorphically in an open neighborhood
of M in CN .

If f is a function de�ned on M we shall say that f is algebraic if there
exist holomorphic polynomials qj(Z); j = 0; : : : ; k; not all identically 0; such
that qk(Z)f(Z)k + · · · + q0(Z) ≡ 0; for Z ∈ M . Similarly, we say that f
is locally algebraic if for any point p on M there is a neighborhood of p
such that the restriction of f to that neighborhood is algebraic. A mapping is
algebraic (resp. locally algebraic) if each of its components is.

Theorem 3. Let M be a connected; holomorphically nondegenerate, algebraic
hypersurface in CN . Then there exists a positive integer ‘ with 15 ‘5 N−1
such that if H is a CR mapping of class C‘ from M to another algebraic
hypersurface M ′ in CN with JacH ≡| 0 on any open subset of M; then H is
locally algebraic. Moreover; if the Levi form of M is nondegenerate at some
point; then one can take ‘ = 1.

In fact in Sect.1 we de�ne a new invariant ‘ for any connected real analytic
hypersurface M which satis�es the conditions of Theorem 3 if M is algebraic.

Since a connected real analytic hypersurface in C2 is holomorphically non-
degenerate if and only if it is not Levi 
at, the following is an immediate
corollary of Theorems 1 and 3.

Corollary 2. Let M and M ′ be two algebraic hypersurfaces in C2 and assume
that M is connected and not Levi 
at.

(i) If H is a smooth CR mapping from M to M ′ with JacH ≡| 0; then H
extends holomorphically in an open neighborhood of M in C2.

(ii) If H is a CR mapping from M to M ′ of class C1 with JacH ≡| 0 on
any open subset of M; then H is locally algebraic.

The following shows that the condition of holomorphic nondegeneracy is
necessary for the holomorphic extendability of CR mappings to hold.

Theorem 4. Let M be a connected real analytic hypersurface in CN which is
holomorphically degenerate at some point p1. Let p0 ∈ M and suppose there
exists a germ at p0 of a smooth CR function on M which does not extend
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holomorphically to any full neighborhood of p0 in CN . Then there exists a
germ at p0 of a smooth CR di�eomorphism from M into itself, �xing p0;
which does not extend holomorphically to any neighborhood of p0 in CN .

Our �nal result deals with analytic extendability of CR mappings between
hypersurfaces in complex spaces of di�erent dimensions. Let M be a real an-
alytic hypersurface, p ∈ M; and � a de�ning function of M in a neighborhood
of p. Recall [D1, D2, Le] that if M does not contain a complex analytic vari-
ety of positive dimension through p then there exists C ¿ 0 such that for any
complex analytic curve parametrized by Z = 
(t) with 
(0) = p;

(0:1) ord(�(
(t); 
(t)))5 C ord(
(t)) ;

where ord(�(
(t); 
(t))) and ord(
(t)) denote the orders of vanishing of �(
(t);

(t)) and 
(t); respectively, at t = 0. In this case we let mp be the smallest
integer for which (0.1) is satis�ed with C = mp.

Theorem 5. Let M ⊂ CN be an algebraic hypersurface. Assume that there is
no nontrivial complex analytic variety contained in M through p0 ∈ M; and
let m = mp0 be the integer de�ned as above. If H :M → S2N+1 ⊂ CN+1 is a
CR map of class Cm; where S2N+1 denotes the boundary of the unit ball in
CN+1; then H admits a holomorphic extension in a neighborhood of p0.

The paper is organized as follows. In Sect. 1 we introduce a new invariant
for real analytic hypersurfaces, which will be used in the proofs of Theo-
rems 1 and 2 and could also be of independent interest. The proofs of
Theorems 1 and 3 are given in Sects. 2 and 3 respectively. Sect. 4 is devoted
to the proof of Theorem 2. In Sect. 5, we study properties of families of CR
automorphisms for holomorphically degenerate hypersurfaces and give a proof
of Theorem 4. The proof of Theorem 5 is given in Sects. 6 and 7.
The authors are grateful to Leonard Lipshitz for suggesting to them the

proof of Lemma 4.2. They would also like to thank Peter Ebenfelt and Lance
Small for useful discussions.

1 A new invariant for real analytic hypersurfaces

Let M be a real analytic hypersurface in CN through 0 and p0 ∈ M close
to 0. If �(Z; �Z) is a de�ning function for M near 0; with �(p0; �p0) = 0 and
d�(p0; �p0)-0; we de�ne the Segre surface through �p0 by

�p0 = {� ∈ CN : �(p0; �) = 0} :

Note that �p0 is a germ of a smooth holomorphic hypersurface in CN through
�p0. Let L1; : : : ; Ln; n = N − 1; given by Lj =

∑N
k=1ajk(Z; �Z) @

@ �Zk
be a basis

of the CR vector �elds on M near 0 with the ajk real analytic. If X1; : : : ; Xn;
are the complex vector �elds given by Xj =

∑N
k=1ajk(p0; �) @

@�k
; j = 1; : : : ; n;

then Xj is tangent to �p0 and the Xj span the tangent space to �p0 for � in a
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neighborhood of �p0; with (p0; �) 7→ ajk(p0; �) holomorphic near 0 in C2N . For
a multi-index � = (�1; : : : ; �n) we de�ne c�(Z; p0; �) in C{Z; p0; �}; the ring of
convergent power series in 3N complex variables, by

(1:1) c�(Z; p0; �) = X ��(Z + p0; �) ;

where X � = X �1
1 ; : : : ; X �n

n .
Note that since the Xj are tangent to �p0 ; we have c�(0; p0; �) = 0 for all

p0 ∈ M and � ∈ �p0 in a neighborhood of 0. In particular, c�(0; p0; �p0) = 0
for p0 ∈ M close to 0. We say that M is essentially �nite at p0 if the ideal
(c�(Z; p0; �p0)) generated by the c�(Z; p0; �p0); � ∈ Zn

+; in the ring C{Z} is of
�nite codimension. (By the Nullstellensatz, this is equivalent to the condition
that the functions Z 7→ c�(Z; p0; �p0) have only 0 as a common zero near the
origin for p0 �xed and � ∈ Zn

+.) This de�nition of essential �niteness, which
does not depend on either the choice of holomorphic coordinates or that of
the de�ning function, coincides with that given in [BJT] and that given in
[BR2] in a slightly di�erent form. The present de�nition has the advantage
of avoiding the use of the implicit function theorem, thus making explicit
calculations easier.
We introduce here a new invariant which will give us a bound on the

number of derivatives needed in Theorem 3. If M is essentially �nite at p0 ∈ M
�xed as above, let ‘(p0) be the minimum positive integer for which the ideal
generated by {c�(Z; p0; �p0) : |�|5 ‘(p0)} is of �nite codimension in C{Z}. It
follows from the de�nition of essential �niteness and the fact that C{Z} is a
Noetherian ring that ‘(p0) is �nite. It is clear that ‘(p0)= 1.

Proposition 1.2. Let M be a connected real analytic hypersurface which is
holomorphically nondegenerate. Then there is an integer ‘(M); with 1 5
‘(M)5 N − 1 such that ‘(p) = ‘(M) for all p in an open; dense subset of
M . Moreover; ‘(M) = 1 if and only if M is generically Levi nondegenerate.

Proof. We need to introduce the following vector-valued functions. For a multi-
index �; let V� be the real analytic function de�ned near 0 in CN by

(1:3) V�(Z; �Z) = L��Z(Z; �Z) ;

where �Z denotes the gradient of � with respect to Z . In the rest of the proof
we shall say that a property holds generically on M (or an open neighborhood
of p0 in M) if it holds in an open, dense subset of M .

Lemma 1.4. Let M be a connected real analytic hypersurface in CN . Then
M is holomorphically nondegenerate if and only if {V�(Z; �Z); � ∈ Zn

+} span
CN generically in a neighborhood of 0 in M .

Proof. We note �rst that the condition that the V� span CN is independent
of the choice of coordinates and de�ning function. We introduce here normal
coordinates near 0; Z = (z; w); z ∈ Cn; w ∈ C; such that M is given there by

w = Q(z; z; w); with Q(z; 0; w) ≡ w ;
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(or equivalently by �w = �Q( �z; z; w)). We put p0 = (z0; w0); we may then take

(1:5) Xj =
@
@�j

+ �Q�j (�; z
0; w0)

@
@�

;

where � = (�; �); � = (�1; : : : ; �n). Hence c�(Z; p0; �) of (1.1) is given by

(1:6) c�(Z; p0; �p0) = − �Q��( �z
0; z0; w0) + �Q��( �z

0; z + z0; w + w0) :

Similarly, we have by using (1.3),

(1:7) V�(p0; �p0) = − �Q �z �; Z( �z
0; z0; w0) :

Hence c�; Z(0; p0; �p0) = −V�(p0; �p0). If the rank of the V�(Z; �Z) is less than N
generically, then at any point of maximal rank p0 near 0 in M; by the implicit
function theorem, there is a complex curve Z(t) such that c�(Z(t); p0; �p0) = 0
for all small t and all �. Hence M is not essentially �nite at p0. Since the
set of essentially �nite points is open [BR2] (and the set of points of maximal
rank is open and dense), there exists an essentially �nite point if and only if
the generic rank of the V�(Z; �Z) is N . By [BR6], the existence of an essentially
�nite point is equivalent to holomorphic nondegeneracy of M . This completes
the proof of the lemma.

We shall also need the following lemma, whose simple proof is left to the
reader.

Lemma 1.8. Let f be a holomorphic function de�ned in an open set 
 in
Cp; valued in CN . If the @�f(�); � ∈ Zp

+ span CN generically in 
; then the
@�f(�); |�|5 N − 1 also span CN generically in 
.

Lemma 1.9. Let M be a holomorphically nondegenerate real analytic hyper-
surface of CN through 0. There exists an integer k; with 15 k 5 N − 1 so
that {V�(Z; �Z); |�|5 k} span CN generically in a neighborhood of 0 in M .

Proof of Lemma 1.9. By Lemma 1.4, we may �nd p0 = (z0; w0) ∈ M so
that the vectors V�(p0; �p0) span C

N as � varies over all multi-indices. We put
f(�) = �QZ(�; z

0; w0). Now by (1.7) and Lemma 1.8, we conclude that there
exists k, 15 k 5 N −1, such that the vector-valued functions �Q��;Z(�; z

0; w0);
|�| 5 k span CN generically for � in a neighborhood of 0 in CN−1. This is
equivalent to the nonvanishing of an N×N determinant �(�; p0). We claim that
the functions �Q��;Z( �z; z; w); |�| 5 k also span CN generically for (z; w) ∈ M
near 0. For this, it su�ces to show that �( �z; Z) does not vanish identically
for Z ∈ M near 0. Indeed, if �( �z; Z) ≡ 0 on M; then by complexifying the
variables, we would also have �(�; Z) ≡ 0 for � near 0 in CN−1 and Z near
0 in CN ; contradicting �(�; p0) ≡| 0.

We return now to the proof of Proposition 1.2. We �rst note that the
function ‘(p) is upper semi-continuous on M; i.e. ‘(p) 5 ‘(p0) for p
near p0. By (1.6), (1.7) and the implicit function theorem, it follows that
if {V�(p0; �p0); |�| 5 k} span CN ; then ‘(p0) 5 k. Conversely, if k is the
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smallest integer for which {V�(p0; �p0); |�| 5 k} span CN generically for p0
in a neighborhood of 0; then it cannot happen that ‘(p0) ¡ k for any p0
near 0. For if so, by going to an arbitrarily close point p where the rank of
{V�(p; �p); |�| 5 ‘(p0)} is maximal and applying the implicit function theo-
rem, we would obtain a complex curve of common zeroes for the functions
{c�(Z; p; �p) : |�|5 ‘(p0)}. This would be a contradiction, since, by the above,
‘(p)5 ‘(p0). This proves that the minimum of ‘(p) in a neighborhood of 0
is the same as the smallest integer k satisfying the conclusion of Lemma 1.9.
Since M is connected and real analytic, it su�ces to take ‘(M) to be the
smallest integer k of Lemma 1.9.
To complete the proof of Proposition 1.2, it remains to show that ‘(M) = 1

is equivalent to M being generically Levi nondegenerate. For this note that an
easy row and column manipulation show that

det [�Z(Z; �Z); L1�Z(Z; �Z); : : : ; LN−1�Z(Z; �Z)]

is a nonvanishing multiple of the usual Levi determinant of M at Z . (See e.g.
[W1].)

Proposition 2.1 and its proof suggest the de�nition of a new invariant which
re�nes the notion of holomorphic nondegeneracy. Let M be a real analytic
hypersurface in CN and � a local de�ning function. We say that M is k-
holomorphically nondegenerate at Z ∈ M if the L��Z(Z; �Z); |�| 5 k; span
CN with k minimal. It follows from the proof of Proposition 1.2 that if M
is holomorphically nondegenerate then generically 1 5 k 5 N − 1. Also,
M is 1-holomorphically nondegenerate at Z if and only if the Levi form of
M is nondegenerate at Z . Note that if M is connected and holomorphically
nondegenerate then there exists ‘ = ‘(M); 15 ‘(M)5 N −1; such that M is
‘-holomorphically nondegenerate at every point in an open dense subset of M .
This number ‘(M) is given by Proposition 1.2; we shall call ‘(M) the Levi
type of M .

2 Proof of Theorem 1

First recall from [BR6, Theorem 2] that since M is connected and holomor-
phically nondegenerate, the set of points at which M is essentially �nite (see
[BJT] and [BR1] for de�nition) is not empty. On the other hand, if M is essen-
tially �nite at p; then M is also of �nite type (in the sense of Bloom–Graham
[BG]) at p. Let

(2:1) U = {p ∈ M : M is of �nite type at p} :

Since M\U is a real analytic subset of M; it follows from the above that
M\U is a proper (possibly empty) real analytic subset of M; and hence U is
an open, dense subset of M . More precisely, @U = M\U is a smooth complex
hypersurface in CN . Indeed, this can be seen by using a theorem of Nagano
[N]; if M\U is nonempty, then it is given locally as the real analytic manifold
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whose complexi�ed tangent space is spanned by the CR tangent vectors and
their complex conjugates. Note that if @U is nonempty then it is of codimension
1 in M .

Proposition 2.2. Let M; M ′; and H be as in Theorem 1. Then JacH does not
vanish identically on any open set in M .

We shall need the following in the proof of the proposition.

Lemma 2.3. Let M be a real analytic hypersurface in CN ; and assume that U
de�ned by (2.1) is nonempty. If f is a continuous CR function on M and
f vanishes identically in some neighborhood of p0 in U; then f vanishes
identically in the whole connected component of p0 in U .

Proof. Let U0 be the connected component of p0 in U; and let

S = {Z ∈ U0 : f|V ≡| 0 for any neighborhood V of Z in U0} :

We claim that S is open and closed in U0. Indeed, it is immediate from the
de�nition that S is closed. To show that S is open, we let q ∈ S and choose a
connected neighborhood W ⊂ U0 of q su�ciently small such that f extends to
one side of M with boundary W . (The extendability of CR functions at q to one
side of M follows from the fact that M is of �nite type at q [BT].) If f were
to vanish on an open subset of W; then the holomorphic function extending
f would vanish identically, and hence f would vanish on W; contradicting
the assumption that q is in S. This shows W ⊂ S and completes the proof of
Lemma 2.3.

In the following we shall write J (Z) for JacH (Z) for Z ∈ M .

Lemma 2.4. Under the assumptions of Theorem 1; if J |U0 ≡| 0; where U0 is a
connected component of U; then J |U0 is algebraic.
Proof. Since M is holomorphically nondegenerate, as noted before by Theo-
rem 2 of [BR6] the set where M is essentially �nite is nonempty. Hence by
Proposition 1.12 of [BR2], the set of essentially �nite points in M is open and
dense. By the continuity of J we may �nd p0 ∈ U0 such that M is essentially
�nite at p0 and J (p0)-0. By a result in [BJT] we conclude that H extends
holomorphically to an open neighborhood O of p0 in CN . Denote by H this
holomorphic extension. We may now use Theorem 1 in [BR6] to conclude that
H is algebraic in O. Since the derivatives and products of algebraic functions
are again algebraic, the holomorphic extension J of J to O is also algebraic
in O. Let P(Z; X ) be the polynomial, with polynomial coe�cients, such that
P(Z;J(Z)) ≡ 0 in O. On the other hand, since J is a CR function on M; we
conclude that f(Z) = P(Z; J (Z)); Z ∈ M; is also CR on M . By Lemma 2.3,
f(Z) vanishes identically on U0; since it vanishes on O ∩M . This shows that
J |U0 is algebraic.
Lemma 2.5. Let g be a smooth CR function on M and assume that g|U0
is algebraic; where U0 is a connected component of U (given by (2.1)). If
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g|U0 ≡| 0; then g cannot vanish to in�nite order at any point in the closure
of U0.

Proof. Let P(Z; X ) be a polynomial such that

(2:6) P(Z; g(Z))|U0 ≡ 0 :

Suppose P(Z; X ) = P1(Z; X )P2(Z; X ); where Pj(Z; X ) are polynomials of pos-
itive degree in X . Then since Pj(Z; g(Z)) is CR on M; j = 1; 2; we may use
Lemma 2.3 to conclude that either P1(Z; g(Z))|U0 ≡ 0 or P2(Z; g(Z))|U0 ≡ 0.
Hence we may assume that the polynomial P(Z; X ) =

∑k
0aj(Z)X j in (2.6) is

irreducible, and, in particular, a0(Z) ≡| 0. If g(Z) vanishes of in�nite order in
the closure of U0; it would follow from (2.6) that the restriction of a0(Z) to M
also vanishes of in�nite order at that point. Since a0(Z) is a polynomial, and
M is real analytic, this would imply a0(Z) vanishes identically, contradicting
the irreducibility of P.

Proof of Proposition 2.2. De�ne E by

E = {Z ∈ M : J |V ≡| 0 for any neighborhood V of Z in M}:
Since E is nonempty by assumption, the proposition will follow from the con-
nectedness of M if we prove that E is open and closed. The closedness of
E is immediate from the de�nition. We shall show that E is open. First, if
p0 ∈ E ∩ U; and U0 is the connected component of U containing p0; then by
Lemma 2.1 we have U0 ⊂ E. If p0 ∈ E ∩ @U; and V is a su�ciently small
neighborhood of p0; V will intersect at most two connected components of
U; say U1 and U2. (For this, recall that @U is a smooth submanifold of M
of codimension 1.) By de�nition of E; either J |U1∩V ≡| 0 or J |U2∩V ≡| 0. It
then follows from Lemmas 2.4 and 2.5 that J cannot vanish to in�nite order
at p0; therefore J |Uj∩V ≡| 0; j = 1; 2. By Lemma 2.1, this shows V ⊂ E; which
completes the proof that E is open and the proposition follows.

We shall need the following result, which is probably known. (See also
Lemma 6.1 of [BJT] for a special case of this result.)

Lemma 2.7. Let G(z; w) be a holomorphic function in a neighborhood of 0 in
Cp+1 with Gw(z; w) ≡| 0. Let f be a smooth function de�ned in a neighborhood
of 0 in Rp satisfying

(2:8) G(x; f(x)) ≡ 0 ;

for x in a neighborhood of 0 in Rp. Then f is real analytic in a neighborhood
of 0.

Proof. We wish to apply the following theorem due to Malgrange [M]: Let Y
be the germ of a real analytic set in Rq through 0 containing a germ � of a
smooth manifold through 0. If dimRY = dimR�, then � is real analytic.
We write G(x; s) =

∑∞
j=0aj(x)sj, where each aj is a convergent power

series. We may assume that the aj(x), j = 0; 1; : : : ; have no common factors
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(as convergent power series in p variables). We de�ne the real analytic set Y ⊂
Rp+2 as follows. Let Q1(x; y); Q2(x; y) be the real valued functions determined
by

∞∑
0
aj(x)(y1 + iy2) j = Q1(x; y) + iQ2(x; y)

with y = (y1; y2) ∈ R2, and let Y be the germ of the real analytic set at 0
de�ned by

Y = {(x; y) ∈ Rp+2 : Q1(x; y) = Q2(x; y) = 0} :

Let � be the germ at 0 of the smooth submanifold of Y given by the
parametrization

� = {(x; g1(x); g2(x)) : x ∈ Rp; where f(x) = g1(x) + ig2(x)} :

Clearly dimR� = p; the desired real analyticity of f will follow from Mal-
grange’s result above if dimRY = p. To prove this last equality, note that if
(x; y) ∈ Y , then each yj is determined by x up to �nitely many values un-
less all the aj vanish at x. However, since the aj(x) have no common factors,
we claim that the dimension of their common zeros is less than or equal to
p − 2. For this, note �rst by the Noetherian theorem, there exists k such that
{x : aj(x) = 0; j = 0; 1; : : : ; } = {x : aj(x) = 0; j = 0; 1; : : : ; k}. Now the claim
can be seen by expressing the aj as Weierstrass polynomials with respect to
the same variable and applying an elimination method as e.g. in Lemma 5.1
of [BJT].

Proof of Theorem 1. Let U be given by (2.1). Since by Proposition 2.2 J ,
the Jacobian of H , does not vanish identically on any open subset of M , we
conclude as in the proof of Lemma 2.4 that H is algebraic on each connected
component of U . In order to show that H extends holomorphically to a neigh-
borhood of M , by standard arguments it su�ces to show that H is real analytic
in a neighborhood of each point in M . Let p0 ∈ M . We claim that H is alge-
braic in some neighborhood of p0. Indeed, if p0 ∈ U , then by the above, H
is algebraic in the component of p0. If p0 ∈ @U , then p0 is in the boundary
of at most two components, say U1 and U2. Hence for j = 1; : : : ; N there exist
polynomials p1j(Z; X ) and p2j(Z; X ) such that

(2:9) pkj(Z; Hj(Z))|Uk ≡ 0; k = 1; 2; j = 1; : : : ; N :

Let pj(Z; X ) =p1j(Z; X )p2j(Z; X ). It follows from (2.9) that pj(Z; Hj(Z))|U1∪U2
≡ 0, which proves the claim. By taking a real analytic parametrization of M ,
we may apply Lemma 2.7 to conclude that H is real analytic at every point.
This completes the proof of Theorem 1.

The following example shows that the assumption that M is algebraic can-
not be dropped.

Example 2.10. The following example was given by Ebenfelt in [E]. Let t =
�(�; s) be the unique solution of the algebraic equation �(t2 + s2) − t = 0,
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with �(0; 0) = 0. Let M and M ′ be the hypersurfaces through 0 in C2 given
respectively by

=w = �(arctan |z|2;<w) ; =w′ = (<w′)|z′|2 :
(Note that M and M ′ are both of in�nite type at 0.) Let H = (f; g) be the
mapping given by f(z; w) = z, g(z; w) = e−(1=w) for <w ¿ 0 and g(z; w) ≡ 0
for <w 5 0. It is shown in [E] that H is a smooth CR mapping de�ned in
a neighborhood of 0 which maps M to M ′. However, it is clear that H does
not extend holomorphically to a neighborhood of 0 in C2. Note that M ′ is
algebraic, but M is not.

3 Proof of Theorem 3

To prove Theorem 3, we take ‘ = ‘(M) to be the Levi type of M de�ned at
the end of Sect. 1. Let U be the open set in M de�ned in (2.1) and @U its
boundary. Since JacH does not vanish identically on any open set, it does not
vanish identically on any connected component of U . We �x such a component
U0 and choose p0 ∈ U0 such that JacH (p0)-0, and ‘(p0) = ‘(M); the latter
is possible by Proposition 1.2. Note that in particular M is essentially �nite
at p0. As before, we assume that local normal coordinates on M and M ′

are chosen so that p0 = 0 and H (p0) = 0. In these coordinates we write
H = (f; g); f = (f1; : : : ; fn), n = N − 1.

Using the methods of proof of Lemma 6.1 of [BR1] and Proposition 2.5 of
[BR6], we obtain the following. For each j, 15 j 5 n, there exists a positive
integer Nj and algebraic functions ajk(u



p; v�), |
|; |�| 5 l, 0 5 k 5 Nj−1,

1 5 p 5 n, holomorphic near u

p;0 = L
 �fp(0) and v�0 = 0, such that we have

in a neighborhood of 0 in M :

(3:1) f
Nj
j +

Nj−1∑
k=0

ajk(L
 �fp; L
� �g)fk

j ≡ 0; j = 1; : : : ; n :

(Although in [BR1] and [BR6] the mapping H was assumed to be smooth,
the proof of (3.1) uses derivatives only up to length ‘; hence (3.1) holds also
when H is only of class C‘.) We may now move to a point p1, arbitrarily
close to 0 near which the roots of the polynomials (3.1) are analytic functions
of the coe�cents. We conclude that near that point p1

(3:2) fj = 	j(L
 �fp; L
� �g); j = 1; : : : ; n ;

with 	j analytic. By the standard use of the re
ection principle, as for instance
in [BR1] (see also Proposition 7.1 below), we conclude that the fj extend
holomorphically near p1. It then follows easily that the same holds for g near
p1. We continue to denote by H = (H1; : : : ; HN ) the original CR map as well
as its holomorphic extension in a neighborhood of p1. We may now apply
Theorem 1 of [BR6] to conclude that H is algebraic in a neighborhood in CN .
That is, for j = 1; : : : ; N , there exist polynomials Pj(Z; X ) with holomorphic
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polynomial coe�cients such that Pj(Z; Hj(Z)) ≡ 0 is a neighborhood of p1.
Let kj(Z) = Pj(Z; Hj(Z))|M ; each kj is a CR function on M which vanishes on
a neighborhood of p1 in M . Hence, by the argument of the proof of Theorem
1, kj must vanish identically in the connected component U0 of p1 in U . This
shows that the restriction of Hj to each connected component of U is algebraic.
It remains to show the same holds near a point p0 ∈ @U . Since @U is a smooth
hypersurface of M , p0 is in the closure of two connected components of U .
For each j we take the product of the two polynomials corresponding to the
two connected components to obtain an algebraic equation satis�ed by Hj in
the closure of the union of these components. This completes the proof of
Theorem 3.

Example 3.3. In Theorem 1 it was su�cient to assume that JacH does not
vanish identically on M . The following example shows that for the conclusion
of Theorem 3 to hold, unlike that of Theorem 1, we must assume the stronger
condition that JacH ≡| 0 on each component of U . In the smooth case (i.e.
Theorem 1), we show in the course of the proof that the two conditions are
actually equivalent. For this, let M and M ′ be the hypersurfaces through 0 in
C2 given respectively by

=w = (<w)3|z|2; =w′ = 2
(<w′)�(|z′|2)
1− [�(|z′|2)]2 ;

where �(t) is the unique real solution vanishing for t = 0, of the polynomial
equation X 3+X−t = 0. Note that both M and M ′ are algebraic and generically
Levi nondegenerate. Consider the CR mapping H de�ned on M by H = (f; g)
with{

f(z; w) = zw; <w = 0

f(z; w) = zw expw; <w 5 0

}
;

{
g(z; w) = w2; <w = 0

g(z; w) = 0; <w 5 0

}
:

The reader can easily check that H is of class C1 on M and that H
maps a neighborhood of 0 in M into M ′. Note that H is not algebraic,
and JacH (z; w)-0 for (z; w) ∈ M;with <w ¿ 0, but JacH (z; w) ≡ 0 for
(z; w) ∈ M;with <w ¡ 0. Note that in this example the number ‘ given by
Theorem 3 is 1.

4 Proof of Theorem 2

In this section we shall indicate the modi�cations to the proof of Theorem 1
needed to give Theorem 2. For a polynomial

(4:1) P(Z; X ) = aJ (Z)X J + aJ−1(Z)X J−1 + · · · a0(Z)
with polynomial coe�cients aj(Z), where aJ (Z)≡| 0, by the total degree of
P we shall mean the total degree of P as a polynomial in the variables
(X; Z). If f(Z) is an algebraic function, by the total degree of f we shall
mean the minimum of the total degrees among polynomials P(Z; X ) for which
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P(Z; f(Z)) ≡ 0. We need the following lemma, whose proof is based on the
Artin Approximation Theorem and was suggested to us by Leonard Lipshitz.

Lemma 4.2. For any positive integers d and n there exists a positive integer
k = k(d; n) such that if f is a function of class Ck de�ned in a neighborhood
of 0 in Rn and satis�es a nontrivial polynomial equation p(x; f(x)) ≡ 0,
where p(x; Y ) is a polynomial of n+1 variables of total degree 5 d, then f
is real analytic in a neighborhood of 0.

Proof. Let �(x) be the discriminant of p(x; Y ) regarded as a polynomial in the
indeterminate Y . By eliminating repeated factors in the factorization of p(x; Y ),
we may assume that �(x)≡| 0. We use the following consequence of the Artin
Approximation Theorem [A1,A2, BDLV]:
Let p(x; Y ), x ∈ Rn, be a polynomial in Y with polynomial coe�cients.

Then for any positive integer r there exists a positive integer k (depending
only on r, n and the total degree of p) such that if f1(x) is a formal series
for which p(x; f1(x)) = O(|x|k) there is a convergent series g(x) such that
p(x; g(x)) ≡ 0 and g(x)− f1(x) = O(|x|r).
In fact, the statement above is a special case of Theorem 6.1 of [A2]

or Theorem 3.2 of [BDLV]. We shall apply the above with r = (d1+d2(J (J −
1))+1)=2, where d1 is the degree of the polynomial �(x) de�ned above, d2 is
the degree of aJ (x). Note that r is bounded by an expression depending only
on the total degree of p. If k is given by the statement above, then we claim
that the conclusion of Lemma 4.2 holds with this choice of k. For this, let
f1(x) be the truncated Taylor series of f(x) up to degree k and let g(x) be the
convergent series given by the statement above. If �(x) is a root of p(x; Y ),
then aJ (x)�(x) is a root of the monic polynomial

(4:3) q(x; Y ) = Y J + aJ−1(x)Y J−1 + · · ·+ aJ−1
J (x)a0(x) :

In particular, aJ (x)f(x) and aJ (x)g(x) are both roots of q(x; Y ). If g(x)≡| f(x),
let �1(x) = aJ (x)f(x), �2(x) = aJ (x)g(x), and let �3(x); : : : ; �J (x) be the rest
of the roots of q(x; Y ) (counted with multiplicity). Then the discriminant of
q(x; Y ) is

(4:4) aJ (J−1)
J (x)�(x) = −(aJ (x)f(x)− aJ (x)g(x))2�(�j(x)− �k(x)) ;

where the indices on the right hand side run over j-k and either j or k is
not equal to 1 or 2. Since q(x; Y ) is a monic polynomial, the �k are bounded.
Hence the right hand side of (4.4) vanishes to order at least 2r. On the other
hand, since the left hand side of (4.4) is of degree 5 d1 + d2(J (J − 1)), both
sides must vanish identically, by the choice of r, contradicting the assumption
that �(x)≡| 0. This contradiction shows that g(x) ≡ f(x), which completes the
proof of the lemma.

We shall now prove Theorem 2. We start with the following analogue of
Proposition 2.2.

Lemma 4.5. If k is su�ciently large, and JacH ≡| 0, then JacH does not
vanish identically on any open set in M .
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Proof. By the connectedness of M , and using Lemma 2.3, it su�ces to show
that if JacH ≡| 0 in some connected component U0 of U , then JacH ≡| 0 on any
component of U which is contiguous to U0. As in Sect. 2 we may �nd p ∈ U0
at which M is essentially �nite and JacH (p)-0. Hence, the components of
H extend holomorphically in a neighborhood V of p in CN . By [BR6], there
are polynomials Pj(Z; X ) of the form (4.1) such that the jth component of H
satis�es Pj(Z; Hj(Z)) ≡ 0 for Z ∈ V . By the proof given in [BR6], one can see
that the total degree of the Pj(Z; X ) is bounded by a number which depends
only on the total degrees of the de�ning functions of M and M ′. Hence JacH
is the root of a polynomial P(Z; X ) whose total degree is bounded by a number
depending only on the total degrees of the de�ning functions of M and M ′.
By propagation of the zeroes of CR functions in U0,

(4:6) P(Z; JacH (Z)) ≡ 0

for Z ∈ U0, and, as in Sect. 2, we may assume that P(Z; X ) is irreducible. If
JacH were to vanish on a component U1 contiguous to U0, then it vanishes to
order at least k − 1 on the boundary between U0 and U1. Hence the constant
coe�cient a0(Z) of P must also vanish to order k − 1 there. Since the degree
of a0(Z) is bounded by the total degree of P, we would have a0(Z) ≡ 0 if
k − 1 is greater than the total degree of P. Since this would contradict the
irreducibility of P, we conclude as before that JacH does not vanish on any
open set in M .

We shall now show that each component Hj of H is algebraic with total
degree bounded by a number depending only on the total degrees of the de�n-
ing functions of M and M ′. By Lemma 4.2, this will complete the proof of
Theorem 2. As in the argument above, for a �xed component U0 of U, there
exists polynomials Pj(Z; X ), with total degree bounded by number depending
only on the total degrees of the de�ning functions of M and M ′, such that
Pj(Z; Hj(Z)) ≡ 0, j = 1; : : : ; N for Z ∈ U0. By the connectedness of M , it
su�ces to show that Pj(Z; Hj(Z)) ≡ 0, in any component U1 of U adjacent
to U0. By Lemma 4.5, JacH ≡| 0 on U1, so that one can �nd polynomials
P̃j(Z; X ), with total degree bounded by a number depending only on the total
degrees of the de�ning functions of M and M ′, such that P̃j(Z; Hj(Z)) ≡ 0,
j = 1; : : : ; N for Z ∈ U1. We now have that

(4:7) Pj(Z; Hj(Z))P̃j(Z; Hj(Z)) ≡ 0; j = 1; : : : ; N ;

for Z ∈ U0 ∪ U1. Hence if k is su�ciently large (depending only on the total
degrees of M and M ′, we may apply Lemma 4.2 to conclude that H is real
analytic in the interior of the closure of U0 ∪ U1. By unique continuation of
analytic functions, it follows that Pj(Z; Hj(Z)) ≡ 0 for Z ∈ U0 ∪ U1. This
completes the proof of Theorem 2.

It should be noted that in general the integer k in Theorem 2 could be
much larger that ‘(M), the Levi type of M de�ned at the end of Sect. 1. The
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following example shows that in Theorem 2, the integer k cannot be taken to
be ‘(M).

Example 4.8. Let M and M ′ be given as in Example 3.3. Consider the CR
mapping H de�ned on M by H = (f; g) with f(z; w) = zw and g(z; w) = w2

for <w = 0, and g(z; w) = −w2 for <w 5 0. As observed by Peter Ebenfelt,
H is of class C1 and JacH does not vanish identically on any open subset
of M . However, H is algebraic but does not extend holomorphically in any
neighborhood of 0 in C2. Note that ‘(M) = 1 here.

5 Families of CR automorphisms; Proof of Theorem 4

We shall prove Theorem 4 in this section. By Proposition 4.2 of [BR6], since
M is holomorphically degenerate at p1, it is holomorphically degenerate at p0
also. We choose local coordinates near p0 for which p0 is the origin, and let
X =

∑N
1 aj(Z) @

@Zj
, where the aj(Z) are germs at 0 of holomorphic functions, be

a nontrivial holomorphic vector �eld tangent to M near 0. Let h(Z) be a smooth
CR function de�ned on M near 0 which does not extend holomorphically to
any neighborhood of 0 in CN . We may choose h so that h(0) = 0. Let �(t; Z)
be the 
ow of X for t ∈ C, |t| small, i.e. �(t; Z) satis�es the holomorphic
ordinary di�erential equation

(5:1)
@
@t

�(t; Z) = A(�(t; Z)); �(0; Z) = Z ;

where A = (a1; : : : ; aN ). Let Y be the complex vector �eld on M near 0 obtained
from X by multiplication of the coe�cients by h i.e.,

(5:2) Y = hX =
N∑
1
h(Z)aj(Z)

@
@Zj

:

Lemma 5.3. The di�erential equation

(5:4)
@
@t

K(t; Z) = h(�(K(t; Z); Z)); K(0; Z) ≡ 0 ;

has a smooth solution K(t; Z) de�ned for (t; Z) in a neighborhood of (0; 0) in
C ×M with t 7→ K(t; Z) holomorphic in t for �xed Z , and Z 7→ K(t; Z) CR
for t �xed.

Proof. Let F(t; Z) = h(�(t; Z)). Note that since h(0) = 0, it follows that
F(0; 0) = 0. Since �(t; Z) is holomorphic in Z and h is CR, Z 7→ F(t; Z)
is also CR. We claim that t 7→ F(t; Z) is holomorphic. Indeed, let h̃ be any
smooth extension of h to a neighborhood of 0 in CN . By the chain rule,

(5:6)
@
@�t
(h̃(�(t; Z); Z)) = h̃Z · @

@�t
�(t; Z) + h̃ �Z · @

@t
�(t; Z) :

The �rst term on the right in (5.6) is zero since � is holomorphic in t. By (5.1),
the second term is h̃ �Z · �A, which equals ( �Xh)(�(t; Z); Z), since h̃ = h on M
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and �X is tangent to M . This term also vanishes since �X is a CR vector �eld and
h is a CR function. The existence of a smooth solution K(t; Z), holomorphic
in t for Z ∈ M is then given by the holomorphic theory of ordinary di�erential
equations.
To see that K(t; Z) is CR, let L be a CR vector �eld near 0. Then using

(5.4), a simple calculation shows that LK(t; Z) satis�es the ODE

(5:7)
@
@t

LK(t; Z) = L
@
@t

K(t; Z) = (Xh)(�(K(t; Z); Z))LK(t; Z) ;

with LK(0; Z) ≡ 0. By uniqueness, LK(t; Z) ≡ 0 for all t.
Lemma 5.8. Let  (t; Z) = �(K(t; Z); Z), with K(t; Z) given by Lemma 5.3,
be de�ned for (t; Z) in a neighborhood of (0; 0) in C ×M . Then  de�nes a
complex CR 
ow for the vector �eld Y de�ned by (5.2). That is,

(5:9)
@
@t

 (t; Z) = h( (t; Z))A( (t; Z))

with  (0; Z) = Z and t 7→  (t; Z) is holomorphic for �xed Z . Furthermore,
Z 7→  (t; Z) is CR for each t.

Proof. Since @
@t  (t; Z) = (

@
@t �)(K(t; Z); Z) · @

@t K(t; Z), (5.9) and the holomor-
phy of  (t; Z) with respect to t are immediate from the properties of K(t; Z)
given in Lemma 5.3. The fact that  (t; Z) is CR for �xed t follows easily since
the same is true of K(t; Z).

Lemma 5.10. Let R(t; Z) be a smooth function de�ned in �� × V with �� =
{t ∈ C : |t| ¡ �} and V a neighborhood of 0 in M . Assume that R is
holomorphic in t for �xed Z , R(t; 0) ≡ 0, and for each t ∈ �� there exists Ot ,
a neighborhood of 0 in CN such that Z 7→ R(t; Z) extends holomorphically
to Ot . Then there exist � ¿ 0, t0 ∈ ��, and O an open neighborhood of 0 in
CN , such that R(t; Z) extends holomorphically to {t : |t − t0| ¡ �} × O.
Proof. For a positive integer q let Eq ⊂ �� be given by

Eq =
{
t ∈ �� : |D�R(t; Z)|5 �!q|�| for all Z ∈ M; |Z | ¡ 1

q
; and all �

}
;

where D� denotes di�erentiation on M in some �xed local parametrization of M
near 0. Since by assumption

⋃
q Eq = ��, and the Ep are closed, we may apply

the Baire Category Theorem to �nd q0 such that Eq0 has nonempty interior.
That is, there exist t0 ∈ ��, � ¿ 0, and C ¿ 0 such that for all nonzero �

|D�R(t; Z)|5 �!C|�| for all Z ∈ M; |Z | ¡ 1
C
; |t − t0| ¡ � :

It follows that R(t; Z) extends continuously to a neighborhood of the form
{t : |t − t0| ¡ �} × O, separately holomorphic in Z and t. The lemma is then
a consequence of Hartog’s Theorem.
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Proof of Theorem 4. We shall prove the theorem by contradiction. Suppose
that for every germ of a smooth self CR map of M �xing 0 there exists
a neighborhood of 0 in CN to which the map extends holomorphically. In
particular, this would imply that for each t ∈ C small, the CR map Z 7→  (t; Z)
extends holomorphically to a neighborhood of 0, where  is given by Lemma
5.8. Since  (t; Z) = �(K(t; Z); Z), we may apply Lemma 2.7 to conclude that
for each t ∈ C su�ciently small, Z 7→ K(t; Z) extends holomorphically to a
neighborhood of 0 in CN . We may now apply Lemma 5.10, to conclude that
K(t; Z) extends holomorphically to {|t−t0| ¡ �}×O. In particular, we conclude,
by di�erentiating in t and using (5.4), the function Z 7→ h(�(K(t0; Z); Z))
extends holomorphically near the origin. Since K(t; 0) ≡ 0 (by uniqueness in
(5.4)) and the map Z 7→ �(K(t0; Z); Z) is a local biholomorphism near the
origin, we conclude that h(Z) extends holomorphically in a neighborhood of
0 in CN . This contradicts the assumption on h and completes the proof of
Theorem 4.

Example 5.11. Let M ⊂ C3 be given by {Z : =Z3 = |Z1Z2|2}. Since
the holomorphic vector �eld Z1 @

@Z1
− Z2 @

@Z2
is tangent to M , it follows that

M is holomorphically degenerate. It is easy to check that the CR function
h(Z) = exp(−Z−1=33 ) (restricted to M with the appropriate determination of the
argument) is smooth, but does not extend holomorphically to a full neighbor-
hood of 0 in C3. The conclusion of Theorem 4 then holds for this example.

6 Properties of mappings into the sphere

We will prove Theorem 5 in this section and the next. We begin with some
notation. We write H = (H1; : : : ; HN+1), and, as before, N = n+ 1. After a
local holomorphic change of variables, we may assume that S2N+1 is given by
the de�ning function

(6:1) Z ′n+2 + �Z ′n+2 +
n+1∑
j=1
|Z ′j |2 :

Lemma 6.2. Under the assumptions of Theorem 5, M is pseudoconvex in a
neighborhood of p0 and there exist points of strict pseudoconvexity arbitrarily
close to p0.

Proof. It follows from the hypothesis that M is of Bloom–Graham �nite type
near p0; hence H extends holomorphically to one side of M near p0 [BT, T].
Let

(6:3) �∗(Z; �Z) = Hn+2(Z) + Hn+2(Z) +
n+1∑
j=1
|Hj(Z)|2 :

Hence �∗ is de�ned on one side of M , of class Cm up to M , and is plurisub-
harmonic. For any small analytic disc A(�) attached to M near p0, the function
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� 7→ �∗(A(�); A(�)) is subharmonic in the unit disc and vanishes on its bound-
ary. By the maximum principle, the interior of the disc maps to the unit ball in
CN+1. Since the discs cover one side of M , we can apply the Hopf Lemma to
conclude @

@��
∗(Z; �Z)|p0-0, where � is the normal direction to M at p0. Hence

�∗ is a plurisubharmonic de�ning function for M , proving the pseudoconvexity
of M .
Suppose that there is no strongly pseudoconvex point near p0. Then, by

the semi-continuity of the counting function of the positive eigenvalues of the
Levi form, we can assume that for some point p1 close to p0 the number of
the non-zero eigenvalues of the Levi form of M there attains a local maximum
value r ¡ n. Now, by using a local change of coordinates near p1, we may
assume that p1 = 0 and M can be given near this point by the following
equation

Zn+1 + �Zn+1 =
r∑

j=1
|Zj|2 + h(Z1; : : : ; Zn+1) ;

where h(Z) = O(|Z |3). Consider the hypersurface M∗ ⊂ Cn+1−r de�ned by
Zn+1 + �Zn+1 = h(0; : : : ; 0; Zr+1; : : : ; Zn+1). Since it does not contain any non-
trivial analytic variety inside (for, otherwise, M cannot be of D’Angelo �nite
type), one sees that it cannot be Levi-
at and thus its Levi form has a positive
eigenvalue at a point w∗ near 0 in M∗. Then the Levi form of M has at least
r + 1 positive eigenvalues at (0; w∗). This contradicts the de�nition of r and
completes the proof of Lemma 6.2.

An immediate consequence of Lemma 6.2 with Theorem 2 in [H2] is that
H is an algebraic map. This fact will be useful later.
As in Sect. 1, we choose normal coordinates, Z = (z; w); for M vanishing

at p0 so that M is given by an equation of the form:

(6:4) t = �(z; �z; s)

where w = s + it and �(0; �z; s) ≡ �(z; 0; s) ≡ 0. Let L1; : : : ; Ln be a basis for
the CR vector �elds on M near 0 given by

(6:5) Lj =
@
@ �zj

− 2i � �zj

1 + i�s

@
@ �w

; j = 1; : : : ; n :

Note that if L� = L�1
1 ; : : : ; L�n

n ; then

(6:6) L�|0 = @|�|

@ �z � |0 :

We will also assume H (0) = 0.

Lemma 6.7. After a rotation of the vector (H1; : : : ; Hn+1); one can �nd a
sequence of n multi-indices (�1; : : : ; �n) with |�j| 5 m such that for j =
1; : : : ; n;

(6:8) L� j �Hj|0-0; but L� j �Hl|0 = 0 for 15 j ¡ l5 n :
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Proof. We note �rst that by applying L� to (6.3) we have

(6:9) L� �Hn+2(0) = 0; for all |�|5 m :

We �rst show that there exists a multi-index �; |�| 5 m; and an integer
k 5 n+ 1 such that L� �Hk(0)-0. We argue by contradiction. If no such �
exists, then by (6.6) we have �Hj(Z) = O(|w|)+o(|z|m); j = 1; : : : ; n+ 1. How-
ever, since (6.3) is a de�ning function for M; t − �(z; �z; s) = �∗(Z; �Z)h(Z; �Z)
for some nonvanishing h. Using (6.9), we have Hn+2 = aw + o(|w| + |z|m);
with a-0. Combining these gives

(6:10) �∗(Z; �Z) = aw + �a �w + o(|w|+ |z|m) :

Then the complex analytic variety V ∗ = {Z = (�; : : : ; �; 0) : � ∈ �} has order
of contact at least m+ 1 with M at 0; contradicting the de�nition of m given
by (0.1).
Without loss of generality we may assume that there exists �1; |�1| 5 m

such that L�1 �H 1(0)-0 and L�1 �Hj(0) = 0; 1 ¡ j 5 n+ 1. Next, we show

that there exists a multiple index �2 with |�2| 5 m so that L�2 �Hj(0)-0 for
some 1 ¡ j 5 n+ 1. Indeed, if this is not the case, then Hj = O(|w|) +
o(|z|m); j = 2; : : : ; n+ 1. Write H1(Z) = P1(z) + O(|w|) + o(|z|m) with P1(z)
a polynomial in z of degree 5 m and P1(0) = 0. Then using again (6.9) we
obtain

�∗(Z; �Z) = aw + �a �w + |P1(z)|2 + o(|w|+ |z|m) :
Let V be the complex analytic variety de�ned by w = 0 and P1(z) = 0. Without
loss of generality, we may assume that P1(b1�; : : : ; bn−1�; zn) =

∑N
j=0 aj(�)z

j
n

with aj(�) ≡| 0 for some j ¿ 0 and an (n − 1)-tuple (b1; : : : ; bn−1). By the
Puiseux expansion, there exists an N ∗ � 1 such that zn(�N

∗
) is a holomorphic

function in �; zn(0) = 0; and P1(b1�N
∗
; : : : ; bn−1�N

∗
; zn(�N

∗
)) ≡ 0. Thus, we

obtain a holomorphic curve 
(�) de�ned by

z1 = b1�N
∗
; : : : ; zn−1 = bn−1�N

∗
; zn = zn(�N

∗
); w = 0 :

If N ′ = ord(
(�)); the order of vanishing of 
(�) at 0, then since �∗(
(�); 
(�)) =
o(|
(�)|m) we have

ord(�∗(
(�); 
(�))¿ m ord(
(�)) ;

which again would contradict the de�nition of m. Hence �2 must exist. Now,
applying a suitable rotation to (H2; : : : ; Hn); we may assume that L�2H 2|0-0
for some |�2| 5 m but L�2Hl|0 = 0 for each l ¿ 2. Arguing inductively, we
obtain the proof of Lemma 6.7.

We shall use Lemma 6.7 to obtain equations for the components Hi of the
mapping H .
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Proposition 6.11. Let �j and Hi be as in Lemma 6.7, and let

V (Z; �Z) =

 L�1 �H 1 L�1 �H 2 : : : L�1 �Hn
...

...
...

L�n �H 1 L�n �H 2 : : : L�n �Hn

 :

Then V (0; 0) is invertible; and if

(6:12) � = V−1

 L�1 �Hn+2
...

L�n �Hn+2

 ; � = V−1

 L�1 �Hn+1
...

L�n �Hn+1

 ; F =

H1
...
Hn

 ;

then the following holds on M:

(6:13) F = −�− Hn+1� :

Proof. Apply L� j
; j = 1; : : : ; n; to (6.3), and then solve the resulting system of

linear equations for F .

7 Proof of Theorem 5

We shall complete the proof of Theorem 5 in this section. The main step will
be to prove that H is meromorphic. Then the result in Chiappari [Ch] will give
the desired holomorphic extension. It will be convenient to have the following
criterion.

Proposition 7.1. Let M be a minimal algebraic hypersurface in CN (N ¿ 1)
de�ned near 0; and let k(Z; �Z) be a vector-valued algebraic continuous CR
function de�ned on M near 0. Assume that h(Z; �Z) is also a continuous
algebraic CR function on M near 0 such that Q2(Z; Z; k(Z; �Z))h(Z; �Z) =
Q1(Z; Z; k(Z; �Z)) for Z ∈ M near 0; where Qj (j = 1; 2) are holomorphic
algebraic functions near (0; 0; k(0; 0)) such that Q2(Z; Z; k(Z; �Z)) ≡| 0 near the
origin in M . Then h(Z; �Z) admits a meromorphic extension near 0 in CN .
Moreover; when Q2 ≡ 1; then h admits a holomorphic extension near 0.

Proof. We will use the edge of wedge theorem for the proof. Assume that M
is given in normal coordinates Z = (z; w) by equation (6.4) and that each CR
function de�ned near 0 ∈ M can be extended to the side D+ given by t ¿
�(z; z; s). For each nonzero vector v ∈ Cn; let Mv = {(xv; s+ i�(xv; xv; s)) : x ∈
Rn; s ∈ R}. Since Q2(Z; Z; k(Z; �Z)) cannot vanish identically in an open set
of M near the origin, we can assume for some �xed v0; Q2(Z; Z; k(Z; �Z)) ≡| 0
on Mv0 in any neighborhood of 0. Now we de�ne G : Cn+1 → Cn+1; a local
biholomorphism with G(0) = 0 by

G(z; w) = (zv0; w + �(zv0; zv0; w)) :
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Note that G(Rn+1) ⊂ Mv0 near 0. Furthermore, G maps a standard straight
wedge W+ with edge Rn+1 near 0 to D+. Write W− = W+; the complex
conjugate of W+. Denoting the holomorphic extensions of h and k to D+ by
the same letters, let

�+(Z) = h ◦ G(Z); Z ∈ W+ ;

�−(Z) =
Q1(G(Z); G(Z); k(G(Z); G(Z)))

Q2(G(Z); G(Z); k(G(Z); G(Z)))
; Z ∈ W− :

Then, by our hypothesis, one sees that �− is a meromorphic algebraic function
in W−. Thus,

∑N
j=1aj(Z)�−(Z) j ≡ 0, where aj’s are polynomials. Notice that

aN�− satis�es a polynomial equation with leading coe�cient 1. We conclude
that aN�− is bounded in W−. By the Riemann removable singularity theorem,
it holds that aN�− extends holomorphically to W−.
Away from a proper real analytic subset of Rn+1; we have aN (X )�+(X ) =

aN (X )�−(X ) for X near 0 in Rn+1; by our construction. From the classical
edge of the wedge theorem, it follows that aN (Z)�(Z) can be extended holo-
morphically to an open subset of 0. Thus �+ has a meromorphic extension near
0. Now, since G is a local biholomorphic map, we conclude that h extends
meromorphically across 0.
Finally, if Q2 ≡ 1; then �−(Z) is bounded near 0 for Z ∈ W−. The above

argument shows that h is holomorphic near 0 in this case. This completes the
proof of the proposition.

We now begin the proof of Theorem 5. We proceed according to the fol-
lowing two cases:

Case I: Lj(�(Z; �Z)) ≡ 0; j = 1; : : : ; n for Z in M near 0; i.e. the components
of the vector � are all CR functions.
Case II: At least one of the components of �(Z; Z) is not a CR function in
any neighborhood of O in M .

We �rst assume the hypothesis of Case I and prove that H extends mero-
morphically near 0. Since F and Hn+1 are CR functions, we conclude from
(6.13) that � is also a CR function. Applying the last part of Proposition 7.1
to the �rst two equations of (6.12), we conclude that � and � both extend
holomorphically to a full neighborhood of 0 in Cn+1 and hence are both real
analytic near 0 in M .
Rewriting (6.3) we obtain on M;

(7:2) Hn+2 + Hn+2 + F · F + Hn+1Hn+1 = 0 :

Replacing F in (7.2) by using (6.13), we have

(7:3) Hn+2 + Hn+2 + Hn+1a+ Hn+1a+ |Hn+1|2 + c = 0 ;
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where

(7:4) a = � · �; b = 1 + |�|2; c = |�|2

Rewriting (7.3) we have

(7:5) Hn+2 + Hn+2 + Hn+1(a+ Hn+1b) + Hn+1a+ c = 0 :

Applying Lj; j = 1; : : : ; n to (7.5) we obtain

(7:6) LjHn+2 + Hn+1Lj(a+ Hn+1b) + Lj(Hn+1a) + Ljc = 0 :

We consider now two cases.

Case Ia: Lj(a+ Hn+1b) ≡ 0; j = 1; : : : ; n
Case Ib: For some j; Lj(a+ Hn+1b) ≡| 0.
In Case Ia, we conclude that Hn+1 = −a=b and hence Hn+1 extends holo-

morphically by Proposition 7.1. (Note that b is nowhere vanishing.) Hence
from (6.13) and then (7.2) it follows that Hj; j = 1; : : : ; n+ 2 also extend
holomorphically.
In Case Ib we apply Proposition 7.1 to equation (7.6) to conclude that Hn+1

extends meromorphically, and hence again by (6.13) and (7.2) we conclude
that all the Hj extend meromorphically.

We now consider Case II. Then choose j; ‘ ∈ {1; 2; : : : ; n} so that Lj�‘ ≡| 0
in any neighborhood of 0 in M . Applying Lj to the lth component of (6.13),
we obtain

(7:7) Lj�‘ + Hn+1Lj�l = 0

We then use Proposition 7.1 to conclude that Hn+1 has a meromorphic exten-
sion. Making use �rst of (6.13) and then of (7.5), we conclude that all the
components of H extend meromorphically.
We have now proved that H extends to a meromorphic mapping in a

neighborhood of 0. Since H maps one side of M to the ball and maps M to
the sphere, we may now use Theorem 1 of Chiappari [Ch], (generalizing the
result of Cima–Su�ridge [CS1]) to conclude that H extends holomorphically.
This completes the proof of Theorem 5.

Remark 7.8. If in Theorem 5 the source manifold M is assumed to be a sphere,
the proof shows that in fact the mapping H is rational. (See [W2, CS1, CS2].)
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