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Abstract. Any compact C∞ manifold with boundary admits a Riemann metric
on its interior taking the form x−4dx2 + x−2h′ near the boundary, where x is a
boundary de�ning function and h′ is a smooth symmetric 2-cotensor restricting
to be positive-de�nite, and hence a metric, h; on the boundary. The scattering
theory associated to the Laplacian for such a ‘scattering metric’ was discussed
by the �rst author and here it is shown, as conjectured, that the scattering
matrix is a Fourier integral operator which quantizes the geodesic ow on the
boundary, for the metric h; at time �: To prove this the Poisson operator, of the
associated generalized boundary problem, is constructed as a Fourier integral
operator associated to a singular Legendre manifold.

Introduction

In this paper the geometric structure of the scattering matrix on certain asymp-
totically Euclidean spaces is considered. We show that the scattering matrix is
a Fourier integral operator which quantizes the geodesic ow on the boundary
(which is metrically at in�nity) at time �:
The notion of an asymptotically Euclidean manifold is formulated in terms

of a class of Riemannian metrics on the interiors of compact manifolds with
boundary. This class, called scattering metrics, was introduced in [10] where
the spectral, and scattering, theory for the corresponding Laplace operators was
examined. As de�ned there, a scattering metric is a Riemannian metric on the
interior, X ◦; of the compact manifold with boundary, X; which can be brought
to the form

g =
dx2

x4
+
h′

x2
(0.1)
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near the boundary. Here, x ∈ C∞(X ) is a de�ning function for the bound-
ary and h′ is a smooth symmetric 2-cotensor which restricts to the boundary
to a Riemann metric, h: These scattering metrics are generalizations of the
Euclidean metric on Rn and the associated Laplacian, acting on functions or
forms, has spectral and scattering theoretic properties similar to those of the at
Laplacian. Indeed one of the purposes of the discussion in [10] was to give a
systematic development of scattering theory without relying on the symmetries
of Euclidean space.
If f ∈ C∞(@X ) is chosen then, as is shown in [10], for each 0-� ∈ R

there is a unique function u ∈ C∞(X ◦) which satis�es (�− �2)u = 0 and is
of the form

u = ei�=xx
n−1
2 f′ + e−i�=xx

n−1
2 f′′ (0.2)

where f′; f′′ ∈ C∞(X ) and f′ �@X= f: The map
A(�) : C∞(@X ) 3 f 7−→ f′′ �@X∈ C∞(@X ) (0.3)

is the (absolute) scattering matrix, at frequency �: The convention here regard-
ing signs is slightly di�erent to that used in [10] (rather is that of [11]) so that
the scattering matrix A(�) is the scattering matrix at −� in the convention of
[10]. In this article we show:

Main theorem. The scattering matrix; A(�); of a scattering metric is; for
0-� ∈ R; a Fourier integral operator on @X; of order 0; associated to the
canonical di�eomorphism

exp(�H√h) : T
∗@X \0 −→ T ∗@X \0;

given by geodesic ow at distance � for the induced metric on @X:

The proof of the existence of generalized eigenfunctions of the form (0.2)
given in [10] is essentially non-constructive. To analyse the microlocal structure
of A(�) we need to proceed much more constructively. To do so we consider
the behaviour of geodesics near the boundary, for a metric (0.1), and thereby
construct a rescaled Legendre submanifold at in�nity with which the general-
ized plane wave eigenfunctions for the Laplacian are associated as Lagrangian
distributions, although in a somewhat di�erent sense from the usual context
of singularities. These generalized plane waves give, after normalization, the
Schwartz kernel of the Poisson operator, which in this setting is the map

P(�) : C∞(@X ) 3 f 7−→ u ∈ C∞(X ◦) (0.4)

where u is the eigenfunction in (0.2) (0.2). The scattering matrix is, in an
appropriate sense, a boundary value of P(�):
The basic example is given by the Euclidean case. Under the form of

stereographic projection

SP : Rn 3 z 7−→
(
(1 + |z|2)− 12 ; z(1 + |z|2)− 12

)
∈ Sn+;

Sn+ = {t = (t0; · · · ; tn) ∈ Rn+1; t0 = 0; |t| = 1};
(0.5)
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Rn is identi�ed with
(
Sn+
)◦
where X = Sn+ is the compact manifold with

boundary. The Euclidean metric becomes

|dz|2 = dr2 + r2|d!|2 = dx2

x4
+
|d!|2
x2

; |z| = r = 1
x
; ! =

z
|z| ; (0.6)

where |d!|2 is the standard metric on the sphere Sn−1 = @Sn+: This is precisely
a scattering metric of the form (0.1). To compute the absolute scattering matrix
for Euclidean space we follow the argument of the Appendix to [8]; see also
[11]. Thus consider u(x; !) = exp(i�! · �=x); � ∈ Sn−1: Then (�− �2)u = 0
and, in the sense of distributions in !; as x → 0

u(x; !) = ei�
!·�
x ∼ (2�) n−12

( x
�

) n−1
2
[
e
i�
x e−

i�
4 (n−1)��(!) + e−

i�
x e

i�
4 (n−1)�−�(!)

]
(0.7)

which follows from the stationary phase lemma applied in the variable ! after
integration against a function in C∞(Sn−1): Applying the de�nitions (0.2) and
(0.3) we conclude that

A(�) : C∞(Sn−1) 3 f 7−→ in−1j∗f ∈ C∞(Sn−1)
where j : Sn−1 3 ! 7→ −! ∈ Sn−1: (0.8)

From the microlocal point of view the pull back by the antipodal map is a
quantization of the geodesic ow on the sphere at time �:
As in the Euclidean case the addition of a short-range perturbation does not

change the geometric structure of the scattering matrix in �-0 although it may
add a �nite number of L2 eigenvalues to the spectrum. In the present setting
of scattering metrics this can be generalized as follows. If V ∈ x2C∞(X ) then
the theorem above remains valid for the scattering matrix for the operator
�+ V ; even the symbol of the scattering matrix remains unchanged. Let us also
note the perturbations of Euclidean space which are covered by our analysis
(although this is a very special case indeed). Suppose that g̃ is a smooth metric
on Euclidean space which takes the form

g̃ij = �ij + |z|−2hij
(
z
|z| ;

1
|z|
)
as |z| → ∞ (0.9)

where the coe�cients hij are smooth on Sn−1 × [0; 1): Then, under stereo-
graphic compacti�cation (0.5), of Rn to Sn+; g̃ de�nes a scattering metric on
Sn+: Again this is a short range condition on the perturbation in (0.9). For
a recent discussion of scattering theory for metric perturbations of Euclidean
space see [12]. Our construction of the Poisson operator has much in common
with earlier work on scattering for long-range potentials; see in particular [1].
In Sect. 1 we outline our construction of the Poisson operator in a sim-

ple case, where the boundary is at and there are no conjugate points for
the geodesic ow, on the boundary, up to time �: The basic components of
‘scattering geometry’ are described in Sect. 2 and this is used to analyse the
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geodesic ow near in�nity in Sect. 3. The rescaled Lagrangian, here identi-
�ed as a Legendre manifold, with which the Poisson operator is associated
is introduced in Sect. 4 and the parametrization of such Legendre manifolds
is discussed in Sect. 6. The extra complications which arise from the pres-
ence of conic singularities are explained in Sect. 7. The simplest classes of
Legendre distributions, namely oscillating functions, are described in Sect. 8.
In Sect. 9 the Maslov bundle for Legendre manifolds is de�ned. The symbol
mapping for the ring of scattering pseudodi�erential operators on a general
compact manifold with boundary is analysed in Sect. 10. We also note there
that the semi-classical frequency set can be considered as a special case of
the scattering wave front set de�ned in [10]. The general spaces of Legendre
distributions and their symbolic properties are examined in Sect. 11 and Sect.
12, for a smooth Legendre manifold and for the case of manifolds with conic
points in Sect. 13. A push-forward theorem for Legendre functions is proved
in Sect. 14. These ingredients are combined in Sect. 15 where a parametrix
for the Poisson operator is constructed as a Legendre distribution in this sense.
This leads directly to the proof of the main theorem in Sect. 16, we also
observe that the symbol of the scattering matrix is constant as a function of
� ¿ 0 and we conjecture that the trace formula for perturbations of Euclidean
space, which expresses the regularized trace of the wave group in terms of the
scattering phase (see for example [11] and [13]), should extend to this setting.
As already noted the construction of the parametrix for the Poisson oper-

ator uses a theory of Legendre functions associated to a Legendre manifold
over the boundary. These can be viewed, locally, as Fourier transforms of the
Lagrangian distributions introduced by H�ormander. We allow Legendre man-
ifolds with certain conic singularities, so in this sense we also generalize the
notion of a Lagrangian distribution. We make heavy use of the results and
techniques of [5]. This paper also relies on the main results of [10].

1. An example

To orient the reader we begin by outlining our analysis of the scattering matrix
for a simple example and then briey discuss the modi�cations required to
handle the general case. Let Tn−1 = (S1)n−1 be a large torus, with at metric,
where by ‘large’ we mean that each point has a neighbourhood isometric to a
ball in Rn−1 of radius larger than �: This just means that each of the circles
has radius greater than �: Our example is then

X = D× Tn−2 (1.1)

where D ⊂ R2 is the closed disk. On X we take a metric of ‘product type’
near the boundary

g =
dx2

x4
+
|dy|2
x2

near x = 0 (1.2)

where x ∈ C∞(D) is a boundary de�ning function and |dy|2 in the at metric
on Tn−1: The atness of the boundary and the lack of conjugate points for
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the geodesic ow, on the torus, up to time � make this easy to analyse. In
fact we can do almost all the analysis on the non-compact, but convenient,
model Xnc = (0;∞)x ×Rn−1

y with metric (1.2), and then pass to X at the last
stage.
As already noted, to examine the microlocal structure of the scattering

matrix we construct the Poisson operator, P(�); de�ned by (0.4) and then
obtain the scattering matrix as the outgoing boundary value of P(�) in the sense
of (0.3). Constructing P(�) reduces to constructing ‘generalized plane wave
solutions’ which have �-functions as their boundary values. In the Euclidean
case this is (0.7).
For the model Xnc the Laplacian is

� = (x2Dx)2 + ix(n− 1)x2Dx + x2|Dy|2 (1.3)

and it is the same near the boundary for X: This operator is homogeneous of
degree 2 under x −→ sx; s ¿ 0; so it su�ces to consider the special cases � =
±1: Complex conjugation reduces the case � = −1 to � = 1; so we consider
only this value of the frequency. Since the operator is also translation-invariant
in y we only need consider delta data supported at 0: Thus, we wish to �nd
a generalized plane wave solution satisfying

(�− 1)u = 0 and

lim
x→0

x−
n−1
2 e−

i
x
∫
u(x; y)�(y)dy = �(0) ∀ � ∈ C∞c ({|y|¡ �}): (1.4)

The ‘ansatz’ motivated by the Euclidean case is

u1(x; y) = ei�(y)=xa(x; y) (1.5)

where � satis�es the eikonal equation

�2 + |@y�|2 − 1 = 0; �(y) ∼ 1− c|y|2; y ∼ 0; c-0: (1.6)

The solution to (1.6) is �(y) = cos |y|; so c = 1
2 in (1.6). As we will see in

Sect. 6 this is a particular example of the general notion of the parametriza-
tion of a scattering Legendrian submanifold. The non-degeneracy in this initial
condition for � allows, using the principle of stationary phase, the second part
of (1.4) to be arranged for u1 of the form (1.5) and some amplitude a; at least
when applied to � supported close to 0:
Consider the Taylor series at the boundary, a(x; y) = a0(y) + xa1(y) + · · · ;

of the amplitude in (1.5). Applying �− 1 to u1 gives transport equations for
the coe�cients aj: The �rst of these, the coe�cient of x; takes the form

2
i
L0a0 =

2
i

(
@y� · @y + n− 12 �(y) + 1

2 |Dy|2�
)
a0 = 0: (1.7)

The vector �eld here is invariant under rotations in y and, in terms of r =
|y|; L0 reduces to rg(r2) ddr + r2f(r2) with f and g smooth and g(0) = −1:
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Thus, near 0; (1.7) has a unique solution satisfying a0 = 1 + |y|2h(|y|2) with
h smooth. The higher transport equation are of the form

Ljaj = ej; Lj = L0 − j� with ej smooth. (1.8)

They therefore have unique smooth solutions near 0:
The solutions to (1.7) and (1.8) can be continued smoothly until the vector

�eld degenerates again, which happens precisely at |y| = �; since then @y� =
0: Summing the Taylor series for a using Borel’s Lemma this gives a solution,
modulo terms vanishing to in�nite order with x to (1.4) of the form (1.5).
To continue this solution up to, and beyond, the singularity of the transport

equations at |y| = � we need a di�erent ‘ansatz’ in place of (1.5). A systematic
discussion of this will be given below in terms of distributions associated to
Legendre manifolds with conic singularities. Explicitly, near |y| = � we look
for u1 as an integral

u1(x; y) = x
− 12

∞∫
0
ei	(y; s)=xspb

(x
s
; y; s; x

)
ds; s ∈ R (1.9)

where b ∈ C∞c ([0;∞)×Rn−1 × [0;∞)× [0;∞)) and 	 is given by

	(y; s) = −1 + f(y)s− 1
2 s
2 where cos |y| = −1 + 1

2f(y)
2 as |y| ∼ �:

(1.10)

Thus f(y) ∼ �− |y|; is a smooth function near |y| = �: We note that 	 also
satis�es an eikonal equation

|	|2 + |@y	|2 − 1 = 0 when @s	 = 0: (1.11)

As will be discussed below in Sect. 7, this phase function corresponds to a
parametrization of a Legendre submanifold with conic points, here in the ‘triv-
ial’ case of a Legendrian with boundary. The stationary phase lemma allows
u1; as already de�ned in |y|¡�; of the form (1.5) to be written in the form
(1.9) near |y| = �− �; � ¿ 0 small, with smooth amplitude a′:
In writing down the transport equations we use the ‘blown up’ coordinates s

and X = x=s: Putting b̃(X; y; s) = spb(X; y; s; Xs) the condition on the amplitude
so that (�− 1)u1 = f1 with f1 of the same form but with amplitude vanishing
faster than any power of X is

(L′0 + sXL
′
1)b̃(X; y; s) ≡ 0 mod X∞

b̃(X; y; s)�s=�≡ a′(X; y; s)�s=� mod X∞:
(1.12)

Here

L′0 = s@s −
n− 2
2

− s2W; (1.13)

with W and L′1 respectively �rst and second order di�erential operators in @y;
s@s and X@X ; and the initial condition a′ comes from matching with the solution
for |y|¡ � obtained using (1.5). By writing b̃ and a′ in power series in X
with coe�cients depending on y and s; (1.13) can be solved iteratively. The
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constant term (n− 2)=2 determines the structure of the solution and in fact
b̃ = s(n−2)=2b with

(L′0 + sXL
′
1)s

(n−2)=2b(X; y; s) ≡ 0 mod sn=2X∞: (1.14)

Thus p = 1
2(n− 2) in (1.9).

These arguments show the existence of u1 of the form (1.5) for |y|¡ �
and (1.9) for |y| ∼ �; satisfying the incoming boundary condition in (1.4) (the
incoming data is the coe�cient of exp(i=x)) near 0 and (�− 1)u1 = f1; where
�f1 = O(x∞) for � ∈ C∞(X ) supported away from |y| = �: Near |y| = �

f1(x; y) = x
− 12

∞∫
0
ei	(y; s)=xxs

n
2 �
(x
s
; y; s

)
ds; (1.15)

where � ∈ X∞C∞c ([0;∞)×Rn−1 × [0;∞)): From this it follows that

f1 ∈ x(n+3)=2e− i
xC∞([0;∞)×Rn−1):

So far, this construction has all been on the non-compact model Xnc: How-
ever, u1 can be taken to have support in |y|¡ �+ � and x ¡ � for any � ¿ 0:
Choosing � ¿ 0 small enough this allows u1 to be transferred to the compact
manifold X in (1.1). Then, by an iterative argument (see Sect. 12 of [10] and
Lemma 16 below), u1 can be perturbed to an exact eigenfunction by adding a
term of the form

v1 ∈ x(n−1)=2 exp(−i=x)C∞(X )
such that (�− 1)v1 = −f1:
Hence the solution to (1.4) is given by u = u1 + v1 and to study the singular

part of the outgoing boundary data of u (the coe�cient of exp(−i=x)) we
only need to consider the u1 term. Since � in (1.5) is non-degenerate for
0¡ |y|¡ �; the outgoing boundary value comes from the term of the form
(1.9). For � ∈ C∞c (Rn−1) supported near |y| = �; using (1.10)

lim
x→0

e
i
x x−

n−1
2

∫
Rn−1

u1(x; y)�(y)dy

= lim
x→0

e
i
x x−

n−1
2 x−

1
2
∫

Rn−1

∞∫
0
ei(−1+f(y)s−

1
2 s
2)=xs

n−2
2 b

(x
s
; y; s

)
�(y)ds dy

= lim
x→0

∫
Rn−1

∞∫
0
eif(y)�−i

1
2 x�

2

�
n−2
2 b

(
1
�
; y; x�

)
�(y)d� dy

=
∫
Rn−1

∞∫
0
eif(y)��

n−2
2 b

(
1
�
; y; 0

)
�(y)d� dy

= 〈T (�0); �〉; (1.16)

where T ∈ I 0(Rn−1 ×Rn−1;G′�) is a Fourier integral operator of order zero
associated to the canonical transformation

G� : (y; �) 7−→ (y + ��=|�|; �): (1.17)
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In fact, with a di�erent amplitude, its kernel is given, up to a smooth term, by∫
ei(|x−y|−�)��

n−2
2 b]

(
1
�
; x − y; 0

)
d�: (1.18)

This demonstrates the theorem in this simple case.
In the general case of a compact manifold with scattering metric we proceed

to construct the generalized plane wave by very much the same method. Indeed
the construction near the ‘initial’ point is essentially the same, except that it is
more convenient to construct all the plane waves at once, i.e. to work on X ×
@X rather than X with a selected boundary point. The transport equation is then
related to geodesic ow on the boundary and so will in general have conjugate
points before parameter time �: We therefore need to replace the simple ansatz
(1.5) by a superposition of such functions. To do so we develop the theory
of such ‘Legendre’ distributions in close analogy with H�ormander’s theory of
Lagrangian distributions. We also develop a similar theory of superpositions of
functions of the form (1.9) which are associated to Legendre manifolds with
conic points.

2. Scattering bundle

Let X be a compact manifold with boundary. A metric of the form (0.1) is
associated to a rescaled tangent bundle on X: Namely, the space of smooth
vector �elds on X of bounded length with respect to the metric is the Lie
algebra

Vsc(X ) = xVb(X ) = {V ∈ C∞(X ; TX ); V = xW;
W ∈ C∞(X ; TX ) is tangent to the boundary}:

(2.1)
As discussed in [10], Sect. 2, there is a natural vector bundle scTX; over X; such
that Vsc(X ) = C∞(X ; scTX ): Near a boundary point scTX is spanned by x2@x
and the x@y where x is a local boundary de�ning function and y1; : : : ; yn−1 are
tangential coordinates. Restriction to the interior extends to de�ne a smooth
bundle map � : scTX −→ TX which is an isomorphism over the interior of X
and vanishes identically over @X:
A scattering metric, (0.1), de�nes a non-degenerate �bre metric on scTX: If

scT ∗X is the dual bundle to scTX then the metric determines, and is determined
by, the square of the length g ∈ C∞(scT ∗X ): Since this function is also the
joint symbol (see [10] and Sect. 10 below) of the Laplacian

j(�) = g (2.2)

we are especially interested in the behaviour of its associated Hamiltonian
vector �eld, that is, in the rescaled symplectic geometry of scT ∗X: To give
a uniform discussion of this rescaling near the boundary of X and the usual
rescaling near in�nity on the �bres of the cotangent bundle we consider the
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Fig. 1. The ‘microlocal’ space scT
∗
X:

compacti�ed scattering cotangent bundle scT
∗
X as our basic ‘microlocal’ space.

This is the compact manifold with corners obtained by stereographic compact-
i�cation of the �bres of scT ∗X:
As a compact manifold with corners Y = scT

∗
X has a natural ‘scattering

structure’ analogous to (2.1) and reducing to it away from the corner. Namely,
if � ∈ C∞(Y ) is the product of boundary de�ning functions for the boundary
hypersurfaces of Y (a ‘total boundary de�ning function’) then

Vsc(Y ) = �Vb(Y ) ={V ∈ C∞(Y ; TY );V = �W where

W ∈ C∞(Y ; TY ) is tangent to all boundary faces}: (2.3)

Here � = ���@ where {�@ = 0} = scT ∗@X X is the part of the bundle over
the boundary and {�� = 0} = scS∗X is the boundary added to compactify
scT ∗X: Again Vsc(Y ) = C∞(Y ; scTY ) for a natural vector bundle over Y:
The reason for introducing (2.3) is its relationship to the contact
structure.

Lemma 1. The canonical 1-form on T ∗X extends from the interior to a
smooth section of the bundle scT ∗(scT

∗
X ); that is; scT ∗Y for Y = scT

∗
X:

Proof. Let x ∈ C∞(X ) be a local boundary de�ning function and let y1; : : : ;
yn−1 be additional coordinates near a boundary point. The tautological 1-form
is

� = � dx + � · dy (2.4)

where �; �1; : : : ; �n−1 are the canonically dual coordinates in the �bres of
T ∗X: Now dx=x2 and dyj=x; for j = 1; : : : ; n− 1 give a local basis for scT ∗X:
The induced canonical coordinates on scT ∗X are then x; y1; : : : ; yn−1; � and
�1; : : : ; �n−1 where a general point of scT ∗X is

�
dx
x2
+ � · dy

x
: (2.5)
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In terms of these coordinates the map �∗ : T ∗X −→ scT ∗X; dual to � :
scTX −→ TX; is (x; �) 7−→ (x2�; x�) = (�; �): Thus the 1-form � lifts to

sc� = �
dx
x2
+ � · dy

x
∈ C∞(scT ∗X ; scT ∗(scT ∗X )): (2.6)

This proves the stated smoothness of sc� over the interior over Y except near
the sphere bundle ‘at in�nity’.
Stereographic compacti�cation of the �bres gives coordinates in scT

∗
X

Z =
(1; �; �)

(1 + �2 + |�|2) 12 ∈ S
n
+ = {Z = (Z0; Z ′) ∈ Rn+1; Z0 = 0; |Z | = 1}: (2.7)

Since Z0 =
(
1 + �2 + |�|2)− 1

2 is a de�ning function for the boundary, (2.6)
becomes

sc� = Z1
dx
Z0 x2

+ Z ′ · dy
Z0 x

∈ C∞(Y ; scT ∗Y ); Y = scT
∗
X: (2.8)

Now,
dx
Z0 x2

;
dZ0
Z20 x

;
dZ ′

Z0 x
;
dy
Z0 x

(2.9)

is a basis for scT ∗Y so this proves the lemma.

Let sc�kY be the k-fold exterior power of scT ∗Y; so in particular sc�1Y =
scT ∗Y: The exterior derivative gives a map

d : C∞(Y ; sc�kY ) −→ C∞(Y ; sc�k+1Y ): (2.10)

However, for the canonical 1-form on Y = scT
∗
X; dsc� ∈ Z0 xC∞(Y ; sc�2Y )

since

dsc�= d� ∧ dx
x2
+ d� ∧ dy

x
+ � · dy

x
∧ dx
x

= Z0x ×
(
dZ1
xZ0

∧ dx
x2Z0

− Z1dZ0Z20 x
∧ dx
Z0x

+
dZ ′′

xZ0
∧ dy
xZ0

−dZ0
Z20 x

∧ Z ′′ · dy
xZ0

+ Z ′′ · du
Z0x

∧ dx
x2Z0

)
; (2.11)

where Z ′′ = (Z2; : : : ; Zn): Thus, as a scattering form, dsc� vanishes at both
boundaries of Y = scT

∗
X: Furthermore, as is clear from (2.11), dsc�

/
Z0x is

a non-degenerate smooth section of sc�2Y: Contraction with dsc� therefore de-
�nes an isomorphism

Vb(Y ) =
1
Z0x
Vsc(Y )←→ C∞(Y ; sc�1): (2.12)
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In fact consider the space �−m� �k@C
∞(Y ); where �� and �@ are de�ning

functions for the two boundaries of Y = scT
∗
X; {�� = 0} being the sphere

bundle of in�nity. Exterior di�erentiation gives

d : �−m� �k@ C
∞(Y ) −→ �−m+1� �k+1@ C∞(Y ; sc�1Y ) (2.13)

and hence, composing with the inverse of (2.12), gives the Hamilton map

�−m� �k@ C
∞(Y ) 3 p 7−→ scHp ∈ �−m+1� �k+1@ Vb(Y ): (2.14)

In view of the extra vanishing factors here we de�ne

scHm;kp =
(
�m−1� �−k−1@

) scHp ∈Vb(Y ) for p ∈ �−m� �k@C
∞(Y ) (2.15)

the rescaled scattering Hamilton vector �eld. Note that this de�nition depends
on the choice of �� and �@:

We refer the reader to [10] for a discussion of the more elementary con-
structions and properties of ‘scattering geometry.’ For example the scattering
density bundle sc
 and more importantly the corresponding half-density bundle
sc


1
2 : Note however that for a manifold with boundary and boundary de�ning

function x

C∞(X ; sc

1
2 ) = x−

1
2 (dim X )C∞(X ;


1
2
b ) = x

− 1
2 (dim X+1)C∞(X ;


1
2 ) (2.16)

3. Boundary bicharacteristics

If g ∈ �−2� C∞(scT ∗
X ) is the metric function and f =

√
g ∈ �−1� C∞(scT ∗

X \0);
then scHf ∈ �@Vb(scT ∗

X \0) is the generator of geodesic ow. Thus, analyz-
ing the integral curves of f; or g; amounts to examining the geodesic ow.
Here we are interested in the behaviour of the geodesics near the boundary of
X; rather than in the interior. Necessarily, in a product decomposition of the
manifold near the boundary, with boundary de�ning function for which (0.1)
holds,

g = �2 + h(y; �) + xg′ near scT ∗@X X (3.1)

where h(y; �) is the metric function on T ∗@X transferred to scT ∗@X X using the
de�ning function of the boundary, x; i.e. using the isomorphism

� · dy
x
7−→ � · dy: (3.2)

Lemma 2. For 0-� ∈ R the integral curves of scH 1;0f = 1
x
scHf on the char-

acteristic variety
�(�) = {�2 + h = �2} ⊂ scT ∗@X X (3.3)

are the points on the two connected components of the radial sub-variety;
the incoming and outgoing parts; being respectively G](�) and G](−�) where
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Fig. 2. The extended integral curves of scH 1;0f in � and � coordinates.

(see Fig. 2)
G](�) = {� = −�; � = 0; x = 0} (3.4)

and the curves of the form

� = |�| cos(s+ s0)
� = |�| sin(s+ s0)�̂

(y; �̂) = exp((s+ s0)H 1
2 h
)(y′; �̂′)

(3.5)

where s0 ∈ [0; �]; s ∈ (−s0; �− s0); (y′; �̂′) ∈ T ∗@X; h(y′; �̂′) = 1 and ds=dt =
1
2 |�| = 1

2h(y; �)
1
2 :

Proof. The integral curves of 1x
scHf are the same as those of 1x

scHg near �(�);
�-0: At @X the rescaled Hamilton vector �eld is

scH 1;0g = 2�x@x − 2h@� + 2�� · @� + Hh(y; �): (3.6)

Introducing polar coordinates with respect to the radial variable in �:

�̂ = h(y; �)−
1
2 �; |�| = h(y; �) 12 (3.7)

gives
d
dt
�̂ = −h′y(y; �̂)|�|;

d
dt
y = h′�(y; �̂)|�|: (3.8)

In terms of the new parameter s; satisfying ds=dt = 1
2 |�| along the integral

curves, this reduces to

d
ds
�̂ = − 1

2h
′
y(y; �̂);

d
ds
y =

1
2
h′�(y; �̂) (3.9)

d�
ds
= −|�| and

d
ds
|�| = �: (3.10)

Together, (3.9), (3.10) and the de�nition of s give (3.5).
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These uniform equations for the geodesics near the boundary permit a
straightforward analysis of their global behaviour. For example the follow-
ing result is the original motivation for the result conjectured in [10] which is
the main theorem of this paper. Since it is not explicitly used below, we only
sketch a proof.

Proposition 1. If a sequence of maximally extended geodesics in X ◦; for a
scattering metric, approaches the boundary uniformly then it has a subse-
quence converging to a geodesic in @X of length �: Conversely any such
geodesic segment is the limit of such a sequence of geodesics in the interior.

Proof. Suppose i(s) is a sequence of maximally extended geodesics in the
interior of X such that sup x(i(s))→ 0 as i →∞: These are integral curves
of the renormalized Hamilton vector �eld scH 2;0g ∈Vb(Y ); Y = scT

∗
X: Since Y

is compact any subsequence must have a subsequence converging to a union
of integral curves of scH 2;0g which, by assumption, must lie in the boundary.
As noted in Lemma (2), these are points in G](±�) or geodesics seqments of
length � over the boundary. From (3.6), � is a monotone decreasing function
if h-0: The assumption that the curves in X ◦ are maximally extended means
that there must be limit points at which � = ±�; so the limit cannot consist of
a single point in G](±�): The converse is similarly straightforward.

4. Rescaled Lagrangian

The ‘Lagrangian’ with which a generalized plane wave is associated turns out
to be, in the general case, a pair of submanifolds of scT ∗@X X: For �xed y ∈ @X
and 0-� ∈ R the main part of it is obtained as the union of the integral
curves of scH 0;1g with limit point on G](�) above y :

Gy(�) = {(y′; �; �) ∈ scT ∗@X X ; �2 + |�|2 = �2; �-0;
lim
t→∞ exp(sgn(�)t

scH 0;1g )(y
′; �) = (y;−�; 0)} (4.1)

where � = (�; �):

Proposition 2. For each y ∈ @X and 0-� ∈ R; Gy(�) ⊂ scT ∗@X X is a smooth
submanifold with closure

Gy(�) = Gy(�) t {(y;−�; 0)} t F�(y; �) (4.2)

which is smooth near (y;−�; 0) and has at most a conic singularity in � at

(4.3)

F�(y; �) = {(y′′; �; 0) ∈ scT ∗@X X ;
∃ a geodesic of length � linking y and y′′ in @X }:
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Proof. From Lemma (2), s ↑ � as t →∞ (if we normalize s0 to be 0): Hence,
putting r = �− s we see that Gy(�), � ¿ 0 (the case of � ¡ 0 is analogous), is
the union of curves �′ = � sin r�̂′; �′ = −� cos r; (y′; �′) = exp(−rH 1

2 h
)(y′; �̂);

|�̂| = 1: Since sin r is odd in r it follows that Gy(�) is smooth near (�; y;−�):
Similarly it follows directly from (3.5) that Gy(�) is smooth, near the other
end, s ↓ 0; of these curves when expressed in � polar coordinates.

The boundary hypersurface, scT ∗@X X; of
scT ∗X carries a natural contact struc-

ture. It arises in essentially the same way that the contact structure arises on
the sphere bundle at in�nity of the cotangent bundle in the boundaryless case.
Thus, the canonical form is such that

dsc� = d
( sc�̃
x

)
(4.4)

where sc�̃ is a smooth 1-form on scT ∗X near the boundary. Indeed, in canonical
coordinates x; y; �; �

sc� = �
dx
x2
+ � · dy

x
sc�̃ = d�+ � · dy:

(4.5)

Moreover, given the choice of de�ning function x; the pull-back sc� of sc�̃ to
scT ∗@X X is uniquely determined. This �xes the contact structure on scT ∗@X X: If a
general boundary de�ning function is used in place of x then the resulting form
is a positive multiple of sc�; so the (oriented) contact line bundle is completely
natural.

Lemma 3. The manifold Gy(�) is Legendre for the contact structure on
scT ∗@X X; that is; a submanifold of maximal dimension (= dim X − 1) on which
sc� vanishes identically.

Proof. At the ‘initial point’ (y;−�; 0); d� = 0 on the tangent space to Gy(�)
so it is clearly Legendre. In T ∗@X any submanifold, �f; of the form

(y; �̂) = exp(sH 1
2 h
)(y′; �̂′); |�| = f(s);

where f is a smooth function and y′ is �xed but s and �̂′ vary with
h(y′; �̂′) = const, is Lagrangian. In fact, since �1 is Lagrangian we only need
to check that

∑
i dyi ∧ �ids = 0 on �1 that is that � · dy ∧ ds = 0: For a �xed

s = s0; �1 ∩ {s = s0} is contained in exp(s0H 1
2 h
)(T ∗y′@X ) which is a homo-

geneous Lagrangian submanifold. Hence � · dy vanishes there and consequently
it is proportional to ds on �1:

Thus, from (3.5), the 2-form
∑

i �i ∧ dyi vanishes on Gy(�): Hence sc�
is necessarily closed on Gy(�): Therefore there is, near (y;−�; 0); a unique
smooth function g with sc� = dg on Gy(�) and g(y;−�; 0) = 0: The vector
�eld scH 2;0p is Legendrian in the sense that

sc�(scH 2;0p �x=0) = 〈d�+ � · dy;−2h@� + h′�@y〉 = −2h+ � · h′� ≡ 0;
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where we have used (3.6) and the homogeneity of h in �: Thus g must be
constant on Gy(�) which must in consequence be Legendrian near (y;−�; 0)
and hence everywhere.

5. Intersecting pairs of Legendre submanifolds with conic points

When the Legendre manifold Gy(�) is singular at F�; as is often the case,
a second Legendre manifold passing through F� is needed to carry o� the
singularities of a generalized plane wave. This is the section, G](−�) of scT ∗@X X
de�ned in (3.4) The union of these two surfaces is a singular Legendre variety

G̃y(�) = Gy(�) ∪ G](−�): (5.1)

Note that Gy(�) also meets G](�); at the initial point (0; y;−�): At this
intersection Gy(�) is smooth so, in the construction of P(�); no singularities
will propagate onto G](�): Although, particularly in view of the push-forward
result in Proposition 16, it would be quite natural to include G](�) as part of
the Legendre variety we shall not do so.
In fact, we shall consider a somewhat wider class of Legendre manifolds

with conic points obtained by abstraction of these conditions. Thus suppose
that

G̃= G ∪ G] ⊂ scT ∗@X X (5.2)

is a closed set with G] ⊂ scT ∗@X X a �nite union of global sections determined
by one de�ning function:

G] =
⋃
j

G]( ��j); G]( ��j) = graph
{
− ��j dxx2

}
⊂ scT ∗@X X: (5.3)

In the decomposition (5.2) we suppose that G is a smooth Legendrian
submanifold with closure G and that

G \ G ⊂ sp
{
dx
x2

}
; (G \ G) ∩ sp

{
dx
x2

}
⊂ G ∩ G] (5.4)

is the site of an at most conic singularity of G: That is, we assume that G is
the image in scT ∗@X X of a smooth manifold, Ĝ; in �-polar coordinates. In the
local coordinates y; �; � this means

G = {(�; y; �); � = T (y; �̂; |�|); gj(y; �̂; |�|) = 0} ; �̂ = �=|�| (5.5)

where the n functions g1; : : : ; gn are such that d(y;�̂)gj; j = 1; : : : ; n are indepen-
dent at the base point ( �y; �̂�): In particular this means that |�| has non-vanishing
di�erential on Ĝ; where locally

Ĝ = {(y; �; r; �̂); r = 0; |�̂| = 1; � = T (y; �̂; r); gj(y; �̂; r) = 0}: (5.6)

Notice that we do not exclude the possibility, as indeed occurs in the some
examples here (for instance Euclidean space), that G may be smooth at some
points of intersection with G]:
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De�nition 1. By an intersecting pair of Legendre submanifolds with conic
points we shall mean a pair G̃= (G;G]) satisfying the conditions (5:2) –
(5:6).

The description of conic singularities can be given a direct global interpre-
tation in terms of blow up along the submanifold

sp
{
dx
x2

}
= {x = � = 0}

in scT ∗X: As remarked above, over the boundary sp{dx=x2} is determined by
the choice of de�ning function x up to constant multiple and quadratic terms,
and hence by G]: It is a ‘scattering conormal bundle’ to @X; since it consists
of the multiples of dx=x2 = −d( 1x ): The description in terms of blow up also
reveals the relationship between scT ∗@X X and T ∗@X:
First recall (see for instance [9]) that if G ⊂ Y is a closed embedded

submanifold of a C∞ manifold Y then the blow up of Y along G; [Y ;G]; is
de�ned as follows. As a set it is the disjoint union

[Y ;G] = (Y \ G) t SNG:
Here, SNG is the spherical normal bundle to G in Y ; thus if NG = TGY=TG
is the normal bundle to G then SNG = (NG \ 0)=R+ with R+ acting on the
�bres. The blow-down map, � : [Y ;G]→ Y is de�ned to be the identity on
Y \ G and the projection to the base on SNG: The C∞ structure, C∞([Y ;G]);
on [Y ;G] is obtained by adjoining to the lift of C∞(Y ) the lifts of � and
functions of the form f=�; here

� =
(∑

i
g2i

) 1
2

; (5.7)

where the gi ∈ C∞(Y ) collectively de�ne G and f ∈ C∞(Y ) vanishes on G:
Since C∞([Y ;G]) includes the lifts of all C∞ functions on Y; the blow down
map � is smooth. When Y is a manifold with boundary and G is a closed
embedded submanifold of the boundary then [Y ;G] = (Y \ G) ∪ SN+G where
SN+G is the (closed) inward-pointing part of the spherical normal bundle. In
either case the set �−1(Y ) by which Y is replaced in the blow up is a boundary
hypersurface, which is sometimes called the front face and denoted [Y ;G]; the
lift of � is a de�ning function for this new boundary hypersurface. The reader
is reminded that this is simply a uniform, and invariant, way of introducing
polar coordinates in Y around G: Using this notation we introduce the blown
up manifold

� : scT̂ ∗X ≡
[
scT ∗X; sp

{
dx
x2

}]
−→ scT ∗X: (5.8)

Under this blow up the boundary hypersurface scT ∗@X X lifts to one of the bound-
ary hypersurfaces which is just the blown up manifold:

�@ : scT̂ ∗@X X ≡
[
scT ∗@X X; sp

{
dx
x2

}]
−→ scT ∗@X X: (5.9)
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When no confusion is likely to arise the same notation will be used for these
two blow down maps, �.
The conditions (5.5) and (5.6) can now be rephrased in terms of the blown

up manifold and the lift of G to scT̂ ∗@X X: Namely

Ĝ = �∗@G = cl�
−1
@ (G \ G]) in scT̂ ∗@X X is an embedded submanifold

with boundary, intersecting @(scT̂ ∗@X X ) transversally. (5.10)

There is a further observation concerning this blow up which will be useful
later. Given a choice of boundary de�ning function x; the front face of scT̂ ∗X
�bres over the variable �; which is the coe�cient of dx=x2; and each of the
�bres is naturally isomorphic to the compacti�cation, T

∗
@X; of the cotangent

bundle to the boundary. Since the components of G] are by assumption �-�bres
the inverse images �−1G](�i) (which we denote as the lifts �∗G](�i)) of these
components are each naturally isomorphic, with isomorphism ; to T

∗
@X: If

S∗@X = @T
∗
@X is the sphere bundle (at in�nity) it follows that

 : �∗@G
](�i) = @(�∗G](�i)) −→ S∗@X: (5.11)

In fact, the isomorphism (5.11) can be seen from the analogous discussion
for the restricted blow-up scT̂ ∗@X X where the boundary of scT̂ ∗@X X �bres over �
with each �bre isomorphic to S∗@X: See the proof of Lemma 12 for the local
coordinate form of the maps.

Proposition 3. If G̃ is an intersecting pair of Legendre submanifolds with
conic points then for each component G](�i) of G]

(�∗G ∩ �∗G](�i)) ⊂ S∗@X

is a Legendrian submanifold with respect to the standard contact struc-
ture. Consequently there is a unique homogeneous Lagrangian submanifold;
�(G̃; �i) ⊂ T ∗@X such that

�(G̃; �i) ∩ S∗@X = (�∗G ∩ �∗G](�i)): (5.12)

Proof. Consider the boundary Ĝ0 = @Ĝ of the blown up form of G: By the
assumption (5.4) each component of it lies in a �xed � �bre of the front face of
scT̂ ∗@X X and has dimension dim X − 2 = dim @X − 1: Since G is Legendre the
scattering contact form sc�̃ = d�+ � · dy in (4.5) vanishes on it. On blowing
up, �̂ = �=|�|; �; y and � = |�| give local coordinates so

d� = ��̂ · dy (5.13)

must vanish on Ĝ0; which is de�ned by � = 0 in Ĝ: Di�erentiating (5.13) it
follows that d� ∧ �̂ · dy = 0 at Ĝ0 on Ĝ and hence that �̂ · dy = 0 on Ĝ0 which
is therefore a Legendre submanifold of S∗@X:
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Notice that �(G̃; �) is a Lagrangian associated to any value of � at which
G̃∩ G](�)-∅ provided G̃ satis�es the conditions of a conic Lengendre variety
nearby. This includes the case of smooth points. These conic Lagrangian man-
ifolds can be thought of as providing ‘boundary conditions’ for the Legendre
manifold G̃:
The Legendre manifold Gy(�) corresponds to a single plane wave, ema-

nating from the point y on the boundary. The carrier of the singularities of
the kernel of the Poisson operator is the Legendre manifold which consists
of the whole family of the Gy(�): Thus we consider the compact manifold
with boundary X × @X: The lift of the function x ∈ C∞(X ) is still a de�ning
function for the boundary so, abusing notation slightly, we write

G](�) = graph
{
−�dx
x2

}
⊂ scT ∗@X×@X (X × @X ) (5.14)

which is Legendre. For the de�nition of the scattering symbol map, j, used in
the next proposition see [10] or Sect. 10 below.

Proposition 4. For each 0-� ∈ R there exists a unique intersecting pair of
Legendre submanifolds with conic points G̃(�) = (G(�); G](−�)) in scT ∗@(X×@X )
(X × @X ) such that

j(�− �2)�G(�)= 0 and

�(G̃(�); �) = N ∗� ⊂ T ∗(@X × @X ): (5.15)

This pair satis�es

�(G̃(�); �) = {(m;m′) ∈ T ∗@X × T ∗@X ;m = exp(�H 1
2 h
(m′)}′; (5.16)

where � ⊂ @X × @X is the diagonal; and (y; �;y′; �′)′ = (y; �;y′;−�′):
Proof. The discussion of Sect. 3 can be applied in this product case. It should
be noted however that even though the new symbol g′ = j(�X ) is still given
by (3.1) in product coordinates x; y; y′; �; �; �′; the rescaled Hamilton vector
�eld is not as in (3.6) because of the implicit x dependence in �′: Rather it is

2�x@x − 2h@� + 2�� · @� + 2��′ · @�′ + Hh(y; �): (5.17)

Thus �′ simply scales under the ow. Consider the submanifold

{(y; y′; �; �;�′); (y; �̂) = exp(sH 1
2 h
)(y′; �̂′); � = � cos s; (5.18)

� = � sin s�̂; �′ = −� sin s�̂′} ⊂ scT ∗@(X×@X )(X × @X ):
The same argument as in the proof of Lemma 3 shows that this submanifold
is Legendrian and satis�es the two conditions in (5.15). Clearly it also satis�es
(5.16).
Conversely (5.15) implies that

�L(G(�) ∩ �−1(X × {y})) = Gy(�); ∀y ∈ @X;
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where �L : scT ∗@(X×@X )(X × @X )→ scT ∗@X X is the left projection. Hence (5.15)

determines G̃(�) uniquely.

Notice that G̃(�) is essentially the union of the G̃y(�) except for the be-
haviour of the variables �′:

6. Parametrization and equivalence

The local parametrization of smooth Legendre submanifolds of scT ∗@X X is com-
pletely analogous to, in fact is equivalent to, the parametrization of conic La-
grangian submanifolds (i.e. Legendre submanifolds of the cosphere bundle) in
the boundaryless case. The only formal di�erence is the relation of the ‘radial
vector �eld’ to the base; this results in parametrizations requiring between 0
and dim X − 1 parameters rather than between 1 and dim X parameters as in
the conic case.
To make the analogy as clear as possible we shall extend the given Leg-

endre submanifold, G ⊂ scT ∗@X X; to a Lagrangian submanifold of T
∗X; near @X;

which is x-translation-invariant as a submanifold of scT ∗X: This can be accom-
plished by the choice of a product decomposition near the boundary and then
taking

�G = {(x; y; �; �) ∈ T ∗X ; 0¡ x ¡ �; (y; x2�; x�) ∈ G}: (6.1)

Note that �G is Lagrangian if and only if G is Legendre, since the tangency
of @x (as a vector �eld in the coordinates x; y; �; �) to �G implies that sc�̃ = 0
on �G:
By a parametrization of G (or �G) near some point ( ��; �y; ��) ∈ G; we

mean a function ’(y; u); de�ned and C∞ near ( �y; �u) ∈ @X ×Rk ; satisfying
the normalization and non-degneracy conditions

’( �y; �u) = − ��; dy’( �y; �u) = ��; du’( �y; �u) = 0 (6.2.i)

d(y;u)
@’
@ui
; i = 1; : : : k are independent at ( �y; �u) (6.2.ii)

and parametrizing the submanifold in the sense that

C’ = {(y; u);du’(y; u) = 0} 3 (y; u) 7−→
{(y;−’(y; u); dy’(y; u)) = (y; �; �)}

is a di�eomorphism from a neighbourhood of ( �y; �u)

to a neighbourhood of ( �y; ��; ��) in G:

(6.2.iii)

Notice that the true ‘phase function’ parametrizing �G is

�(x; y; u) =
’(y; u)
x

(6.3)
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which is homogeneous of degree −1 in x: The parametrization condition
(6.2.iii) then becomes more transparent:

d� = −’dx
x2
+
d’
x
= �

dx
x2
+ � · dy

x
if du’ = 0: (6.4)

Two parametrizations ’1(y; u) and ’2(y; u′) are equivalent near the base
points ( �y; �u) and ( �y; �u′) if there is a family of local di�eomorphism of Rk ;
depending smoothly on y as a parameter, for y near �y;

Uy : Rk −→ Rk ; U �y( �u) = �u′ (6.5)

such that ’2(y;Uy(u)) = ’1(y; u) near �y; �u:
The local equivalence of parametrizations is very much as in the standard

case, see especially Theorems 3.1.3 and 3.1.6 of [5].

Proposition 5. Any Legendre submanifold; G; of T ∗@X X; has a local parametri
zation near each point with any number

k = kmin = dim(T( �y; ��; ��)G ∩ {dy = 0}) (6.6)

of parameters and with Hessian @2u’( �y; �u) having exactly p positive eigenval-
ues for any 05 p5 k − kmin : Two such parametrizations based at ( �y; ��; ��)
are equivalent if and only if they have the same number of parameters and
@2u’ has the same signature at the base point.

Proof. For a given base point ( �y; ��; ��) ∈ G we construct a minimal parametriza-
tion, one with k = kmin in (6.6). By a linear change of y variables it can be
arranged that

T( �y; ��; ��)G ∩ {dy = 0} = {(0; 0; �1; : : : ; �k ; 0; : : : ; 0)} (6.7)

where, by de�nition, k = kmin : Since d�+ � · dy = 0 on G;∑
i
d�i ∧ dyi = 0 (6.8)

there and thus the di�erentials dy1; : : : ; dyk vanish on T( ��; �y; ��)G: It follows that
�′ = (�1; : : : ; �k) and y′′ = (yk+1; : : : ; yn−1) together give local coordinates on
G near ( ��; �y; ��); which is therefore of the form

G = {� = T (y′′; �′); y′ = Y ′(y′′; �′); �′′ = �′′(y′′; �′)}: (6.9)

Consider
’(y; �′) = y′ · �′ − T (y′′; �′)− Y ′(y′′; �′) · �′: (6.10)

This parametrizes G; since dT = −� · dY ′ − �′′: Thus @�′’ = 0⇐⇒ y′ =
Y ′(y′′; �′) and then �′ = dy′’; �′′ = dy′′’: Relabelling the �′ variables as
u and reverting to the original coordinates gives a minimal parametrization of
( ��; �y; ��): A general parametrization, as in the statement of the proposition, can
be obtained by adding to ’ a non-degenerate quadractic form in additional u
variables.
Equivalence of parametrizations can be shown essentially as in [5], The-

orem 3.1.6. Since the only di�erence is the absence of homogeneity in the
parameters, the details are omitted.
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7. Conic pairs and their parametrization

We also need to produce similar parametrizations for Legendre submanifolds
with conic singularities.
By a parametrization of G̃ near a singular point ( �y; ��; 0; �̂�) ∈ Ĝ0 = @Ĝ we

mean a C∞ function ’(y; s; u) de�ned near ( �y; 0; 0) in @X × [0;∞)×Rk−1

of the form

’(y; s; u) = − ��+ s (y; s; u); �� = const (7.1)

such that

d(y;u) and d(y;u)
@ 
@uj
; j = 1; : : : ; k are independent at ( �y; 0; 0) (7.2)

and for which the map

C’ =
{
(y; s; u);

@’
@s
= 0;

@ 
@u
= 0; s= 0

}
7−→

(
y;−’; |dy’|; dy’

|dy’|
)
:

(7.3)

is a di�eomorphism onto a neighbourhood of ( �y; ��; 0; �̂�) into Ĝ:

Proposition 6. Every intersecting pair of Legendre submanifolds with conic
points; in scT ∗@X X; in the sense of (5:2) – (5:6) admits a parametrization at
each point of Ĝ0:

Proof. By making a linear change of coordinates in y; and by scaling x; it can
be assumed that �̂� = (0; : : : ; 0; 1) at the base point. Thus the projective variables
�̂j = �j=�n−1; j = 1; : : : ; n− 2; are smooth on Ĝ near the base point. By making
a further linear change of variables it can be ensured that d�̂1; : : : ; d�̂k−1; d�n−1
are independent, on Ĝ; at the base point, with d�̂k ; : : : ; d�̂n−2 vanishing there.
As shown in the proof of Lemma 3, d�̂ ∧ dy′ = 0 on Ĝ0 which implies that
dy1; : : : ; dyk−1 = 0 at the base point. Hence

�̂′ = (�̂1; : : : ; �̂k−1); y
′′ = (yk ; : : : ; yk−2) and �n−1 (7.4)

give local coordinates on Ĝ near the base point.
A parametrizing function is now given by

’(y; s;u) = sy′ · u− T (y′′; s; y)− sY ′(y′′; s; u) · u+ yn−1s− Yn−1(y′′; s; u)s

where Ĝ={�= T (y′′; �n−1; �̂′); y′= Y ′(y′′; �n−1; �̂′); �̂′′=M ′′(y′′; �n−1; �̂
′)}:
(7.5)
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Since � = �� on Ĝ0 = {�n−1 = 0}; T (y′′; s; u) = ��+ sT ′(y′′; s; u); so ’ in (7.5)
is of the form (7.1). Furthermore,

d’=
(
y′ · u− @T

@s
− @
@s
(sY ′ · u) + yn−1 − @s(Yn−1s)

)
ds

+s
(
y′ − @uT − @u(Y ′u)− @u(Yn−1)

) · du
+su · dy′ + s dyn−1 −M ′′ · dy′′ (7.6)

where M ′′ = @y′′T + su · @y′′Y ′ + s@y′′Yn−1: The independence condition (7.2)
is then clear and (7.3) follows readily from the fact that Ĝ is Legendre.

The parametrization given in Proposition 6 also gives a parametrization of
the Lagrangian submanifolds �(G̃; ��) given by Proposition 3. In fact, in a conic
neighbourhood of ( �y; �̂�); �(G̃; ��) is parametrized by

�(y; �) = �1 (y; 0; �′=�1); (�1; �′) ∈ � ⊂ Rk+1;

� a conic neighbourhood of (1; 0; · · · ; 0) ∈ Rk+1:
(7.7)

We also need to consider the equivalence of such parametrizations. This
follows essentially as in the standard case. Two parametrizations ’1(y; s; u) and
’2(y; s′; u′) are said to be equivalent near the base point ( �y; 0; 0) if there is a
family of local di�eomorphims, Uy; of R+ ×Rk−1; mapping {0} ×Rk−1 to
itself, depending smoothly on y ∈ @X as a parameter and such that, U �y(0; 0) =
(0; 0) and near ( �y; 0; 0);

’2(y;Uy(s; u)) = ’1(y; s; u):

Proposition 7. Two parametrizations of a conic Legendre pair; ’1 and ’2;
based at ( �y; ��; ��); are equivalent if and only if they have the same number of
parameters and

sgn @2u 1(y; 0; 0) = sgn @
2
u 2(y; 0; 0); (7.8)

where ’i(y; s; u) = − ��+ s i(y; s; u); for i = 1; 2:

Proof. As already noted this result can be deduced by following the proof of
Theorem 3.1.6 of [5]. We shall therefore only indicate the points at which the
argument is slightly di�erent. Consider the two parametrizations �1 and �2 of
�(G; ��) obtained from ’1 and ’2 as in (7.7). Since they parametrize the same
Lagrangian and

@2��i( �y; 1; 0) =
(
0 0
0 @2u i( �y; 0; 0)

)
Theorem 3.1.6 of [5] shows them to be equivalent. Thus we can assume that
 1(y; 0; u) =  2(y; 0; u):

Proceeding as in the �rst step of the proof in [5] we can also assume that
’1 and ’2 are equal to second order on the set C’1 ; where C’1 is de�ned by
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(7.3). The independence of d(y;u) 1 and d(y;u)( ′1uj); for j = 1; · · · ; k − 1; and
Taylor’s formula give

’2(y; s; u) = ’1 (y; s; u) + ã00(y; u; s)( 1 + s ′
1s)

2

k−1∑
i=1
ã0i(y; s; u)( 1 + s ′

1s) 
′
1ui +

k−1∑
i;j=1

ãij(y; s; u) ′1ui  
′
1uj :(7.9)

Since  1 =  2 at s = 0 and ’i = − ��+ s i; it can be arranged that ãij = saij
with the aij smooth. Hence the analogue of B in (3.18) of [5] is small for s
small and thus the second step of the proof there can be applied. This yields
the desired parameter change Uy:

8. Oscillating functions

The simplest type of Legendre submanifold of scT ∗@X X is a section, G; given by
the graph of the di�erential of ’=x; ’ ∈ C∞(@X ): Then exp(i’=x) ∈ C−∞(X )
is a typical Legendre distribution associated to G: In particularly with the notion
of wave front set de�ned in [10] (this is briey recalled in Sect. 10 below)

scWF(ei’=x) = G: (8.1)

In this case we de�ne

Imsc(X;G;
sc


1
2 ) = ei’=xxm+

n
4 · C∞(X ; sc
 1

2 ); n = dim X: (8.2)

The normalization here is arranged, as is discussed below, to conform to the
convention of H�ormander in [5] for the order of a Lagrangian distribution.
One of the most fundamental examples of such an oscillating function is

the kernel of the Fourier transform. Since we need to consider coordinate-
invariance below, consider the invariant Fourier transform from half-densities
on a vector space V to half-density on the dual V ∗

F(u|dv| 12 ) =
(∫
e−i〈v;v

∗〉u(v) |dv|
)
|dv∗| 12 : (8.3)

The Schwartz kernel

e−i〈v;v
∗〉|dv| 12 |dv∗| 12 ∈ C−∞(V × V ∗; sc


1
2
)

(8.4)

is completely well-de�ned, where V is the stereographic compacti�cation of V:
We are most interested in points in the interior of V ∗ and near the boundary
of V so we shall just consider V × V ∗; a manifold with boundary. Applying
the de�nition, (8.2), we �nd

Lemma 4. For any real vector space V

e−i〈v;v
∗〉|dv| 12 |dv∗| 12 ∈ I 0sc

(
V × V ∗;L; sc
 1

2
)

(8.5)

where L = graph{−d〈v; v∗〉} ⊂ scT
∗
@V×V∗(V × V ∗) is the Legendre relation.
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Proof. Notice that the order is 0 since |dv| 12 |dv∗| 12 ∈ x 12 dim VC∞(V × V ∗;
sc


1
2 ):

To justify calling this the Legendre relation consider linear coordinates �
in V and dual coordinates y in V ∗: If � = �=x; x = 1=|�|; then @V ' Sn−1 with
coordinates �: Let x; �; y; �; �′; �′′ be the corresponding coordinates in scT ∗(V ×
V ∗): Thus

− d〈v; v∗〉 = −d� · y
x

= � · ydx
x2
− (y − (y · �)�) · d�

x
− �
x
dy (8.6)

so L is the submanifold

� = y · �; �′ = −y + (y · �)�; �′′ = −�: (8.7)

The two projections (�; y; �; �′; �′′) 7−→ (�; �; �′) and (�; y; �; �′; �′′) −→ (y; �′′)
are the coordinate forms of invariantly de�ned projections

scT ∗
@V×V∗(V × V ∗)

�1↙ ↘�2
scT ∗

@V
V T ∗V ∗:

(8.8)

We also introduce S∗V ∗ = @T
∗
V ∗; the cosphere bundle of V ∗; thought of as

the sphere at in�nity. Directly from (8.7) we �nd

Lemma 5. Under the two projections (8:8); L de�nes the ‘Legendre di�eo-
morphism’

L : scT ∗
@V
V −→ S∗V ∗;

L(�; �; �′) = (y; �′′)⇐⇒ (�; y;−�;−�′; �′′) ∈L; L(�; �; �′) = (�′ − ��;−�):
(8.9)

The Legendre transformation, L in (8.9), is a contact di�eomorphism of
scT ∗

@V
V onto S∗V ∗: It is therefore natural to expect the Fourier transform to act

as a (local) Fourier integral operator transforming the Legendre distributions
associated to G ⊂ scT ∗@X X to Lagrangian distributions in the ordinary sense.
Indeed we shall ruthlessly exploit this transformation.

9. Maslov bundle

The Maslov bundle is de�ned over any conic Lagrangian submanifold � ⊂
T ∗Y\0; for any manifold Y: For l ∈ �; a conic Lagrangian, let Gl be the part
of the Grassmanian of Lagrange planes in Tl(T ∗Y ) consisting of the planes
transversal to both Tl� and the �bre Tl(T ∗�(l)Y ) ∼= T ∗�(l)Y: The �bre, Ml; of the
Maslov bundle consists of the locally constant functions on Gl; with values in
C; satisfying the transition condition between components

f(pl) = im(pl;p
′
l ;TlG;T

∗
�(l)Y )f(p′l) (9.1)



Scattering metrics and geodesic ow 413

where m(pl; p′l; Tl�; T
∗
�(l)Y ) ∈ Z is the Maslov index, de�ned for any four

Lagrange planes with the �rst two transversal to the second two.
This bundle is completely natural under coordinate transformations, i.e. if

F∗ : T ∗Y2 −→ T ∗Y1 is the pull-back map of a (local) di�eomorphism F :
Y1 −→ Y2 then for any conic Lagrangian �1 ⊂ T ∗Y2\0 the Maslov bundle
M (�2) over �2 = (F∗)−1(�1) is canonically identi�ed with (F∗)∗M (�1); the
pull-back of the Maslov bundle over �1:

This naturality allows us to de�ne the Maslov bundle on a Legendre sub-
manifold � ⊂ scT ∗@X X by local identi�cation with the conic Lagrangian case.
Thus, near any point on @X; X can be locally identi�ed with V ; the compact-
i�cation of a vector space of the same dimension. The map (8.9) identi�es
�; locally, with a Legendre submanifold of S∗V ∗: The Maslov bundle over
the associated conic Lagrangian submanifold of T ∗V ∗\0 is induced by its re-
striction to the Legendre manifold at in�nity. This identi�cation therefore �xes
the �bres of the Maslov bundle over � near the chosen base point. However,
two local coordinate identi�cations of X with V 1; and V 2 induce Legendre
transformation L1 and L2 such that L1L−12 is the lift of a coordinate transfor-
mation from V ∗2 to V

∗
1 : The naturality of the Maslov bundle under coordinate

transformations means that the Maslov bundle M over � is well-de�ned, with
the properties

Ml(�) = L∗ML(l)(L(�)) locally: (9.2)

It is also possible to de�ne the Maslov bundle intrinsically on �; but we
do not have to do so.
In the case of a pair of Legendre submanifolds with conic points, notice

that the tangent planes to Ĝ; even at points of Ĝ0; are Legendre planes in
the tangent space to scT ∗@X X: Thus the construction about extends to de�ne the
Maslov bundle over Ĝ; and hence over the whole of G̃:

10. Pseudodi�erential operators and symbols

The algebra of scattering pseudodi�erential operators on a general compact
manifold with boundary is de�ned, in [10], by reference to the model space,
Sn+; thought of as the stereographic compacti�cation of Rn: To give maxi-
mal invariance properties to the symbol we consider operators on sections of
the bundle sc


1
2 : Under stereographic projection, SP : Rn ,→ Sn+; the Lebesgue

half-density |dz| 12 becomes a non-vanishing smooth section of sc
 1
2 :

Thus, in the model case, A ∈ 	m;ksc (Sn+; sc

1
2 ) if and only if A′ = SP∗ · A ·

(SP−1)∗ is of the form

A′
(
u(z)|dz| 12 ) = (2�)−n ∫ ei(z−z′)·�a( z+z′2 ; �)u(z′)dz′d�|dz| 12

with a(z; �) = SP∗2a
′; a′ ∈ �−m� �k@C

∞(Sn+):
(10.1)
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Here SP2 = SP× SP : Rn
z ×Rn

� −→ Sn+ × Sn+; �� ∈ C∞(Sn+ × Sn+) is a de�n-
ing function for Sn+ × Sn−1 and �@ ∈ C∞(Sn+ × Sn+) is a de�ning function for
Sn−1 × Sn+: In fact the de�nition in [10] was in terms of left quantization, not
Weyl quantization as in (10.1), but these are completely equivalent. (See [6]
or Sect. 18.5 of [7]).
The manifold Sn+ × Sn+; together with its identi�cation with Rn

z ×Rn
� =

T ∗Rn in the interior, is canonically isomorphic to scT
∗Sn+: The joint symbol

of A; as de�ned in [10], is the equivalence class of

a′ ∈ �−m� �k@C
∞(scT

∗Sn+)

mod �−m� �k+1@ C∞(scT
∗Sn+) + �−m+1� �k@C

∞(scT
∗Sn+);

(10.2)

and as such is independent of coordinates.
Since the operators in 	m;ksc (Sn+; sc


1
2 ) act on half-densities, much more is

true:

Lemma 6. For any compact manifold with boundary the joint symbol of A ∈
	m;ksc (X ;

sc

1
2 ); j(A); is well-de�ned as an element of

�−m� �k@C
∞(scT

∗
X ) mod �−m+2� �k+2@ C∞(scT

∗
X ) (10.3)

by a′ in (10:1) in any local identi�cation of scT
∗
X with scT

∗Sn+ resulting
from a local identi�cation of X and Sn+:

Proof. This follows from the de�nition and the coordinate transformation prop-
erties of the Weyl symbol (see [6] or Sects. 18.2 and 18.5 of [7]).

The R+ action on the �bres of scT ∗X is independent of coordinates. This
allows the joint symbol to be identi�ed near the boundary, @(scT

∗
X ◦); of

the compacti�ed �bres over the interior as the sum of homogeneous func-
tions

j(A) = �m(A) + �subm−1(A) near @(
scT

∗
X ◦): (10.4)

Thus the subprincipal symbol becomes a function on T ∗X ◦\0 which is ho-
mogeneous of degree m− 1: The part of the symbol we are most inter-
ested in is that near scT ∗@X X; where there is no natural transversal R

+ ac-
tion. Then there is no natural splitting analogous to (10.4). However the
choice of a boundary de�ning function, x; for X and of a product decom-
position of X near @X does give a splitting. Near, but not at, the bound-
ary

scT ∗X = scT ∗(0; �)× x−1T ∗@X with scT ∗(0; �) = (0; �)x ×R� (10.5)

where the basis element dx=x2 of scT ∗(0; �) is used to de�ne the coordinate �:

This means that, for A ∈ 	m;ksc (X ; sc

1
2 );

j(A) = xkpk + xk+1pk+1; pk ; pk+1 ∈ C∞(R� × T ∗@X ): (10.6)
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This decomposition will be used in computations below. In particular the
rescaled Hamiltion vector �eld of j(A) can be written

scH∗; k
j(A) = @�pk(x@x + R�)− (R�pk + kpk)@�+Hpk + xW; W ∈Vb near scT ∗@X X

(10.7)

where Hpk is the Hamilton vector �eld of pk as a function on T
∗@X; R� is

the radial vector �eld in the tangential directions, �@ = x and the rescaling at
�� = 0 has been dropped.

It is very convenient below to reduce microlocal questions near scT ∗@X X to
‘conventional’ microlocal analysis near T

∗Rn: This is accomplished by the
Fourier transform.

Proposition 8. For any vector space V the intrinsic Fourier transform (8:5)
de�nes, by conjugation, an isomorphism

CF : 	m;ksc (V ;
sc


1
2 ) −→ 	−k;−m

sc (V ∗; sc

1
2 ) (10.8)

such that if L̃ : scT
∗
V ∼= �V × V ∗ −→ V ∗ × V ∼= scT

∗
V ∗ is the map L̃( �v; �w) =

( �w; SP(−SP−1( �v))) then
j(CFA) = L̃

∗
j(A): (10.9)

Proof. The intrinsic Fourier transform, (8.3), is de�ned by conjugation with
stereographic projection V ,→ V : Thus (10.8) reduces to the covariance of the
Weyl calculus under Fourier transformation. Namely if A′ is given by (10.1),
with A = SP∗ · A · (SP−1)∗ then CF(A) = SP∗ · A′′ · (SP−1)∗ where

A′′v(�) = (2�)−n
∫
ei�z+i(z−z

′)�−iz′·�′a( z+z
′

� ; �)v(�
′)d�′dz′dz d�

= (2�)−n
∫
ei(�−�

′)·Za(Z;− �+�′
2 )v(�

′)d�′dz:
(10.10)

This gives (10.9).

We remark that the Legendre di�eomorphism L de�ned in Lemma 5 is the
boundary value of L̃:

L = L̃�scT ∗
@V V

: scT
∗
@V V −→ S∗V :

It is instructive to obtain the somewhat non-obvious (from this point of view)
coordinate expression (8.9) from the de�nition of L̃:
The Laplacian on a Riemann manifold acts naturally on the sections of the

half-density bundle since the Riemannian density gives a trivalizing section.

Lemma 7. For the Laplacian � ∈ Di�2sc(X ; sc

1
2 ) ⊂ 	2;0sc (X ; sc


1
2 ) of a scat-

tering metric the joint symbol, including subprincipal terms, is the equivalence
class of the metric function g ∈ �−2� C∞(scT ∗

X ):

Proof. This follows directly from Lemma 3 in [10].
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We also note the form, for scattering pseudodi�erential operators, of the
‘oscillatory testing’ de�nition of the symbol.

Lemma 8. If ’ ∈ C∞(X ) has d(’�@X )-0 or ’�@X -0 on the support of
� ∈ C∞(X ; sc
 1

2 ) and x ∈ C∞(X ) is a boundary de�ning function then
A(ei’=x�) = ei’=xxk�′; �′ ∈ C∞(X ; sc
 1

2 )

xk�′ − j(A)�graph(d ’x ) � ∈ xk+1C∞(X ; sc

1
2 )

(10.11)

for any A ∈ 	m;ksc (X ;

1
2 ): Moreover if A is microlocally of order k = +∞

near a point of graph(d(’=x)) over the boundary then �′ and all its derivatives
vanish rapidly with x near the projection of that point in @X:

This can be proved directly from the de�nitions. A proof based on the
conjugation properties of the Fourier transform is given in Sect. 11.
For completeness we note, without proof, the relationship between the scat-

tering wave front set, scWF; and the better known frequency set of semi-
classical analysis, FS; (see [4]). Recall from [10] the de�nition of scWF(u) for
any element u ∈ C−∞(X )

scWF(u) =
⋂{

{j(A) = 0};A ∈ 	0;0sc (X ); Au ∈ Ċ
∞
(X )

}
⊂ @scT ∗

X:
(10.12)

Proposition 9. Let X be a compact manifold with boundary and suppose that
u ∈ C−∞(X ) is smooth in the interior. If F : [0; �)× @X −→ X is a product
decomposition of X near the boundary then interpreting F∗u = u(h; y) as a
function of y ∈ @X depending on the ‘semi-classical parameter’ h ∈ (0; �)

FS(B∗u) = �scWF(u);

where � : scT ∗@X X → T ∗@X; �(y; �; �) = (y; �); is the map determined by the
choice of the de�ning function x = h and product decomposition.

In this sense the scattering wavefront set is a re�nement of the frequency
set which uni�es it with the standard wavefront set in the interior.

11. Legendre distributions

Let G ⊂ scT ∗@X X be a smooth (not necessarily closed) scattering Legendre
submanifold. Near each point p ∈ G we have shown that there exist local
parametrizations of G; ’ ∈ C∞(U × U ′) where �(p) ∈ U ⊂ @X and U ′ ⊂ Rk

is open in the parameter space. The Legendre distributions of order m; de�ned
with respect to this local parametrization, are the functions with compound
asymptotics

v(x; y) = (2�)−
n
4− k

2
∫
ei’(y;u)=xa(x; y; u)xm−

k
2 +

n
4du;

a ∈ C∞c ([0; �)× U × U ′):
(11.1)
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De�nition 2. For a smooth Legendre submanifold

G ⊂ scT ∗@X X; u ∈ Imsc(X;G; sc

1
2 ) ⊂ C−∞(X ; sc
 1

2 ) (11.2)

if; for any  ∈ C∞c (X );

 u = u0 +
J∑
j=1
vj · �j; (11.3)

where u0 ∈ Ċ∞(X ; sc
 1
2 ); �j ∈ C∞(X ; sc
 1

2 ) and the vj are; for j = 1; : : : ; J;
functions of the form (11:1) for parametrizations of G:

It is easy to see the coordinate invariance of these spaces of Legendre
distributions. Namely if f : X −→ X is a di�eomorphism and

scf∗ : scT ∗X −→ scT ∗X (11.4)

is the induced isomorphism then

f∗ : Imsc(X;G;
sc


1
2 ) −→ Imsc(X;

scf∗G; sc

1
2 ) (11.5)

is an isomorphism. To see this it su�ces to show that if v is of the form (11.1)
for a parametrization of G then f∗v is of the same form for a parametrization
of scf∗G: Let f(x′; y′) = (x; y) be the induced change of local coordinates, so
x = x′f0(x′; y′); y = Y (x′; y′) with f0 ¿ 0: Then

f∗v =
∫
ei’

′(y′ ;u)=x′a′(x′; y′; u)(x′)m−
k
2 +

n
4du (11.6)

where
’′(y′; u) = ’(Y (0; y′); u)=f0(0; y′) (11.7)

and

a′(x′; y′; u) = a(x′f0(x′; y′); Y (x′; y′); u) exp
(
i
’(Y (x′; y′); u)
x′f0(x′; y′)

− i ’
′(y′; u)
x′

)
(11.8)

is smooth up to x′ = 0: Since ’′(y′; u)=x′ is clearly a parametrization of scf∗G
the coordinate invariance, (11.5), follows.
In fact, if ’j for j = 1; : : : ; N; give local parametrizations of G covering an

open subset of X then any element of Im(X;
; sc

1
2 ) with support in that

subset has a decomposition (11.3) for those parametrizations. It is quite
straightforward to prove this and to develop the symbol calculus of these
Legendre distributions by analogy with the usual case of the Lagrangian
distributions of H�ormander. Rather than do so we shall use the (local)
Fourier transform to reduce the discussion to this case. As already noted
this reduction is based on the following result for the Fourier
transform.



418 R. Melrose, M. Zworski

Proposition 10. If V is the stereographic compacti�ciation of a vector space
and G ⊂ scT ∗@X V is a Legendre submanifold then (compacti�ed) Fourier trans-
formation gives an isomorphism

scF : Imsc(V ;G;
sc


1
2 ) −→ I−m(V;�;


1
2 ) ∩ E′(V ;
 1

2 ) +S(V ;

1
2 ); (11.9)

where � is the unique homogeneous Lagrangian such that � ∩ S∗V = L(G):

Proof. By the coordinate invariance, (11.5), of these spaces it su�ces to take
V = Sn+: Let � = z=|z|; x = 1=|z| be inverted polar coordinates. In these coor-
dinates v; in (11.1), has Fourier transform

scFv(�) = (2�)−
n
4− k

2
∫
e−i

�
x ·�+i’(�;u)=xa(x; �; u)xm−

k
2 +

n
4du · dx d�

xn+1
|d�| 12 : (11.10)

Written in terms of the linear coordinates z = �=x this is of the form

scFv(�) = (2�)−
n
4− k

2
∫
ei (�; z;U )b(�; z; U )dz dU |d�| 12 (11.11)

where U = |z|u and

b(�; z; U ) = a
(
1
|z| ;

z
|z| ;

U
|z|
)
|z|−m− k

2− n
4 : (11.12)

Clearly b is a 1-step polyhomogeneous symbol. Moreover,

 (�; z; U ) = −z · �+ ’
(
z
|z| ;

U
|z|
)
|z| (11.13)

parametrizes �: Thus, directly from the de�nition of Lagrangian distributions,
scFv ∈ I−m(V;�;
 1

2 ): Necessarily its singular support is compact and the map-
ping property (11.9) easily follows.
This argument can be reversed, showing that (11.9) is an isomorphism.

We now briey outline the proof of Lemma 8 from the previous sec-
tion. Since the statement is local we can assume that X = V : By Proposition
(10), scF(ei�=x�) is a Lagrangian distribution associated to �� ⊂ T ∗V ∗ \ 0: In
terms of projective variables it is parametrized by z−11 �(z

′=z1)− 〈�; z〉 where
z1 = 1=x; z′ = y=x and � = (�1; �′) are the corresponding dual variables. The
statement (10.11) then follows from the standard formula for the application of
a pseudodi�erential operator to a Lagrangian distribution (see Theorem 25.2.4
in [7], though in this case it is particularly simple) and from the proof of
Proposition 10.
Before using this local result to discuss the symbolic properties of Legendre

disitributions we shall consider the invariance properties of the local Fourier
transform.
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Proposition 11. Under a local di�eomorphism G : U;p −→ U ′; p where U;U ′

⊂ Sn+ are open and p; p′ ∈ Sn−1 = @Sn+; the operator
GF = scF ◦ G∗ ◦ � ◦ scF−1 (11.14)

where � ∈ C∞c (U ′); is a Fourier integral operator of order 0 on Rn associated
with the (local) canonical di�eomorphism LG = LG∗L−1 of T ∗Rn and having
symbol L∗� under the natural trivializations of Maslov and density bundles.

Proof. As an operator on half-densities GF has kernel

(2�)n
∫
e−i�·z+G(z)·�

′
∣∣∣∣@G@z

∣∣∣∣ 12 �(z)dz |d�| 12 : (11.15)

This has the symbolic properties as stated.

12. Symbol calculus

For a Legendre distribution, associated to a smooth Legendre submanifold G ⊂
scT ∗@X X; the transformation (11.9) reduces the de�nition of the symbol to the
standard conic Lagrangian case.
If Y is a manifold without boundary and � ⊂ T ∗Y\0 is a conic Lagrangian

the symbol mapping of H�ormander

�m : Im(Y; �;

1
2 ) −→ Sm+

n
4 (�;


1
2 ⊗M) (12.1)

takes values in the homogeneous sections, of degree m+ n
4 ; of 


1
2 ⊗M: If

� ⊂ S∗Y is the Legendre manifold associated to �; with S∗Y = @T
∗
Y the

boundary of the �brewise stereographic compacti�cation, then (12.1) can be
replaced by

�]m : Im(Y; �;

1
2 ) −→ C∞(�;E−m(�))

where E−m(�) = |N ∗@T
∗
Y |−m− n

4 ⊗M� ⊗ 

1
2
�:

(12.2)

Notice that M; as a bundle over �; is canonically trivial over the R+ lines
and so induces a bundle M� over �: The power of the conormal bundle of
in�nity in (12.2) models a section which is homogeneous of degree m+ n

4 and
a smooth half-density on � de�nes a unique smooth half-density on � which
is homogeneous of degree 0:
Following H�ormander in [5] the symbol in (12.1) is de�ned as follows.

Any element u ∈ Im(Y; �;
 1
2 ) is (by de�nition) a locally �nite superposition

of distributions de�ned by oscillatory integrals:

u = (2�)−
n
4− N

2
∫
ei’(�;�)a(�; �)d�|d�| 12 (12.3)
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where �1; : : : ; �n are local coordinates in Y; a is a polyhomogeneous (that is,
classical) symbol of order m+ n

4 − N
2 ; there are N phase variables �1; : : : ; �N

and ’ is a local parametrization of � over the support of a: The parametriza-
tion, ’; de�nes a local isomorphism (near the support of a)

p’ : C’ = {(�; �);’′� = 0} −→ {(�; d��) ∈ �} (12.4)

and the symbol of u in the sense of (12.1) is then locally on �

�m(u) = (p−1’ )
∗(a(�; �)ei �4 � ∣∣∣∣D(�1; : : : ; �n; ’′�1 ; : : : ; ’′�N )D(�1; : : : ; �n; �1; : : : ; �N )

∣∣∣∣−
1
2

|d�1 : : : ; d�n|
1
2
)
(12.5)

where �1; : : : ; �n are functions, homogeneous of degree 1; inducing coordinates
on C’ and � is an integer, determined by a choice of transversal Lagrangian
to G and the �bres, which �xes the Maslov factor.
H�ormander shows that �m is well-de�ned and extends by linearity to �x

(12.1). To get an explicit form for the symbol as in (12.2), observe that there
is no necessity to take the functions �; : : : ; �n to be homogeneous of degree 1:
If n− 1 of them are homogeneous of degree 0 and �n is non-vanishing and
homogeneous of degree 1 the same formula (12.5) holds. In fact �n can
be taken to be one of the � variables, say �N after renumbering. Setting
’(z; �) = �N (z; �1=�N ; : : : ; �N−1=�N ) and uj = �j=�N from j = 1; : : : ; N − 1 it
follows that (12.5) can be written

�m(u) = (p−1’ )
∗

ei �4 �a ∣∣∣∣D(�1; : : : ; �n−1; �N ;  ′u1 ; : : : ;  ′uN−1 ;  − u ·  ′u )
D(�1; : : : ; �n; u1; : : : ; uN−1; �N )

∣∣∣∣−
1
2

�
N−1
2

N |d�1 : : : d�N−1d�N | 12
)

= (p−1’ )
∗

ei �4 �a� N2N ∣∣∣∣D(�1; : : : ; �n−1;  ′u1 ; : : : ;  ′uN−1 ;  )D(�1; : : : ; �n; u1; : : : ; uN−1)

∣∣∣∣−
1
2

|d�1 : : : d�n−1| 12
 :
(12.6)

In this form we can easily get an explicit version of the symbol for Leg-
endre distributions de�ned through the Legendre transformation L: This gives
an isomorphism of bundles, locally,

L∗ : C∞(LG;Em(LG)) −→ C∞(G;Em(G)) (12.7)

where on the left Em is the corresponding bundle over the Legendre subman-
ifold G

Em(G) = |N ∗@V |m− n
4 ⊗ 
 1

2
G ⊗MG: (12.8)

Thus, near p ∈ G; if Sn+ ⊃ U
f−→ U ′ ⊂ X is a local identi�cation of a

neighbourhood of �(p) ∈ U ′ with an open subset of Sn+ then

�∗� · �sc; m(u) = (2�)− n
2 (scf−1

∗
)∗L∗�−m(scF(f∗�u)); (12.9)
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where � ∈ C∞c (U ′) and scf−1∗ is the lift of f−1 to scT ∗U ′ (see 11.4), de�nes

�sc; m(u) ∈ C∞(G;Em(G)); (12.10)

and does so unambiguously. For a particular choice of a de�ning function of
@X we will denote a section of Em(G) by a|dx|m− n

4 where a is a section of



1
2
G ⊗MG:
Proposition 12. The symbol map; given locally by (12:9); is well-de�ned as
in (12:10); and gives a short exact sequence

0 ,→ Im+1sc (X;G; sc

1
2 ) −→ Imsc(X;G;

sc

1
2 ) −→ C∞(G;Em) −→ 0;

(12.11)
if u ∈ Imsc(X;G; sc


1
2 ) is given locally by (11:1) for a parametrization of G

then

�sc; m(u) =

a(0; y; u)ei
�
4 �

∣∣∣∣ D(�1; : : : ; �n−1; @u’)
D(y1; : : : ; yn−1; u1; : : : ; uk)

∣∣∣∣− 1
2

|d�1; : : : ; d�n−1|
1
2 ⊗|dx|m− n

4

(12.12)

where the �j are coordinate functions on {@u’ = 0}:
Using the Fourier transform, as in Proposition 8, to reduce scattering

pseudodi�erential operators to pseudodi�erential operators in the usual sense
we can deduce the main symbolic properties of Legendre distributions.

Proposition 13. Suppose P ∈ 	l;ksc (X ; sc

1
2 ) has symbol xkpk + xk+1pk+1; as

in (10:6) with respect to a product decomposition of X near @X; and suppose
that G ⊂ scT ∗@X X is a smooth Legendre submanifold. Then for any m ∈ R;

P : Imsc(X;G;
sc


1
2 ) −→ Im+ksc (X;G; sc


1
2 )

�sc; m+k(Pu) = (pk �G)�sc; m(u)⊗ |dx|k :
(12.13)

Furthermore if pk vanishes identically on G then

P : Imsc(X;G;
sc


1
2 ) −→ Im+k+1sc (X;G; sc


1
2 ) and

�sc; m+k+1 (Pu) (12.14)

=
(
1
i

(
LV +

(
1
2
(k + 1) + m− n

4

)
@pk
@�

)
+ pk+1 �G

)
a⊗ |dx|m+k+1− n

4

where �sc; m(u) = a⊗ |dx|m− n
4 and V = scH∗;0

pk is given by (10:7).

Proof. Both these results are sc-microlocal. We shall derive them from the
corresponding results in the usual setting; see [3] or [7], Theorem 25.2.4. By as-
sumption, scWF(u) b scT ∗@X X so we can assume that P ∈ 	−∞; k

sc (X; sc

1
2 ): The
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localization argument in Proposition 6 and the de�nition of the symbol map
(12.7)–(12.10) show that it is only necessary to consider the case of a com-
pacti�ed linear space V : Now if v ∈ I−m(V;�;
 1

2 ) ∩ E′(V ;
 1
2 ) +S(V ;


1
2 )

and Q ∈ 	−k(V;

1
2 ): then

Qv ∈ I−m−k(V;�;
 1
2 ) ∩ E′(V ;
 1

2 ) +S(V ;

1
2 );

�−m−k(Qv) = �−k(Q)�−m(v):
(12.15)

Moreover, if �−k(Q)��= 0 then

Qv ∈ I−m−k−1(V;�;
 1
2 ) ∩ E′(V ;
 1

2 ) +S(V ;

1
2 ) and

�−m−k−1(Qv) =
(
1
iLHq + q��

)
�−m(v);

(12.16)

where q is the invariantly de�ned Weyl symbol of Q modulo S−k−2(T ∗V ): In
particular, on �; q is equal to the subprincipal symbol of Q: Here we have used
the standard notation as in (12.1). To translate this to the form (12.2), consider

Q ∈ 	−k;∞
sc (V ;


1
2 ) with symbol q de�ned modulo �k+2� �∞@ C

∞(scT
∗
V ): Then

(12.15) becomes

�]−k−m(Qv) =
(
�−k� q��∩S∗V

) · �]−m(v)⊗ |d��|k : (12.17)

If u ∈ Imsc(V ;G; sc

1
2 ) then by Proposition 10,

v = scFu ∈ I−m(V;�; 
 1
2 ) ∩ E′(V;
 1

2 ) +S(V;

1
2 );

where � ∩ S∗V = L(G) with L de�ned in Lemma 5. If P ∈ 	−∞;k
sc (V ; sc


1
2 )

then, by Proposition 8, Q = scF ◦ P ◦ scF−1 ∈ 	−k;∞(V ; sc

1
2 ) and the sym-

bol, p; of P; is related to the symbol, q; of Q by p = L̃∗q where p and q are
invariantly de�ned modulo �k+2@ �∞� C

∞ and �k+2� �∞@ C
∞ respectively. Hence

from the de�nitions (12.9) and (12.17)

�k+m(Pu)= L∗�−k−m(Qv) = L∗
(
�−k� q��∩S∗V

)
L∗�]−m(v)⊗ L∗|d��|k

= (pk �G) �sc; m(u)⊗ |dx|k

which is (12.13).
To obtain (12.14) we keep the same notation and note that pk �G≡ 0 is

equivalent to �−k� q��∩S∗V≡ 0: That is �−k(Q)��≡ 0: From (12.16) we get,
by identifying �m(A) with �−m� �](A)

�]−k−m−1(Qv) =
(
1
i
LHq + q��

)
(�]−m(v)�

m
� ):

Now,

1
i
LHq + q��=

1
i
L�k+1� W + �

k+1
� (q=�k+1� )��∩S∗V

= �k+1�

(
1
i

(
LW + 1

2(k + 1)�
−1
� W��

)
+ q=�k+1� ��∩S∗V

)
; (12.18)
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where the reduced Hamilton vector �eld W = scH−k;−1
q is tangent to S∗V =

{�� = 0} with the choice of the �@ scaling, −1; irrelevant. In the formula
above we have again identi�ed a homogeneous function, f; on � with �m�f

];
where f] is a function on � ∩ S∗V: The second equality follows from the
general formula for the conformal transformation of the Lie derivative of a
vector �eld on half-densities:

LfZ = fLZ + 1
2Zf:

Hence

�]−k−m−1(Qv) =(
1
i

(
LW +

1
2
(k + 1)�−1� W�� ��∩S∗V

)
+ q=�k+1� ��∩S∗V

)
�]−m(v)⊗ |d�|k+1:

If �]−m(v) = b|d��|m−n=4 then the application of the Lie derivative gives

�]−k−m−1(Qv)=
(
1
i

(
LWb+

(
1
2
(k + 1) + m− n

4

)
�−1� W��

)

+q=�k+1� �S∗V∩�

)
b⊗ |d��|m+k+1− n

4 : (12.19)

This gives (12.14) since L̃∗V = W; �sc; k+m+1(v) = L∗�]−k−m−1(Qv); �sc; m(u) =
a|d�@|m−n=4; a = L∗b and |d�@| = L∗|d��| (and of course, x = �@).

13. Conic points

In Sects. 11 and 12 the de�nition and symbolic properties of Legendre distri-
butions associated to a smooth Legendre submanifold of scT ∗@X X are discussed.
As noted in Sect. 4 the Legendre variety G̃y(�); to which the generalized plane
wave with frequency �; emanating from y ∈ @X; is associated is, in general, an
intersecting pair of Legendre submanifolds with conic points. The parametriza-
tion of such a Legendre manifold has been described in Sect. 7. We extend the
notion of a Legendre distributions, as in De�nition 2, from the smooth case
by introducing appropriate singular amplitudes.

De�nition 3. For an intersecting pair of Legendre submanifolds with conic
points, in the sense of (5:2)–(5:6); and any m;p ∈ R the space Im;psc (X; G̃; sc


1
2 )

consists of those u ∈ C−∞(X ; sc
 1
2 ) of the form

u = u0 + u+ +
N∑
j=1
uj (13.1)
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where u0 ∈ Imsc(X;G; sc

1
2 ); u+ ∈ Ipsc(X;G]; sc
 1

2 ) and the uj are given in terms
of local parametrizations; ’j of G near Ĝ0; the conic limit; by integrals

uj = (2�)−
n
4− k+1

2

∞∫
0

∫
Rk

ei’j(y; s;u)=xaj( xs ; y; s; u; x) ·
(
x
s

)m+ n
4− k+1

2 sp+
n
4−1ds du �

(13.2)

with aj ∈ C∞c ([0;∞)×Rn−1 × [0;∞)×Rk × [0;∞)) and � ∈ C∞(X ; sc
 1
2 ):

Notice that, for x ¿ 0; the integrals in (13.2) are absolutely convergent
due to the compactness of the support of the aj in u; x=s and s: Thus
the integral de�nes a tempered distributional half-density on X; i.e. an ele-
ment of the dual of Ċ∞(X; sc


1
2 ): If aj is supported in {s ¿ 0} then ’j;

with parameters (s; u); is a parametrization of G; the smooth part of G; and
uj contributes a term to Imsc(X;G;

sc

1
2 ): A small modi�cation of Lemma 8

shows that if A ∈ 	0;0sc (X; sc

1
2 ) has essential support away from G \ G and

u ∈ Im;psc (X; G̃; sc
 1
2 ) then Au ∈ Imsc(X;G; sc


1
2 ):

Lemma 9. For any u ∈ Im;psc (X;G; sc
 1
2 );

scWF(u) ⊂ G (13.3)

and; given any covering of Ĝ0 by parametrizations; u can be written in the
form (13:1); (13:2) with respect to these parametrizations.

Proof. Since the terms u0 and u+ in (13.1) clearly satisfy (13.3), it is enough

to consider an oscillatory integral as in (13.2). Applying A ∈ 	0;0sc (X ; sc

1
2 )

gives, by Lemma 8, an integral of the same form. Moreover, if A is mi-
crolocally of order ∞ near G then the resulting amplitude a′; vanishes
rapidly as x → 0 near both the critical points of ’ and the surface s = 0
(since the latter corresponds to G]): Integration by parts therefore shows that
uj ∈ Ċ∞(X ; sc
 1

2 ); so (13.3) holds.
The second part of the lemma follows from the equivalence of phase func-

tions, as given by Proposition 7, and the use of stationary phase to change the
number of u parameters near s = 0:

The coordinate invariance of these spaces is immediate from the de�nition.
To extend the invariant symbol map to this larger class of distributions it
su�ces to work locally and use continuity.
Recall that Ĝ = �∗G ⊂ [scT ∗@X X ; sp{dxx2 }] is the blown-up version of G; it

is a smooth manifold with corner corresponding to the introduction of �-polar
coordinates around � = 0; with a natural blow-down map

� : Ĝ −→ G: (13.4)

This is an isomorphism of Ĝ\Ĝ0; Ĝ0 = @Ĝ; onto G; the regular part of G:
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As noted in Sect. 9, the Maslov bundle extends naturally from G to Ĝ: Let
S ∈ C∞(Ĝ) be a de�ning function for the boundary, Ĝ0 of Ĝ: Then for any
a ∈ R; and any bundle L;

SaC∞(Ĝ; L) = C∞(Ĝ; Sa⊗L) = C∞(Ĝ; |N ∗@(scT̂ ∗@X X )|aĜ ⊗ L) (13.5)

de�nes a ‘rescaled’ bundle Sa⊗L = |N ∗@(scT̂ ∗@X X )|aĜ ⊗ L over Ĝ: Here we have
used the same notation as in the de�nition of the symbol map in the previous
section. We now de�ne the symbol bundle over Ĝ to be

Ê
m;p
(Ĝ) = |N ∗@(scT̂ ∗@X X )|p−mĜ

⊗ |N ∗@X |m− n
4 ⊗ 
 1

2
b (Ĝ)⊗MĜ (13.6)

where 

1
2
b (Ĝ) is the b-half-density bundle of Ĝ: When speci�c de�ning func-

tions of the boundaries are chosen (x; S; trivializing Sa) we will write a section
as u = a|dS|p−m|dx|m− n

4 ; a ∈ C∞(Ĝ;
 1
2
b ⊗MĜ):

Proposition 14. The symbol map (12:11) extends by continuity to de�ne

�̂sc; m;p : Im;psc (X; G̃;
sc


1
2 ) −→ C∞(Ĝ; Ê

m;p
) (13.7)

which gives a short exact sequence

0 −→ Im+1;psc (X; G̃; sc

1
2 ) −→ Im;psc (X; G̃;

sc

1
2 ) −→ C∞(Ĝ; Ê

m;p
) −→ 0: (13.8)

Proof. Consider a half-density of the form (13.2). Microlocally near G this is
a Legendre distribution in the sense of Sect. 11. Its symbol is �xed by (12.5).
The Lagrangian distribution FG∗u is of the form (11.10), and (11.11), with
only di�erent notation for the parameters. Thus �̂sc; m;p is de�ned by continuity.
The exactness in (13.8) follows from Lemma 9 and integration by parts.

Proposition 15. Under the hypotheses of Proposition 13, if G is the smooth
part of an intersecting pair of Legendre submanifolds with conic points then

P : Im;psc (X; G̃; sc

1
2 ) −→ Im+k;p+ksc (X; G̃; sc


1
2 )

with �̂sc; m+k;p+k(Pu) = �∗(pk �G) · �̂sc; m;p(u)
(13.9)

and if pk = 0 on G̃ then

P : Im;psc (X; G̃;
sc


1
2 ) −→ Im+k+1;p+k+1sc (X; G̃; sc


1
2 ) (13.10)

and formula (12:14) extends by continuity to

�sc; m+k+1;p+k+1(Pu)

=
(
1
i

(
LV +

(
1
2
(k + 1) + m− n

4

)
�∗
@pk
@�

+ (p− m)S−1VS
)

+�∗(pk+1 �G)
)
a⊗ |dx|m+k+1− n

4 ⊗ |dS|p−m (13.11)

where �sc; m;p(u) = a⊗ |dx|m− n
4 ⊗ |dS|p−m and V ∈Vb(Ĝ) is determined by

the requirement �∗V = scHm;pp :
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Proof. Let U and U1 be open subsets of scT
∗
@X X such that U b U1 and

G ∩ U1 b G: Then we can �nd A ∈ 	0;0sc (X; sc

1
2 ) such that u1 = Au satis�es

scWF(u− u1) ⊂ scT
∗
@X X \ U; scWF(u1) ⊂ U1; see the remarks following Def-

inition 2. Hence, u1 ∈ Imsc(X;G; sc

1
2 ) and since Ê

m;p
(Ĝ) can be identi�ed with

�∗Em(G) over compact sets in the interior of Ĝ we get

�̂sc; m;p(u)��∗U= �∗
(
�sc; m(u1)�U

)
:

Thus using (12.13) we obtain

�̂sc; m+k;p+k(Pu)��∗U=
(
�∗ (pk �G) �̂sc; m;p(u)

)
��∗U :

By expanding the open sets U we can replace �−1(U ) by Ĝ \ @Ĝ and then
the continuity of both sides gives (13.9). We obtain (13.11) similarly from
(12.14).

We also note the structure of the residual spaces for the symbol �ltration
(13.8):

I∞;p
sc (X; G̃; sc


1
2 ) =

⋂
m

Im;psc (X; G̃;
sc


1
2 ) = Ipsc(X;G

]; sc

1
2 ): (13.12)

Iterative use of (13.8) will allow us to construct distributions modulo errors
which are oscillatory functions associated to G]: For use in Sect. 15 we also
note the asymptotic completeness of these spaces.

Lemma 10. Let G̃ be an intersecting pair of Legendre submanifolds with
conic points and suppose uj ∈ Im+j;psc (X; G̃; sc


1
2 ); for j ∈ N0: Then there exists

u ∈ Im;psc (X; G̃; sc
 1
2 ) such that for any N ∈ N

u−
N∑
j=0
uj ∈ Im+N+1;psc (X; G̃; sc


1
2 ):

Proof. This follows as in the standard case by selecting a covering of the
Legendre variety by phase functions and decomposing each of the uj into a sum
of oscillatory integrals with respect to these phase functions using Lemma 9.
Then the standard Borel procedure can be used to asymptotically sum the series
of amplitudes.

As already noted a smooth Legendre manifold may also be considered as
a conic Legendre variety. Thus, suppose G ⊂ scT ∗@X X is smooth and that for
some boundary de�ning function x and � ∈ R;

G ∩ G](�) = Y is a C∞ submanifold around which
G is conic in the sense of (5.10).

(13.13)

Notice that � is constant on Y which therefore projects di�eomorphically to a
submanifold of @X; which we also denote simply as Y:
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Lemma 11. If G is a smooth Legendre manifold satisfying (13:13) and Y
has codimension L in @X then

Imsc(X;G;
sc


1
2 ) ⊂ Im;m+ 1

2 L
sc (X; G̃; sc


1
2 ) (13.14)

where G̃= G t G](�):

Proof. It su�ces to consider u ∈ Imsc(X;G; sc

1
2 ) with support near some point

of Y: Thus u can be taken to be of the form (11.1) for a given parametrization
of G: In appropriate coordinates x; y′; y′′; �′; �′′; � in which Y = {y′ = 0}; G
must be de�ned by (6.9) where �′ = 0 implies that � is constant, y′ = 0 and
�′′ = 0: This gives a parametrization (6.10) where �(y; �′) = −�+  (y; �′)
and  (y; 0) = 0: It follows that the introduction of polar coordinates in the
parameters, �′ = su; u = �′=|�′| gives a conic parametrization of G̃: Inserting
this change of variable in (11.1) reduces it to the form (13.2) with k = L− 1
and p = m+ 1

2L:

14. Push-forward

The elements of Im;psc (X; G̃; sc

1
2 ) have distributional asymptotic expansions as

x ↓ 0; this indeed is how the scattering matrix arises. For any product decom-
position near the boundary we de�ne the partial pairing

B : C−∞(X ; sc

1
2 )× C∞(@X ;
 1

2 ) −→ C−∞([0; �); sc

1
2 )

by B(u; f) = x
n−1
2
∫
@X
u(x; y)f(y): (14.1)

The symbolic map properties of this pairing can be described in terms of
the following map.

Lemma 12. The isomorphism  in (5:11) de�nes a natural isomorphism be-
tween sections of line bundles

∗ : C∞
(
S∗ @X ; |N ∗@T

∗
X |a

)
−→ C∞

(
@ scT̂ ∗@X X ); |N ∗@(scT̂ ∗@X X )|−a ⊗ |N ∗@X |a

)
: (14.2)

Proof. If (x; y; �; �) are canonical coordinates in scT ∗X; such that

G] = ��graph{dx=x2};
then (y; �̃) 7→ (0; y; ��; �̃) are coordinates on the front face of the blown-up man-
ifold (�∗sp(dx=x2))◦ = (� scT̂ ∗X ); where �̃ = �=x: In these coordinates  is the
identity in the interior. Coordinates on T

∗
@X near @T

∗
@X are (y; |�̃|−1; �̃=|�̃|);

that is, formally (y; x=|�|; �̂): A section of C∞(S∗@X ; |N ∗@T
∗
@X |a) can there-

fore be identi�ed with (x=|�|)a�(y; �̂); where � ∈ C∞(S∗@X ): On the other
hand the coordinates on scT̂ ∗@X X are given by (y; �; |�|; �̂) 7→ (0; y; �; |�|; �̂);
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� = |�|�̂; and thus on @(scT̂ ∗@X X ) by (y; �; �̂) 7→ (0; y; �; 0; �̂): It follows that an
element of the right hand side of (14.2) can be written as (x=|�|)a (y; �̂) and
hence it is identi�ed with an element of the left hand side by ∗:

Using (14.2) we can now state

Proposition 16. For any intersecting pair of Legendre submanifolds with
conic points G; the partial pairing (14:1) gives a map

B : Im;psc (X; G̃;
sc


1
2 )× C∞(@X ;
 1

2 ) 7−→∑
j
I
p+ n−1

4
sc ([0; �); G′( ��j); sc


1
2 ) (14.3)

where the G′( ��j) = {(0;− ��jdx=x2)} ⊂ scT ∗0 [0; �) are the Legendre submani-
folds (in this case points) corresponding to the components of G] and (14:3)
can be written explicitly as

B(u; f) =
∑
j
e−i ��=xxp+

n
4Q ��j (u; f)

∣∣∣∣dxx2
∣∣∣∣ 12 (14.4)

with Q ��(u; f) ∈ C∞([0; �)); for each �� = ��j; satisfying

Q ��(u; f)�x=0= 〈Q0�� (u); f〉; (14.5)

where

Q0�� (u) ∈ Ip−m−
n−1
4 (@X; �(G̃; ��);


1
2 );

∗
(
�]
p−m− n−1

4
(Q0��)

)
= �̂sc;m;p(u)�Ĝ0∩�∗G]( ��) ⊗|dx|

−p+ n
4 ;

(14.6)

the Lagrangian �(G̃; ��) being given by Proposition 4.

Proof. We can use the local formula (13.2) once we observe that u0 and u+ in
(13.1) do not contribute to the singularities of Q0�� (u): In fact, the assumption
scWF(u0) ∩ {� = 0} = ∅ (implied by 5.4) shows that in a local representation
(11.1) of u0; �′y-0 on the support of a: Hence there are no stationary points
in the oscillatory integral

(2�)−
n
4− k

2
∫
ei�(y;u)=xa(x; y; u)f(y)xm−

k
2 +

n
4dudy:

It follows that this term is C∞ in x down to x = 0 where it vanishes to in�-
nite order. The term u+ is already locally of the form exp(−i ��=x)xp+ n

4 a(x; y);
with a ∈ C∞(X ) and hence (14.3)–(14.5) hold for it with Q0�� (y) = a(0; y) ∈
C∞(@X ): Thus the only non-trivial contributions to the singularities of Q0�� (u)
come from the terms of the form (13.2). These can be rewritten

e−i ��=xxp+
n
4 (2�)−

n
4− k+1

2

∞∫
0

∫
Rk

ei
s
x  1(y;u)+i( sx )

2x 2(y;u; s)

a
(x
s
; y; s; u; x

)( s
x

)p−m+ k+1
2
dud

( s
x

) ∣∣∣∣ dyxn−1
∣∣∣∣ 12 ∣∣∣∣dxx2

∣∣∣∣ 12 ; (14.7)
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where �(y; u; s) = − ��+ s (y; ; u; s) and  (y; u; s) =  1(y; u) + s 2(y; u; s):
Changing variables to � = s=x we obtain

e−i ��=xxp+
n
4 (2�)−

n
4− k+1

2

∞∫
0

∫
Rk

ei� 1(y;u)+i�2x 2(y;u; x�)

a
(
1
�
; y; u; x

)
�p−m+

k+1
2 du d�

∣∣∣∣ dyxn−1
∣∣∣∣ 12 ∣∣∣∣dxx2

∣∣∣∣ 12 : (14.8)

When pairing with f ∈ C∞(@X ) according to (14.1) the orders of integration
can be freely interchanged for x ¿ 0: It can also be assumed that the support in
s in the original integrand is arbitrarily close to 0; since the contribution from
s ¿ � can be absorbed in the term u0: Hence x� is small in the integrand and
consequently the nonvanishing of d(y;u) 1 shows that the result of integration
in y and u decays rapidly in � independently of x = 0 with all derivatives in
x decaying as well. This gives (14.3)–(14.5) with

Q0�� (u) = (2�)
− n
4− k+1

2

∞∫
0

∫
Rk

ei� 1(y;u)a
(
1
�
; y; u; 0

)
�p−m+

k+1
2 dud� |dy| 12 : (14.9)

As in (7.7) we put Rk+1 3 � = (�1; �′) = �(1; u) and de�ne �(y; �) in a
conic neighbourhood of (1; 0) as �1 1(y; �′=�1): This parametrizes �(G̃; ��) so

from the standard order convention Q0�� (u) ∈ Ip−m−
n−1
4 (@X; �(G̃; ��);


1
2 ): The

natural symbol identi�cation (14.6) follows from (14.9) and the discussion of
the symbol map in Sect. 12.

Note that the partial pairing (14.1) and the de�nition of Q0�� ; (14.4) and
(14.5) depend on the choice of the de�ning function. At the symbol level this
dependence is precisely described by (14.6).
The proof of Proposition 16 gives in fact a little more and the following

will be useful in the construction of the Poisson kernel:

Lemma 13. In the notation of Proposition 16(
d
dx

)l
Q ��(u; f)�x=0= 〈Ql��(u); f〉

where Ql��(u) ∈ Ip−m−
n−1
4 +2l(@X; �(G̃; ��);


1
2 ):

(14.10)

As shown by Lemma 11, Proposition 16 can be applied in the case of a
smooth Legendre manifold satisfying (13.13). The lemma of stationary phase
gives a more precise description of the push-forward.

Proposition 17. If G is a smooth Legendre variety satisfying (13:13) and
u ∈ Imsc(X;G; sc


1
2 ) then the distributions Ql��(u) de�ned using (13:14) and

(14:5) are all di�erentiated Dirac distributions on Y; i.e. conormal distri-
butions supported on Y; and Q0�� (u) is a Dirac delta distribution.
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Proof. This follows by a direct stationary phase argument, but can also be
deduced from Proposition 16. Indeed, the absence of any terms associated to
the Legendre manifold G](�) means, following the proof of that proposition,
that the Ql��(u) are supported on Y: The order of these distributions is L=2 +
(n− 1)=4; where L is the codimension of Y and this implies the last statement,
since the Delta distributions are the only conormal distributions supported on
the submanifold and of this order.

15. Parametrix construction

The Poisson operator P(�) is de�ned by (0.4). In this section the symbol
calculus developed above is used to construct a parametrix for P(�): The kernel
of the parametrix is a Legendre distribution on the manifold with boundary,
X × @X; associated to the Legendre manifold G̃(�) given by Proposition 4.
It should be borne in mind that the dimension of this Legendre manifold is
2n− 1 as this a�ects the formul� when results of previous sections are quoted.
Recall that the scattering metric �xes the de�ning function of @X; x; up to

an additive term in x2C∞(X ): This provides a trivilization of the line bundle
|N ∗@X |a which will play a rôle in the symbolic computations below. Let us
in fact �x the de�ning function x and a product decomposition of X near @X:
The choice of boundary de�ning function determines an operator

�X ∈ Di�2sc(X × @X; sc

1
2 (X × @X )) by

�X

(
u
∣∣∣∣dxx2

∣∣∣∣ 12 ∣∣∣∣ dyxn−1
∣∣∣∣ 12 ∣∣∣∣ dy′xn−1

∣∣∣∣ 12
)
= �

(
u(•; y′)

∣∣∣∣dxx2
∣∣∣∣ 12 ∣∣∣∣ dyxn−1

∣∣∣∣ 12
)∣∣∣∣ dy′xn−1

∣∣∣∣ 12 ;
where (x; y;y′) ∈ X × @X and � ∈ Di�2sc(X; sc


1
2 (X )) is the Laplace operator

acting on scattering half-densities as in Lemma 7.
As discussed in Proposition 4, G̃(�) is the unique Legendre pair which is

characteristic for �X − �2 and satis�es
�(G̃(�); �) = N ∗�: (15.1)

Thus, Proposition 17 applies and shows that for K associated to G̃(�) the
operator with the kernel given by Q0�(K) is necessarily multiplication by a
smooth function.

Proposition 18. For any 0-� ∈ R there exists K ∈ Im;psc (X × @X; G̃(�); sc
 1
2 )

such that, with the notation of Proposition 16;

(�X − �2)K ∈ Ċ∞(X × @X ; sc
 1
2 ) and Q0�(K) = Id: (15.2)

Here; m and p ∈ R are determined by (14:6) so that the order of the Legren-
dre distribution is 0; namely

p = −1
4

and m = −2n− 1
4

:
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As a preliminary step towards the construction of K we compute the sub-
principal symbol of the extended Laplacian �X :

Lemma 14. Let p = p0 + xp1 ∈ �−2� C∞(scT ∗
(X × @X )) be the expansion;

(10:6); of the symbol of �X − �2 ∈ Di�2sc(X × @X; sc

1
2 (X × @X )): Then the

lift of p1 from G extends smoothly to a function on Ĝ which satis�es

�∗(p1 �G)�@Ĝ= −i(n− 1)�∗�: (15.3)

Proof. Let p′ denote the symbol of � as an element of 	2;0sc (X;
sc


1
2 ): By

Lemma 7, p′ = �2 + h(x; y; �): At � = 0; which is well de�ned for a �xed
de�ning function x; h vanishes quadratically and hence for any y ∈ @X;
p0=x�{�=0}∩Gy(�)= 0: Thus the only contribution to (15.3) comes from the ac-

tion of �X on the additional half-density factor |dy′=xn−1| 12 in sc

1
2 (X × @X ):

Again, because the de�ning function x is �xed, the projection

�L : scT ∗(X × @X )→ scT ∗X

is well de�ned and the symbol of �X acting on sc

1
2 (X × @X ) is

�∗L(j(x
−(n−1)=2�x(n−1)=2)):

At � = 0 the new contribution comes from the (x2Dx)2 term in � and it is
equal to �∗L(j(−ix(n− 1)x2Dx + O(x2))): Thus the symbol of �X at � = 0 is

�∗Lp0 − ix(n− 1)�
which gives (15.3).

Proof of Proposition 18. We now proceed to the construction of the parametrix

for the Poisson kernel. First we seek a Legendre distribution K[ ∈ I−
2n−1
4 ;− 1

4
sc

(X × @X; G̃(�); sc
 1
2 ) satisfying

(�X − �2)K[ = I
3
4
sc(X × @X; G](−�); sc
 1

2 ) and

Q0�(K
[) = Id:

(15.4)

We shall construct K[ as an asymptotic sum

K[ ∼
∞∑
j=0
Kj; Kj ∈ I−

2n−1
4 +j;− 1

4
sc (X × @X; G̃(�); sc
 1

2 ) (15.5)

in the sense of Lemma 10. Thus K0 should satisfy

(�X − �2)K0 ∈ I−
2n−1
4 +2; 34

sc (X × @X; G̃(�); sc
 1
2 ) and

�0
(
Q0�(K0)

)
= �0 (Id) ;

(15.6)
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and then the higher order terms should successively satisfy

(�X − �2)Kj + (�X − �2)
(
j−1∑
l=0
Kl

)
∈ I−

2n−1
4 +j+2; 34

sc (X × @X; G̃(�); sc
 1
2 ): (15.7)

Near G ∩ G](�), that is where G is smooth and satis�es (13.13), we can
construct Kj as Legendrian distributions associated to the smooth G and of
order j − (2n− 1)=4. Lemma 11 and Proposition 17 show that the second
condition in (15.6) alone guarantees the second condition in (15.4). In fact,
it is convenient to construct the Kj rather explicitly (sc-microlocally) near
the ‘initial surface’ G](�): The Legendre variety G̃ is smooth and is a graph
over @X × @X near the diagonal. Hence, as follows from Proposition 4, it
is parametrized by the function ��(y; y′) where �(y; y′) = cosd(y; y′)y with
d(y; y′) being the local distance in @X; with respect to the induced metric.
Then, just as in Sect. 1, the kernels Kj takes the form of oscillatory functions

Kj = xjei��(y;y
′)=xaj(x; y; y′; �)�; aj ∈ C∞(X × @X ): (15.8)

To see that (15.6) and (15.7) have (unique) solutions of this form we regard
y′ as a parameter and introduce Riemannian normal coordinates in y, centered
at y′ (with respect to the metric h on @X ). Just as in Hadamard’s parametrix
construction the transport equation for a′j = aj � (x = 0) takes the form

(y · @y + j)a′j + bja′j = cj ∈ C∞(X × @X ) (15.9)

near y = 0; where c0 ≡ 0 and bj vanishes quadratically at y = 0: The equation
for a0 therefore has a unique smooth solution with a′0(y; y) ∈ C∞(@X ) speci-
�ed and the equations for the a′j; j = 1; have unique smooth solutions. Thus
the Kj exist sc-microlocally near G](�):
To continue these Kj globally we use the symbolic �ltration in Proposition

14. Thus we look for Kj as in (15.5), satisfying (15.6) and (15.7) and restrict-
ing to the distributions just de�ned microlocally. The �rst of the condition in
(15.6) and the condition (15.7) can be stated symbolically as

�̂sc;− 2n−1
4 +1; 34

((�X − �2)K0) = 0;

�̂sc;− 2n−1
4 +j+1; 34

((�X − �2)Kj) = − �̂scf;− 2n−1
4 +j+1; 34

(
(�X − �2)

( j−1∑
l=0
Kl

))
:

(15.10)

By (13.11) in Proposition 15, these become �rst order equations along the
integral curves of the rescaled Hamilton vector �eld on Ĝ: Away from the
initial surface G](�) (which is not part of G̃) and @Ĝ = Ĝ0; V in (13.11) is
a nonvanishing smooth vector �eld. Thus, by continuing the solutions to these
equations provided by (15.8) near G](�) we can construct solutions through-
out the smooth part of G̃: It only remains to discuss the solvability of these
equations near G](−�):



Scattering metrics and geodesic ow 433

From (5.19) we see that, near Ĝ0; Ĝ can be parameterized by

(y′; S; �̂) 7→ (y; y′; S; �̂; �̂′); S = |(�; �′)|:
The computation of the rescaled Hamilton vector �eld (3.6) and (5.17) shows
that on Ĝ near Ĝ0 = {S = 0}

V = 2�S@S + SṼ ; Ṽ ∈Vb(Ĝ): (15.11)

Using Lemma 14 it follows that(
1
2
+
(
−2n− 1

4
+ j

)
−2n− 1

4

)
�∗
(
x−1scH 2;0p � x = 0

)
+i
(
−1
4
+
2n− 1
4

)
S−1VS + i�∗p1 = iSf; f ∈ C∞(Ĝ):

(15.12)

The left hand side of (13.11) therefore becomes

1
i
S
((
2�@S + Ṽ + f + g

)
ã
)
�⊗ |dx|− 2n−1

4 +1 ⊗ |dS| n−12 ; ã ∈ C∞(Ĝ);

where � is some trivializing section of 

1
2
b near @Ĝ and both f and g are in

C∞(Ĝ): The transport equations in (15.6) and (15.7) therefore have smooth
solutions on the whole of Ĝ; up to the boundary Ĝ0:
Summing the Kj asymptotically this gives the desired solution K[ to (15.4).

It remains to improve this to a parametrix K as in (15.2). To do this we need
to improve the remainder term in (15.4). In fact it is already a little better
than indicated.

Lemma 15. If K[ ∈ I− 1
4 (2n−1);− 1

4
sc (X × @X; G̃(�); sc
 1

2 ) satis�es (15:4) then

(�X − �2)K[ ∈ I
7
4
sc(X × @X; G](�); sc
 1

2 ): (15.13)

Proof. Set H = (�X − �2)K[: If f ∈ C∞(@X × @X; 
 1
2 ) then by assumption

(15.4)
B(H;f) = x(n+1)=2Q−�(H;f)(x)e−i�=x (15.14)

where Q−�(H;f) ∈ C∞(X × @X; sc
 1
2 ): We need to show that Q−�(H;f)(0) =

0 for all f ∈ C∞(@X × @X; 
 1
2 ) since this is precisely (15.13).

Now, recall 3.12 of [10] (see also the proof of Proposition 12 there)

� = xĨ(Q)x + G; Ĩ(Q) = (xDx)2 + inxDx − (n− 1) + �̃0: (15.15)

Here G ∈ x2Di�2c(X ) ∩ xDi�2sc(X ); and �̃0 is an extension of the Laplacian on
@X to X ; Di�2sc(X ) is the set of scattering di�erential operators (generated by
x2Dx and xDyj) and Di�

2
c(X ) is the set of cusp operators (generated by x

2Dx
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and Dyj). Then writing B(K
[; f) = B0(K[; f)|dx=x2| 12 ;

B0(H;f)=
(
(x2Dx)2 + ix(n− 1)x2Dx − �2

)
B0(K[; f)

+x2B(K[; �̃0f) + x2B0(G0K[; f)

where G = x2G0 with G0 ∈ Di� 2
c(X ): From Proposition 16 it follows that

B0(K[; f); B0(K[;�̃0f); B0(G0; f) ∈

x(n−1)=2ei�=xC∞([0; �)) + x(n−1)=2e−i�=xC∞([0; �)):

(15.16)

Since(
(x2Dx)2 + ix(n− 1)x2Dx−�2

)
xp exp(±i�=x)

=
(±i�(2p− n+ 1)xp+1 + p2xp+2) exp(±i�=x)

(15.17)

we conclude that

B0(H;f) ∈ x(n−1)=2+2ei�=xC∞([0; �)) + x(n−1)=2+2e−i�=xC∞([0; �));

giving the desired result.

To remove the improved error we will use:

Lemma 16. For 0-� ∈ R and b ∈ C∞(X × @X; sc
 1
2 ) there exists a ∈ C∞

(X × @X; sc
 1
2 ) such that U = x(n−1)=2e±i�=xa satis�es

(�X − �2)U − x(n+3)=2e±i�=xb ∈ Ċ∞(X × @X; sc
 1
2 ):

Proof. This is essential Proposition 12 of [10]. The proof proceeds by iteration
based on the following consequence of (15.15) and (15.17)

(�− �2)xp exp(−i�=x)b = xp+1 exp(−i�=x)g; g = −i�(2p− n+ 1)b+ O(x):

This allows the Taylor series of a to be constructed. Summing this series using
Borel’s lemma gives U:

Applying Lemma 16 to the error term in (15.13) allows the kernel K[ to
be corrected to give a parametrix K in the sense of (15.2) and hence completes
the proof of Proposition 18.
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16. Proof of main theorem

The action on half-densities, which simpli�es the symbolic properties, can now
be dropped and the results of the previous sections give

Proposition 19. For any 0-� ∈ R and any scattering metric on a compact
manifold with boundary the Poisson operator P(�); de�ned by (0:4); has
Schwartz kernel given by a scattering Legendre distribution

P(�) ∈ I−
2n−1
4 ;− 1

4
sc (X × @X; G̃(�)): (16.1)

Proof. Starting from the parametrix K given by Proposition 18 we �rst re-
move the error term in (15.2). To do so we use Proposition 14 of [10] which
shows that, given F ∈ Ċ∞(X × @X ) there exists U ′ ∈ x(n−1)=2e±i�=xC∞(X ×
@X ) such that (�X − �2)U ′ = F ′: This actually involves a slight extension
of the construction there in which the data, and hence the solution, depend
smoothly on parameters but this follows as usual from the uniqueness of the
solution.
Thus it only remains to show that a kernel K ∈ Im;psc (X × @X; G̃(�); sc
 1

2 )
satifying the exact form of (15.2)

(�X − �2)K = 0 and Q0�(K) = Id (16.2)

is actually the kernel of the Poisson operator de�ned by (0.4). Thus it is only
necessary to check that for g ∈ C∞(@X; 
 1

2 )

x
n−1
2
∫
@X
K(•; y′)g(y′) = x n−12

(
ei

�
x f′ + e−i

�
x f′′

)
; (16.3)

where f′; f′′ ∈ C∞(X; sc
 1
2 ): Formally, Proposition 16 gives (16.3) with f′ =

Q+(K; �• ⊗ g) and f′′ = Q−(K; �• ⊗ g) where for y ∈ @X , �y ∈ C∞(@Xy; 
 1
2

⊗ C−∞(@X; 
 1
2 )) is the pullback of the kernel of the identity on C∞(@X; sc


1
2 )

by y′ 7→ (y; y′): On the other hand, by Lemma 13, (d=dx)lQ±(K; �• ⊗ g)�x=0
are given by the push-forward of Lagrangian distributions with the rela-
tions given by Proposition 4. The standard calculus of wave front sets for
push-forwards (see Theorem 8.2.12 in [7]) then shows that Q±(K; �• ⊗ g) ∈
C∞(@X; 


1
2 ): Hence, approximating �y by a family ��y ∈ C∞(@Xy; 


1
2 ⊗ C∞

(@X; 

1
2 )) gives the desired smoothness of f±:

The main theorem as stated in the introduction is now a consequence of
Propositions 16 and (4), which together show that the scattering matrix, which
is given by the boundary value in the sense of (0.3), has as kernel a Lagrangian
distribution associated to geodesic ow at time � on the boundary; from (14.6)
it is of order 0:
The smooth dependence of the scattering operator, as a function of 0-� ∈

R follows from these constructions. The canonical relation with which it is
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associated is independent of �: The approximate R+ invariance of the problem
shows that

Lemma 17. The scattering matrix of a scattering metric is such that @�A(�)
is of order −1; i.e. the symbol of A(�) is (locally) independent of �:
Even more than this can be seen in the ‘product case’ in which the metric

takes the form

g =
dx2

x4
+
h
x2

(16.4)

in some product decomposition near the boundary with h a �xed metric on the
boundary, i.e. independent of x: Then @�A(�) is a smoothing operator. In this
case the scattering phase can be de�ned as having derivative

ds(�)
d�

= tr
(
A(�)−1

dA(�)
d�

)
: (16.5)

As in the perturbed Euclidean case, see [11], [12], it is to be expected that
this function should be the Fourier transform of the appropriately regularized
trace of the wave group.
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