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0. Introduction

0.1. Quantum cohomology. The quantum cohomology of a projective algebraic
manifold V is a formal deformation of its cohomology ring. The parameters
of this deformation are coordinates on the space H∗(V ), and the structure
constants are the third derivatives of a formal series �V (potential, or free
energy) whose coe�cients count the number of parametrized rational curves
on V with appropriate incidence conditions (see [KM] for details).
A natural problem arises how to calculate �V×W in terms of �V and �W .

In [KM] it was suggested that this operation corresponds to that of tensor
multiplication of Cohomological Field Theories, or equivalently, algebras over
the moduli operad {H∗(M 0; n+1)}. The de�nition of the tensor product de-
pends on a theorem on the structure of H∗(M 0; n+1) whose proof was only
sketched in [KM] (Theorem 7.3). One of the main goals of this note is to
present this proof and related calculations in full detail. (For another proof,
see [G]).
We also discuss the rank one CohFT’s and the respective twisting op-

eration. An interesting geometric example of such a theory is furnished by
Weil-Petersson forms. The potential of this theory is a characteristic function
involving Weil-Petersson volumes calculated in [Z]. We show that a general-
ization of WP-forms allows one to construct a canonical coordinate system on
the group of invertible CohFT’s.
We start with a brief review of the relevant structures from [KM]. Let H

be a �nite-dimensional Z2-graded linear space over a �eld K of characteristic
zero, endowed with a non-degenerate even symmetric scalar product g. The
main fact is the equivalence of two notions:
i) A formal solution � of associativity, or WDVV, equations on (H; g).
ii) A structure of CohFT on (H; g):
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0.2. Associativity equations. Let {�a} be a basis of H , gab = g(�a; �b);
(gab) = (gab)−1. Denote by 
 =

∑
a x

a�a a generic element of H , where xa

is a formal variable of the same Z2-degree as �a. Put @a = @=@xa. A formal
series � ∈ K[[xa]] is called a solution of the associativity equations on (H; g)
i� for all a; b; c; d∑

ef
@a@b@c� · gef@f@c@d� = (−1)a(b+c)∑

ef
@b@c@e� · gef@f@a@d�: (0.1)

Here we use the simpli�ed notation (−1)a(b+c) for (−1)x̃a(x̃b+x̃c) where x̃ is the
Z2-degree of x.

We usually assume that � starts with terms of degree = 3, or identify
� and �′ di�ering by a polynomial of degree 5 2. An extensive geometric
treatment of the associativity equations is given in [D]. For the next de�nition,
recall that M 0n denotes the moduli space of stable curves of genus zero with
n labelled pairwise distinct points: see [Ke].

0.3. Cohomological �eld theories. The structure of a tree level Cohomological
Field Theory on (H; g) is given by a sequence of Sn-covariant K-linear maps

In : H⊗n → H∗(M 0n; K); n= 3 (0.2)

satisfying the following set of identities (0.3). The values of In are generally
not homogeneous.
Consider an unordered partition � : {1; : : : ; n} = S1

∐
S2; |Si| = ni = 2. It

de�nes an embedding of the boundary divisor ’� : M 0; n1+1 ×M 0; n2+1 → M 0; n.
Over the generic point of this divisor the universal curve consists of two
components, and the labelled points are distributed between them according to
�. The maps (0.2) must satisfy for all n= 3 the relations:

’∗�(In(
1 ⊗ : : :⊗ 
n)) = �(�)(In1+1 ⊗ In2+1)

(⊗
j∈S1


j ⊗ �⊗
(⊗

k∈S2


k

))
(0.3)

where � = ��a ⊗ �bgab is the Casimir element, and �(�) is the sign of the
permutation induced on the odd arguments 
1; : : : ; 
n. There are two other useful
reformulations of CohFT. First, dualizing (0.2) we get a series of maps

I tn+1 : H∗(M 0; n+1; K)→ Hom(H⊗n; H); n= 2: (0.4)

Thus any homology class in M 0; n+1 is interpreted as an n-ary opertaion on
H . The relations (0.3) become identities between these operations whose to-
tality means that H is given a structure of an algebra over the cyclic operad
{H∗(M 0; n+1; K)} (see [GK]).

Second, we can iterate the maps ’� in order to study the restrictions of
the classes In(
1 ⊗ : : :⊗ 
n) to all boundary strata. These strata are naturally
indexed by the (dual) trees of stable curves, which form a category. Both sides
of (0.2) extend to functors on this category, and (0.3) says that {In} becomes
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a functor morphism. Below we will extensively use the combinatorial side of
this picture explained in [KM].

0.4. From {In} to �. Every CohFT {H; g; In} de�nes a sequence of symmetric
polynomials Yn : H⊗n → K :

Yn(
1 ⊗ : : :⊗ 
n) :=
∫

M 0n

In(
1 ⊗ : : :⊗ 
n) (0.5)

Put x = (xa) and

�(x) =
∑
n=3

1
n!

Yn

((∑
a
xa�a

)⊗n
)
: (0.6)

From (0.3) and Keel’s linear relations between boundary divisors in M 0n one
can formally deduce (0.1).

0.5. From � to {In}. This transition is markedly more di�cult. If In with the
properties (0.5), (0.6) exist at all, they are de�ned uniquely, because iterating
(0.3) one can calculate integrals of In over all boundary strata of M 0n. Namely,
let � be the dual tree of a stable curve C of genus zero with n marked points.
Let us recall that the set of vertices V� consists of irreducible components of C,
the edges E� are (in a bijection with) double points of C, tails T� (one vertex
edges) are marked points. Incidence relations between V�; E�; T� re
ect those
in C. A 
ag of � is a pair (vertex, incident edge or tail); the set of 
ags is
denoted F�. Let M� ⊂ M 0n be the submanifold parametrizing curves of type �
and their specializations. We have M�

∼=∏v∈V�
M |v|. Here |v| = |F�(v)|; F�(v)

is the set of 
ags incident to v: The homology classes of all M� generate
H∗(M 0n; K), and we have from (0.3):∫

M�

In(
1 ⊗ : : :⊗ 
n) =

(⊗
v∈V�

Y|v|

)
(
1 ⊗ : : :⊗ 
n ⊗ �⊗E�) ∈ K: (0.7)

We use here the formalism of tensor products indexed by arbitrary �nite sets
and interpret the argument of the r.h.s. (0.7) as an element of H⊗F� and⊗

v∈V�
Y|v| as a function on H⊗F� . (0.3) is a particular case of (0.7) for an

one-edge tree.
In order to use (0.7) for construction of {In} it remains to check that the

r.h.s. of (0.7) satis�es all the linear relations between the classes of M� in
H∗(M 0n). This was done in Sect. 8 of [KM] modulo the theorem, describing
these relations and proved in Sect. 2 of the present paper.

0.6. The tensor product. Let {H ′; g′; I ′n} and {H ′′; g′′; I ′′n } be two CohFT’s.
Put H = H ′ ⊗ H ′′ and g = g′ ⊗ g′′. We can de�ne a CohFT on (H; g) by

In(
′1 ⊗ 
′′1 ⊗ : : :⊗ 
′n ⊗ 
′′n ) := �(
′; 
′′)I ′n(

′
1 ⊗ : : :⊗ 
′n) ∧ I ′′n (


′′
1 ⊗ : : :⊗ 
′′n )

(0.8)

where �(
′; 
′′) is the standard sign in superalgebra, and ∧ is the cup product
in H∗(M 0n; K). One can easily check (0.3). Although (0.8) looks very simple
on the level of full CohFT’s, it cannot be trivially restricted to calculate the
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potential. In fact, for the potential we must know only the top dimensional
component of In (see (0.5)), but it involves components of all degrees of
I ′n; I

′′
n (see (0.8)), which are given by (0.7) as functionals on the boundary

homology classes.
The only remaining obstruction to calculating � of {In} is thus our in-

complete understanding of the cup product in terms of dual boundary classes.
Ralph Kaufmann obtained a fairly simple formula for the intersection indices
of strata of complementary dimensions. With his permission, we reproduce it
in Sect. 2. But at the moment we are unable to invert this Gram matrix (of
redundant size).

0.7. Application to quantum cohomology. In the application of this formalism
to the quantum cohomology of V we have: H = H∗(V; K); g = Poincar�e pair-
ing, and

∫
M 0n

In(
1 ⊗ : : :⊗ 
n) is the (appropriately de�ned) number of “stable
maps” (C; x1; : : : ; xn;’) where C is a curve of genus 0 with n marked points
x1; : : : ; xn; ’ : C → V is a morphism, such that any connected component con-
tracted by ’ (together with its special points) is stable. These Gromov-Witten
invariants are of primary interest in enumerative geometry, and we expect
that the tensor product of CohFT’s described above furnishes an algorithm for
calculating them on V ×W from those on V and W . Strictly speaking, this
must be proved starting with a geometric construction of GW–invariants. In
concrete examples it su�ces to simply check the coincidence of a �nite set
of coe�cients of the two potentials using The First Reconstruction Theorem
3.1 of [KM]. For example, �P

1×P1 actually coincides with the tensor square
of the simple potential �P

1
. Namely, if �0 ∈ H 0(P1) and �1 ∈ H 2(P1) are

respectively the fundamental class and the dual class of a point, we have

�P
1
(x�0 + z�1) =

1
2
x2z + ez − 1− z − z2

2
; (0.9)

�P
1×P1 (x�⊗20 + y1�1 ⊗ �0 + y2�0 ⊗ �1 + z�⊗21 )

=
1
2
x2z + xy1y2 +

∑
a+b=1

N (a; b)
z2a+2b−1

(2a+ 2b− 1)! e
ay1+by2 (0.10)

where N (a; b) is the number of rational curves of bidegree (a; b) on P1 × P1
passing through 2a+ 2b− 1 points in general position. As is remarked in
[DFI], the structure of N (a; b) which can be derived from the associativity
equations looks simpler than that of GW-numbers for P2, probably because of
this tensor product property.
In the remaining part of this introduction, we summarize our notation and

conventions about the combinatorics of trees and the (co)homology of M 0n.
The next section is devoted to the multiplicative properties of strata classes.
In Sect. 2 we prove the completeness of the standard linear relations between
them. The last Sect. 3 discusses rank one CohFT’s.



Quantum cohomology of a product 317

0.8. Partitions and trees. As in [KM], a tree � for us is a system of �nite
sets (V�; E�; T�); V� 6= ∅, with appropriate incidence relations de�ning F� (see
0.5 above for notation). A structure of S-tree on � (where S is a �nite set)
is given by a bijection T� → S. Sometimes we identify T� with S using this
bijection. A tree � is stable if |v|= 3 for all v ∈ V�. Most of our trees are
stable.
A stable S-tree � corresponds to a (family of) stable curve(s) of genus 0

with points labelled by elements of S. One-edge S-trees are in a bijection with
unordered partitions of S into two subsets � : S = S1

∐
S2; stability means

that |Si|= 2; the tails marked by Si belong to the vertex vi; i = 1; 2. We will
systematically identify such partitions with the corresponding trees. For such
a � and, say, four elements i; j; k; l ∈ S we use a notation like ij�kl to imply
that {i; j} and {k; l} belong to di�erent parts of �.

For two unordered stable partitions � = {S1; S2} and � = {T1; T2} of S put
a(�; �) := the number of non-empty pairwise

distinct sets among Si ∩ Tj; i; j = 1; 2:

Clearly, a(�; �) = 2; 3, or 4. Moreover, a(�; �) = 2 i� � = �, and a(�; �) = 4 i�
there exist pairwise distinct i; j; k; l ∈ S such that simultaneously ij�kl and ik�jl.
If a(�; �) = 3, we sometimes call � and � compatible. A family of 2-partitions
{�1; : : : ; �m} is called good, if for all i-j; �i and �j are compatible. S-trees
form objects of several categories di�ering by the size of their morphism sets.
The most useful morphisms f : � → � contract several edges and tails of �:
f induces a surjection V� → V� and injections E� → E�; T� → T�; labelling
sets for � and � may di�er. We will mostly consider morphisms of S-trees
identical on S (pure contractions of edges, or S-morphisms). The one-vertex
tree is a �nal object in the category of S-trees and S-morphisms. If a direct
product � × � of two S-trees in this category exists, it comes equipped with
two contractions � × � → � and � × � → �. A geometrically nice case is when
|E�×�| = |E�|+ |E�|. E.g. for one-edge trees this is the case when a(�; �) = 3.
For a(�; �) = 4; � × � does not exist, and for � = � we have � × � = �.

A few more words about the geometry of an individual tree �. Any 
ag
f = (v; e); v ∈ V�; e ∈ E� or e ∈ T� de�nes a complete subgraph �(f) of �
which we will call the branch of f. If e ∈ T�; �(f) consist of the vertex v
and tail e. Generally, �(f) includes v; e, and all edges, vertices and tails that
can be reached from v by a no-return path starting with f. We denote by
T�(f) the tails belonging to �(f), and by S(f) their labels (if � is a labelled
tree).

0.9. Moduli spaces. For a �nite set S; |S|= 3; M 0S parametrizes stable curves
of genus zero with a family of pairwise distinct points labelled by S. More
generally, for a stable S-tree �; M� parametrizes such curves with dual graph
(isomorphic to) �; M 0S corresponds to the one-vertex S-tree. Any pure contrac-
tion � → � bijective (but not necessarily identical) on S induces a morphism
M� → M�. In this way {M�} form a topological cyclic operad (see [GK]),
and {H∗(M 0S)} form a linear cyclic operad.
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If an S-morphism of S-trees � → � exists, it is unique, and M� → M� is a
closed embedding whose image is called a (closed) stratum of M�. In particu-
lar, all M� “are” closed strata in M 0S . We have M�

∼=∏v∈V�
M 0F�(v) (canoni-

cally), M 0; F�(v)
∼= M 0|v| (non-canonically). The codimension of the stratum M�

in M� is |E�|. In particular, stable one-edge S-trees (and stable 2-partitions) �
bijectively correspond to the boundary divisors.

0.10. Keel’s presentation. Fixing S; |S|= 3, we denote by {D�|� stable 2-
partitions of S} a family of commuting independent variables. Put FS =
K[D�] (FS = K for |S| = 3). We consider FS as a graded polynomial ring,
deg D� = 1. De�ne the ideal IS ⊂ FS by means of the following generators:

a) For each pairwise distinct foursome i; j; k; l ∈ S:

Rijkl :=
∑
ij�kl

D� −
∑
kj�il

D� ∈ IS : (0.11)

b) For each pair �; � with a(�; �) = 4:

D�D� ∈ IS : (0.12)

Finally, put H∗
S = K[D�]=IS .

0.10.1. Theorem (Keel [Ke]) The map

D� 7−→ dual cohomology class of the boundary divisor

in M 0S corresponding to the partition �

induces an isomorphism of rings (doubling the degrees)

H∗
S

∼−→ H∗(M 0S ; K): (0.13)

Since M 0S is a smooth manifold whose homology and cohomology is gen-
erated by algebraic classes, on which homological and rational equivalence
coincide, (0.13) describes the homology and the Chow ring as well. In addi-
tion, Keel’s presentation is very convenient for describing the operadic struc-
ture maps. E.g. bijections S ′ → S ′′ (relabelling of points) translate simply by
the respective relabelling of D�’s. For the remaining morphisms, see the next
section.

1. Boundary strata and the multiplicative structure of H∗(M 0S )

1.1. Good monomials. The monomial D�1 : : : D�a ∈ FS is called good, if the
family of 2-partitions {�1; : : : ; �a} is good, i.e. a(�i; �j) = 3 for i-j. In par-
ticular, D� and 1 are good.

1.2. Lemma. Let � be a stable S-tree with |E�|= 1. For each e ∈ E�, denote
by �(e) the 2-partition of S corresponding to the one edge S-tree obtained
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by contracting all edges except for e. Then

m(�) :=
∏
e∈E�

D�(e)

is a good monomial.

Proof. Let e 6= e′ ∈ E�. There exists a sequence of pairwise distinct edges
e = e′0; e′1; : : : ; e

′
r ; e

′
r+1 = e′; r = 0, such that e′j and e′j+1 have a common

vertex vj.

Fig. 1. Arrows symoblize branches

Let u be the remaining vertex of e; w that of e′. Let S ′ be the set of all
tails of � belonging to the branches starting at u but not with a 
ag belonging
to e; similarly, let S ′′ be the set of all tails of � belonging to the branches that
start at w but not with a 
ag belonging to e′. Finally, let T be the set of all
tails on the branches at v0; : : : ; vr not starting with the 
ags in e′0; : : : ; e

′
r+1 (we

identify tails with their labels). Since � is stable, all three sets S ′; S ′′ and T
are non-empty. Finally

�(e) = {S ′; S ′′∐T}; �(e′) = {S ′∐T; S ′′}:
It follows that a(�(e); �(e′)) = 3 so that m(�) is a good monomial.

We put m(�) = 1, if |E�| = 0.

1.3. Proposition. For any 15 r 5 |S| − 3, the map � 7−→ m(�) establishes
a bijection between the set of good monomials of degree r in FS and stable
S-trees � with |E�| = r modulo S-isomorphism. There are no good monomials
of degree ¿ |S| − 3.
Proof. For r = 0; 1 the assertion is clear. Assume that for some r = 1 the
map � 7−→ m(�) is surjective on good monomials of degree r. We will prove
then that it is surjective in the degree r + 1.
Let degm′ = r + 1. Choose a divisor D� of m′ which is extremal in the

following sense: one element, say S1, of the partition � = {S1; S2} is min-
imal in the set of all elements of all 2-partitions �′ such that D�′ divides
m′. Put m′ = D�m. Since m is good of degree r, we have m = m(�) for
some stable S-tree �. We will show that m′ = m(�′) where �′ is obtained
from � by inserting a new edge with tails marked by S1 at an appropri-
ate vertex v ∈ V�. (This means that vice versa, there exists a contraction
�′ → � of one edge to the vertex having incident 
ags S1and (half of) this
edge).
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Fig. 2. Inserting edge at a vertex

First we must �nd v in �. To this end, consider any edge e ∈ E� and
the respective partition �(e) : {S ′e; S ′′e } (obtained by contracting all edges ex-
cept for e). Since a({S1; S2}; {S ′e; S ′′e }) = 3 and S1 is minimal, one sees that
exactly one of the sets {S ′e; S ′′e } strictly contains S1. Let it be S ′′e . Orient
e by declaring that the direction from the vertex (corresponding to) S ′e to
S ′′e is positive. We claim that with this orientation, for any w ∈ V� there
can be at most one edge outgoing from w. In fact, if � contains a vertex
w with two positively oriented 
ags f1and f2, then S1 must be contained
in the two subsets of S; S(f1) and S(f2). But their intersection is empty.

Fig. 3.

It follows that there exists exactly one vertex v ∈ V� having no out-
going edges. Moreover, S1 is contained in the set of labels of the tails
at v by construction. If we now de�ne �′ by inserting a new edge e′ at
v so that �(e′) = �, we will clearly have m′ = m(�′): If r 5 |S| − 4; the
tree �′ cannot be unstable because, �rst, |S1|= 2; and second, at least two
more 
ags converge at |v|: otherwise the unique incoming edge would pro-
duce the partition {S1; S2} = � which would mean that D� divides already
m(�):
For r = |S| − 3; this argument shows that m′ cannot exist because all the

vertices of � have valency three.
It remains to check that if m(�1) = m(�2); then �1 and �2 are isomor-

phic.
Assume that this has been checked in degree 5 r and that deg �1 =

deg �2 = r + 1: Choose an extremal divisor D� of m(�1) = m(�2) as above
and contract the respective edges of �1; �2 getting the trees �′1; �

′
2: Since

m(�′1) = m(�′2) = m(�i)=D�, �′1 and �′2 are isomorphic by the inductive assump-
tion. This isomorphism respects the marked vertices v′1; v

′
2 corresponding to the
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contracted edges because as we have seen they are uniquely de�ned. Hence it
extends to an S-isomorphism �1 → �2.

1.3.1. Remark. Proposition 1.3 and Keel’s theorem 0.10.1, together with the
fact that the boundary divisors have transversal intersections, show that the
image of a good monomial m(�) in H∗(M 0S) is the dual class of the stratum
M�.

1.4. Multiplication formulas I. Let now �; � be two stable S-trees, |E�| = 1.
We have the following three possibilities
a) D�m(�) is a good monomial. Then

D�m(�) = m(�′) (1.1)

where �′ → � is the unique S-morphism contracting the edge in E�′ , whose
2-partition coincides with that of �.
More generally, if m(�)m(�) is a good monomial, then

m(�)m(�) = m(� × �) (1.2)

where the direct product is the categorical one in the category of S-trees and
S-morphisms. We can identify E�×� with E�

∐
E�, and p1 : � × � → � (resp.

p2 : �× � → �) contracts edges of the second factor (resp. of the �rst one).
b) There exists a divisor D�′ of m(�); |E�′ | = 1, such that a(�; �′) = 4.

Then
D�m(�) ≡ 0 mod IS ; (1.3)

where IS ⊂ FS is the ideal of Keel’s relations.
c) D� divides m(�). Then let e ∈ E� be the edge corresponding to �; v1; v2

its vertices, (vi; e) the corresponding 
ags.
We will write several di�erent expressions for D�m(�) mod IS , corre-

sponding to various possible choices of unordered pairs of distinct 
ags
{��; �j} ⊂ F�(v1) \ {(v1; e)}; { �k; �l} ⊂ F�(v2) \ {(v2; e)}. For each choice, put

T1 = F�(v1) \ {��; �j; (v1; e)};
T2 = F�(v2) \ { �k; �l; (v2; e)}:

Notice that because of stability the set of such choices is non-empty.

1.4.1. Proposition. For every such choice we have

D�m(�) ≡ − ∑
T⊂T1
|T |=1

m(trT;e(�))−
∑

T⊂T2
|T |=1

m(trT;e(�)) mod IS (1.4)

where trT;e(�) is the tree obtained from � by “transplanting all branches start-
ing in T to the middle point of the edge e.” (An empty sum is zero).
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Fig. 4. Transplants: arrows symbolize branches

Remark. We can also describe trT;e(�) as a result of inserting an extra edge
instead of the vertex v1 (resp. v2) and putting the branches T to the common
vertex of the new edge and e, similarly to what we have done in the proof
of Proposition 1.3. There exists a unique S-morphism trT;e(�)→ � contracting
one edge.

Proof. We choose pairwise distinct labels on the chosen branches i ∈ S(��); j ∈
S( �j); k ∈ S( �k); l ∈ S( �‘) and then calculate the element (see (0.11))

Rijkl · m(�) =
(∑

ij�kl
D� −

∑
kj�il

D�

)
m(�) ≡ 0 mod IS : (1.5)

Since ij�kl; for all terms D� of the second sum in (1.5) we have a(�; �) = 4
so that D�m(�) ∈ IS . Among the terms of the �rst sum, there is one D�. If
ij�kl and � 6= �, then D� cannot divide m(�): Otherwise � would correspond
to an edge e′ 6= e, but the 2-partition of such an edge cannot break {i; j; k; l}
into {i; j} and {k; l} as a glance to a picture of � shows. It follows that
D�m(�) = m(�× �) as in (1.2). The projection �× � → � contracts the extra
edge onto a vertex that can be only one of the ends of e, otherwise, as above,
the condition ij�kl cannot hold. It should be clear by now that �× � must
be one of the trees trT; e(�), and that each tree of this kind can be uniquely
represented as �× � for some � with ij�kl. But from (1.5) it follows that

D�m(�) ≡ − ∑
ij�kl
�6=�

D�m(�) mod IS

which is (1.4).

1.5. Corollary. Classes of good monomials linearly generate FS=IS = H∗
S .

This follows from (1.1), (1.3) and (1.4) by induction on the degree.

1.5.1. Remark. Formulas (1.1)–(1.4) (and (1.7) below) can be rewritten as
expressing operadic morphisms ’∗� : H

∗(M 0S)→ H∗(M�) = H∗(M 0;S1q{·})⊗
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H∗(M 0;S2q{·}), � = {S1; S2} in terms of classes of boundary divisors. E.g. (1.4)
means that

’∗�(D�) ≡ − ∑
j�{·}

D� ⊗ 1−
∑

{·}�{kl}
1⊗ D� ; (1.6)

where � (resp. �) runs over stable 2-partitions of S1 q {:} (resp. S1 q {:}).
1.6. Multiplication formulas II. It may be more convenient to have formulas
independent of arbitrary choice of {i; j; k; l}: One way to achieve this is to
average (1.4) over all possible choices. We will illustrate this procedure by
calculating D2� and some of the “tautological classes.”

Let � be a stable 2-partition {T1; T2} of S.
1.6.1. Proposition it We have

D2� = − ∑
T⊂T1

15|T |5|T1|−2

D�D{T1\T;T2qT}
|T1 \ T |(|T1 \ T | − 1)

|T1|(|T1| − 1)

− ∑
T⊂T2

15|T |5|T2|−2

D�D{T1qT;T2\T}
|T2 \ T |(|T2 \ T | − 1)

|T2|(|T2| − 1) mod IS (1.7)

Proof. We �rst write
(
|T1|
2

)(
|T2|
2

)
identities (1.4) for all possible choices of

i; j ∈ T1; k; l ∈ T2, then sum them up and change the summation order by �rst
choosing subsets T ⊂ T1 or T2, and then i; j or k; l in the complement.

1.6.2. Tautological classes. These classes �(i)d ∈ H∗(M 0n) are de�ned as
c1(T ∗xi (C))

d where C → M 0n is the universal curve, xi : M 0n → C is the i-th
section, and T ∗xi is the relative cotangent sheaf to C at xi.

In order to calculate �(i)1 , identify C → M 0n with the morphism M 0; n+1 →
M 0n forgetting the (n+ 1)-th section. Then the section xi(M 0n) becomes the
boundary divisor Di := D{i; n+1};{1;:::;�̂;:::;n} in M 0; n+1, and �(i)1 becomes the pull
back of −D2i . Applying (1.7) to this situation we get:

1.6.3. Proposition.

�(i)1 =
∑

i∈S⊂{1;:::;n}
|S|=2; n−|S|=2

(n− |S|)(n− |S| − 1)
(n− 1)(n− 2) Ds;{1;:::;n}\S mod IS (1.8)

1.7. Multiplication formulas III. The functional
∫
M 0; s

: H∗(M 0; S)→ K is given
by

m(�) 7−→
{
1; if deg m(�) = |S| − 3;
0 otherwise.

Notice that deg m(�) = |S| − 3 i� |v| = 3 for all v ∈ V�, and M� is a point in
this case. We put 〈�1; �2〉 =

∫
M 0S

m(�1)m(�2) and set to calculate this inter-
section index for the case when deg m(�1) + degm(�2) = |S| − 3. Generally,
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we will write 〈m〉 instead of ∫M 0S
m. The following notions and results are

due to Ralph Kaufmann. We can assume that all pairs of di�erent divisors of
m(�1) and m(�2) are compatible, otherwise 〈�1; �2〉 = 0. Put � = �1 × �2 in
the category of S-morphisms. This is a tree with a marked subset of edges E
corresponding to D�’s whose squares divide m(�1)m(�2). We denote by � the
subgraph of � consisting of E and its vertices.
Consider an orientation of all edges of �. Call it good if for all vertices v

of �, the number of ingoing edges equals |v| − 3, where |v| means the valency
in �. Notice that for v ∈|V� we interpret this as |v| = 3.

1.7.1. Proposition (R. Kaufmann). There cannot exist more than one good
orientation of �: If there is none, we have 〈�1; �2〉 = 0. If there is one, we
have

〈�1; �2〉 =
∏
v∈V�

(−1)|v|−3(|v| − 3)! (1.9)

For a proof, see Appendix.

Remark. Notice that (1.9) depends only on � whereas E in
uences only the
existence of the good orientation. Curiously, (1.9) coincides with the virtual
Euler characteristics of the non-compact moduli space M� =

∏
v∈V�

M0;|v|. We
do not know why this is so.

2. Boundary strata and the additive structure of H∗(M 0S )

2.1. Basic linear relations. Let |S|= 4. Consider a system (�; v; �i; �j; �k; �l)
where � is an S-tree, v ∈ V� is a vertex with |v|= 4 and �i; �j; �k; �l ∈ F�(v) are
pairwise distinct 
ags (taken in this order). Put T = F�(v) \ {�i; �j; �k; �l}. For
any ordered 2-partition of T , � = {T1; T2}, (one or both Ti can be empty)
we can de�ne two trees �′(�) and �′′(�). The �rst one is obtained by in-
serting a new edge e at v ∈ V with branches {�i; �j; T1} and { �k; �l; T2} at
its edges. The second one corresponds similarly to { �k; �j; T1} and {�i; �l; T2}.
We remind that S(�i) is the set of labels of tails belonging to the branch
of �i.

2.1.1. Proposition. We have

R(�; v; �i; �j; �k; �l) :=
∑
�
[m(�′(�))− m(�′′(�))] ≡ 0mod IS (2.1)

Proof. Choose i ∈ S(�i); j ∈ S( �j); k ∈ S( �k); l ∈ S( �l), and calculate Rijklm(�) ≡
0 mod IS , where Rijkl is de�ned by (0.1). Consider e.g. the summands D�m(�)
for ij�kl.
From the picture of � it is clear that D� does not divide m(�). If D�m(�)

does not vanish modulo IS , we must have D�m(�) = m(� × �), and � × � is
of the type �′(�). Similarly, the summands of D�m(�) with kj�il are of the
type m(�′′(�)):
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Fig. 5.

2.2. Theorem. All linear relations modulo IS between good monomials of
degree r + 1 are spanned by the relations (2:1) for |E�| = r.

Proof. For r = 0 this holds by de�nition of IS . Generally, denote by H∗S the
linear space, generated by the symbols �(�) for all classes � of stable S-trees
modulo isomorphisms, satisfying the analog of the relations (2.1)

r(�; v; �i; �j; �k; �l) :=
∑
�
[�(�′(�))− �(�′′(�))] = 0 (2.2)

Denote by 1 the symbol �(�) where � is one-vertex tree.

2.2.1. Main Lemma. There exists on H∗S a structure of H∗
S -module given by

the following multiplication formulas reproducing (1:1); (1:3) and (1:4) :

D��(�) = �(� × �) (2.3)

if D�m(�) is a good monomial;

D��(�) = 0; (2.4)

if there exists a divisor D�′ of m(�) such that a(�; �′) = 4;

D��(�) = − ∑
T⊂T1
|T |=1

b�(trT;e(�))−
∑

T⊂T2
|T |=1

�(trT;e(T )) (2.5)

if D� divides M (�); and e corresponds to �. The notation in (2:5) is the same
as in (1:4):

Deduction of Theorem 2.2 from the Main Lemma. Since the monomials m(�)
satisfy (2.1), there exists a surjective linear map a : H∗S → H∗

S : �(�) 7→ m(�).
On the other hand, from (2.3) it follows that m(�)�(�) = �(� × �) if m(�)m(�)
is a good monomial. Hence we have a linear map b : H∗

S → H∗S : m(�) 7→
�(�) = m(�)1 inverse to a: Therefore dim H∗S = dim H∗

S so that the Theorem
2.2 follows.
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Fig. 6. The edge 6= is contracted to v

We now start proving the Main Lemma.

2.2.3. (2.5) is well de�ned. The r.h.s. of (2.5) formally depends on the choice
of �i; �j; �k; �l. We �rst check that di�erent choices coincide modulo (2.2). It is
possible to pass from one choice to another by replacing one 
ag at a time.
So let us consider �i

′-�i; �j; �k; �l and write the di�erence of the right hand sides
of the relations (2.5) written for (�; v; �i; �j; �k; �l) and (�; v; �i

′
; �j; �k; �l). The terms

corresponding to those T that do not contain {�i; �i ′} cancel. This includes all
terms with T ⊂ T2. The remaining sum can be rewritten as

− ∑
T⊂T1\{ �i; �i ′ ; �j}

[�(trT∪{ �i ′}(�))− �(trT∪{i}(�))] (2.6)

where now T can be empty.
We contend that (2.6) is of the type (2.2). More precisely, consider any

of the trees trT∪{ �i ′ }(�); trT∪{ �i}(�) and contract the edge whose vertices are

incident to the 
ags �i; �j; �i
′
. We will get a tree � and its vertex v ∈ V�. The pair

(�; v) up to a canonical isomorphism does not depend on the transplants we
started with. In F�(v) there are 
ags �i; �j; �i

′
and one more 
ag whose branch

contains both k and l and which we denote �h. Then (2.6) is −r(�; v; �i; �j; �i
′
; �h)

(see (2.2)). This is illustrated by the Fig. 6.

2.2.4. Operators D� on H∗S pairwise commute. We have to prove the identities

D�1 (D�2�(�)) = D�2 (D�1�(�)): (2.7)
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Consider several possibilities separately.
i) There exists a divisor D� of m(�) such that a(�1; �) = 4; so that

D�1�(�) = 0.
If D�2�(�) = 0 as well, (2.7) is true. If D�2�(�) = �(�2 × �), then D� di-

vides m(�2 × �), and (2.7) is again true. Finally, if D�2 divides m(�), then
�2-� (otherwise m(�) would not be a good monomial). Hence the transplants
trT;e(�) entering the formula of the type (2.5) which we can use to calculate
D�2�(�) will all contain an edge corresponding to � so that D�1 (trT;e(�)) = 0,
and (2.7) again holds.
The same argument applies to the case when D�2�(�) = 0.
From now on we may and will assume that for any divisor D� of m(�) we

have a(�; �1)5 3; a(�; �2)5 3, and that �1-�2.
ii) a(�1; �2) = 4 and D�2 divides m(�).
Then D�1 does not divide m(�), so that D�1�(�) = �(�1 × �), and

D�2 (D�1�(�)) = 0. On the other hand, D�2�(�) is a sum of transplants to the
midpoint of the edge, corresponding to �2. Each such transplant has an edge
giving the 2-partition �2, so that D�1 (D�2�(�)) = 0.

The case a(�1; �2) = 4 and D�1 =m(�) is treated in the same way.
Hence from this point on we can and will in addition assume that

a(�1; �2) = 3.
iii) D�1 does not divide m(�).
If D�2 does not divide m(�) as well, then D�1 (D�2�(�)) = D�1�(�2 × �) =

�(�1 × �2 × �) = D�2 (D�1�(�)). If D�2 divides m(�), we will use carefully
chosen formulas of the type (2.5) for the calculation of D�2�(�). Namely,
let v1 be the (unique) vertex of � which gets replaced by an edge in �1 × �,
and let e2 be the edge of � corresponding to D�2 . Let u2; u1 be the vertices of
e2 such that u1 can be joined to v1 by a path not passing by e2.

Consider �rst the subcase u1-v1. Choose some �i; �j ∈ F�(u2) and �k; �l ∈
F�(u1) in such a way that �l starts a path leading from u1 to v1. Use these �i; �j; �k; �l
in a formula of the type (2.5) to calculate D�2�(�) and then D�1 (D�2�(�)), that
will insert an edge instead of the vertex v1 which survives in all the transplants
entering D�2�(�). Then calculate D�2 (D�1�(�)) by �rst inserting the edge at v1,
and then constructing the transplants not moving �i; �j; �k; �l. Since by our choice
of �l we never transplant the branch containing v1, the two calculations will
give the same result.
Now let v1 = u1. Let {S1; S2} be the 2-partition of S corresponding to �1.

Since �1 × � exists, {S1; S2} is induced by a partition of F�(v1) = �S1
∐ �S2. We

denote by �S2 the part to which the 
ag (v1 = u1; e2) belongs. Let �T = �S2 \
({(v1 = u1; e2)}

∐
F�(u2). This set is non-empty because otherwise e2 would

correspond to {S1; S2} and we would have �1 = �2. Take �i; �j ∈ F�(u2); �k ∈ �S1
and �l ∈ T : see Fig. 7.
Now consider D�2 (D�1�(�)) and D�1 (D�2�(�)). To calculate the �rst ex-

pression we form a sum of transplants of �1 × �. To calculate the second one,
we form transplants of �, and then insert an edge at v1 = u1.
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Fig. 7.

Fig. 8.

The transplants corresponding to the branches at u2 will be the same in
both expressions. The transplants corresponding to the subsets T ⊂ �T \ { �l}
will also be the same. In addition, the second expression will contain the
terms −D�1 (�(trT; e2 (�))) where T ∩ �S1 6= ∅. But each such term vanishes. In
fact, consider the 2-partition � = {R1; R2} of S corresponding to the edge of
trT;e2 (�) containing the 
ag (v1 = u1; e2), and let k; l ∈ R1. A glance to the third
tree of the Fig. 7 shows that a(�; �1) = 4, because if �t ∈ T ∩ �S1; t ∈ S(�t ), then
kt�1il and kl�it. Hence the extra terms are irrelevant.

The case when D�2 does not divide m(�) is treated in the same way. It
remains to consider the last possibility.

iv) D�1 and D�2 divide m(�); a(�1; �2) = 3.

Denote by e1 (resp. e2) the edge corresponding to �1 (resp. �2). Let u1; u2
(resp. v1; v2) be the vertices of e1 (resp. e2) numbered in such a way that there
is a path from u2 to v1 not passing through e1; e2 (the case u2 = v1 is allowed).
To calculate the multiplication by D�1 choose �i; �j ∈ Fu1 (�) \ {(u1; e1)}; �l on
the path from u2 to v1 if u2-v1, and �l = (v1; e2) if u2 = v1; �k ∈ F�(v2) \ { �l}.
To calculate the product by D�2 , choose similarly �k

′
; �l
′ ∈ F�(v2) \ {(v2; e2)},

�i
′ ∈ F�(v1) on the path from v1 to u2, if v1-u2, and �i

′
= (u2; e1) if v1 =

u2; �j
′ ∈ F�(v1) (see Fig. 8).
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Fig. 9.

Fig. 10.

The critical choice here is that of �l and �i
′
. It ensures that calculating

D�1 (D�2�(�)) and D�2 (D�1�(�)) we will get the same sum of transplanted
trees. This ends the proof of (2.7).

2.2.5. Compatibility with IS -generating relations. If D�1 D�2 = 0 because
a(�1; �2) = 4, one sees that D�1 (D�2�(�)) = 0 looking through various sub-
cases in 2.2.4. It remains to show that Rijkl�(�) = 0 where Rijkl is de�ned by
(0.11).
Consider the smallest connected subgraph in � containing the 
ags i; j; k; l.

The Fig. 9 gives the following exhaustive list of alternatives. Paths from i to
j and from k to l: i) have at least one common edge; ii) have exactly one
common vertex; iii) do not intersect.
Consider them in turn.
i) Let e be an edge common to the paths ij and kl. Denote by � the

respective 2-partition. Then ik�jl or il�kj. Therefore any summand of Rijkl

annihilates D� so that Rijkl�(�) = 0 in view of (2.4).
ii) Let v be the vertex common to the paths ij and kl. Then exactly the

same calculation as in the proof of the Proposition 2.1.1 shows that

Rijkl�(�) =
∑
�
[�(�′(�))− �(�′′(�))] = 0

(notation as in (2.1) and (2.2)).
iii) This is the most complex case. Let us draw a more detailed picture of

� in the neighborhood of the subgraph we are considering (Fig. 10).
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Let v1 be the vertex on the path ij which is connected by a sequence of
edges e1; : : : ; em (m= 1) with the vertex vm on the path kl so that ea has
vertices (va; va+1) in this order. Let Ta be the set of 
ags at va which do not
coincide with �i; �j; �k; �l; and do not belong to ea−1; ea:

Consider any summand D� of Rijkl: If jk�il; then D��(�) = 0 because each
edge ea determines a partition � of S such that ij�kl: From now on we assume
that ij�kl: Then D��(�) can be nonzero if one of the two alternatives holds:
a) For some va, there exists a partition Ta = T ′a

∐
T ′′a ;(with |T ′a|= 1; |T ′′a |

= 1; except for the case a = 1 where T ′1 can be empty, and a = m where T ′m
can be empty) such that the following two sets

S1 = S(�i)
∐

S( �j)
∐

S(T ′1)
∐

: : :
∐

S(T ′a);

S2 = S(T ′′a )
∐

S(Ta+1)
∐

: : :
∐

S(Tm)
∐

S( �k)
∐

S( �l)

form the 2-partition corresponding to �: In this case

D��(�) = �(� × �);

and � × � is obtained by inserting a new edge at va and by distributing T ′a and
T ′′a at di�erent vertices of this edge.

b) For some ea; the two sets

S1 = S(�i)
∐

S( �j)
∐(∐

i5aS(Ti)
)
;

S2 =
(∐

i=a+1S(Ti)
)∐

S( �k)
∐

S( �l)

form the 2-partition corresponding to �:
In this case D� divides m(�); and in order to calculate D��(�) using a

formula of the type (2.5) we must �rst choose two pairs of 
ags at two
vertices of va:

Contributions from a) and b) come with opposite signs, and we contend
that they completely cancel each other.
To see the pattern of the cancellation look �rst at the case a) at v1: It

brings (with positive sign) the contributions corresponding to the following
trees. Form all the partitions T1 = T ′1

∐
T ′′1 such that T ′′1 6= ∅; where T1 =

F�(v1) \ {�i; �j; (v1; e1)}: Transplant all T ′′1 -branches to the midpoint of e1: Denote
the new vertex v′1: The result is drawn as Fig. 11.

Now consider the terms of the type b) for the edge e1: If m = 2; we choose
for the calculation of D�1�(�) (where �1 corresponds to e1) the 
ags �i; �j; �k; �l:
If m ¿ 2; we choose the 
ags �i; �j; (v2; e1); t ∈ T2: Then we get the sum of two
contributions. One will consist of the trees obtained by transplanting branches at
v1: They come with negative signs and exactly cancel the previously considered
terms of the type a). If m = 2; the second group will cancel the terms of the
type a) coming from v2:
Consider a somewhat more di�cult case m ¿ 2: Then this second group

of terms comes from the trees indexed by the partitions T2 = T ′2
∐

T ′′2 ; t ∈
T ′′2 ; T

′
2 6= ∅: Branches corresponding to T ′2 are transplanted to the midpoint v

′
1

of the edge e1: These terms come with negative signs: see Fig. 12.
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Fig. 11.

Fig. 12.

These trees in turn cancel with those coming from the terms of the type a)
at the vertex v2 with positive sign. However, there will be additional terms of
the type a) for which t ∈ T ′2: They will cancel with one group of transplants
contributing to D�2�(�) where �2 corresponds to the edge e2 of the Fig. 10,
if for the calculation of D�2�(�) one uses (2.5) with the following choice of

ags: (v2; e1); t at one end, (v3; e1), some t′ ∈ T3 at the other end (this last
choice must be replaced by �k; �l; if m = 3).

The same pattern continues until all the terms cancel.

2.2.6. Compatibility with relations (2.2) By this time we have checked that
the action of any element of FS=IS on the individual generators �(�) of H∗S
is well de�ned modulo the span I∗S of relations (2.2). It remains to show that
the subspace in ⊕�K�(�) spanned by these relations is stable with respect to
this action. But the calculation in the proof of the Proposition 2.2.1 shows that

r(�; v; �i; �j; �k; �l) ≡ m(�)rijkl mod I∗S ;

where rijkl is obtained from Rijkl by replacing m(�) with �(�). To multiply
this by any element of H∗

S we can �rst multiply it by m(�), then represent the
result as a linear combination of good monomials, and �nally multiply each
good monomial by rijkl: The result will lie in I∗S :
This �nishes the proof of the Main Lemma and the Theorem 2.2.
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3. Cohomological Field Theories of rank 1

3.1. Notation. Rank of a CohFT on (H; g) is the (super)dimension of H: In
this section we consider the case dim H = 1: To slightly simplify notation let
us assume that all square roots exist in K: Then H = K�0; g(�0; �0) = 1; � =
�⊗20 ∈ H⊗2: The basic vector �0 is de�ned up to a sign. We will consider its
choice as a rigidi�cation and without further ado call such rigidi�ed theories
simply CohFT’s of rank one.
A structure of CohFT on (H;�0) boils down to a sequence of cohomology

classes (generally non-homogeneous)

cn := In(�⊗n
0 ) ∈ H∗(M 0n; K)Sn ; n= 3; (3.1)

satisfying the identities

’∗�(cn) = cn1+1 ⊗ cn2+1; (3.2)

where �� : M 0; n1+1 ×M 0; n2+1 → M 0n is the embedding of the boundary di-
visor corresponding to a partition � (see (0.3)). Put cn =

∑n−3
i=0 c

(i)
n ; c(i)n ∈

H 2i(M 0n): Changing sign of �0 leads to cn 7→ (−1)cn:
The tensor product formula (0.8) becomes

{c′n} ⊗ {c′′n } = {c′n ∧ c′′n }; (3.3)

if we agree that (H ′; �′0)⊗ (H ′′; �′′0 ) = (H
′ ⊗ H ′′; �′0 ⊗ �′′0 ):

Here are some simple consequences of (3.2) and (3.3).

3.1.1 The theory cn = c0n = [M 0n] for n= 3 is the identity with respect to
the tensor product.

3.1.2 The theories cn(t) = tn−2[M 0n]; t ∈ K∗; form a group isomorphic to K∗:
3.1.3 The theory {cn} is invertible i� c(0)3 -0: Any invertible theory is a tensor
product of one of the type {cn(t)} and one with c(0)n = 1 for all n; and this
decomposition is unique.

3.1.4 Assume that c(0)n = 1 and put �n = log cn ∈ H∗(M 0n; K)Sn : Then (3:2)
becomes

’∗�(�n) = �n1+1 ⊗ 1 + 1⊗ �n2+1; (3.4)

and (3:3) becomes
{�′n} ⊗ {�′′n } = {�′n + �′′n }: (3.5)

Vice versa, any sequence of classes �n ∈ H∗(M 0n; K)Sn satisfying (3:4) gives
rise to a CohFT of rank 1; cn = exp �n: We can say that {�n} forms a
logarithmic CohFT of rank 1:

3.1.5 There is a canonical bijection between the set of isomorphism classes of
CohFT’s of rank 1 and the set of in�nite sequences (C3; C4; : : :) ∈ K∞ given
by

Cn =
∫

M 0n

cn =
∫

M 0n

c(n−3)n :
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In fact, this is a particular case of the equivalence stated in 0.4 and 0.5,
because any formal series in one variable �(x) =

∑Cn
n! x

n satis�es the associa-
tivity equations.
Formula (0.7) reconstructing c(i)n from Cm becomes

∀ �; |E�| = i :
∫

M 0n

[m(�)] ∧ c(i)n =
∏
v∈V�

C|v|; (3.6)

where [m(�)] ∈ H∗(M 0n) is the image of the good monomial m(�): We do not
know nice formulas for the tensor product in terms of coordinates (Ci). The
main goal of this section is to show that there are natural coordinates de�ned
geometrically that are simply additive with respect to the tensor multiplication
of invertible theories. This is a reformulation of certain identities from [AC].

3.2. Mumford classes. Consider the universal curve pn : Xn → M 0n and its
structure sections si : M 0n → Xn; i = 1; : : : ; n: Let xi ⊂ Xn be the image of si,
! the relative dualizing sheaf on Xn: For a = 1; 2; : : : put

!n(a) := pn∗

(
c1

(
!
(

n∑
i=1

xi

))a+1
)
∈ H 2a(M 0n;Q)Sn : (3.7)

It is proved in [AC] that for any a= 1 (in fact, a = 0 as well) {!n(a) | n= 3}
satisfy (3.4) i.e., form a logarithmic �eld theory. Hence we can construct an
in�nite-dimensional family of invertible theories of rank one:

!n[s1; s2; : : :] := exp
(∞∑

a=1
sa!n(a)

)
; n= 3: (3.8)

3.2.1. Theorem (sa) form a coordinate system on the space of isomorphism
classes of theories with c(0)3 = 1; de�ning its group isomorphism with K∞

+ .

Proof. The sum in the r.h.s. e�ectively stops at a = n− 3 (cf. (3.7)). The
Cn-coordinate of the theory (3.8) is therefore∫

M 0n

!n[s1; s2; : : :] = sn−3
∫
M 0n

!n(n− 3) + Pn(s1; : : : ; sn−4); n= 4;

where Pn is a universal polynomial. Hence it remains to check that the coe�-
cient at sn−3 does not vanish. But this follows from the well known fact that
!(
∑n

i=1 xi) is an ample sheaf on Xn:

3.2.2. Remark. The theories we are considering here are tree level ones in the
terminology of [KM]. The general de�nition of a CohFT given there involves
maps Ig; n : H⊗n → H∗(Mg;n) for all stable pairs (g; n): The classes !n(a)
given by (3.7) can be automatically de�ned in this larger generality, and the
extension of the property (3.4) is proved in [AC] for all (g; n): Therefore
formulas (3.8) in fact de�ne full (any genus) rank one theories.
However we do not know whether Theorem 3.2.3 extends to the general

case because it is unclear whether the functions Cg;n :=
∫
Mg; n

cg; n form a co-
ordinate system on the space of full rank 1 theories. In fact, they probably do
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not, because of the presence of non–trivial cusp classes in H∗(Mg;n) having
vanishing restrictions to the boundary.

3.3. Potential of rank 1 theories. Denote by �(x; s1; s2; : : :) the potential of
!n[s1; s2; : : :] at x� (see (0.6)). We have from (3.8):

�(x; s1; s2; : : :) =
∞∑
n=3

xn

n
∑

(ma):�ama=n−3

∫
M 0n

∏
a
!n(a)ma

∏
a

sma
a

ma
: (3.9)

We expect that (3.9) satis�es some interesting di�erential equations encoding
recursive relations between the numbers∫

M 0n

∏
a!n(a)ma ;

∑
ma=n−3:

Some partial results are given below.
It is even possible that such equations for arbitrary genus are implicit in

the relations (conjectured by Witten and proved by Di Francesco, Itzykson,
and Zuber) between the numbers denoted in [AC]∫

W(ma); n

∏
a 

na
i ;

where W(ma); n are certain combinatorial classes de�ned in terms of ribbon
graphs. In fact, it is conjectured in [AC] that the dual cohomology classes
of W(ma); n can be expressed as∏

a=2
!n(a− 1)ma

(2a(2a− 1)!!)ma

ma!

plus terms of lower order and boundary terms (our !n(a) are denoted ka in
[AC]).
We hope to return to this problem elsewhere. Here we will treat the case

when only one of the coordinates sa is non-zero.

3.4. Weil-Petersson theory The noncompact moduli spaces M0n possess a
canonical Weil-Petersson hermitian metric. It is singular on the boundary, but
its K�ahler form extends to a closed L2-current on M 0n thus de�ning a real
cohomology class !WP

n ∈ H 2(M 0n)Sn (see [W] and [Z]).
In [AC] this class is identi�ed as

!WP
n = 2�2!n(1): (3.10)

The additivity property (3.4) for !WP
n was used by P. Zograf ([Z]) in order

to calculate the WP-volumes of M 0n. In our framework, he calculated the
coe�cients of the potential of the theory {exp(�−2!WP

n )}:
3.5. Weil-Petersson potential. The Cn–coordinate of {exp(�−2!WP

n )} is
1

�2(n−3)
∫

M 0n

(!WP
n )n−3

(n− 3)! =
vn

(n− 3)!
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in the notation of [Z]. P. Zograf proved that v4 = 1; v5 = 5; v6 = 61; v7 = 1379;
and generally

vn =
n−3∑
i=1

i(n− i − 2)
n− 1

(
n− 4
i − 1

)(
n

i + 1

)
vi+2vn−i ; n= 4: (3.11)

The potential (0.6) of the theory is therefore

�WP(x) :=
∞∑
n=3

vn
n!(n− 3)!x

n:

We can rewrite (3.11) as a di�erential equation for �WP(x): Following [M],
put

g(x) = x2
d
dx

(
x−1

d
dx

�WP(x)
)

:

Then we have
x(x − g)g′′ = x(g′)2 + (x − g)g′:

3.6. A generalization of Zograf’s recursive relations. Put

zn :=
∫

M 0n

!n(n− 3); n= 3: (3.12)

De�ne for each n= 3 an Sn-invariant function An on the set of isomorphism
classes of n-trees � with the following property:〈 ∑

�:|E�|=a
An(�)�; �

〉
=
{
1 if |E�| = n− 3− a and ∃v ∈ V�; |v| = a+ 3;
0 otherwise;

(3.13)
where 〈�; �〉 is de�ned by (1.9). Presumably, (3.12) can be calculated in-
ductively using the de�nition (3.7). The solvability of (3.13) will be shown
below. To �nd an explicit solution one has to invert the Poincar�e pairing ma-
trix restricted to the Sn-invariant part of H∗(M 0n): Hopefully, a version of the
Proposition 1.7.1 can be used to do this.
Put


n(a) =


∫

M 0n

!n(a)
n−3
a ; if a=(n− 3);

0 otherwise:
(3.14)

This is a part of the coe�cients in (3.9).

3.6.1. Theorem For a �xed a= 1; the sequence {
n(a)}; n= 3 satis�es the
recursive relations


n(a) = za+3
∑

n-trees �:
|E�|=a

An(�)

(
n−3
a − 1)!∏

v∈V�

(
|v|−3

a

)
!

∏
v∈V�


|v|(a): (3.15)
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Proof. First of all, we can calculate !n(a) as a functional on the homology
classes of the strata M� where � runs over stable n–trees with |E�| = n− 3− a:
Namely, since {!n(a)} form a logarithmic �eld theory, we have

∫
M�

!n(a) := 〈’∗� (!n(a))〉 =
〈∑

v∈V�

pr∗v (!|v|(a))

〉
; (3.16)

where pr∗v : M� → M 0;F�(v) is the canonical projection.
In (3.16), only the summands with |v| = a+ 3 can be non-vanishing, and

there can exist at most one such summand, because |V�| = |E�|+ 1 = n− 2−
a; so that ∑

v∈V�

(|v| − 3) = |T�|+ 2|E�| − 3|V�| = a:

It follows that !n(a) is dual to the class za+3
∑

�:|E�|=aAn(�)[M�]; in the nota-
tion of (3.13).
Similarly, one can calculate !n(a)

n−3
a −1 as a functional on the classes of

the tree strata [M�] with |E�| = n− 3− a( n−3a − 1) = a. We have, putting
m = n−3

a − 1 :

∫
M�

’∗�(!n(a)m) =

〈( ∑
v∈V�

pr∗v (!|v|(a))

)m〉

=
∑

(mv|v∈V�):
�mv=m

m!∏
mv
!
∏

v∈V�

∫
M 0;Fv(�)

(!|v|(a)))mv

=
m!∏
v

( |v| − 3
a

)
!
∏

v∈V�


|v|(a);

because only one summand, with mv =
|v|−3

a for all v, can be non-vanishing.

In view of (3.13), this is equivalent to (3.15), because


n(a) =
∫

M 0n

!n(a)
n−3
a =

∫
M 0n

!n(a)
n−3
a −1 ∧ !n(a);

which is !n(a)
n−3
a −1 integrated along

za+3
∑

�:|E�|=a
An(�)[M�]:

3.6.2. Remark. Zograf’s argument essentially coincides with our reasoning for
the case a = 1.
It can be directly generalized to obtain more general recursive relations for

all coe�cients in (3.9). However, their usefulness depends on the understanding
of {An(�)}.
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3.7. Twisting. For any CohFT on (H; g), we can de�ne a new theory by tensor
multiplying it by !:[s1; s2; : : :]: It would be interesting to study the dependence
of its potential on s1; s2; : : : . This could clarify the analytic properties of the
initial theory.
If the initial theory corresponds to a system of GW-classes, as in [KM],

it satis�es a number of additional axioms. In particular, it has a scaling group
related to the grading of H , and an identity in the quantum cohomology ring.
Twisting generally destroys these additional structures.

Appendix: Proof of the Proposition 1.7.1.

R. Kaufmann

We keep notation of Sect. 1.7.

Consider the canonical embedding ’� : M� → M 0S : We start with the for-
mula

〈�1; �2〉 =
〈∏

e∈E
’∗� (D�(e))

〉
; (A.1)

where the cup product in the r.h.s. is taken in H∗(M�) ∼= ⊗v∈V�H
∗(M 0;F�(v)):

Applying an appropriate version of the formulas (1.4) and (1.6) we can write
for any e ∈ E with vertices v1; v2:

’∗� (D�(e)) = −�v1 ;e − �v2 ;e (A.2)

where
�vi;e ∈ H∗(M 0;F�(vi))⊗

∏
v 6=vi
[M 0;F�(v)] (A.3)

and [M 0;F�(v)] is the fundamental class. Later we will choose an expression for
�vi;e depending on the choice of 
ags denoted i; j or k; l in (1.4).
Inserting (A.2) into (A.1), we get

〈�1; �2〉 =
∑
h

〈 ∏
(v;e)∈F�
h(e)=v

(−�v;e)

〉
; (A.4)

where h runs over all orientations of E considered as a choice, for every e ∈ E,
of a vertex h(e) of e:
The summand of (A.4) corresponding to a given h can be non-zero

only if for every v ∈ V� the number of factors (v; e) with h(e) = v equals
dim M 0; F�(v) = |v| − 3: This is what was called a good orientation.

Assume that there are two good orientations h; h′ of �: Consider the union
of all closed edges on which h-h′: Each connected component of this union
is a tree. Choose an end edge e of this tree and an end vertex v of e: At v;
the number of h-incoming and h′-incoming edges must coincide, but on e these
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orientations di�er. Hence there must exist an edge e′-e incident to v upon
which h and h′ di�er. But this contradicts to the choice of v and e.
Now assume that one good orientation h exists. We can rewrite (A.4) as

〈�1; �2〉 =
〈 ∏

v∈V�

∏
e:h(e)=v

(−�v;e)

〉
: (A.5)

In view of (A.3), this expression splits into a product of terms computed in
all H∗(M 0;F�(v)); v ∈ V� separately. Each such term depends only on |v|; and
we want to demostrate that it equals (−1)|v|−3(|v| − 3)!. Put |v| = m+ 3. We
may and will assume that m= 1; the case m = 0 being trivial.

Let us identify F� with {1; : : : ; m+ 3} in such a way that 
ags 1; : : : ; m
belong to the edges e with h(e) = v: Denote by D(m+3)� the class of a boundary
divisor in H∗(M 0; m+3) corresponding to a stable partition � of {1; : : : ; m+ 3}:
We will choose 
ags m+ 1; m+ 2 to play the role of i; j in (1.4) for any
i ∈ {1; : : : ; m} corresponding to an edge e in (A.5) (v being now �xed), so
that the contribution of v in (A.5) becomes

m∏
i=1

( ∑
�: i�{m+1;m+2}

−D(m+3)�

)
:= g(m): (A.6)

We will calculate (A.6) inductively. Consider the projection map (forgetting
the (m+ 3)-th point) p : M 0; m+3 → M 0; m+2 and the i-th section map xi :
M 0; m+2 → M 0; m+3 obtained via the identi�cation of M 0; m+3 with the universal
curve. We have p ◦ xi = id; and xi identi�es M 0; m+2 with D(m+3)�i where

�i = {{i; m+ 3}; {1; : : : ; î; : : : ; m+ 2}}:

Therefore

∑
�: i�{m+1;m+2}

−D(m+3)� = −p∗
( ∑

�′: i�′{m+1;m+2}
D(m+2)�′

)
− xi∗([M 0; m+2]);

(A.7)

where �′ runs over stable partitions of {1; : : : ; m+ 2}: We now insert (A.7) into
(A.6) and represent the resulting expression as a sum of products consisting of
several p∗-terms and several xi∗-terms each. If such a product contains= 2 xi∗-
terms, it vanishes because the structure sections pairwise do not intersect. The
product containing no xi∗-terms vanishes because dim M 0; m+2 = m− 1: Finally,
there are m products containing one xi∗-term each. Using the projection formula

〈p∗(X )xi∗([M 0; m+2])〉 = 〈X 〉

one sees that each such term equals −g(m− 1) (cf. (A.6)). So g(m) =
−mg(m− 1) = (−1)mm! because g(1) = −1:
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