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Introduction

In this paper we prove the weak form of the Tamagawa number conjecture
of Bloch and Kato for elliptic curves with CM by the ring of integers OK
in a quadratic number field. For this we use a new explicit description of
the p-adic specialization of the elliptic polylogarithm. The word “weak”
indicates that we have nothing new to say about the rank of the K-groups
involved.

The Tamagawa number conjecture describes the special values of the
L-function of a variety in terms of the regulator maps of the K-theory
of the variety into Deligne and étale cohomology (see 1.1 for the exact
formulation). There are only two cases proven so far in the non critical
situation, both due to Bloch and Kato [Bl-Ka]: The first is the Riemann zeta
function (i.e. the case of Q) and the second the L-value at 2 of a CM elliptic
curve defined over Q for regular primes. In the last case Bloch and Kato
use an ad hoc method to describe the p-adic regulator of the K-theory. This
does not extend to higher K-groups.

The regulator map to Deligne cohomology was computed by Denin-
ger [Den1] with the help of the Eisenstein symbol. Here, the regulator
can be described in terms of real analytic Eisenstein series (whence the
name) and leads to a proof of the weak form of the Beilinson conjecture
for CM elliptic curves. For the Tamagawa number conjecture one needs an
understanding of the p-adic regulator on the subspace of K-theory defined
by the Eisenstein symbol. In an earlier paper [Hu-Ki2] we established with
A. Huber the relation of the p-adic regulator of the Eisenstein symbol with
the specialization of the p-adic elliptic polylogarithm sheaf. The problem
remains, to compute these specializations in p-adic cohomology.

The elliptic polylogarithm is one of the most powerful tools in the
study of special values of L-functions. All known cases of the Beilinson
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conjecture are proved or can be proved with specializations of the elliptic
polylog. A universal property characterizes the polylog, which simplifies
the explicit computations. So far, only the absolute Hodge realization of
the elliptic polylog was understood, due to the extensive work of Beilin-
son and Levin [Be-Le]. Missing was a theory of the p-adic realization,
which give manageable étale cohomology classes. In the cyclotomic case,
such an explicit realization is known. The approach there, mainly due to
Deligne [Del2], uses torsors (Galois coverings) over Gm � 1 which are
ramified in 1. This is not transferable to the elliptic case, because such
torsors over elliptic curves do not exist (there are no Galois coverings ram-
ified in exactly one point due to compactness). In our approach we allow
instead ramification at torsion points, constructing in fact coverings over
E � E[pn]. But this is not the only change of point of view compared to
the cyclotomic case. The question is also, what is the group whose tor-
sors we have to consider. The right choice is the group of torsion points
of the torus with character group the augmentation ideal of the group ring
of E[pn ].

It turns out (see Sect. 4.1) that the elliptic polylogarithm is an inverse
limit of pn-torsion points of certain one-motives, which are essentially the
generalized Jacobian defined by the divisor of all pn-torsion points on the
elliptic curve E. The cohomology classes of the elliptic polylogarithm sheaf
can then be described by classes of sections of certain line bundles. These
sections are elliptic units and going carefully through the construction one
finds an analog of the elliptic Soulé elements of [So3].

Now enters Iwasawa theory: By an idea of Kato, going back in part to
earlier work of Soulé [So3], the étale cohomology groups can be described
in terms of Iwasawa modules. Rubin’s “main conjecture” [Ru3] allows then
to give a bound on the kernel and the cokernel of Soulé’s map from ellip-
tic units to the étale cohomology. On the way we also need some of the
tools developed by Rubin to prove the main conjecture. Rubin’s theory is
the second decisive input into the proof of the Tamagawa number conjecture.

Let us finally give a rough sketch of the contents of this paper. More
overviews can be found at the beginning of each section. In the first section
we recall the statement of the Tamagawa number conjecture and formu-
late our Main result 1.1.5. After this we recall Deninger’s construction of
the K-theory elements leading to the Beilinson conjecture for CM elliptic
curves. Here we also reduce to the computation of the specialization of the
elliptic polylogarithm sheaf by using our earlier work [Hu-Ki2].

The second section reviews the “main conjecture” and relates the Iwa-
sawa modules to étale cohomology.

The next two sections are independent of the rest of the paper. The third
section introduces the elliptic polylog and its specializations. The approach
follows the important paper [Be-Le] but puts the emphasis on different
aspects, which are important for our geometric construction of the elliptic
polylog.
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The technical heart of the paper is section four. Here we describe the
polylog as an inverse limit of torsion points of one motives. The cohomology
classes of what we call “geometric polylog” are then computed as the classes
of sections of certain line bundles.

The last section puts the various results together and gives the proof of
the Main theorem 1.1.5.
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1 The Bloch-Kato conjecture for CM-elliptic curves

This part of the paper contains our first main result, the Bloch-Kato conjec-
ture for CM elliptic curves. For the precise formulation of our result we refer
to 1.1.5. This part is organized as follows: First we review the Bloch-Kato
conjecture in the case of interest to us. Here we also formulate the main
theorem. Then we recall the construction due to Deninger of elements in the
K-theory of CM elliptic curves. These elements satisfy the weak Beilinson
conjecture for these curves as was shown by Deninger. This is the starting
point of our investigations of the Bloch-Kato conjecture.

1.1 The Tamagawa number conjecture of Bloch-Kato and the main
theorem

This section recalls the Bloch-Kato conjecture [Bl-Ka] about special values
of L-functions in the formulation of Kato [Ka1] and [Ka2]. We review this
only for certain weights, which suffices for our purpose. Then we formulate
our main result.

1.1.1 The Tamagawa number conjecture in the formulation of Kato. Let
X/K be a smooth proper variety over a number field K with ring of
integers OK . Fix integers m ≥ 0 and r such that m − 2r ≤ −3 and
r > inf(m, dim(X)). Let p be a prime number not equal to 2. Let S be
a set of finite primes of K containing the primes lying over p and the ones
where X has bad reduction. Let OS be the ring OK [ 1

S ], where the primes in
S are inverted. Define Gal(K/K )-modules

Vp := Hm(X ×K K ,Qp(r))

Tp := Hm(X ×K K ,Zp(r))
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Let j : Spec K → Spec OS and define the p-adic realizations to be

Hi
p := Hi(OS, j∗Tp).

We will omit the j∗, if no confusion is likely. Define

Hh,Z := Hm
sing(X ×Q C, (2πi)r−1Z)+

where the+ denotes the fixed part under Gal(C/R) of the singular cohomo-
logy of X. Here Gal(C/R) acts on C and on (2πi)r−1Z.

Finally we need the K-theory of X: Let

HM = (K2r−m−1(X)⊗Q)(r)

be the r-th Adams eigenspace of the 2r −m − 1-th Quillen K-theory of X.
There are regulator maps due to Beilinson and Soulé

rD : HM ⊗Q R→ Hh,Z ⊗Z R
and

rp : HM ⊗Q Qp → H1
p ⊗Zp Qp

called the Deligne regulator (see [Be1]) and the p-adic regulator (see [So3]).

Remark: Note that because of our assumption r > inf(m, dim(X)), the
Deligne cohomology coincides with Hh,Z⊗Z R (cf. [Sch2] sequence (*) on
page 9). The same condition (together with m − 2r ≤ −3) also guarantees
that Hi

lim = Hi
p ⊗Zp Qp (cf. [Ka2] 2.2.6 (4)).

Let us define local Euler factors for X. Let for a prime p � p in OK

Pp(Vp, s) := detQp

(
1− Frp N p−s|V Ip

p
)

be the characteristic polynomial of the geometric Frobenius Frp at p on the
invariants of Vp under the inertia group Ip at p. For p|p set

Pp(Vp, s) := detQp

(
1− φ−1

p N p−s|Dcris(Vp)
)

where Dcris(Vp)) := (Vp⊗Qp Bcris)
Gal(Qp/Qp) and φp is the arithmetic Frobe-

nius. Define the L-function of X as

L S(Vp, s) :=
∏
p/∈S

Pp(Vp, s)−1.

Let V ∗
p be the dual Galois module of Vp. We now give Kato’s formulation

of the Tamagawa number conjecture. Here and in the rest of the paper the
determinants are taken in the sense of Knudsen and Mumford [Kn-Mu].
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Conjecture 1.1.1. (cf. [Ka2] 2.2.7) Let p �= 2 be a prime number, r,m and
S be as above. Assume that

Pp

(
V ∗

p (1), 0
) �= 0

for all p ∈ S and that L S(V ∗
p (1), s) has an analytic continuation to all of C.

Then:

a) The maps rD and rp are isomorphisms and H2
p is finite.

b) dimQ(Hh,Z ⊗Q) = ords=0 L S(V ∗
p (1), s).

c) Let η ∈ detZ(Hh,Z) be a Z-basis and let e := dimQ(Hh,Z ⊗Q). There is
an element ξ ∈ detQ(HM) such that

rD(ξ) =
(

lim
s→0

s−eL S
(
V ∗

p (1), s
))
η.

This is the “Beilinson conjecture”.
d) Consider rp(ξ) ∈ detQ p(H

1
p ⊗Zp Qp), then rp(ξ) is a basis of the Zp-

lattice

detZp(RΓ(OS, Tp))
−1 ⊂ detQ p(RΓ(OS, Vp)[−1]) ∼= detQ p

(
H1

p ⊗Zp Qp
)
,

i.e. [
detZp

(
H1

p

) : rp(ξ)Zp
] = #

(
H2

p

)
.

Remark: a) The assumption in the conjecture is true for abelian varieties
with CM.

b) The space H0
p is zero for weight reasons.

c) Part b) follows from the expected shape of the functional equation, (see
e.g. [Sch2] proposition page 9).

As our knowledge of K-theory is limited, let us also formulate a weak
version of the above conjecture.

Conjecture 1.1.2. (weak form of conjecture 1.1.1) There is a subspace
Hconstr

M in HM (the constructible elements of HM) such that

a’) rD and rp restricted to Hconstr
M are isomorphisms and H2

p is finite.
b’) same as b)
c’) There is an element ξ ∈ detQ(Hconstr

M ) such that

rD(ξ) =
(

lim
s→0

s−eL S
(
V ∗

p (1), s
))
η.

d’) The element rp(ξ) is a basis of the Zp-lattice

detZp(RΓ(OS, Tp))
−1⊂ detQ p(RΓ(OS, Vp)[−1]) ∼= detQ p

(
H1

p ⊗Zp Qp

)
.



576 G. Kings

1.1.2 Elliptic curves with CM. Before we formulate the main theorem, we
introduce the elliptic curves we want to consider. We follow the notations
and conventions in Deninger [Den1]. Let K be an imaginary quadratic field
with ring of integers OK . Let E/K be an elliptic curve with CM by OK . Note
that this implies that the class number of K is one. We fix an isomorphism

ϑ : OK
∼= EndK (EK ),

such that for ω ∈ Γ(EK ,ΩEK /K) and α ∈ OK we have ϑ∗(α)ω = αω. We
fix also an embedding of K into C, such that the algebraic j-invariant of E
is the same as the corresponding complex analytic j-invariant of OK . Let us
denote by

ψ : A∗K → K∗ ⊂ C∗

the CM-character or Serre-Tate character of EK and let f be its conductor.
The elliptic curve E has bad reduction precisely at the primes dividing f.
Denote by ψ the complex conjugate character. Its conductor is also f.

Definition 1.1.3. Fix a prime number p. We let S be the set of primes in K
dividing pf.

Associated to ψ is an L-series

L S(ψ, s) =
∏
p-pf

1

1− ψ(p)

Nps

.

We want to relate this to the L-function L S(E, s) of E. Recall the funda-
mental result of Deuring:

Theorem 1.1.4. (see [Si]II 10.5.) Let L S(E/K, s) := L S(Vp, s) be the L-
series of the Galois representation Vp := H1(E ×K K ,Q p) as defined in
Sect. 1.1.1. Then

L S(E/K, s) = L S(ψ, s)L S(ψ, s).

Let Tp E = lim←− n E[pn ] be the Tate-module of E. This is a Gal(K/K )-

module. Then H1(E ×K K ,Zp) ∼= Hom(Tp E,Zp) ∼= Tp E(−1), where
Op := OK ⊗ Zp acts now conjugate linear on Tp E. There is a canonical
isomorphism

H1
(
E ×Q C, (2πi)rZ

)+ ∼= H1
(
E ×K C, (2πi)rZ

)
,

where we used the fixed embedding K ⊂ C. Let

Hi
M(E, j) := (K(E)2 j−i ⊗Q)( j)

be the 2 j − i-th Quillen K-theory of E.
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For m = 1, r = k + 2 with k ≥ 0 in the notation of 1.1.1 we have

Hi
p = Hi(OS, Tp E(k + 1))

Hh,Z = H1(E ×K C, (2πi)k+1Z
)

HM = H2
M(E, k + 2).

Note that on all these spaces we have a canonical OK -action and that Hh,Z
is an OK -module of rank 1. It is a result of Jannsen ([Ja2] Corollary 1) that
if H2

p is finite then the free part of H1
p is an OK ⊗ Zp-module of rank 1.

1.1.3 The main theorem. Now we can formulate our main result. We let
Op := OK ⊗ Zp.

Theorem 1.1.5. Let p �= 2, 3 and p � NK/Q f and k ≥ 0. Then, there is an
OK submodule Rψ ⊂ HM of rank 1 such that
a) detOK (rD(Rψ)) ∼= L∗S(ψ,−k)detOK (Hh,Z) in detOK⊗R(Hh,Z ⊗ R)
and
b) The map rp induces an isomorphism

detOp(Rψ) ∼= detOp(RΓ(OS, Tp E(k + 1)))−1.

Here L∗(ψ,−k) = lims→−k
L(ψ,s)

s+k denotes the leading coefficient of the

Taylor series of L(ψ, s) at −k. Moreover, if H2
p is finite, rp is injective on

Rψ and

detOp

(
H1

p/rp(Rψ)
) ∼= detOp H2

p.

Remark: i) Part a) was proven by Deninger in [Den1]. This is the Beilin-
son conjecture for Hecke characters.

ii) For k = 0 and CM elliptic curves defined over Q with CM by OK
and p regular, part b) was proven in [Bl-Ka]. They used an ad hoc
computation of the p-adic realization of the K-theory elements, which
does not generalize.

iii) As P. Colmez pointed out to me, the theory developed by Perrin-Riou
in [P-R] leads to the fact that the Soulé elements in H1

p have the right
index for p split in K , if H2

p is finite. This is explained in [Co] Theorem
3.4.

iv) Let us explain part b) in more detail: The Soulé regulator

rp : Rψ → H1
p ⊗Qp

extends to a map to RΓ(OS, Tp E(k+1))[−1]⊗Qp because H0
p is zero

for weight reasons. The determinant of this complex has as Op-lattice
the determinant of RΓ(OS, Tp E(k + 1))[−1], which is detOp(RΓ(OS,

Tp E(k + 1)))−1. Part b) means that the determinant of the complex

Rψ

rp−→ RΓ(OS, Tp E(k + 1))[−1]
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is trivial. If H2
p is finite, and rp ⊗Qp an isomorphism, we get from this

detOp(H
1
p/rp(Rψ)) ∼= detOp H2

p.
v) The theorem is only formulated for the main order OK in K and the

existence of E/K with CM implies that K has class number one.
The result and the method of proof extends to elliptic curves defined
over certain abelian extensions F/K as in [Den1], whenever Rubin’s
“main conjecture” of Iwasawa theory is available (i.e. [F : K ] is not
divisible by p). We stick to the case F = K , because we don’t want to
overburden this already long paper with purely technical and notational
complications.

vi) Note that H2
p is finite for almost all k ≥ 0 or for p regular. See the next

section for remarks on the finiteness of H2
p.

vii) From this result for the set of primes S we get it for all other set of
primes which contain S. This follows from [Ka2] 4.11.

As a corollary we get a result about Zp determinants and the L-function
of E/K :

Corollary 1.1.6. Under the conditions of the theorem

a) detZ(rD(Rψ)) = L∗S(E/K,−k)detZ(Hh,Z)

and
b) detZp(rp(Rψ)) = detZp(RΓ(OS, Tp E(k + 1)))−1.

Here L∗(E/K,−k) = lims→−k
L(E/K,s)
(s+k)2

denotes the leading coefficient
of the Taylor series of L(E/K, s) at −k.

Proof. This follows from the theorem and the remark that if we multiply an
OK -module with an element L∗(ψ,−k) from OK ⊗R, then the determinant
is multiplied by the norm NOK⊗R/R(L∗(ψ,−k)). But NOK⊗R/R(L∗(ψ,−k))
= L∗(E/K,−k). Part b) is obvious. ��

Here is a short overview of the proof: We start by recalling the Beilinson-
Deninger definition of K-theory elements for CM elliptic curves and Denin-
ger’s main result about the relation of these to the L-value. Then we use an
idea of Soulé to construct a submodule of

H1(OS, Tp E(k + 1))

via elliptic units. Iwasawa theory allows us to compute the index of this
submodule. The proof concludes with the comparison of this submodule
and Rψ . This is the main step in the proof which needs the theory developed
in part 4 and in particular the explicit description of the elliptic polylogarithm
of Theorem 4.2.9. The injectivity of rp, in the case that H2

p is finite, will be
proved in Sect. 5.2.2.
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1.1.4 Some remarks concerning the finiteness of H2. Note that we do not
prove that H2

p is finite. Nevertheless, following an idea of Soulé [So2]
(corrected by Jannsen [Ja2] Lemma 8) we have finiteness of H2

p for almost
all twists:

Theorem 1.1.7. For fixed p the group

H2(OS, Tp E(k + 1))

is finite for almost all k.

Proof. By [Ru2] Theorem 4.4 and discussions and Theorem 1 in [Mc] the
conditions in [Ja2] Lemma 8 b) are satisfied. Hence the result follows from
the equivalent conditions given in that lemma. ��
For regular p, we have results of Soulé and Wingberg:

Theorem 1.1.8 ([So3] 3.3.2, [Win] Cor. 2). Let p be a regular prime for
E (see e.g.[So3] 3.3.1 for the definition of regular), then

H2
(
OS, E[p∞](k + 1)

) = 0.

It is easy to see that this vanishing implies the finiteness of H2
p (cf. [Ja2]

Lemma 1).

Remark: In [Ja2] it is conjectured that H2
p is always finite for k ≥ 0.

1.2 Review of the Beilinson–Deninger elements for CM elliptic curves
over an imaginary quadratic field

Here we describe briefly the construction by Beilinson and Deninger [Den1]
of the elements in K-theory, which interpret the L-value up to rational
numbers as predicted by Beilinson’s conjecture.

We are interested in the L-values L(ψ, k+2)with k ≥ 0. Thus according
to 1.1.1 we need an element in H2

M(E, k + 2).

1.2.1 The Beilinson–Deninger construction. We fix an algebraic differen-
tial ω ∈ H0(E,ΩE/K ) and let Γ be its period lattice. Then we have an
isomorphism

E(C)→ C/Γ

z �→
∫ z

0
ω

using the fixed embedding K ⊂ C. This isomorphism is equivariant for the
action of complex multiplication and because j(E) = j(OK ) the lattice is of
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the form Γ = ΩOK for some Ω ∈ C∗. Fix an OK generatorγ ∈ H1(E(C),Z),
then

Ω =
∫
γ

ω.

Recall that f is the conductor of ψ and the locus of bad reduction of E. Let
Z[E[f] � 0] be the group of divisors with support in the f-torsion points
without 0 of E, defined over K . Beilinson defines a map:

Theorem 1.2.1 ([Be2]). There is a non-zero map, a variant of the Eisenstein
symbol,

Z[E[f]� 0] E2k+1
M−−→ H2k+2

M (E2k+1, 2k + 2),

where En := E ×K . . .×K E.

Deninger constructs a projector

KM : H2k+2
M (E2k+1, 2k + 2)→ H2

M(E, k + 2)(1)

as follows: Let dK be the discriminant of K and
√

dK be a square root of dK .
Complex multiplication gives a map

δ = (id, ϑ(
√

dK )) : E → E ×K E

and taking this k-times gives δk × id : Ek ×K E → E2k ×K E. Then

KM = pr∗ ◦ (δ
k × id)∗

where pr is the projection Ek ×K E → E onto the last component. Hence
we get a map

KM◦E 2k+1
M : Z[E[f]� 0] → H2

M(E, k + 2).

1.2.2 The Beilinson conjecture for CM elliptic curves. Following Deninger
we define an element β in Z[E[f] � 0]. Let K(f) be the ray class field
associated to f and note that K(f) = K(E[f]).

Let f be a generator of f. Then

Ω f −1 ∈ f−1Γ(2)

defines an element in E[f](K(f)). This gives a divisor (Ω f −1) inZ[E[f]�0]
defined over K(f) on which the Galois group Gal(K(f)/K ) acts. We define:

β := NK(f)/K ((Ω f −1)).

This is a divisor defined over K . Recall that γ is an OK generator of
H1(E(C),Z). By Poincaré duality we have an isomorphism (conjugate
linear for the OK -action)

H1(E(C),Z(k + 1)) ∼= Hom(H1(E(C),Z),Z(k)) = H1(E(C),Z(k)).
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Denote by η the OK generator of H1(E(C),Z(k + 1)) corresponding to
(2πi)kγ under this isomorphism. We can now formulate the main result
of [Den1] in our case:

Theorem 1.2.2 ([Den1] Thm. 11.3.2). Let β and η be as above and define

ξ := (−1)k−1 (2k + 1)!
2k−1

L p(ψ,−k)−1

ψ( f )NK/Q f
k
KM◦E 2k+1

M (β) ∈ H2
M(E, k + 2),

where L p(ψ,−k) is the Euler factor of ψ at p, evaluated at −k. Then

rD(ξ) = L∗S(ψ,−k)η ∈ H1(E ×K C, (2πi)k+1R
)
,

where L∗S(ψ,−k) = lims→−k
L S(ψ,s)

s+k .

Note that Lp(ψ,−k) = 1, if p|f. We can now define the space Rψ of the
Main theorem 1.1.5

Definition 1.2.3. We define

Rψ := ξOK ⊂ H2
M(E, k + 2)

to be the OK -submodule of H2
M(E, k + 2) generated by ξ .

Note that by the above theorem, Rψ is an OK -module of rank 1.

Corollary 1.2.4. With the above notation

rD(detZ(Rψ)) = L∗S(E/K,−k)detZ(H
1(E(C),Z(k + 1))).

where S is the set of primes in K dividing pf.

Proof. This follows from the theorem and the remark that if we multiply an
OK -module with an element L∗S(ψ,−k) from OK ⊗R, then the determinant
is multiplied by the norm NOK⊗R/R(L∗S(ψ,−k)). But NOK⊗R/R(L∗S(ψ,−k))
= L∗S(E/K,−k). ��
1.2.3 The space rp(Rψ) in terms of the specialization of the elliptic
polylog. Recall from Definition 1.2.3 that the space Rψ is generated as
an OK -module by the element ξ from Theorem 1.2.2. The element ξ is up
to some factors of the form KM◦E2k+1

M (β). Let us define

t := Ω f −1

with the notation from (2). This is an NK/Q f-division point. Then we have
β = NK(f)/K((t)). Now let

(β∗ PolQ p)
2k+1 ∈ H1

(
OS,Sym2k+1 Tp E ⊗Qp(1)

)
be the specialization of the polylogarithm as defined in 3.5.9. Note that
HQ p = Tp E ⊗ Qp in the notation in loc. cit. We have the following com-
parison theorem:
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Theorem 1.2.5. There is an equality

rp
(
E 2k+1

M (β)
) = −N f4k+2(β∗ PolQ p)

2k+1

in H1(OS,Sym2k+1 Tp E ⊗Q p(1)).

Proof. The formula is the combination of two results: Theorem 2.2.4
in [Hu-Ki2], which states that

rp(Eis2k+1
M (�β)) = −N f2k(β∗ PolQ p)

2k+1

where E is2k+1
M is Beilinson’s Eisenstein symbol and� the horospherical map.

Note that what is here called (β∗ PolQ p)
2k+1 is in loc. cit. (β∗ PolQ p)

2k+2.
Furthermore, according to [Den2] Formula 3.35.,

E2k+1
M (β) = N f2k+2E is2k+1

M (�β).

Note that the Formula 3.35. in [Den2] uses an other normalization of the
horospherical map and that there is a factor N fmissing because of a wrong
normalization of the residue map (the residue of dq

q in formula (3.7) in loc.
cit. is not 1 but N). ��
Remark: In fact it is not necessary to use this comparison theorem. The
better approach would be to use the K-theoretic polylogarithm classes to
show Deninger’s result. Of course nothing new happens in this approach
and we use this comparison result to avoid the lengthy computations.

We have now two tasks: To compute the specialization of the elliptic
polylog and to identify the étale cohomology groups to compute the “index”
of rp(Rψ) in H1(OS, Tp E(k + 1)). The answer to these problems involves
elliptic units and we will start to use Iwasawa theory and Rubin’s proof of the
main conjecture to identify the étale cohomology group H1(OS, Tp E(k+1))
or rather the complex RΓ(OS, Tp E(k + 1)).

2 Iwasawa theory

This section treats the relation between certain Iwasawa modules and étale
cohomology. Rubin’s “main conjecture” is used in an essential way. We
first review the results of Rubin and then use an idea of Soulé to produce
elements in étale cohomology using elliptic units. An idea of Kato, which
partly goes back to Soulé as well, allows to compare the elliptic units and
étale cohomology. The main result of this part is Theorem 2.2.12.

2.1 Review of the “main conjecture” of Iwasawa theory for CM elliptic
curves

In this section we review the “main conjecture” of Iwasawa theory for CM
elliptic curves proved by Rubin [Ru3]. This will be used in Sect. 2.2 to
reduce the Tamagawa number conjecture to an “index computation”.
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2.1.1 Definition of the Iwasawa modules. We follow Rubin [Ru3]: Let
E/K be as before an elliptic curve with CM by OK , K an imaginary quadratic
field. We fix an embedding of K into C and view K as a subfield of C. Fix
a prime p � #O∗K and a prime p of OK lying over p and denote by E[pn] the
pn-torsion points of E. Let Kn := K(E[pn+1]) be the extension field defined
by these torsion points and K∞ := lim−→ n Kn . Denote the ring of integers in
these fields by On (resp. O∞). Then ∆ := Gal(K0/K ) has order prime to
p and Γ := Gal(K∞/K0) is isomorphic to Z2

p. Let G := Gal(K∞/K ) be
the Galois group of the extension K∞/K . Then G ∼= ∆× Γ. Define An to
be the p-part of the ideal class group of Kn , En to be the group of global
units O∗n of Kn and Up

n the local units of Kn ⊗K Kp which are congruent to
1 modulo the primes above p. For every prime v of Kn above p there is an
exact sequence

1 → Un,v → K∗
n,v → Z× κ∗n → 1(3)

and Up
n =

⊕
v|p Un,v. Here Un,v are the local units congruent to 1 modulo

v and κn is the residue class field of Kn,v. Let Cn be the elliptic units in Kn
as defined in [Ru3] paragraph 1. We recall their definition. For every ideal
a ∈ OK prime to 6 consider the function θa(z) that will be defined in 4.2.2.
The function θa(z) is a 12-th root of the function in [deSh] II.2.4.

Let t := Ω f −1 and a be an ideal prime to 6f.

Definition 2.1.1. (cf. [Ru4] 11.2) Let Cn be the subgroup of units generated
over Z[Gal(Kn/K )] by ∏

σ∈Gal(K(f)/K )

θa(t
σ + hn),

where a runs through all ideals prime to 6pf, K(f) is the ray class field
defined by f and hn is a primitive pn-torsion point. Define

Cn := µ(Kn)Cn,

the group of elliptic units of Kn. Here µ(Kn) are the roots of unity in Kn.

Denote by En and Cn the closures of En ∩Up
n resp. Cn ∩Up

n in Up
n . Finally

define

A∞ := lim←− nAn, E∞ := lim←− nE n, C∞ := lim←− nCn, Up
∞ := lim←− nU

p
n

where the limits are taken with respect to the norm maps. Denote by Mp∞
the maximal abelian p-extension of K∞ which is unramified outside of the
primes above p, and write Xp

∞ := Gal(Mp
∞/K∞). Global class field theory

gives an exact sequence

0 → E∞/C∞ → Up
∞/C∞ → Xp

∞ → A∞ → 0.(4)
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Define the Iwasawa algebra

Zp[[G]] := lim←− nZp[[Gal(Kn/K )]]
this has an action of Zp[∆]. For any irreducible Zp-representation χ of ∆,
let

eχ := 1

#∆

∑
τ∈∆

Tr(χ(τ))τ−1 ∈ Zp[∆]

and for every Zp[∆]-module Y let Yχ := eχY be the χ-isotypical compon-
ent. In particular we define

Λχ := Zp[[G]]χ = Rχ[[Γ]]
where Rχ is the ring of integers in the unramified extension of Zp of degree
dim(χ). As we will work with Zp[[Γ]] ⊗Op-modules, we let

Λ := Op[[Γ]].
Then E

χ

∞, C
χ

∞, Up
∞
χ , Aχ

∞ and Xχ
∞ are finitely generated Λχ-modules

(see [Ru3] paragraph 5). The modules Aχ
∞ and E

χ

∞/C
χ

∞ are even torsion
Λχ-modules.

2.1.2 Rubin’s “main conjecture” for imaginary quadratic fields. We have
the following observation due to Kato:

Lemma 2.1.2 (see [Ka2] Proposition 6.1.). Let Y be a finitely generated
torsion Λχ-module. Then

detΛχ (Y ) = char(Y )−1,

where char(Y ) is the usual characteristic ideal in Iwasawa theory (see
e.g. [Ru3] paragraph 4) and the determinant is taken in the sense of [Kn-Mu].

With this lemma we can formulate the main result of [Ru3] as follows:

Theorem 2.1.3 ([Ru3] theorem 4.1.). Let p � #O∗K .

i) Suppose that p splits in K, then

detΛχ

(
Aχ
∞
) = detΛχ

(
E
χ

∞/C
χ

∞
)
.

ii) Suppose that p remains prime or ramifies in K and that χ is nontrivial
on the decomposition group of p in ∆, then

detΛχ

(
Aχ
∞
) = detΛχ

(
E
χ

∞/C
χ

∞
)
.

Using the theory of the determinant and the exact sequence (4) we get:
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Corollary 2.1.4. In the situation of the Theorem 2.1.3,

detΛχ

(
Xp
∞
χ) = detΛχ

(
Up
∞
χ
/C

χ

∞
)
.

We need a variant of this. Let X∞ be the Galois group of the maximal
abelian p-extension M p

∞ of K∞ which is unramified outside of the primes
above p. In the case where p is inert or ramified this is the same as Xp

∞.
Define also

U∞ := Up
∞ ×Up∗

∞
if p = pp∗ is split, and

U∞ := Up
∞

if p is inert or ramified. Let similarly Yn be the p-adic completion of
(Kn ⊗ Q p)

∗ and Y∞ := lim←− nYn. We have an inclusion U∞ ⊂ Y∞. Class
field theory gives

0 → E∞/C∞ → U∞/C∞ → X∞ → A∞ → 0.(5)

where C∞ is diagonally embedded into Up
∞ × Up∗

∞ if p is split. On this
sequence acts G and we get:

Corollary 2.1.5. In the situation of the Theorem 2.1.3,

detΛχ

(
X∞χ

) = detΛχ

(
U∞χ/C

χ

∞
)
.

Lemma 2.1.6. Let p � N f be a prime. If p splits in K, the inclusion U∞ →
Y∞ is an isomorphism and if p is inert or ramified in K, there is an exact
sequence

0 → U∞ → Y∞ → Zp[∆/∆p] → 0,

where ∆p is the decomposition group of p in ∆ = Gal(K0/K ).

Proof. We have exact sequences

1 → Un,v → K∗
n.v → Z× κ∗n → 1

where κn is the residue class field of Kn.v. By definition Un =⊕v|p Un,v.
As the order of the residue class field κ∗n is prime to p, we have an exact

sequence

0 → lim←− nUn,v/pn → lim←− n K∗
n,v/pn → Zp → 0.

As E has good reduction at p, we now how p decomposes in Kn (see [Ru1]
Prop. 3.6). If p is split, the ramification degree of v in Kn+1 is p and the
degree of Kn+1 over Kn is p2. Hence the norm map induces multiplication
by p on Zp and the inverse limit over these maps is zero. This gives the first
claim. In the case where p is inert of ramified, v is totally ramified in Kn+1
and the norm map from K∗

n′,v → K∗
n,v induces the identity on Zp. Putting

these sequences together for all v|p and using
⊕

v|p Zp = Zp[∆/∆p] gives
the result. ��
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2.2 Reductions via Iwasawa theory

In this section we use Rubin’s “main conjecture” of Iwasawa theory to
reduce the Bloch-Kato conjecture to a comparison between the space Rψ

of 1.2.3 and the elliptic units C∞.
We have a subspace

rp(Rψ) ⊂ H1(OS, Vp)

where OS = OK [ 1
S ] and Vp = Tp E(k + 1) ⊗ Q p. Recall that S is the

set of primes of K dividing pf. We want to compute the relation of the
submodule rp(Rψ) to H1(OS, Tp E(k + 1)). Our method, which is inspired
by Kato’s paper [Ka2], relates H1(OS, Tp E(k + 1)) to a certain submodule
defined by the elliptic units C∞. This submodule in turn is defined using
an idea of Soulé. Our aim is to relate the determinant of C∞ ⊗ Tp E(k) to
the determinant of RΓ(OS, Tp E(k + 1)) (see Theorem 2.2.12 for the exact
formulation).

In this section p is always a prime which does not divide #O∗K and where
E has good reduction over the primes above p, i.e. p � N f.

Denote by abuse of notation by Sp the set of primes over p in the ring On
for every n and by On,Sp the ring of integers in Kn where the primes above
p are inverted. We define O∞,Sp := lim−→ nOn,Sp . Similarly we define On,S and
O∞,S.

2.2.1 Review of the Soulé elements. We keep the notations from the
Sect. 2.1.

Recall that Tp E = lim←− n E[pn] the Tate module of E and let Tp E(k) :=
Tp E ⊗ Zp(k) its Tate twist. This is a Op[[G]]-module. We start by defining
a map in the spirit of Soulé

C∞ ⊗Zp Tp E(k)→ H1(OS, Tp E(k + 1)).

Here Tp E(k + 1) is a sheaf on OS because it is unramified outside of S.
Write

H1(OS, Tp E(k + 1)) = lim←− r H1
(
OS, E[pr+1](k + 1)

)
and let for a norm compatible system of elliptic units (θr)r and an element
(tr)r ∈ Tp E(k)

ep((θr ⊗ tr+1)r) := (NKr/K(θr ⊗ tr+1))r

where θr ⊗ tr+1 is an element in

O∗
r,S/(O

∗
r,S)

pr+1 ⊗ E[pr+1](k) ⊂ H1(Or,S, E[pr+1](k + 1))

(the inclusion comes from Kummer theory) and NKr/K is the norm map
on the cohomology. According to Soulé ([So3] Lemma 1.4) this gives an
element in H1(OS, Tp E(k+1)). The map ep factors through the coinvariants
under G, so that we can make the following definition:
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Definition 2.2.1. The Soulé elliptic elements are defined by the map

ep : (C∞ ⊗ Tp E(k))G → H1(OS, Tp E(k + 1)).

We want to investigate to what extend this map gives generators for
H1(OS, Tp E(k + 1)), i.e. what is the kernel and cokernel of the map ep.

2.2.2 The Poitou-Tate localization sequence. Our main tool in describing
H1(OS, Tp E(k + 1)) in terms of elliptic units will be the Poitou-Tate local-
ization sequence. It is convenient for us to write down a derived category
version of it.

For technical reasons we have to work first over K0. The reason for this
is that over K0 the module Tp E(k + 1) is unramified outside of the primes
above p:

Lemma 2.2.2. ([Ru1]1.3) If p � #O∗K , then over K0 the elliptic curve E
has good reduction at all places not dividing p. In particular there exists
a model of E over O0,Sp and Tp E(k + 1) is unramified.

The localization sequence now reads as follows (see [Ka2] (6.3)). Here ∗ is
the Pontryagin dual HomOp(_,Q p/Zp ⊗Zp Op).

RΓ(O0,Sp, Tp E(k + 1))→RΓ(K0 ⊗Q p, E[p∞](−k))∗[−2]
→ RΓ(O0,Sp, E[p∞](−k))∗[−2] →,

where we have used the identification

E[p∞](−k) = HomOp(Tp E(k + 1),Q p/Zp(1)⊗Op).

Our next task is to rewrite this Poitou-Tate sequence in terms of Iwasawa
theory.

2.2.3 Identification of some Galois cohomology groups with Iwasawa mod-
ules. Let us define

H1
(
K∞ ⊗Q p, E[p∞](−k)

) : = lim−→ n H1
(
Kn ⊗Q p, E[p∞](−k)

)
= lim−→ n

⊕
v|p

H1
(
Kn,v, E[p∞](−k)

)
.

Note that there are only finitely many primes above p in K∞.

Proposition 2.2.3. There are isomorphisms of Op[[G]]-modules

X∞ ⊗Zp Tp E(k) ∼= H1(O∞,Sp, E[p∞](−k)
)∗

Y∞ ⊗Zp Tp E(k) ∼= H1
(
K∞ ⊗Q p, E[p∞](−k)

)∗
,

where ∗ is the Pontryagin dual HomOp(_,Qp/Zp ⊗Zp Op).
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Proof. We have

H1
(
O∞,Sp, E[p∞](−k)

)∗ = Hom(Gal(K/K∞), E[p∞](−k))∗

= Hom
(

Gal
(
M p
∞/K∞

)
, E[p∞](−k)

)∗
= X∞ ⊗ Tp E(k).

In the local case, we have an isomorphism

H1
(
Kn ⊗Qp, E[pn ](−k)

) =⊕
v|p

H1
(
Kn,v, E[pn](−k)

)
=
⊕
v|p

Hom
(

Gal(Kn,v/K )ab, E[pn](−k)
)

By class field theory

Hom
(

Gal(Kn,v/K )ab, E[pn](−k)
)∗ ∼= K∗

n,v/pn ⊗ E[pn](k)
so that

H1
(
K∞ ⊗Qp, E[p∞](−k)

)∗ =⊕
v|p

Y∞ ⊗ Tp E(k).

��

2.2.4 Rewriting the Poitou-Tate localization sequence in terms of Iwasawa
theory. To proceed further, we need the following vanishing result.

Proposition 2.2.4. The groups

H2(K∞ ⊗Qp, E[p∞](−k)
)

and H2(O∞,Sp, E[p∞](−k)
)

are zero.

Proof. By local duality we have

H2
(
Kn ⊗Qp, E[p∞](−k)

)∗ ∼= H0
(
Kn ⊗Qp, Tp E(k + 1)

) = 0.

On the other hand it is a result of Soulé [So1] that the cohomology groups
H2(On,Sp,Qp/Zp(m)) are zero for m > 1. Hence H2(O∞,Sp,Qp/Zp(m))
= 0 and because over K∞ the module Qp/Zp(m) is trivial,

H2(O∞,Sp,Qp/Zp(−k)) = 0.

Now we can write

H2
(
O∞,Sp, E[p∞](−k)

) = H2
(
O∞,Sp,Qp/Zp(−k)

)⊗Zp Tp E

which proves our claim. ��
This vanishing result implies that we get actually a map from the Iwasawa
modules to complexes computing the Galois cohomology.
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Corollary 2.2.5. There are exact triangles

Y∞ ⊗ Tp E(k)[1] → RΓ
(
K∞ ⊗Qp, E[p∞](−k)

)∗
→ H0

(
K∞ ⊗Qp, E[p∞](−k)

)∗
X∞ ⊗ Tp E(k)[1] → RΓ

(
O∞,Sp, E[p∞](−k)

)∗
→ H0

(
O∞,Sp, E[p∞](−k)

)∗
Proof. The Propositions 2.2.3 and 2.2.4 show that we have a canonical
map from Y∞ ⊗ Tp E(k)[1] to RΓ(K∞ ⊗ Qp, E[p∞](−k))∗ because the
second cohomology vanishes. The same argument gives the result for X∞⊗
Tp E(k)[1]. ��

To relate these groups to the cohomology groups of OSp we want to take
the coinvariants under Γ = Gal(K∞/K0).

Lemma 2.2.6. Let M be an perfect complex of Λ = Op[[Γ]]-modules. Then
there are canonical isomorphisms

M∗ ⊗LΛ Op
∼= RΓ(Γ,M)∗

where the right hand side is the (continuous) group cohomology of Γ and
M∗ = Hom(M,Qp/Zp ⊗Op).

Proof. We have

R HomΛ(Op,M∗) = R HomΛ(Op,Hom(M,Qp/Zp ⊗Op))

= R HomΛ(M ⊗LΛ Op,Qp/Zp ⊗Op))

which by biduality M∗∗ = M proves our claim. ��
Corollary 2.2.7. There are exact triangles

(Y∞ ⊗ Tp E(k))⊗LΛ Op → RΓ
(
K0 ⊗Qp, E[p∞](−k)

)∗[−1]
→ RΓ

(
Γ, H0(K∞ ⊗Qp, E[p∞](−k)

))∗[−1]
and

(X∞ ⊗ Tp E(k))⊗LΛ Op → RΓ
(
O0,Sp, E[p∞](−k)

)∗[−1]
→ RΓ

(
Γ, H0(O∞,Sp, [p∞](−k)

))∗[−1]
Proof. Apply Lemma 2.2.6 to the exact triangles in Corollary 2.2.5. ��

Now we come back to the Poitou-Tate localization sequences over O0,Sp

RΓ(O0,Sp, Tp E(k + 1))→ RΓ
(
K0 ⊗Qp, E[p∞](−k)

)∗[−2]
→ RΓ

(
O0,Sp, E[p∞](−k)

)∗[−2] →
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and the map ep. Recall that

ep : C∞ ⊗ Tp E(k)→ H1(OSp, Tp E(k + 1))

(see Definition 2.2.1) and taking in the definition of ep only the norm maps
to K0 we get a map:

ep : C∞ ⊗ Tp E(k)→ H1(O0,Sp, Tp E(k + 1))

As H0(O0,Sp, Tp E(k + 1)) = 0 for weight reasons, we get a map of com-
plexes

ep : (C∞ ⊗ Tp E(k))⊗LΛ Op → RΓ(O0,Sp, Tp E(k + 1))[1].

This is compatible with the maps defined before:

Lemma 2.2.8. The following diagram is commutative

(C∞ ⊗ Tp E(k))⊗LΛ Op
ep−−−→ RΓ(O0,Sp, Tp E(k + 1))[1]� �

(Y∞ ⊗ Tp E(k))⊗LΛ Op −−−→ RΓ
(
K0 ⊗Qp, E[p∞](−k)

)∗[−1]�α �
(X∞ ⊗ Tp E(k))⊗LΛ Op −−−→ RΓ

(
O0,Sp, E[p∞](−k)

)∗[−1]

Here α is induced by the map Y∞/C∞ → X∞.

Proof. The commutativity of the lower square is clear. Let us treat the upper
square. The map

(Y∞ ⊗ Tp E(k))Γ → H1(K0 ⊗Qp, E[p∞](−k)
)∗

is the dual of the corestriction

H1
(
K0 ⊗Qp, E[p∞](−k)

)→ H1
(
K∞ ⊗Qp, E[p∞](−k)

)Γ
.

By the local duality theorem the corestriction map is dual to the norm map

H1(K∞ ⊗Qp, Tp E(k + 1))Γ → H1(K0 ⊗Qp, Tp E(k + 1)).

This together with the definition of ep proves our claim. ��
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2.2.5 The comparison theorem between elliptic units and Galois cohomo-
logy. The next step is to relate the determinants of (C∞ ⊗ Tp E(k))⊗LΛ Op
and RΓ(O0,Sp, Tp E(k + 1)) as Op[∆]-modules. For this we need Rubin’s
“main conjecture”. As the “main conjecture” is not proven for characters
of ∆, which are trivial on the decomposition group ∆p of p, we need the
following lemma:

Lemma 2.2.9. Let p be inert or ramified, where p is a prime over which E
has good reduction. Then ∆p = ∆.

Proof. As E has good reduction, the prime above p is totally ramified in
K0 ([Ru1] 3.6.) and ∆ ∼= (O/p)∗. Thus ∆p = ∆ as claimed. ��
Lemma 2.2.10. Let p be inert or ramified, where p is a prime over which E
has good reduction. Let χ be the ∆ representation on HomOp(Tp E(k),Op).
Then χ is non trivial on ∆p.

Proof. Let p be an inert or ramified prime and χ ′ be the ∆ representation
on Tp E. Then χ ′ is irreducible ([Ru3] 11.5.) and because ∆p = ∆ it is non
trivial on δp. Now χ ′ is two dimensional and χ is simply a twist of χ ′ by
a power of det χ ′. Thus χ acts non trivially on HomOp(Tp E(k),Op). ��
Corollary 2.2.11. Let χ be the ∆ representation on HomOp(Tp E(k),Op)

and p � 6 N f be a prime. Then

Uχ
∞ ∼= Yχ

∞.

Proof. If p is split this follows immediately from Lemma 2.1.6 and if p
is inert or prime in K this follows from the same lemma and the above
Lemma 2.2.10 because the χ-eigenspace of Op[∆/∆p] is zero. ��
We can now formulate the main theorem of this section.

Theorem 2.2.12. Let χ be the ∆-representation on HomOp(Tp E(k),Op)

and assume that p � 6 N f. Then the map ep induces an isomorphism of
Op-modules

detOp

((
C
χ

∞ ⊗Op Tp E(k)
)⊗LΛ Op

) ∼= detOp

(
RΓ(OS, Tp E(k + 1))

)−1
.

The rest of this section is concerned with the proof of this theorem. Let us
first show:

Proposition 2.2.13. Let χ and p be as in Theorem 2.2.12, then

detOp

(
RΓ
(
G, H0

(
K∞ ⊗Qp, E[p∞](−k)

))) ∼= Op

detOp

(
RΓ
(
G, H0

(
O∞,Sp, E[p∞](−k)

))) ∼= Op
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Proof. The action of G on Tp(k) ∼= Op is via a character G → O∗
p . This gives

a surjection Op[[Γ]] → Tp E(k). As Γ ∼= Z2
p the kernel of this surjection is

an ideal with height 2 and hence

detOp[[G]](Tp E(k)) ∼= Op[[G]].

This implies detOp(Tp E(k)⊗LOp[[G]]Op) ∼= Op. Lemma 2.2.6 then implies the
claim. ��
Recall that by Corollary 2.2.11 we have an isomorphism

Uχ
∞ ∼= Yχ

∞.

Corollary 2.2.14. The triangles in Corollary 2.2.7 give rise to isomor-
phisms

detOp

((
Uχ
∞ ⊗Op Tp E(k)

)⊗LΛ Op
)

∼= detOp

(
H0
(
∆, RΓ

(
K0 ⊗Qp, E[p∞](−k)

)∗[−1]))
detOp

((
Xχ
∞ ⊗Op Tp E(k)

)⊗LΛ Op

)
∼= detOp

(
H0
(
∆, RΓ

(
O0,Sp, E[p∞](−k)

)∗[−1]))
Proof. The complexes in the triangle in 2.2.7 are Op[∆]-modules and we
apply RΓ(∆, _). Then

RΓ(∆,Y∞ ⊗Op Tp E(k)) ∼= Yχ
∞ ⊗Op Tp E(k)

by definition of χ. The same holds for X∞ ⊗Op Tp E(k). The result follows
with Proposition 2.2.13. ��
Corollary 2.2.15. There is an isomorphism of determinants

detOp

(
H0(∆, RΓ(O0,Sp, Tp E(k + 1)))

)−1

∼= detOp

((
Uχ
∞ ⊗Op Tp E(k)

)⊗LΛ Op
)

detOp

(
Xχ
∞ ⊗Op Tp E(k)⊗LΛ Op

)−1

Proof. Apply RΓ(∆, _) to the triangle

RΓ(O0,Sp, Tp E(k + 1))→ RΓ
(
K0 ⊗Qp, E[p∞](−k)

)∗[−2]
→ RΓ

(
O0,Sp, E[p∞](−k)

)∗[−2]
and use the above corollary. ��

Finally, we need to investigate the relation of the cohomology of O0,Sp

and O0,S, which is the integral closure of OS in K0.



The Tamagawa number conjecture for CM elliptic curves 593

Lemma 2.2.16. Let p and χ be as in the Theorem 2.2.12. The restriction
map of cohomology of O0,Sp to O0,S induces an equality of determinants

detOp

(
H0(∆,RΓ(O0,Sp, Tp E(k + 1)))

)
∼= detOp

(
H0(∆, RΓ(O0,S, Tp E(k + 1)))

)
∼= detOp

(
RΓ(OS, Tp E(k + 1)))

)
.

Proof. There is an exact triangle

RΓ(O0,Sp, Tp E(k + 1))→ RΓ(O0,S, Tp E(k + 1))

→
⊕

v0∈SrSp

RΓκ(v0)(Ov0, Tp E(k + 1))[1]

where Ov0 is the local ring at v0. As Tp E(k + 1) is unramified at the places
v0 in K0, which are in S� Sp we have by purity

RΓκ(v0)(Ov0, Tp E(k + 1)) ∼= RΓ(κ(v0), Tp E(k)).

Let us prove that

H0(∆,
⊕

v0∈SrSp

RΓ(κ(v0), Tp E(k))) = 0.

For this note that H1(κ(v0), Tp E(k)) ∼= Tp E(k)Gal(κ(v0)/κ(v0))
are the coin-

variants and that H0 = 0. Fix a prime v ∈ S � Sp of K dividing f, then
the primes v0|v of K0 are permuted by ∆. Fix v0 dividing v and let ∆v0

be the stabilizer of v0. It suffices to prove that ∆v0 acts non trivially on
Tp E(k)Gal(κ(v0)/κ(v0))

. Let Iv0 ⊂ ∆v0 be the inertia group of v0. This group is
non trivial because K0/K is ramified above v by Lemma 2.2.2 and it acts
non trivially on Tp E(k) because v0|f and by the Neron-Ogg-Shavarevich
criterion. This proves our claim. ��

Now we can prove the theorem.

Proof of Theorem 2.2.12. Let χ and p be as in the theorem. By Rubin’s
“main conjecture” 2.1.5 we have

detOp

((
Uχ
∞/C

χ

∞
)⊗ Tp E(k)⊗LΛ Op

)
∼= detΛ

((
Uχ
∞/C

χ

∞
)⊗ Tp E(k)

)⊗Λ Op

∼= detΛ
(
Xχ
∞ ⊗ Tp E(k)

)⊗Λ Op

∼= detOp

(
Xχ
∞ ⊗ Tp E(k)⊗LΛ Op

)
.

On the other hand,

detΛχ

(
Uχ
∞/C

χ

∞
) ∼= detΛχ

(
Uχ
∞
)⊗ detΛχ

(
C
χ

∞
)−1
.

This together with the above corollaries gives the result. ��
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We have now achieved a description of detOp RΓ(OS, Tp E(k + 1)) in terms
of the elliptic Soulé elements. The next step is to investigate the relation of
rp(Rψ) with these elements. According to Theorem 1.2.5, this means that
we have to compute the specialization of the p-adic polylog. This is the
goal of the next two sections.

3 The elliptic polylogarithm sheaf

We start afresh with the aim of computing the specialization of the elliptic
polylog. For this we have to recall the definition of the polylogarithm sheaf
and give a geometric interpretation of it. Sections 3 and 4 are independent
of the rest of the paper and should be of interest to anybody who wants to
study the l-adic properties of the elliptic polylog.

We review here mostly Beilinson and Levin [Be-Le]. Everything that
follows will be in the general setting of an elliptic curve over any base S.
Because of this we start with fixing the notations. Then we review the
unipotent elliptic polylog of Beilinson and Levin. For our geometrical con-
struction we need a different description of this polylogarithm sheaf in terms
of the fundamental group of the elliptic curve. This description is given in
Sect. 3.3. The comparison of these two approaches will be carried out in
Sect. 3.4. Finally we consider the specialization of the polylogarithm sheaf
at torsion points. This gives the l-adic Eisenstein classes.

3.1 Notations and conventions

Let S be a scheme, and l be a prime number invertible on S. We fix a base
ring Λ := Z/lrZ,Zl or Ql. In this section we introduce some notations for
elliptic curves over S and for pro-Λ-sheaves. Note that in our applications
we let l = p. The notation l for the l-adic theory is for historical reasons.

3.1.1 Elliptic curves and coverings

Definition 3.1.1. An elliptic curve is a smooth proper morphismπ : E → S
together with a section e : S → E, such that the geometric fibers Es of π
are connected curves of genus 1.

We introduce the following notation: On E we have the multiplication by
N map, which we denote by [N]. We let Hn := ker[ln] and we denote by En
the curve E over S considered as a Hn-torsor over E. The ln-multiplication
map will then be denoted by pn : En → E. Let Un := En � Hn and
U := E � e(S), so that we have a Cartesian diagram

Hn
hn−−−→ En

jn←−−− Un�pHn

�pn

�
S

e−−−→ E
j←−−− U.
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The unit section of En will be en , if confusion is likely. The map Em → En
for m ≥ n, which is the multiplication by lm−n , is denoted by pm,n or even p.
Let πn : En → S and πn : Un → S be the structure maps.

3.1.2 Pro-sheaves. The polylogarithm is an extension of pro-sheaves and
we will work in the category of pro-sheaves. For convenience of the reader
we recall the definition and the main properties of pro-objects in the case
we need.

Let A be an abelian category.

Definition 3.1.2. The category pro−A of pro-objects is the category whose
objects are projective systems

A : I op → A

denoted by (Ai)i∈I , where I is some small filtered index category. The
morphisms are

Hompro−A((Ai), (B j)) := lim←− j lim−→ i HomA(Ai , B j).

The category pro−A is again abelian (see [Ar-Ma] A 4.5). We call an
object (Ai)I ∈ pro−A Mittag-Leffler zero if for every i ∈ I there is
an i → j such that A j → Ai is the zero map. An element is zero in
pro−A if and only if it is Mittag-Leffler zero (see [Ar-Ma] A 3.5). A func-
tor F : A → B is extended to the pro-categories in the obvious way
F((Fi)i) := (F(Fi))i .

Let us specialize to the category Sh(X) of étale sheaves on a scheme X.
We denote by pro−Sh(X) the associated category of pro-sheaves as defined
above. Pro-sheaves will usually be written as (Fi)i the transition maps
understood. For two pro-sheaves (Fi)i and (Gi)i on a scheme X define
Ext j

X((Fi)i, (Gi)i) to be the group of j-th Yoneda extensions of (Fi)i by
(Gi)i in pro−Sh(X).

3.2 Review of the elliptic polylogarithm

We first recall the definition of the elliptic logarithm sheaf from [Be-Le].
Then we define the elliptic polylogarithmic sheaf.

3.2.1 The unipotent logarithm sheaf. Recall that Λ is either Z/lrZ, Zl
or Ql.

Definition 3.2.1. A lisse Λ-sheaf F on E is unipotent of length n, if it admits
a filtration F = F 0 ⊃ F 1 ⊃ . . . ⊃ F n ⊃ 0 such that Gri F = π∗Gi for
some lisse Λ-sheaf Gi on S.
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Let HΛ := HomS(R
1π∗Λ,Λ), then the boundary map for Rπ∗ applied to

the exact sequence 0 → Gri+1 F → F i/F i+2 → Gri F → 0 induces by
duality a map

HΛ ⊗ Gri F → Gri+1 F .

This gives an action of the ring S≤n :=⊕n
k=0 Symk HΛ on Gr• F . Beilinson

and Levin prove:

Theorem 3.2.2 ([Be-Le] 1.2.6.). There is a k-unipotent sheaf Log(k) to-
gether with a section 1(k) : Λ → e∗ Log(k) of the fibre at the unit section e
of E, such that for every k-unipotent sheaf F the map

π∗HomE(Log(k),F )→ e∗F
f �→ f ◦1(k)

is an isomorphism. The pair (Log(k), 1(k)) is unique up to unique isomorph-
ism.

Recall also from [Be-Le] that this is equivalent to the fact that the map
ν : S≤k → π∗ Gr• Log(k) that sends 1 to 1(k) is an isomorphism.

Definition 3.2.3. The canonical maps Log(k+1) → Log(k) that map 1(k+1)

to 1(k) make

Log := (Log(k))k

a pro-sheaf, which is called the logarithm sheaf. If it is necessary to indicate
Λ we write Log(k)Λ and LogΛ.

Denote by R(k) := e∗ Log(k) the fibre of Log(k). This is a ring with
identity given by 1(k). Moreover R := e∗ Log has a Hopf algebra structure.
The ring π∗R(k) acts on Log(k) and for every section t : S → E the
sheaf t∗ Log(k) is a free module of rank 1 over R(k). The action of π∗R(k)

on Log(k) induces via the isomorphism π∗HomE(Log(k),F )
∼−→ e∗F an

action of R(k) on e∗F . In fact we have:

Proposition 3.2.4 ([Be-Le]1.2.10 v)). The map F �→ e∗F is an equiva-
lence of the category of k-unipotent sheaves on E with the category of lisse
R(k)-modules on S.

We remark that the inverse functor is M �→ π∗M ⊗π∗R(k) Log(k).

3.2.2 Higher direct images of the logarithm sheaf. Denote by � (k) the
augmentation ideal of the ring R(k). The pro-sheaves (R(k))k and (� (k))k are
denoted by R and � respectively. The most important step in the definition
of the polylogarithm is the computation of the higher direct images of
Log(k).
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Proposition 3.2.5 ([Be-Le] 1.2.7). The higher direct images of Log(k)Λ are

Riπ∗ Log(k)Λ =
Symk HΛ if i = 0

Symk+1 HΛ(−1) if i = 1
Λ(−1) if i = 2 .

The transition maps Riπ∗ Log(k+1) → Riπ∗ Log(k) are zero for i = 0, 1
and the identity for i = 2. In particular Riπ∗ Log = 0 for i = 0, 1 and
R2π∗ Log = Λ(−1).

For all the properties of the logarithm sheaf we refer to Sect. 1.2. in [Be-Le].

Remark: Note that in the case of Λ = Ql we have an isomorphism
Log(k) ∼= Symk Log(1) which sends 1(k) to 1(1)k/k!. This approach to the
logarithm sheaf is used in [Hu-Ki2].

Recall that U := E � e is the complement of the unit section and
π : U → S its structure map.

Proposition 3.2.6. The pro-sheaves (Riπ∗Log(k))k are Mittag-Leffler zero
for i �= 1 and the canonical map

R1π∗Log(k) → e∗ Log(k)(−1) = R(k)(−1)

induces an isomorphism of pro-sheaves (R1π∗ Log(k)(1))k ∼= (� (k))k.

Proof. Consider the localization sequence

→ Riπ∗ Log(k) → Riπ∗ Log(k) → Ri+1e! Log(k) →

and the purity isomorphism R2e! Log(k) = e∗ Log(k)(−1). Moreover
Rie! Log(k) = 0 for i �= 2. This together with the above computation
of Riπ∗ Log gives the desired result. ��

3.2.3 The polylogarithm sheaf. We are now going to define the (unipo-
tent) elliptic polylogarithm. We will not use the usual approach using an
identification of an Ext with a Hom-group but an other direct construction
due to Beilinson and Levin [Be-Le] 1.3.6. This has the advantage of giving
directly a pro-sheaf and not only an extension class. Moreover this sheaf
can be easily compared to the geometric construction we give later.

For every sheaf F on E we denote by FU its restriction to U . Let F be
a lisse Λ-sheaf on E and consider the open immersion
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g : U ×S U �∆ ↪→ U ×S U

where ∆ is the diagonal. Define a lisse Λ-sheaf He(F ) on U as follows:

Definition 3.2.7. Define a functor from lisse Λ-sheaves on E to lisse Λ-
sheaves on U by

He(F ) := R1 pr1∗ g!g∗ pr∗2 F U ,

where pr2 is the projection of U ×S U to the second factor.

The exact sequence

0 → g!g∗ pr∗2 FU → pr∗2 FU → ∆∗FU → 0

induces an exact sequence

0 → π∗π∗F → FU
α−→He(F )→ π∗R1π∗FU → 0.(6)

Obviously this sequence is functorial inF so that we have the same sequence
for pro-sheaves (Fk)k.

Lemma 3.2.8. The sequence (6) induces an exact sequence of pro-sheaves

0 → Log(1)U → He(Log(1))→ π∗� → 0.

Proof. By Proposition 3.2.6 we haveπ ∗ Log(1) = 0 and R1π∗ Log(1) ∼= � .
This implies the claim. ��

Thus He(Log(1)) gives a class in Ext1U(π
∗� ,Log(1)U ) which was de-

fined in Sect. 3.1.2 as the group of Yoneda extensions in the abelian category
pro−Sh(U). We have He(Log(1)⊗ π∗R) ∼= He(Log(1))⊗ π∗R so that
the action of π∗R on Log gives a π∗R-module structure on He(Log(1)). In
particular He(Log(1)) is a class in Ext1U,π∗R(π

∗� ,Log(1)U ), i.e. a Yoneda
extension of π∗R-modules.

Definition 3.2.9. The pro-sheaf

Pol := He(Log(1))

is the (unipotent) elliptic polylogarithm sheaf. If we need to indicate the
dependence on Λ we write PolΛ. We also define Pol(k) := He(Log(k)(1)).

3.3 A geometric approach to the elliptic polylog sheaf

We now present a different construction of the logarithm sheaf in the case
Λ = Z/lrZ. This makes explicit the remark in [Be-Le] 1.2.5.
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3.3.1 The geometric logarithm sheaf. Recall that pn = [ln] : En → E and
consider the sheaves

Logg
n := pn∗Λ

on E. For m ≥ n we have the trace map pm∗Λ → pn∗Λ and we define:

Definition 3.3.1. The geometric logarithm sheaf is the pro-sheaf

Logg := (Logg
n

)
n

where the transition maps are the above trace maps. Let

Rg := (Rg
n

)
n
:= (e∗ Logg

n

)
n

be the pro-sheaf defined by the pull-back of Logg
n along the unit section e.

Let � g := (� g
n )n := ker(Rg → Λ) be the augmentation ideal of Rg.

Note that the existence of the section en of Hn = p−1
n (e) implies that there

is a map 1n : Λ → e∗ Logg
n = Rg

n . The action of Hn on En over E gives an
action of Hn on Logg

n , hence an action of π∗Rg
n on Logg

n .
The sheaf Logg

n has the following important property. Recall that Λ =
Z/lrZ.

Proposition 3.3.2. For every lisse Λ-sheaf F the map

lim−→ nπ∗HomE

(
Logg

n,F
)→ e∗F

f �→ f ◦1n

is an isomorphism.

Proof. The map pn is finite étale, so that

HomE(pn∗Λ,F ) = HomEn
(Λ, p∗nF ) = p∗nF .

As F is a lisse Λ-sheaf, there is an n such that p∗nF comes from S, i.e.
p∗nF ∼= π∗ne∗n p∗nF . Thus

lim−→ nπ∗HomE

(
Logg

n,F
) = lim−→ nπn∗π∗ne∗n p∗nF = lim−→ ne∗n p∗nF = e∗F ,

which proves our claim. ��
Let F be a lisse Λ-sheaf, then the action of Rg

n on Logg
n induces via the

above proposition an action of Rg
n on e∗F for some n.

Corollary 3.3.3. The functor F �→ e∗F induces an equivalence of the
category of lisse Λ-modules on E and lisse Λ-modules on S with a contin-
uous action of the pro-sheaf (Rg

n)n (i.e. the action factors through Rg
m for

some m).

Proof. The inverse functor is given by

M �→ π∗M ⊗π∗Rg
m

Logg
m

if the action of (Rg
n)n factors through Rg

m . ��
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3.3.2 The higher direct images of the geometric logarithm sheaf. As for
Log we can compute the higher direct images of Logg:

Lemma 3.3.4. The pro-sheaf (
Riπ∗ Logg

n

)
n

is Mittag-Leffler zero for i �= 2 and(
R2π∗ Logg

n

)
n
∼= Λ(−1).

Proof. We have to compute the transition maps in(
Riπ∗ pn∗Λ

)
n
= (Riπn∗Λ

)
n
∼= (Riπ∗Λ

)
n

where in the last term the transition maps Riπ∗Λ → Riπ∗Λ are given by
multiplication with (lm−n)2−i . This map is zero for m ≥ n + r, because
Λ = Z/lrZ. ��
Corollary 3.3.5. The pro-sheaves (Riπ∗ Logg

n)n are Mittag-Leffler zero for
i �= 1 and the canonical map

R1π∗Logg
n → e∗ Logg

n(−1) = Rg
n

induces an isomorphism of pro-sheaves (R1π∗ Logg
n)n

∼= (� g
n )n.

Proof. See the proof of 3.2.6. ��

3.3.3 The geometric polylogarithm sheaf. The geometric polylog sheaf
can now be defined in the same way as in 3.2.9. Recall the functor He from
Definition 3.2.7.

Definition 3.3.6. The geometric elliptic polylog sheaf is the pro-sheaf

Polg := He(Logg(1)).

To indicate the dependence on Λ we write Polg
Λ and we define

Polg
n := He

(
Logg

n(1)
)
.

As for the (unipotent) elliptic polylog, the pro-sheaf Polg is a sheaf of
π∗Rg-modules and defines a Yoneda extension class in

Ext1U,π∗Rg(π∗� g,Logg(1)).

3.4 The comparison of Pol and Polg

In this section we compare Pol and Polg. Recall that Polg is only defined
for Λ = Z/lrZ.
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3.4.1 Comparison of the logarithm sheaves. The universal Property 3.3.2
of Logg and the section 1(k) of e∗ Log(k)Λ implies:

Lemma 3.4.1. Let Λ = Z/lrZ, then there is a unique map

�
(k)
Λ : Logg → Log(k)Λ .

corresponding to 1(k) : Λ → e∗ Log(k)Λ .

Denote by m the integer depending on k, such that �(k)Λ factors through
Logg

m . Recall that � g is the augmentation ideal of Rg.

Proposition 3.4.2. Let Λ = Z/lrZ, then the inverse limit of the �(k)Λ induces
an isomorphism

�Λ : Logg
Λ
∼= LogΛ .

Proof. Consider the canonical surjection

Logg → Logg /� gk+1Logg .

The last sheaf is unipotent of length k, because Logg is fibrewise isomorphic
to the regular ring Rg. The universal property of Log(k)Λ induces a map

α : Log(k)Λ → Logg /� gk+1Logg .

We get a commutative diagram

Logg −−−→ Logg /� gk+1Logg� �α
Logg

m

�
(k)
Λ−−−→ Log(k)Λ .

We will show that α is bijective, then �
(k)
Λ is surjective. But the dia-

gram implies that α is surjective, hence bijective because Log(k)Λ and
Logg /� gk+1Logg have the same cardinality. As

⋂
k≥0 � gk = 0 the inverse

limit of the �(k)Λ is bijective. ��
3.4.2 Comparison with the Zl–version. Let Λr := Z/lrZ and consider the
pro-sheaf Logg

Λr
. The projection map Λr+1 → Λr induces Logg

Λr+1,n
→

Logg
Λr ,n, hence in the limit a map Logg

Λr+1
→ Logg

Λr
. This map is obviously

compatible with the isomorphisms �Λr+1 and �Λr and the reduction map
LogΛr+1

→ LogΛr
. We observe:

Lemma 3.4.3. There is an isomorphism of pro-sheaves

LogZl
∼= (LogΛr

)r

induced by the canonical maps LogZl
→ LogΛr

.
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Proof. We have (LogΛr
)r = ((Log(k)Λr

)r)k. The pro-sheaf (Log(k)Λr
)r is by

definition of Zl-sheaves the same as Log(k)Zl
and the claim follows from the

definition of LogZl
. ��

Proposition 3.4.4. The inverse limit of the maps �Λr induces an isomorph-
ism of pro-sheaves

� : (Logg
Λr

)
r
∼= (LogΛr

)
r
∼= LogZl

.

Proof. This is immediate from the fact that �Λr is an isomorphism. ��

3.4.3 Comparison of polylogarithm sheaves. Using the functor He from
3.2.7 we can translate the comparison results for the logarithm sheaves to
the polylog.

Proposition 3.4.5. The isomorphism � form 3.4.4 induces an isomorphism
of pro-sheaves

He(�) :
(
PolgΛr

)
r
= (He

(
Logg

Λr
(1)
))

r

∼=−→PolZl .

Proof. Clear from the definition. ��

3.5 Specialization of the elliptic polylogarithm sheaf, l-adic Eisenstein
classes

The specialization along torsion sections of the elliptic polylog gives inter-
esting cohomology classes. These are the l-adic Eisenstein classes investi-
gated in [Be-Le], [Hu-Ki1] and [Hu-Ki2]. We recall their construction.

3.5.1 Invariance of the logarithm sheaf under translation by torsion sec-
tions. Let N ∈ Z be invertible on S and [N] : E → E the N-multiplication.
The universal property in Theorem 3.2.2 gives us canonical maps sending
1(k) to [N]∗1(k)

Log(k)Λ → [N]∗ Log(k)Λ

for Λ = Z/lrZ,Zl or Ql. Thus for every N-torsion point t : S → E we get
a map of pro-sheaves

prN
t : t∗ LogΛ → e∗ LogΛ .

Similarly, we have a map

prN
t : t∗ Logg

n → e∗ Logg
n

for the geometric logarithm sheaf for Λ = Z/lrZ.

Lemma 3.5.1. If l � N, then the map prN
t is an isomorphism.
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Proof. Let us first treat the unipotent case. It suffices to show that LogΛ →[N]∗ LogΛ is an isomorphism. Using the equivalence of categories 3.2.4,
this can be tested after pull-back with e∗. The resulting map RΛ → RΛ is

on the the k-th graded piece Symk HΛ induced by the map HΛ

[N]∗−−→ HΛ,
which is just the N-multiplication and thus an isomorphism, because l � N.
In the geometric case we have t∗ Logg

n = Λ[p−1
n (t)] and e∗ Logg

n = Λ[Hn].
The map prN

t is by definition induced by tn �→ [N]tn for tn ∈ p−1
n (t). This

is obviously an isomorphism if l � N. ��
To define a morphism prt independent of N, we let

prt := prN
t ◦
(

prN
e

)−1 : t∗ LogΛ → e∗ LogΛ .(7)

We need an explicit description of the map prt on the geometric logarithm
sheaf.

We have t∗ Logg
n = Λ[p−1

n (t)] and e∗ Logg
n = Λ[Hn]. Here p−1

n (t) ⊂
E[Nln] and if l � N we have E[Nln] = E[N] ⊕ E[ln].
Lemma 3.5.2. The map from (7)

prt : Λ
[

p−1
n (t)

]→ Λ[Hn]
is induced by the projection of tn ∈ p−1

n (t) ⊂ E[N] ⊕ E[ln] to Hn = E[ln].
Proof. The map prN

t : Λ[p−1
n (t)] → Λ[Hn]maps tn ∈ p−1

n (t) to [N]tn ∈ Hn

and prN
e is induced by the isomorphism [N] : Hn → Hn. ��

Passing to the limit we get a map of pro-sheaves

prt : Zl[[HZl,t]] → Zl[[HZl ]]
where HZl,t := lim←− n p−1

n (t). This is induced by the projection H Zl,t → HZl .

3.5.2 The moment map. The pro-sheaf e∗ LogQl
= RQl is a Hopf algebra

(see [Be-Le] 1.2.10 iv)) and we have an isomorphism ν : Sym≤k HQl →
Gr≤k R(k)

Ql
. Let Û(HQl) be the completion of the universal enveloping al-

gebra of the abelian Lie algebra HQl . The canonical filtration makes this
a pro-sheaf (Uk(HQl))k.

The structure theorem, [Bour] ch. II, paragraph 1, no. 6, gives:

Lemma 3.5.3. The map ν : HQl → RQl extends to an isomorphism of
Hopf algebra pro-sheaves

ν : Û(HQl)
∼= RQl ,

which on the k-th graded piece Symk HQl is multiplication by k!.
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Note that we can describe the composition

(
R

g
Λr

)
r
∼= RZl → RQl

∼= Û(HQl)

where the last map is ν−1, as follows (on stalks): Choose a Zl-basis γ, η
of HZl . Identify (Rg

Λr
)r = Zl[[HZl ]] := lim←− nZl[Hn] and view elements in

Zl[[HZl ]] as Zl-valued measures λ on HZl .

Definition 3.5.4. We define the k-th moment map µk to be

µk : Zl[[HZl ]] → Symk HQl

λ �→
∑

s+t=k

∫
HZl

(
k

s

)
< γ, h >s< η, h >t dλ(h)

γ⊗sη⊗t

k! .

Here <,> is the Weil pairing on HZl .

With this definition the map

(
R

g
Λr

)
r
∼= RZl → RQl

∼= Û(HQl) =
∏
k≥0

Symk HQl

sends the measure λ to (µk(λ))k. In particular, suppose that λ = ∑i niδhi

where δhi is the Dirac-measure at hi . Then

µk(λ) = 1

k!
∑

i

nih
⊗k
i .

For later reference we record an explicit description of the moment map at
finite level.

Lemma 3.5.5. The map k!µk is the inverse limit over r,m of

µk : Λr[Hm] → Symk Hm ⊗Λr∑
i

ni(hi) �→
∑

i

nih
⊗k
i

where on the right hand side hi is considered as element in Hm ⊗Λr .

Proof. This follows immediately from the explicit description of the maps
µk and �. ��
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3.5.3 A splitting

Lemma 3.5.6. Let Λ = Z/lrZ, Zl or Ql . Then the inclusion �Λ ↪→ RΛ

induces an injective map

RΛ(1) = HomS,RΛ
(RΛ,RΛ(1))→ HomS,RΛ

(�Λ,RΛ(1)),

which is an isomorphism for Λ = Ql.

Proof. This follows from

HomS,RΛ
(Λ,RΛ(1)) = 0 = Ext1S,RQl

(Ql,RQl(1)),

which is a consequence of the Koszul resolution as RQl is a sheaf of regular
rings. ��
Corollary 3.5.7. The map �Ql ↪→ RQl induces an injection

Ext1S,Ql
(Ql,RQl (1)) ∼= Ext1

S,RQl
(RQl ,RQl (1)))

a−→Ext1
S,RQl

(�Ql ,RQl(1)).

Using the isomorphism ν : RQl
∼= Û(HQl ) we have an exact sequence

(Koszul resolution for the Lie algebra HQl )

0 → RQl(1)→ HQl ⊗Ql RQl

b−→�Ql → 0.

Here we used Λ2HQl
∼= Ql(1) induced by the Weil-pairing. We get

Ext1
S,Ql
(Ql,RQl(1))

a−−−→ Ext1S,RQl
(�Ql ,RQl(1))�b∗

Ext1
S,RQl

(HQl ⊗Ql RQl ,RQl(1))�=
Ext1S,Ql

(HQl ,RQl (1)).

Lemma 3.5.8. The map

Ext1S,Ql
(Ql,RQl(1))

b∗◦ a−−→ Ext1
S,Ql
(HQl ,RQl(1))

has a canonical splitting.

Proof. We have an isomorphism

Ext1S,Ql
(HQl ,RQl(1)) ∼= Ext1S,Ql

(Ql,HomS,Ql
(HQl ,RQl(1)))

and a contraction map

HomS,Ql
(HQl ,RQl(1)))→ RQl (1)
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given on the k-th component of RQl =
∏

k≥0 Symk HQl by

HomS,Ql

(
HQl ,Symk HQl(1)

) ∼= HomS,Ql
(HQl ,Ql)⊗ Symk HQl(1)

composed with

HomS,Ql
(HQl ,Ql)⊗ Symk HQl(1)→ Symk−1 HQl (1)

f ⊗ h1 ⊗ . . .⊗ hk �→ 1

k + 1

k∑
i=1

f(hi)h1 ⊗ . . . ĥi . . .⊗ hk.
(8)

This gives the required map and it is straightforward to check that this is
indeed a splitting of b∗◦a. ��

3.5.4 The specialization of the polylogarithm, l-adic Eisenstein classes.
We now define the specialization of the elliptic polylogarithm. Let β ∈
Z[E[N](S)� e] be of the form

β =
∑

t∈E[N](S)re

ntt.

We want to define an element(
β∗ PolQl

)k ∈ H1
(
S,Symk HQl(1)

)
.

First observe that prt t∗ PolQl gives an element in

Ext1
S,RQl

(
�Ql , t∗ LogQl

(1)
) prt−→ Ext1S,RQl

(
�Ql , e∗ LogQl

(1)
)

= Ext1
S,RQl

(
�Ql ,RQl(1)

)
.

Define

σ : Ext1S,RQl
(�Ql ,RQl(1))→ Ext1S,Ql

(Ql,RQl(1))

to be the composition of b∗ and the splitting of Lemma 3.5.8. This is
a splitting of a. Denote by σ k the projection onto

Ext1S,Ql

(
Ql,Symk HQl(1)

) = H1
(
S,Symk HQl(1)

)
.

Definition 3.5.9. For β =∑t∈E[N](S)re ntt ∈ Z[E[N](S)� e] define(
β∗ PolQl

)k := ∑
t∈E[N](S)re

nt
(
σ k prt t∗ PolQl

) ∈ H1(S,Symk HQl(1)
)

These are the l-adic Eisenstein classes associated to β.

Remark: This numbering disagrees with the one of [Hu-Ki2], where we
wrote (β∗ PolQl)

k+1 for this class.
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Our aim is to compute a variant of the specialization. Namely let [a] :
E → E be an isogeny of degree N a := deg[a] prime to lN (the notations
are chosen to fit the CM case which is our ultimate goal). Define [a]∗ PolQl

as follows: let [a]−1U be the preimage of U under [a]. The pro-sheaf PolQl

is an extension

0 → LogQl
(1)→ PolQl → π∗�Ql → 0

on U , which we first restrict to [a]−1U and then apply [a]∗
0 → [a]∗ LogQl

(1)→ [a]∗ PolQl → [a]∗π∗�Ql → 0.

The canonical map LogQl
→ [a]∗ LogQl

induces by adjunction [a]∗ LogQl→ LogQl
and we push-out the above sequence with this map. Finally the

pull-back with the adjunction map π∗�Ql → [a]∗π∗�Ql gives an extension

0 → LogQl
(1)→ [a]∗ PolQl → π∗�Ql → 0

which we call [a]∗ PolQl . Let t : S → [a]−1U be an N-torsion section as
above. Then we can define with the same procedure a specialization

(([a]t)∗[a]∗ PolQl)
k ∈ H1(S,Symk HQl(1)

)
.

In the next section we will give an explicit formula for

(([a]t)∗[a]∗ PolQl)
k − Na(t∗ PolQl)

k.

This suffices our need because of the following result:

Lemma 3.5.10. The class

(([a]t)∗[a]∗ PolQl)
k − Na(t∗ PolQl)

k

equals Na([a]k Na − 1)(t∗ PolQl)
k in H1(S,Symk HQl (1)).

Proof. First of all we have by [Be-Le] 1.3.13 that [a]∗ PolQl = NaPolQl

and it suffices to compute (([a]t)∗ PolQl )
k = (t∗[a]∗ PolQl)

k. The sheaf
[a]∗ PolQl is the push-out of the sheaf PolQl (restricted to [a]−1U) with the
map LogQl

→ [a]∗ LogQl
and the pull-back with the map π∗�Ql → π∗�Ql

induced by a. Both maps are given on the associated graded Symk HQl

by [a]k . Going through the construction of the specialization, one sees that
(t∗[a]∗ PolQl)

k is just [a]k Na(t∗ PolQl)
k, because [a] acts on the dual of

HQl through [a]t and [a][a]t = Na. ��

4 The l-adic realization of the elliptic polylog

This part is concerned with the construction of the polylog on elliptic
curves in a geometric way, which allows to compute its specializations
explicitly. This is the technical heart of the paper and in our opinion our
main contribution to the problem of computing the Tamagawa number for
elliptic curves.
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4.1 The polylog as a one-motive

From the definition of the polylogarithm it is quite obvious that it is a pro-
sheaf consisting of Z/lrZ-realizations of one-motives. In this section we
make this connection more explicit.

4.1.1 A reformulation. Let Λr = Z/lrZ and recall from formula (6) in
Sect. 3.2.3 that the geometric polylog sits in an exact sequence

0 → π∗π∗ Logg
n(1)→ Logg

n(1)U → Polg
n → π∗R1π∗ Logg

n,U (1)→ 0.

By the definition of the geometric logarithm Logg
n = pn∗Λr and hence

π∗ Logg
n = Λr . We get

0 → Λr(1)→ pn∗Λr,U (1)→ Polgn → π∗R1πn∗Λr,U(1)→ 0.

For a lisse Λ-sheaf F on U consider the dual

(F )∨ := HomU(F ,Λ).

Then, using Poincaré duality, we get by dualizing and twisting by 1 an exact
sequence

0 → π∗R1πn!Λr,U(1)→
(
Polgn

)∨
(1)→ pn∗Λr,U → Λr,U → 0.

Denote by In,Λr the kernel of the map pn∗Λr,U → Λr,U , then
(
Polg

n

)∨
(1)

gives a class in

Ext1
U

(
In,Λr , π

∗R1πn!Λr,U (1)
)
.

We want to give a geometric interpretation of this class. For this we will
relate (Polg

n)
∨(1)with the lr-torsion points of a one-motive, which is defined

via a generalized Picard scheme.

4.1.2 The generalized Picard scheme. We will give a geometric interpre-
tation of (Polg

n)
∨(1). For this we need the Picard scheme of line bundles on

En trivialized along Hn (cf. the article by Raynaud [Ra]).

Definition 4.1.1. Let PHn be the generalized Picard scheme representing
the functor, which associates to S′ → S the isomorphism classes of pairs
(L, α), where L is a line bundle on En ×S S′ and α : h∗nL ∼= OHn is
a trivialization of L along Hn ×S S′.
That Hn is a rigidificator in the sense of [Ra] follows from the fact that Hn
contains the section en : S → En . Denote by Pn the Picard scheme of En .
Then we have an exact sequence of group schemes on S

0 → THn → PHn → Pn → 0,

where THn is the torus with character group I [Hn] := ker(pn∗Z→ Z) and
the map PHn → Pn is given by forgetting the trivialization. The lr-torsion
of PHn can be identified as follows:
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Lemma 4.1.2. There is a canonical isomorphism of lisse sheaves

R1πn!Λr(1) ∼= PHn [lr].
Proof. Define an fppf-sheaf on En by HnGm := ker(Gm → hn∗h∗nGm),
where hn : Hn → En . Then PHn = R1πn∗(HnGm) (see [SGA4,III], Expose
XVIII Proposition 1.5.14), where the higher direct image is taken for the
flat topology. The sequence on En from loc. cit. Lemma 1.6.1

0 → jn!µlr →Hn Gm
[lr ]−→Hn Gm → 0

gives an isomorphism R1πn∗ jn!µlr
∼= PHn [lr ], because πn∗HnGm = 0. ��

On En×S Un we have the line bundle O(∆n) associated to the Cartier divisor
defined by the diagonal ∆n. By definition O(∆n) sits in an exact sequence

0 → O → O(∆n)→ ∆n∗OUn → 0,

which induces a trivialization of O(∆n) along Hn ×S Un. Thus we get
a section ∆n : Z→ π∗n PHn of étale sheaves. Adjunction with respect to pn
gives a map

∆n : pn∗Z→ π∗PHn(9)

also denoted by ∆n by abuse of notation.

4.1.3 Comparison with a one-motive. Consider pn∗Z→ π∗PHn as a com-
plex of sheaves in degree 0 and 1. Recall from [Del1] 10.1.10 that a one-
motive M = [X → G] is a complex in degree 0 and 1, consisting of a group
scheme X/S, which is étale locally a constant Z-module, free of finite rank
and G is an extension of an abelian scheme with a torus over S. We have
a morphism of group schemes X → G over S. Note that pn∗Z → π∗PHn

is not a one-motive because PHn is not a semi-abelian scheme, as it is not
connected. For the connected component of the identity P0

Hn
, we have an

exact sequence 0 → P0
Hn
→ PHn → Z → 0 and if we let I [Hn] be the

kernel of the composition pn∗Z→ PHn → Z we get a quasi-isomorphism[
I [Hn] → P0

Hn

] ∼= [pn∗Z→ π∗PHn

]
.

Here I [Hn] → P0
Hn

is of course a one-motive.

Theorem 4.1.3. There is a canonical isomorphism of étale sheaves

H0
([

pn∗Z→ π∗PHn

]⊗L Z/lrZ
) ∼= (Polg

n

)∨
(1)

which is compatible with the morphism (Polg
n)
∨(1)→ (Polgm)

∨(1) induced
by the trace map Logg

m → Logg
n. Here H0 denotes the zeroth cohomology.
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Proof. We prove first a statement for a non zero section t : S → E and then
apply this to the universal section ∆. Let Ht,n := p−1

n (t) be the preimage of
t in En . Let ht

n : Ht,n → En be the embedding and denote by gt
n the open

immersion of the complement

gt
n : En � Ht,n ↪→ En.

Denote by pn,t : Ht,n → S the structure map. Recall that hn : Hn → En
is the closed immersion and that jn : Un → En is the inclusion of the
open complement. There is an isomorphism of complexes jn!µlr

∼= [µlr →
hn∗µlr ] induced by 0 → jn!µlr → µlr → hn∗µlr → 0. We compute

R1(πn◦gt
n

)
∗ jn!µlr

∼= H1[R(πn◦gt
n

)
∗µlr → R

(
πn◦gt

n

)
∗hn∗µlr

]
∼= H1[R(πn◦gt

n

)
∗µlr → pHn∗µlr

]
.

We have a map

R
(
πn◦gt

n

)
∗µlr → R1(πn◦gt

n

)
∗µlr [−1]

because R2 vanishes and we can write by Poincaré duality

R1(πn◦gt
n

)
∗µlr [−1] ∼= Hom

(
P0

Hn,t
[lr ], µlr

)[−1].
The exact sequence

0 → P0
Hn,t
[lr] → P0

Hn,t

[lr ]−→ P0
Hn,t

→ 0

shows that P0
Hn,t
[lr] ∼= P0

Hn,t
⊗L Z/lrZ[−1]. Also

Hom
(
P0

Hn,t
[lr], µlr

) ∼= R Hom
(
P0

Hn,t
[lr], µlr

)
,

because there are no higher Ext-groups. We get a map

R
(
πn◦gt

n

)
∗µlr → R1(πn◦gt

n

)
∗µlr [−1] ∼= R Hom

(
P0

Hn,t
⊗L Z/lrZ, µlr

)
.

On the other hand we have

pHn∗µlr
∼= R Hom

(
pHn∗Z⊗L Z/lrZ, µlr

)
→ R Hom

(
(pHn∗Z)

0 ⊗L Z/lrZ, µlr
)
,

where (pHn∗Z)0 := ker(pHn∗Z→ Z). Thus we have a map from

H1[R(πn◦gt
n

)
∗µlr → pHn∗µlr

]
to

H1
[
R Hom

(
P0

Hn,t
⊗L Z/lrZ, µlr

)→ R Hom
(
(pHn∗Z)

0 ⊗L Z/lrZ, µlr
)]

∼= H1 R Hom
([
(pHn∗Z)

0 ⊗L Z/lrZ→ P0
Hn,t

⊗L Z/lrZ
]
, µlr

)
∼= H1 R Hom

([
(pHn∗Z)

0 → P0
Hn,t

]⊗L Z/lrZ, µlr
)

∼= Hom
([
(pHn∗Z)

0 → P0
Hn,t

]⊗L Z/lrZ, µlr
)
,
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where [(pHn∗Z)0 → P0
Hn,t
] is now a complex in degree 0 and 1. By Poincaré

duality for one-motives [Del1] 10.2.11, we have

Hom
([
(pHn∗Z)

0 → P0
Hn,t

]⊗L Z/lrZ, µlr
)

∼= H0
[
(pHn,t∗Z)

0 → P0
Hn

]⊗L Z/lrZ.

Thus we have constructed a map

R1
(
πn◦gt

n

)
∗ jn!µlr → H0[pHn,t∗Z→ PHn ] ⊗L Z/lrZ.

Both sides are extensions of ker(pHn,t∗Z/lrZ → Z/lrZ) with PHn [lr] and
by base change to an algebraic closed field one sees that the above map is
the identity on these two groups, hence an isomorphism itself. Finally we
apply this to the universal section ∆ over U to get the desired result. ��
Here is an explicit way to get the extension (Polg

n)
∨(1) from [pn∗Z →

π∗PHn ]. Consider the exact sequence

0 → π∗PHn [lr] → π∗PHn

lr−→π∗PHn → Z/lrZ→ 0

defined by the lr-multiplication. The pull-back by the the map pn∗Z →
π∗PHn gives an extension

0 → π∗PHn [lr] → E → pn∗Z→ Z/lrZ→ 0

with some sheaf E . If we tensor this with Z/lrZ over Z, then we get an exact
sequence

0 → π∗PHn [lr ] → E ⊗Z Z/lrZ→ pn∗Z/lrZ→ Z/lrZ→ 0,

because the kernel of pn∗Z→ Z/lrZ is a sheaf of free Z-modules. With the
above theorem we conclude that (Polg

n)
∨(1) ∼= E ⊗Z Z/lrZ (up to sign).

4.1.4 The class of the geometric polylog. Recall from Sect. 4.1.1 that the
polylog (Polg

n)
∨(1) defines a class in

Ext1
U

(
In,Λ, π

∗R1πn!ΛU(1)
)
,

where In,Λ is the kernel of the map pn∗ΛU → ΛU . With Lemma 4.1.2 we
can write

cl
((

Polgn
)∨
(1)
) ∈ Ext1

U

(
In,Λ, PHn [lr]).

Let [a] be an isogeny of E of degree N a prime to lN. We consider as in
Lemma 3.5.10 [a]∗[a]∗(Polg

n)
∨(1) and the restriction of Na(Polg

n)
∨(1) to

[a]−1U . We want to compute the specialization of of these two sheaves at
an N-torsion point t : S → [a]−1U .

Define for t and [a]t
Hn,t := p−1

n (t) and Hn,[a]t := p−1
n ([a]t).
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We also let Z[Hn,t] := t∗ pn∗Z and similarly for [a]t. Denote by IZ[Hn,t]
the kernel of the augmentation Z[Hn,t] → Z. Recall that we have an exact
sequence

0 → π∗PHn [lr] → π∗PHn

lr−→π∗PHn → Z/lrZ→ 0.

Also recall from the end of Sect. 4.1.2 that the line bundle O(∆n) on
En ×S Un with its canonical trivialization gives a section ∆n : Z→ π∗n PHn .

Lemma 4.1.4. The sheaf [a]∗(Polgn)
∨(1) is given by the pull-back of the

above sequence by the map

[a]∗∆n : pn∗Z→ pn∗[a]∗[a]∗Z→ π∗PHn

whose adjoint Z → π∗n PHn maps 1 to ([a] × id)∗O(∆n) and tensor the
resulting sequence with Λ. In particular the sheaf ([a]t)∗[a]∗(Polg

n)
∨(1) is

given by the pull-back via

([a]t)∗[a]∗∆n : Z[Hn,[a]t] → PHn

which maps a section D ∈ Z[Hn,[a]t] to [a]∗O(D).
Proof. By definition of [a]∗ Polg

n cf. 3.5.10 we have to push-out [a]∗ Polgn
by the dual of pn∗Z→ pn∗[a]∗[a]∗Z. Observing that we get (Polg

n)
∨ by du-

alizing everything this gives the first claim. The second follows immediately
from this. ��

The sheaf Na(Polgn)
∨(1) has a similar but easier interpretation. Consider

0 → [a]∗π∗PHn [lr] → [a]∗π∗PHn

lr−→[a]∗π∗PHn → [a]∗Z/lrZ→ 0.

Lemma 4.1.5. The sheaf Na(Polg
n)
∨(1) is given by the pull-back of the

above exact sequence by the map

Na∆n : pn∗Z
Na−→ pn∗Z→ [a]∗π∗PHn

whose adjointZ→ [a]∗π∗n PHn maps 1 to O(∆n)
⊗Na and then tensor with Λ.

In particular the sheaf t∗Na(Polg
n)
∨(1) is given by the pull-back via

t∗Na∆n : Z[Hn,t] → PHn

which maps a section D ∈ Z[Hn,t] to O(D)⊗Na.

Proof. Clear. ��
As in (7) we have isomorphisms prt : Z[Hn,t] ∼= Z[Hn] and pr[a]t :

Z[Hn,[a]t] ∼= Z[Hn]. Thus via (pr[a]t)−1 and (prt)
−1 we can consider the

difference

(pr[a]t)
−1([a]t)∗[a]∗∆n − (prt)

−1t∗Na∆n : Z[Hn] → PHn .

Let us denote this map by t∗([a]∗[a]∗ − Na)∆n .
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Lemma 4.1.6. The map t∗([a]∗[a]∗ − Na)∆n factors through THn ⊂ PHn .
In particular the composition with PHn → Z/lrZ is zero.

Proof. For any hn ∈ Hn let tn ∈ Hn,t be the unique point which maps to hn
under prt . Then [a]tn is the unique point which maps to hn under pr[a]t . The
explicit description in the above lemmas shows that t∗([a]∗[a]∗ − Na)∆n
maps (hn) ∈ Z[Hn] to

[a]∗O([a]tn)⊗O(tn)
⊗−Na.

We have to show that this line bundle is zero in the Picard group Pn ,
because then the section t∗([a]∗[a]∗ − Na)∆n factors through the kernel of
PHn → Pn , which is THn . For this consider T−tn the translation by−tn . Then

[a]∗O([a]tn)⊗O(tn)
⊗−Na ∼= T ∗

−tn

([a]∗O(en)⊗O(en)
⊗−Na

)
.

As the last bundle is trivial, this implies our claim. ��
Corollary 4.1.7. The difference

pr[a]t([a]t)∗[a]∗
(
Polgn

)∨
(1)− prt t∗Na

(
Polg

n

)∨
(1) ∈ Ext1

S(Λ[Hn], PHn [lr])

is is a class in Ext1S(Λ[Hn], THn [lr]).
By construction the class pr[a]t([a]t)∗[a]∗(Polg

n)
∨(1)−prt t∗Na(Polgn)

∨(1)
in

Ext1S(Λ[Hn], THn [lr]) = Ext1Hn
(Λ, THn [lr]) = H1(Hn, THn [lr])

is given by the pull-back of the exact sequence

0 → THn [lr] → THn

[lr ]−→ THn → 0(10)

by the map t∗([a]∗[a]∗ −Na)∆n : Z[Hn] → THn over S. This is the same as
a map t∗([a]∗[a]∗−Na)∆n : Z→ THn over Hn. This map will be computed
in the next section.

4.2 Computation of the specialization of the polylog

Let t : S → U be a non zero N-torsion point. We continue to compute the
specialization at t of the polylog.
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4.2.1 Specialization of the class of the geometric polylog. We keep the
notations from Sect. 4.1.4. The class

pr[a]t([a]t)∗[a]∗
(
Polg

n

)∨
(1)− prt t∗Na

(
Polg

n

)∨
(1) ∈ H1(Hn, THn [lr])

is given by the pull-back of the sequence (10) by the section t∗([a]∗[a]∗ −
Na)∆n : Z→ THn over Hn.

To describe this section in terms of functions, we extend our base to
a Galois covering Sn of S, where Hn (hence Hn,t and Hn,[a]t) is rational and
then use descent: Let Gn be the Galois covering group of Sn/S. Consider∏

hn∈Hn(Sn)
Gm and write a typical element of this product as

∑
hn

ghn (hn).
Similar definitions apply to

∏
hn∈Hn(Sn)

µlr . Let us write THn as a quotient:

Lemma 4.2.1. Over Sn, the torus THn is the quotient of
∏

h′n∈Hn
Gm by the

diagonal. In particular, there is a surjection∏
h′n∈Hn(Sn)

Gm(Sn)→ THn (Sn)

For
∑

h′n(gh′n )(h
′
n) ∈

∏
h′n∈Hn(Sn)

Gm(Sn) write [∑h′n (gh′n )(h
′
n)] for its class

in THn (Sn). The elements in THN (S) are the Gn-invariant classes.

Proof. Clear, because the character group of THn is ker(pHn∗Z→ Z). ��
We have

H0(Hn ×S Sn, THn ) =
∏

hn∈Hn(Sn)

THn (Sn).

With this notation we rewrite the section t∗([a]∗[a]∗ − Na)∆n : Z →
THn using the explicit description of 4.1.4 and 4.1.5. Write the section
t∗([a]∗[a]∗ − Na)∆n : Z→ THn as∑

hn∈Hn(Sn)

s(hn),

where s(hn) ∈ THn(Sn). This section is given by the trivialization of the
(trivial) line bundle [a]∗O([a]tn) ⊗ O(tn)⊗−Na along Hn, where tn is the
unique point in Hn,t projecting to hn. Using Lemma 4.2.1, we write

s(hn) =
[∑

h′n

s(hn)h′n
(
h ′n
)]
,

where s(hn)h′n ∈ Gm is the value of the trivialization of [a]∗O([a]tn) ⊗
O(tn)⊗−N a at h ′n .

We want to compute s(hn)h′n for h ′n ∈ Hn(Sn). For this we need the
elliptic units on En .
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4.2.2 Elliptic units. Elliptic units were introduced and studied by Robert
and Gillard. An algebraic approach to elliptic units was proposed by Kato.

Let us recall the definition of the elliptic units and their characterization
in [Ka2] III 1.1.5. (see also [Scho]).

With Kato let us make the definition that a, b ∈ EndOS(E) are relatively
prime (a, b) = 1, if ker(a) ∩ ker(b) = e where e is endowed with the
reduced subscheme structure and ab = ba.

Theorem 4.2.2 ([Ka2] III 1.1.5. and [Scho] Thm. 1.2.1). Let a ∈ EndOS(E)
be an endomorphism with (a, 6) = 1. There is a unique section

θa ∈ O∗(E � ker a)

compatible with base change in S, with the following properties:
i) Div(θa) = deg(a)(e)− ker a
ii) for any b ∈ EndOS(E) with (a, b) = 1

b∗θa = θa.

iii) Moreover, for b ∈ EndOS(E) with (6, b) = 1 and ab = ba

θa◦b

θ
deg(b)
a

= θb◦a

θ
deg(a)
b

.

Definition 4.2.3. The values of θa at torsion sections t : OS → E � ker a
are called elliptic units.

4.2.3 The specialization of the polylog in terms of elliptic units. We turn to
the computation of s(hn) = [∑h′n s(hn)h′n(h

′
n)] from the end of Sect. 4.2.1.

Proposition 4.2.4. Let [a] be relatively prime to Nl. Then the section
s(hn)h′n ∈ Gm(Sn) is given by

s(hn)h′n = θa
(
h ′n − tn

)−1

for h ′n ∈ Hn(Sn) using the identification from Lemma 4.2.1.

Proof. The section s(hn)h′n is given by evaluating the trivialization of

[a]∗O([a]tn)⊗O(tn)
⊗−N a

at h ′n. Here tn is such that prt(tn) = hn. Let T−tn be the translation with −tn
on En , then

[a]∗O([a]tn) ∼= T ∗
−tn [a]∗O(en) and O(tn)

⊗Na ∼= T ∗
−tnO(en)

⊗Na.

The function θa gives a section of O(en)
⊗Na⊗[a]∗O(en)

⊗−1 and thus T ∗−tnθa
gives a section of

O(tn)
⊗Na ⊗ [a]∗O([a]tn)⊗−1.

This proves the claim. ��
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Remark: Note that in this proposition we do not really need the elliptic
units, because any function with the right divisor would also describe the
sections s(tn). The point is that there is one more problem to solve before
we get the specialization of the elliptic polylog. We still have to compute
the splitting from 3.5.8 and it is here that the elliptic units will be necessary
because of their norm compatibility property.

Consider the section

∑
{tn | prt (tn)∈Hn(Sn)}

∑
h′n

θa
(
h ′n − tn

)(
h ′n
) (prt (tn))

of
∏

prt (tn)∈Hn(Sn)
THn (Sn). It is invariant under the group Gn and thus defines

a section in H0(Hn, THn ). Denote by

δ : H0(Hn, THn )→ H1(Hn, THn [lr])
the boundary map for the exact sequence

0 → THn [lr] → THn

[lr ]−→ THn → 0.

The main result of this section can now be formulated as follows:

Proposition 4.2.5. Write t̃n for prt (tn). This is an element of Hn. Then, the
class of

pr[a]t([a]t)∗[a]∗
(
Polg

n

)∨
(1)− prt t∗Na

(
Polg

n

)∨
(1) ∈ H1(Hn, THn [lr])

is given by (up to sign)

δ
∑

t̃n∈Hn(Sn)

∑
h′n

θa
(
h ′n − tn

)(
h ′n
) (̃tn) ∈ H1(Hn, THn [lr]).

4.2.4 The splitting. In this section we show that the element of Proposi-
tion 4.2.5 is in fact in the image of the map a from 3.5.6. Recall that the
map a is

Ext1S
(
Λ,Rg

n(1)
) a−→Ext1

S,Rg
n

(
� g

n ,R
g
n(1)

)
.

We factor this as

Ext1
S

(
Λ,Rg

n(1)
)→ Ext1S

(
Λ,HomR

g
n

(
Rg

n,R
g
n(1)

))
→ Ext1S

(
Λ,HomR

g
n

(
� g

n ,R
g
n(1)

))
,

(where the last map is induced by �
g
n ↪→ Rg

n) and the canonical map

Ext1S
(
Λ,HomR

g
n

(
� g

n ,R
g
n(1)

))→ Ext1
S,Rg

n

(
� g

n ,R
g
n(1)

)
.
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Recall that the torus THn is defined by the character group

I [Hn] := ker(pn∗Z→ Z).

By definition of �
g
n , we get that I [Hn] ⊗Λ = �

g
n is the augmentation ideal

in Rg
n . In particular

THn [lr] = HomS

(
� g

n , µlr
)
.

This gives H1(Hn, THn [lr ]) = H1(S,HomS(�
g
n ,R

g
n(1))), because pn∗µlr =

Rg
n(1). Write Rg

n(1) = pn∗µlr , then we can identify the above maps with

H1(S, pn∗µlr )→ H1(Hn, pn∗µlr )→ H1(Hn, THn [lr ]).(11)

The first map has the following explicit description: Write

H1(Hn, pn∗µlr ) = H1(S, pn∗Z/lrZ⊗ pn∗µlr )

then the map on coefficients is

pn∗µlr → pn∗Z/lrZ⊗ pn∗µlr

a �→
∑
h′n

(
h ′n
)⊗ (h ′n)a,

where (h ′n)a is the multiplication of (h ′n) ∈ pn∗Z/lr with a ∈ pn∗µlr . Write
a =∑t̃n

α t̃n( t̃n), then(
h ′n
)
a =

∑
t̃n

α t̃n

(
h ′n + t̃n

) =∑
t̃n

α t̃n−h′n (̃tn).

In particular an element δ
∑

t̃n
α t̃n (̃tn) ∈ H1(S, pn∗µlr ) is mapped to∑

t̃n

[
δ
∑
h′n

α t̃n−h′n
(
h ′n
)]
(̃tn) ∈ H1(Hn, THn [lr]).

To compute the splitting it suffices to write down a norm compatible element
in H1(S, pn∗µlr ), which maps to the class of pr[a]t([a]t)∗[a]∗(Polgn)

∨(1) −
prt t∗Na(Polg

n)
∨(1) in H1(Hn, THn [lr]). Define t̃n := prt(tn), the projection

of tn to Hn .

Proposition 4.2.6. The element

δ
∑

t̃n∈Hn(Sn)

θa(−tn)(̃tn) ∈ H1(S, pn∗µlr )

maps under (11) to pr[a]t([a]t)∗[a]∗(Polg
n)
∨(1)− prt t∗Na(Polg

n)
∨(1).
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Proof. From the above computation we get that the image is

∑
t̃n∈Hn(Sn)

[
δ
∑
h′n

θa
(
h ′n − tn

)(
h ′n
)]
(̃tn).

This is the element in 4.2.5. ��

We show now that the element defined in Proposition 4.2.6 is norm
compatible if we vary n. This will imply that we have actually computed
the splitting and thus the l-adic Eisenstein classes.

Let Nn,n′ be the norm map from En to En′ for n ≥ n′.

Proposition 4.2.7. In H1(Hn′, µlr ) the following equality holds:

Nn,n′ δ
∑

t̃n∈Hn(S)

θa(−tn)(̃tn) = δ
∑

t̃n′∈Hn′ (S)
θa(−tn′)(̃tn′),

where [ln]tn = t and [ln−n′ ]tn = tn′ .

Proof. From Theorem 4.2.2 we know that Nn,n′ θa(−tn) = θa(−tn′) because
N a is prime to Nl. This proves the claim. ��

It is clear that the element δ
∑

t̃n∈Hn(Sn)
θa(−tn)(̃tn) is compatible with

the reduction map Λr → Λr′ for r ≥ r ′. Hence we get an element

δ ∑
t̃n∈Hn(Sn)

θa(−tn)(̃tn)


n

∈ H1
(
S,Rg

Zl
(1)
)
.

Recall the map

H1
(
S,Rg

Zl
(1)
) = Ext1S,Zl

(
Zl,R

g
Zl
(1)
) a−→Ext1

S,Rg
Zl

(
�

g
Zl
,R

g
Zl
(1)
)

from Corollary 3.5.7.

Lemma 4.2.8. The element
(
δ
∑

t̃n∈Hn(Sn)
θa(−tn)(̃tn)

)
n

maps to the class

of pr[a]t([a]t)∗[a]∗ Polg
Zl
− prt t∗ N aPolg

Zl
under the map a.

Proof. This follows immediately from Proposition 4.2.6. ��
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4.2.5 The main theorem on the specialization of the elliptic polylog. It
remains to compute the moment map to get the l-adic Eisenstein classes
explicitly.

Theorem 4.2.9. Let β = ∑t∈E[N](S)re nt(t) and [a] : E → E an isogeny
of degree relatively prime to Nl. Then for k ≥ 0 the l-adic Eisenstein class

N a([a]k N a− 1)
(
β∗ PolQl

)k ∈ H1
(
S,Symk HQl (1)

)
is given by

± 1

k!

δ ∑
t∈E[N](S)re

nt

∑
[ln ]tn=t

θa(−tn )̃tn
⊗k


n

where t̃n is the projection of tn to E[ln].
Proof. The recipe to compute the moment map from Lemma 3.5.5 combined
with Lemma 4.2.8 and Lemma 3.5.10 gives immediately the result. ��

5 Proof of the main theorem

In this section we will carry out the actual comparison between the space
rp(Rψ) and the Soulé elements ep(C∞⊗ Tp E(k)) defined by elliptic units.

5.1 Comparison with the Soulé elements

We first transfer the result from 4.2.9 into the setting of 1.2.2 and then
compare these elements with the Soulé map ep.

5.1.1 The specialization of the elliptic polylog. The Theorem 4.2.9 gives
us an explicit description of

N a([a]2k+1 N a− 1)
(
β∗ PolQl

)2k+1 ∈ H1
(
OS,Sym2k+1 HQ p(1)

)
,

which we now translate in the setting of Sect. 1.2.2. Note first that p = l
and HQ p = Tp E ⊗ Q p and S = Spec OS. Here the second S denotes of
course the set of primes dividing pf. Let a ⊂ OK be an ideal prime to 6pf.
The isogeny we are going to consider is multiplication by ψ(a) ∈ O. Let θa
be the function defined in 4.2.2. To have shorter formulas we introduce the
following notation: Define for t̃r ∈ E[pr ]

γ(̃tr)
k :=< t̃r,

√
dK t̃r >

⊗k

where < _, _ > is the Weil pairing and
√

dK is a root of the discriminant
of K/Q. Note that γ(ψ(p)̃tr)k = (N p)kγ(̃tr)k. In Sect. 1.2.1 formula (1) we
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explained the projection map KM. On the Galois cohomology this is given
by

H1(OS,Sym2k+1 HQ p(1)
)→ H1(OS,HQ p(k + 1)

)
induced by the projection Sym2k+1 HQ p(1)→ HQ p(k + 1). Moreover

KM(ψ(a)
2k+1)Sym2k+1 HQ p(1) = ψ(a)N akHQ p(k + 1).

Theorem 5.1.1. Let p � 6 N f and denote for a pr N f-torsion point tr by t̃r
its projection to E[pr ]. Then with t = Ω f −1

N a(ψ(a)N ak+1 − 1)rp(ξ)

= ±N f3k+2L p(ψ,−k)−1

2k−1ψ( f )

δNK(f)/K

∑
pr tr=t

θa(−tr)⊗ t̃r ⊗ γ(̃tr)k


r

where t̃r is the projection of tr to E[pr ].

Proof. We have by definition and and Theorem 1.2.5

rp(ξ) = (−1)k−1(2k + 1)!L p(ψ,−k)−1

2k−1ψ( f )N fk
KM rp

(
E 2k+1

M (β)
)

= (−1)k−1(2k + 1)!N f3k+2L p(ψ,−k)−1

2k−1ψ( f )
KM(β

∗ PolQl)
2k+1.

With the above notation, we have

KM

(̃
tr
⊗2k+1) = t̃r ⊗ γ (̃tr)k

so that Theorem 4.2.9 gives:

N a(ψ(a)N ak+1 − 1)rp(ξ)

= ±N f3k+2L p(ψ,−k)−1

2k−1ψ( f )

δNK(f)/K

∑
pr tr=t

θa(−tr)⊗ t̃r ⊗ γ(̃tr)k


r

.

This is the desired result. ��
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5.1.2 The comparison theorem. We want to rewrite the formula in Theo-
rem 5.1.1 in terms of the norm map for Kn(f)/K .

Fix a prime p of K where E has good reduction. Define a uniformizer
by π := ψ(p). Denote by

Hp

r,t :=
{
tr ∈ E[pr f]∣∣πr tr = t

}
.

We write tr = (̃tr, π−r t) ∈ E[prf] = E[pr ]⊕E[f]. Denote by K(prf) the ray
class field for prf. This is the field where the E[pr f]-points are rational. Let
σp be the Frobenius at p in the Galois group of K(f)/K , then tr = (̃tr, tσ

−r
p ).

Recall that γ(̃tr)k :=< t̃r ,
√

dK t̃r >⊗k . Define a filtration of Hp

r,t as follows:

Fi
r,t :=

{
tr = (t̃r, π−r t) ∈ Hp

r,t |πr−i t̃r = 0
}
.

Thus

Hp

r,t = F0
r,t ⊃ . . . ⊃ Fr

r,t = 0.

Define TpE := lim←− n E[pn].
Theorem 5.1.2. Let p be as above and tr = (t̃r, π−r t) ∈ F0

r,t � F1
r,t . Let

Lp(ψ,−k) be the Euler factor for ψ at p evaluated at −k, then

Lp(ψ,−k)−1

NK(f)/K

∑
sr∈Hp

r,t

θa(−sr)⊗ s̃r ⊗ γ(̃sr)
k


r

=
(
NK(prf)/K (θa(−tr)⊗ t̃r ⊗ γ(̃tr)k)

)
r

in H1(OS, TpE(k + 1)⊗Q p) for all a relatively prime to pf.

Proof. Observe that we identified HomOp(Tp E,Op) ∼= Tp E(−1) where

Tp E has now the conjugate linear Op-action. In particular, ψ(p)
i
tr = tr−i

for tr ∈ E[pr]. We compute(
ψ(p)

N p−k

)i

NK(prf)/K(pr−i f)

(
θa(−tr)⊗ t̃r ⊗ γ(̃tr)k

) =
= NK(prf)/K(pr−i f)

(
θa
(− (̃tr, π−r t

))⊗ ψ(p)i t̃r ⊗ γ (ψ(p)i t̃r)k)
= (NK(prf)/K(pr−i f) θa

(− (̃tr, π−r t
)))⊗ t̃r−i ⊗ γ(̃tr−i)

k

= θa
(− (̃tr−i , π

i−r t
))⊗ t̃r−i ⊗ γ(̃tr−i)

k,

where we used the distribution relation for θa (see [deSh] II 2.5)

NK(prf)/K(pr−i f) θa(−tr) = θa
(
π i tr
)

for the last equality.
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As the Galois group of K(pr−i f)/K(f) acts simply transitively on Fi
r,t �

Fi+1
r,t , we get(
ψ(p)

N p−k

)i

NK(prf)/K(f)
(
θa(−tr)⊗ t̃r ⊗ γ(̃tr)k

) =∑
tr−i∈Fi

r,trFi+1
r,t

θa
(− (̃tr−i, π

i−r t
))⊗ t̃r−i ⊗ γ(̃tr−i)

k.

We have θa(−(̃tr−i , π
i−r t)) = θa(−(̃tr−i , π

−r t))σ
i
p which gives(

ψ(p)

N p−k

)i

NK(prf)/K
(
θa(−tr)⊗ t̃r ⊗ γ(̃tr)k

) =
NK(f)/K

∑
tr−i∈Fi

r,trFi+1
r,t

(
θa
(− (̃tr−i , π

−r t
))⊗ t̃r−i ⊗ γ(̃tr−i)

k
)

because the norm NK(f)/K is the sum over all the Galois translates, which
act trivially on t̃r−i . If we finally take the sum over i and let r get bigger and
bigger we get

Lp(ψ(p),−k)
(
NK(prf)/K θa(−tr)⊗ t̃r ⊗ γ(̃tr)k

)
r
=NK(f)/K

∑
tr∈Hp

r,t

θa(−tr)⊗ t̃r ⊗ γ(̃tr)k


r

,

where we used ∑
i≥0

(
ψ(p)

N p−k

)i

= 1

1− ψ(p)

Np−k

.

This is the desired result. ��
With Theorem 5.1.1 we get:

Corollary 5.1.3. With the notations of Theorem 5.1.1

N a(ψ(a)N ak+1 − 1)rp(ξ)

= ± N f3k+2

2k−1ψ( f )
δ
(
NK(prf)/K θa(−tr)⊗ t̃r ⊗ γ(̃tr)k

)
r
,

where prtr = t and tr is a primitive pr f-torsion point.

Proof. If p is inert of prime this is just a reformulation of Theorem 5.1.2. If
p is split, rp decomposes into a direct sum for the p and the p∗ part. Putting
them together gives the result. ��
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5.2 End of proof of the main theorem

Here we finish the proof of Theorem 1.1.5 by computing the image of the
Soulé map ep. In the last section we prove that rp is injective on Rψ if H2

p
is finite.

5.2.1 Relation to elliptic units. Our aim is to show that the elements(
NK(prf)/K θa(tr)⊗ t̃r ⊗ γ(̃tr)k

)
r

where a is prime to 6pf generate (C
χ

∞ ⊗ Tp E(k))Γ, where χ is the repre-
sentation of ∆ on HomOp(Tp E(k),Op).

Proposition 5.2.1. Let p � 6 N f and a be an ideal in Op, which is prime to
6pf and such that ψ(a)N ak+1 �≡ 1(mod p). (For example take a prime q
such that the Frobenius at q acts non trivially on K(E[p](k+1))). Then the
Op[[Γ]]-module

C
χ

∞ ⊗Op Tp E(k)

is generated by
(
θa(tr)⊗ t̃r ⊗ γ(̃tr)k

)
r
, where tr is a primitive pr f-division

point.

Proof. Let b be another ideal prime to 6pf. Let σa and σb be the elements
in Γ associated to a and b by the reciprocity map. Then by Theorem 4.2.2(
σa − ψ(a)N ak+1)(θb(tr)⊗ t̃r⊗γ(̃tr)k

)
= ψ(a)N ak

(
θb(tr)

σa−Na ⊗ t̃r ⊗ γ(̃tr)k
)

= ψ(a)N ak
(
θa(tr)

σb−N b ⊗ t̃r ⊗ γ(̃tr)k
)
.

It is enough to show that σa − ψ(a)N ak+1 is invertible in Λ = Op[[Γ]],
because C

χ

∞ is a torsion free Λ-module. Λ is a local ring if p is inert or
prime in K and a product of local rings if p is split. We have Λ/m = Op/p,
where m is either the maximal ideal or the product of the maximal ideals.
The element σa acts via 1 on Op/p and thus σa−ψ(a)N ak+1 is invertible in
Λ if ψ(a)N ak+1 �≡ 1(mod p). It remains to see that γ(̃tr)k generates Zp(k).
We have

< t̃r,
√

dK t̃r >
±1 = exp

(
p−r |Ω|2(√dK −

√
dK
))

= exp
(− 2i p−r |Ω|2√|dK |

)
= exp

(− 4πi p−r
)
,

which is for p �= 2 a primitive root of unity. ��
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Corollary 5.2.2. The image rp(Rψ) in H1(OS, Tp E(k+1)⊗Q p) coincides
with the image of

ep
((

C
χ

∞ ⊗ Tp E(k)
)
Γ

)
.

Proof. As N f3k+2

2k−1ψ( f )
is prime to p, this follows from Corollary 5.1.3, the

definition of ep in 2.2.1 and the fact that N a(ψ(a)N ak+1 − 1) is invertible
in Op. ��

To conclude the proof of Theorem 1.1.5 it remains to see the following
lemma:

Lemma 5.2.3. The canonical map(
C∞ ⊗ Tp E(k)

)⊗LOp[[G]] Op →
(
C∞ ⊗ Tp E(k)

)
G
∼= (Cχ

∞ ⊗ Tp E(k)
)
Γ

is an isomorphism and (C
χ

∞ ⊗ Tp E(k))Γ ∼= Op.

Proof. By [Ru3] Theorem 7.7 we have an isomorphism

C
χ

∞ ∼= Λχ = Op[[Γ]].
This implies that the Op[[Γ]]-module is induced and hence as Op[[Γ]]-
module isomorphic to Op[[Γ]]. This implies (C

χ

∞⊗Tp E(k))Γ ∼= Op and the
claim of the corollary, because the higher Tor-terms vanish. ��
We get as a corollary part b) of Theorem 1.1.5:

Corollary 5.2.4. The map

Rψ ⊗ Zp → RΓ(OS, Tp E(k + 1)⊗Q p)[1]
induced by rp, gives an isomorphism

detOpRψ
∼= detOp RΓ(OS, Tp E(k + 1))−1.

Proof. The complex Rψ ⊗Zp → RΓ(OS, Tp E(k+ 1)⊗Q p)[1] is isomor-
phic to (

C
χ

∞ ⊗ Tp E(k)
)
Γ

ep−→ RΓ(OS, Tp E(k + 1)⊗Q p)[1]

because by 5.2.2 rp and ep have the same image and as Op-modules (C
χ

∞⊗
Tp E(k))Γ ∼= Op and Rψ⊗Zp

∼= Op. Theorem 2.2.12 implies then the claim.
��
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5.2.2 Finiteness of H2
p and injectivity of rp. Here we prove the claim of

Theorem 1.1.5, that the finiteness of H2
p implies that rp is injective on Rψ .

Recall that by Corollary 5.2.2 the image of rp coincides with the image
of ep. It suffices for the injectivity of rp to prove that rp(Rψ) is non zero,
because Rψ

∼= OK .

Proposition 5.2.5. Let H2
p be finite, then ep is injective.

Proof. We show first that H2
p finite implies the finiteness of (A∞⊗Tp E(k))G.

Note that this is the cokernel of

(U∞ ⊗ Tp E(k))G → (X∞ ⊗ Tp E(k))G.

Computing up to finite groups we get from Corollary 2.2.7 (using Corol-
lary 2.2.11) that this cokernel is isomorphic (up to finite groups) to the
cokernel of

H1(K ⊗Q p, E[p∞](−k)
)∗ → H1(OSp, E[p∞](−k)

)∗
which is contained in H2(OSp, Tp E(k+ 1)). This group is of course finite if
H2

p = H2(OS, Tp E(k + 1)) is finite. Thus (A∞ ⊗ Tp E(k))G is finite. Using
Lemma 6.2 from [Ru3] we see that this implies that (A∞⊗Tp E(k))G is finite.
We will now show that this last group controls the kernel of ep. It suffices to
show that the kernel of ep on (E∞⊗Tp E(k))G is finite because by [Ru3] 7.8.
both E∞ and C∞ are Λ-modules of rank 1 with E∞/C∞ a torsion module.
So suppose that the image of (E∞ ⊗ Tp E(k))G under ep has not rank 1, i.e.
is finite. Then, because (U∞⊗Tp E(k))G ∼= H1(K⊗Q p, E[p∞](−k))∗ the
image of (E∞ ⊗ Tp E(k))G in (U∞ ⊗ Tp E(k))G must be finite as well. The
kernel of the map

(E∞ ⊗ Tp E(k))G → (U∞ ⊗ Tp E(k))G

is H1(G,U∞/E∞ ⊗ Tp E(k)) (group homology). On the other hand, up
to finite groups, Corollary 2.2.7 implies that H1(G,X∞ ⊗ Tp E(k)) ∼=
H2(OSp, E[p∞](−k))∗. By Lemma 2.2.8 we get a commutative diagram
(up to finite groups)

H1
(
G,U∞/E∞ ⊗ Tp E(k)

) α−−−→ H1(G,X∞ ⊗ Tp E(k))� �
(E∞ ⊗ Tp E(k))G

ep−−−→ H1(OSp, Tp E(k + 1))� �
(U∞ ⊗ Tp E(k))G

∼=−−−→ H1
(
K ⊗Q p, E[p∞](−k)

)∗
.
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The kernel of the map α is a quotient of (A∞ ⊗ Tp E(k))G which by the
above is finite. Thus, we arrive at a contradiction and ep can not be zero on
the free part of (E∞⊗Tp E(k))G. Hence, ep is non zero on (C∞⊗Tp E(k))G.

��
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[So3] C. Soulé: p-adic K-theory of elliptic curves, Duke Math. J. 54, 249–269 (1987)
[Wi] J. Wildeshaus: Realizations of Polylogarithms, Lecture Notes in Mathematics

1650, Springer 1997
[Win] K. Wingberg: On the étale K-theory of an elliptic curve with complex multi-

plication for regular primes, Canad. Math. Bull. 33, 145–150 (1990)
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