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Abstract. For a large class of non-uniformly hyperbolic attractors of dissi-
pative diffeomorphisms, we prove that there are no “holes” in the basin of
attraction: stable manifolds of points in the attractor fill-in a full Lebesgue
measure subset. Then, Lebesgue almost every point in the basin is generic
for the SRB (Sinai-Ruelle-Bowen) measure of the attractor. This solves
a problem posed by Sinai and by Ruelle, for this class of systems.

1 Introduction

For most dynamical systems, are time averages well-defined at Lebesgue
almost every orbit? This is always the case if the system preserves Lebesgue
measure, according to the ergodic theorem. However, in general this fun-
damental problem, raised by Sinai and by Ruelle in the seventies, remains
essentially open. For dissipative systems one usually looks at the dynamics
in the basin of each attractor, and then the problem can be restated Is almost
every orbit in the basin of attraction asymptotic to some orbit contained in
the attractor? Is it generic for some SRB measure supported in the attractor?
See [11, Sect. IV], [16, p. 148].

By attractor one means a compact invariant subset Λ of the phase
space M, dynamically indecomposable (e.g. Λ contains dense orbits), and
whose basin B(Λ) = {z ∈ M whose future orbit accumulates on Λ} is
a large set (a neighbourhood of Λ, say). One wants to focus on attractors
having some degree of robustness under perturbations of the dynamical
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system, which is often associated to some form of hyperbolicity. Let Ws(ξ)
denote the set of all z ∈ M whose orbit approaches the orbit of a point ξ as
time goes to +∞. Then the first question may be formulated

(B1) does B(Λ) = ⋃
ξ∈Λ Ws(ξ) up to a zero Lebesgue measure set?

Suppose Λ supports an invariant ergodic measure µwhich is hyperbolic
(all the Lyapunov exponents are nonzero) and whose conditional measures
on unstable manifolds are absolutely continuous with respect to Lebesgue
measure. Then, see [17,18], µ is an SRB measure, in the sense that its basin
B(µ) has positive Lebesgue measure in M. By definition, B(µ) is the set
of points z ∈ M such that the time average of every continuous function
ϕ : M → R on the orbit of z exists and coincides with the space average∫
ϕ dµ (one also says that z is a generic point for µ). Then, supposing that

µ is unique,

(B2) does B(µ) = B(Λ) up to a zero Lebesgue measure set?

It is now classical that both versions (B1) and (B2) of the basin problem
have an affirmative answer in the case of uniformly hyperbolic (Axiom A) at-
tractors, where a main ingredient is the uniform shadowing property. See [7,
8,19–21]. On the other hand, although these problems have been around for
some time, little is known in the non-uniformly hyperbolic setting: excep-
tions include the geometric Lorenz-like attractors [1,12] (for which a stable
foliation exists, essentially, by definition), and systems preserving a smooth
ergodic measure µ (where B(µ) has full measure as a direct consequence
of the ergodic theorem).

Here we give a positive solution to the basin problem for Hénon-like
attractors. This type of attractor was first constructed in [2], where it was
shown that the Hénon model

h(x, y) = (1 − ax2 + y, bx) (1)

has a “strange” (non-hyperbolic) attractor for a set of values of the pa-
rameters (a, b) with positive Lebesgue measure. Based on these methods,
attractors combining hyperbolic behaviour with presence of “folding” re-
gions were shown to occur persistently in certain general bifurcation mech-
anisms [10,15]. Moreover, it was proved in [5] that all these Hénon-like
attractors support a unique invariant measure µ as above. It is for this class
of systems that we state our results.

Theorem A. Let Λ be a Hénon-like attractor of a surface diffeomorphism
f : M → M. Then, through Lebesgue almost every point z ∈ B(Λ) passes
a stable leaf Ws(ξ) of some ξ ∈ Λ: dist( f n(z), f n(ξ)) → 0 exponentially
fast as n → +∞.

Theorem B. Denoting by µ the SRB measure of f on Λ, then for Lebesgue
almost every z ∈ B(Λ) one has

lim
n→+∞

1

n

n−1∑
j=0

ϕ( f j(z)) =
∫
ϕ dµ for every continuous ϕ : M → R.
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As a by-product of the proofs we also get that the stable manifold Ws(P)
is dense in B(Λ), where P ∈ Λ denotes a hyperbolic saddle-point such that
Λ = closure(Wu(P)).

Let us mention a few other recent developments in the ergodic theory
of Hénon-like attractors. It is shown in [6] that the system ( f, µ) has expo-
nential decay of correlations in the space of Hölder continuous observable
functions. In [4] we prove that these systems are stochastically stable with
respect to small random perturbations with absolutely continuous transi-
tions. Moreover, an alternative approach to the construction of the SRB
measure has been announced by the authors of [13].

According to [22], persistent Hénon-like attractors exist for diffeomor-
phisms on manifolds of arbitrary dimension. Not all our arguments carry
on to higher dimensions, but we expect Theorems A and B to hold in such
generality, and it would be nice to establish this.

We recall in the next section those known properties of Hénon-like
attractors that are used in our arguments. In the remainder of this introduction
we comment on ideas involved in the proof of Theorem A. We begin by
pointing out that a local version of the basin problem, which holds in the
Axiom A case, is false for Hénon-like maps: the local stable sets of points
ξ ∈ Λ, do not fill-in a full Lebesgue measure subset of a neighbourhood
of the attractor. This means that global control of the stable lamination is
needed in the present case.

Our strategy is to identify a positive Lebesgue measure set H formed
by stable leaves of points in Λ, and to show that almost every z ∈ B(Λ)
eventually reaches this set. The points in H are characterized by a bounded
recurrence property that ensures that their orbits do not return too often to
the folding region and, most important, these returns are always “tangential”
in the sense of [2], see Sect. 2 below.

The arrival time to H , a parameter of “nonlocalness”, depends in a very
discontinuous way on the point z. The fact that it is finite Lebesgue almost
everywhere relies on a statistical argument that we present in Sect. 4. On
its turn, this is based on a geometric pseudo-Markov construction on the
basin of the attractor Λ, which we describe in Sect. 3. A main feature is the
following bounded geometry property: the set of points sharing the same
finite itinerary is always a rectangle (bounded by a pair of stable segments
and a pair of unstable segments).

In Sect. 5 we put these ideas together to prove Theorem A. This includes
some description of the topological basin of attraction, for which it is
convenient to consider the orientation-preserving and orientation-reversing
maps separately. In the orientation-preserving case, we add a mild technical
assumption that may exclude some of the parameters in previous papers, but
keeping a positive Lebesgue measure set of them. Theorem B is a corollary
of Theorem A, using the fact that B(µ) consists of entire stable leaves Ws(ξ).

Acknowledgements. Part of this work was carried out at the University of Porto and the
Schrödinger Institute in Vienna, besides our home institutions. We are also grateful to
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2 Hénon-like attractors revisited

Let us recall a number of known facts about Hénon-like attractors, from [2,
5,15], that we use in Sects. 3 through 5. First of all we fix some notations.

We deal with parametrised families of diffeomorphisms of the plane

f(x, y) = fa(x, y) = (1 − ax2, 0)+ R(a, x, y), (2)

R close to zero in the C3 norm, which we call Hénon-like families. More
precisely, we suppose that ‖R‖C3 ≤ J

√
b on [1, 2] × [−2, 2]2, with

J−1b ≤ | det D f | ≤ Jb and ‖D
(

log | det D f |)‖ ≤ J, (3)

where J > 0 is arbitrary and b > 0 is taken sufficiently small. The quadratic
family 1 − ax2 may be replaced by any family of maps in some fixed
C3 neighbourhood of it. The Hénon model (1) is affinely conjugate to the
map f(x, y) = (1 − ax2 + √

by,
√

bx), and so does fall into this framework
if b is small.

We consider parameter values a ∈ [a1, a2] with 1 � δ � 2 − a1 >
2 − a2 � b. The parameter interval should not be too small: (a2 − a1) ≥
(2 − a2)/10 suffices. Moreover, 2 may be replaced by any Misiurewicz
parameter of the quadratic family 1 − ax2. In this parameter range, f has
a unique fixed saddle-point P such that Λ = closure(Wu(P)) is compact,
indeed Λ is contained in (−2, 2)2. It is well-known that the basin B(Λ) has
nonempty interior, see [2] or [16, App. III]. In all the situations concerned
here it even contains a neighbourhood of Λ, see [3,23], and Sect. 5 below.

2.1 Existence and properties

Besides J , let
√

e < σ1 < σ2 < 2 be fixed at the very beginning. For the
next theorem, one also fixes constants 1 � β � α > 0, and supposes
b � δ � α. Throughout, we use C > 1 to represent various large constants
depending only on J , σ1, σ2, α, or β (not on δ or b). Analogously, c ∈ (0, 1)
is a generic notation for small constants depending only on J , σ1, σ2, α,
or β. Let I(δ) = {(x, y) : |x| < δ}. For z ∈ Wu(P), let t(z) be any norm
1 vector tangent to Wu(P) at z (the particular choice is irrelevant). Given
a non-zero vector v = (v1, v2) ∈ R2, slope v will always be taken with
absolute values, i.e. slope v = |v2|/|v1|.
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Theorem 2.1. Given any Hénon-like family, there exists a positive Lebesgue
measure set E such that for every a ∈ E the map f has a countable critical
set C ⊂ Wu(P) ∩ I(δ) whose elements ζ satisfy

1. t(ζ) is almost horizontal and t( f(ζ)) is almost vertical, in the sense that
slope t(ζ) ≤ C

√
b and slope t( f(ζ)) ≥ c/

√
b;

2. t( f(ζ)) is exponentially contracted and w0 = (1, 0) is exponentially
expanded under positive iterates: ‖D f n( f(ζ))t( f(ζ))‖ ≤ (Cb)n and
‖D f n( f(ζ))w0‖ ≥ σn

1 for all n ≥ 1;
3. if f n(ζ) ∈ I(δ) then there is ζn ∈ C so that dist( f n(ζ), ζn) ≥ e−αn

and there is a C2 curve L = {(x, y(x))} with |y′(x)| ≤ 1/10 and
|y′′(x)| ≤ 1/10, tangent to t(ζn) at ζn and also containing f n(ζ).

In addition, there exists ζ ∈ C such that { f n(ζ) : n ≥ 0} is dense in Λ.

Theorem 2.1 was first proved for the Hénon model in [2]. Then the
arguments were extended to the Hénon-like case in [15]. The property in
Part 3 plays a central role in the proof, as well as in our own arguments here,
and we shall return to comment on it. From now on we always suppose
a ∈ E. The remaining statements in this subsection are part of the proof of
this theorem, but we also make independent use of them in Sects. 3–5.

Proposition 2.2. 1. There exists ζ0 = (x0, y0) ∈ C with |x0| ≤ C
√

b, so
that C ∩ G0 = {ζ0}, where G0 denotes the segment connecting f(ζ0) to
f 2(ζ0) in Wu(P);

2. denoting Gg = f g(G0)\ f g−1(G0), then C∩Gg is finite for every g ≥ 1,
and in fact C ∩ G1 consists of a single point ζ1;

3. for every ζ ∈ C ∩ Gg and g ≥ 0, the segment γ = γ(ζ) of radius δcg

around ζ in Wu(P) may be written γ = {(x, y(x))} with |y′(x)| ≤ C
√

b
and |y′′(x)| ≤ C

√
b;

4. given any ζ ∈ C ∩ Gg with g > 0, there exist g̃ < g and ζ̃ ∈ C ∩ Gg̃

with dist(ζ, ζ̃ ) ≤ bg/10.

The lower bound on the length of the segments γ(ζ) is important, so that
we give a special name ρ to the constant c in the context of Part 3 of the
proposition. Moreover, we write K for the large constant C, and call a C2(b)
curve any curve {(x, y(x))} with |y′(x)| ≤ K

√
b and |y′′(x)| ≤ K

√
b.

Note that the expanding eigenvalue of D f(P) is negative and so G0 is
a neighbourhood of P and ζ0 in Wu(P). It is easy to see that G0 and G1
contain C2(b) curves extending from x = −9/10 to x = 9/10. For g ≥ 0,
points in Gg are said to be of generation g.

Since every orbit in B(Λ)must eventually enter [−2, 2]2, we may always
assume to be dealing with orbits which never leave [−2, 2]2 in positive time,
and we do so. Given λ > 0, a point z = (x, y) is called λ-expanding if

‖D f j(z)w0‖ ≥ λ j for all j ≥ 1. (4)
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An important case is z ∈ f(C), with λ = σ1, cf. Theorem 2.1.2. We say that
z is λ-expanding up to time n if the inequality in (4) holds for 1 ≤ j ≤ n. We
define the contracting direction of order n ≥ 1 at z as the tangent direction
e(n)(z) that is most contracted by D f n(z). The next proposition summarises
a number of results from [2, Sect. 5] and [15, Sect. 6]. In the statement
λ > 0 and τ > 0 are arbitrary constants, with τ sufficiently small (e.g.
τ ≤ 10−20), and one assumes that b is much smaller than either of them.

Proposition 2.3. Let z be λ-expanding up to time n ≥ 1, and ξ satisfy
dist( f j(ξ), f j(z)) ≤ τ j for every 0 ≤ j ≤ n − 1. Then, for any point η in
the τn-neighbourhood of ξ and for every 1 ≤ l ≤ k ≤ n,

1. e(k)(η) is uniquely defined and nearly vertical: slope(e(k)(η)) ≥ c/
√

b;

2. angle(e(l)(η), e(k)(η)) ≤ (Cb)l and ‖D f l(η)e(k)(η)‖ ≤ (Cb)l;

3. ‖De(k)(η)‖ ≤ C
√

b and ‖D2e(k)(η)‖ ≤ C
√

b;

4. ‖D(D f le(k))(η)‖ ≤ (Cb)l;

5. 1/10 ≤ ‖D f n(ξ)w0‖/‖D f n(z)w0‖ ≤ 10 and angle(D f n(ξ)w0,

D f n(x)w0) ≤ (
√

Cτ)n.

Parts 3 and 4 are also true for the derivatives of e(k) and D f le(k)

with respect to the parameter a. Throughout, we write expanding to mean
λ-expanding for some λ ≥ e−20 (cf. Remark 3.2).

Proposition 2.4. If z is an expanding point then its stable set Ws (z) contains
a segment Γ = Γ(z) = {(x(y), y) : |y| ≤ 1/10} with |x ′| ≤ C

√
b and

|x ′′| ≤ C
√

b, such that z ∈ Γ and

dist( f n(ξ), f n(η)) ≤ (Cb)n dist(ξ, η), for all ξ, η ∈ Γ and n ≥ 1.

Moreover, if z1, z2 are expanding points then

angle(tΓ(ξ1), tΓ(ξ2)) ≤ C
√

b dist(ξ1, ξ2), for every ξ1 ∈ Γ(z1), ξ2 ∈ Γ(z2),

where tΓ(ξi) denotes any norm 1 vector tangent to Γ(zi) at ξi , i = 1, 2.

We call a long stable leaf any curve Γ as in this proposition, and a stable
leaf any compact curve having some iterate contained in a long stable leaf.
The first part of the proposition is proved in [2, Sect. 5.3], the arguments
extending directly to Hénon-like maps [15, Sect. 7C]. We sketch the proof,
to explain how the second part, not explicitly stated in those papers, can be
deduced from the construction.

One takes Γ(z) = lim Γn(z), where Γn(z) is the integral curve of the
direction field e(n) (the temporary stable leaf of order n) through the point z.
One can check directly that the first integral curve Γ1(z) is long, meaning
that it extends from y = −1/10 to y = +1/10. To prove that the same is
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true for all the Γn(z) one uses induction. Let τ be fixed, as in Proposition 2.3,
and b � τ . Part 2 of that proposition implies

dist( f j(ξ), f j(z)) ≤ (Cb) jdist(ξ, z) for any 1 ≤ j ≤ n−1 and ξ ∈ Γn−1(z).

As a consequence, e(n)(η) is well-defined in the τn-neighbourhood of
Γn−1(z). Moreover, angle(e(n−1), e(n)) ≤ (Cb)n−1 ensures that the inte-
gral curve Γn(z) does not leave this τn-neighbourhood inside the region
|y| ≤ 1/10. Thus Γn(z) must be long. The previous angle estimate also
implies that lim Γn(z) does exist, and this is how one gets the first claim in
Proposition 2.4.

Now, given z1, z2, ξ1 ∈ Γ(z1), ξ2 ∈ Γ(z2) as in the proposition, let n be
fixed such that τn+1 ≤ dist(ξ1, ξ2) ≤ τn . By Parts 2 and 3 of Proposition 2.3,
angle(tΓ(ξi), e(n)(ξi)) ≤ (Cb)n for i = 1, 2, and angle(e(n)(ξ1), e(n)(ξ2)) ≤
C

√
b dist(ξ1, ξ2). Then

angle(tΓ(ξ1), tΓ(ξ2)) ≤ 2(Cb)n + C
√

b dist(ξ1, ξ2) ≤ 2C
√

b dist(ξ1, ξ2).

This gives the last statement in Proposition 2.4.

Proposition 2.5. Given any k ≥ 1, any z ∈ [−2, 2]2 satisfying f j(z) /∈ I(δ)
for 0 ≤ j < k, and any tangent vector v with ‖v‖ = 1 and slope v ≤ 1/5,
then

slope(D f j(z) v) ≤ (C/δ)
√

b < 1/10 and ‖D f j(z)v‖ ≥ cδσ j
2

for 1 ≤ j ≤ k. If either z ∈ f(I(2δ)) or f k(z) ∈ I(2δ) then ‖D f k(z) v‖ ≥ σ k
2 ,

and in the latter case we also have slope(D f k(z) v) ≤ C
√

b.

This means, in particular, that pieces of orbits outside I(δ) are (essen-
tially) expanding. Similar statements are well-known for one-dimensional
maps such as x �→ 1 − ax2. The proposition follows using a perturbation
argument, see [2, Lemmas 4.5, 4.6].

Another important notion is that of bound period p(n, ζ) associated to
a return n of a critical point ζ ∈ C. These are defined through the following
inductive procedure. If n ≥ 1 does not belong to [ν+1, ν+ p(ν, ζ)] for any
return 1 ≤ ν < n, then n is a (free) return for ζ if and only if f n(ζ) ∈ I(δ).
Moreover, the bound period p = p(n, ζ) is the largest integer such that

dist( f n+ j(ζ), f j(ζn)) ≤ e−β j for all 1 ≤ j ≤ p, (5)

where ζn is the binding point of f n(ζ), given by Theorem 2.1.3. If, on the
contrary, n is in [ν + 1, ν + p(ν, ζ)] for some previous return 1 ≤ ν < n
then, by definition, n is a (bound) return for ζ if and only if n − ν is a return
for the binding point ζν, and we let p(n, ζ) = p(n − ν, ζν). Up to a slight
(and otherwise irrelevant) modification of these definitions, see [2, Sect. 6.2]
or [15, Sect. 8], we may suppose that bound periods are nested: whenever
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n ∈ [ν + 1, ν + p(ν, ζ)] then n + p(n, ζ) ≤ ν + p(ν, ζ), that is to say, the
bound period associated to n ends before the one associated to ν.

We write dn(ζ) = dist( f n(ζ), ζn), for ζ and ζn as before. Moreover,
w j(z) = D f j( f(z))w0 for any point z and j ≥ 0.

Proposition 2.6. Let n ≥ 1 be a free return of ζ ∈ C, and p = p(n, ζ) be
the corresponding bound period. Then

1. (1/5) log(1/dn(ζ)) ≤ p ≤ 5 log(1/dn(ζ));

2. ‖wn+p(ζ)‖ ≥ σ
(p+1)/3
1 ‖wn−1(ζ)‖ and slopewn+p(ζ) ≤ (C/δ)

√
b;

3. ‖wn+p(ζ)‖dn(ζ) ≥ ce−β(p+1)‖wn−1(ζ)‖;

4. ‖w j( f n(ζ))‖ ≥ σ
j

1 for 1 ≤ j ≤ p, and slopewp( f n(ζ)) ≤
(C/δ)

√
b.

A main ingredient here is the property in Theorem 2.1.3. Actually, for
free returns n, a curve L as in the theorem may be taken tangent not only
to t(ζn) at ζn but also to wn−1(ζ) at f n(ζ), see [2, Sect. 7.3] and [15,
Lemma 9.5]. We shall explain below, in a more general context, how this is
used in the proof.

2.2 Dynamics on the unstable manifold

The next proposition, appearing in [5], permits to extend to generic orbits
in Wu(P) the control given by the previous statements for orbits of critical
points. This is a key step in the construction of the SRB measure of f on Λ
that appeared in that paper, cf. Theorem 2.9 below.

Proposition 2.7. Let z̃ ∈ Wu(P) be such that f n(z̃) /∈ C for every n ≥ 1.
Then, given any n ≥ 1 such that f n(z̃) ∈ I(δ), there exists ζn ∈ C and some
C2 curve L = {(x, y(x))} with |y′| ≤ 1/10 and |y′′| ≤ 1/10, tangent to
t(ζn) at ζn and also containing f n(z̃).

Let us elaborate a bit on the content and consequences of this proposition.
Given a point z ∈ Wu(P), fix k � 1 so that z̃ = f −k(z) belongs to a small
neighbourhood of P in Wu(P). We can now define returns, binding points,
and bound periods for z̃ in the same way as we did before for critical
points. That is, corresponding to a free return n of z̃ we choose as binding
point a critical point ζn as in the proposition, and define the bound period
p = p(n, z̃) of f n(z̃)with respect to this ζn , cf. (5). As in the case of critical
points, we take the bound periods nested; see also comments following the
next proposition.

We say that z = f k(z̃) is a free point if k is outside every bound period
[ν + 1, ν + p(ν, z0)] of z̃. This is an intrinsic property of the point z: the
choice of k is irrelevant, as long as it is large enough. We call a segment
γ ⊂ Wu(P) free if all its points are free. While proving Proposition 2.7, it is
shown in [5] that if n is a free return for z̃ and γ ⊂ Wu(P) is a free segment
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containing f n(z̃), then the same binding point may be assigned to all the
points in γ ∩ I(δ). More precisely, there is a critical point ζγ and a curve L
as in the statement, tangent to t(ζγ ) at ζγ and containing the whole γ . In
particular, L is tangent to t(w) at every w ∈ γ . In some cases ζγ ∈ γ = L ,
but it is not always possible to take L ⊂ Wu(P).

Given any maximal free segment γ intersecting I(δ), we always fix L
and ζγ as above, and set dC(w) = dist(w, ζγ ) for each w ∈ L . We extend
t(w) to represent a norm 1 vector tangent to the curve L at every w ∈ L ,
and define the bound period p(w) of every w ∈ L with respect to this ζγ ,
cf. (5).

The following definition is a slight extension of notions with similar
denominations appearing in [2,5,6,15]. Given points p, q and tangent vec-
tors u, v, we say that p is in tangential position relative to (q, v) if there
exists a curve {(x, y(x))} with |y′| ≤ 1/5 and |y′′| ≤ 1/5, tangent to v at
q and also containing p. And we say that (p, u) is in tangential position
relative to (q, v) if such a curve may be chosen tangent to u at p. Thus, as
we have seen, if z is a free point contained in the Wu(P) then (z, t(z)) is in
tangential position with respect to (ζγ , t(ζγ )) for some critical point ζγ . It
is worth stressing that there can be no analog of this for points outside the
unstable manifold. One key fact, that we shall prove in Sect. 4, is that for
points in the basin returns are almost surely eventually tangential.

Proposition 2.8. Given any curve L as before and z ∈ L,

1. (1/5) log(1/dC(z))≤ p(z) ≤ 5 log(1/dC(z));

2. ‖D f p(z)+1(z)t(z)‖ ≥ σ
(p(z)+1)/3
1 and slope(D f p(z)+1(z)t(z))<(C/δ)

√
b;

3. ‖D f p(z)+1(z)t(z)‖dC(z) ≥ ce−β(p(z)+1);

4. ‖w j(z)‖ ≥ σ
j

1 for 1 ≤ j ≤ p(z), and slopewp(z)(z) < (C/δ)
√

b.

Propositions 2.6, 2.8 have similar proofs, based on the tangential position
property. We outline the main steps since some features of these arguments
are relevant for what follows; see also [2, Sect. 7.4] and [15, Sect. 10]. The
importance of the tangential position property comes from the fact that the
diffeomorphism f behaves, essentially, as a one-dimensional quadratic map
over the curve L . Let us begin by explaining this.

Let L be a curve of the form {(x, y(x))} with |y′| ≤ 1/5 and |y′′| ≤ 1/5.
Recall that f(x, y) = (1 − ax2, 0)+ R(a, x, y), where the first and second
order derivatives of R are bounded by C

√
b. So, the image of L may be

written f(L) = {ξ(x), η(x)} with |ξ ′′ + 2a|, |η′|, |η′′| all bounded above by
C

√
b. Let Γs = {(xs(y), y)} be some nearly vertical curve: |(xs)′| ≤ 1/5

and |(xs)′′| ≤ 1/5. Let ξs be the horizontal distance from f(L) to Γs, that is,

ξs(x) = xs(η(x))− ξ(x) (6)

for each x. The previous bounds on η, xs, and their derivatives, imply that
|(ξs)′′ + ξ ′′| ≤ C

√
b. This gives |(ξs)′′ − 2a| ≤ C

√
b, and so (ξs)′′(x) ∈
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(3, 5), up to taking b small and a close to 2. Now, suppose there exists
ζγ = (xγ , y(xγ )) ∈ L such that f(L) is tangent to Γs at f(ζγ ). The situation
we have in mind is when ζγ is a critical point and Γs is the long stable leaf
through its image, cf. Theorem 2.1 and Proposition 2.4. Then ξs(xγ ) = 0
and (ξs)′(xγ ) = 0, and so

3 ≤ (ξs)′(x)
x − xγ

≤ 5 and
3

2
≤ ξs(x)

(x − xγ )2
≤ 5

2
(7)

for every x. Observe that |x − xγ | is roughly the same as the distance from
(x, y(x)) to ζγ : |x − xγ | ≤ dist((x, y(x)), ζγ ) ≤ (6/5)|x − xγ |, because
L = {(x, y(x))} with |y′| ≤ 1/5.

Most important, this quadratic behaviour allows one to estimate the
expansion loss experienced by trajectories at tangential returns, in terms
of the distance to the critical point. This goes as follows. Suppose ζγ is
a critical point, and all the points in f(L) are expanding up to some time
p ≥ 1. Let z(s) = (s, y(s)) be a generic point of L . By Proposition 2.3.1, the
contracting direction of order p at f(z(s)) is well defined and almost vertical:
e(s) = e(p)( f(z(s))) is represented by a vector (ε(s), 1) with |ε(s)| ≤ C

√
b.

Besides,

|ε′(s)| ≤ C
√

b and ‖D f j( f(z(s)))e(s)‖ ≤ (Cb) j for all 1 ≤ j ≤ p.
(8)

See also [2, Sect. 5] and [15, Sect. 6]. Then let us split the tangent direction
to f(L) into contracting and horizontal (expanding) components

(ξ ′(s), η′(s)) = α(s)e(s)+ β(s)w0 . (9)

Of course, α(s) = η′(s) and β(s) = ξ ′(s) − ε(s)η′(s). As we have seen,
|ξ ′′ + 2a|, |η′|, |η′′| are all bounded by C

√
b. Then the same is true for

|β′ + 2a|, |α|, |α′|. In particular,

3 ≤ β(xγ )− β(s)

s − xγ
≤ 5 (10)

for every s. We also have |β(xγ )| ≤ (Cb)p, as a consequence of the following
two observations. By Theorem 2.1.2, the unstable manifold Wu(P) is to
tangent to Ws( f(ζγ )) at f(ζγ ). By Proposition 2.3.2, the angle between the
tangent of Ws( f(ζγ )) and the contracting direction e of order p is at most
(Cb)p.

Now we outline the proof of Proposition 2.8. Fix z = (x, y(x)) in L and
let p = p(z). As before, z(s) = (s, y(s)) represents a generic point of L . We
write w j(s) = w j(z(s)) for each s. First, one proves a distortion estimate,
see [2, Lemma 7.8] and [15, Lemma 10.5]:

w j(s) = λ(s)
(
w j(xγ )+ ε j(s)

)
, c ≤ λ(s) ≤ C and ‖ε j(s)‖ � ‖w j(xγ )‖ ,

(11)
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for every 0 ≤ j ≤ p and s ∈ [xγ , x]. The main ingredient is provided
by Theorem 2.1.3: associated to every return j of ζγ there exists a critical
point ζ j with the tangential position property and dist( f j(ζγ ), ζ j) ≥ e−α j .
The proof of (11) combines this information with

dist
(

f j(z(s)), f j(ζγ )
) ≤ Ce−β j � e−α j ≤ dist

(
f j(ζγ ), ζ j

)
(12)

for every return 0 ≤ j ≤ p, which is a consequence of (5). The fact
that ζγ is a critical point is irrelevant at this point, as long as we have
(12), expansiveness, and the tangential position property. From (11) and
Theorem 2.1.2 we get

‖w j(s)‖ ≈ ‖w j(xγ )‖ ≥ σ
j

1 , (13)

for all 0 ≤ j ≤ p and s ∈ [xγ , x]. Unless otherwise stated, ≈ means that
the two expressions coincide up to factors c and C. It follows that f(z(s))
is expanding up to time p, for every s ∈ [xγ , x]. Then we may apply the
arguments above leading to (10): the tangent direction to f(L) at each point
may be split as in (9), and the coefficient β(s) satisfies

3 ≤ β(xγ )− β(s)

s − xγ
≤ 5 and |β(xγ )| ≤ (Cb)p. (14)

Using (8), (9), (11), and the last part of (14), we may write

f j+1(ζγ )− f j+1(z) =
∫ xγ

x

(
α(s)D f j( f(z(s)))e(s)+ β(s)w j(s)

)
ds

= w j(xγ )
∫ xγ

x
λ(s)

(
β(s)− β(xγ )

)
ds + δ j

(15)

with ‖δ j‖ � (Cb) j + ‖w j(xγ )
∫ xγ

x λ(s)
(
β(s) − β(xγ )

)
ds‖. By (10) and

c ≤ λ(s) ≤ C in (11),
∫ xγ

x
λ(s)

(
β(s)− β(xγ )

)
ds ≈ (x − xγ )

2 ≈ dC(z)
2.

Taking j = p in (15),

e−βp ≈ dist
(

f p+1(z), f p+1(ζγ )
) ≈ ‖wp(xγ )‖ dC(z)

2. (16)

Part 1 of the proposition follows from combining this with 4p ≥ ‖wp(xγ )‖
≥ σ

p
1 . From the relation D f p+1(z) t(z) = β(x)wp(x)+α(x)D f p( f(z)) e(x),

using (10) and (16),

‖D f p+1(z) t(z)‖ ≥ c dC(z)‖wp(x)‖ − (Cb)p‖wp(x)‖ − C
√

b (Cb)p

≥ c
(
e−βp‖wp(x)‖

)1/2 − (4Cb)p ≥ σ
(p+1)/3
1 ,
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which proves the first statement in Part 2. The second statement uses

slope(D f p+1(z) t(z)) ≈ slopewp(x) ≈ slopewp(xγ ),

recall (15), (11), together with the fact that p + 1 does not belong to any
bound period of ζγ (because bound periods are nested). To get Part 3,

‖D f p+1(z) t(z)‖ dC(z) ≥ c dC(z)
2‖wp(x)‖ − (4Cb)p ≥ ce−βp.

The first half of Part 4 follows from (13), and the second half is analogous
to the slope statement in Part 2. This ends our sketch of the proof of
Proposition 2.8.

For Proposition 2.6 some extra care is needed: arguments as above
assume properties of w j(ζn), 1 ≤ j ≤ p( f n(ζ)), from the statement of
Theorem 2.1, while the proposition itself is part of the proof of the theorem.
To go around this, one begins by proving that

p( f n(ζ)) ≤ 5 log (1/dn(ζ)) ≤ 5αn < n,

which ensures that such properties are used only in an inductive way.

It is clear from the proof that Parts 2–4 of Proposition 2.8 remain true
if one replaces t(z) by any norm 1 tangent vector v such that (z, v) is in
tangential position relative to (ζγ , t(ζγ )). We want to point out that these
arguments also allow for some freedom in the very definition of bound
period. For instance, let z(s) ∈ L with s ∈ [xγ , x] and

|x − s| ≤ c|x − xγ |. (17)

Taking c ∈ (0, 1) small enough, then (14) and (15) give (distinguish two
cases, depending on whether ‖w j(xγ )‖ dC(z)2 is larger or smaller than
(Cb) j)

dist
(

f j+1(z(s)), f j+1(ζγ )
) ≈ dist

(
f j+1(z), f j+1(ζγ )

)
for any 0 ≤ j ≤ p,

(18)

(here ≈ means equality up to a factor 2), except possibly if both distances
are smaller than (Cb) j . In any event,

dist
(

f j(z(s)), f j(ζγ )
) {≤ 10e−β j for 1 ≤ j ≤ p(z)

≥ 1
10 e−β j for j = p(z)+ 1,

(19)

compare (12) and (16). Then the same arguments as before apply, to prove
that Parts 2–4 of Proposition 2.8 remain true with z(s) in the place of z, and
p(z) unchanged. This means that one might just as well take p(z(s)) = p(z)
for any such s. Accordingly, we always presume that, given any z as before
there exists a segment L(z) with z ∈ L(z) ⊂ L such that

length(L(z)) ≥ cdC(z) and p(·) is constant on L(z). (20)

We fix c < 1/100 in (20), and denote it by c1 from now on. A similar
formulation is used in [6].



Solution of the basin problem for Hénon-like attractors 387

We also quote the main result of [5]:

Theorem 2.9. There exists a unique f -invariant measureµ supported in Λ,
having nonzero Lyapunov exponents almost everywhere, and whose condi-
tional measures along unstable manifolds are absolutely continuous with
respect to Lebesgue measure on these manifolds. The support ofµ coincides
with Λ, and the system ( f, µ) is ergodic (even Bernoulli).

Given any segment γ ⊂ Wu(P), almost every point in γ (with respect to
the arc-length measure) is generic forµ. This can be read out from the proof
as follows, see [5, Sect. 3]. Almost every point z in γ has infinitely many
escape times ni: there exists a sequence γi of neighbourhoods of z in γ such
that f ni (γi) is a long C2(b) curve (length = δ/10) in {|x| < δ}, and the
maps f ni |γi have uniformly bounded distortion with respect to arc-length;
the images f ni (γi) may be taken crossing x = ±δ/2. A positive fraction,
uniformly bounded away from zero, of the points in each f ni (γi) are generic
for µ. So, almost every point z ∈ γ is a density point for the set of generic
points, and this implies the claim.

3 Symbolic dynamics in the basin of attraction

Here we construct a special sequence of partitions P n in the basin of
attraction, whose atoms are all rectangles, that is, regions bounded by two
segments of Wu(P) and by two stable leaves. A first step is Proposition 3.3:
for each critical value f(ζ) ∈ f(C) there exists a sequence Γr = Γr(ζ)
of long stable leaves accumulating Ws( f(ζ)) exponentially fast. Then we
introduce a notion of itinerary of a point z in the basin of attraction. It
involves choosing a sequence of critical points ζ̃ j close to each iterate
f n j (z) that is near x = 0, and describing the position of f n j (z) relative to ζ̃ j
in terms of these long stable leaves. The atoms of P n are the sets of points
sharing the same itinerary up to time n.

3.1 Constructing long stable leaves

In all that follows 0 < c1 < 1/100 is the constant we fixed before in the
context of (20).

Lemma 3.1. Let γ ⊂ Wu(P) be a free segment intersecting I(δ) such
that length(γ) ≥ 2c1dC(z) for z ∈ γ . Then there exists zγ ∈ γ such that
dC( f n(zγ )) ≥ e−2βn for every return n ≥ 1 of zγ .

Proof. Let L ⊃ γ be some nearly horizontal curve as in Proposition 2.7,
ξ0 be the midpoint of γ , and γ0 = γ ∩ L(ξ0), where L(ξ0) ⊂ L is a segment
as in (20). Then

length(γ0) ≥ c1dC(ξ0), (21)
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and there is p0 ≥ 1 such that p(z) = p0 for every z ∈ γ0. Let n0 > p0
be minimum such that f n0(γ0) intersects I(δ). Note that f n0(γ0) is a free
segment. Then, by (21) and Propositions 2.5 and 2.8.2–3

length
(

f n0(γ0)
) ≥ σ

n0−p0−1
2 length

(
f p0+1(γ0)

) ≥ length
(

f p0+1(γ0)
)

≥ inf
z∈γ0

‖D f p0+1(z) t(z)‖ c1dC(z) ≥ c c1e−β(p0+1)

≥ 20e−2βn0 . (22)

In the last inequality we use the remark that n0 > p0 can be supposed
arbitrarily large by decreasing δ > 0 (recall from the first paragraph of
Sect. 2.1 that we fix β first, then we let δ � 1). As a consequence, there
exists a segment γ̃1 ⊂ f n0(γ0) with

length(γ̃1) ≥ 1

4
length

(
f n0(γ0)

) ≥ 5e−2βn0 and dC(z) ≥ e−2βn0 for z ∈ γ̃1.

Let L1 ⊃ γ̃1 be some nearly horizontal curve as in Proposition 2.7 and
γ1 = γ̃1 ∩ L(ξ1), where ξ1 is the midpoint of γ̃1 and L(ξ1) is as in (20). We
consider two different cases.

If L(ξ1) is contained in γ̃1 then γ1 = L(ξ1). In particular, length(γ1) ≥
2c1dC(ξ1), and this ensures that (21) holds for γ1 . In this case we just
repeat the previous construction with γ1, ξ1, in the place of γ0, ξ0. Letting
p1 = p|γ1 and n1 > p1 be minimum such that f n1(γ1) intersects I(δ), we
find a segment γ̃2 ⊂ f n1(γ1) with

length(γ̃2) ≥ 5e−2βn1 and dC(z) ≥ e−2βn1 ≥ e−2β(n0+n1) for z ∈ γ̃2 .

Now suppose L(ξ1) is not contained in γ̃1. Then L(ξ1) connects the mid-
point ξ1 to some of endpoint of γ̃1, and so the same is true for the intersec-
tion γ1. Consequently,

length(γ1) ≥ 1

2
length(γ̃1) ≥ e−2βn0 .

Now, Propositions 2.5 and 2.8.2 give

length
(

f n1(γ1)
) ≥ σ

n1−p1−1
2 length

(
f p1+1(γ1)

)
≥ σ

n1/3
1 length(γ1) ≥ 20 length(γ1) ≥ 20e−2βn0 . (23)

Thus, there exists a segment γ̃2 ⊂ f n1(γ1) such that

length(γ̃2) ≥ 1

4
length

(
f n1(γ1)

) ≥ 5 length(γ1) ≥ 5e−2βn0

and dC(z) ≥ e−2βn0 ≥ e−2β(n0+n1) for every z ∈ γ̃2 .
Next, we take ξ2 to be the midpoint of γ̃2, and write γ2 = γ̃2 ∩ L(ξ2).

Then we apply the preceding steps with γ2, ξ2, in the place of γ1, ξ1: as
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before, we distinguish two cases according to whether L(ξ2) is contained in
γ̃2 or not. Iterating this procedure we construct a sequence ni , i ≥ 0, of large
integers, and a sequence γi , i ≥ 0, of segments in the unstable manifold
Wu(P), such that

f ni−1(γi−1) ⊃ γi and dC(z) ≥ e−2β(n0+···+ni−1) (24)

for z ∈ γi and every i ≥ 1. The first property ensures that f −(n0+···+ni−1)(γi),
i ≥ 1, is a decreasing sequence of compact subsets of γ . Take zγ a point
in the intersection of all these subsets. The conclusion of the lemma for the
returns of such a zγ occurring at times n0+· · ·+ni−1, i ≥ 1, follows directly
from the second part of (24). Any other return n is necessarily bound, i.e.
n = n0 + · · · + ni−1 + j for some j ≤ pi and i ≥ 1, and in this case the
conclusion of the lemma is immediate:

dC

(
f n(zγ )

) ≥ dC

(
f j(ζ̃i)

) − e−β j ≥ e−α j − e−β j ≥ e−2βn,

where ζ̃i represents the binding point of f n0+···+ni−1(zγ ). ��
Remark 3.1. We shall use a slightly stronger version of this lemma, where

length(γ) ≥ 2c1
dC(z)

| log dC(z)|2 for all z ∈ γ,

and the conclusion is as before. It follows from just the same proof,
together with the following observation. Though we get length(γ0) ≥
c1dC(ξ0)| log dC(ξ0)|−2 instead of (21), Proposition 2.8.1 ensures that (22)
is not affected:

length( f n0(γ0)) ≥ c c1
e−β(p0+1)

| log dC(ξ0)|2 ≥ c c1
e−β(p0+1)

(5p0)2
≥ 20e−2βn0,

if p0 ≤ n0 is taken large enough. As observed in the context of (22), this can
be done without affecting β, because we choose β > 0 before 0 < δ � 1.

In the next lemma we do not assume the point z to be in the unstable
manifold Wu(P). Also, w0 may be replaced by any norm 1 vector.

Lemma 3.2. Let z ∈ I(δ) and k ≥ 1 be such that for every 1 ≤ n ≤ k with
f n(z) ∈ I(δ) there exists ζn ∈ C satisfying

1. ( f n(z), D f n−1( f(z))w0) is in tangential position relative to (ζn, t(ζn));

2. dist( f n(z), ζn) ≥ e−2βn.

Then f(z) is expanding up to time k, in fact, ‖D f j( f(z))w0‖ ≥ σ
j/5

1 for
every 1 ≤ j ≤ k.
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Proof. We define a pair of sequences ni, pi , i ≥ 1, as follows. As a first
step, we take n1 to be the smallest integer n ≥ 1 such that f n(z) ∈ I(δ).
Then, for each i ≥ 1, we let pi ≥ 1 be maximum such that

dist
(

f ni+ j(z), f j(ζni )
) ≤ e−β j for all 1 ≤ j ≤ pi .

Finally, for each i ≥ 1, we define ni+1 to be the smallest integer n > ni + pi
such that f n(z) ∈ I(δ).

Since we suppose f(z) ∈ f(I(δ)), Proposition 2.5 gives ‖D f j( f(z))w0‖
≥ σ

j
2 for every 1 ≤ j ≤ n1 − 1, which implies the conclusion of the lemma

for j < n1. Now we proceed by induction, in the following way. Let i ≥ 1
and suppose we have shown that∥∥D f ni−1( f(z))w0

∥∥ ≥ σ
(ni−1)/3
1 . (25)

By Assumption 1, cf. comments we made after Proposition 2.8,∥∥D f ni+pi ( f(z))w0

∥∥ ≥ σ
(pi+1)/3
1

∥∥D f ni−1( f(z))w0

∥∥ ≥ σ
(ni+pi )/3
1 .

As ‖D f ‖ ≤ 4, we conclude that, given any 0 ≤ s < pi ,∥∥D f ni+s( f(z))w0

∥∥ ≥ 4s−pi
∥∥D f ni+pi (z)w0

∥∥ ≥ 4s−piσ
(ni+pi )/3
1 .

Using Assumption 2 and Proposition 2.8.1, and taking β > 0 sufficiently
small,

pi − s ≤ 5 log
1

d( f ni (z), ζni )
≤ 10βni ≤ log σ1

10 log 4
(ni + s). (26)

As a consequence, for every 0 ≤ s ≤ pi ,∥∥D f ni+s( f(z))w0

∥∥ ≥ σ
−(ni+s)/10
1 σ

(ni+pi )/3
1 ≥ σ

(ni+s)/5
1 .

This proves the lemma for ni ≤ j ≤ ni + pi .
Next, Proposition 2.8.2 gives slope(D f ni+pi ( f(z))w0) ≤ (C/δ)

√
b <

1/10, and so we may use Proposition 2.5 to conclude that∥∥D f ni+pi+s( f(z))w0

∥∥ ≥ cδσ s
2

∥∥D f ni+pi ( f(z))w0

∥∥ ≥ cδσ s
2σ

(ni+pi )/3
1

for 1 ≤ s < ni+1 − ni − pi . Now, assumption 2 implies 2δ ≥ e−2βni , and so

cδσ s
2σ

(ni+pi )/3
1 ≥ c

2
σ s

2σ
(ni+pi )/3
1 e−2βni ≥ c

2
σ
(ni+pi+s)/4
1 ≥ σ

(ni+pi+s)/5
1 .

In the second inequality we suppose β > 0 is small with respect to log σ1, in
the third one we use the fact that ni + pi + s is very large (since δ is small).
We have obtained the conclusion of the lemma also for ni + pi < j < ni+1.
Finally, the last part of Proposition 2.5 gives∥∥D f ni+1−1( f(z))w0

∥∥ ≥ σ
ni+1−ni−pi−1
2

∥∥D f ni+pi ( f(z))w0

∥∥
≥ σ

ni+1−ni−pi−1
2 σ

(ni+pi )/3
1 ≥ σ

(ni+1−1)/3
1

which restores the induction hypothesis (25). ��
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Remark 3.2. Keeping Assumption 1 of the lemma and replacing Assump-
tion 2 by

2. dist
(

f n(z), ζn
) ≥ e−5n,

one still gets that f(z) is expanding, in a weaker sense: ‖D f j ( f(z))w0‖ ≥ λ j

for 1 ≤ j ≤ k, with λ ≥ 10−20. This is proved in the same way as the lemma,
just replacing (26) by

pi − s ≤ 5 log
1

d
(

f ni (z), ζni

) ≤ 25ni ≤ 20 log 10

log 4
(ni + s).

Note also that, in any case, we only need Assumptions 1 and 2 at the free
return times ni .

It is convenient to take ∆ = log(1/δ) to be a (large) integer, and we do
so in what follows.

Proposition 3.3. Given any critical value f(ζ) ∈ f(C) there exists a se-
quence of long stable leaves Γr = Γr(ζ) = {(xr(y), y) : |y| ≤ 1/10}, for
r ≥ ∆, accumulating Ws( f(ζ)) exponentially fast from the left:

e−2r ≤ xs(y)− xr(y) ≤ 3e−2r for every r ≥ ∆ and |y| ≤ 1/10, (27)

where {(xs(y), y) : |y| ≤ 1/10} = Γs is the long stable leaf through f(ζ).

Proof. First, we consider ζ = ζ0, the critical point of generation zero in
Proposition 2.2.1. Let γ = γ(ζ0) be a segment of Wu(P) extending δ to each
side of ζ0. By Proposition 2.2.3, this is a C2(b) curve. For each r ≥ ∆, the
set {z ∈ γ : (9/10) e−r ≤ d(z, ζ0) ≤ e−r} has two connected components.
We shall use γr to denote either of the two. Then

length(γr) ≥ 1

10
e−r ≥ 4c1e−r ≥ 2c1dC(z) for every z ∈ γr ,

recall that c1 < 1/100. So, by Lemma 3.1, there exists zr ∈ γr such that

dC

(
f n(zr)

) = d
(

f n(zr), ζn
) ≥ e−2βn (28)

for every free return n ≥ 1 of zr . Here ζn ∈ C is the binding point of f n(zr),
recall Proposition 2.7, so that ( f n(zr), t( f n(zr))) is in tangential position
relative to (ζn, t(ζn)). Let ηr = f(zr). We also need

Lemma 3.4. The pair ( f n(zr), D f n−1( f(zr))w0) is in tangential position
relative to (ζn, t(ζn)), for every free return n ≥ 1 of zr.

Proof. Take p0 ≥ 1 maximum such that dist( f j(zr), ζ) ≤ e−β j for all
1 ≤ j ≤ p0, and let n1 be the first free return of zr , in the sense that n1 is
the smallest integer larger than p0 so that f n1(zr) ∈ I(δ). Propositions 2.5
and 2.8.4 imply∥∥D f n1−1(ηr)w0

∥∥ ≥ σ
n1−p0−1
2

∥∥D f p0(ηr)w0

∥∥ ≥ σ
n1−p0−1
2 σ

p0
1 ≥ 2. (29)
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On the other hand, Propositions 2.5 and 2.8.2 give∥∥D f n1(zr) t(zr)
∥∥ ≥ σ

n1−p0
2

∥∥D f p0(zr) t(zr)
∥∥ ≥ σ

n1−p0
2 σ

(p0+1)/3
1 ≥ σ

n1/3
1 .

So,

∥∥D f n1−1(ηr) t(ηr)
∥∥ ≥ 1

5

∥∥D f n1(zr) t(zr)
∥∥ ≥ 1

5
σ

n1/3
1 ≥ 2. (30)

Since | det D f n1−1(ηr)| ≤ (Cb)n1−1 � 1, we deduce from (29) and (30)
that

angle
(
D f n1−1(ηr)w0, D f n1−1(ηr) t(ηr)

) ≤ (Cb)n1−1 (31)

� dist
(

f n1−1(ηr), ζnr

)
.

By Proposition 2.7, there is a C2 curve L = {(x, y(x))} with |y′|, |y′′| ≤
1/10, tangent to t(ζn) at ζn and tangent to D f n1−1(ηr) t(ηr) at f n1−1(ηr). In
view of (31), we may easily modify L to a C2 curve L̃ = {(x, ỹ(x)} with
|ỹ′|, |ỹ′′| ≤ 1/5 tangent to t(ζn) at ζn and to D f n1−1(ηr)w0 at f n1−1(ηr).
Existence of such an L̃ is precisely the content of the lemma for time n1.

A similar argument proves the claim for the subsequent free returns of zr .
For each i ≥ 1, let pi ≥ 1 be maximum such that

dist
(

f ni+ j(zr), f j(ζni )
) ≤ e−β j for all 1 ≤ j ≤ pi ,

and then let ni+1 be the smallest integer n > ni+pi so that f n(zr) ∈ I(δ). We
may assume, by induction, that ( f n j−1(ηr), D f n j−1(ηr)w0) is in tangential
position relative to (ζn j , t(ζn j )), for every free return 1 ≤ j ≤ i. Then
Lemma 3.2 implies, cf. the last observation in Remark 3.2,

∥∥D f ni+1−1(ηr)w0

∥∥ ≥ σ
(ni+1−1)/5
1 ≥ 2.

Taking t(ηr) in the place of w0, we also get (the condition of tangential
position, corresponding to hypothesis 1 in Lemma 3.2, results from Propo-
sition 2.7) ∥∥D f ni+1−1(ηr)t(ηr)

∥∥ ≥ σ
(ni+1−1)/5
1 ≥ 2.

Therefore, the angle between these two vectors D f ni+1−1(ηr)w0 and
D f ni+1−1(ηr)t(ηr) is less than (Cb)ni+1−1, so it is much smaller than
dist( f ni+1−1(ηr), ζni+1). It follows, as in the case we treated previously, that
( f ni+1−1(ηr), D f ni+1−1(ηr)w0) is in tangential position to (ζni+1 , t(ζni+1 )),
which proves our assertion for ni+1. This finishes the proof of Lemma 3.4.

��
Now let us go back to proving Proposition 3.3. The previous lemma

and (28) mean that zr satisfies both assumptions of Lemma 3.2 at all free
return times, and so ηr = f(zr) is expanding. We take Γr = {(xr(y), y)}
to be the long stable leaf through ηr granted by Proposition 2.4. As we
explain next, property (27) follows from a quadratic estimate like (7). Let
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us write γ = {(x, y(x))} and f(γ) = {(ξ(x), η(x))}. Moreover, ξs(x) =
xs(η(x)) − ξ(x) is the horizontal distance from each point of f(γ) to the
long stable leaf Γs = {(xs(y), y)} through f(ζ0). We write the critical point
ζ0 = (x0, y(x0)). By (7),

3

2
(x − x0)

2 ≤ ξs(x) ≤ 5

2
(x − x0)

2 for every x.

By construction, the point zr = (xr, y(xr)) has (9/10)e−r ≤ |xr −x0| ≤ e−r .
Replacing this in the previous equation, we find that the horizontal distance
ξs(xr) from ηr = f(zr) to Γs satisfies

6

5
e−2r ≤ ξs(xr) <

5

2
e−2r .

By the Lipschitz estimate in the last part of Proposition 2.4, the horizontal
distance from any other point (xr(y), y) of Γr differs from ξs(xr), at most,
by a factor that is close 1 if b is small. This ensures that the previous estimate
remains valid for any point of Γr , with slightly worse constants:

11

10
e−2r ≤ xs(y)− xr(y) <

11

4
e−2r for every |y| ≤ 1/10. (32)

This implies (27).

Finally, we prove the proposition for a general critical point ζ ∈ C, of
generation g ≥ 1. By Proposition 2.2.3, the segment γ = γ(ζ) of radius
δρg around ζ in Wu(P) is a C2(b) curve. This means that precisely the
same construction of Γr = Γr(ζ) as in the previous case applies here, for r
large enough so that e−r ≤ δρg. In particular, we get (32) for all such r. On
the other hand, for r < ∆ + g log(1/ρ) we define Γr(ζ) = Γr(ζ̃), where ζ̃
is any critical point of generation g̃ < g with dist(ζ̃ , ζ) ≤ bg/10, as given
by Proposition 2.2.4. Proposition 2.4 implies that the horizontal distance
between the long stable leaves through the points f(ζ) and f(ζ̃) is bounded
by

2bg/10 ≤ 100−g(δρg)2 ≤ 100−ge−2r

(take b � δ � 1). In view of (32) and the hierarchical form of our
construction, the horizontal distance from these Γr to Γs( f(ζ)) satisfies
bounds similar to (32), with the factors 11/10 and 11/4 replaced by 1 and 3
(because

∑
g 100−g < 1/10). This completes our construction. ��

Remark 3.3. Γ∆ and Γ∆+1 as constructed above are the same for all critical
values (as long as we suppose ρ < 1/e, which we clearly can). Every Γr(ζ),
ζ ∈ C and r ≥ ∆ intersects the unstable manifold Wu(P), at the point ηr .
Let us also record that, by (28) and Lemma 3.4, dC( f n−1(ηr)) ≥ e−2βn and
( f n−1(ηr), D f n−1(ηr)w0) is in tangential position relative to (ζn, t(ζn)), for
every free return n ≥ 1.
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Most of our construction can be carried out using the family of long
stable leaves Γr(ζ), ζ ∈ C and r > ∆, given by Proposition 3.3. However,
for Lemma 4.7 we have to define itinerary of an orbit in the basin of Λ in
terms of an extended family of long stable leaves Γr,l = Γr,l(ζ), 0 ≤ l ≤ r2,
with (≈ means equality up to a factor 100)

(a) horiz dist(Γr,l,Ws( f(ζ))) ≈ e−2r for every 0 ≤ l ≤ r2;
(b) horiz dist(Γr,l−1,Γr,l) ≈ e−2r/r2 for every 1 ≤ l ≤ r2.
(c) Γr,0 = Γr−1, each Γr,l is to the right of Γr,l−1, and Γr,r2 = Γr .

This last property implies that the horizontal distance from Γr,l decreases
when r increases and, for fixed r, when l increases. Such a family can
be obtained by the following variation of the previous construction. For
each r ≥ ∆ + 1, decompose the segment of Wu(P) bounded by zr−1
and zr into 2r2 − 1 segments of equal length. Denote these segments γr, j ,
for 1 ≤ j ≤ 2r2 − 1, in such a way that the distance to zr decreases
monotonically with j. Observe that

length(γr, j) ≥ 1

2r2 − 1
dist(zr, zr+1) ≥ 1

2r2

1

2
e−r ,

for every j. Given any z ∈ γr, j , we have dC(z) ≤ e−r , and so

2c1
dC(z)

| log dC(z)|2 ≤ 2c1
e−r

r2
≤ e−r

4r2
≤ length(γr, j)

(we took c1 < 1/100). This means that every segment γr, j satisfies the
condition in Remark 3.1, and so it contains a point zr, j such that f(zr, j) is
expanding. We let Γr,l = Γr,l(ζ) be the long stable leaf through the point
f(zr,2l), for each 1 ≤ l ≤ r2 − 1. The estimates in (a) and (b) follow from
the same arguments as we used to prove (27). Remark 3.3 remains valid for
this extended family Γr,l .

3.2 Itineraries for orbits in the basin

To each point z ∈ B(Λ) we want to associate sequences n j , i j = (ζ̃ j , r j ,

l j , ε j), j ≥ 0, where n j is an integer, ζ̃ j ∈ C, r j and l j are also integers.
with

(r j, l j) = (0, 0) or else r j ≥ ∆ and 1 ≤ l j ≤ r2
j ,

and ε j ∈ {+, 0,−}. Roughly speaking, n j is the jth free return of z, ζ̃ j is the
corresponding binding point, and r j , l j , ε j describe the position of f n j+1(z)
relative to the long stable leaves Γr,l(ζ̃ j). The precise construction of these
sequences occupies the whole of this section.

Recall that G0, G1 contain long C2(b) segments γ0, γ1, around the
critical points ζ0, ζ1, respectively. In view of the form of our map, for
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each i = 0, 1 we may write f(γi) as {ξi(x), ηi(x)} with ξ ′′
i ≈ −2a ≈ 4

and |ηi |, |η′
i |, |η′′

i | ≤ C
√

b. In particular, f(γi) intersects each Γr,l(ζi), for
0 ≤ l ≤ r2, in exactly two points. Let ∆i be the region bounded by f(γi)
and by the long stable leaf Ws

loc(P) passing through P, see Fig. 1. Since
f(γ0) and f(γ1) are disjoint, whereas ∆0 and ∆1 must intersect each other
(e.g. extend {γ0, γ1} to a foliation by nearly horizontal curves, and use that
the image of each leaf intersects every vertical line in not more than two
points), we have either ∆1 ⊂ ∆0 or ∆0 ⊂ ∆1.

We consider ∆1 ⊂ ∆0, as the other case is analogous. In the sequel
we define n j(z), i j(z), j ≥ 0, for points z ∈ ∆0. The extension to generic
points w ∈ B(Λ) is, simply, by taking n j(w) = n +n j( f n(w)) and i j(w) =
i j( f n(w)) for each j ≥ 0, where n ≥ 0 is the smallest integer for which
f n(w) ∈ ∆0. Since Lebesgue almost every point in the basin of Λ has some
iterate contained in ∆0, cf. Sect. 5, this leaves out only a zero Lebesgue
measure subset of B(Λ), which is negligible for our purposes.

Before proceeding, let us make a few simple conventions. In what follows
(r, l) should be replaced by (r −1, (r −1)2 +l) if l ≤ 0, and by (r +1, l−r2)
if l > r2. We say that (r1, l1) > (r2, l2) if either r1 > r2 or r1 = r2
and l1 > l2. The region in between two long stable leaves is open on
the left and closed on the right: if Γ1 = {(x1(y), y) : |y| ≤ 1/10} and
Γ2 = {(x2(y), y) : |y| ≤ 1/10}, with x1 < x2, then the region in between
Γ1 and Γ2 is {(x, y) : x1(y) < x ≤ x2(y), |y| ≤ 1/10}.

Fig. 1

Let (r̂, l̂) be defined by the condition that f(ζ1) is in the region of ∆0 in
between Γr̂,l̂(ζ0) and Γr̂,l̂−1(ζ0). For z ∈ ∆0 we define n0 = −1 and

(a) i0(z) = (ζ0, r, l, 0) if z is in the region of ∆0 in between Γr,l(ζ0) and
Γr,l−1(ζ0), with (r, l) > (r̂, l̂);

(b) i0(z) = (ζ0, r̂, l̂, 0) if z is in the region of ∆0 in between Ws
loc( f(ζ1))

and Γr̂,l̂(ζ0);
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(c) i0(z) = (ζ1, r, l,±) if z is in either of the two regions of ∆0 \ ∆1
in between Γr,l(ζ1) and Γr,l−1(ζ1), the sign +/− corresponding to the
upper/lower region;

(d) i0(z) = (ζ1, 0, 0,±) if z is in either of the two regions of ∆0 \∆1 in be-
tween Γ∆ and Ws

loc(P), the sign +/− corresponding to the upper/lower
region;

(e) i0(z) = (ζ1, r, l, 0) if z is in the region of ∆1 in between Γr,l(ζ1) and
Γr,l−1(ζ1).

(f) i0(z) = (ζ1, 0, 0, 0) if z is in the region of ∆1 in between Γ∆ and
Ws

loc(P).

We also define R(i0) = {z ∈ ∆0 : i0(z) = i0} for each i0 = (ζ̃0, r0, l0, ε0)
as before. This closes the first step of our definition.

The definition of these objects proceeds by recurrence. In the next para-
graphs we explain how n1(z) and i1(z) are defined for z in R(i0), for each
fixed i0.

In cases (a), (b), (c), (e), define p1 = p1(i0) ≥ 1 to be the largest integer
such that

dist
(

f j(z), f j(ζ̃0)
) ≤ e−β j for 1 ≤ j ≤ p1 and every z ∈ f −1(R(i0)).

For (d), (f) just set p1 = 0. In any case, let m1 = n1 > p1 be minimum
such that f n1(R(i0)) intersects I(δ). Denote γ u

i , i = 0, 1, and γ s
j , j = 0, 1,

the four segments forming the boundary of the rectangle R(i0), with the γ u
i

contained in Wu(P) and the γ s
j contained in long stable leaves. Moreover,

let z∗
i, j = γ u

i ∩ γ s
j be the corner points of R(i0), for i = 0, 1 and j = 0, 1.

Proposition 3.5. 1. m1 > p1 ≥ (4/3)r0;

2. for i = 0, 1, the slope of f n1(γ u
i ) is less than (C/δ)

√
b at every point;

3. length( f n1(γ s
j )) ≤ (1/10) dC(z∗

i, j ) for i = 0, 1 and j = 0, 1;

4. angle(t(z∗
0, j), t(z∗

1, j)) ≤ (1/10) dC(z∗
i, j) for i = 0, 1 and j = 0, 1.

This proposition will be proved in Sect. 3.3. As part of the proof, in
Lemma 3.9, we show that p1 is a suitable bound period for every point
in the rectangle: we have (19) for p(z) ≡ p1, and conclusions 2–4 of
Proposition 2.8 are true at time p1 for any point in either of the unstable
boundary segments. This means that we may take the bound period constant
equal to p1 on the whole f −1(R(i0)). In particular, both segments f n1(γ u

i ),
i = 0, 1, are free. According to Proposition 2.7, each of these segments
may be extended to a C2 curve Ki = {(x, yi(x)} with |y′

i|, |y′′
i | ≤ 1/10 and

tangent to Wu(P) at some critical point ηi ∈ Ki . By definition, dC(z∗
i, j) =

dist(z∗
i, j , ηi) for every j = 1, 0. Recall that ηi may not belong to f n1(γ u

i ).
We can also not discard the possibility that η0 = η1. On the other hand,
according to the next lemma, either both ηi belong to the corresponding
f n1(γ u

i ) or none does, and in the latter case we may always take the two
critical points to coincide.
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Lemma 3.6. If η0 ∈ f n1(γ u
0 ) then η1 ∈ f n1(γ u

1 ). In the opposite case,
f n1(γ u

1 ) is in tangential position relative to (η0, t(η0)): there is a C2 curve
K2 = {(x, y2(x)} with |y′

2|, |y′′
2 | ≤ 1/5, containing f n1(γ u

1 ) and tangent to
Wu(P) at η0.

Proof. Suppose that η0 ∈ f n1(γ u
0 ) but η1 ∈ K1 \ f n1(γ u

1 ). Fix j = 0, 1
so that z∗

1, j is the boundary point of f n1(γ u
1 ) closest to η1. In view of

our definitions, z∗
0, j is the boundary point of f n1(γ u

0 ) in the same stable
leaf f n1(γ s

j ) as z∗
1, j . For each i = 0, 1, write ηi = (xi, yi(xi)) and z∗

i, j =
(xi, j , yi(xi, j )), and let [ηi, z∗

i, j ] be the segment of Ki connecting ηi to z∗
i, j .

Let m ≥ 1 be fixed such that

τm+1 < 5 max
{
dC

(
z∗

i, j

) : i = 0, 1
} ≤ τm,

where τ > 0 is taken as in Proposition 2.3. According to the proposition, the
contracting direction ei (s) = e(m)(Xi(s),Yi(s)) of order m is well defined for
any (Xi(s),Yi(s)) = f(s, yi(s)) of f([ηi, z∗

i, j ]). This ensures that a quadratic
estimate like (10) holds for each of these segments: splitting the tangent
vector (

X ′
i(s),Y ′

i (s)
) = αi(s)ei(s)+ βi(s)w0

as in (9), the coefficient βi satisfies

3 ≤ βi(xi)− βi(s)

s − xi
≤ 5 and |βi(xi)| ≤ (Cb)m (33)

for every s between xi and xi, j . From the form of the map f and the fact
that ei and w0 are nearly orthogonal

|β1(x1, j)− β0(x0, j)| ≤ 5 dist
(
z∗

0, j, z∗
1, j

) + C
√

b angle
(
t
(
z∗

0, j

)
, t

(
z∗

1, j

))
≤ min

{
dC

(
z∗

0, j

)
, dC

(
z∗

1, j

)}
(34)

The last inequality follows from Proposition 3.5.3 and 3.5.4. Now, suppose
that x1 > x1, j and x0 < x0, j , that is, η1 is to the right of z∗

1, j in K1, and η0

is to the left of z∗
0, j in K0 (the opposite case is analogous). Then (33) gives

β1(x1, j)− β0(x0, j) ≥ 3(x1 − x1, j)+ 3(x0, j − x0)− 2(Cb)m

≥ 2dC(z1, j)+ 2dC(z0, j). (35)

In the last inequality we use dC(z1, j) ≤ (6/5)(x1 − x1, j) and dC(z0, j) ≤
(6/5)(x0, j − x0), as well as the fact that (Cb)m is much smaller than τm ≈
max{dC(z∗

i, j) : i = 0, 1}. Clearly, (34) and (35) contradict each other. This
proves that η1 ∈ f n1(γ u

1 ).
To prove the second part of the lemma, let z∗

0, j be the boundary point of
f n1(γ u

0 ) closest to η0 in K0 . Then z∗
1, j is the boundary point of f n1(γ u

1 ) in the
same stable leaf as z∗

0, j . By Proposition 3.5.3 and 3.5.4, both dist(z∗
0, j, z∗

1, j)

and angle(t(z∗
0, j), t(z∗

1, j)) are smaller than (1/10) dist(z∗
0, j, η0). So, we may

easily modify K0 = {(x, y0(x))} to get a curve K2 as in the statement. ��
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We define i1(z) first when ηi ∈ f n1(γ u
i ) for i = 0, 1. Up to interchanging

subscripts, we may suppose that f(η0) is to the right of f(η1), meaning that
its long stable leaf is to the right of the one passing through f(η1). Then
f(η1) is contained in a region bounded by f n1+1(γ u

0 ) and some pair of long
leaves Γr̂,l̂−1(η0) and Γr̂,l̂(η0). We let, see Fig. 2,

(a1) i1(z) = (η0, r, l, 0) if f n1+1(z) is in the region of f n1+1(R(i0)) in
between Γr,l(η0) and Γr,l−1(η0), with (r, l) > (r̂, l̂);

(b1) i1(z) = (η0, r̂, l̂, 0) if f n1+1(z) is in the region of f n1+1(R(i0)) in
between Ws

loc( f(η1)) and Γr̂,l̂(ζ0);
(c1) i1(z) = (η1, r, l,±) if f n1+1(z) is in either of the regions of

f n1+1(R(i0)) in between Γr,l(η1) and Γr,l−1(η1), the sign +/− cor-
responding to the upper/lower region.

(d1) i1(z) = (η1, 0, 0,±) if f n1+1(z) is in either of the regions of
f n1+1(R(i0)) to the left of Γ∆, the sign +/− corresponding to the
upper/lower region.

It is worth keeping in mind that the stable leaves f n1+1(γ s
i ) on the

boundary of f n1+1(R(i0)) can not intersect a long leaf unless they are
totally contained in it.

The definition of i1(z) is slightly simpler in the case when ηi /∈ f n1(γ u
i )

for i = 0, 1. Taking advantage of the fact that both segments f n1(γ u
i ),

i = 0, 1, are in tangential position relative to η0, cf. Lemma 3.6, we define

(a2) i1(z) = (η0, r, l,+) if f n1+1(z) is in the region of f n1+1(R(i0)) in
between Γr,l(η0) and Γr,l−1(η0);

(b2) i1(z) = (η0, 0, 0,+) if f n1+1(z) is in the region of f n1+1(R(i0)) to the
left of Γ∆.

See Fig. 2. Our choice ε j = + is purely conventional: the intersection of
f n1+1(R(i0)) with any region in between two stable leaves is connected,
and so ε j has no role in this case.

Fig. 2

This completes the definition of i1(z). We also set R(i0, i1) = {z ∈
R(i0) : i1(z) = i1}, for each i0 = (ζ̃0, r0, l0, ε0) and i1 = (ζ̃1, r1, l1, ε1).
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Finally, we define ik(z) for general k ≥ 1. This is very similar to the
case k = 1, and so we go more quickly now. Suppose i j(z), n j(z), and
R(i0, . . . , i j) have been defined for every j < k. Let i j = (ζ̃ j, r j , l j , ε j), j =
0, . . . , k−1, be fixed, and z ∈ R(i0, . . . , ik−1). In cases (a1), (b1), (c1), (a2),
we define pk = pk(i0, . . . , ik−1) ≥ 1 to be the largest integer such that

dist
(

f j(ζ), f j(ζ̃k−1)
) ≤ e−β j for 1 ≤ j ≤ pk

and every ζ ∈ f nk−1(R(i0, . . . , ik−1)).

For (d1), (b2) we just set pk = 0. Then we let nk be the smallest integer
larger than nk−1 + pk such that f nk(R(i0, . . . , ik−1)) intersects I(δ), and
let mk = nk − (nk−1 + 1). Call γ u

i , γ
s
j the boundary segments, and z∗

i, j

the corner points of f nk−1+1(R(i0, . . . , ik−1)), with the same conventions as
before. Then,

Proposition 3.7. 1. mk > pk ≥ (4/3)rk−1;

2. for i = 0, 1 the slope of f mk(γ u
i ) is less than (C/δ)

√
b at every point;

3. length f mk(γ s
j ) ≤ (1/10) dC(z∗

i, j) for i = 0, 1 and j = 0, 1;

4. angle(t(z∗
0, j), t(z∗

1, j)) ≤ (1/10) dC(z∗
i, j) for i = 0, 1 and j = 0, 1.

This proposition will be proved in Sect. 3.3. This includes proving, in
Lemma 3.9, that the bound period may be taken constant equal to pk on
the whole f nk−1(R(i0, . . . , ik−1)), Then both f mk(γ u

i ), i = 0, 1, are free
segments. Thus we may use Proposition 2.7 to get the analog of Lemma 3.6
at every return:

Lemma 3.8. Either there are two critical points η0, η1 such that ηi ∈
f mk(γ u

i ) for i = 0 and i = 1, or there is a critical point η0 such that both
segments f mk(γ u

i ), i = 0, 1, are in tangential position relative to (η0, t(η0)).

In the first case we define r̂, l̂ just as before. Then we let ik(z) be
given by the rules which are obtained replacing f n1+1(z) by f nk+1(z), and
f n1+1(R(i0)) by f nk+1(R(i0, . . . , ik−1)) in (a1)–(d1). In the second case in
the lemma we define ik(z) by the rules obtained by making the corresponding
substitutions in (a2)–(b2). Finally, for each i0, . . . , ik−1, ik ,

R(i0, . . . , ik−1, ik) = {z ∈ R(i0, . . . , ik−1) : ik(z) = ik}.

Our definition of itinerary of a point z in the basin of Λ is complete. By
construction, every R(i0, . . . , ik) is a rectangle. Note that the two segments
of unstable manifold on its boundary are also contained in the boundary
of R(i0, . . . , ik−1). In the sequel, we call unstable sides of a rectangle the
segments of unstable manifold on its boundary, and unstable boundary the
union of the unstable sides. Stable sides and stable boundary are defined
analogously.
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3.3 Geometry of rectangles at return times

Here we prove Propositions 3.5 and 3.7. Part 1 of these propositions is
trivial when rk−1 = 0 (cases (d), (f), (d1), (b2)), because pk = 0. So we
may suppose rk−1 ≥ ∆. Since ‖D f ‖ ≤ 4, the definition of rk−1 and pk
implies 4pk+1e−2rk−1 ≥ ce−β(pk+1). Hence,

mk > pk ≥ 2

log 4 + β
rk−1 + log c − 1 ≥ 4

3
rk−1, (36)

because log c − 1 is negligible when ∆ is big enough. This gives Part 1 of
both propositions.

Next, we are going to prove Part 2. This is easy when rk−1 is zero: in that
case pk = 0 and slope f mk(γ u

i ) < (C/δ)
√

b is granted by Proposition 2.5.
In what follows we consider rk−1 ≥ ∆. Then the main point in the proof
is to show that pk may be taken as the bound period for any point in
f nk−1(R(i0, . . . , ik−1)). The precise statement is the following

Lemma 3.9. Suppose pk > 0. For any z ∈ f nk−1(R(i0, . . . , ik−1)),

dist
(

f j(z), f j(ζ̃k−1)
) {≤ e−β j for 1 ≤ j ≤ pk

≥ 1
10e−β(pk+1) for j = pk + 1

(37)

Moreover, if z is on the unstable boundary of f nk−1(R(i0, . . . , ik−1)) then

1. ‖D f pk+1(z)t(z)‖ ≥ σ
(pk+1)/3
1 and slope(D f pk+1(z)t(z)) < (C/δ)

√
b;

2. ‖D f pk+1(z)t(z)‖dC(z) ≥ ce−β(pk+1);

3. ‖w j(z)‖ ≥ σ
j

1 for 1 ≤ j ≤ pk, and slopewpk(z) < (C/δ)
√

b.

Proof. First we treat cases (a), (b), (e), (a1), (b1), (a2), where both unstable
sides γi = f −1(γ u

i ), i = 0, 1 of the rectangle f nk−1(R(i0, . . . , ik−1)) are in
tangential position with respect to the binding point ζ̃k−1. By construction,
recall the last paragraph of Sect. 3.1,

length(γi) ≈ e−rk−1

r2
k−1

≤ e−rk−1

∆2
� e−rk−1 ≈ dist(γi, ζ̃k−1). (38)

This ensures that (17) is satisfied by these γi , as long as ∆ = log(1/δ)
is taken large enough. Consequently, for any 0 ≤ j ≤ pk , the distances
between f j+1(ζ̃k−1) and the ( j + 1)st iterates of any two points in the same
γi are comparable up to a factor 2, unless they are both smaller than (Cb) j .
Recall (18). Moreover,

length
(

f j(γ s
l )

) ≤ C
√

b(Cb) j � e−β( j+1), (39)

for 0 ≤ j ≤ pk , and l = 0, 1, because γ s
0 and γ s

1 are contained in sta-
ble leaves. According to the definition of pk , there exists some point ξ ∈
f nk−1(R(i0, . . . , ik−1)) such that the distance from f pk+1(ξ) to f pk+1(ζ̃k−1)
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exceeds e−β(pk+1). Of course, ξ may be taken on the boundary of the rectan-
gle. Then the distances from f pk+1(ζ̃k−1) to the (pk + 1)st iterates of points
on the boundary of f nk−1(R(i0, . . . , ik−1)) are all much larger than (Cb)pk ,
and they are two-by-two comparable up to a factor less than 10. That is
because of (39) and our previous remark that the distance varies by less
than a factor 2 inside each unstable side. This shows that

dist
(

f pk+1(z), f pk+1(ζ̃k−1)
) ≥ 1

10
e−β(pk+1)

for every z on the boundary of f nk−1(R(i0, . . . , ik−1)). It follows that the
same is true for any point in the interior. This proves the upper bound in (37).
The lower bound is contained in the definition of pk , so the proof of (37)
is complete. Then, as observed in Sect. 2.2, the arguments in the proof of
Proposition 2.8 apply for any point z in γ0 ∪ γ1, with p(z) = pk . Claims 1,
2, 3 in the lemma follow, corresponding to Parts 2, 3, 4 of Proposition 2.8.

Fig. 3 Binding to a non-critical point

Now we deal with cases (c) and (c1) in the definition of itineraries. The
difference with respect to the previous cases is that only one of the unstable
sides of f nk−1(R(i0, . . . , ik−1)) is in tangential position with respect to the
binding point ζ̃k−1. See Figs. 1, 2, and 3. To fix notations, let this be γ1
and let L1 be a (nearly horizontal) segment of Wu(P) containing γ1 and
ζ̃k−1 . For the other unstable side, γ0 , there is a nearly horizontal segment
L0 of the unstable manifold connecting it to a different critical point η0 .
Basically, everything we said before still applies to γ1 but, because of the
asymmetry introduced by the choice of the binding point (pk is defined in
terms of ζ̃k−1 not η0), it is less clear why that should be true for γ0 .

In a few words, our strategy to prove that this is so is to use a point
η± ∈ L0 such that f(η±) is contained in the long stable leaf Γ( f(ζ̃k−1))
through f(ζ̃k−1), as an auxiliary binding point for γ0 . On the one hand, γ0
is in tangential position to (η0, t(η0)) and the orbits of η0 and any z ∈ L0
remain bound up to time pk (an not more). On the other hand, because the
image of η± is in the long stable leaf through f(ζ̃k−1), it shares the main
properties required for a binding point (expansiveness, tangential returns,
not too close to the critical set).
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To explain this in detail, let us write L0 ={(x, y0(x))} and (X(x),Y(x))=
f(x, y0(x)). Since the distance from (X(x),Y(x)) to Γ( f(ζ̃k−1)) varies in
a quadratic fashion, recall (7), the curve f(L0) intersects the stable leaf at
exactly two points, f(η−) and f(η+). Moreover, η0 is between η− and η+
inside L0, whereas γ0 is disjoint from the segment bounded by η− and η+.
See Fig. 3. In what follows we suppose that γ0 is to the left of that segment
(the other case is analogous) and η− is the endpoint closest to it. Let η∗ =
(x∗, y0(x∗)), for ∗ ∈ {−, 0,+}, andw j(x) = D f j(X(x),Y(x))w0 for j ≥ 1.

Claim 1. For any 0 ≤ j ≤ pk the distances from f j+1(η−) to any two points
in f j+1(γ0) are either comparable, up to a factor 2, or simultaneously less
than (Cb) j .

Proof. Define p ≥ 1 to be the largest integer such that dist( f j(ξ), f j(η−)) ≤
2e−β j for any 1 ≤ j ≤ p and ξ ∈ γ0. According to Proposition 2.4,

dist
(

f j(η−), f j(ζ̃k−1)
) ≤ (Cb) j for every j ≥ 1. (40)

Together with the definition of pk , this shows that dist( f j(ξ), f j(η−)) ≤
e−β j +(Cb) j < 2e−β j for every j ≤ pk . Therefore, p ≥ pk . We are going to
prove the statements in Claim 1 for every 0 ≤ j ≤ p. Fix z = (x,y0(x)) ∈ γ0.

The first step is a distortion bound analogous to (11): for every 1 ≤ j ≤ p
and s ∈ [x, x−],

w j(s) = λ(s)
(
w j(x−)+ ε j(s)

)
, with c ≤ λ(s) ≤ C, (41)

and ‖ε j(s)‖ � ‖w j(x−)‖ .
This is obtained as follows. As mentioned before, all one has to know for
the proof of (11) is that f(ζγ ) is expanding, its free returns up to time p are
tangential, and they satisfy (12). We are going to check that these facts are
true for η− in the place of ζγ . Then, (41) follows from the same arguments
that give (11), see [2, Lemma 7.8] and [15, Lemma 10.5]. By (40) and
Proposition 2.3.5 (take τ = Cb),

1

10
≤ ‖w j(η−)‖

‖w j(ζ̃k−1)‖
≤ 10 and angle

(
w j(η−),w j(ζ̃k−1)

) ≤ (Cb) j/2,

(42)

for every j ≥ 1. The first relation, combined with Theorem 2.1.2, implies
that f(η−) is an expanding point. Let j ≥ 1 be a free return, and ζ j be the
binding point for f j(ζ̃k−1). Using (40) and Theorem 2.1.3,

dist
(

f j(η−), ζ j
) ≈ dist

(
f j(ζ̃k−1), ζ j

) ≥ e−α j . (43)

This corresponds to (12). Finally, the tangential position property may be
checked as follows. By Theorem 2.1.3 and the observation near the end of
Sect. 2.1, there exists a C2 curve K j = {(x, y j(x))} with |y′

j|, |y′′
j | ≤ 1/10,

such that K j is tangent to t(ζ j) at ζ j and tangent to w j−1(ζ̃k−1) at f j(ζ̃k−1).
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Using (40), the angle estimate in (42), and (43), we may modify K j to get
another C2 curve {(x, z j(x))}, with |z′

j |, |z′′
j | ≤ 1/5, tangent to t(ζ j) at ζ j

and tangent to w j−1(η−) at f j(η−).
From (41) and (42) we get that f(z(s)) is expanding up to time p, for

any z(s) = (s, y0(s)) with s ∈ [x, x−]:

‖w j(s)‖ ≈ ‖w j(x−)‖ ≥ 1

10

∥∥w j(ζ̃k−1)
∥∥ ≥ 1

10
σ

j
1 (44)

for 0 ≤ j ≤ p. Then the contracting direction e(s) of order p at f(z(s)) is
well-defined, for any s ∈ [x, x−]. Thus, we may split the tangent direction
to f(L0) in the same way as in (9),

(X ′(s),Y ′(s)) = α(s)e(s)+ β(s)w0 ,

with |α(s)|, |α′(s)|, |β′(s)+ 2a| bounded by C
√

b. Then, for 0 ≤ j ≤ p,

f j+1(η−)− f j+1(z)

=
∫ x−

x

(
α(s)D f j( f(z(s)))e(s)+ β(s)λ(s)

(
w j(x−)+ ε j(s)

))
ds.

The main difference with respect to (13) is that there is no reason why β(x−)
should be small: f(L0) is not tangent to the long stable leaf through f(η−).
But we do have

Claim 2: β(x−) ≥ −(Cb)p.

We accept this fact for a while, and proceed with the proof of Claim 1. Since
β′ ≈ −2a is negative, it follows from Claim 2 that β(s) ≥ β(x−) ≥ −(Cb)p

and so |β(s)| ≤ β(s) + 2(Cb)p, for every s ∈ [x, x−]. Let us rewrite
f j+1(η−)− f j+1(z) as
∫ x−

x
α(s)D f j( f(z(s)))e(s) ds + w j(x−)

∫ x−

x
(β(s)+ 2(Cb)p)λ(s) ds

(45)

−2(Cb)pw j(x−)
∫ x−

x
β(s)λ(s) ds +

∫ x−

x
β(s)λ(s)ε j(s) ds.

The principal term in (45) is the second one. Indeed, the first term is less than
(Cb) j , recall Proposition 2.3.4. The third term is less than (Cb)p5 j ≤ (Cb) j ,
because β and λ are bounded and ‖w j‖ is less than 5 j . Since ‖ε j(s)‖ �
‖w j(x−)‖, the fourth term is much smaller than the second one:

∥∥ ∫ x−

x
β(s) λ(s) ε j(s) ds

∥∥ �
∫ x−

x
|β(s)|λ(s) ‖w j(x−)‖ ds

≤ ‖w j(x−)‖
∫ x−

x
(β(s)+ 2(Cb)p) λ(s) ds.
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These observations imply that (here ≈ means equality up to a factor
√

2)

dist
(

f j+1(η−), f j+1(z)
) ≈ ‖w j(x−)‖

∫ x−

x
(β(s)+ 2(Cb)p) λ(s) ds (46)

unless, possibly, if the right hand side is less than (Cb) j , in which case
dist( f j+1(η−), f j+1(z)) is also bounded by (Cb) j . Since λ is bounded from
zero and infinity, and β(s) + 2(Cb)p is a positive function on [x, x−], with
derivative almost constant and negative,∫ x−

x
(β(s)+ 2(Cb)p)λ(s) ds ≈ (β(x)+ 2(Cb)p)(x− − x). (47)

Just as in (38), the length of γ0 is much smaller than the distance from η−
to any of its points. Therefore, the right hand side of (47) is almost constant
when z = (x, y0(x)) varies over the whole γ0: at most, it changes by a factor
that is close to 1 if ∆ = log 1/δ is large. It follows that the second term in
(46) oscillates by, at most, a factor

√
2 when z varies over the whole γ0. So,

either the distance from f j+1(z) to f j+1(η−) is less than (Cb) j , and then
the same is true for any other point in f j+1(γ0) (with C replaced by 2C), or
else it is comparable up to a factor 2 to the distance from f j+1(η−) to any
f j+1(z′) ∈ f j+1(γ0). This proves Claim 1. ��

Before going back to the proof of Lemma 3.9, let us prove Claim 2 stated
above:

Proof. Let p̃ be the bound period of η− relative to the critical point η0.
As (η−, t(η−)) is in tangential position to (η0, t(η0)), we are in the precise
context of Proposition 2.8. We may split (X ′(s),Y ′(s)) = α̃(s)ẽ(s)+β̃(s)w0,
where ẽ(s) = (ε̃(s), 1) is the contracting direction of order p̃ at f(z(s)).
Recall that z(s) = (s, y0(s)) parametrises L0 , and (X(s),Y(s)) = f(z(s)).
From (10) we get

β̃(x−)− β̃(x0) ≈ (x0 − x−) ≈ dist(η− , η0).

Note that dist(η− , η0) is much larger than (Cb) p̃: using ‖D f ‖ ≤ 5,

e−β(̃p+1) ≈ dist
(

f p̃+1(η−), f p̃+1(η0)
) ≤ 5 p̃+1 dist(η−, η0).

On the other hand, |β̃(x0)| ≤ (Cb) p̃ by the second part of (14). Thence,

β̃(x−) ≈ dist(η−, η0) ≥ c(5eβ)− p̃ > 0. (48)

Write e(s) = (ε(s), 1) for the contracting direction of order p. Then |ε(s)−
ε̃(s)| ≤ (Cb)min{p, p̃}, according to Proposition 2.3.2. Using this in α(s)e(s)+
β(s)w0 = α̃(s)ẽ(s)+ β̃(s)w0 , we get

|β(x−)− β̃(x−)| ≤ C |ε(x−)− ε̃(x−)| ≤ (Cb)min{p, p̃}.

If p ≤ p̃ then Claim 2 follows immediately from this last inequality and
the fact that β̃(x−) is positive. For p̃ ≤ p we get a stronger fact: β(x−) ≥
c(5eβ)− p̃ − (Cb) p̃ > 0. ��
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Now that we have established Claim 1, Property (37) follows in the
same way as in the cases (a) through (a2), that we treated before. We just
review the arguments. By the definition of pk , there exists some point on
the boundary of the rectangle f nk−1+pk+1(R(i0, . . . , ik−1)) whose distance
to f pk+1(ζ̃k−1) exceeds e−β(pk+1). Since the length of the stable sides of
the rectangle is less than (Cb)pk , which is much smaller than e−β(pk+1), we
may take this point on one of the unstable sides. Using Claim 1 and its
analog for γ1 (which we knew before), together with (40) and the upper
bound on the lengths of the stable sides, we conclude that the distances
from f pk+1(ζ̃k−1) (or from f pk+1(η−) ) to any two points on the boundary
of the rectangle are comparable up to a factor less than 10. This yields

dist
(

f pk+1(z), ζ̃k−1
) ≥ 1

10
e−β(pk+1) and dist

(
f pk+1(z), η−

) ≥ 1

10
e−β(pk+1)

for every z on the boundary of f nk−1(R(i0, . . . , ik−1)), and so also for every
point in the interior. This gives one of the inequalities in (37), the other one
is contained in the definition of pk .

Finally, we prove Parts 1, 2, 3 of Lemma 3.9. For points z ∈ γ1 this is
analogous to Parts 2, 3, 4 of Proposition 2.8, because γ1 is tangential to the
binding point. For z ∈ γ0 it goes along similar lines, with η− acting as the
binding point. Firstly, by (46) and (47),

e−β(pk+1) ≈ dist
(

f pk+1(η−), f pk+1(z)
)

≈ ‖wpk(x−)‖ (β(x)+ 2(Cb)pk) (x− − x).

From (33) and Claim 2, we find

β(x) > x− − x and cβ(x) ≤ β(x)+ 2(Cb)pk ≤ Cβ(x),

note that x− − x ≈ dist(z, η−) is bounded below by c(5eβ)−pk � (Cb)pk .
It follows that

e−β(pk+1) ≈ β(x)‖wpk (x−)‖(x− − x) ≈ β(x)‖wpk (x)‖(x− − x)

≤ β(x)2‖wpk(x)‖ . (49)

The second step uses (44). Now, D f pk( f(z))t(z) = α(x)D f pk( f(z))e(x)+
β(x)wpk(x). The first term is bounded by C

√
b (Cb)pk , which is much

smaller than e−β(pk+1). Hence

‖D f pk( f(z))t(z)‖ dC(z) ≥ ‖D f pk( f(z))t(z)‖(x− − x)

≈ β(x)‖wpk (x)‖(x− − x) ≈ e−β(pk+1).

This gives Part 2 of the lemma. The slope statements in Parts 1 and 3 follow
from

slope(D f pk( f(z)) t(z)) ≈ slope(wpk(x)) ≈ slope(wpk(η−))
≈ slope(wpk(ζ̃k−1)),
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recall (41), (42). The first half of Part 3 is a consequence of (41), (42), and
the fact that f(ζ̃k−1) itself is an expanding point, cf. Theorem 2.1.2. Finally,
(49) gives us the first half of Part 1:

‖D f pk( f(z)) t(z)‖2 ≈ β(x)2‖wpk(x)‖2 ≥ c‖wpk(x)‖e−β(pk+1) ≥ σ
2(pk+1)/3
1 .

The last step uses ‖wpk(x)‖ ≥ σ
pk

1 and the assumption that β and δ are small
(the latter forces pk to be large). The proof of Lemma 3.9 is complete. ��

Part 2 of Propositions 3.5 and 3.7 is contained in the conclusion of
Lemma 3.9. Now we move on to prove Parts 3 and 4. For this we need
a few additional facts about the size and shape of the rectangles f nk(R(i0,
. . . , ik−1)), that are obtained in Lemmas 3.10 and 3.11. The proof of these
lemmas is by induction on k, using (36).

Lemma 3.10. Given z ∈ R(i0, . . . , ik−1) and any unstable side σu of
R(i0, . . . , ik−1), there exists ξk ∈ σu such that

1. dist( f nk−1+1(z), f nk−1+1(ξk)) ≤ min{10(Cb)nk−1/2erk−1 , 10(Cb)nk−1/4};
2. dist( f nk(z), f nk(ξk)) ≤ (Cb)nk/2.

If z is in some stable side σ s, we may take ξk the common endpoint of σ s

and σu.

Proof. To keep track of the constant C in the statement, we denote it Ch
throughout the proof. We shall take Ch ≥ 100C1, where C1 is the constant C
in Proposition 2.3.

We start by proving the lemma for k = 1. Recall that n0 + 1 = 0.
Then the inequality in Part 1 are trivial: the left hand side is bounded
by 4, whereas the right hand side can be made arbitrarily large by taking b
small (these comments are for completeness only, we never use this part of
the lemma with k = 1). Part 2 is proved as follows. As a consequence of
Propositions 2.8.4 and 2.5, every z ∈ R(i0) is expanding up to time m1 = n1.
So, using Proposition 2.3 in the same way as when proving Proposition 2.4
in Sect. 2, the temporary stable leaf of order n1 through z is a long nearly
vertical curve: Γn1(z) = {(x(y), y) : |y| ≤ 1/10} with |x ′|, |x ′′| ≤ C

√
b,

and

dist( f j(ξ), f j(z)) ≤ (Cb) j dist(ξ, z) for all ξ ∈ Γn1(z) and 1 ≤ j ≤ n1 .

If Γn1(z) intersects the unstable segment σu , take ξ1 to be the intersection
point. Then dist( f n1(z), f n1(ξ1)) ≤ (C1b)n1 , which is even stronger than
the claim. If Γn1(z) leaves the rectangle R(i0) through a stable leaf σ s, take
ξ1 to be the vertex of R(i0) where σ s meets σu, then continue as before.
Noting that σ s is also contracted by positive iterates of f , one still gets
dist( f n1(z), f n1(ξ1)) ≤ (C1b)n1 .

Now we assume that the lemma is true at time nk−1, and prove that it
must be true also at time nk. For the same reasons as before, every point
ζ = f nk−1+1(z), z ∈ R(i0, . . . , ik−1), is expanding up to time mk. So, the
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Fig. 4

temporary stable leaf Γmk (ζ) of order mk through ζ is a long nearly vertical
curve. If Γmk (ζ) crosses the unstable segment γ u = f nk−1+1(σu), let η be
the intersection point. See Fig. 4. Otherwise, Γmk (ζ) intersects some stable
side γ s of f nk−1+1(R(i0, . . . , ik−1)), and we call η the common endpoint of
γ u and γ s. Either way, define ξk by f nk−1+1(ξk) = η. We are going to prove

dist(ζ, η) ≤ 10(Chb)nk−1/2erk−1 and dist(ζ, η) ≤ 10(Chb)nk/4. (50)

which is just Part 1 of the lemma. It immediately implies Part 2. Indeed,
combining the first of these inequalities with Proposition 2.3.2 we find

dist( f nk(z), f nk(ξk)) = dist( f mk(ζ), f mk(η)) ≤ (C1b)mk 10(Chb)nk−1/2erk−1

≤ (Chb)nk/2.

Note that nk = nk−1 + 1 + mk and we chose Ch ≥ 100C1. Moreover,
mk > rk−1 by Part 1 of Propositions 3.5 and 3.7, which was already proved.
So, we have reduced Lemma 3.10 to proving (50).

For the proof of (50), it is convenient to distinguish two cases, depending
on the relative size of rk−1 and nk−1. We treat first the case when rk−1 is
small with respect to nk−1:

(Chb)nk−1 ≤ e−4rk−1 . (51)

In this case the second inequality in (50) is a direct consequence of the first
one. To prove the first inequality, consider a curve L = {(x, y0(x))} with
|y′

0|, |y′′
0 | ≤ 1/5, tangent to Wu(P) at ζ̃k−1 = (x̄, ȳ) and containing one

of the unstable sides of f nk−1(R(i0, . . . , ik−2)). We claim that a segment of
f −1(Γmk (ζ)) can be parametrised t �→ z(t) = (x(t), y0(x(t))+ t), with

|x ′(t)| ≤ C
√

berk−1 and |t| ≤ 2(Chb)nk−1/2. (52)

Let us assume this for a while. Since L is nearly horizontal, dist(z(t), L) ≥
|t|/2 for any t. Using the assumption that Lemma 3.10.1 is true for k−1, we
conclude that f −1(Γmk(ζ)) crosses the boundary of f nk−1(R(i0, . . . , ik−1)) at
another point z(t2) with 0 < |t2| ≤ 2(Chb)nk−1/2. Moreover, f −1(ζ) = z(t1)
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for some t1 between zero and t2. Typically, z(t2) = f −1(η) but it may
also happen that z(t2) be in a stable side γ s of f nk−1(R(i0, . . . , ik−1)), with
f −1(η) being an endpoint of γ s. In the second case, dist(z(t2), f −1(η)) is
less than (Chb)nk−1/2, by the induction hypothesis. So, using the bound for
|x ′| given in (52), we always have,

dist(ζ, η) ≤ dist(z(t1), z(t2))+ (Chb)nk−1/2

≤ C
√

berk−1 (Chb)nk−1/2 + 5(Chb)nk−1/2 ≤ 10erk−1 (Chb)nk−1/2.

To turn the previous paragraph into a complete proof of (50) for small
rk−1, we have to justify the claims in (52). Let ζ̃k−1 = (x̄, ȳ) be the binding
critical point. Write the long leaf Ws

loc( f(ζ̃k−1)) through f(ζ̃k−1) = (x̄1, ȳ1)
as {(xs(y), y) : |y| ≤ 1/10}, and the temporary stable leaf Γmk (ζ) as
{(xζ (y), y) : |y| ≤ 1/10}. Moreover, denote (X0(x),Y0(x)) = f(x, y0(x))
and (X(x, t),Y(x, t)) = f(x, y0(x) + t). The condition f(x, y0(x) + t) ∈
Γmk (ζ) is expressed by X(x, t) = xζ (Y(x, t)) or, equivalently,

xs(Y(x, t))− X(x, t) = xs(Y(x, t))− xζ (Y(x, t)). (53)

We want to show that (53) defines x as an implicit function of t, with
derivative bounded by C

√
berk−1 , on the whole interval |t| ≤ 2(Chb)nk−1/2.

For this purpose, let us estimate the partial derivatives of both sides of (53).
Firstly,

|∂t(x
s ◦ Y − X)(x, t)| ≤ C

√
b and

∣∣∂t(x
s ◦ Y − xζ ◦ Y )(x, t)

∣∣ ≤ C
√

b
(54)

for every (x, t), because (xs)′, (xζ )′, ∂y f are less than C
√

b. By Proposi-
tion 2.3.2 and 2.3.3,∣∣(xs − xζ )

′(y)
∣∣ ≤ C

√
b

(
xs − xζ

)
(y)+ (Cb)mk .

Combining this with mk > rk−1 (Proposition 3.7.1) and the definition of
rk−1, we get∣∣(xs − xζ

)
(y)

∣∣ ≈ e−2rk−1 and
∣∣(xs − xζ

)′
(y)

∣∣ ≤ C
√

be−2rk−1 (55)

for every |y| ≤ 1/10; compare Proposition 3.3. This last relation implies∣∣∂x
(
xs ◦ Y − xζ ◦ Y

)
(x, t)

∣∣ ≤ C
√

be−2rk−1 (56)

for every (x, t). On the other hand, as in (7),
(
xs ◦ Y0 − X0

)
(x) ≈ (x̄ − x)2 and

(
xs ◦ Y0 − X0

)′
(x) ≈ (x̄ − x) (57)

for all x. Let (x, t) be any solution of (53) with |t| ≤ 2(Chb)nk−1/2. Using
(55), ∣∣(xs ◦ Y − X

)
(x, t)

∣∣ = ∣∣(xs ◦ Y − xζ ◦ Y
)
(x, t)

∣∣ ≈ e−2rk−1 .
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In view of (54), the bound on |t|, and assumption (51), these expressions
change much less that e−2rk−1 if we replace t by zero. This means that the
previous relation is not affected by taking zero in the place of t: it becomes
|(xs ◦Y0 − X0)(x)| ≈ e−2rk−1 . Using (57), we conclude that |x − x̄| ≈ e−rk−1

and ∣∣∂x(x
s ◦ Y − X)(x, 0)

∣∣ = ∣∣(xs ◦ Y0 − X0
)′
(x)

∣∣ ≈ e−rk−1 .

Now, since the derivative of ∂x(xs ◦ Y − X) is also bounded, we may put t
back in the place of zero without affecting this relation:∣∣∂x(x

s ◦ Y − X)(x, t)
∣∣ ≈ e−rk−1 . (58)

Since C
√

be−2rk−1 is much smaller than e−rk−1 , the relations (56) and (58)
give ∣∣∂x

(
xs ◦ Y − X

)
(x, t)− ∂x

(
xs ◦ Y − xζ ◦ Y

)
(x, t)

∣∣ ≈ e−rk−1

for any solution (x, t) with |t| ≤ 2(Chb)nk−1/2. Thus, we may indeed use the
implicit function theorem in (53). Moreover, by (54), the implicit function
x(t) has |x ′(t)| ≤ C

√
berk−1 . The proof of (52) is complete.

Now we prove (50) for large rk−1, that is, (Chb)nk−1 ≥ e−4rk−1 . We claim
that in this case

dist(ζ, η) ≤ C
√

be−rk−1 < e−rk−1 . (59)

Note that this implies both inequalities in the statement. To prove the claim,
let (xs(y), y) and (xζ (y), y) be as before, and (X(x),Y(x)) parametrise the
unstable side γ u that contains η. Suppose first that Γmk (ζ) intersects γ u at
the point η. Then the length of the segment of Γmk connecting ζ to η is less
than C

√
be−rk−1 , as a consequence of the estimates corresponding to (55)

and (57), with X,Y in the place of X0,Y0. This proves the claim in this
case. The other one corresponds to Γmk intersecting a stable side γ s at some
point η′, with η being an endpoint of γ s. The same argument as before
applies, both to the segment of Γmk connecting ζ to η′ and to the stable
segment γ s: their lengths are shorter than C

√
be−rk−1 . So we get (59) in this

case too. ��
Remark 3.4. The following elementary fact is used in the next lemma. Let
v1, v2, ε1, ε2 be planar vectors such that ‖εi‖ < ‖vi‖/2 for i = 1, 2.
Let θ = angle(v1, v2) and χ be the norm of ε1/‖v1‖ − ε2/‖v2‖. Then
angle(v1 + ε1, v2 + ε2) ≤ θ + 2(χ + ‖ε1‖ θ). A proof follows. Dividing vi
and εi by ‖vi‖, we may suppose ‖vi‖ = 1 for i = 1, 2. Then v2 = eiθv1,
and so

angle(v1 + ε1, v2 + ε2) ≤ angle
(
v1 + ε1,e

iθv1 + eiθε1
)

+ angle
(
v2 + eiθ ε1, v2 + ε2

)
.

The first term is equal to θ, and the second one is less than 2‖eiθ ε1 − ε2‖ ≤
2θ‖ε1‖ + 2‖ε1 − ε2‖, because ‖εi‖ ≤ 1/2 for i = 1, 2.
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Lemma 3.11. Let ξk be as in Lemma 3.10. If r j ≤ 5n j for every 1 ≤ j ≤
k − 1 then

angle
(
D f nk(z)w0, t

(
f nk(ξk)

)) ≤ (Cb)nk/4.

Proof. During the proof we represent by Ca the constant in the statement.
In a number of places we assume Ca to be large, with respect to a few other
constants.

First we treat the case k = 1. Combining Propositions 2.8.4 and 2.5
we get that ξ1 is expanding up to time n1. So, recall Proposition 2.3.1,
the contracting direction eξ = (εξ, 1) of order n1 at ξ1 is well defined and
satisfies |εξ | ≤ C

√
b. Let (1, ẏξ), |ẏξ | ≤ 1/5, represent the tangent direction

to Wu(P) at f −1(ξ1). We split

D f
(

f −1(ξ1)
)
(1, ẏξ) = αξeξ + βξw0 .

As in (10), we must have |αξ | ≤ C
√

b and |βξ | ≈ 2adC( f −1(ξ1)) ≈ 2ae−r0 .
By Proposition 2.3.2, ‖D f n1(ξ1)eξ‖ ≤ (Cb)n1 . Since t( f n1(ξ1)) is collinear
to αξD f n1(ξ1)eξ + βξD f n1(ξ1)w0,

angle
(
D f n1(ξ1)w0, t

(
f n1(ξ1)

)) ≤ |αξ | ‖D f n1(ξ1)eξ‖
|βξ | ‖D f n1(ξ1)w0‖ ≤ C

√
ber0(Cb)n1

≤ (Cb)n1/2.

The last inequality uses n1 = m1 > r0. Moreover, by construction,
dist( f j(η), f j(ζ)) ≤ (Cb) j for 0 ≤ j ≤ n1. So, using Proposition 2.3.5 we
get

angle
(
D f n1(z)w0, D f n1(ξ1)w0

) ≤ (Cb)n1/2.

Adding these two angle estimates, we find that angle(D f n1(z)w0, t( f n1(ξ1)))
is bounded by (Cb)n1/2. The case k = 1 of the lemma follows, taking Ca
larger than this last constant C.

Now we proceed by induction. We use the same notations as in the proof
of the previous lemma, in particular, ζ = f nk−1+1(z) and η = f nk−1+1(ξk).
As before, ‖D f j(η)w0‖ ≥ 1 for 1 ≤ j ≤ mk. Recall that the distance
between iterates of ζ and η is exponentially contracted during the first mk
iterates. So, using Lemma 3.10.1,

dist( f j(η), f j(ζ)) ≤ (Cb)nk−1/2erk−1 (Cb) j for all 0 ≤ j ≤ mk . (60)

By Lipschitz continuity of D f , for every 1 ≤ j ≤ mk we have∥∥D f j(ζ)w0 − D f j(η)w0

∥∥ ≤ (Cb)nk−1/2erk−1 . (61)

In view of the assumption rk−1 ≤ 5nk−1, the last term can be made small by
reducing b. So, in particular, ‖D f j(ζ)w0‖ ≥ 1/2 for 1 ≤ j ≤ mk. Then the
contracting directions of order mk, eη = (εη, 1) at η and eζ = (εζ , 1) at ζ ,
are well defined and satisfy |εη|, |εζ | ≤ C

√
b. Let (1, ẏη) and (1, ẏζ ), with
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|ẏη|, |ẏζ | ≤ 1/5, be collinear to t( f −1(η)) and to D f nk−1(z)w0, respectively.
We split

D f( f −1(η))(1, ẏη) = αηeη+βηw0 and D f( f −1(ζ))(1, ẏζ ) = αζeζ+βζw0.

Then |αη| and |αζ | are bounded by C
√

b, moreover, |βη| ≈ 2adC( f −1(η)) ≈
2ae−rk−1 . The induction assumption means that |ẏη − ẏζ | ≤ 2(Cab)nk−1/4.
By Lemma 3.10.1 and rk−1 ≤ 5nk−1,

dist( f −1(η), f −1(ζ)) ≤ (Cb)nk−1/2erk−1 ≤ (Cb)nk−1/4. (62)

We take Ca larger than this last constant C. It follows that

|αη − αζ | ≤ C
√

b(Cab)nk−1/4 and |βη − βζ | ≤ C(Cab)nk−1/4. (63)

Using the assumption rk−1 ≤ 5nk−1 once more, we conclude that these
expressions are much smaller than e−rk−1 . In particular, |βζ | is also of order
e−rk−1 . Expansivity implies∥∥D f mk(η)eη

∥∥ ≤ (Cb)mk and
∥∥D f mk(ζ)eζ

∥∥ ≤ (Cb)mk , (64)

whereas Proposition 2.3.4 and Lemma 3.10.1 give∥∥D f mk(η)eη − D f mk(ζ)eζ
∥∥ ≤ (Cb)mk dist(η, ζ) ≤ (Cb)mk erk−1 (Cb)nk−1/2.

(65)

We take Ca ≥ C for any of the constants appearing in (61)–(65). Then,
combining these estimates through the triangle inequality,∥∥∥∥ αη D f mk(η)eη

|βη| ‖D f mk(η)w0‖− αζ D f mk(ζ)eζ
|βζ | ‖D f mk(ζ)w0‖

∥∥∥∥
≤ C

√
b (Cab)nk−1/4e2rk−1(Cab)mk .

Then, as t( f nk(ξk)) is collinear to αηD f mk(η)eη + βηD f mk(η)w0 and
D f nk(z)w0 is collinear to αζD f mk(ζ)eζ + βζ D f mk(ζ)w0,

angle
(
D f nk(z)w0, t

(
f nk(ξk)

))
≤ 2 angle

(
D f mk(η)w0, D f mk(ζ)w0

) + C
√

b (Cab)nk−1/4e2rk−1(Cab)mk

≤ (Cb)nk−1/4erk−1/2(Cb)mk/2 + C
√

b (Cab)nk−1/4e2rk−1(Cab)mk .

For the first inequality, take v1 = βηD f mk(η)w0 , ε1 = αηD f mk(η)eη ,
v2 = βζ D f mk(ζ)w0 , and ε2 = αζ D f mk(ζ)eζ in Remark 3.4. The second
inequality follows from Proposition 2.3.5 combined with (60). Since nk =
nk−1 + 1 + mk and mk > rk−1, this gives

angle
(
D f nk(z)w0, t

(
f nk(ξk)

)) ≤ (Cab)nk/4.

(take Ca larger than the other constants in the previous inequality). So, the
inductive step is complete. ��
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Remark 3.5. More generally, if 0 ≤ t ≤ k − 1 is such that r j ≤ 5(n j − nt)
for all t < j ≤ k − 1 then

angle
(
D f nk−nt−1

(
f nt+1(z)

)
w0, t

(
f nk(ξk)

)) ≤ (Cb)(nk−nt−1)/4.

This is proved in the same way as the lemma, starting the induction at
k = t + 1. Observe that the assumption was used to relate rk−1 and nk−1, in
the context of (61), (62), (63). In the present situation one relates rk−1 and
nk−1 − nt in much the same way.

Remark 3.6. The hypotheses in Lemma 3.11 and Remark 3.5 are unnecessar-
ily strong: the arguments remain valid if one assumes only r j ≤ | log Cb| n j
for 1 ≤ j ≤ k − 1, respectively, r j ≤ | log Cb| (n j − nt) for t < j ≤ k − 1.
On the other hand, the statements given above are sufficient for all our
purposes in this paper (we never use these more general hypotheses).

It is time to complete the proof of Propositions 3.5 and 3.7. Part 3
follows immediately from Lemma 3.10.2: for z = f −nk(z∗

0, j) we may take
ξk = f −nk(z∗

1, j), and then, by Remark 3.3,

dist
(
z∗

0, j, z∗
1, j

) ≤ (Cb)nk/2 ≤ 1

10
e−2βnk ≤ 1

10
dC

(
z∗

i, j

)
.

Finally, Part 4 of Propositions 3.5 and 3.7 can be readily deduced from
Lemma 3.11, in the version given in Remark 3.5. Indeed, we may take
z = f −nk(ζ) for an arbitrary point ζ ∈ f mk(γ s

i ), and then ξk = f −nk(z∗
i, j),

for i = 0, 1. The way we defined itineraries, there exists 0 ≤ t ≤ k −1 such
that f nt+1(z) and f nt+1(ξk) belong to the same long stable leaf Γrt ,lt (ζ̃t).
By the construction of these leaves, recall Proposition 3.3 and Remark 3.3,
r j ≤ 2β(n j − nt) < 5(n j − nt) for all j ≥ t + 1. So, we may conclude that

angle
(
D f nk−(nt+1)

(
f nt+1(z)

)
w0, t

(
z∗

i, j

))
= angle

(
D f nk−(nt+1)( f nt+1(z))w0, t

(
f nk(ξk)

))

is bounded by (Cb)(nk−nt−1)/4. Adding the inequalities corresponding to
l = 0 and l = 1, we get the claims in Propositions 3.5.4 and 3.7.4.

angle
(
t
(
z∗

0, j

)
, t

(
z∗

1

)) ≤ (Cb)(nk−nt−1)/4 ≤ 1

20
e−2β(nk−nt+1) ≤ 1

10
dC

(
z∗

l

)
.

(66)

This finishes the proof of Propositions 3.5.4 and 3.7.4.

We conclude this section with yet another useful application of these
arguments.
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Corollary 3.12. Let 0 ≤ t < k and z ∈ ∆0 satisfy ri ≤ 5(n j −nt) for every
t < j < k. Then f nt+1(z) is expanding up to time nk − nt − 1: there is
λ ≥ e−20 such that

‖D f i( f nt+1(z))w0‖ ≥ λi for every 1 ≤ i ≤ nk − nt − 1.

Moreover, ( f n j (z), D f n j−nt−1( f nt+1(z))w0) is in tangential position rela-
tive to (ζ̃ j , t(ζ̃ j)) for any return n j with t < j < i.

Proof. We check that Remark 3.2 can be applied to the point ζ = f nt (z). Re-
call that, according to Lemma 3.10.2, the height of the rectangle f n j (R(i0,
. . . , i j)) does not exceed (Cb)n j/2, which is much smaller than e−5n j ≤
e−5(n j−nt ). Therefore, the assumption of the corollary implies that
dist( f n j−nt (ζ), ζ̃ j) ≥ e−5(n j−nt ) and f n j−nt (ζ) is in tangential position rela-
tive to (ζ̃ j, t(ζ̃ j)), for every j > t. Using Remark 3.5 we get more:
( f nj−nt(ζ),D f n j−nt−1( f(ζ))w0) is in tangential position relative to (ζ̃ j ,t(ζ̃ j)),
also for every j > t. So the assumptions of Remark 3.2 are indeed satisfied,
and we may conclude that f(ζ) is expanding. ��

4 Tangential positions are statistically inevitable

Now the goal is to show that for Lebesgue almost every point in the basin
of attraction, returns are eventually tangential. The following notion is
motivated by Corollary 3.12. Given an itinerary (i0, i1, . . . , ik, . . . ), with
return times n0 < n1 < · · · < nk < · · · , we define its close returns
ν0 < ν1 < · · · < νs < · · · as follows. Take ν0 = n0 = −1. Then, for each
s ≥ 0, let νs+1 = nk(s+1) where k(s + 1) is maximum such that

r j ≤ 5(n j − νs) for all νs < n j < nk(s+1).

Observe that, according to Corollary 3.12, non-close returns are always
tangential, moreover, points remain expanding as long as they have no
close returns. The main result in the present section is Proposition 4.10:
itineraries with many close returns are improbable. Sections 4.1 and 4.2
contain some crucial preparatory results. Throughout, it is understood that
all the constants c and C are independent of k ≥ 1 and i0, i1, . . . , ik−1.

4.1 Unstable sides are roughly parallel

The first step is to prove that the tangent directions to the unstable sides of
each rectangle f nk(R(i0, . . . , ik−1)) satisfy a Lipschitz condition, expressed
in the next proposition.

Proposition 4.1. For any z̃0 and z̃1 in different unstable sides of f nk(R(i0,
. . . , ik−1)),

angle(t(z̃0), t(z̃1)) ≤ Cb−1e4(nk−νs) dist(z̃0, z̃1)

where νs is the last close return strictly before nk.
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The proof is by induction on s: assuming the conclusion of the proposi-
tion at time νs, we prove that it holds for all νs < nk ≤ νs+1. This has two
main parts. We begin by obtaining, in Lemma 4.2, an estimate for the angle
at time νs + 1 = nk(s) + 1 in terms of rk(s) only (thus, independent of the
history prior to νs). In a second stage, we deduce the proposition for nk > νs
from this estimate and Lemma 4.4, which contains the statement that the
tangent vectors to the unstable sides of f j(R(i0, . . . , ik−1)) are expanded
under D f nk− j , for all νs < j < nk. To keep track of the induction, during the
proof we use Cp to mean the constant C in the statement of Proposition 4.1.
For Lemma 4.2, we assume that δ is small depending on Cp; see (75). Later,
see (82) in Lemma 4.5, we take Cp much larger than a few other constants,
independent of δ. Clearly, such constraints are compatible as long as δ is
small enough.

Let x �→ (x, y j(x)), j = 0, 1, parametrise the unstable sides of f νs(R(i0,
. . . , ik(s)−1)), and y �→ (xs(y), y) parametrise the long stable leaf through
f(ζ̃k(s)). As before, ζ̃k(s) is the binding critical point associated to the return
νs = nk(s). We write

(
ξ̃ j(x), η j(x)

) = f(x, y j(x)) and ξ j(x) = ξ̃ j(x)− xs(η j(x)). (67)

That is, ξ j(x) is the (signed) horizontal distance from the point (ξ̃ j (x), η j(x))
to the stable leaf through f(ζ̃k(s)). Compare (6).

In the next lemma we use sl t(z) to represent the slope of tangent vectors
in (ξ, η) coordinates: sl t(ξ j(x), η j(x)) = η′

j(x)/ξ
′
j(x). Note that we do not

take absolute values.

Lemma 4.2. For any z0 and z1 in the unstable boundary of f νs+1(R(i0,
. . . , ik(s))),

|sl t(z0)− sl t(z1)| ≤ Cb−1e3rk(s) dist(z0, z1).

Proof. For the time being we suppose that z0 and z1 are in different unstable
sides of the rectangle f νs+1(R(i0, . . . , ik(s))). There are two cases to be
considered, cf. Fig. 5.

Fig. 5
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First, we suppose that f −1(z0) and f −1(z1) belong to the same unstable
side of the rectangle f νs(R(i0, . . . , ik(s)−1)), cf. cases (a), (b), (a1), (b1) in
Sect. 3.2. This corresponds to the left hand half of Fig. 5. Up to interchang-
ing the roles of y0 and y1, we may suppose that this is the unstable side
parametrised by (x, y0(x)). Then ζ̃k(s) = (xc, y0(xc)) for some xc. We also
write z0 = f(x0, y0(x0)) and z1 = f(x1, y0(x1)), for some x0 and x1. By the
definition of itineraries, |ξ0(x j)| ≈ e−2rk(s) . Then, by the quadratic behaviour
property (7),

(x j − xc)
2 ≈ |ξ0(x j)| ≈ e−2rk(s) , and so

∣∣ξ ′
0(x j)

∣∣ ≈ |x j − xc| ≈ e−rk(s) .

In the case we are dealing with, f −1(z0) and f −1(z0) are to opposite sides
of the critical point ζ̃k(s). So, |x0 − x1| = |x0 − xc| + |x1 − xc| ≥ ce−rk(s) .
Assumption (3) implies that ‖D f −1‖ ≤ 4J/b. It follows that

dist(z0, z1) ≥ cb(|x0 − x1| + |y0(x0)− y1(x1)|) ≥ cbe−rk(s) .

This gives

| sl t(z0)− sl t(z1)| ≤ |η′
0(x0)|

|ξ ′
0(x0)| + |η′

0(x1)|
|ξ ′

0(x1)| ≤ C
√

b erk(s)

≤ Cb−1/2 e2rk(s) dist(z0, z1),

which is even stronger than the claim in the lemma.

Now we treat the situation when f −1(z0) and f −1(z1) are in different
unstable sides of the rectangle f νs(R(i0, . . . , ik(s)−1)), cf. (c), (d) , (e), (c1)
in Sect. 3.2. See the right hand half of Fig. 5. Interchanging y0 and y1 if
necessary, we may suppose that the binding critical point is (xc, y1(xc))
for some xc. Due to the form of the map f , and the fact that long stable
leaves are almost vertical, we may write ξ j(x) = 1 − ax2 + ψ(x, y j(x)),
for j = 0, 1, and a function ψ that is C

√
b close to a constant in the C2

topology. Then,

ξ0(x) = ξ1(x)+ ρ(x, (y0 − y1)(x)),

where ρ(x, h) = ψ(x, y1(x)+h)−ψ(x, y1(x)) has C2 norm less than C
√

b.
Let x0, x1 be defined by z0 = f(x0, y0(x0)) and z1 = f(x1, y1(x1)). We have

ξ ′
0(x0)− ξ ′

1(x1) = (
ξ ′

1(x0)− ξ ′
1(x1)

) + ∂xρ(x0, (y0 − y1)(x0))

+ ∂yρ(x0, (y0 − y1)(x0))(y0 − y1)
′(x0).

The first term on the right is bounded by 4|x0 − x1|. Since ρ(x, 0) =
∂xρ(x, 0) = 0 for all x, the second one is bounded by C

√
b |(y0 − y1)(x0)|.

As for the last term, we write it as[
∂yρ(x0, (y0 − y1)(x0))− ∂yρ(x0, y∗)

]
(y0 − y1)

′(x0)

+ ∂yρ(x0, y∗) (y0 − y1)
′(x0) (68)
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where y∗ is any point in the interval bounded by 0 and (y0 − y1)(x), having
the mean value property:

∂yρ(x0, y∗)(y0 − y1)(x0) = ρ(x0, (y0 − y1)(x0)). (69)

Since |(y0 − y1)
′| ≤ 1, the first term in (68) is less than

C
√

b |(y0 − y1)(x0)− y∗| ≤ C
√

b |(y0 − y1)(x0)|.
Now we use induction: assuming that Proposition 4.1 holds for the points
(x0, y0(x0)) and (x0, y1(x0)) at time nk = νs ensures that

|(y1 − y0)
′(x0)| ≤ Ls|(y1 − y0)(x0)|, Ls = Cpb−1e4(νs−νs−1).

Therefore, using (69),∣∣∂yρ(x0, y∗)(y0 − y1)
′(x0)

∣∣ ≤ Ls|ρ(x0, (y0 − y1)(x0))| = Ls|(ξ0 − ξ1)(x0)| .
At this point, putting the previous estimates together, we have shown that∣∣ξ ′

0(x0)− ξ ′
1(x1)

∣∣ ≤ C|x0 − x1| + C
√

b |(y0 − y1)(x0)| + Ls|(ξ0 − ξ1)(x0)| .
Moreover, |(y0− y1)(x0)| ≤ |y0(x0)− y1(x1)|+C|x0−x1|, and similarly for
(ξ0 − ξ1), since the derivatives of y1 and ξ1 are uniformly bounded. Hence,
the previous inequality implies∣∣ξ ′

0(x0)− ξ ′
1(x1)

∣∣ ≤ (C + Ls)|x0 − x1| + C
√

b |y0(x0)− y1(x1)|
+ Ls|ξ0(x0)− ξ1(x1)| . (70)

Moreover, we may replace C + Ls by CLs (possibly with a larger C), since
Ls ≥ 1.

In a similar fashion, we write η0(x) = η1(x)+ θ(x, (y0 − y1)(x)), where

θ(x, h) = R2(x, y1(x)+ h)− R2(x, y1(x))

has C2 norm less than C
√

b, and satisfies θ(x, 0) = ∂xθ(x, 0) = 0 for
every x. Then we conclude, as before, that∣∣η′

0(x0)− η′
1(x1)

∣∣ ≤ CLs

√
b |x0 − x1| + C

√
b |y0(x0)− y1(x1)| (71)

+ Ls|η0(x0)− η1(x1)| .
Observe that the first term comes with a better factor C

√
b than the corres-

ponding one in (70). This is because |η′
j(x0)−η′

j(x1)| ≤ C
√

b |x0 − x1| and

|η j(x0)−η j(x1)| ≤ C
√

b |x0 − x1|, which are better than the corresponding
estimates for ξ ′

j and ξ j . Putting (70) and (71) together with |ξ ′
j | ≤ C and

|η′
j | ≤ C

√
b, we find that |η′

0(x0)| |ξ ′
1(x1) − ξ ′

0(x0)| + |ξ ′
0(x0)| |η′

0(x0) −
η′

1(x1)| is bounded by

C
(√

b |y0(x0)− y1(x1)| + √
b Ls|x0 − x1| + Ls|ξ0(x0)− ξ1(x1)|

+ Ls|η0(x0)− η1(x1)|
)
. (72)
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It is clear that the two last terms are bounded by CLs dist(z0, z1). We also
want to bound the first two terms by some multiple of dist(z0, z1). For this
we apply the mean value term to f −1: (3) ensures that ‖D f −1‖ ≤ Cb−1,
and so

|y0(x0)− y1(x1)| ≤ Cb−1 dist(z0, z1).

There is a similar estimate for |x0 −x1| but, in fact, we can do slightly better:
since |∂y R1|, |∂y R2| are less than C

√
b, the derivative of the first component

of f −1 is bounded by Cb−1/2, and so the mean value theorem gives

|x0 − x1| ≤ Cb−1/2 dist(z0, z1). (73)

Replacing these remarks in (72) we obtain∣∣η′
0(x0)ξ

′
1(x1)− ξ ′

0(x0)η
′
1(x1)

∣∣ ≤ Cb−1/2 dist(z0, z1)+ CLs dist(z0, z1).

(74)

A key remark is that,

Ls ≤ Cpb−1e−(νs−νs−1)erk(s) ≤ b−1erk(s) . (75)

because rk(s) > 5(νs − νs−1) (since νs is a close return), and νs − νs−1 ≥
pk(s−1)+1 can be made arbitrarily large by taking δ sufficiently small. Thus,
(74) gives∣∣η′

0(x0)ξ
′
1(x1)− ξ ′

0(x0)η
′
1(x1)

∣∣ ≤ Cb−1erk(s) dist(z0, z1), (76)

where the constant C does not depend on Cp. Furthermore,∣∣ξ ′
1(x1)

∣∣ ≥ c|x1 − xc| ≥ ce−rk(s) and
∣∣ξ ′

0(x0)
∣∣ ≥ ce−rk(s) . (77)

The first claim follows easily from ξ ′
1(xc) = 0 and ξ ′′

1 ≈ −2a. The second
one is slightly trickier, because ξ ′

0(xc) may not be zero: the critical point
ζ̃k(s) = (xc, y1(xc)) is in the unstable side parametrised by (x, y1(x)) not
(x, y0(x)). To overcome this, we let x̄c be the unique solution of ξ ′

0(x̄c) = 0.
Then |ξ ′

0(x0)| ≈ 2a|x0 − x̄c|, and

a|x0 − x̄c|2 ≈ |ξ0(x̄c)− ξ0(x0)| ≥ |ξ1(xc)− ξ0(x0)| ≥ e−2rk(s) ,

recall Proposition 3.3. This completes the proof of (77). Then, combining
(76) with (77),

| sl t(z0)− sl t(z1)| =
∣∣∣∣η

′
0(x0)

ξ ′
0(x0)

− η′
1(x1)

ξ ′
1(x1)

∣∣∣∣ ≤ Cb−1erk(s) dist(z0, z1)∣∣ξ ′
0(x0)

∣∣ ∣∣ξ ′
1(x1)

∣∣
≤ Cb−1e3rk(s) dist(z0, z1).

This proves the lemma in this case.

All that is left is the case when z0, z1 are in the same unstable side
of f νs+1(R(i0, . . . , ik(s))). Equivalently, f −1(z0) and f −1(z1) are in the
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same unstable side of f νs(R(i0, . . . , ik(s))). Then there are x0, x1 so that
z0 = f(x0, y j(x0)) and z1 = f(x1, y j(x1)), for either j = 0 or j = 1. The
binding critical point may be written ζ̃k(s) = (xc, yi(xc)). Here i may differ
from j but, for the same reasons as in the previous paragraph, we always
have |ξ ′

j(x0)| ≥ ce−rk(s) and |ξ ′
j(x1)| ≥ ce−rk(s) . So,

| sl t(z0)− sl t(z1)| =
∣∣∣∣∣
η′

j(x0)

ξ ′
j(x0)

− η′
j(x1)

ξ ′
j(x1)

∣∣∣∣∣ ≤ C
√

b e2rk(s) |x0 − x1|

≤ Ce2rk(s) dist(z0, z1), (78)

where the last inequality uses (73). This is a stronger fact than we claimed.
The proof of Lemma 4.2 is now complete. ��

Recall that we consider νs = nk(s) to be the last close return before nk.
By Corollary 3.12, every z ∈ f νs+1(R(i0, . . . , ik)) is expanding up to time
µ = nk − νs − 1. Let eµ(z) denote the contracting direction of order µ at z.
Just as in the previous lemma, the constants C in the next corollary do not
depend on Cp, and this is important for what follows.

Corollary 4.3. There is a C1 vector field v0 = (1, 0) + φ eµ defined on
f νs+1(R(i0, . . . , ik)) and tangent to the unstable sides of it, with |φ| ≤
C

√
berk(s) and ‖Dφ‖ ≤ Cb−1e3rk(s) .

Proof. First we define φ(z) for the points z = (ξ j(x), η j(x)) in each of
the unstable sides of f νs+1(R(i0, . . . , ik)), by the condition that (1, 0) +
φ(z) eµ(z) be collinear to the tangent direction t(z). Writing

t(z) = ξ ′
j(x)∂ξ + η′

j(x)∂η and

eµ(z) = (ε(z), 1) = [
ε(z)− (xs)′(η j(x))

]
∂ξ + ∂η,

({∂ξ, ∂η} are the vector fields dual to the coordinates (ξ, η) in (67), that is
ξ = ξ̃ − xs(η̃) and η = η̃, where (ξ̃, η̃) stand for the usual coordinates in
the plane), this means that

φ(z) = η′
j(x)/ξ

′
j(x)

1 − [
ε(z)− (xs)′(η j(x))

] [
η′

j(x)/ξ
′
j(x)

] .
Write the image f(ζ̃k(s)) of the binding critical point as (ξc, ηc). Proposi-
tions 2.3.3 and 2.4 imply |D(ε − (xs)′)| ≤ C

√
b, and so∣∣[ε(ζ̃k(s))− (xs)′(ηc)

] − [
ε(z)− (xs)′(η j(x))

]∣∣ ≤ C
√

b dist(z, ζ̃k(s))

≤ C
√

b e−rk(s) .

By Propositions 2.3.2 and 3.7.1, |ε(ζ̃k(s))−(xs)′(ηc)| ≤ (Cb)µ � C
√

be−rk(s).
So, using (77),∣∣ε(z)− (xs)′(η j(x))

∣∣ ∣∣η′
j(x)/ξ

′
j(x)

∣∣ ≤ C
√

b e−rk(s) C
√

b erk(s) � 1.
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It immediately follows that |φ(z)| ≤ 2| sl t(z)| ≤ C
√

b erk(s) . It is clear
that φ is C1 on each unstable side. Moreover, its derivative is bounded
by Cb−1e3rk(s) , as a consequence of the Lipschitz estimate for the slopes
η′

j(x)/ξ
′
j(x) provided by Lemma 4.2. This lemma also implies that φ is

Lipschitz continuous on the union of the two unstable sides, with Lipschitz
constant Cb−1e3rk(s) . Therefore, it can be C1 extended to the whole rect-
angle f νs+1(R(i0, . . . , ik)), preserving the bounds on the function and the
derivative. For instance, the extension may be taken affine on vertical line
segments; beforehand, extend φ to curves slightly larger than the unstable
sides, so that every relevant vertical segment intersects both curves. We still
denote the extended function by φ, then we define v0 = (1, 0)+φ eµ on the
whole rectangle. ��

Next, we introduce the projectivization f∗ of D f , given by f∗(z, v) =
D f(z)v/‖D f(z)v‖, and define vector fields v j on f νs+ j+1(R(i0, . . . , ik)),
for 1 ≤ j ≤ µ, by push-forward under f∗:

v j(ξ) = f∗
(

f −1(ξ), v j−1( f −1(ξ))
)
.

Of course, each v j is tangent to the unstable sides of f νs + j+1(R(i0,. . ., ik−1)).

Lemma 4.4. Given ζ ∈ f nk(R(i0, . . . , ik−1)), let ζi = f −µ+i(ζ) for each
0 ≤ i ≤ µ. Then,∥∥D f i(ζµ−i)vµ−i(ζµ−i)

∥∥ ≥ 1 for all 0 ≤ i ≤ µ.

Proof. By Corollary 3.12, (ζn j−νs−1, D f n j−νs−1(ζ0)w0) is in tangential pos-
ition relative to (ζ̃ j, t(ζ̃ j)), for every return n j such that νs < n j < nk.
Moreover, ‖D f i(ζ0)w0‖ ≥ λi for every 0 ≤ i ≤ µ. On the other hand,
‖D f i(ζ0)eµ‖ is less than (Cb)i , cf. Proposition 2.3.2. Since v0 = w0 +φeµ,
it follows that

angle
(
vn j−νs−1(ζn j−νs−1), D f n j−νs−1(ζ0)w0

) ≤ (Cb/λ)n j−νs−1

� e5(n j−νs)/2 ≤ e−r j /2 ≤ dist
(

f n j−νs−1(ζ0), ζ̃ j
)

(because n j is not a close return). Hence, (ζn j−νs−1, vn j −νs−1(ζn j−νs−1)) is
also in tangential position relative to (ζ̃ j, t(ζ̃ j)), for every return n j between
νs and nk. In addition, as we have seen in Lemma 3.9, pj+1 is a suitable
bound period for f n j−νs−1(ζ0). Therefore, the conclusions of Proposition 2.8
are valid in this context. In particular, Part 2 of the proposition gives that∥∥(

D f p j+1+1 · vn j−νs−1
)
(ζn j−νs−1)

∥∥ ≥ σ
(p j+1+1)/3
1 , (79)

and the slope is less than 1/10. Then the slope of vn j+p j+1−νs(ζn j+p j+1−νs)
is also less than 1/10 (the two vectors are collinear), and so Proposition 2.5
applies to it:∥∥(

D f n j+1−(n j+p j+1+1) · vn j+p j+1−νs

)
(ζn j+p j+1−νs)

∥∥ ≥ σ
n j+1−(n j+p j+1+1)
1 .

(80)
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Now the proof of the lemma is similar to that of [2, Lemma 7.13]. The
key observation is that any return (either free or bound) occurring in the time
interval [µ − i, µ) has its bound period contained in that interval, because
µ is a free iterate for ζ0 . This means that whatever contraction takes place
at the return is compensated for before time µ is reached, recall (79). More
precisely, [µ − i, µ) may be split as a union of subintervals during which
the trajectory is outside {|x| ≤ δ}, for which (80) applies, and of (complete)
bound periods, where we have an analog of (79). We illustrate this with the
case whereµ−i is a free iterate for ζ0 , referring the reader to [2, Lemma 7.13]
for the details in the general situation. Let nl > µ− i be the first free return
after timeµ− i. Then nl−1 + pl < µ− i < nl because we are assuming that
µ− i is a free iterate. It follows that slope vµ−i(ζµ−i) ≈ slope D f µ−i(ζ0)w0
is less than 1/10, by Propositions 2.8.4 and 2.5. Therefore, we have an analog
of (80) for (D f nl−µ+i · vµ−i)(ζµ−i). Multiplying this by the product of (79)
and (80) over all the n j with l ≤ j < k, we find that ‖(D f i · vµ−i)(ζµ−i)‖ ≥
σ

i/3
1 > 1, as claimed in the lemma. ��

Proposition 4.1 is an immediate consequence of the next lemma, with
the same constants. The following elementary facts are used in the proof
of the lemma. Let ξ be a generic point and v be any norm 1 tangent vector
at ξ . Then ∂v f∗(ξ, v)v̇ coincides with the component of D f(ξ)(v̇)/‖D f(ξ)v‖
orthogonal to D f(ξ)v, for any vector v̇ tangent to the v-direction at (ξ, v).
In particular,

|∂v f∗(ξ, v)|‖D f(ξ)v‖2 = | det D f(ξ)|.
Similarly, ∂ξ f∗(ξ, v)ξ̇ coincides with the component of the vector
D2 f(ξ)(ξ̇, v)/‖D f(ξ)v‖ in the direction orthogonal to D f(ξ)v, for any tan-
gent vector ξ̇ tangent to the ξ-direction at (ξ, v). As a consequence, the norm
of ∂ξ f∗(ξ, v)D f( f(ξ))−1η̇ is bounded by∥∥∥∥D2 f(ξ)

(
D f(ξ)−1η̇,

v

‖D f(ξ)v‖
)∥∥∥∥ ≤ ‖D2 f(ξ)‖

| det D f(ξ)| ‖η̇‖

for any tangent vector η̇ tangent to the ξ-direction at ( f(ξ), D f(ξ)v).

Lemma 4.5. ‖Dvµ(ζ)‖ ≤ Cb−1e4(nk−νs) at every ζ ∈ f nk(R(i0, . . . , ik−1)).

Proof. Taking derivatives in the definition of vµ yields

Dvµ(ζ) =
µ−1∑
j=0

∂v f j
∗ (ζµ− j , vµ− j )∂ξ f∗(ζµ− j−1, vµ− j−1)D f − j−1(ζ)

+ ∂v f µ∗ (ζ0, v0)Dv0(ζ0)D f −µ(ζ),

(81)

where vµ− j means vµ− j(ζµ− j). For every j ≥ 1,

∥∥∂v f j
∗ (ζµ− j , vµ− j)

∥∥ =
µ−1∏

i=µ− j

| det D f(ζi)|
‖D f(ζi)vi‖2

=
∣∣ det D f j(ζµ− j)

∣∣∥∥D f j(ζµ− j)vµ− j

∥∥2 .
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On the other hand,

‖D f − j(ζ)‖ ≤
∥∥D f j(ζµ− j)

∥∥∣∣ det D f j(ζµ− j)
∣∣ .

Moreover,

∥∥∂ξ f∗(ζµ− j−1, vµ− j−1)D f −1(ζµ− j)
∥∥ ≤

∥∥D2 f(ζµ− j−1)
∥∥

| det D f(ζµ− j−1)| ≤ Cb−1.

Replacing all this in (81),

‖Dvµ(ζ)‖ ≤
µ−1∑
j=0

Cb−1

∥∥D f j(ζµ− j)
∥∥∥∥D f j(ζµ− j)vµ− j

∥∥2 +
∥∥D f µ(ζ0)

∥∥∥∥D f µ(ζ0)v0

∥∥2 ‖Dv0(ζ0)‖.

So, in view of Corollary 4.3 and Lemma 4.4,

‖Dvµ(ζ)‖ ≤
µ−1∑
j=0

Cb−14 j + 4µCb−1e3rk(s) ≤ Cpb−1e4µ, (82)

as long as we choose Cp sufficiently large with respect to the other constants.
This can be done since the constants C in Lemma 4.2 and Corollary 4.3
were taken independent of Cp, recall (76). The last inequality also uses
µ > pk(s) ≥ (4/3) rk(s) , which is contained in Proposition 3.7.1. ��

4.2 Area distortion bounds

Next, we obtain a uniform bound for the distortion of the Jacobian on
trajectories sharing the same itinerary:

Proposition 4.6. Given any k ≥ 1 and i0, . . . , ik−1,

| det D f n−l( f l(z))|
| det D f n−l( f l(w))| ≤ C.

for every z, w ∈ R(i0, . . . , ik−1) and every 0 ≤ l < n ≤ nk.

Let us observe that this statement is trivial when the map f has constant
Jacobian, e.g. the Hénon model. In the general case, the proof is based on
the following two lemmas.

Lemma 4.7. Given any k ≥ 1 and i0, . . . , ik−1, we have

nk−1∑
j=0

length( f j(γ u)) ≤ C

for either of the unstable sides γ u of R(i0, . . . , ik−1).



422 M. Benedicks, M. Viana

Proof. The statement follows from ideas from [2, Lemma 7.8]. We only
outline the main points, referring the reader to [2] for details. Let �i =
length( f ni (γ u)), for 0 ≤ i ≤ k.

The first step is to show that the sum over any free period [ni−1 + pi +1,
ni − 1] is bounded by C�i.

ni−1∑
j=ni−1+pi+1

length( f j(γ u)) ≤ C�i .

To prove this, one notes that Proposition 2.5 implies that the lengths
grow exponentially fast during free periods: length( f j(γ u)) ≤ Cσ j−ni

0
length( f ni (γ u)) with σ0 > 1. Consequently, the sum is bounded by a mul-
tiple of length( f ni (γ u)). Next, one shows that the sum over a bound period
[ni + 1, ni + pi+1] is bounded by C�i/di :

ni+pi+1∑
j=ni+1

length( f j(γ u)) ≤ C�ie
ri .

In brief terms, the ratio between length( f j(γ u)) and the dist( f j(γ u), f j(ζ̃i))
is essentially preserved during the bound period. On the other hand, this
distance is bounded by a geometrically decreasing sequence Ce−β j , by the
definition of binding periods. So, the sum of the lengths over all ni < j ≤
ni + pi+1 is less than

C
length( f ni (γ u))

dC( f ni(γ u))
≤ C�ie

ri .

Clearly, �i ≤ �ieri . Therefore, these two estimates imply that the sum
over the whole time interval [0, nk − 1] is bounded by C

∑k
i=0 �ieri . Now,

Propositions 2.5 and 2.8.2 imply that lengths get expanded between any
consecutive free returns: �i ≥ σ0�i−1 with σ0 > 1. It follows that, for each
fixed r, the sequence of all the �ieri with ri ≡ r is geometrically increasing.
Therefore, the sum of �ieri over the corresponding values of i is bounded
by a multiple of the last term:

C
k∑

i=0

�ie
ri = C

∑
r>0

∑
i:ri =r

�ie
ri ≤ C

∑
r>0

�i(r)e
r

where, by definition, i(r) is the largest value of i for which ri = r. By
construction, �ieri is less than Cr−2

i for every i: this is because we defined
itineraries in terms of the extended family of long leaves introduced after
Remark 3.3 (incidentally, this is the only place in the proof where that is
used). So,

C
∑
r>0

�i(r)e
r ≤

∑
r>0

Cr−2 ≤ C.

This gives the lemma. ��
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Lemma 4.8. Given any k ≥ 1 and i0, . . . , ik−1,

nk−1∑
j=0

dist( f j(z), f j(zu)) ≤ C

for every z ∈ R(i0, . . . , ik−1) and every zu in the unstable boundary of
R(i0, . . . , ik−1).

Proof. Let σu be any of the unstable sides of R(i0, . . . , ik−1). Suppose first
that there are no close returns before time nk, other than ν0 = −1. Then, cf.
Corollary 3.12, every point z ∈ R(i0, . . . , ik−1) is expanding up to time nk.
So, the temporary stable leaf Γnk of order nk through z is long and nearly
vertical. If Γnk intersects σu , let ξ be the intersection point. Otherwise, it
must intersect some stable side σ s of R(i0, . . . , ik−1), let ξ be the point where
σ s and σu meet. Since Γnk and σ s are exponentially contracted during at
least nk iterates,

nk−1∑
j=0

dist( f j(z), f j(ξ)) ≤
nk−1∑
j=0

(Cb) j ≤ C.

Finally, as a consequence of Lemma 4.7, this conclusion remains true if one
replaces ξ by any other point in σu .

In general, let ν0 < ν1 < · · · < νs < nk be the close returns prior to nk.
We allow ourselves a slight abuse of language: take νs+1 to mean nk, and
k(s + 1) to mean k, wherever they occur in this proof. By Corollary 3.12,
f νl+1(z) is expanding up to time µl = νl+1 − νl − 1 for any 0 ≤ l ≤ s.
Let Γµl be the corresponding temporary stable leaf through f νl+1(z), and
let λu denote the unstable side of R(i0, . . . , ik(l+1)) that contains σu . If
Γµl intersects f νl+1(λu), let ηl be the point of intersection. Otherwise, Γµl

intersects some stable side f νl+1(λs) of f νl+1(R(i0, . . . , ik(l+1))), and ηl is
the endpoint point shared by f νl+1(λu) and f νl+1(λs). In both cases, cf.
Lemma 3.10.2,

dist
(

f j(z), f j−νl−1(ηl)
) ≤ (Cb) j−νl−1

(
dist( f νl+1(z), ηl)

+ length( f νl+1(λs))
)

≤ (Cb) j−νl−12(Cb)(νl+1)/2

for all νl + 1 ≤ j ≤ νl+1. So,
νl+1∑

j=νl+1

dist
(

f j(z), f j−νl−1(ηl)
) ≤ (Cb)(νl+1)/2. (83)

Now, by the same argument as in Lemma 4.7,

νl+1∑
j=νl+1

length( f j(λu)) ≤ C
k(l+1)∑
q=k(l)

length( f nq(λu)) erq .
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The term corresponding to q = k(l) is bounded by Cr−2
k(l). We claim that the

sum over all k(l) < q ≤ k(l + 1) is bounded by

C length( f nk(l+1) (λu)) erk(l+1) ≤ Cr−2
k(l+1).

That is a consequence of the following two observations. On the one hand,
as νl and νl+1 are consecutive close returns,

rk(l+1) > 5(νl+1 − νl) ≥ 5(νl+1 − nq) ≥ 5pq+1 ≥ 5rq (84)
for k(l) ≤ q < k(l + 1).

The last inequality is from Proposition 3.7.1. On the other hand, by Propo-
sitions 2.5 and 2.8.2,

length( f nq(λu)) ≥ σ
(nq−nq−1)/3
1 length( f nq−1(λu)) for k(l) < q ≤ k(l + 1).

Our claim follows by a geometric series argument. Then, given any zu ∈ σu ,

νl+1∑
j=νl+1

dist
(

f j(zu), f j−νl−1(ηl)
) ≤

νl+1∑
j=νl+1

length( f j(λu)) ≤ Cr−2
k(l) + Cr−2

k(l+1).

(85)

Putting (83) and (85) together,

nk−1∑
j=0

dist
(

f j(zu), f j−νl−1(ηl)
) ≤

s∑
l=0

(Cb)(νl+1)/2 +
s+1∑
l=0

Cr−2
k(l).

It is clear that the first term on the right is bounded by some uniform constant
C > 0. To show that the same is true about the second one, we just observe
that rk(l) > 5rk(l), by (84), so that rk(l) > 5l for every 0 ≤ l ≤ s. ��

Proposition 4.6 is an easy consequence of Lemma 4.8. Indeed, from the
lemma we have

nk−1∑
j=0

dist( f j(z), f j(w)) ≤ C,

for any pair of points z, w in any rectangle R(i0, . . . , ik−1). Then, since J is
a bound for the derivative of log | det |D f ||,

log
| det D f n−l( f l(z))|
| det D f n−l( f l(w))| ≤ J

n−1∑
j=l

dist( f j(z), f j(w)) ≤ JC.

This gives the proposition.
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4.3 Close returns are exponentially improbable

Given m ≥ 1 and i0, . . . , im−1, let S(i0, . . . , im−1) be the set of points
z ∈ R(i0, . . . , im−1) for which nm is a close return. Leb denotes the two-
dimensional Lebesgue measure (area). The following observation will be
useful in the proof of Lemma 4.9.

Remark 4.1. Typically, the stable sides of the rectangles f nk+1(R(i0 , . . . ,
ik−1 , ik)) are contained in long stable leaves Γr,l(ζ̃k) associated to the bind-
ing point ζ̃k . This may fail to happen only if R(i0 , . . . , ik−1 , ik) is at some
of the tips of R(i0 , . . . , ik−1), in which case the two rectangles share a stable
side (or both, even more exceptionally). See Figs. 1 and 2. In any case, by
induction on k, one may always find for each stable side γ s

i a return nt ≤ nk

such that γ s
i is contained in f nk−nt (Γr,l(ζ̃t)) for some (r, l). Moreover, de-

noting νs = nk(s) the last close return before nk , we must have nt ≥ νs .
Indeed, suppose there was ŝ ≤ s such that νŝ−1 ≤ nt < νŝ. According
to Remark 3.3, the distance from f νŝ−nt (Γr,l(ζ̃t)) to the binding point ζ̃k(ŝ)

is larger than e−2β(νŝ−nt ), and so rk(ŝ) ≤ 2β(νŝ − nt). This contradicts the
assumption that νŝ is a close return: rk(ŝ) ≥ 5(νŝ − νŝ−1) > 2β(νŝ − nt).
Thus, nt ≥ νs as we claimed.

Lemma 4.9. There exist θ = θ(b) > 0 such that, for any m ≥ 1 and
i0, . . . , im−1,

Leb
(
S(i0, . . . , im−1)

)
Leb

(
R(i0, . . . , im−1)

) ≤ min
{1

θ
e−(nm−νs), 1 − θ

}
,

where νs is the last close return before nm.

Proof. By Remark 4.1, each of the stable sides γ s
0 and γ s

1 of f nm (R(i0,

. . . , im−1)) is contained in some f nm−nt−1(Γr,l(ζ̃t)), where ζ̃t is the binding
point corresponding to a return nt with νs ≤ nt ≤ nm−1. In particular, cf.
Remark 3.3,

dist
(
γ s

i , ζ̃m
) ≥ e−2β(nm−nt−1) � e−4(nm−νs). (86)

Now there are two situations to consider, corresponding to the two possi-
bilities in Lemma 3.8.

If the two unstable sides are in tangential position to the same critical
point η0, then γ s

0 and γ s
1 are both to the left or both to the right of η0; see the

right hand side of Fig. 2. Then (86) implies that dist(ξ, ζ̃m) is much larger
than e−4(nm−νs) for any point ξ ∈ f nm (R(i0, . . . , im−1)). Consequently,
rm < 4(nm − νs), and so nm is not a close return, for any point in the
rectangle. In other words, S(i0, . . . , im−1) is empty, and so the lemma is
trivial in this case. In what remains of the proof we treat the case when each
unstable side of f nm (R(i0, . . . , im−1)) contains a critical point, see the left
hand side of Fig. 2.
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Let ζ̃m = (x0, y0) and v = vnm−νs−1 be a C1 vector field on f nm (R(i0,
. . . , im−1)) as constructed in Sect. 4.1. The vertical line {x = x0} crosses the
rectangle, in the sense that it intersects both unstable sides. That is because
the stable sides are much shorter than their distance to η0 , by Lemma 3.10.2
and (86). Moreover, the integral curves of v are nearly horizontal, e.g., as
a consequence of Proposition 3.7.2 and Lemma 4.5. So {x = x0} intersects
every integral curve of v. We introduce coordinates ϕ(t, y) = vt(x0, y),
where (vt)t∈R denotes the flow of v, and we write z(t, y) = f −nm (ϕ(t, y)).
By (86), this is well defined (at least) for every |t| ≤ e−4(nm−νs). It follows
that, for each fixed y

{t : rm(z(t, y)) ≥ 5(nm − νs)} is contained in {t : |t| ≤ Ce−5(nm−νs)}
(87)

for some sufficiently large C. This implies that

Leb{(t, y) :nm is a close return for z(t, y)} (88)

≤ Ce−(nm−νs) Leb{(t, y) : |t| ≤ e−4(nm−νs)}.
It is easy to see that | det Dϕ(0, y)| is uniformly bounded away from zero
and infinity. Then Lemma 4.5 implies (Liouville’s formula, see e.g. [14,
Sect. I.3]), that there exists C > 0 such that

exp(−Cb−1) ≤ | det Dϕ(t, y)| ≤ exp(Cb−1) whenever |t| ≤ e−4(nm−νs).

So, the previous inequality implies that {ϕ(t, y) : nm is a close return for
z(t, y)} has Lebesgue measure bounded by

C exp(2Cb−1) e−(nm−νs) Leb{ϕ(t, y) : |t| ≤ e−4(nm−νs)}
≤ C exp(2Cb−1) e−(nm−νs) Leb

(
f nm (R(i0, . . . , im−1))

)
.

Now, using the distortion bound in Proposition 4.6, for k = m, n = nm ,
l = 0, we conclude that

Leb
(
S(i0, . . . , im−1)

) ≤ C exp(2Cb−1) e−(nm−νs) Leb(R(i0, . . . , im−1))

(possibly for a larger constant C). This gives the first estimate in the state-
ment of the lemma, with 1/θ = C exp(2Cb−1).

The second estimate is obtained along similar lines. Firstly, the factor
Ce−(nm−νs) in (88) can be made less than 1/2 by reducing δ. Thus, taking
complements in (88),

Leb{(t, y) : |t| ≤ e−4(nm−νs) and nm is not a close return for z(t, y)}
is at least half of Leb{(t, y) : |t| ≤ e−4(nm−νs)}. So, arguing as before, the
Lebesgue measure of {ϕ(t, y) : |t| ≤ e−4(nm−νs) and nm is not a close return
for z(t, y)} is larger than

1

2
exp(−2Cb−1)Leb{ϕ(t, y) : |t| ≤ e−4(nm−νs)}.



Solution of the basin problem for Hénon-like attractors 427

Now, (87) also implies that nm is never a close return if |t| > e−4(nm−νs).
Therefore,

Leb{ϕ(t, y) : nm is not close return for z(t, y)}
≥ 1

2
exp(−2Cb−1)Leb

(
f nm (R(i0, . . . , im−1))

)
.

The set on the left hand side is precisely f nm
(
R(i0, . . . , im−1) \ S(i0,

. . . , im−1)
)
. So, using Proposition 4.6,

Leb
(
R(i0, . . . , im−1) \ S(i0, . . ., im−1)

)
≥ c exp(−2Cb−1)Leb(R(i0, . . . , im−1)),

for some c > 0. Equivalently,

Leb
(
S(i0, . . . , im−1)

) ≤ (
1 − c exp(−2Cb−1)

)
Leb(R(i0, . . . , im−1)).

This gives the second bound in the statement of the lemma, with θ =
c exp(−2Cb−1) (which is compatible with the expression for θ we had
found before). ��

Given any k ≥ 1 and i0, . . . , ik−1, let H(i0, . . . , ik−1) be the subset of
z ∈ R(i0, . . . , ik−1) for which no return n j with j ≥ k is a close return.
According to the next proposition, this occupies a definite fraction of the
rectangle R(i0, . . . , ik−1), in terms of Lebesgue measure Leb.

Proposition 4.10. There is θ0 = θ0(b) > 0 such that

Leb
(
H(i0, . . . , ik−1)

) ≥ θ0 Leb
(
R(i0, . . . , ik−1)

)
for every i0, . . . , ik−1 and k ≥ 1.

Proof. Let νs be the last close return with νs ≤ nk−1. By the previous
lemma, the total Lebesgue measure of the sub-rectangles R(i0, . . . , ik−1, ik)
for which nk is not a close return is larger than

max
{
θ, 1 − θ−1e−(nk−νs)

}
Leb(R(i0, . . . , ik−1)).

In general, given l ≥ 1 and i0, . . . , ik+l−1 such that neither of nk, . . . , nk+l−1
is a close return, the Lebesgue measure of the union of all the sub-rectangles
R(i0, . . . , ik+l−1, ik+l) for which nk+l is also not a close return is at least

max
{
θ, 1 − θ−1e−(nk+l−νs)

}
Leb

(
R(i0, . . . , ik+l−1)

)
.

Noting that nk+l − νs ≥ l, we conclude that

Leb
(
H(i0, . . . , ik−1)

)
Leb

(
R(i0, . . . , ik−1)

) ≥
∞∏

l=0

max
{
θ, 1 − θ−1e−l

} ≥ θq
∞∏

l=q

(1 − θ−1e−l),

for any q > | log θ| (this is to ensure that 1 − θ−1e−l is positive for every
l ≥ q). We fix such a q, for instance, q = integer part of | log θ| + 1. Then
it suffices to take θ0 equal to the term on the right hand side of the last
inequality. ��
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5 Filling the holes in

Finally, we tie the previous results together to prove Theorems A and B.
First we show that Lebesgue almost every point in the region ∆0 has some
positive iterate contained in a long stable leaf of some point of the attractor.

Let i0 be fixed. By Proposition 4.10, the set H(i0) of points z ∈ R(i0)
without close returns corresponds to a positive Lebesgue measure fraction
of R(i0). By Corollary 3.12 the points in H(i0) are expanding. Clearly,
the long stable leaves through these points intersect the unstable manifold
Wu(P) ⊂ Λ. Now, by construction, the complement R(i0) \ H(i0) can be
written as a union of rectangles R(i0, . . . , il(1)), with variable l(1), which
we call first order gaps: nl(1) is the first close return. Again by Proposi-
tion 4.10, a positive fraction of each first order gap is filled-in by a set
H(i0, . . . , il(1)) whose points z have no other close return. So, f nl(1)+1(z)
has a long stable leaf which, moreover, intersects the attractor Λ. The com-
plement R(i0, . . . , il(1)) \ H(i0, . . . , il(1)) is given by a union of rectangles
R(i0, . . . , il(1), . . . , il(2)), the second order gaps. Now it is clear how to
proceed with the argument: Proposition 4.10 tells us that a definite frac-
tion of each mth order gap R(i0, . . . , il(m)), m ≥ 1, is filled-in by a subset
H(i0, . . . , il(m))whose points are in the f nl(m)-preimage of a long stable leaf
through a point ξ ∈ Λ. And R(i0, . . . il(m)) \ H(i0, . . . il(m)) is a union of
rectangles, that are the gaps of order m + 1. In this way we conclude that

H =
⋃

m,l(1),··· ,l(m),i0,··· ,il(m)
H(i0, . . . , il(m))

is a full Lebesgue measure subset of ∆0, contained in the union
⋃
ξ∈Λ Ws(ξ)

of the stable sets of points in Λ.

To complete the proof of Theorem A, we show that for almost all points
w ∈ B(Λ) there exists n ≥ 0 such that z = f n(w) is in the region ∆0,
as claimed in Sect. 3. First of all, if 0 < b � δ∗ � 1 then the set H+
of points whose forward orbits remain in [−2, 2]2 but do not hit R∗ =
[−δ∗, δ∗] × [−2, 2] has zero Lebesgue measure. This can be proved along
well-known lines. One constructs invariant stable and unstable cone fields
for f in [−2, 2]2 \ R∗ . It follows that the set H of points whose full
orbits are contained in [−2, 2]2 \ R∗ is uniformly hyperbolic for f . Since
H+ ⊂ Ws(H) and the stable set Ws(H) has zero Lebesgue measure,
cf. [7, Theorem 4.11], the claim follows. Then we may restrict ourselves
to points having some positive iterate in R∗ = [−δ∗, δ∗] × [−2, 2]. For the
sequel it is convenient to distinguish two cases, depending on whether the
map f is orientation preserving (both eigenvalues of D f(P) are negative) or
orientation reversing (the contracting eigenvalue is positive, the expanding
one is negative).

The latter case is somewhat better known, see e.g. [2, Sect. 4], [3], [15,
Sect. 4]. For a compact region R as in Fig. 6, bounded by a segment of
G0 ∪ G1 ∪ G2 and a segment in the long stable leaf of f 3(ζ0), one can prove
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Fig. 6

that Λ is contained in R, and some fundamental domain of f | Wu(P)
is contained in the interior of R. Moreover, R is contained in the basin
B(Λ), and it is forward invariant: f(R) ⊂ R. It follows that the union
Ws(P)∪ (⋃

n≥0 f −n(R)
)

contains a neighbourhood of the attractor Λ, and
is equal to the basin of attraction B(Λ). Another consequence is that the
forward orbit of any point in B(Λ) must eventually enter in R. Consider
the rectangle R0 ⊂ R bounded by G0, G1, and the preimage under f
of the long stable leaf Γs(P) passing through P. Recall that Gi contains
long nearly horizontal curves around ζi , for i = 0, 1. Then, in view of the
form of the map, each f(Gi) must intersect Γs(P) at exactly two points.
Therefore f −1(Γs(P)) intersects Gi at two points, and so R0 is indeed well-
defined. According to the previous paragraph, Lebesgue almost every point
w ∈ B(Λ) has some positive iterate f k(w) in R0 (take δ∗ small). Now, f(R0)
is the rectangle bounded by f(Gi), i = 0, 1, and Γs(P), which is clearly
contained in the domain ∆0 defined in Sect. 3.2. Then, by the arguments
presented so far, z = f k+1(w) belongs Lebesgue almost surely in the stable
manifold Ws(ξ) of some point ξ ∈ Λ. Therefore, the same is true for w, and
so the proof of the theorem is complete in this case.

Fig. 7
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Similar ideas apply when f preserves orientation. The argument is close
to [23, Sect. 2.1], where it was shown that the basin B(Λ) contains a neigh-
bourhood of the attractor Λ, for certain parameter intervals. It goes as
follows. Let g = ga be the one-dimensional map g(x) = 1 − ax2, and
P and Q be the fixed points of g, with Q < 0 < P (by abuse of lan-
guage, we represent by the same letters points playing similar roles in the
dynamics of g and f , respectively). We consider the sequence of intervals
[pj , p′

j+2], where p0 = P, p′
2 is the point of g−2(P) to the right of P, and

[pj , p′
j+2] = g−1([pj−1, p′

j+1])∩{x < 0}, for every j ≥ 1. For each large j,
there is some compact interval I j = [a1, j, a2, j ], close to a = 2 in parameter
space, for which g3(0) is in the interior of [pj , p′

j+2]. Each I j may be fixed
such that (a2, j −a1, j) ≥ (2−a2, j)/10 (we may take (a2, j −a1, j)/(2−a2, j)
close to (p′

j+2 − pj)/(pj − Q) for j large). We consider only parameters
a varying inside some I j (this is a simplifying condition, that is probably
not necessary; it is possible to replace each I j by a larger interval, at the
price of rendering more involved the arguments that follow). Then we fix
δ∗ sufficiently small so that g3([−δ∗, δ∗]) is contained in the interior of
[pj , p′

j+2].
Now let b � δ∗ and f = fa be close to the quadratic family ga in

the sense of Sect. 2. Since the interval I j is not too small (cf. previous
paragraph and the one preceding Sect. 2.1) the arguments of [2], [15] apply
within I j : after convenient parameter exclusions there remains a positive
Lebesgue measure subset of parameters a ∈ I j for which f has the prop-
erties listed in Sect. 2. We want to prove that, for any a ∈ I j , Lebesgue
almost every point in B(Λ) has some iterate in ∆0 . As already explained,
we only need to consider points in R∗ = [−δ∗, δ∗] × [−2, 2]. Note that
f 3(R∗) is C

√
b-close to g3([−δ∗, δ∗]) × {0}. By the perturbation argu-

ment in [23, Sect. 2.1], we have that f 3(R∗) is contained in a region Sj
as in Fig. 7: Sj is bounded by a segment in G0 and a connected piece of
the stable manifold Ws(P) of P linking two nearly vertical segments of
Ws(P) through points pj−1 and p′

j+1 in Ws(P) ∩ Wu(Q). Let us denote
qj−1 and q′

j+1, respectively, the points where these nearly vertical segments
intersect G0 (the “vertices” of Sj). By construction, f(pj−1) = pj−2 and
f(p′

j+1) = p′
j , and then f(Sj) = S̃ j−1 ⊂ Sj−1, where S̃ j−1 is the region

bounded by G1 and the segment of Ws(P) connecting f(qj−1) to f(q′
j+1).

So, f j+2(R∗) ⊂ f j−1(Sj) ⊂ S̃1 ⊂ S1 , note that S1 is the region bounded
by the segments of Wu(P) and Ws(P) linking P to q′

2. Then f(S1) = S0 is
bounded by the segments of Wu(P) and Ws(P) linking P to q1 = f(q′

2) (in
particular, ζ0 is in the boundary of S0). Next, f(S0) is the region bounded
by the segments of Wu(P) and Ws(P) linking P to q0 = f(q1), that is,
f(S0) coincides with ∆0. This proves that f j+4(R∗) ⊂ ∆0 . We have shown
that Lebesgue almost every point w ∈ B(Λ) has some positive iterate
z = f k(w) in ∆0. By our previous arguments, z is in the stable manifold
Ws(ξ) of some point ξ ∈ Λ, Lebesgue almost surely. Then the same is true
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for w, and Theorem A is proved in this case too. The proof of Theorem A
is complete.

Now Theorem B is a simple consequence. For each (i0, . . . , ik), let
γ be an unstable side of R(i0, . . . , ik). By Corollary 3.12, every point
in f nk+1(H(i0, . . . , ik)) has a long stable leaf, that intersects f nk+1(γ)
transversely. Cf. comments at the end of Sect. 2, almost every point in
f nk+1(γ) belongs to the basin B(µ). Since the set of generic points of
an invariant measure consists of entire stable sets, we may conclude that
f nk+1(H(i0, . . . , ik)) \ B(µ) is a union of long stable leaves intersecting
f nk+1(γ) in a set with zero arc-length measure. The second part of Proposi-
tion 2.4 implies that the lamination of f nk+1(H(i0, . . . , ik)) by long stable
leaves is Lipschitz (in the sense that the holonomy maps are Lipschitz
continuous). It follows that f nk+1(H(i0, . . . , ik)) \ B(µ) must have zero
Lebesgue measure (area). Then the same is true for H(i0, . . . , ik) \ B(µ).
Taking the union over all i0, . . . , ik, this proves that almost every point in
set H we had constructed is generic for the measure µ. Since we had shown
that Lebesgue almost every point in the topological basin B(Λ) eventually
reaches H , we conclude that B(Λ) \ B(µ) has zero area, as claimed. This
finishes the proof of Theorem B.

Along similar lines, we can prove that the stable manifold Ws(P) of
the fixed point P is dense in the basin of attraction B(Λ). Clearly, for this
it is enough to show that Ws(P) is dense in some full Lebesgue measure
subset of B(Λ). Thus, in view of the previous arguments in the proofs of
Theorem A and B, we only have to show that, given any i0, . . . , ik, Lebesgue
almost every point in f nk+1(H(i0, . . . , ik)) is in the closure of Ws(P). Let
γ be any of the unstable sides of R(i0, . . . , ik). As we recalled at the end
of Sect. 2, there exists a full Lebesgue measure subset γ̃k of f nk+1(γ) such
that any point ξ in γ̃k has infinitely many returns mi = mi(ξ) for which
f mi (ξ) is near x = ±δ/2. Then f mi+1(ξ) is between the long stable leaves
Γ∆ and Γ∆+1. Recall Remark 3.3. By the Lipschitz property of the stable
foliation, the subset H̃k of points whose stable leaves intersect γ̃k has full
Lebesgue measure in f nk+1(H(i0, . . . , ik)). We are going to show that any
point z ∈ H̃k is accumulated by Ws(P).

We begin by noting that, since f is close to a map (x, y) �→ (1−ax2, 0),
with a ≈ 2, there exists a long nearly vertical segment of Ws(P) between
Γ∆ and Γ∆+1 . This follows from the fact that the negative orbit of the
fixed point p = (1/2, 0) under the map x �→ 1 − 2x2 is dense in the
interval [−1, 1], using well-known perturbation arguments. Let ξ be the
point where the long stable leaf through z ∈ H̃k intersects γ̃k, and let mi
be as above. Then f mi (z) is between Γ∆ and Γ∆+1, and so there exists
a point of Ws(P) at distance less than Ce−∆ = Cδ from f mi (z). Moreover,
such a point may be chosen in the image f mi (lz) of a horizontal segment
lz through z. This is because the image of lz is nearly horizontal near z, as
a consequence of Propositions 2.5 and 2.8. The propositions also imply that
lz is exponentially expanded under f mi , so dist(z,Ws(P)) ≤ Cσ−mi

0 with
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Fig. 8

σ0 > 1. As mi may be chosen arbitrarily large, we get that z is indeed in the
closure of Ws(P).

Closing this paper, let us remark that for Hénon maps h(x, y) = (1 −
ax2 + √

by,±√
bx), with b small, it is possible to give a complete charac-

terization of the topological basin of attraction:

(TB) the basin B(Λ) is the domain in the plane bounded by the stable
manifold Ws(Q) of the fixed point Q.

This was also proved in [9], independently of the present work. Recall that
Q denotes the fixed point in the region {x < 0}, whereas the attractor Λ is
the closure of the other fixed point P. In what follows we give an outline of
the proof of (TB).

First we suppose that h is orientation reversing, corresponding to the
positive sign in the expression of h. See the left hand side of Fig. 8. The
stable manifold of Q contains two long nearly vertical segments located
near x ≈ ±1, that connect to each other in the region {y � 0}. Let U be
the open domain bounded by this piece of Ws(Q) and by a horizontal line
H = {y = 3}. Then U is forward invariant, h(U) ⊂ U , and it contains the
attractor Λ.

We claim that U is contained in the topological basin B(Λ). To prove
this, we begin by constructing a rectangle V bordering Ws(Q) inside U ,
such that

• V contains the three first “tips” of Wu(P), i.e., neighbourhoods of the
points f i(ζ0), i = 1, 2, 3, in Fig. 6

• h2(V ) \ V is contained in the domain R introduced before in the context
of Fig. 6.

V may be constructed, e.g., using linearizing coordinates for f in a neigh-
bourhood of Q. We already know that R ⊂ B(Λ). Since any point in V
must eventually leave V , it follows that V ⊂ B(Λ). Now, let z be any point
in U \ V . If z eventually reaches the folding region [−δ∗, δ∗] × {|y| ≤ 3},
then it gets mapped to R ∪ V in the next iterate. Otherwise, if the orbit of z
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remains outside the folding region for all positive times, then z is expanding,
and so it has a long stable leaf intersecting the attractor. In both cases, z is
in the basin of Λ. This proves the claim.

It follows that B(Λ) coincides with the saturation
⋃∞

n=0 h−n(U) of the
domain U . In particular, the boundary of B(Λ) is contained in Ws(Q) ∪
α(H), where α(H) is the set of accumulation points of the backward orbit
of H . Now, H is contained in the region {|y| ≥ |x| and y ≥ 2}. Using the
form of the inverse map

(x1, y1) = h−1(x, y) = (y/
√

b, (ay2/b + x − 1)/
√

b)

one checks easily that

|y| ≥ |x| and |y| ≥ 2 ⇒ |y1| ≥ |x1| and |y1| ≥ 2|y| .
This implies that the backward orbit of any point in that region goes off
to infinity. In particular, α(H) is empty, and so ∂B(Λ) ⊂ Ws(Q). On the
other hand, the forward orbits of all points in a small neighbourhood of Q
outside U also go to infinity, and so they are not in B(Λ). Combined with
the previous conclusion, this gives ∂B(Λ) = Ws(Q).

Now we explain how these arguments can be adapted to the orientation
preserving case h(x, y) = (1 − ax2 + √

by,−√
bx). The corresponding

picture is on the right hand side of Fig. 8. In this case we choose the
parameter a in such a way that the folding region is mapped to some
domain known to be contained in B(Λ), e.g., the rectangle Sj introduced in
the context of Fig. 7. We also consider a tubular neighbourhood V of Ws(Q)
inside U , where h is conjugate to a linear map. For points in U \ V , either
their forward orbit eventually hits the folding region, or they have long stable
leaves intersecting Λ (because V is not too thin). In either case, such points
are in B(Λ). Points in V eventually move to U \ V under forward iteration.
So, the whole region U is contained in the topological basin. It remains true
that the backward orbit of H = {y = 3} has no (finite) accumulation points.
Then the proof of (TB) proceeds precisely as in the orientation reversing
case.
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4. M. Benedicks, M. Viana. Random perturbations and statistical properties of certain
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