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Abstract. For alarge class of non-uniformly hyperbolic attractors of dissi-
pative diffeomorphisms, we prove that there are no “holes’ in the basin of
attraction: stable manifolds of pointsin the attractor fill-in afull Lebesgue
measure subset. Then, Lebesgue almost every point in the basin is generic
for the SRB (Sinai-Ruelle-Bowen) measure of the attractor. This solves
aproblem posed by Sinai and by Ruelle, for this class of systems.

1 Introduction

For most dynamica systems, are time averages well-defined at Lebesgue
almost every orhit? Thisisalwaysthe caseif the system preserves L ebesgue
measure, according to the ergodic theorem. However, in general this fun-
damenta problem, raised by Sinai and by Ruelle in the seventies, remains
essentially open. For dissipative systems one usually looks at the dynamics
inthe basin of each attractor, and then the problem can be restated |s almost
every orbit in the basin of attraction asymptotic to some orbit contained in
theattractor? Isit generic for some SRB measure supportedintheattractor?
See[11, Sect. 1V], [16, p. 148].

By attractor one means a compact invariant subset A of the phase
space M, dynamically indecomposable (e.g. A contains dense orbits), and
whose basin B(A) = {z € M whose future orbit accumulates on A} is
alarge set (a neighbourhood of A, say). One wants to focus on attractors
having some degree of robustness under perturbations of the dynamical
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system, which is often associated to some form of hyperbolicity. Let W3(&)
denote the set of all z e M whose orbit approaches the orbit of apoint & as
time goes to +oc0. Then the first question may be formulated

(B1) does B(A) = (., W3(§) up to azero Lebesgue measure set?

Suppose A supports an invariant ergodic measure . which ishyperbolic
(@l the Lyapunov exponents are nonzero) and whose conditional measures
on unstable manifolds are absolutely continuous with respect to Lebesgue
measure. Then, see[17,18], u isan SRB measure, in the sensethat its basin
B(u) has positive Lebesgue measure in M. By definition, B(u) is the set
of points z € M such that the time average of every continuous function
¢ : M — R on the orbit of z exists and coincides with the space average
[ ¢ du (one aso saysthat zisageneric point for ). Then, supposing that
W isunique,

(B2) does B(it) = B(A) upto azero Lebesgue measure set?

Itisnow classical that both versions (B1) and (B2) of the basin problem
have an affirmativeanswer in the case of uniformly hyperbolic (Axiom A) at-
tractors, where amain ingredient isthe uniform shadowing property. See[7,
8,19-21]. On the other hand, although these problems have been around for
some time, little is known in the non-uniformly hyperbolic setting: excep-
tionsinclude the geometric Lorenz-like attractors [1,12] (for which astable
foliation exists, essentially, by definition), and systems preserving asmooth
ergodic measure . (where B(u) has full measure as a direct consequence
of the ergodic theorem).

Here we give a positive solution to the basin problem for Héenon-like
attractors. This type of attractor was first constructed in [2], where it was
shown that the Henon model

h(x, y) = (1 —ax? +y, bx) €

has a “strange” (non-hyperbolic) attractor for a set of values of the pa
rameters (a, b) with positive Lebesgue measure. Based on these methods,
attractors combining hyperbolic behaviour with presence of “folding” re-
gions were shown to occur persistently in certain general bifurcation mech-
anisms [10,15]. Moreover, it was proved in [5] that all these Héenon-like
attractors support a unique invariant measure u as above. It isfor this class
of systems that we state our results.

Theorem A. Let A be a Hénon-like attractor of a surface diffeomorphism
f : M — M. Then, through Lebesgue almost every point z € B(A) passes
a stable leaf W3(§) of some & € A: dist(f"(2), f"(§)) — 0 exponentially
fastasn — +o0.

Theorem B. Denoting by 1 the SRB measure of f on A, then for Lebesgue
almost every z € B(A) one has
n—1
.1 - :
lim =Y o(fl(2) = /(pd,u, for every continuous ¢ : M — R.

n— 400
n 2o
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Asaby-product of the proofswe also get that the stable manifold W5(P)
isdensein B(A), where P € A denotes a hyperbolic saddle-point such that
A = closure(WY(P)).

Let us mention a few other recent developments in the ergodic theory
of Hénon-like attractors. It is shown in [6] that the system ( f, 1) has expo-
nential decay of correlations in the space of Holder continuous observable
functions. In [4] we prove that these systems are stochastically stable with
respect to small random perturbations with absolutely continuous transi-
tions. Moreover, an aternative approach to the construction of the SRB
measure has been announced by the authors of [13].

According to [22], persistent Héenon-like attractors exist for diffeomor-
phisms on manifolds of arbitrary dimension. Not al our arguments carry
on to higher dimensions, but we expect Theorems A and B to hold in such
generality, and it would be nice to establish this.

We recall in the next section those known properties of Hénon-like
attractorsthat are usedin our arguments. Intheremainder of thisintroduction
we comment on ideas involved in the proof of Theorem A. We begin by
pointing out that a local version of the basin problem, which holds in the
Axiom A casg, is false for Hénon-like maps: the local stable sets of points
& € A, do not fill-in afull Lebesgue measure subset of a neighbourhood
of the attractor. This means that global control of the stable lamination is
needed in the present case.

Our strategy is to identify a positive Lebesgue measure set H formed
by stable leaves of pointsin A, and to show that amost every z € B(A)
eventually reaches this set. The pointsin H are characterized by a bounded
recurrence property that ensures that their orbits do not return too often to
thefolding region and, most important, these returns are always “ tangential”
in the sense of [2], see Sect. 2 below.

Thearrival timeto H, aparameter of “nonlocalness’, dependsin avery
discontinuous way on the point z. The fact that it is finite L ebesgue almost
everywhere relies on a statistical argument that we present in Sect. 4. On
its turn, this is based on a geometric pseudo-Markov construction on the
basin of the attractor A, which we describe in Sect. 3. A main feature is the
following bounded geometry property: the set of points sharing the same
finite itinerary is always a rectangle (bounded by a pair of stable segments
and apair of unstable segments).

In Sect. 5 we put these ideas together to prove Theorem A. Thisincludes
some description of the topological basin of attraction, for which it is
convenient to consider the orientation-preserving and orientation-reversing
maps separately. In the orientation-preserving case, we add amild technical
assumption that may exclude some of the parametersin previous papers, but
keeping a positive L ebesgue measure set of them. Theorem B isacorollary
of Theorem A, using thefact that B(j1) consists of entire stableleaves W3(§).
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in July 1995, and were announced in [23].

2 Hénon-like attractors revisited

Let usrecall anumber of known facts about Hénon-like attractors, from [2,
5,15], that we usein Sects. 3 through 5. First of all we fix some notations.
We deal with parametrised families of diffeomorphisms of the plane

f(x,y) = fa(x, y) = (1 —ax? 0) + R@, x, y), @)

R close to zero in the C2 norm, which we call Hénon-like families. More
precisely, we suppose that ||R||lcz < Jvbon[1, 2] x [—2, 2]2, with

J'b<|detDf| <Jb and |D(log|detDf|)| < J, ©)

where J > Qisarbitrary and b > Qistaken sufficiently small. The quadratic
family 1 — ax? may be replaced by any family of maps in some fixed
C3 neighbourhood of it. The Hénon model (1) is affinely conjugate to the
map f(x, y) = (1— ax?+ v/by, v/bx), and so does fall into this framework
if bissmall.

We consider parameter values a € [a, ap] with1 > § > 2 —a; >
2 — a; > b. The parameter interval should not be too small: (a; — a;) >
(2 — ap)/10 suffices. Moreover, 2 may be replaced by any Misiurewicz
parameter of the quadratic family 1 — ax?. In this parameter range, f has
a unique fixed saddle-point P such that A = closure(W"(P)) is compact,
indeed A iscontained in (—2, 2)2. It iswell-known that the basin B(A) has
nonempty interior, see [2] or [16, App. I11]. In al the situations concerned
here it even contains a neighbourhood of A, see[3,23], and Sect. 5 below.

2.1 Existence and properties

Besides J, let /e < 01 < 02 < 2 befixed at the very beginning. For the
next theorem, one also fixes constants 1 > B > « > 0, and supposes
b « § « «. Throughout, weuse C > 1to represent various large constants
depending only on J, o1, 02, «, or B (not on § or b). Analogoudly, ¢ € (0, 1)
is a generic notation for small constants depending only on J, o1, o7, «,
or B.Let 1(8) = {(X,y) : [X| < 8}. For z e WY(P), let t(z) be any norm
1 vector tangent to WY(P) at z (the particular choice isirrelevant). Given
a non-zero vector v = (v1, v2) € R?, slopev will always be taken with
absolute values, i.e. dopev = |vs|/|v1].
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Theorem 2.1. GivenanyHénon-likefamily, thereexistsa positive Lebesgue
measure set E such that for every a € E the map f has a countable critical
set € € WH(P) N 1(8) whose elements ¢ satisfy

1. t(¢) isalmost horizontal and t( f(¢)) isalmost vertical, in the sense that
slopet(¢) < Cv/band slopet(f(¢)) > ¢/v/b;

2. t(f(2)) is exponentially contracted and wg = (1, 0) is exponentially
expanded under positive iterates. |[Df"(f(o))t(f()]] < (Cb)" and
IDF(f()woll > o7 for all n > 1;

3. if () € 1(6) then thereis ¢, € € so that dist(f"(¢), ¢,) > e@"
and there is a C? curve L = {(x, y(x))} with |y'(x)| < 1/10 and
ly'(X)| < 1/10, tangent to t(¢,) at ¢, and also containing f"(¢).

In addition, there exists ¢ € € suchthat { f"(¢) : n > 0} isdensein A.

Theorem 2.1 was first proved for the Henon model in [2]. Then the
arguments were extended to the Henon-like case in [15]. The property in
Part 3 playsacentral rolein the proof, aswell asin our own arguments here,
and we shall return to comment on it. From now on we aways suppose
a € E. Theremaining statements in this subsection are part of the proof of
this theorem, but we also make independent use of them in Sects. 3-5.

Proposition 2.2. 1. There exists ¢o = (Xo, Yo) € € With || < Cv/b, s0
that € N Gg = {&o}, where Gg denotes the segment connecting (o) to
f2(z0) in WU(P);

2. denoting Gy = f9(Go) \ fg‘l(Go),then@ﬁGgJ isfinitefor every g > 1,
and in fact @ N G; consists of a single point ¢1;

3. for every ¢ € €N Gg and g > 0O, the segment y = y(¢) of radius 5c9
around ¢ in WY(P) may bewritten y = {(x, y(x))} with |y’ (x)| < Cv/b
and |y’(x)| < Cvb; i

4. givenany ¢ € CNGywithg > 0, thereexist § < gand ¢ € € N Gy
with dist(¢, £) < b9/19,

Thelower bound on the length of the segments (¢) isimportant, so that
we give a specia name p to the constant ¢ in the context of Part 3 of the
proposition. Moreover, wewrite K for the large constant C, and call aC?(b)
curve any curve {(x, y(x))} with |y(x)| < Kvb and |y’(x)| < Kvb.
Note that the expanding eigenvalue of Df(P) is negative and so Gg is
a neighbourhood of P and ¢y in WY(P). It is easy to see that Gg and G,
contain C?(b) curves extending from x = —9/10to x = 9/10. For g > 0,
pointsin Gy are said to be of generation g.

Sinceevery orbit in B(A) must eventually enter [—2, 2], wemay always
assume to be dealing with orbits which never leave [—2, 2]? in positive time,
and we do so. Given A > 0, apoint z= (X, y) is caled A-expanding if

IDfl(@wol = A! foral j > 1. 4)
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Animportant caseisz € f(C), with A = o4, cf. Theorem 2.1.2. We say that
zisA-expanding up totimen if theinequality in (4) holdsfor1 < j < n.We
define the contracting direction of order n > 1 at z as the tangent direction
€™ (z) that ismost contracted by D f"(z). The next proposition summarises
a number of results from [2, Sect. 5] and [15, Sect. 6]. In the statement
A > 0and r > 0 are arhitrary constants, with ¢ sufficiently small (e.g.
T < 10~%), and one assumes that b is much smaller than either of them.

Proposition 2.3. Let z be A-expanding up to time n > 1, and ¢ satisfy
dist(f! (&), f1(2) < ¢! for every 0 < j < n— 1. Then, for any point 5 in
the t"-neighbourhood of &€ and for every 1 < | <k < n,

1. €®(n) isuniquely defined and nearly vertical: sope(e® (1)) > ¢//b:

angle(e” (1)), ¥ () < (Cb)' and |Df' (e )| < (Cb);

IDEX () < Cvb and |D%¥ ()| < CVb;

ID(Dfle®)(m)| < (Ch)';

1/10 < [IDf"@woll/IDf"(@Dwoll =< 10 and angle(Df"(&)wo,
Df"(X)wp) < (/Co)".

Parts 3 and 4 are aso true for the derivatives of ¥ and Df'e®

with respect to the parameter a. Throughout, we write expanding to mean
A-expanding for some & > e 20 (cf. Remark 3.2).

g bk~ w DN

Proposition 2.4. If zisanexpanding point thenitsstable set W= (z) contains
asggment I' = I'(2) = {(x(y),y) : ly| < 1/10} with x| < Cvb and
IX”| < C+/b, suchthat z € " and

dist(f"(&), f"(n)) < (Ch)" dist(&, ), foralé&nelandn> 1

Moreover, if z1, z, are expanding points then

angle(tr (€1), tr(&2)) < Cv/Dbdist(&1, &), for every & e I'(z1), & € ['(z2),
where tr(&;) denotes any norm 1 vector tangentto I'(z) at &,i = 1, 2.

Wecall along stable leaf any curve T asin this proposition, and astable
leaf any compact curve having someiterate contained in along stable leaf.
The first part of the proposition is proved in [2, Sect. 5.3], the arguments
extending directly to Hénon-like maps[15, Sect. 7C]. We sketch the proof,
to explain how the second part, not explicitly stated in those papers, can be
deduced from the construction.

One takes I'(z) = limT™M(z), where I'"(2) is the integral curve of the
direction field e™ (the temporary stable leaf of order n) through the point z.
One can check directly that the first integral curve I'}(z) is long, meaning
that it extends fromy = —1/10to y = +1/10. To prove that the same is
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truefor al the™(z) one usesinduction. Let t befixed, asin Proposition 2.3,
and b « 7. Part 2 of that proposition implies

dist(f1(¢), f1(2)) < (Cb)ldist(¢, z)foranyl < j < n—land& € I ().

As a consequence, €™ (n) is well-defined in the t"-neighbourhood of
I'"-1(z). Moreover, angle(e€" 2, €M) < (Ch)"! ensures that the inte-
gra curve I'"(z) does not leave this "-neighbourhood inside the region
lyl] < 1/10. Thus I'"(z) must be long. The previous angle estimate also
implies that [imI™(z) does exist, and this is how one gets the first claim in
Proposition 2.4.

Now, given zy, 25, &1 € I'(z1), & € I'(2,) asin the proposition, let n be
fixed suchthat t"*1 < dist(&, &) < t". By Parts2 and 3 of Proposition 2.3,
angle(tr(&), €™ (&)) < (Cb)" fori = 1,2, and angle(e™ (1), €™ (&2)) <
Cvbdist(&1, ). Then

angle(tr(£1), tr(€2)) < 2(Cb)" + Cvbdist(£1, &) < 2Cvbdist(&y, &).
This gives the last statement in Proposition 2.4.

Proposition 2.5. Givenanyk > 1,anyz € [—2, 2]? satisfying f1(z) ¢ 1(5)
for 0 < j < k, and any tangent vector v with ||v|| = 1 and dlopev < 1/5,
then

sope(Dfl(z)v) < (C/8)vb < 1/10 and |Dfl(2)v| > cso)

for 1 < j < k.Ifeither z € f(1(26)) or f*(2) € 1(25) then||DfX(2) v|| > o¥,
and in the latter case we also have slope(D fX(z) v) < Cv/b.

This means, in particular, that pieces of orbits outside 1(8) are (essen-
tially) expanding. Similar statements are well-known for one-dimensional
maps such as x — 1 — ax?. The proposition follows using a perturbation
argument, see [2, Lemmas 4.5, 4.6].

Another important notion is that of bound period p(n, ¢) associated to
areturn n of acritical point ¢ € C. These are defined through the following
inductive procedure. If n > 1 doesnot belongto [v+ 1, v+ p(v, )] for any
return 1 < v < n, then nisa(free) return for ¢ if and only if f"(¢) € 1(9).
Moreover, the bound period p = p(n, ¢) isthelargest integer such that

dist(f™ (), fl(g)) <€ fordll<j<np, (5)

where ¢, isthe binding point of f"(¢), given by Theorem 2.1.3. If, on the
contrary, nisin[v+ 1, v+ p(v, )] for some previousreturn 1 < v < n
then, by definition, n isa(bound) return for ¢ if and only if n — visareturn
for the binding point ¢,, and we let p(n, ¢) = p(n — v, ¢,). Up to adight
(and otherwise irrelevant) modification of these definitions, see[2, Sect. 6.2]
or [15, Sect. 8], we may suppose that bound periods are nested: whenever
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neflv+1l v+ p Olthenn+ p(n,¢) < v+ p(v, ¢, that isto say, the
bound period associated to n ends before the one associated to v.

We write dn(¢) = dist(f"(¢), ¢n), for ¢ and ¢, as before. Moreover,
wj(2) = DfI(f(2))wo for any point zand j > 0.

Proposition 2.6. Letn > 1 beafreereturnof ¢ € €, and p = p(n, ¢) be
the corresponding bound period. Then

1. (1/5)109(1/dn(2)) < p < 5log(1/dn(2));

2. lwnp@ll = oP ™ P wn 1@l and  dopewn p(0) < (C/8)V/b;
3. [[wny p(D1dn(2) > ce PP w1 (D);
4

Nwi(F" @)l = o for 1 < j < p, and slopewp(f'(Q) <
(C/8)+/b.

A main ingredient here is the property in Theorem 2.1.3. Actually, for
free returns n, acurve L as in the theorem may be taken tangent not only
to t(¢n) at ¢n but aso to wy_1(¢) a f"(¢), see [2, Sect. 7.3] and [15,
Lemma9.5]. We shall explain below, in amore general context, how thisis
used in the proof.

2.2 Dynamics on the unstable manifold

The next proposition, appearing in [5], permits to extend to generic orbits
in WY(P) the control given by the previous statements for orbits of critical
points. Thisisakey step in the construction of the SRB measure of f on A
that appeared in that paper, cf. Theorem 2.9 below.

Proposition 2.7. Let Z € WY(P) be such that f"(2) ¢ C for every n > 1.
Then, givenany n > 1suchthat f"(2) € 1(8), thereexists ¢, € € and some
C? curve L = {(x, y(x))} with |y| < 1/10 and |y”| < 1/10, tangent to
t(¢n) at ¢, and also containing f"(2).

L et uselaborate abit on the content and consequences of thisproposition.
Given apoint ze WY(P), fix k > 1 sothat Z= f*(z) belongs to a small
neighbourhood of P in WY(P). We can now define returns, binding points,
and bound periods for Z in the same way as we did before for critical
points. That is, corresponding to afree return n of Z we choose as binding
point a critical point ¢, asin the proposition, and define the bound period
p = p(n, 2) of f"(2) withrespect tothis¢,, cf. (5). Asinthe case of critical
points, we take the bound periods nested; see also comments following the
next proposition.

We say that z = fX(2) isafree point if k is outside every bound period
[v+1v+ p(v, Z)] of Z Thisis an intrinsic property of the point z: the
choice of k isirrelevant, as long as it is large enough. We call a segment
y C WY(P) freeif al itspoints are free. While proving Proposition 2.7, it is
shownin[5] that if nisafreereturnfor Zand y ¢ WY(P) isafree segment
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containing f"(2), then the same hinding point may be assigned to all the
pointsiny N 1(8). More precisely, thereisacritical point £, and a curve L
as in the statement, tangent to t(, ) at ¢, and containing the whole y. In
particular, L istangent to t(w) at every w € y. Insomecases¢, € y = L,
but it is not aways possible to take L ¢ WY (P).

Given any maximal free segment y intersecting 1(5), we aways fix L
and ¢, as above, and set de (w) = dist(w, ¢,) for each w € L. We extend
t(w) to represent a norm 1 vector tangent to the curve L at every w € L,
and define the bound period p(w) of every w e L with respect to this ¢,
cf. (5).

The following definition is a dlight extension of notions with similar
denominations appearing in [2,5,6, 15]. Given points p, g and tangent vec-
tors u, v, we say that p isin tangential position relative to (g, v) if there
exists acurve {(x, y(x))} with |y| < 1/5and |y’| < 1/5, tangent to v at
g and also containing p. And we say that (p, u) isin tangential position
relative to (g, v) if such a curve may be chosen tangent to u at p. Thus, as
we have seen, if zisafree point contained in the WY (P) then (z, t(2)) isin
tangential position with respect to (¢, , t(¢,)) for some critical point ¢, . It
is worth stressing that there can be no analog of this for points outside the
unstable manifold. One key fact, that we shall prove in Sect. 4, is that for
points in the basin returns are almost surely eventually tangential.

Proposition 2.8. Given any curve L asbeforeandz € L,

1. (1/5)log(1/de(2)) < p(2) < 5log(1/de(2));

2. |DfP*(2)(2)|| = 0”@ andslope(D f P2 +(2)t(2)) < (C/8)v/b;
3. |DfPP(2)t(2)||de(2) > ce HP@HD;

4. w2 = olj for 1 < j < p(2), and slopewp;(2) < (C/a)«/B.

Propositions 2.6, 2.8 havesimilar proofs, based on thetangential position
property. We outline the main steps since some features of these arguments
arerelevant for what follows; see also [2, Sect. 7.4] and [15, Sect. 10]. The
importance of the tangential position property comes from the fact that the
diffeomorphism f behaves, essentialy, asaone-dimensional quadratic map
over the curve L. Let us begin by explaining this.

Let L beacurve of theform {(x, y(x))} with |y'| < 1/5and |y’| < 1/5.
Recall that f(x, y) = (1 — ax?, 0) + R(a, x, y), where the first and second
order derivatives of R are bounded by C+/b. So, the image of L may be
written f(L) = {£&(x), n(X)} with |§” 4 2a, |1'|, |n”| @l bounded above by
Cvhb. Let TS = {(x5(y), y)} be some nearly vertical curve: |(x5)| < 1/5
and | (x®%)”] < 1/5. Let €% bethe horizontal distance from f(L) toI'S, that is,

E5(x) = x*(n(x)) — &(X) (6)

for each x. The previous bounds on 7, x°, and their derivatives, imply that
|(£%)" 4 £”| < C+/b. This gives |(£%)” — 2a] < C+v/b, and so (£%)"(x) €
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(3,5), up to taking b small and a close to 2. Now, suppose there exists
¢y, = (X, Y(X,)) € Lsuchthat f(L)istangenttoI'* at f(¢,). The Situation
we have in mind iswhen ¢, isacritical point and I'® is the long stable |eaf
through its image, cf. Theorem 2.1 and Proposition 2.4. Then £3(x,) = 0
and (§%)'(x,) =0, and so
S
3__F® _5

EV® _ g 3 @

3< =
X — X, 27 (Xx—x%,)% " 2

for every x. Observe that [x — X, | isroughly the same as the distance from
(X, Y(X) to g1 X — x,| < dist((X, Y(X)), §,) < (6/5)[x — X, |, because
L = {(X, y(x))} with |y'| < 1/5.

Most important, this quadratic behaviour allows one to estimate the
expansion loss experienced by trajectories at tangential returns, in terms
of the distance to the critical point. This goes as follows. Suppose ¢, is
acritical point, and al the points in f(L) are expanding up to some time
p> 1. Letz(s) = (s, y(s) beageneric point of L. By Proposition 2.3.1, the
contracting direction of order pat f(z(s)) iswell defined and almost vertical:
e(s) = P (f(z(9))) isrepresented by avector (e(s), 1) with |e(s)| < Cv/b.
Besides,

€(9] <Cvb and ||IDfI(f(z(9))e®)]| < (Cb) fordl 1<j<p
(8)

Seealso [2, Sect. 5] and [15, Sect. 6]. Then let us split the tangent direction
to f(L) into contracting and horizontal (expanding) components

(£'(9), ' (9) = a(9)e(s) + B(SYwo. )

Of course, a(s) = 7/(s) and B(s) = £'(S) — e(9)5/(S). As we have seen,
|€” 4+ 2al, ||, |n"| are al bounded by C+/b. Then the same is true for
|8+ 2a, |a|, |&|. In particular,

3 PO =P

- S—Xy (10)

for every s. Wealsohave|B(x, )| < (Cb)P, asaconsequence of thefollowing
two observations. By Theorem 2.1.2, the unstable manifold WY(P) is to
tangent to W3(f(¢,)) a f(¢,). By Proposition 2.3.2, the angle between the
tangent of W*( f(¢,)) and the contracting direction e of order p is at most
(ChyP.

Now we outline the proof of Proposition 2.8. Fix z = (X, y(x)) in L and
let p= p(2). Asbefore, z(s) = (s, Y(S)) represents ageneric point of L. We
write w;(s) = w;(z(s)) for each s. First, one proves a distortion estimate,
see [2, Lemma7.8] and [15, Lemma 10.5]:

wj(9) = M) (wj(X,) +€j(5), c<Ai(s) =<C and [lej(9)] < [wjX) .
(12)
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forevery 0 < j < pand s € [x,, X]. The main ingredient is provided
by Theorem 2.1.3: associated to every return j of ¢, there exists a critical
point ¢; with the tangential position property and dist(f!(¢,), ¢;) > 7.
The proof of (11) combines thisinformation with

dist (f1(z(s), f1(g,)) < CeM < e <dist(fl(g,).¢j)  (12)

for every return 0 < j < p, which is a conseguence of (5). The fact
that ¢, is a critical point is irrelevant at this point, as long as we have
(12), expansiveness, and the tangential position property. From (11) and
Theorem 2.1.2 we get

lwi S ~ llw; (X))l = o7, (13)

foral 0 < j < pands € [X,, x]. Unless otherwise stated, ~ means that
the two expressions coincide up to factors ¢ and C. It follows that f(z(s))
is expanding up to time p, for every s € [X,, X]. Then we may apply the
arguments above leading to (10): the tangent direction to f(L) at each point
may be split asin (9), and the coefficient B(s) satisfies

3< BXy) — B(S)

s—x, =" and  |B(x,)] < (Cb)P. (14)

Using (8), (9), (11), and the last part of (14), we may write

P - 7@ Zf (oD () + Aew;(9)ds
” Xy (15)
= wi<Xy)/ (9 (B(s) — B(xy)) ds + §;

with |81 < (Cb)! + lwj(x,) [;” A(9)(B(S) — B(x,)) ds||. By (10) and
c<X(s <Cin(11),

/ AO(BE — BO)) ds & (X — X, ~ de (.
Taking j = pin(15),
e P dist (fP(2), TP7(g,)) = lwp(x) I de(@®  (16)
Part 1 of the proposition follows from combining this with 4P > [Jw(X,)||
> olp. Fromtherelation D f P+1(2) t(z) = BX)wp(X)+a(X)D fP(f(2)) e(X),
using (10) and (16),

IDfP (@) t(2)]| = cde @ llwp()]| — (CH)Pflwp()]| — Cvb(Cb)P

> c(ePPw )2 - (dChP = 0P
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which proves the first statement in Part 2. The second statement uses
dope(DfPH(2) t(2)) ~ slopewp(X) A~ slopewp(X,),

recall (15), (11), together with the fact that p + 1 does not belong to any
bound period of ¢, (because bound periods are nested). To get Part 3,

IDFP(2) t(2)] de(2) > cde (2)?||wp(X) || — (ACh)P > ce PP

Thefirst half of Part 4 follows from (13), and the second half is analogous
to the dlope statement in Part 2. This ends our sketch of the proof of
Proposition 2.8.

For Proposition 2.6 some extra care is needed: arguments as above
assume properties of w;j(¢n), 1 < j < p(f"(¢)), from the statement of
Theorem 2.1, while the proposition itself is part of the proof of the theorem.
To go around this, one begins by proving that

p(f"(9) < 5log (1/dn(¢)) < 5an < n,
which ensures that such properties are used only in an inductive way.

It is clear from the proof that Parts 2—4 of Proposition 2.8 remain true
if one replaces t(z) by any norm 1 tangent vector v such that (z, v) isin
tangential position relative to (¢, t(¢,)). We want to point out that these
arguments also alow for some freedom in the very definition of bound
period. For instance, let z(s) € L withs € [x,, Xx] and

IX —s| < c|x—X,]. (17)

Taking ¢ € (0, 1) small enough, then (14) and (15) give (distinguish two
cases, depending on whether [[w;(x,)| de(2)? is larger or smaller than
(Ch))

dist (1t (z(9), F1(g,)) ~ dist (1), fiT1(¢,)) forany 0 < j < p,
(18)

(here ~ means equality up to afactor 2), except possibly if both distances
are smaller than (Cb)!. In any event,

<10e? forl<j < p(2)

Slet forj=pa+1 )

dist (f'(z(s)). f'(z,)) {
compare (12) and (16). Then the same arguments as before apply, to prove
that Parts 2—4 of Proposition 2.8 remain true with z(s) in the place of z, and
p(z) unchanged. Thismeansthat one might just aswell take p(z(s)) = p(2)
for any such s. Accordingly, we always presume that, given any z as before
there exists asegment L (z) withz € L(2) ¢ L such that

length(L(z)) > cde(z) and p(-) isconstant on L(2). (20)

We fix ¢ < 1/100 in (20), and denote it by c; from now on. A similar
formulation isused in [6].
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We also quote the main result of [5]:

Theorem 2.9. Thereexistsaunique f-invariant measure . supportedin A,
having nonzero Lyapunov exponents almost everywhere, and whose condi-
tional measures along unstable manifolds are absolutely continuous with
respect to Lebesgue measure on these manifolds. The support of . coincides
with A, and the system ( f, 1) isergodic (even Bernoulli).

Givenany segment y ¢ WY(P), aimost every pointin y (with respect to
the arc-length measure) isgeneric for . Thiscan be read out from the proof
as follows, see [5, Sect. 3]. Almost every point z in y has infinitely many
escape times n; : there exists a sequence y; of neighbourhoods of zin y such
that f" (y;) is along C?(b) curve (length = §/10) in {|x| < 8}, and the
maps f"|y; have uniformly bounded distortion with respect to arc-length;
the images f" (y;) may be taken crossing x = +8/2. A positive fraction,
uniformly bounded away from zero, of the pointsin each f" (3;) are generic
for . So, almost every point z € y isadensity point for the set of generic
points, and this implies the claim.

3 Symboalic dynamicsin the basin of attraction

Here we construct a special sequence of partitions &, in the basin of
attraction, whose atoms are all rectangles, that is, regions bounded by two
segments of WY(P) and by two stable leaves. A first step is Proposition 3.3;
for each critica vaue f(¢) € f(@) there exists a sequence I', = I, (¢)
of long stable leaves accumulating W3( f(¢)) exponentially fast. Then we
introduce a notion of itinerary of a point z in the basin of attraction. It
involves choosing a sequence of critical points ¢; close to each iterate
fMi (2) that isnear x = 0, and describing the position of f"i(z) relativeto Ej
in terms of these long stable leaves. The atoms of #, are the sets of points
sharing the same itinerary up to timen.

3.1 Constructing long stable leaves

In al that follows 0 < ¢; < 1/100 is the constant we fixed before in the
context of (20).

Lemma3.l. Let y ¢ WY(P) be a free segment intersecting 1(8) such
that length(y) > 2¢,de(2) for z € y. Then there exists z, € y such that
de(f"(z,)) > e 2" for every returnn > 1 of z,,.

Proof. Let L O y be some nearly horizontal curve as in Proposition 2.7,
& bethe midpoint of y, and yp = y N L (&), where L (§p) C L isasegment
asin (20). Then

length(yo) > c1de (%0), (21)
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and there is pp > 1 such that p(z) = po for every z € y,. Let ng > po
be minimum such that f"(yg) intersects 1(5). Note that f™(yy) is afree
segment. Then, by (21) and Propositions 2.5 and 2.8.2-3

length (™ (y0)) = 0;° P length (7 () = length (7 (o))
> inf [DfP"(2)t(2)]| 1de(2) > core PPty
Z€Y0

> 20e 2P0, (22)

In the last inequality we use the remark that np > po can be supposed
arbitrarily large by decreasing § > O (recall from the first paragraph of
Sect. 2.1 that we fix B first, then we let § « 1). As a consequence, there
existsasegment ; C " (y) with

1
length(71) > 7 length (™ (y0)) > 567%™ and de(2) > & ™ for z € 7.

Let L1 D 1 be some nearly horizontal curve as in Proposition 2.7 and
y1 = 71 N L(&), where &1 isthe midpoint of 7, and L (&) isasin (20). We
consider two different cases.

If L(&;) iscontained in p; then y; = L(&7). In particular, length(y,) >
2¢,de(&1), and this ensures that (21) holds for y;. In this case we just
repeat the previous construction with y4, &, in the place of yyg, &. Letting
p: = ply1 and ny > p; be minimum such that f"(y4) intersects 1(8), we
find asegment 7, C " (y4) with

length(7) > 562" and  de(z) > €2 > @260+ for z ¢ 3, .

Now suppose L (&;) is not contained in ;. Then L(&;) connects the mid-
point &; to some of endpoint of ;, and so the same is true for the intersec-
tion y,. Consequently,

1
length(y1) = 5 length(71) = g 2P,

Now, Propositions 2.5 and 2.8.2 give

length (™ (y1)) > oyt P length ( f Pl (y)
> o1**length(y1) > 20length(yy) > 208726, (23)
Thus, there exists asegment 7, C ™ (y,) such that
length(772) > %Iength (f™(y1) > 5length(y,) > 5e~%"
and de(2) > e 2P0 > g 2fotn) for every z € 5.

Next, we take &, to be the midpoint of 7, and write y, = 7 N L(&)).
Then we apply the preceding steps with y», &, in the place of yq, & as
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before, we distinguish two cases according to whether L (&) iscontained in
7, Or not. Iterating this procedure we construct asequence n;,i > 0, of large
integers, and a sequence y;, i > 0, of segments in the unstable manifold
WY (P), such that

") Dy and de(z) > e Moo (24)

forz € y, andevery i > 1. Thefirst property ensuresthat f —(Mo+-+ni-1)(3,),
i > 1, isadecreasing sequence of compact subsets of y. Take z, a point
in the intersection of al these subsets. The conclusion of the lemmafor the
returns of suchaz, occurring attimesno+-- - - +n;j_1,i > 1, followsdirectly
from the second part of (24). Any other return n is necessarily bound, i.e.
N=ng+---+ni_1+ jforsomej < piandi > 1, and in this case the
conclusion of the lemmaisimmediate:

de(f"(z)) = de(f(@) —eP = e —e > e,
where ¢; represents the binding point of fno++Mi-1(z ). O
Remark 3.1. We shall use adightly stronger version of this lemma, where

de (2)

length 2c,———
ength(y) > Cl||Ogd@(Z)|2

foral z ey,

and the conclusion is as before. It follows from just the same proof,
together with the following observation. Though we get length(yp) >
c1de (50)| logde (£0)| 2 instead of (21), Proposition 2.8.1 ensures that (22)
is not affected:

—B(Pot+D) —B(Pot+D)
€ € > 20e %Mo,

length(f"™(y0)) > CC1||OngO)|2 > CClW =

if po < ngistaken large enough. Asobserved in the context of (22), thiscan
be done without affecting 8, because we choose g > 0 before 0 < § « 1.

In the next lemma we do not assume the point z to be in the unstable
manifold W"(P). Also, wg may be replaced by any norm 1 vector.

Lemma3.2. Let z € I(8) and k > 1 be such that for every 1 < n < kwith
f"(2) € 1(8) there exists ¢, € C satisfying

1. (f"(2), Df"1(f(2))wp) isintangential position relativeto (¢, t(¢n));
2. dist(f"(2), ¢n) > 2,

i/5
1

Then f(2) is expanding up to time k, in fact, |Df!(f(2))wo| > o) for

everyl < j <k
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Proof. We define a pair of sequences n;, pj, i > 1, asfollows. As afirst
step, we take n; to be the smallest integer n > 1 such that f"(2) € 1(5).
Then, for eachi > 1, welet p; > 1 be maximum such that

dist (f"*(2), fi(¢,)) <e? fordll<j<p.
Finally, for eachi > 1, wedefinen; 1 to bethe smallest integer n > n; + p
such that f"(z) € 1(6). _
Sincewe suppose f(z) € f(1(5)), Proposition 2.5 gives || D f1( f(2))woll
> a’ forevery 1 < j < n; — 1, which impliesthe conclusion of the lemma

for j < n;. Now we proceed by induction, in the following way. Leti > 1
and suppose we have shown that

|D L f(2)wo| = o V2. (25)
By Assumption 1, cf. comments we made after Proposition 2.8,
| DEP (f@)wo| = ofP TV DI (f@)wo|| = oM TP,
As|IDf| < 4, weconclude that, givenany 0 < s < p,
| DEFS(f(2)wo| = 4P| DFHP (2)wo > 45 Po TP,
Us ar\rlg Assumption 2 and Proposition 2.8.1, and taking 8 > 0 sufficiently
Small,

1 log
log—— 2
pi—s<5 gd(f”'()gn,)_ ,3|_1OI (|+S) (6)
Asaconsequence, forevery 0 <s < p,

HDfni+s( f(Z))on > Ul—<ni+3)/100{ni+pi)/3 > U{ni+s)/5‘

Thisprovesthe lemmaforn; < j < nj + pi.
Next, Proposition 2.8.2 gives slope(D f"+Pi(f(2))wg) < (C/8)vb <
1/10, and so we may use Proposition 2.5 to conclude that

“ Dfni+pi+S( f(z))wOH > C(SO.ZSH D fni+pi ( f(Z))u)0|| > C(SO'ZSO'](_ni+pi)/3
for1 < s < ni.1—nj — pi. Now, assumption 2 implies 25 > e 2" and so

(ni+ |)/3 (ni+ |)/3 —28n; (Ni+pi+s)/4 (Ni+pi+s)/5
Caznp zsnp 2ﬁn>501np5201nps.
In the second inequality we suppose g > 0issmall with respect tolog o1, in
the third one we use the fact that n; + p; + sisvery large (since § issmall).
We have obtained the conclusion of thelemmaalso for nj + pi < j < nj1.
Finally, the last part of Proposition 2.5 gives

[Df* = (f@ywol = o7 P D NP (f(2)wo
> O_Si+1—ni—pi—1o_:l(-ni+pi)/3 > Ul(ni+l_1)/3

which restores the induction hypothesis (25). O
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Remark 3.2. Keeping Assumption 1 of the lemma and replacing Assump-
tion 2 by

2.dist (f"(2), ¢n) = e,
onestill getsthat f(z) isexpanding, inaweaker sense: ||D f1 (f(2))wol > AJ
forl < j <k, withi > 102, Thisisproved in the sameway asthelemma,
just replacing (26) by
20log 10

log4

i < (ni +59).

1
pp—s<5lo)g——— <
] d(f”'(Z),Cni)
Note also that, in any case, we only need Assumptions 1 and 2 at the free
return times n;.

It is convenient to take A = log(1/48) to be a (large) integer, and we do
so in what follows.

Proposition 3.3. Given any critical value f(¢) € f(C) there exists a se-
guence of long stable leaves I', = I, (¢) = {(X:(Y), y) : |y| < 1/10}, for
r > A, accumulating W3( f(¢)) exponentially fast from the left:

— —2r

e <xX(y) —x(y) <3¢ ¥ foreveryr > Aand|y| < 1/10, (27)
where {(x3(y), y) : |y| < 1/10} = I'Sisthelong stable leaf through f(¢).

Proof. First, we consider ¢ = ¢o, the critical point of generation zero in
Proposition 2.2.1. Let y = y(¢o) beasegment of WY(P) extending § to each
side of ¢o. By Proposition 2.2.3, thisisa C?(b) curve. For eachr > A, the
set{zey:(9/10)e" < d(z &) < €'} hastwo connected components.
We shall use y; to denote either of the two. Then

1
length(y;) > Ee‘r > 4cie" > 2c1de(2) forevery z e y;,

recall that c; < 1/100. So, by Lemma 3.1, there exists z; € y; such that
de(f"(z)) = d(f"(z), n) = " (28)

for every freereturnn > 1 of z.. Here ¢, € € isthebinding point of f"(z),
recall Proposition 2.7, so that (f"(z),t(f"(z))) isin tangential position
relative to (¢n, t(¢n)). Let n, = f(z). We also need

Lemma 3.4. The pair (f"(z), Df"1(f(z))wo) isin tangential position
relative to (¢,, t(¢n)), for every freereturnn > 1 of z.

Proof. Take pp > 1 maximum such that dist(fl(z),¢) < e#l for all
1< j < po, and let ny be the first free return of z, in the sense that n; is
the smallest integer larger than pg so that f™(z) e 1(8). Propositions 2.5
and 2.8.4 imply

| D ywo| = ol P DB wo| = o P e = 2. (29)



392 M. Benedicks, M. Viana

On the other hand, Propositions 2.5 and 2.8.2 give
[Df™ @) t@)] = 07 D @) t@) | = 05 o™ = o2,

So,
1 1,
[Df™ )t = [ D™ @) @) | = Zog P>2. (30

Since |det Df™~1(n,)| < (Cbh)™m~! « 1, we deduce from (29) and (30)
that

angle (D f™ () wo, DF™ () t(pr)) < (Co)™ (31)
< dist (fnl_l(nr)» gnr)-

By Proposition 2.7, there is a C? curve L = {(x, y(X))} with |y/|, |y’| <
1/10, tangent to t(z,) at ¢, and tangent to D f "~ 1(n,) t(n,) at f"~1(n,). In
view of (31), we may easily modify L to a C? curve L = {(x, §(x)} with
Y1, 1" < 1/5 tangent to t(¢n) at ¢y and to D™ t(n) wo at f™1(x).
Existence of such an L is precisely the content of the lemmafor time n,.

A similar argument provesthe claim for the subsequent freereturnsof z.
Foreachi > 1, let p; > 1 be maximum such that

dist ("I (z), (o)) <€ fordll<j<p,

andthenlet nj,; bethesmallestinteger n > n;j+p; sothat f"(z) € 1(8). We
may assume, by induction, that (f"—1(»,), D f"~1(n,)wg) isin tangential
position relative to (&n;, t(¢n;)), for every freereturn 1 < j < i. Then
Lemma 3.2 implies, cf. the last observation in Remark 3.2,

|| Dfni+1—1(nr)won > O_;ni+1—1)/5 > 2.

Taking t(n;) in the place of wg, we aso get (the condition of tangentia
position, corresponding to hypothesis 1 in Lemma 3.2, results from Propo-
sition 2.7)

” Dfni+l_1(’7r)t(77r)|| > O_{ni+1—1)/5 > 2.

Therefore, the angle between these two vectors D f"+1—1(y,)wy and
D fh+1=1(y)t(n,) is less than (Cb)"+1~1 so it is much smaller than
dist(f"+1~1(n;), ¢n,y)- 1t follows, asin the case we treated previously, that
(M=), D171 )wo) s in tangential position to (¢n,,, t(Zn.1)),
which proves our assertion for nj_;. Thisfinishes the proof of Lemma 3.4.

|

Now let us go back to proving Proposition 3.3. The previous lemma
and (28) mean that z- satisfies both assumptions of Lemma 3.2 at al free
return times, and so n, = f(z) is expanding. We take I', = {(X: (Y), V)}
to be the long stable leaf through n, granted by Proposition 2.4. As we
explain next, property (27) follows from a quadratic estimate like (7). Let
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us write y = {(x, (X))} and f(y) = {(§(X), n(x))}. Moreover, £5(X) =
x3(n(X)) — &(x) is the horizontal distance from each point of f(y) to the
long stable leaf T = {(x3(y), y)} through f(Zp). We write the critical point
o = (X0, Y(X0)). By (7),

g(x —X0)? < E%(x) < g(x — X)? for every x.

By construction, thepoint z. = (X, y(X/)) has(9/10)e™" < |X —Xo| < €.
Replacing thisin the previous equation, we find that the horizontal distance
&£3(x) fromn, = f(z) to I'® satisfies

6 5

g e—2r S éS(Xr) < E e—2r .

By the Lipschitz estimate in the last part of Proposition 2.4, the horizontal
distance from any other point (x; (y), y) of I'" differs from £5(x;), at most,
by afactor that isclose 1if bissmall. Thisensuresthat the previous estimate
remains valid for any point of I'", with slightly worse constants:

11 11
T e < x3(y) — % (y) < i e forevery|y| < 1/10. (32

Thisimplies (27).

Finally, we prove the proposition for a generd critical point ¢ € €, of
generation g > 1. By Proposition 2.2.3, the segment y = y(¢) of radius
8p9 around ¢ in WY(P) is a C2(b) curve. This means that precisely the
same construction of I’y = I'y(¢) asin the previous case applies here, for r
large enough so that e~ < §p9. In particular, we get (32) for all suchr. On
the other hand, forr < A + glog(1/p) we define I'y (¢) = Iy (¢), where ¢
is any critical point of generation § < g with dist(z, ¢) < b%10, as given
by Proposition 2.2.4. Proposition 2.4 implies that the horizontal distance
between the long stable leaves through the points f(¢) and f(¢) is bounded
by

2091 < 10079(5p9)? < 100 %

(take b < 6 <« 1). In view of (32) and the hierarchica form of our
construction, the horizontal distance from these I'y to I'S(f(¢)) satisfies
bounds similar to (32), with thefactors 11/10 and 11/4 replaced by 1 and 3
(because ;10079 < 1/10). This completes our construction. O

Remark 3.3. T's and I', .1 as constructed above are the samefor al critical
values (aslong aswe suppose p < 1/e, which weclearly can). Every I'y (),
¢ € Candr > A intersects the unstable manifold WY (P), at the paint ;.
L et us also record that, by (28) and Lemma 3.4, de (f"1(1,)) > €2" and
(f"1(), D" () wo) isin tangentia position relative to (¢,, t(zn)), for
every freereturnn > 1.
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Most of our construction can be carried out using the family of long
stable leaves T, (), ¢ € C andr > A, given by Proposition 3.3. However,
for Lemma 4.7 we have to define itinerary of an orbit in the basin of A in
terms of an extended family of long stableleaves T, = Iy (¢),0 < | <r?,
with (= means equality up to afactor 100)

(@ horiz dist(Ty 1, WS(f(2))) ~ e forevery 0 < | <r?;
(b) horiz dist(T'y_1, T'y)) ~ €2 /reforevery 1 < | <12,
(© Ty o=T,_1,eachTyistotheright of I',j_1, and I, ;2 = T7.

This last property implies that the horizontal distance from Iy decreases
when r increases and, for fixed r, when | increases. Such a family can
be obtained by the following variation of the previous construction. For
each r > A + 1, decompose the segment of WY(P) bounded by z _;
and z into 2r2 — 1 segments of equal length. Denote these segments y j,
for 1 < j < 2r2 — 1, in such a way that the distance to z decreases
monatonically with j. Observe that

lenath 1 d 11
ength(y.j) > >2_1 ISt(zr, Z 1) > o2 Ee

for every j. Givenany z € y; j, wehave de(2) < €', and so

de(2) e’ e
—_—— <2
Cl|Iogd@(z)|2 =0 T2 _42

(we took ¢; < 1/100). This means that every segment y; ; satisfies the
condition in Remark 3.1, and so it contains apoint z ; such that f(z ;) is
expanding. We let I'y | = I’y (¢) be the long stable leaf through the point
f(z.2), foreach1 <| <r?2 — 1. The estimates in (a) and (b) follow from
the same arguments as we used to prove (27). Remark 3.3 remains valid for
this extended family Iy .

< length(y, p)

3.2 Itineraries for orbitsin the basin

To each point z € B(A) we want to associate sequences nj, ij = (¢j, T},
lj, €j), ] = 0, where nj isan integer, {; € C, rj and | are also integers.
with

(rj,1))=(0,0) orelse rj>A and 1§Ij§r12,

ande¢; € {+, 0, —}. Roughly speaking, n; isthe jthfreereturn of z, ¢; isthe
corresponding binding point, andrj, I, €; describe the position of f"i+(2)
relative to the long stable leaves Iy (¢ i). The precise construction of these
sequences occupies the whole of this section.

Recall that Gg, G, contain long C2(b) segments yq, y1, around the
critical points &g, ¢1, respectively. In view of the form of our map, for
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each i = 0,1 we may write f(y) as {&(X), ni(X)} with §’ ~ —2a ~ 4
and [nil, |71, |n/] < C+/b. In particular, f(y) intersects each Iy (), for
0 < | <r?, inexactly two points. Let A; be the region bounded by f(;)
and by the long stable leaf W.(P) passing through P, see Fig. 1. Since
f(yo) and f(yy) are digoint, whereas Ag and A, must intersect each other
(e.g. extend {yo, y1} to afoliation by nearly horizontal curves, and use that
the image of each leaf intersects every vertica line in not more than two
points), we have either A; C Agor Ag C Ag.

We consider A1 C Ay, as the other case is analogous. In the sequel
we define nj(2),ij(2), j > 0, for points z € Ag. The extension to generic
pointsw € B(A) is, simply, by taking nj(w) = n+n;(f"(w)) andij(w) =
ij(f"(w)) for each j > 0, where n > 0 is the smallest integer for which
f"(w) € Ag. Since Lebesgue almost every point in the basin of A has some
iterate contained in Aq, cf. Sect. 5, this leaves out only a zero Lebesgue
measure subset of B(A), which isnegligible for our purposes.

Before proceeding, let usmakeafew simple conventions. Inwhat follows
(r,1) should bereplaced by (r —1, (r —1)2+1)if| < 0,andby (r +1,1—r?)
if | > r? Wesay that (r,l1) > (ra, 1) if eitherry > roorry =1,
and I; > |,. The region in between two long stable leaves is open on
the left and closed on the right: if I'y = {(X1(y), y) : |y] < 1/10} and
I = {(X(y),y) : |yl < 1/10}, with X; < X, then the region in between
Frand I2is{(X, y) : X1 (y) < X < Xa(y), |yl < 1/10}.

5]:‘A rl((l)
P

:\ (C ’T>la+)

gFr,l(Co)

SRS T

| S —F) (G, L0)
:_”ffll))#’,/\(ch rl,-) f(n ) 0 T :
f(o W2 (f(G)) IW*(£(¢))

Fig. 1

Let (f, ) be defined by the condition that f(¢,) isintheregion of Agin
between I'; 1(¢o) and T'; ;_; (¢o). For z € Ao we defineng = —1 and

@ i0(2) = (&o,r1,1,0) if zisin the region of Ag in between Ty (Zo) and
I'vi-1(20), with (r, 1) > (F, );

(b) ig(2) = (¢, T, f,0) if zisin the region of Ag in between W,
and I'; (%0);

Wiee(f(g1)
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(©) ig(2) = (¢q, 1,1, £) if zisin either of the two regions of Ag \ Ay
in between I'r(¢1) and Iy j_1(¢1), the sign 4/ — corresponding to the
upper/lower region;

(d) ig(2) = (£1,0,0, ) if zisineither of thetwo regions of Ag\ Ay inbe-
tween I', and W .(P), the sign +/— corresponding to the upper/lower
region;

(e ig(2) = (¢&g,r1,1,0) if zisin the region of A in between Ty (¢;) and
[ri-1(81).

) i0(2 = (£1,0,0,0) if zisin the region of A; in between I'y and

Ioc(P)

We also define R(ig) = {z € Ag : i9(2) = i} for eachiig = (%o, Fo, lo, €0)
as before. This closes the first step of our definition.

The definition of these objects proceeds by recurrence. In the next para-
graphs we explain how ny(z) and i,(z) are defined for z in R(ig), for each
fixedip.

In cases (a), (b), (c), (e), define p; = p1(ip) > 1tobethelargest integer
such that

dist (fl(2), f1(%)) <e? forl<j < prandevery ze f(R(o)).

For (d), (f) just set pp = O. Inany case, let m; = n; > p; be minimum
such that f"(R(ip)) intersects I(8). Denote y“, i = 0, 1, and yjs, j =0,1,
the four segments forming the boundary of the rectangle R(io), with the
contained in W”(P) and the y;* contained in long stable leaves. Moreover,
letZ'; = v n yJ bethecorner points of R(ig), fori =0,1and j =0, 1.

Proposition 3.5. 1. m; > p; > (4/3)ro;

2. fori = 0,1, theslope of f" (") islessthan (C/8)+/b at every point;
3. Iength(f”l(yjs)) < (1/10) d@(zi’fj) fori =0,1and j =0, 1;

4, angle(t(zaj), t(z;j)) < (1/10) d@(z;'jj) fori =0,1and j =0, 1.

This proposition will be proved in Sect. 3.3. As part of the proof, in
Lemma 3.9, we show that p; is a suitable bound period for every point
in the rectangle: we have (19) for p(z) = p;, and conclusions 24 of
Proposition 2.8 are true at time p, for any point in either of the unstable
boundary segments. This meansthat we may take the bound period constant
equal to p; on thewhole f ~*(R(io)). In particular, both segments ™ ("),
i = 0,1, are free. According to Proposition 2.7, each of theﬁe segments
may be extended to aC? curve K; = {(x, yi(X)} with |y/|, |y/| < 1/10 and
tangent to WY(P) at some critical point n; € K;. By def|n|t|on d@(z )=
dist(z';, ni) for every j = 1, 0. Recall that » may not belong to f”l(y,”)
We can also not discard the possibility that 9 = n1. On the other hand,
according to the next lemma, either both »; belong to the corresponding
fM(y") or none does, and in the latter case we may aways take the two
critical points to coincide.



Solution of the basin problem for Hénon-like attractors 397

Lemma36. If no € fM(y) then ny € f™(y;). In the opposite case,
fM"(yy) isin tangential posmon relative to (1o, t(no)): thereisa C? curve
K2z = {(X, y2(x)} with |y5], |y5] < 1/5, containing f™(y;") and tangent to
WH(P) at no.

Proof. Suppose that no € f™(y§) but n1 € Ky \ f™(y). Fix j = 0,1
so that zj ; is the boundary point of f™(y;) closest to n1. In view of
our defi nltlons z; ; is the boundary point of f"(yy) in the same stable
|eaf f”l(ys) as zj ;. For eachi = 0, 1, write n; = (X, i (X)) and z =
(Xi.j» Vi (X, J)) and Iet (7, Z;] be the segment of K; connecting #; to z
Let m > 1 be fixed such that

m <5max{d@(szj):i=0,1}§tm

wheret > Qistaken asin Proposition 2.3. According to the proposition, the
contracting direction g (s) = €™ (X;(s), Y. (s)) of order miswell defined for
any (Xi(s), Yi(s) = (s, yi(9) of f([ni,Z iD- Thisensuresthat aquadratic
estimate like (10) holds for each of theﬁe segments. splitting the tangent
vector

(X{(9), Y{(5) = ai(9&(5) + Bi(Swo

asin (9), the coefficient g; satisfies
3< Bi(Xi) — Bi(S)

s—x 5 and [Bi(%)] < (Cb) (33)

for every s between x; and x; j. From the form of the map f and the fact
that g and wg are nearly orthogonal

|B1(X1,}) — Bo(Xo,)| < 5dist (2.2 ;) + Cvbangle (t(z ). t(z ;)
< min{de(z). de(z1 )} (34)

Thelast inequality follows from Proposition 3.5.3 and 3.5.4. Now, suppose
that x; > Xq,j ad Xp < Xgj , that is, 11 isto the right of Z; | in K¢, and ng
isto the left of zg ; in Ko (the opposite case is analogous). Then (33) gives

B1(X1,j) — Bo(Xo,j) = 3(X1 — X1,j) + 3(Xo,j — Xo) — 2(Cb)™
> 2de(z1,)) + 2de(20,)- (35)

In the last inequality we use de(z1,) < (6/5)(X1 — X1,j) ad de(Zp,j) <
(6/5)(Xo,j — Xo), aswell as the fact that (Cb)™ is much smaller than ™ ~
max{de (Z Nk i =0, 1}. Clearly, (34) and (35) contradict each other. This
provesthat n1 € ™ ().

To prove the second part of the lemma, let z ; be the boundary point of
fM(y§) closesttongin K. Then g isthe boundary point of " (y;')inthe
same stable leaf as 75 ;. By Proposition 3.5.3 and 3.5.4, both dist(z; ;. 77 ;)
and angle(t(zg’j), t(z] ) are smaller than (1/10) dist(zg’j, o). SO, we may
easily modify Ko = {(X, Yo(X))} to get acurve K, asin the statement. 0O



398 M. Benedicks, M. Viana

Wedefinei(z) firsswhenn; € f"(y") fori = 0, 1. Uptointerchanging
subscripts, we may suppose that f(no) isto theright of f(n1), meaning that
its long stable leaf is to the right of the one passing through f(11). Then
f(n1) is contained in aregion bounded by f"*(}{) and some pair of long
leaves Tt 1_1(n0) and T¢ 1(0). We let, see Fig. 2,

(@al) i1(2) = (no,r,1,0) if f™*1(z) isin the region of fM+1(R(ig)) in
between Iy | (no) and Iy j_1(no), with (r, 1) > (F,);

(bl) i1(2) = (no,f,[,0) if fMm*L(2) isin the region of f™t1(R(io)) in
between W,.( f(ny)) and I 1(%0);

(cl) i1(20 = (1,1, %) if fM+l(z) is in either of the regions of
f"+1(R(io)) in between I'y(n1) and I'rj_1(n1), the sign +/— cor-
responding to the upper/lower region.

(d1) i1(20 = (1,0,0,£) if fM+l(z) is in either of the regions of
f"1(R(ip)) to the left of 'y, the sign +/— corresponding to the
upper/lower region.

It is worth keeping in mind that the stable leaves f"*1(y®) on the
boundary of f"*1(R(ip)) can not intersect a long leaf unless they are
totally contained in it.

The definition of i1(z) isdightly smpler inthe case when n; ¢ ™ (y")
for i = 0,1. Teking advantage of the fact that both segments f"1(y"),
i =0, 1, areintangentia position relative to ng, cf. Lemma 3.6, we define

(@) i1(2) = (po, 1,1, 4) if f"¥(2) isin the region of f™*(R(io)) in
between Iy | (no) and It _1(10);

(02) i1(2) = (90, 0,0, +) if fM+1(z)isintheregionof f™*+1(R(ip)) tothe
leftof T'A.

See Fig. 2. Our choice €; = + is purely conventional: the intersection of
fM*1(R(ip)) with any region in between two stable leaves is connected,
and so €; hasno role in this case.

o) R 1

Fig. 2

This completes the definition of i1(z). We also set R(ip,i1) = {z €
R(io) : i1(2) = i1}, for eachio = (o, o, lo, €0) and iy = ({1, 11, I1, €1).
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Finally, we define ix(z) for general k > 1. Thisis very similar to the
case k = 1, and so we go more quickly now. Suppose i;(2), nj(z), and

R(io, .. .,1j) havebeen defined for every j < k. Leti = (¢}, 1,1, €j), ] =
o..., k—1, befixed,andz € R(io, ..., ik_1).In cases (al), (bl), (cl), (a2),
we define px = pk(io, - - -, ix_1) > 1to bethelargest integer such that

dist (f1(¢), fI(Gn)) <€ forl<j=<p
and every ¢ € f™1(R(ig,...,ik1)).

For (d1), (b2) we just set px = 0. Then we let ni be the smallest integer
larger than ng_; + px such that f™(R(ig, ..., Ik 1)) intersects I(8), and
let mg = ng — (k-1 + 1). Cal pY, yjs the boundary segments, and Z
the corner points of f™-1+t1(R(io, ..., ik 1)), with the same conventions as
before. Then,

Proposition 3.7. 1. mg > px > (4/3)rk_1;

2. fori =0, 1theslope of f™(y") islessthan (C/8)+/b at every point;
3. length fmk(yjs) < (1/10) d@(z;'jj) fori =0,1and j =0, 1;

4, angle(t(zg’j), t(zj,j)) < (1/10) d@(z;'ij) fori =0,1and j =0, 1.

This proposition will be proved in Sect. 3.3. This includes proving, in
Lemma 3.9, that the bound period may be taken constant equal to px on
the whole f™-1(R(p,..., ik-1)), Then both f™(y"), i = 0,1, are free
segments. Thus we may use Propaosition 2.7 to get the analog of Lemma 3.6
at every return:

Lemma 3.8. Either there are two critical points 7o, n1 such that n; €
f™(y") fori = 0andi = 1, or thereisa critical point 5o such that both
segments ™ ("), i = 0, 1, areintangential position relativeto (1o, t(no)).

In the first case we define f, [ just as before. Then we let i (2) be
given by the rules which are obtained replacing f"*1(z) by f™*1(z), and
fM(R(ig)) by f™ (R(io, ..., ik 1)) in (al)<dl). In the second case in
thelemmawedefinei (z) by therulesobtained by making the corresponding
substitutions in (a2)—<(b2). Finally, for eachiy, ..., k1, ks

R(io, ey ik_]_, Ik) = {Z € R(io, ey ik_]_) : ik(Z) = Ik}

Our definition of itinerary of apoint zinthe basin of A iscomplete. By
congtruction, every R(o, ..., ix) isarectangle. Note that the two segments
of unstable manifold on its boundary are also contained in the boundary
of R(o, ..., ik_1). In the sequel, we call unstable sides of a rectangle the
segments of unstable manifold on its boundary, and unstable boundary the
union of the unstable sides. Stable sides and stable boundary are defined
analogougly.



400 M. Benedicks, M. Viana

3.3 Geometry of rectangles at return times

Here we prove Propositions 3.5 and 3.7. Part 1 of these propositions is
trivial when ry_; = 0 (cases (d), (f), (d1), (b2)), because px = 0. So we
may suppose rx_1 > A. Since |Df| < 4, the definition of r_; and px
implies 4Ptle=2k-1 > ceA(P+D Hence,

2 4
—— 11+ — 1> =rgq, 36
mk>pkzlog4+ﬂfk1+09(3 23fk1 (36)
because logc — 1 is negligible when A is big enough. This gives Part 1 of
both propositions.

Next, we are going to prove Part 2. Thisiseasy whenry_, iszero: inthat
case px = 0 and slope f™ (") < (C/8)+/b is granted by Proposition 2.5.
In what follows we consider r,_; > A. Then the main point in the proof

is to show that py may be taken as the bound period for any point in
f%1(R(p, ..., ix_1)). The precise statement is the following

Lemma 3.9. Suppose px > 0. For any z € f™1(R(ig, ..., ik-1)),

< e hi for1<j < p«

> e PPt for j=p+1 (37)

dist (f/(2), f1(Zc0) {

Moreover, if zis on the unstable boundary of f™-1(R(io, ..., ik_1)) then

1 IDfPL(2t(2)]| = o} and sope(DP+L(2)t(2)) < (C/8)V/b;
2. IDFPH(D)U(2)||de(2) > ce PPtD;

3. lwj@Il = olj for 1< j < px, and dopew,(2) < (C/8)Vb.
Proof. First wetreat cases(a), (b), (e), (al), (b1), (a2), where both unstable
dgdesy = f71(y"),i = 0, 1 of therectangle f™1(R(io, ..., ik-1)) aein
tangential position with respect to the binding point Z_1. By construction,
recall the last paragraph of Sect. 3.1,

— k-1 e k-1

e
length A <
gth(yi) Z = a

< et adist(y, ). (38)

This ensures that (17) is satisfied by these y;, aslong as A = log(1/8)
is taken large enough. Consequently, for any 0 < j < py, the distances
between f1+1(g_1) and the (j + 1)st iterates of any two pointsin the same
y; are comparable up to afactor 2, unless they are both smaller than (Ch)!.
Recall (18). Moreover,

length (f1(19)) < Cvb(Cb)! « e PU+D, (39)

for0 < j < p, and | = 0, 1, because y§ and y; are contained in sta-
ble leaves. According to the definition of py, there exists some point £
fM%1(R(ig, ..., ixk_1)) such that the distance from f P<t1(£) to fPti(g_q)
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exceeds e (Pt Of course, £ may be taken on the boundary of the rectan-
gle. Then the distances from f P<t1(g_1) to the (px + 1)t iterates of points
on the boundary of f™-1(R(io,...,ix 1)) areal much larger than (Cb) P,
and they are two-by-two comparable up to a factor less than 10. That is
because of (39) and our previous remark that the distance varies by less
than afactor 2 inside each unstable side. This shows that

~ 1
f pe+1 P+l — e BptD
dist (£P(2), 17 (@) = 5 e
for every z on the boundary of f™-1(R(ig,...,ix_1)). It follows that the
sameistruefor any point intheinterior. Thisprovesthe upper bound in (37).
The lower bound is contained in the definition of py, so the proof of (37)
is complete. Then, as observed in Sect. 2.2, the arguments in the proof of
Proposition 2.8 apply for any point zin yg U y1, with p(z) = px . Claims 1,
2, 3inthelemmafollow, corresponding to Parts 2, 3, 4 of Proposition 2.8.

f(’Yo)
o - ot f(n-)
LO f f(’Yl) 3
i1 T F(Ck—1) ) (o)
" L fy
—_———[fs
#(Lo) f(ny)

Fig. 3 Binding to anon-critical point

Now we deal with cases (c) and (c1) in the definition of itineraries. The
difference with respect to the previous cases is that only one of the unstable
sides of f™1(R(io,...,Ik-1)) isintangentia position with respect to the
binding point ¢x_1. See Figs. 1, 2, and 3. To fix notations, let this be y;
and let L; be a (nearly horizontal) segment of WY(P) containing y; and
lk_1 - For the other unstable side, y;, there is a nearly horizontal segment
Lo of the unstable manifold connecting it to a different critical point ng.
Basically, everything we said before still applies to y; but, because of the
asymmetry introduced by the choice of the binding point (py is defined in
terms of ¢x_1 not ng), it isless clear why that should be true for yy .

In a few words, our strategy to prove that this is so is to use a point
n+ € Lo such that f(n) is contained in the long stable leaf I"( f(fk-1))
through f(¢x_1), asan auxiliary binding point for 3. On the one hand, y,
isin tangential position to (5o, t(ng)) and the orbits of ng and any z € Lg
remain bound up to time py (an not more). On the other hand, because the
image of 5+ isin the long stable leaf through f(¢k_1), it shares the main
properties required for a binding point (expansiveness, tangential returns,
not too close to the critical set).
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Toexplainthisin detail, let uswrite Lo = {(X, yo(x))} and (X(x), Y(X)) =
f(X, Yo(X)). Since the distance from (X(X), Y(x)) to T'(f(¢k_1)) varies in
a quadratic fashion, recall (7), the curve f(Lg) intersects the stable leaf at
exactly two points, f(n_) and f(n.). Moreover, ng is between n_ and .
inside Lo, whereas y; is digoint from the segment bounded by »_ and 7.
See Fig. 3. In what follows we suppose that y; isto the left of that segment
(the other case is analogous) and 7_ is the endpoint closest to it. Let n, =
(X, Yo(X)), forx € {—, 0, +},and w;j (x) = Df!(X(X), Y(X)wofor j > 1.

Claim 1. Forany 0 < j < py thedistancesfrom f!*1(5_) to any two points
in f1+1(y,) are either comparable, up to a factor 2, or simultaneously less
than (Ch)/.

Proof. Definep > 1tobethelargestinteger suchthatdist(f! (&), fi(n_)) <
2e Pl forany 1 < j < pand & € y,. According to Proposition 2.4,

dist (f1(n-), f1(g-1)) < (Cb)!  forevery j > 1. (40)

Together with the definition of py, this shows that dist(f1 (&), f1(n_)) <
e P14+ (Ch)l < 2e P forevery j < px. Therefore, p > py. Wearegoing to
provethestatementsinClaim 1forevery0 < j < p.Fix z = (X, ¥o(X)) € yo.

Thefirst stepisadistortion bound analogousto (11): forevery1 < j < p
ands € [x, X_],

wj(s) = A(9)(wj(X-) +€j(9), with c<i(s) <C, (41)
and [lej ()| < llwj (X))l -

Thisis obtained as follows. As mentioned before, all one has to know for

the proof of (11) isthat f(¢,) isexpanding, itsfree returns up to time p are

tangential, and they satisfy (12). We are going to check that these facts are

true for _ in the place of ¢,. Then, (41) follows from the same arguments

that give (11), see [2, Lemma 7.8] and [15, Lemma 10.5]. By (40) and
Proposition 2.3.5 (take T = Cbh),

1wl _

< . <10 and angle(w;(n-), wi(&k_1)) < (Cb)}/?,
10~ Jw; Gl gle (w; (). wjG-)

(42)

for every j > 1. Thefirst relation, combined with Theorem 2.1.2, implies
that f(n_) isan expanding point. Let j > 1 be afree return, and ¢; be the

binding point for fi(Z._1). Using (40) and Theorem 2.1.3,
dist (f1(n-), ¢) ~ dist (1 (Giv), ¢j) = €. (43)

This corresponds to (12). Finally, the tangential position property may be
checked as follows. By Theorem 2.1.3 and the observation near the end of
Sect. 2.1, there exists a C? curve K = {(x, y; ()} with |y}, [y]| < 1/10,

such that K istangent to t(¢;) at ¢j and tangent to w1 (k1) a f1(Zk_1).
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Using (40), the angle estimate in (42), and (43), we may modify K; to get
another C? curve {(X, zj (X))}, with |z’j|, |z’j/| < 1/5, tangent to t(¢;) at ¢
and tangent to w; _1(n_) a f1(n_).

From (41) and (42) we get that f(z(s)) is expanding up to time p, for
any z(s) = (S, Yo(9)) withs e [x, x_T:
1
10
for 0 < j < p. Then the contracting direction e(s) of order p at f(z(9)) is

well-defined, for any s € [x, X_]. Thus, we may split the tangent direction
to f(Lo) inthe sameway asin (9),

(X'(9), Y'(9) = a(s)e(9) + B(wo,
with [ ()], [o/(9)], |8'(s) + 2a| bounded by C+/b. Then, for0 < j < p,

- 1
lwi @~ lw Ol = 75 [wi @] = 7501 (44)

i) — 1tz

_ / (9DFI(F())e) + AOMI (wi(x ) +¢(9)) ds

Themain difference with respect to (13) isthat thereisno reason why B(x_)
should be small: f(Lo) is not tangent to the long stable leaf through f(1_).
But we do have

Claim 2: B(x_) > —(Ch)P.

We accept thisfact for awhile, and proceed with the proof of Claim 1. Since
B ~ —2aisnegative, it followsfrom Claim 2 that B(s) > 8(x_) > —(Cb)P
and s0 |B(s)] < B(s) + 2(Cb)P, for every s € [x, x_]. Let us rewrite
fitio.) — fiti(z) as

/ (9D (F(z(9))e(s) ds+ wj(x_) / (B(S) + 2(Cb)P)i(s) ds
X X (45)

—2(Cb)pwj(x_)/ _ﬁ(s)k(s) ds+/ _,B(S))\,(S)Ej(S) ds.

Theprincipal termin (45) isthe second one. Indeed, thefirst termislessthan
(Cb)!, recall Proposition 2.3.4. Thethird termislessthan (Cb)P5! < (Cb)!,
because g and A are bounded and ||w;|| is less than 5. Since |l€;(9)|| <K
lw;(x-)|l, the fourth term is much smaller than the second one:

H / BOAS (9| <« / 1B A w; )]l ds

< w0 f (B9 + 2CH)P) A(9) ds.
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These observations imply that (here ~ means equality up to afactor v/2)
X X X—
dist (11740, £171) ~ fluy 01 [ (89 +2(C0)") 9 s (46)
X

unless, possibly, if the right hand side is less than (Cb)!, in which case
dist(fi+1(n_), fi+1(2)) isaso bounded by (Cb)!. Since A isbounded from
zero and infinity, and 8(s) + 2(Ch)P is a positive function on [x, X_], with
derivative almost constant and negative,

/ 7(,3(8) + 2(Cb)P)A(s) ds ~ (B(X) + 2(Cb)P)(x_ — X). (47)

Just asin (38), the length of y4 is much smaller than the distance from 7_
to any of its points. Therefore, the right hand side of (47) isamost constant
when z = (X, Yo(X)) varies over thewhole yq: at mogt, it changes by afactor
that iscloseto 1if A =log1/é islarge. It follows that the second term in
(46) oscillates by, at most, afactor +/2 when z varies over the whole yg. So,
either the distance from f1*1(z) to f1*1(5_) isless than (Cb)’, and then
the sameistrue for any other point in f1+1(y) (with C replaced by 2C), or
elseit is comparable up to afactor 2 to the distance from f1+1(5_) to any
f1+1(Z) e f1+1(yp). Thisproves Claim 1. O

Before going back to the proof of Lemma3.9, let usprove Claim 2 stated
above:

Proof. Let p be the bound period of n_ relative to the critical point 7q.
As (n_,t(n_)) isin tangentia position to (no, t(no)), we are in the precise
context of Proposition 2.8. Wemay split (X'(S), Y'(S)) = @(S)&(S)+B(S)wo,
where &(s) = (&(9), 1) is the contracting direction of order p at f(z(9)).
Recall that z(s) = (s, Yo(S)) parametrises Lo, and (X(s), Y(s)) = f(z(9)).
From (10) we get
B(x_) — B(X0) ~ (Xo — X_) ~ dist(n_, no).
Note that dist(n_, no) is much larger than (Ch)P: using |Df| < 5,

e PP ~ dist (FPH (o), £PHE(0)) < 5P+ dist(n_, 70).
On the other hand, |B(Xo)| < (Cb)P by the second part of (14). Thence,
B(x_) ~ dist(n_, no) = c(5¢”)~P > 0. (48)

Write e(s) = ((s), 1) for the contracting direction of order p. Then |e(s) —
&(s)| < (Chymntr-P} according to Proposition 2.3.2. Using thisina(s)e(s) +
B(S)wo = a(S)&(s) + B(S)wo , we get

IB(X_) — B(X_)| < Cle(x_) — &(X_)| < (Ch)Mnip.-P}

If p < p then Claim 2 follows immediately from this last inequality and
the fact that B(x_) is positive. For p < p we get a stronger fact: g(x_) >
c(5¢®)P — (Cb)? > 0. ]
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Now that we have established Claim 1, Property (37) follows in the
same way as in the cases (@) through (a2), that we treated before. We just
review the arguments. By the definition of py, there exists some point on
the boundary of the rectangle f™-1tP+L(R(io, ..., ix_1)) whose distance
to fP+1(g_ 1) exceeds e PP+ Since the length of the stable sides of
the rectangle is less than (Cb) P, which is much smaller than e #(*+D we
may take this point on one of the unstable sides. Using Claim 1 and its
analog for y; (which we knew before), together with (40) and the upper
bound on the lengths of the stable sides, we conclude that the distances
from fP+(g_1) (or from fP+1(y_)) to any two points on the boundary
of the rectangle are comparable up to afactor less than 10. Thisyields

~ 1 1
diS[(f Pk+1(z)’ Ck—l) > Ee—ﬂ(PHl) and diS[(f Pk+1(z)’ 77—) > Ee—ﬁ(pk+1)

for every z on the boundary of f™-1(R(ig,...,ix 1)), and so aso for every
point in the interior. This gives one of the inequalities in (37), the other one
is contained in the definition of py.

Finally, we prove Parts 1, 2, 3 of Lemma 3.9. For points z € y; thisis
analogous to Parts 2, 3, 4 of Proposition 2.8, because y; istangentia to the
binding point. For z € y, it goes along similar lines, with n_ acting as the
binding point. Firstly, by (46) and (47),

e PPHD ~ dist (f P (o), fP(2))
~ [[wp, (X (BXX) + 2(Ch)P) (x= —x).
From (33) and Claim 2, wefind
B(X) > x_—x and cA(X) < B(X) + 2(Ch)™ < CA(x),

note that x_ — x ~ dist(z, n_) is bounded below by c(5¢®)~P« > (Chb)P.
It follows that

e PPHD ~ BX)[[wp, (X [[(X= — X) & B [wp X)[(X= — X)
< Bl wp X1 - (49)

The second step uses (44). Now, D f P (f(2)t(z2) = a(X) D f P<(f(2))e(x) +
B(X)wp, (X). The first term is bounded by C+/b(Cb)™, which is much
smaller than e #(*+D Hence

IDfP(F(2)t(2)] de(2) > D FP(F(2)t(2) ] (X_ — X)
~ B ||wp (X) | (X — X) & g PPt

Thisgives Part 2 of the lemma. The slope statements in Parts 1 and 3 follow
from

dope(D f *(f(2)) t(2)) =~ dope(wp, (X)) =~ sope(wp, (1-))
~ slope(wp, (Zk-1)),
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recall (41), (42). Thefirst half of Part 3 is a consequence of (41), (42), and
the fact that f(¢_1) itself isan expanding point, cf. Theorem 2.1.2. Finaly,
(49) gives usthefirst half of Part 1:

IDFP(f(2) 1@ 1 ~ BOO?[[wp (X)1? = Clwp (X)[le” Pt > oPPADTE,

Thelast step uses [|wp, (X) || > o and the assumption that 8 and § are small
(the latter forces px to be large). The proof of Lemma3.9 iscomplete. O

Part 2 of Propositions 3.5 and 3.7 is contained in the conclusion of
Lemma 3.9. Now we move on to prove Parts 3 and 4. For this we need
afew additional facts about the size and shape of the rectangles f"™(R(io,
...,ik 1)), that are obtained in Lemmas 3.10 and 3.11. The proof of these
lemmas is by induction on k, using (36).

Lemma3.10. Given z € R(yg,...,ix.1) and any unstable side o" of
R(o, ..., k1), there exists & € o“ such that

1. dist(f™1+l(z), fM*1tl(g)) < min{10(Ch)"1/2g-1, 10(Ch)™-1/4);
2. dist(f™(z), f™(&)) < (Ch)™w/2,

If zisin some stable side o5, we may take & the common endpoint of o3
and o".

Proof. To keep track of the constant C in the statement, we denote it Cy,
throughout the proof. We shall take C;, > 100C,, where C; isthe constant C
in Proposition 2.3.

We start by proving the lemma for k = 1. Recall that ng + 1 = 0.
Then the inequality in Part 1 are trivid: the left hand side is bounded
by 4, whereas the right hand side can be made arbitrarily large by taking b
small (these comments are for completeness only, we never use this part of
the lemma with k = 1). Part 2 is proved as follows. As a consequence of
Propositions2.8.4and 2.5, every z € R(ip) isexpanding uptotimem; = n;.
So, using Proposition 2.3 in the same way as when proving Proposition 2.4
in Sect. 2, the temporary stable leaf of order n; through z is along nearly
vertical curve: ™ (2) = {(x(y), y) : ly| < 1/10} with |X|, |X"| < Cv/b,
and

dist(f)(¢), f1(2)) < (Cb)l dist(¢, 2) foral e eM™(z)and1 < j <n;.

If T"(2) intersects the unstable segment oY, take &; to be the intersection
point. Then dist(f"(z), f"(&)) < (Cib)™, which is even stronger than
the claim. If '™ (2) leaves the rectangle R(io) through a stable leaf o5, take
&1 to be the vertex of R(ig) where o° meets oY, then continue as before.
Noting that o® is aso contracted by positive iterates of f, one still gets
dist(f™(2), (&) < (Cib)™.

Now we assume that the lemmavis true at time ny_4, and prove that it
must be true also at time n. For the same reasons as before, every point
¢ = f™%1+1(2), z € Ry, ..., ik 1), is expanding up to time my. So, the
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FHIm(0)

Fig. 4

temporary stable leaf '™« (¢) of order my through ¢ isalong nearly vertical
curve. If T™(¢) crosses the unstable segment y! = fM1+1(gY), let n be
the intersection point. See Fig. 4. Otherwise, '™ (¢) intersects some stable
side yS of f™1+1(R(ig, ..., ik 1)), and we cal  the common endpoint of
yY and yS. Either way, define & by f™-1+1(&) = . We are going to prove

dist(z, n) < 10(Chb)™1/2d«1 and dist(¢, n) < 10(Chb)™/4.  (50)

which is just Part 1 of the lemma. It immediately implies Part 2. Indeed,
combining the first of these inequalities with Proposition 2.3.2 we find

dist(f™(2), f™(&)) = dist(f™(¢), f™ (1)) < (C1b)™10(Cpb)M-1/2gk-1
< (Chb)™/2,

Note that ny = n_1 + 1 + my and we chose C;, > 100C;. Moreover,
my > r_1 by Part 1 of Propositions 3.5 and 3.7, which was already proved.
So, we have reduced Lemma 3.10 to proving (50).

For the proof of (50), it isconvenient to distinguish two cases, depending
on the relative size of r_; and ny_1. We treat first the case when ry_1 is
small with respect to ny_:

(Chb)™t < e ¥t (51)

In this case the second inequality in (50) isadirect consegquence of the first
one. To prove the first inequality, consider acurve L = {(X, yo(X))} with
IYol, 1Yol < 1/5, tangent to WY(P) at &1 = (X, y) and containing one
of the unstable sides of f"™-1(R(io, ..., ik_2)). We claim that a segment of
f~1(I"™(¢)) can be parametrised t — z(t) = (X(1), Yo(X(t)) + t), with

X' ()] < Cvbekt and [t| < 2(Chb)™+/2. (52)

Let usassume thisfor awhile. Since L is nearly horizontal, dist(z(t), L) >
[t]/2 for any t. Using the assumption that Lemma3.10.1 istruefor k— 1, we
concludethat f ("™ (¢)) crossesthe boundary of f™-1(R(ig, ..., ik1))at
another point z(ty) with 0 < |t;| < 2(Cpb)™-1/2. Moreover, f~1(¢) = z(ty)
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for some t; between zero and t,. Typicdly, z(t,) = f~1(») but it may
also happen that z(t;) bein astable side y° of f™-1(R(io,..., ik_1)), with
f~1(n) being an endpoint of 5. In the second case, dist(z(ty), f~1(n)) is
less than (Chb)™-1/2, by the induction hypothesis. So, using the bound for
|X'| given in (52), we always have,

dist(¢, n) < dist(z(t1), Z(tz)) + (Cpb)™*/2

< CvVbe*1(Chb)™1/2 4 5(Cpb)™2/2 < 10e/*1(Chb) /2,

To turn the previous paragraph into a complete proof of (50) for small
rw—1, we haveto justify the claimsin (52). Let ¢k = (X, y) be the binding
critical point. Write the long leaf W ( f(¢k—1)) through f(¢k—1) = (X1, Y1)
as {(X5(y),y) : |yl < 1/10}, and the temporary stable leaf '™ (¢) as
{(X:(y), y) : lyl < 1/10}. Moreover, denote (Xo(X), Yo(X)) = (X, Yo(X))
and (X(x, 1), Y(x, 1)) = (X, Yo(X) + t). The condition f(x, yo(X) +1) €
'™k (¢) is expressed by X(x, t) = x,(Y(X, 1)) or, equivalently,

XS(Y(X, 1) — X (X, t) = x3(Y(X, 1)) — X (Y(X, 1)). (53)

We want to show that (53) defines x as an implicit function of t, with
derivative bounded by C+/bex-1, on the whole interval |t| < 2(Cpb)™-1/2,
For this purpose, let us estimate the partial derivatives of both sides of (53).
Firstly,

300 Y = X)(x, D] <Cvb and [§(x° oY —x, 0 Y)(x, 1| <Cvb
(54)

for every (x, t), because (x°)', (X;)’, dy f are less than C+/b. By Proposi-
tion 2.3.2 and 2.3.3,

|0 = %) (M) < CVB (X* = X ) (y) + (CH)™.

Combining this with my > ry_; (Proposition 3.7.1) and the definition of
Nk—1, WE get

|(x° = %) (W] ~eZ and |(x*—x.) (y)| < CVbe?t  (55)
for every |y| < 1/10; compare Proposition 3.3. Thislast relation implies
3x(X50 Y — X 0 Y)(x, )| < Cvbe 22 (56)
for every (x, t). On the other hand, asin (7),
(X0 Yo — Xo)(¥) ~ (X —x)? and  (x*0 Yo — Xo) (X) & (X — X) (57)

for all x. Let (x, t) be any solution of (53) with |t| < 2(Cpb)™-1/2, Using
(59),

(oY = X)) = |(X®0 Y = X 0 Y)(x, )] &~ & X1,
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In view of (54), the bound on |t|, and assumption (51), these expressions
change much less that e« if we replace t by zero. This means that the
previous relation is not affected by taking zero in the place of t: it becomes
|(x30 Yo — Xo)(X)| &~ e 2«1, Using (57), we conclude that [x — X| ~ e "1
and

[9x(x®0 Y = X) (X, 0)| = |(X®0 Yo — Xo) (%)| ~ &1,

Now, since the derivative of dx(x® o Y — X) is also bounded, we may put t
back in the place of zero without affecting this relation:

|ax(x* 0 Y — X)(X, )| ~ e (58)

Since C+v/be~2k-1 js much smaller than e "1, the relations (56) and (58)
give

[0 (X50 Y = X) (X, 1) — 0x(X°0 Y =X, 0 Y) (X, t)| ~ et

for any solution (x, t) with |t] < 2(Cyb)™-1/2. Thus, we may indeed use the
implicit function theorem in (53). Moreover, by (54), the implicit function
X(t) has |x'(t)] < Cv/bek-1. The proof of (52) is complete.

Now we prove (50) for large r_1, that is, (Chb)™-1 > e~4«1, Weclaim
that in this case

dist(z, n) < Cvbe ™t < g1, (59)

Note that thisimplies both inequalities in the statement. To prove the claim,
let (x3(y), y) and (X, (Y), y) be as before, and (X(x), Y(X)) parametrise the
unstable side y" that contains n. Suppose first that '™« (¢) intersects yY at
the point 5. Then the length of the segment of '™« connecting ¢ to n isless
than C+/be "1, as a consequence of the estimates corresponding to (55)
and (57), with X, Y in the place of Xg, Yo. This proves the claim in this
case. The other one corresponds to I'™ intersecting astable side y° at some
point ', with n being an endpoint of y°. The same argument as before
applies, both to the segment of I'™* connecting ¢ to ' and to the stable
segment yS: their lengths are shorter than Cv/be"«1. Sowe get (59) in this
case too. |

Remark 3.4. The following elementary fact is used in the next lemma. Let
v1, Uy, €1, € be planar vectors such that |l€i]| < |vil|/2 fori = 1,2
Let & = angle(vy, v2) and x be the norm of e1/|v1]l — €2/||v2ll. Then
angle(vy + €1, v2 +€2) < 0+ 2(x + lle1ll 6). A proof follows. Dividing v
and ¢ by |jvi ||, we may suppose |vi|| = 1fori = 1,2. Then v, = €%y,
and so

angle(v1 + €1, 00+ €) < angle(vl + 61,é0U1 + éeél)
+ angle (v2 + €%1, v2 + €2).

Thefirst term is equal to 6, and the second oneislessthan 2||€%¢; — €| <
20| €1l + 2]|e1 — €2, because ||€i|| < 1/2fori =1, 2.
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Lemma3.11. Let & beasin Lemma3.10. If r; < 5n; for every 1 < j <
k — 1 then
angle (D f™(2)wo, t(f™(&))) < (Cb)™/“.

Proof. During the proof we represent by C, the constant in the statement.
In anumber of places we assume C, to be large, with respect to afew other
constants.

First we treat the case k = 1. Combining Propositions 2.8.4 and 2.5
we get that &; is expanding up to time n;. So, recall Proposition 2.3.1,
the contracting direction e;: = (e;, 1) of order n; at &, is well defined and
satisfies |eg| < C+v/b. Let (1, Vi), |Ye| < 1/5, represent the tangent direction
to WY(P) at f~1(&1). We split

Df(f (&)L V) = o€ + Bewo.

Asin (10), we must have o | < C+v/band |B:| ~ 2ade (f ~1(&1)) ~ 2ae".
By Proposition 2.3.2, ||[Df"(&1)e:|| < (Cb)™. Sincet( f" (1)) iscollinear
toas Df™(§1)e: + B D F™(&1)wo,

el IDFMEDe | i
Cvbeo(Ch™
= B 1D EDwoll ~ (€D

< (Ch™/2,

angle (D f™ (&) wo, t(f™(£2)))

The last inequality uses n; = m; > ro. Moreover, by construction,
dist(f!(n), f1(¢)) < (Cb)! for 0 < | < ny. So, using Proposition 2.3.5 we
get

angle (Df™(2)wo, Df™(&1)wo) < (Cb)™/2%.

Adding thesetwo angleestimates, wefindthat angle(D f " (z) wo, t(f™(£1)))
is bounded by (Cb)"/2, The case k = 1 of the lemma follows, taking Ca
larger than this last constant C.

Now we proceed by induction. We use the same notations asin the proof
of the previous lemma, in particular, ¢ = f™%1t1(z) and n = f™11(&).
As before, [|[Df!(nwo|l > 1for 1 < j < my. Recadl that the distance
between iterates of ¢ and n is exponentially contracted during the first my
iterates. So, using Lemma 3.10.1,

dist(f!(n), f1(0) < (Ch™1/2dk-1(Ch)} fordl0<j <mc. (60)
By Lipschitz continuity of Df, for every 1 < j < my we have
D (©)wo — Df (uo < (Co)™-/2g . (61)

Inview of the assumption ry_; < 5ny_4, the last term can be made small by
reducing b. So, in particular, |[Df!(Qwe| > 1/2for 1 < j < my. Thenthe
contracting directions of order my, e, = (¢,, 1) aanand e, = (e;, 1) at ¢,
are well defined and satisfy [e, |, |e;| < Cvb. Let (1, y,) and (1, ¥;), with
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[Vl, 1] < 1/5, becollinear to t(f~1(n)) andto D f ™1 (z)wy, respectively.
We split

Df(f ) (L, V) = €+ Bywo and DF(F 1), ¥,) = arr€ + Brwo.

Then |, | and |«, | are bounded by C+/b, moreover, 1B, ~ 2ade (f~1(n) ~
2ae "1, The induction assumption means that |y, — V| < 2(Cab)™1/4,
By Lemma3.10.1and r_; < 5ny_1,

dist(f (), f71(0)) < (Ch"™2/2x1 < (Ch™1/%, (62)
We take C, larger than thislast constant C. It follows that
oy — | < CVB(Ca)™ " and [, — B| < C(Cab)™ /% (63)

Using the assumption ry_; < 5n,_; once more, we conclude that these
expressions are much smaller than e"«*. In particular, |8, | is aso of order
e "1, Expansivity implies

[Df™ e, | < €™ and [DF™@e | < €™,  (64)

whereas Proposition 2.3.4 and Lemma 3.10.1 give
|Df™ (e, — DE™ (e, | < (C)™ dist(n, £) < (Cb)™e'(Ch)™-+/2.
(65)

We take C, > C for any of the constants appearing in (61)—(65). Then,
combining these estimates through the triangle inequality,

H a, Df™(n)e, o Df™(¢)e;
Byl IIDfM(mwoll B¢ | 1D F™ (&) woll
< Cvb (Cab)™ /41 (Cab) ™.
Then, as t(f™(&)) is collinear to o, Df™(n)e, + B,Df™(n)wo and
D f™(2)wq iscollinear to o, D f™(£)e, + B, D ™ () wy,
angle (D f™(2)wo, t(f™(&0))
< 2angle (Df™(m)wo, DF™(Qwo) + Cvb (Cab)™ /€1 (Cab)™
< (Ch)™-1/4*-1/2(C)™/? 4 Cv/b (Ca) ™1/4€1 (Cab) ™.

For the first inequality, take v1 = B,Df™(nwo, €1 = o, Df™(n)e,,
vy = B:DIF™(Hwo, and e, = o, DF™(¢)e, in Remark 3.4. The second
inequality follows from Proposition 2.3.5 combined with (60). Since n =
N_1 + 1+ mg and Mg > ry_q, thisgives

angle (D f™(2)wo, t( f™(&))) < (Cab)™/.

(take C, larger than the other constants in the previous inequality). So, the
inductive step is complete. O
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Remark 3.5. More generally, if 0 <t <k — lissuchthatr; <5(nj —ny)
forallt < j <k—1then

angle (D f nk—nt—l( f nH_l(Z))wo, t( f nk(ék))) < (Cb)(nk_n‘_l)/4,

This is proved in the same way as the lemma, starting the induction at
k =t + 1. Observe that the assumption was used to relatery_; and ng_1, in
the context of (61), (62), (63). In the present situation one relates ry_; and
Nk_1 — Ny in much the same way.

Remark 3.6. ThehypothesesinLemma3.11 and Remark 3.5 are unnecessar-
ily strong: the arguments remain valid if oneassumesonly r; < |log Cbj n;

for1 < j <k— 1, respectively, ry < |logCb| (nj —ny) fort < j <k—1
On the other hand, the statements given above are sufficient for all our
purposes in this paper (we never use these more general hypotheses).

It is time to complete the proof of Propositions 3.5 and 3.7. Part 3
follows immediately from Lemma 3.10.2: for z = f—”k(zg’j) we may take

& = f—”k(z’i]—), and then, by Remark 3.3,

o 1 1
dist (7,7 ;) = (CO™? < - e < o de (7).

Finally, Part 4 of Propositions 3.5 and 3.7 can be readily deduced from
Lemma 3.11, in the version given in Remark 3.5. Indeed, we may take
z = f~™(¢) for an arbitrary point { € f™(y°), and then & = f=%(Z ),
fori = 0, 1. Theway we defined itineraries, thereexists0 < t < k— 1such
that f"+%(z) and f™*1(&,) belong to the same long stable leaf Ty, ), (%).
By the construction of these leaves, recall Proposition 3.3 and Remark 3.3,
ri <2pn;—ny <5n; —ny) foral j >t+ 1. So, we may conclude that

angle (D f ng—(Nt+1) ( f nt+l(z))w0’ t(zl* ] ))
— ang|e ( Df nk—(nt-l-l)( f nt+1(z))w0’ t( £ Mk (ék)))

is bounded by (Cb)™~"=b/4 Adding the inequalities corresponding to
| =0and| = 1, we get the claims in Propositions 3.5.4 and 3.7.4.

angle(t(za]—), t(z’i)) < (Cb)(nk—nt—l)/4 < %E—Zﬁ(nk—nwl) < %d@ (Z|*)
(66)

This finishes the proof of Propositions 3.5.4 and 3.7.4.

We conclude this section with yet another useful application of these
arguments.
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Corollary 3.12. Let0 <t < kandz e Agsatisfyr; < 5(n; —n) for every
t < j < k. Then f™*1(2) is expanding up to time ny — n; — 1: there is
A > e 2 such that

IDF(F™ 1 (2))woll = A foreveryl<i<ng—n —1

Moreover, (f"i(z), DfNi—"=1(f"+1(z))wp) isin tangential position rela-
tiveto (¢, t(¢j)) for any return nj witht < j <.

Proof. Wecheck that Remark 3.2 canbeappliedtothepoint; = f™(z). Re-
call that, according to Lemma 3.10.2, the height of the rectangle f"i (R(io,
...,ij)) does not exceed (Cb)"i’2, which is much smaller than e™>"i <
e M~ Therefore, the assumption of the corollary implies that
dist(f"i="(g), ¢j) > e >M~™ and f"i~™(¢) isin tangential position rela-
tive to (¢j,t(¢j)), for every j > t. Using Remark 3.5 we get more:
(fN="(g), DfN=™=1(f(¢))wp) isintangential position relativeto (£,t(Z))),
asofor every | > t. So the assumptions of Remark 3.2 are indeed satisfied,
and we may conclude that f(¢) is expanding. O

4 Tangential positions are statistically inevitable

Now the goal is to show that for Lebesgue almost every point in the basin
of attraction, returns are eventually tangential. The following notion is
motivated by Corollary 3.12. Given an itinerary (ig, i1, ..., ik, ...), with
return times ng < Ny < --- < Nk < ---, we define its close returns
Vg <V <---<vs<--- asfollows. Takevy = ng = —1. Then, for each
s> 0, let vgy1 = Nisy1) Where k(s + 1) is maximum such that

ri <5nj—vs) foral vs<nj<ngsty.

Observe that, according to Corollary 3.12, non-close returns are always
tangential, moreover, points remain expanding as long as they have no
close returns. The main result in the present section is Proposition 4.10:
itineraries with many close returns are improbable. Sections 4.1 and 4.2
contain some crucial preparatory results. Throughout, it is understood that
all the constants c and C areindependent of k > 1andig, iy, ..., ik 1.

4.1 Unstable sides are roughly parallel

Thefirst step isto prove that the tangent directions to the unstable sides of
each rectangle f™(R(io, ..., ix_1)) satisfy aLipschitz condition, expressed
in the next propasition.

Proposition 4.1. For any Z; and Z; in different unstable sides of f™(R(iq,
oy lke1)),

angle(t(2o), t(21)) < Cb™'e* ™™ dist(2o, 1)
where vg isthe last close return strictly before ny.
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The proof is by induction on s: assuming the conclusion of the proposi-
tion at time vs, we prove that it holds for al vs < ng < vgy ;. This hastwo
main parts. We begin by obtaining, in Lemmad4.2, an estimate for the angle
a time vs + 1 = nye + 1 in terms of ry only (thus, independent of the
history prior to vs). In asecond stage, we deduce the proposition for ng > vg
from this estimate and Lemma 4.4, which contains the statement that the
tangent vectors to the unstable sides of f!(R(io, ..., ik 1)) are expanded
under D f"™~! foral vs < j < nk. Tokeep track of theinduction, during the
proof we use C, to mean the constant C in the statement of Proposition 4.1.
For Lemma4.2, we assumethat § is small depending on Cy,; see (75). Later,
see (82) in Lemma 4.5, we take C, much larger than afew other constants,
independent of §. Clearly, such constraints are compatible as long as § is
small enough.

Letx — (X, yj(X), j = 0, 1, parametrise the unstable sides of f"s(R(io,
oy ikeg-1)), and y i (X5(y), y) parametrise the long stable leaf through

f(Zks). Asbefore, ¢y isthe binding critical point associated to the return
Vs = Nis). Wewrite

(0, nj0) = fx, y;(x)  and &) = &) — X3(nj(x). (67)

Thatis, & (x) isthe(signed) horizontal distancefrom the point (& i (X), nj (X))
to the stable leaf through f(ys)). Compare (6).

In the next lemmawe use 3l t(z) to represent the slope of tangent vectors
in (£, n) coordinates: 8l t(£;(X), nj(X)) = 77] (X) /gjf (X). Note that we do not
take absolute values.

Lemma4.2. For any z, and z; in the unstable boundary of f's*1(R(io,
) ik(S)))!

|l t(z0) — 9 t(z1)| < Cb™te¥ o dist(zo, z1).

Proof. For thetime being we suppose that zo and z; arein different unstable
sides of the rectangle f"™1(R(io, ..., iks)). There are two cases to be
considered, cf. Fig. 5.

F Y20 Gk fe) £ (20)

5 £ (Blio, i)
fys(R(iOa”'vik(s))) fua(R(iov"'aik(s)))
Fig.5

Fi) G
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First, we suppose that f ~1(zg) and f~%(z;) belong to the same unstable
side of the rectangle f's(R(io, ..., iks-1)), cf. cases (a), (b), (al), (b1) in
Sect. 3.2. This corresponds to the left hand half of Fig. 5. Up to interchang-
ing the roles of yo and y;, we may suppose that this is the unstable side
parametrised by (X, Yo(X)). Then i) = (X¢, Yo(Xc)) for some x.. We aso
write zg = f(Xo, Yo(Xo)) and z; = f(Xq, Yo(X1)), for some xq and X;. By the
definition of itineraries, |£o(X;)| ~ e 2ks . Then, by the quadratic behaviour
property (7),

2 ~ ~ —2 ~ ~ e
(Xj = X)? ~ [Eo(x)| = €749, and o [5(X))| & |X} — Xc| ~ e7ke.

In the case we are dealing with, f~(zo) and f~*(zo) are to opposite sides
of the critical point gxs). SO, [Xo — X1| = [Xo — Xc| + [X1 — Xc| > ce™'ko.,
Assumption (3) impliesthat | D f | < 4J/b. It follows that

dist(zo, z1) > cb(|Xo — X1| + [Yo(Xo) — Y1(X1)|) > che ™.
This gives

mo(Xo)|  [mp(X1)]
dt(zo) — gt Cvbek
| sl t(zo) (z)] < £00) + o] <Cvb

< Cb™Y2 e dist(zo, z1),

which is even stronger than the claim in the lemma.

Now we treat the situation when f—1(zy) and f~1(z;) are in different
unstable sides of the rectangle f's(R(io, ..., iks-1)), cf. (), (d) , (€), (c1)
in Sect. 3.2. See the right hand half of Fig. 5. Interchanging yg and y; if
necessary, we may suppose that the binding critical point is (X, Y1(Xc))
for some X.. Due to the form of the map f, and the fact that long stable
leaves are almost vertical, we may write £;(x) = 1 — ax? + ¥(X, Yj (X)),
for j = 0,1, and afunction v that is C+/b close to a constant in the C2
topology. Then,

§o(X) = &1(X) + p(X, (Yo — Y1) (X)),
where p(x, h) = ¥(x, y1(X) +h) — ¥ (X, y1(X)) has C2 norm lessthan C+/b.
Let Xg, X, bedefined by zg = f(Xo, Yo(Xo)) and z; = f(X1, y1(X1)). Wehave
£o(X0) — &1(X1) = (§1(X0) — £1(X1)) + dxp(Xo, (Yo — Y1) (X0))
+ dyp(Xo, (Yo — Y1) (X0)) (Yo — Y1) (X0)-

The first term on the right is bounded by 4|xo — X3]. Since p(x,0) =

dxp(x, 0) = Ofor al x, the second one is bounded by Cv/b (Yo — Y1) (Xo)|.
Asfor the last term, we write it as

[dyp(Xo. (Yo — Y1) (X0)) — dyp(Xo, ¥i) ] (Yo — Y1) (Xo)
+ dyp(Xo, ¥x) (Yo — Y1) (Xo)  (68)
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where y, isany point in the interval bounded by 0 and (yo — Y1) (X), having
the mean value property:

dyp(Xo, Y+) (Yo — Y1) (Xo) = p(Xo, (Yo — Y1) (X0)). (69)
Since |(Yo — Y1)'| < 1, thefirst term in (68) is less than

CvbI(Yo — y1)(X0) — Yil < CVbI(Yo — Y1) (X0)!.

Now we use induction: assuming that Proposition 4.1 holds for the points
(X0, Yo(X0)) and (Xo, Y1(Xo)) a time nx = vs ensures that

(Y1 — Yo)' (X0)| < Ls|(y1 — Yo)(Xo)|, Ls = Cpb e svsv),
Therefore, using (69),

}ayp(xo, V) (Yo— yl)’(Xo)} < Lslp(Xo, (Yo— Y1) (X0))| = Ls| (60— &1)(X0)| -
At this point, putting the previous estimates together, we have shown that

\éé(xo) - Si(X1)| < CIXo — X1| + Cvb (Yo — Y1) (X0)| + Ls|(£0 — £1) (X0)| -
Moreover, |(Yo— Y1) (Xo)| < |Yo(Xo) — Y1(X1) |4+ C|Xo— X1/, and similarly for
(&0 — &1), Since the derivatives of y; and &; are uniformly bounded. Hence,
the previous inequality implies
|£6(X0) — &1(X0)| < (C + Lo)IXo — Xa| + CvVb|yo(X0) — y1(x0)|
+ Lsléo(X0) — &1(xp)| . (70)

Moreover, we may replace C 4+ L by CL¢ (possibly with alarger C), since
Ls> 1

Inasimilar fashion, wewrite no(x) = n1(X) + 6(X, (Yo — Y1) (X)), where
O(X, h) = Ra(X, y1(X) + h) — Ra(X, y1(X))

has C2 norm less than C+/b, and satisfies 6(x, 0) = dx0(x, 0) = O for
every X. Then we conclude, as before, that

|nb(X0) — n1(x1)| < CLsvblIXo — Xa| + Cvb|yo(X0) — yr(x0)|  (71)

+ Ls|no(Xo) — n1(Xy)] .

Observe that the first term comes with a better factor C+/b than the corres-
ponding onein (70). Thisis because |;7’j (Xg) — n’j (x1)| < Cv/b|Xo—X1| and

[nj(Xo) —nj(X1)| < Cv/b|xo — X1, which are better than the corresponding
estimates for & and &; . Putting (70) and (71) together with |&;| < C and

;| < Cv/b, we find that |55(Xo)| |&1(X1) — &5(Xo)| + [£9(X0)| Imp(X0) —
n1(X1)| is bounded by
C(vbIyo(xo) — Yi(X)| + Vb Ls|Xo — X1| + Ls|€0(Xo) — &1(X1)]
+ Lslno(xo) — n1(x0)). (72)
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It is clear that the two last terms are bounded by CLdist(zg, z1). We aso
want to bound the first two terms by some multiple of dist(z, z;). For this
we apply the mean value term to f~1: (3) ensures that ||[Df 1| < Cb?,
and so

|Yo(Xo) — Ya(x1)| < Cb~*dist(zo, 21).
Thereisasimilar estimate for [xo — X1 | but, in fact, we can do dlightly better:
since |dyRy|, |dy Ry| arelessthan C+/b, the derivative of the first component
of f~1isbounded by Cb~/2, and so the mean value theorem gives

X0 — X1| < Cb™Y2dist(zo, z2). (73
Replacing these remarks in (72) we obtain

[16(X0)E1(X1) — E5(Xo) 11 (X1)| < Cb~ 2 dist(zo, 1) + CLsdist(2o, 21).
(74)

A key remark isthat,

Ls < Cobte s Deks < ptgko, (75)
because rys) > 5(vs — vs_1) (Since vs is aclose return), and vs — vs_q >
Prs—1)+1 €an be made arbitrarily large by taking § sufficiently small. Thus,
(74) gives

M6(X0)&1(X1) — E5(Xo)ny(Xa)| < Ch™ e dist(zo, 21), (76)
where the constant C does not depend on C,,. Furthermore,
|E1(x)| = clxg — Xc| = ce™™ and  |&)(xo)| = cee.  (77)

The first claim follows easily from &;(x) = 0 and &7 ~ —2a. The second
one is dightly trickier, because &;(X;) may not be zero: the critical point
Zke = (X Y1(Xo)) isin the unstable side parametrised by (x, y1(X)) not
(X, Yo(X)). To overcome this, welet X. be the unique solution of £)(X;) = O.
Then |£y(Xo)| &~ 2a]Xp — Xc|, and

alxo — Xe|? & |§0(Xe) — £0(X0)| = [£1(Xc) — o(X0)| > € 7ko,
recall Proposition 3.3. This completes the proof of (77). Then, combining
(76) with (77),
Cb1exo dist(zg, 1)
T 500|510
< Cbhte¥ o dist(z, z3).

no(Xo)  ny(X1)

dt(zg) — 9t = —
| 8l t(z0) (z1)] 500 EOw

This proves the lemmain this case.

All that is l€eft is the case when 7, z; are in the same unstable side
of f»*(R(io,...,iks)). Equivaently, f-1(z) and f~1(z) are in the
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same unstable side of f*(R(io, ..., Iks)). Then there are X, X; SO that
Zo = f(Xo, Yj(X0)) and z; = f(Xy, yj(X)), for either j =0or j = 1. The
binding critical point may be written Ek(s) = (X¢, Vi (Xo)). Herei may differ
from j but, for the same reasons as in the previous paragraph, we always
have & (Xo)| > ce™"® and |§](X1)| > ce™"ks. So,

(%) 1 (x1)
§i(X0) & (x1)

< CVbeE o |xg — x4

|9l t(zo) — dt(z)| =

< Ceo dist(zg, 1),  (78)

where the last inequality uses (73). Thisis astronger fact than we claimed.
The proof of Lemma 4.2 is now complete. O

Recall that we consider vs = Ny to be the last close return before ny.
By Corollary 3.12, every z € f"sT(R(io,...,ix)) is expanding up to time
w = ng—vs — 1. Let e,(2) denote the contracting direction of order u at z.
Just as in the previous lemma, the constants C in the next corollary do not
depend on C,, and thisisimportant for what follows.

Corollary 4.3. There is a C* vector field vg = (1,0) + ¢ e, defined on
f*+1(R(ip, ..., ix)) and tangent to the unstable sides of it, with |¢| <
Cvbexs and || D¢|| < Cb~1e¥«o,

Proof. First we define ¢(z) for the points z = (£j(x), n;(X)) in each of
the unstable sides of f'*1(R(io,...,ix)), by the condition that (1,0) +
#(2) e,(2) be collinear to the tangent direction t(z). Writing

t(2) = & (X9 + 1} ()0, and
€.(2) = (¢(2), 1) = [e(2) — (x°) (1j(X))]0e + B,
({0g, 9,} are the vector fields dua to the coordinates (£, n) in (67), that is

£ = & — x%(7) and n = 7, where (&, ) stand for the usual coordinates in
the plane), this means that
B 0} (X)/}(X)

1—[e(@ — x5 ()] [ 0/, 0]

Write the image f(g:k(s)) of the binding critical point as (&, nc). Proposi-
tions 2.3.3and 2.4 imply | D(e — (x%))| < C+/b, and s0

[€(@s) — X3 (n0)] = [€(@ — (X' (n;(x))]| < CVbdist(z, {s)
< Cvbe o,

By Propositions2.3.2and 3.7.1, [e(Zks) ) — (X5) (¢)| < (Cb)* < Cy/beks.
So, using (77),

|e(2) — ) (; 00| [0/ ()| < Cvbe ™o Cvbeko « 1.

#(2)
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It immediately follows that |¢(z)] < 2|dt(z)] < Cvbe s, It is clear
that ¢ is C! on each unstable side. Moreover, its derivative is bounded
by Cb™'e¥«s, as a consequence of the Lipschitz estimate for the slopes
77 (X)/&; () prowded by Lemma 4.2. This lemma also implies that ¢ is
LIpSChItZ continuous on the union of the two unstable sides, with Lipschitz
constant Cb~2e¥«s. Therefore, it can be C* extended to the whole rect-
angle f'sT1(R(io, ..., ix)), preserving the bounds on the function and the
derivative. For instance, the extension may be taken affine on vertica line
segments; beforehand, extend ¢ to curves dightly larger than the unstable
sides, so that every relevant vertical segment intersects both curves. We till
denote the extended function by ¢, then we define v = (1, 0) + ¢ €, onthe
whole rectangle. O

Next, we introduce the projectivization f, of Df, given by f.(z,v) =
Df(z)v/|Df(z)v|, and define vector fields vj on f'sHI+1(R(o, ..., ik)),
for 1 < j < u, by push-forward under f,:

vj(®) = f.(f71®, vj2(fF ).
Of course, each v istangent totheunstablesidesof f's*I+{(R(io,. . ., ik-1)).

Lemma4.4. Given ¢ € f™(R(io,...,I1)), let g = f~#+(¢) for each
0<i < u. Then,

|Df (G| =1 foral 0<i<pu.

Proof. By Corollary 3.12, (§n,—vs—1. D f =57 1(Zo)wo) isin tangential pos-
ition relative to_(Zj,t(Ej)), for every return nj such that vs < nj < n.
Moreover, ||[Df'(fo)wopll > A' for every O < i < . On the other hand,
IDf'(¢o)e, |l islessthan (Cb)', cf. Proposition 2.3.2. Since vg = wo + ¢€,,
it follows that
angle (vn; —vs-1(Znj—ve-1), DML (go)wo) < (Ch/a)m =1
<M /2 < e /2 <dist (N 71(%), §)

(because nj is not a close return). Hence, (¢nj—ve—1, Vn; —v-1(¢nj—1-1)) IS
alsointangential position relativeto (¢;, t(Z;)), for every return n; between
vs and ng. In addition, as we have seen in Lemma 3.9, p;.1 is a suitable
bound period for f"i~"s~1(¢p). Therefore, the conclusions of Proposition 2.8
arevalid in this context. In particular, Part 2 of the proposition gives that

”(DprlH‘Unj e )(é’nj vs—l)” - (Pj+1+1)/3’ (79)

and the slope is less than 1/10. Then the slope of v 4p,,, vs(8nj+pjsa—vs)
isaso lessthan 1/10 (the two vectors are collinear), and s Proposition 2.5
appliesto it:

nJ+1 (ﬂJ+PJ+1+1)

(80)

”(Dfnj+1—(nj+pj+1+1) Un,+py o vs)(gn,+pj+1 vS)” >
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Now the proof of the lemmais similar to that of [2, Lemma 7.13]. The
key observation isthat any return (either free or bound) occurring inthetime
interval [ — i, ) hasits bound period contained in that interval, because
w isafreeiterate for ¢y . This means that whatever contraction takes place
at the return is compensated for before time . is reached, recall (79). More
precisaly, [u — i, u) may be split as a union of subintervals during which
the trgjectory isoutside {|x| < §}, for which (80) applies, and of (complete)
bound periods, where we have an analog of (79). We illustrate this with the
casewhere u—i isafreeiteratefor ¢o, referringthereader to[2, Lemma7.13]
for the details in the general situation. Let nj > u —i bethefirst free return
aftertimep —i. Thenni_1+ p < u—i < n; because we are assuming that
w—iisafreeiterate. It followsthat Sopewv,,_i({,—i) ~ slope D f#~' (¢o)wo
islessthan1/10, by Propositions2.8.4 and 2.5. Therefore, wehavean analog
of (80) for (Df™~#* . v, _)(¢,—i). Multiplying this by the product of (79)
and (80) over dl then; withl < j < k, wefind that (D f! Vi) (-l =
01/3 > 1, asclaimed in the lemma. O

Proposition 4.1 is an immediate consequence of the next lemma, with
the same constants. The following elementary facts are used in the proof
of the lemma. Let & be ageneric point and v be any norm 1 tangent vector
at £. Then a, f,.(&, v) v coincides with the component of D f(£)(v)/||D f(&)v|
orthogonal to D f(&)v, for any vector © tangent to the v-direction at (&, v).
In particular,

13, f.(&, v)|[Df(E)v]* = | det DF(®)].
Similarly, 0 f.(&, v)é coincides with the component of the vector
D2 (&) (€, v)/|Df(&)v]| in the direction orthogonal to D f(&)v, for any tan-
gent vector ¢ tangent to the &-direction at (£, v). Asaconsequence, the norm
of o; f.(&, v) Df(f(&)) 17 is bounded by

v >H< 1D?f®)
IDf@vl /)| ~ Tdet Df(®)]

for any tangent vector 7, tangent to the £-direction at (f(&), Df(&)v).
Lemma4.5. ||Dv, ()| < Cb~tef™ ) atevery ¢ € f™(R(io, ..., ik_1)).
Proof. Taking derivatives in the definition of v, yields

H D?f(&) (Df(g)—lfy, il

n—1
Dv,(8) = ) 00 T (G VDB TGt V- j-0) D70
1=0 (81)

+ 9, f* (S0, v0) Dvo(50) DT 7(9),
where v,_; meansv,,_;(¢,—;). Forevery j > 1,
u—1 i
- |det Df(5)| _|detDfl(g, )|
A flCusjo v = = .
28wl = 11 fotcuie = Toric o I

i=p—]
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On the other hand,
ey - PTG
Df~! < : .
POl = ST, )
Moreover,
_ _ -1 _ H D? f(gu—j-1) H —1
Haé f*(gu—J—l’ UM—I—l)Df (EM—J)H = |det Df(gp,—j—l)l = Cb™=.
Replacing al thisin (81),
e D¢, Df#
I D L i LedaCre] N LLSCco) IR
=0 [DfiCu-puui|” [ Df*@o)wo

So, inview of Corollary 4.3 and Lemma 4.4,

n—1
IDv, (@) < Y Cb~ "4l + 4Ch'e¥ o < Cjb"e™, (82)
j=0

aslong aswechoose C, sufficiently large with respect to the other constants.
This can be done since the constants C in Lemma 4.2 and Corollary 4.3
were taken independent of Cp, recal (76). The last inequality also uses
w > Py = (4/3) rs , Which is contained in Proposition 3.7.1. O

4.2 Area distortion bounds

Next, we obtain a uniform bound for the distortion of the Jacobian on
trajectories sharing the same itinerary:

Proposition 4.6. Givenanyk > 1 andiy, ..., k1,

|det Df"'(f!(2))] _
|det Df=!(fl(w))| ~

for every z, w € R(io, ..., ik andevery0 <l < n < ny.

Let us observe that this statement istrivial whenthemap f has constant
Jacobian, e.g. the Henon model. In the general case, the proof is based on
the following two lemmas.

Lemmad4.7. Givenanyk > 1andio, ..., ik 1, we have

ng—1

> length(fi(y*) < C

j=0

for either of the unstable sides y" of R(o, ..., ik_1).
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Proof. The statement follows from ideas from [2, Lemma 7.8]. We only
outline the main points, referring the reader to [2] for details. Let ¢; =
length(f" (y4)),for0 <i < k.

Thefirst step isto show that the sum over any freeperiod [ni_; + pi + 1,
n; — 1] is bounded by C¢;.

ni—1

> length(fipt) < Chr.

j=ni—1+pi+1

To prove this, one notes that Proposition 2.5 implies that the lengths
grow exponentialy fast during free periods: length(fi(y")) < Cog "
length( f" (")) with o > 1. Consequently, the sum is bounded by a mul-
tiple of length( f" (")). Next, one shows that the sum over abound period
[ni + 1, nj + piy1] isbounded by C¢; /d;:

Ni+Pi+1

> length(fl(y") < Clie'.

j=nj+1

Inbrief terms, theratio betweenlength( f 1 (")) andthedist(f1(yY), f1(Z))
is essentially preserved during the bound period. On the other hand, this
distance is bounded by a geometrically decreasing sequence Ce#, by the
definition of binding periods. So, the sum of the lengths over al n; < j <
N + piy1 islessthan
length(f™ ("))
de (fM(yY))
Clearly, ¢; < ¢;€i. Therefore, these two estimates imply that the sum
over the whole time interval [0, nx — 1] is bounded by C Z!(:o £i€i. Now,
Propositions 2.5 and 2.8.2 imply that lengths get expanded between any
consecutive free returns: £; > oglj_1 With o > 1. It follows that, for each
fixedr, the sequence of al the ¢;€ withr; = r isgeometrically increasing.
Therefore, the sum of ¢;€ over the corresponding values of i is bounded
by amultiple of the last term:

k
CZEie” =CZ Z Eie” < CZZi(r)er
i=0

r>0 irrj=r r>0

§Czie”.

where, by definition, i(r) is the largest value of i for which r; = r. By
construction, ¢; €' isless than Cri‘2 for every i: thisis because we defined
itineraries in terms of the extended family of long leaves introduced after
Remark 3.3 (incidentally, this is the only place in the proof where that is

used). So,
CY tipd <) Cr?<cC.

r>0 r>0
This gives the lemma. O
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Lemma4.8. Givenanyk > 1andio, ..., ik 1,

ng—1

> dist(fl(2), iz < C

j=0
for every z € R(ig,...,ix_1) and every z" in the unstable boundary of
R(io, ..., ik-1).

Proof. Let o beany of the unstable sides of R(ig, ..., ix_1). Suppose first
that there are no close returns before time ny, other than vy = —1. Then, cf.
Corollary 3.12, every point z € R(io, ..., ik 1) isexpanding up to time ny.
So, the temporary stable leaf '™« of order ny through z is long and nearly
vertical. If T'™ intersects o, let & be the intersection point. Otherwise, it
must intersect somestablesideo® of R(ig, ..., ix_1),let& bethepoint where
o® and o meet. Since '« and o® are exponentialy contracted during at
least ny iterates,

ng—1 ng—1
Y dist(fl2), fl§) < ) (Ch) <C.
j=0 j=0

Finally, asaconsequence of Lemma4.7, this conclusion remainstrueif one
replaces & by any other point ino".

Ingeneral, let vy < v; < -+ < Vg < Ng be the close returns prior to ny.
We alow ourselves a dlight abuse of language: take vs,; to mean ny, and
k(s + 1) to mean k, wherever they occur in this proof. By Corollary 3.12,
fv+1(2) is expanding up to time yy = v,1 —y — Lforany 0 < | < s.
Let I be the corresponding temporary stable leaf through f"+1(z), and
let Y denote the unstable side of Rio, ..., iki+1)) that contains Y. If
'™ intersects f+1(aY), let n be the point of intersection. Otherwise, I'*
intersects some stable side f"*1(A%) of f"*1(R(io,...,ik11))), and i is
the endpoint point shared by f"*(xY) and f"*+1(AS). In both cases, cf.
Lemma3.10.2,

dist (f1(2), f17""*(m)) < (Co)! = (dist(f"*(2), m)
+ length( f"+1(1%)))
< (Cb)i—w—lz(Cb)(wH)/Z
foraly +1<j <v,41. S0,

V41
> dist (1@, f17"7a) < (Coy™ 72, (83)
j=u+1
Now, by the same argument asin Lemma4.7,

VI+1 _ k(l+1)
> length(fI(a) < C > length(fh(n")) €.

j=u+1 g=k)
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Theterm corresponding to g = k(l) is bounded by Crk‘(lz). We claim that the
sum over dl k(l) < q < k(l + 1) isbounded by

Clength( ™ (A1) €k+d < Cr ).

That is a consequence of the following two observations. On the one hand,
as v, and v, are consecutive close returns,

kd+1) > 541 — 1) = 541 — Ng) = SPg+1 > S (84)
for k() < q < k(d + 1).

The last inequality is from Proposition 3.7.1. On the other hand, by Propo-
sitions 2.5 and 2.8.2,

length( F™ (A1) = " " Y% length( fhe-1(3Y)) fork(d) < g < k(I + 1).

Our claim follows by ageometric series argument. Then, givenany z* € oY,

V41 Vi+1
> dist (1), 17T an) < ) length(FI (W) < Crid + Cri gy
j=u+1 j=u+1

(85)
Putting (83) and (85) together,

ng—1 S s+1

Z dist(fj(Z”), fi=ta) < Z(Cb)(vlﬂ)/z ZCrk(l)

=0 1=0 1=0

Itisclear that thefirst term onthe right is bounded by some uniform constant
C > 0. To show that the same is true about the second one, we just observe
that ryq) > Sk, by (84), sothat ryg, > 5 forevery 0 < | < s. ]

Proposition 4.6 is an easy consegquence of Lemma4.8. Indeed, from the
lemmawe have
ng—1
Y dist(fl(2), flw)) < C,
j=0
for any pair of points z, w in any rectangle R(io, .. ., ik_1). Then, since Jis
abound for the derivative of log | det |Df ||,

n-1

n—l, £l
|det Df"'(f'(2))] Jstt(fJ(z) f(w)) < JC.

|det Df=!(fl(w))| —

This gives the proposition.
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4.3 Close returns are exponentially improbable

Givenm > 1l andig,...,im_1, l&t Sio,...,im_1) be the set of points
Zz € R(ip, ... ,im-1) for which ny, is aclose return. Leb denotes the two-
dimensiona Lebesgue measure (area). The following observation will be
useful in the proof of Lemma4.9.

Remark 4.1. Typically, the stable sides of the rectangles f™*!(R(o, ...,
ik—1,1k)) are contained in long stable leaves T'; | (k) associated to the bind-
ing point ¢, . This may fail to happen only if R(g, ..., ik 1,ix) isat some
of thetipsof R(ig, ..., ik_1), inwhich casethetwo rectangles share astable
side (or both, even more exceptionally). See Figs. 1 and 2. In any case, by
induction on k, one may always find for each stable side y;° areturn n; < ni
such that y° is contained in £t (T, (&) for some (r, ). Moreover, de-
noting vs = N the last close return before ny, we must have n; > vs.
Indeed, suppose there was § < s such that vs_; < ny < vs. According
to Remark 3.3, the distance from "~ (I ;(¢;)) to the binding point gy
is larger than e 2#s=")and s0 s < 2B(vs — Ny). This contradicts the
assumption that vs is a close return: rys > 5(vs — vs_1) > 2B(vs — Ny).
Thus, n; > vs aswe claimed.

!.emma4.9. There exist 6 = 6(b) > 0 such that, for any m > 1 and
|07 sty lm—lv

Leb (So, ... ,im-1))
LEb(R(iO, ey im—l)) B

where vs isthe last close return before ny,.

Proof. By Remark 4.1, each of the stable sides y5 and y; of f™(R(o,
... ,im-1)) iscontained in some f"™"—1(T", (%)), where ¢ isthe binding
point corresponding to areturn ng with vs < n¢ < ny_;. In particular, cf.
Remark 3.3,

dist (yis’ Em) > @ 2B(m—ni—1) > g HNm—vs) (86)

Now there are two situations to consider, corresponding to the two possi-
bilitiesin Lemma 3.8.

If the two unstable sides are in tangential position to the same critical
point no, then y§ and y; are both to the left or both to the right of #o; seethe
right hand side of Fig. 2. Then (86) implies that dist(¢, ¢m) is much larger
than e=4™=s for any point £ € f"™(R(ig,...,im-1)). Consequently,
rm < 4(hym — vs), and so Ny, is not a close return, for any point in the
rectangle. In other words, Sio, ... ,im_1) is empty, and so the lemma is
trivial inthis case. In what remains of the proof wetreat the case when each
ungtable side of f"™(R(io, ... ,Im_1)) contains acritical point, see the left
hand side of Fig. 2.
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Let &m = (X0, Yo) and v = vy, _,,_1 be a C! vector field on f™(R(io,
... ,im-1)) asconstructed in Sect. 4.1. Thevertical line {Xx = Xg} crossesthe
rectangle, in the sense that it intersects both unstable sides. That is because
the stable sides are much shorter than their distanceto o , by Lemma3.10.2
and (86). Moreover, the integral curves of v are nearly horizontd, e.g., as
a consequence of Proposition 3.7.2 and Lemma4.5. So {X = Xg} intersects
every integral curve of v. We introduce coordinates ¢(t, y) = v'(Xq, Y),
where (v')icr denotes the flow of v, and we write z(t, y) = f "™ (¢(t, y)).
By (86), thisiswell defined (at least) for every |t| < e~*™m=vs) |t follows
that, for each fixed y

{t :rm(z(t, y)) > 5(Nym — vs)} iscontained in {t : |t| < Ce>Mmvs)})
87

for some sufficiently large C. Thisimplies that
Leb{(t, y) :nyn isaclosereturn for z(t, y)} (88)
< Ce ™™ Leb{(t,y) : [t] < e},

It is easy to see that | det Dp(0, y)| is uniformly bounded away from zero
and infinity. Then Lemma 4.5 implies (Liouville's formula, see e.g. [14,
Sect. 1.3]), that there exists C > 0 such that

exp(—Cb™1) < | det Dg(t, y)| < exp(Cb™1) whenever [t| < e 4Mm=s),
So, the previous inequality implies that {¢(t, y) : nnisaclose return for
Z(t, y)} has Lebesgue measure bounded by
Cexp(2Ch™h e ™™ Lebp(t, y) : [t| < &™)
< Cexp(2Cb™) e ™9 Leb (™ (R(io, ....im-1))).

Now, using the distortion bound in Proposition 4.6, for kK = m, n = np,,
| = 0, we conclude that

Leb (Slio. ... ,im-1)) < Cexp(2Cb™*) e ™) Leb(R(io, .. ., im-1))

(possibly for alarger constant C). This gives the first estimate in the state-
ment of the lemma, with 1/6 = C exp(2Cb™1).

The second estimate is obtained along similar lines. Firstly, the factor
Ce~("m=vs) jn (88) can be made less than 1/2 by reducing §. Thus, taking
complements in (88),

Leb{(t, y) : |t| < e *™~) and n,, is not aclose return for z(t, y)}

is at least half of Leb{(t,y) : |t| < e *™—9)} So, arguing as before, the
L ebesgue measure of {¢(t, y) : |t| < e *"m=) and n, is not a close return
for z(t, y)} islarger than

1
> exp(—2Cb™1) Leb{g(t, y) : |t| < e Hm=vs)y,
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Now, (87) aso implies that n,, is never a close return if |t| > e 4(m=vs),
Therefore,

Leb{p(t, y) : ny, isnot close return for z(t, y)}
> :—2Lexp(—20b‘1) Leb (f"(Rqio, . ..,im-1)).

The set on the left hand side is precisely f“m(R(io,...,im_l) \ So,
.,im-1)). So, using Proposition 4.6,
Leb(R(|0’ R im—l) \ &iO’ RS im—l))
> cexp(—2Cb™1) Leb(R(o, ..., im-1)),
for somec > 0. Equivalently,
Leb (Slio, .- - ,im-1)) < (1— cexp(—2Cb™1)) Leb(R(io, . . . , im-1))-

This gives the second bound in the statement of the lemma, with 8 =
cexp(—2Cb™1) (which is compatible with the expression for 6 we had
found before). O

Givenany k > 1andig, ... ,ik_1, let H(ig, ... ,ik_1) be the subset of
z € R(ig, ... ,ik-1) for which no return n; with j > k is a close return.
According to the next proposition, this occupies a definite fraction of the
rectangle R(ig, ... ,ik_1), interms of Lebesgue measure Leb.

Proposition 4.10. Thereis6y = 6p(b) > 0 such that
Leb(H(Io, e, ik—l)) > 6o LEb(R(Io, e, ik—l))

for everyig, ... ,ik.pandk > 1.
Proof. Let vg be the last close return with vy < ny_;. By the previous
lemma, thetotal L ebesgue measure of the sub-rectangles R(io, ... , ik 1, ik)
for which ny isnot a close return islarger than
max {6, 1 — 6~te” ™} Leb(R(io, . . . , ik-1)).

Ingeneral, givenl > landio, ... , ik _1 Suchthat neither of ny, ... , Nky—1
isaclosereturn, the L ebesgue measure of the union of all the sub-rectangles
R(o, ... ,iku_1, k) for which ny isalso not aclose returnis at least

max {6, 1 — 6~te” ™ Leb (R(io, . .. , ika-1)).

Noting that ny,; — vs > |, we conclude that

Leb (Hdo, ... ,ik-1) 1) > g8 1))
T (Rior e 0) > l_[max [0,1-07%"} >0 ]_[(1 6

for any q > |logé)| (thisisto ensure that 1 — #~1e! is positive for every
| > ). Wefix such aq, for instance, q = integer part of |log6| + 1. Then
it suffices to take 6y equal to the term on the right hand side of the last
inequality. O
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5 Filling the holesin

Finally, we tie the previous results together to prove Theorems A and B.
First we show that Lebesgue almost every point in the region Ag has some
positive iterate contained in along stable leaf of some point of the attractor.
Let i be fixed. By Proposition 4.10, the set H(ig) of points z € R(ig)
without close returns corresponds to a positive Lebesgue measure fraction
of R(ip). By Corollary 3.12 the points in H(ip) are expanding. Clearly,
the long stable leaves through these points intersect the unstable manifold
WHY(P) c A. Now, by construction, the complement R(ig) \ H(ig) can be
written as a union of rectangles Rio, ... , ij1)), with variable I (1), which
we call first order gaps: Ny, is the first close return. Again by Proposi-
tion 4.10, a positive fraction of each first order gap is filled-in by a set
H(io, ... ,i1)) Whose points z have no other close return. So, fMw*1(z)
has along stable leaf which, moreover, intersects the attractor A. The com-
plement R(o, ... ,iia)) \ H(o, ... i) isgiven by aunion of rectangles
Rdo, ... i, ... ,li@2), the second order gaps. Now it is clear how to
proceed with the argument: Proposition 4.10 tells us that a definite frac-
tion of each mth order gap R(io, ... , ijm), m > 1, isfilled-in by a subset
H(o, ... ., Ijm) whosepointsarein the f "™ -preimage of along stable leaf
through a point £ € A. And R(io, .. .iim)) \ H(io, ...iim) isaunion of
rectangles, that are the gaps of order m + 1. In this way we conclude that

H— U Hio, ..., iim)

m,I(D), - 1(m),ig, - iim)

isafull Lebesgue measure subset of Ag, contained intheunion USE A W3(§)
of the stable sets of pointsin A.

To complete the proof of Theorem A, we show that for aimost all points
w € B(A) there exists n > 0 such that z = f"(w) isin the region A,
as claimed in Sect. 3. First of al, if 0 < b « §, <« 1thentheset HT
of points whose forward orbits remain in [—2, 2]° but do not hit R, =
[—84, 8] x [—2, 2] has zero Lebesgue measure. This can be proved along
well-known lines. One constructs invariant stable and unstable cone fields
for f in [—2 2]° \ R.. It follows that the set H of points whose full
orbits are contained in [—2, 2]? \ R, is uniformly hyperbolic for f. Since
H* < WS(H) and the stable set W5(H) has zero Lebesgue measure,
cf. [7, Theorem 4.11], the claim follows. Then we may restrict ourselves
to points having some positive iteratein R, = [—3,, 8.] x [—2, 2]. For the
sequel it is convenient to distinguish two cases, depending on whether the
map f isorientation preserving (both eigenvalues of D f(P) are negative) or
orientation reversing (the contracting eigenvalue is positive, the expanding
oneis negative).

The latter case is somewhat better known, see e.g. [2, Sect. 4], [3], [15,
Sect. 4]. For a compact region R as in Fig. 6, bounded by a segment of
GoU G; UG, and asegment in the long stable leaf of f3(¢g), one can prove
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Go

()
f(Co)

Fig. 6

that A is contained in R, and some fundamental domain of f | WY(P)
is contained in the interior of R. Moreover, R is contained in the basin
B(A), and it is forward invariant: f(R) C R. It follows that the union
WE(P) U (U, f™"(R)) contains a neighbourhood of the attractor A, and
is equal to the basin of attraction B(A). Another consequence is that the
forward orbit of any point in B(A) must eventually enter in R. Consider
the rectangle Ry ¢ R bounded by Gg, G;, and the preimage under f
of the long stable leaf I"S(P) passing through P. Recall that G; contains
long nearly horizontal curves around ¢, fori = 0, 1. Then, in view of the
form of the map, each f(G;) must intersect I'S(P) at exactly two points.
Therefore f ~1(I'S(P)) intersects G; at two points, and so Ry isindeed well-
defined. According to the previous paragraph, Lebesgue almost every point
w € B(A) hassomepositiveiterate fX(w) in Ry (take s, small). Now, f(Ry)
is the rectangle bounded by f(G;), i = 0, 1, and I'*(P), which is clearly
contained in the domain A, defined in Sect. 3.2. Then, by the arguments
presented so far, z = f**1(w) belongs Lebesgue almost surely in the stable
manifold W=(&) of somepoint & € A. Therefore, the sameistruefor w, and
so the proof of the theorem is complete in this case.

/ qj—l m

b G+ o & P |%

Q \\\ p;_,_l D1 pé Po

Fig. 7
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Similar ideas apply when f preserves orientation. The argument isclose
to [23, Sect. 2.1], where it was shown that the basin B(A) contains aneigh-
bourhood of the attractor A, for certain parameter intervals. It goes as
follows. Let g = ga be the one-dimensional map g(x) = 1 — ax?, and
P and Q be the fixed points of g, with Q < 0 < P (by abuse of lan-
guage, we represent by the same letters points playing similar roles in the
dynamics of g and f, respectively). We consider the sequence of intervals
[Pj. Pj2l, Where po = P, p; is the point of g~2(P) to theright of P, and
[P, Pjy2l = g1 ([pj-1. Pi.1DN{x < 0}, forevery j > 1. Foreachlarge j,
there issome compact interval |; = [ay j, a1, closeto a = 2 in parameter
space, for which g*(0) isin theinterior of [pj, Pj;o]- Each I may be fixed
suchthat (az j —ay,j) > (2—az)/10 (wemay take (azj —ay.j)/(2—az )
closeto (pj,, — Pj)/(pj — Q) for j large). We consider only parameters
a varying inside some |; (this is a smplifying condition, that is probably
not necessary; it is possible to replace each I; by alarger interval, at the
price of rendering more involved the arguments that follow). Then we fix
8, sufficiently small so that g*([—3,, 8,]) is contained in the interior of

[Pj» Pjy2l-

Now let b « §, and f = f, be close to the quadratic family g, in
the sense of Sect. 2. Since the interval 1; is not too small (cf. previous
paragraph and the one preceding Sect. 2.1) the arguments of [2], [15] apply
within 1;: after convenient parameter exclusions there remains a positive
L ebesgue measure subset of parameters a € | for which f has the prop-
erties listed in Sect. 2. We want to prove that, for any a € |, Lebesgue
almost every point in B(A) has some iterate in Ag. As aready explained,
we only need to consider points in R, = [—§,, 8,] x [—2, 2]. Note that
f3(R,) is Cvb-close to g3([—$,, 8,]) x {0}. By the perturbation argu-
ment in [23, Sect. 2.1], we have that f3(R,) is contained in a region Si
asin Fig. 7: S; is bounded by a segment in G and a connected piece of
the stable manifold W3(P) of P linking two nearly vertical segments of
WS(P) through points p;_; and p’jJrl in WS(P) N WY(Q). Let us denote
dj—1 and q 4, respectively, the points where these nearly vertical segments
intersect Gy (the “vertices” of ;). By construction, f(p;_1) = pj—2 and
f(pj,;) = pj, and then £(S) = §_1 C Sj_1, where §_; is the region
bounded by G; and the segment of W*(P) connecting f(q;_1) to f(q} 1)

So, fI+3(R,) c fI7X(S) ¢ § C S, note that S is the region bounded
by the segments of WY (P) and W5(P) linking P to ;. Then f(S)) = S is
bounded by the segments of W' (P) and W3(P) linking P toq; = f(qy) (in
particular, ¢y is in the boundary of ). Next, f(&) is the region bounded
by the segments of WY(P) and W*(P) linking P to g = f(tp), that is,
f(S) coincides with Ag. Thisprovesthat fI+4(R,) C Ag. We have shown
that Lebesgue almost every point w € B(A) has some positive iterate
z = fX(w) in Ag. By our previous arguments, z is in the stable manifold
W5(&) of somepoint € € A, Lebesgue almost surely. Then the sameistrue
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for w, and Theorem A is proved in this case too. The proof of Theorem A
is complete.

Now Theorem B is a simple consequence. For each (ig, ...,ix), let
y be an unstable side of R(ig,...,ix). By Corollary 3.12, every point
in f™%*1(H(o,...,ix) has along stable leaf, that intersects f™*1(y)
transversely. Cf. comments at the end of Sect. 2, almost every point in
f™+1(y) belongs to the basin B(u). Since the set of generic points of
an invariant measure consists of entire stable sets, we may conclude that
f™%+ 1 (H(o, ..., i) \ B(w) is aunion of long stable leaves intersecting
f™+1(y) in aset with zero arc-length measure. The second part of Proposi-
tion 2.4 implies that the lamination of f"™*1(H(iy, ..., ix)) by long stable
leaves is Lipschitz (in the sense that the holonomy maps are Lipschitz
continuous). It follows that f™*+(H(ig,...,ix) \ B(x) must have zero
L ebesgue measure (area). Then the same is true for H(ig, ..., ix) \ B(w).
Taking the union over dl i, ..., i, this proves that amaost every point in
set H we had constructed is generic for the measure 1. Since we had shown
that Lebesgue amost every point in the topological basin B(A) eventualy
reaches H, we conclude that B(A) \ B(u) has zero area, as claimed. This
finishes the proof of Theorem B.

Along similar lines, we can prove that the stable manifold W*(P) of
the fixed point P is dense in the basin of attraction B(A). Clearly, for this
it is enough to show that W3(P) is dense in some full Lebesgue measure
subset of B(A). Thus, in view of the previous arguments in the proofs of
Theorem A and B, weonly haveto show that, givenany iy, . . ., ik, Lebesgue
almost every point in f™+1(H(ig, ..., ix)) isin the closure of WS(P). Let
y be any of the unstable sides of R(ig, ..., ix). Aswe recaled at the end
of Sect. 2, there exists afull Lebesgue measure subset i of f™*1(y) such
that any point £ in ¢ has infinitely many returns m; = m;(¢) for which
fM (&) isnear x = £48/2. Then f™*1(£) is between the long stable leaves
['a and I'a41. Recall Remark 3.3. By the Lipschitz property of the stable
foliation, the subset Hy of points whose stable leaves intersect j has full
L ebesgue measure in f™*1(H(io, ..., ix)). We are going to show that any
point z € Hy is accumulated by WS(P).

We begin by noting that, since f isclosetoamap (x, y) — (1—ax?, 0),
with a &~ 2, there exists along nearly vertical segment of W*5(P) between
I'x and T'a.1. This follows from the fact that the negative orbit of the
fixed point p = (1/2,0) under the map x — 1 — 2x? is dense in the
interval [—1, 1], using well-known perturbation arguments. Let & be the
point where the long stable leaf through z € Hy intersects 7, and let m;
be as above. Then f™(2) is between I'y and I'a,1, and so there exists
apoint of WS(P) at distance lessthan Ce~* = C§ from f™ (z). Moreover,
such a point may be chosen in the image f™(I,) of a horizontal segment
I, through z. Thisis because the image of |, is nearly horizontal near z, as
aconsequence of Propositions 2.5 and 2.8. The propositions aso imply that
I, is exponentialy expanded under f™, so dist(z, W3(P)) < Cao_mi with
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Fig. 8

oo > 1. Asm; may be chosen arbitrarily large, we get that zisindeed in the
closure of W3(P).

Closing this paper, let us remark that for Henon maps h(x, y) = (1 —
ax? + /by, ++/bx), with b small, it is possible to give a complete charac-
terization of the topologica basin of attraction:

(TB) the basin B(A) is the domain in the plane bounded by the stable
manifold W5(Q) of the fixed point Q.

Thiswas aso proved in [9], independently of the present work. Recall that
Q denotes the fixed point in the region {x < 0}, whereas the attractor A is
the closure of the other fixed point P. In what follows we give an outline of
the proof of (TB).

First we suppose that h is orientation reversing, corresponding to the
positive sign in the expression of h. See the left hand side of Fig. 8. The
stable manifold of Q contains two long nearly vertical segments located
near X ~ =+1, that connect to each other in the region {y « 0}. Let U be
the open domain bounded by this piece of W5(Q) and by a horizonta line
H = {y = 3}. Then U isforward invariant, h(U) c U, and it contains the
attractor A.

We claim that U is contained in the topological basin B(A). To prove
this, we begin by constructing a rectangle V bordering W*(Q) inside U,
such that

e V contains the three first “tips’ of WY(P), i.e., neighbourhoods of the
points f'(¢),i =1, 2,3, inFig. 6

e h%(V)\ V iscontained in the domain R introduced before in the context
of Fig. 6.

V may be constructed, e.g., using linearizing coordinates for f in aneigh-
bourhood of Q. We aready know that R ¢ B(A). Since any point in V
must eventually leave V, it followsthat V C B(A). Now, let z be any point
inU \ V. If zeventualy reaches the folding region [—§,, 8..] x {|y| < 3},
then it gets mapped to RU V in the next iterate. Otherwise, if the orbit of z
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remains outside the folding region for all positive times, then zisexpanding,
and so it has along stable leaf intersecting the attractor. In both cases, zis
inthe basin of A. This provesthe claim.

It follows that B(A) coincides with the saturation  Jo-,h~"(U) of the
domain U. In particular, the boundary of B(A) is contained in W3(Q) U
a(H), where a(H) is the set of accumulation points of the backward orbit
of H. Now, H is contained in the region {|y| > |x| and y > 2}. Using the
form of the inverse map

(X1, Y1) = h™2(x, y) = (y/v/D, (ay?/b+ x — 1)/vb)
one checks easily that
lyl > [xjand |y| =2 = |yi| > [xs] and |y1] = 2]y].

This implies that the backward orbit of any point in that region goes off
to infinity. In particular, «(H) is empty, and so dB(A) ¢ W5(Q). On the
other hand, the forward orbits of all pointsin a small neighbourhood of Q
outside U also go to infinity, and so they are not in B(A). Combined with
the previous conclusion, this gives 9B(A) = WS(Q).

Now we explain how these arguments can be adapted to the orientation
preserving case h(x,y) = (1 — ax? + /by, —v/bx). The corresponding
picture is on the right hand side of Fig. 8. In this case we choose the
parameter a in such a way that the folding region is mapped to some
domain known to be contained in B(A), e.g9., therectangle S; introduced in
the context of Fig. 7. We also consider atubular neighbourhood V of W5(Q)
inside U, where h is conjugate to alinear map. For pointsin U \ V, either
their forward orbit eventually hitsthefolding region, or they havelong stable
leavesintersecting A (because V isnot too thin). In either case, such points
arein B(A). Pointsin V eventually moveto U \ V under forward iteration.
So, thewhole region U iscontained in the topological basin. It remainstrue
that the backward orbit of H = {y = 3} hasno (finite) accumulation points.
Then the proof of (TB) proceeds precisely as in the orientation reversing
case.
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