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Abstract. The paper develops a technique for proving properties that are
typical in the boundary of the connectedness locus with respect to the
harmonic measure. A typical expansion condition along the critical orbit is
proved. This condition implies a number of properties, including the Collet-
Eckmann condition, Hausdorff dimension less than 2 for the Julia set, and
the radial continuity in the parameter space of the Hausdorff dimensions of
totally disconnected Julia sets.

1. Introduction

1.1. Generic properties

Dynamics of unimodal polynomials fc = zd + c on the Riemann sphere
was a subject of intensive studies in a couple of last decades. The focus was
on determining generic systems and explaining their geometric structure.
Despite considerable effort, only a limited progress was achieved. The
research concentrated mainly on the simplest class of quadratic polynomials.

The notion of a generic map usually requires specification. Topological
and metrical pictures of a typical dynamical system are often drastically
different. This dichotomy is a staple of the dynamics of real quadratic
polynomials. We will see that an analogous phenomenon is present on the
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boundary of the connectedness locus

Md =
{
c ∈ C : sup

n>0

∣∣ f n
c (c)

∣∣ <∞} .

Generic maps on the connectedness locus.Let fc = zd + c. Then its
filled Julia set Kc is defined as

Kc =
{
z ∈ C : sup

n>0

∣∣ f n
c (z)

∣∣ < ∞} .

The connectedness locus Md is the set of parameters c for which the
corresponding Julia set Jc = ∂Kc is connected. It is well known that Md
is a full compact, that is its complement is an open topological disk. For
c ∈ Md the critical orbit { f n(c)} belongs to the filled Julia set Kc. When
c traverses Md in the outward direction, Kc which is initially connected
bifurcates into a Cantor set outside of Md.

There are at least two intrinsic notions of a generic parameter on the
boundary of Md, one with respect to the induced planar topology and the
other with respect to the harmonic measure. A possibility of using the two-
dimensional Lebesgue measure remains open since it is not known whether
the area of the boundary of Md is zero or not. We recall that the harmonic and
two-dimensional Lebesgue measure on the boundaries of planar domains
are always mutually singular, [14].

The topology and “outside geometry” of ∂Md (given by the distribution
of the harmonic measure) manifest themselves by very different properties
of the corresponding generic dynamics.

The harmonic measure at ∞ of ∂Md can be described in terms of the
Riemann map

Rd : D = {|z| < 1} 	→ Ĉ \Md

which fixes∞. Namely, Rd extends radially almost everywhere on the unit
circle with respect to the normalized Lebesgue measure λ. Therefore,

ω = Rd∗(λ) .

Logistic family. The family z2+ c, c ∈ M ∩R is affinely equivalent to the
logistic family

fa : x 	→ ax(1 − x),

0 < a ≤ 4 and x ∈ [0, 1].
The real Fatou conjecture, see [8], states that a set of parameters 0 < a

≤ 4 for which fa has an attracting cycle is open and dense. In 1981 Jakobson
proved that for a set A ⊂ [0, 4] of positive Lebesgue measure, fa has an
invariant probability equivalent to the Lebesgue measure, [10].

These two notions of generic dynamics are fundamentally different. By
Jakobson’s result, for a set of parameters of positive measure, the polynomial
has almost every orbit distributed according to the absolutely continuous
invariant measure while a topologically generic polynomial has almost every
orbit attracted to a unique attracting cycle.
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1.2. Expansion

For maps in the boundary of the connectedness locus one cannot expect
hyperbolicity in the usual sense, meaning uniform expansion on the Julia
set. The next best condition is uniform expansion on the ω-limit set c, which
leads to the Misiurewicz condition about non-recurrence of the critical orbit.
This is still too strong condition to be typical in the sense of the harmonic
measure, so one is left looking for even weaker properties of expansion
along the critical orbit.

Collet-Eckmann polynomials. The Collet-Eckmann condition serves as
a natural bridge between topological and metrical aspects of one-dimensional
dynamics. For unimodal polynomials fc = zd + c, the condition is that

lim inf
n→∞

log
∣∣D f n

c (c)
∣∣

n
> 0 .

Misiurewicz maps are defined by the condition that the critical point is not
recurrent and all periodic points are repelling.

It is well known that a real Collet-Eckmann unimodal polynomial has on
one hand an invariant absolutely continuous probability measure while on
the other hand its dynamics shares some properties with Misiurewicz maps.
Benedicks and Carleson’s theorem (see [1]) states that in the logistic family
the Collet-Eckmann condition holds for a set of positive Lebesgue measure.
Being “almost hyperbolic” and abundant, Collet-Eckmann maps on the
interval were studied intensively in the eighties. Yet, it took another decade
before in the mid-nineties Przytycki advanced the technique of “shrinking
neighborhoods” to study complex maps which satisfy the Collet-Eckmann
condition.

In [15], Collet-Eckmann rational maps were studied for the first time,
mainly from the point of view of ergodic and measure theoretical properties.
Another direction was adopted in [6], where an interaction between the
Collet-Eckmann condition and regularity problems of the Fatou components
was explored.

Definition 1.1 The boundary of a simply connected domainΩ is called
a Hölder compact (with exponent α ∈ (0, 1]) if the Riemann mapping
φ : D → Ω can be extended to a Hölder continuous (with exponentα)
mapping on the closed unit disk.

The Collet-Eckmann condition for unimodal polynomials implies Hölder
regularity of Julia sets, [6]. The immediate consequence, by the work of [11],
is that the Hausdorff dimension of the Julia set of a Collet-Eckmann uni-
modal polynomial is strictly less than 2.

A few definitions. Recall map Rd which uniformizes the complement of
Md in the sphere and is tangent to z→ 1/z at 0. Denote
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rd(γ) := {Rd(te2πiγ ) : 0 < t < 1} \ {∞}.
The Green functionof the filled-in Julia set Kc is defined in terms of iterates
of fc as:

Gc(z) = lim
n→∞

log
∣∣ f n

c (z)
∣∣

dn
.

Definition 1.2 For w in the unit disc, letlog w = x + iy. Define the set
Q̂(w) to be the image byexp of the square:{

u+ iv : |u− x|, |v− y| < |x|
2

}
.

If Gc(z) ≥ 2Gc(0), define a Whitney domain Q(z) := Γc(Q̂(Γ−1
c (z))),

whereΓc is the Böttker coordinate on D(0, exp(−Gc(0))).

Whitney domains are constructed to control distortion of fc. Since Q(z)
is a very simple set in the Böttker coordinate, the action of fc on Q(z) is
simple, i.e. fc(Q(z)) = Q( fc(z)).

Typical expansion statement. Let us state our main theorem which es-
tablishes an expansion along the critical orbit, typically with respect to the
harmonic measure.

Theorem 1.1 Fix d ≥ 2. There is a setH ⊂ [0, 1) of full Lebesgue
measure with the following properties. For everyγ ∈ H there exist positive
constantsε, θ, σ and an infinite increasing sequence of integers mi , so that
the following hold whenever c∈ rd(γ) and Gc(c) < ε:
• if Gc( f mi

c (c)) ≤ ε, then there is a neighborhood Ui of c which con-
tains Q(c), is mapped univalently by fmi

c onto the geometric disc
D( f mi

c (c), σ), and Ui−1 \ Ui is a ring domain with conformal modu-
lus at leastε,

• lim supi→∞
mi
i ≤ θ,

• limi→∞ mi+1
mi
= 1.

Theorem 1.1 establishes a form of Tsujii’s condition introduced in [19]
for almost every c ∈ Md in the sense of the harmonic measure. In our
setting, this condition means that we can pass univalently to a large scale
from neighborhoods of the critical value with positive density and relative
gaps shrinking to 0. As such the condition appears stronger than the Collet-
Eckmann condition and in fact implies it easily. For all we know, however, it
might still be equivalent. For cnot in Md, the same expansion holds until the
orbit of c gets far away from Kc. The constant θ has a purely combinatorial
meaning (see Sect. 2.2 and estimate (3)) and is bounded by 9p, where p is
the maximal number of external rays which land at a fixed point of zd + c,
c ∈ rd(γ). In fact, θ(γ) is constant on open sets.

An added feature of Theorem 1.1 is some uniformity of estimates. We
claim uniformity along external radii with arguments from H , which will
be used in some corollaries.
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Genericity of the Collet-Eckmann condition. We will derive this result
from Theorem 1.1.

Theorem 1.2 For every d≥ 2 there is a subsetH ⊂ [0, 1) of full Lebesgue
measure such that for everyγ ∈ H there are constants K> 0 andλ > 1
so that for each c∈ rd(γ) and every n> 0∣∣D f n

c (c)
∣∣ ≥ Kλn .

In particular, for all c ∈ ⋃
γ∈H rd(γ) the Collet-Eckmann condition

holds. The fact that the Collet-Eckmann condition is satisfied for almost
every c ∈ Md in the sense of the harmonic measure was independently
proved by S. Smirnov, see [18]. That work also includes estimates of
the Hausdorff dimension of maps violating the Collet-Eckmann condition,
which we only show to be of measure zero. On the other hand, it is known
that the Collet-Eckmann condition cannot be satisfied by infinitely tunable
maps, see [9], which form a set with positive harmonic capacity, see [13].

As an immediate corollary to Theorem 1.2 we obtain that

Corollary 1 For almost every parameter c∈ ∂Md, the corresponding Julia
setJc is locally connected and has Hausdorff dimension strictly less than2.

Also,

Corollary 2 For almost every c∈ Md in the sense of the harmonic measure
the orbit of c is dense in the Julia set.

Corollary 2 follows since the Julia set is locally connected and the external
argument of c in the parameter space is the same as the external angle of the
ray from∞ which converges at c. But almost every external angle is dense
in the circle under the action of the map x → dx (mod 1).

These corollaries about the outside geometry of the Mandelbrot set
should be contrasted with Shishikura’s work on topologically generic quad-
ratic polynomials, [17]. He proved that for a residual set of parameters
from the boundary of the Mandelbrot set the Hausdorff dimension of the
corresponding Julia set is equal to 2, in contrast to Corollary 1. Implicitly,
he proved that the set of Misiurewicz parameters on the boundary of the
Mandelbrot set has the Hausdorff dimension 2. This again is contrasted by
Corollary 2.

The harmonic measure also admits a probabilistic interpretation. If we
release a Brownian particle p(t) from ∞ and E is a subset of the boundary
of Md, then

ω(E) = Prob{p(t0) ∈ E} ,

where t0 is the first time the particle p(t) hits Md. Hence, a generic Brownian
particle on its trip to the Mandelbrot set omits a subset of its boundary of
the Hausdorff dimension 2 (Shishikura’s result), and accumulates on a set
of dimension 1 (by Makarov’s work [12]) of parameters for which Julia sets
have Hausdorff dimension strictly less than 2.
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Radial limits of the Hausdorff dimension of Julia sets. For every uni-
critical Collet-Eckmann polynomial zd + c with c ∈ ∂Md, there exists
a sequence cn ∈ Ĉ \Md (Shishikura’s theorem) such that

lim
n→∞HD(Jcn

) = 2 .

By [6], HD(Jc) < 2 and hence the Hausdorff dimension of Julia sets as
a function of c ∈ Ĉ \Md does not extend continuously to ∂Md.

Another type of discontinuity of HD(·) is due to a parabolic implosion.
Assume that zd + c0, c0 ∈ rd(γ), has a parabolic cycle. In this setting, the
parabolic implosion means that Jc0

is strictly smaller than the Hausdorff
limit of Jc when rd(γ) � c→ c0. It was recently shown in [3] that if d = 2
and c > 1/4 then

HD(J1/4) < lim inf
c	→1/4

HD(Jc) ≤ lim sup
c	→1/4

HD(Jc) < 2 .

Yet, typically with respect to the harmonic measure on ∂Md, HD(·)
extends radially as a continuous function.

Corollary 3 For every d≥ 2 there is a subsetH of [0, 1) of full Lebesgue
measure such that for everyγ ∈ H and c0 ∈ rd(γ) ∩Md,

lim
rd(γ)�c→c0

HD(Jc) = HD(Jc0
) .

The proof of Corollary 3 is based on Theorem 1.2, in particular its claim
regarding uniform expansion along rd, and the continuity properties of the
Hausdorff dimension in the class of rational functions which satisfy the
so-called summability condition in a uniform way, [7].

Definition 1.3 We say that polynomials fc(z) = zd + c, c∈ � , satisfy the
uniform summability condition with exponentα if they do not have parabolic
orbits and there exists M> 0 so that for every c∈ � ,

∞∑
j=1

∣∣D f j
c (c)

∣∣−α
< M .

One of the main results of [6] asserts continuity of the Hausdorff (Minkow-
ski) dimension of Julia sets in the class of uniformly summable rational
functions. We formulate a weak version of this result for unicritical poly-
nomials.

Fact 1.1 If polynomials fc(z) = zd + c satisfy the uniform summability
condition with an exponentα < 1

d+1 then

lim
c→c0

HD(Jc) = HD(Jc0
) .

If c ∈ rd(γ) then, by Theorem 1.2, zd + c are uniformly summable with
any positive exponent α and Corollary 3 follows.
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1.3. Outline of the proof

The main result is Theorem 1.1. Theorem 1.2 will be derived from it.
The paper begins with a review of Yoccoz partitions and their relation

with induced dynamics. We recall that to construct a Yoccoz partition one
needs to find a repelling fixed point and a periodic ray from ∞ which
converges at this point. These rays divide the plane into finitely many
pieces which we call ray-sectors. We show how such a point can be found
for polynomials outsideof Md, and then demonstrate that it persists as c
tends to the boundary of Md along almost every external radius. This part
of the paper basically recapitulates known facts.

The key observation is that itinerary of the critical orbit under fc through
the ray-sectors is easily predictable in terms of the external argument γ of c
defined by the Riemann map of the complement of Md. In fact, it is the
same as the itinerary of γ under the map T(x) := dx (mod 1) with respect
to the partition of the circle by the external angles of the rays converging to
the fixed point.

We interpret the dynamical system defined by T probabilistically as
a Bernoulli shift. This allows us to prove a certain property of almost every
itinerary purely in terms of the Bernoulli shift, essentially stating that the
critical itinerary does not come back too close to itself too often under the
shift. This property, however, translates into the same property of the critical
itinerary with respect to the ray-sectors which holds almost everywhere with
respect to the harmonic measure, and that property implies Theorem 1.1.

The proof is self-contained except for rudiments from complex dynam-
ics.

2. Yoccoz partitions

We consider the dynamics of polynomials fc(z) = zd+ c with c a complex
parameter, za complex variable, and d an integer greater than 1. The degree d
is fixed once for all in our proofs. The parameter c is variable, but sometimes
we will still suppress it from the notation by writing f for fc.

2.1. Rays from∞
Recall the Green function of the filled-in Julia set Kc:

Gc(z) = lim
n→∞

log
∣∣ f n

c (z)
∣∣

dn
.

When c /∈ Kc, then the Green function has critical points at points f −i
c (0)

for i = 0, 1, · · · . A smooth rayin the phase space is a gradient line of the Gc
with closure that intersects both∞ and Kc. It is understood that a gradient
line by definition avoids critical points of Gc and is, therefore, smooth. The
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literature sometimes talks of rays which are not smooth, but we will not
discuss those. For some smooth rays, the closure intersects Kc at precisely
one point. We then say that the ray convergesat that point. Notice that the
image of a smooth ray ρ is another smooth ray and if ρ converges at z, then
fc(ρ) converges at fc(z).

Dynamics near ∞. All gradient lines are well defined on the set
{z : Gc(z) > Gc(0)}. They are labeled by angles at which they enter
∞, the so-called external angles. We will follow the tradition and identify
the set of external angles with real numbers modulo 1. On the set of angles
we have the map T(x) := dx modulo 1. Map fc sends a gradient line with
external angle x to the gradient line with external angle T(x). Of particu-
lar importance is the critical external angleγ(c) which is the angle of the
gradient line which passes through c.

Each of these gradient lines near ∞ continues until it meets either
a critical point of Gc or converges to Kc. If a line meets a critical point,
then some image of it is a gradient line which hits c. We see that a gradient
line with external angle x extends to a smooth ray provided that x is not
a preimage of γ(c) under T.

Riemann map of the complement ofMd. We have the following basic
fact, see [2]:

The functionexp(−Gc(c)+ iγ(c)) considered on the complement of the
connectedness locus on the Riemann sphere is univalent and maps onto the
unit disk. Its inverse is the Riemann mapRd.

Any line in the parameter space of the form γ(c) = γ0 will be termed an
external radiuswith angle γ0.

Rays converging at fixed points. We will now consider what happens
when c is outside of the connectedness locus and varies along an external
radius. This means that the external argument of the critical value c in the
phase plane remains fixed at γ .

Lemma 2.1 Suppose that the orbit ofγ under T is dense. Then for each c in
this external radius one can find a repelling fixed point q(c) which depends
analytically on c and an external angleλ with the following properties:

• λ is periodic under T with period p> 1,
• the entire orbit ofλ under T is contained in a certain arc S, which

contains points Ti (γ), 0 ≤ i ≤ p− 2, but no elements of T−1(γ),
• there is a smooth ray of external argumentλ which converges to q(c),
• λ only depends onγ , i.e. remains constant along the external radius.

Proof: Choose c on this external radius and consider the set L := {z :
Gc(z) < 0.9 Gc(0)}. Set L consists of d disjoint smooth Jordan domains,
each of which is mapped by fc univalently over the disc fc(L) containing L .
Since the mapping is an expansion in the hyperbolic metric of fc(L), sets of
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points characterized by finite itineraries through various components of L
shrink exponentially in diameter.

The boundary of each component of L attracts gradient lines from ∞
with external angles contained between two preimages of γ under T, con-
secutive in the cyclical ordering. At least one of these d sets is free from the
fixed points of T. Choose one and call it S. The corresponding component
of L is L0. L0 contains a fixed point of fc uniquely defined by the condition
that it remains in L0 forever under iteration by fc. This is q(c). Observe
that if an external angle forever stays in S under iteration, then there is
a smooth ray with this angle which converges at q(c). Indeed, the orbit of
this angle under T is not dense, so it cannot hit γ whose orbit is dense by
the hypothesis, thus the ray is smooth. Also, it intersects the boundaries of
all sets defined by finite itineraries L0 · · · L0. These sets shrink to q(c) in
the Hausdorff metric, and so each such ray indeed converges at q(c).

The set Λ =⋂∞
i=0 T−i (S) is clearly compact, non-empty, nowhere dense

and T(Λ) ⊂ Λ. We will prove that Λ is periodic. Let us first suppose that
Λ is infinite.

Consider connected components of the complement of Λ and call them
gaps. Those which are contained in S will be designated as inner. The
remaining outergap has length greater than d−1

d . Fix an orientation on the
circle so we may talk of the beginning and end of each gap. Since Λ is
infinite it has infinitely many gaps. Notice that each inner gap is mapped
by T onto some gap, possibly the outer one. Indeed, if x is inside an inner
gap and T(x) ∈ Λ, then the orbit of x forever stays in Sand hence x ∈ Λ.

We claim that for each i > 0, there is an inner gap Gi mapped by Ti

onto the outer one. Write G0 for the outer gap. For some i , consider the
set Pi := ⋃i−1

j=0 T− j (G0). Since we assumed that there are infinitely many
gaps, the complement of Pi has interior and so cannot be mapped into itself
under T. Then there is an inner gap Gi not in Pi , but with the image in Pi .
One easily sees that Ti (Gi ) = G0.

Gaps Gi , i > 0, cannot be all distinct, since the length of Gi is d−i |G0|,
and their joint length would be more than 1/d in contradiction to the fact that
all these gaps are in S. Thus Gi = Gj for some j > i , or T j−i (G0) = G0
which cannot be. Thus Λ is finite, let’s say with p elements. Observe that
since Λ is contained in an arc with length less than 1/d, T acts on Λ
as a permutation. The shortest gap Gp−1 is mapped on all other gaps by
consecutive iterations of T. Hence, the orbit of an endpoint of Gp−1 is
transitive in Λ, and Λ is a single periodic orbit.

To finish the proof of Lemma 2.1, we still have to look at the second
claim. Λ was constructed so that it is contained between two consecutive
preimages of γ . The point γ belongs to a gap of Λ. Unless this gap is Gp−1,
it has a preimage under T which is another inner gap. Then γ has a preimage
in that inner gap, contrary to the construction of Λ. Hence γ ∈ Gp−1 and
so Ti (γ) for 0 ≤ i ≤ p− 2 all belong to inner gaps. ��
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Passage to the boundary

Lemma 2.2 Fix some c0 in the boundary of the connectedness locus and in
the closure of an external radius of angleγ . For almost everyγ in the sense
of the Lebesgue measure, one gets the following picture.

The orbit ofγ under T is dense on the circle, and for every c on the
external radius one gets the repelling fixed point q(c) which intercepts a peri-
odic smooth ray with external argumentλ, by Lemma 2.1. Furthermore, the
function q(c) has a limit q0 as c→ c0, q0 is repelling and the ray with angle
λ still converges at q0.

Proof: Consider the subset Γ of the circle consisting of all γ with dense
orbits under T. Clearly, Γ is of full measure. By subtracting from Γ another
set of zero measure, we can assume that every external radius with angle
from Γ converges to some point on the boundary of the connectedness locus.
Clearly, if a fixed point is repelling and attracts a smooth ray with external
angle α, then this situation is stable under a perturbation, moreover the ray
moves continuously in the Hausdorff metric on the sphere.

Let cn belong to the radius and converge to c0. The fixed points q(cn)
converge to a fixed point q0. If q0 is repelling, then we are done. So it
remains to rule out the case of q0 neutral. The ray with external angle λ,
must converge to some periodic orbit Q of fc0 which is either repelling or
neutral. Notice that c0 ∈Md, and in this situation convergence of rays with
rational angles goes back to [5]. Point Q cannot be irrationally neutral by
the “snail argument”, see the proof of Lemma 2.4 on pages 76–77 in [1]. It
may be parabolic. However, there are only countably many c0 for which fc0

has a parabolic orbit, as we prove below. On the other hand, the harmonic
measure is non-atomic, see Theorem 17.18 on page 345 in [16]. So, the
harmonic measure of c0 for which fc0 has a parabolic orbit is null. So,
by subtracting from Γ a set of zero measure we see that Q is repelling.
But then it persists under a perturbation, so a nearby periodic point Q(cn)
still intercepts the ray with external argument λ for almost all cn. Hence
Q(cn) = q(cn) and Q = q0 in the limit which proves that q0 is repelling. ��

For completeness, we prove the following.

Fact 2.1 For every d> 1 there are only countably many complex values
of c for which the map fc(z) = zd + c has a parabolic periodic point.

Proof: We will prove a stronger statement.
If k > 0, andλ is a complex number with absolute value less or equal

to 1, then the pair of equations

f k
c (z) = z and

d f k
c

dz
(z) = λ

has only finitely many solutions(c, z).
The proof is based on the following theorem about Riemann surfaces of

algebraic functions, see [4] Theorem IV.II.4 on pages 231–232,
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Fact 2.2 Consider the equation P(c, z) = 0 where P is an irreducible
polynomial of two complex variables. Then the set of solutions, compactified
by adding points at infinity, has the structure of a compact Riemann surface.
Moreover, projections on c and z are meromorphic of this surface.

This theorem applied to the polynomial f k
c (z)− z= 0 implies that the

set of solutions splits into the union of finitely many compact Riemann
surfaces. On each of these, the function

d f k
c

dz
(z)

is meromorphic. If it takes value λ infinitely many times, by the identity
principle it must be constant on one of the surfaces, call it S. If a pair (c, z)
solves both equations, it means that c must be in the connectedness locus
in the parameter space, and z is in the Julia set. Hence, both projections
map the finite points of S into a bounded set in the complex plane. The
image of Sunder either projection must be compact, since the projection is
continuous. But since the projections are also open mappings or constant,
the image of either of them is just a point. Hence, Smust be a point, which
is impossible. ��

2.2. Construction of symbolic dynamics

Ray-sectors and gaps. For this section, we assume that c ∈ Md is in
the closure of the external radius with angle γ and γ belongs to the set of
full measure on the circle on which the assertions of Lemmas 2.1 and 2.2
hold. In particular, fc has a fixed point q(c) which attracts a smooth ray
with external angle λ. This ray is periodic under T with period p. Rays with
external angles λ, .., T p−1(λ) divide that plane into p ray-sectors. These
sectors correspond to the gaps of the set Λ = {Ti (λ) : i = 0, · · · , p− 1}
in the parlance of the proof of Lemma 2.1. Namely, each gap consists of the
external angles of gradient lines from∞which belong to the corresponding
ray-sector. As in the proof of Lemma 2.1 we distinguish inner and outer
gaps.

The action of fc on ray-sectors is easy to understand in terms of T
acting on gaps. Denote s1 the gap which contains γ and s0 the outer gap.
Then Lemma 2.1 implies that s1 needs p− 1 iterates of T to be mapped
onto s0. This affords a natural labeling s1, · · · , sp−1 such that T(si ) = si+1
modulo p. Finally s0 is mapped over the whole picture several times. We
apply the same labeling to ray-sectors Si . Then fc is univalent on any Si ,
i > 0, and maps it onto Si+1, and has a critical point 0 in S0. S0 is mapped
onto all ray-sectors.

Itineraries. We can now study itineraries of points in the phase plane of
fc with respect to the ray-sectors and points on the circle with respect to the
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gaps. Consider itineraries k(c, z) = k0, · · · , kn, · · · defined by the condition
f i
c(z) ∈ Ski and �(γ) = �0, · · · , �n, · · · given by Ti (γ) ∈ s�i . Since neither

the ray-sectors nor gaps form a complete covering, either itinerary may be
finite.

Here is a key observation.

Lemma 2.3 For c typical with respect to the harmonic measure, k(c, c) =
�(γ) and both are infinite.

Proof: Choose a sequence cn of points in the external radius with argu-
ment γ , in such a way that cn → c. Typically, by Lemma 2.1, �(γ) is indeed
infinite. Moreover, k(cn, cn) = �(γ) for every n, because cn belongs to the
gradient line from∞ with external angle γ . The limiting picture as cn → c
is described by Lemma 2.2 which implies that the sets consisting of q(cn)
and the smooth rays with angles λ, · · · , T p−1(λ) in the phase space of fcn

converge in the Hausdorff metric on the sphere to q(c) and the correspond-
ing rays in the phase space of fc. Thus, one gets k(cn, cn) → k(c, c) in
Tychonoff’s topology, and so k(c, c) = �(γ) follows. ��

The Yoccoz partition. Let us continue to develop the picture of ray-sectors
and corresponding gaps. Consider the topological disc ∆ :={z : Gc(z) < L},
L is a parameter which will be specified by Fact 2.3. ∆ intersects each ray-
sector Si along a “curvilinear triangle” ∆i . The collection of these ∆i ’s
is sometimes referred to as the Yoccoz partitionfor fc. One can consider
itineraries k′(c, z) with respect to the Yoccoz partition. Clearly, k′(c, z) is
an initial substring of k(c, z), but may be shorter if the orbit of z leaves ∆.
For z ∈Kc, the itineraries are identical.

Induced maps. The action of fc on ray-sectors Si , i > 0, is boring: each is
mapped univalently onto Si+1 modulo p. As a result, codes k and � contain
a lot of redundant information, since every non-zero symbol predicts the
following one.

Definition 2.1 An induced mapΦc is defined on the union of all ray-
sectors Si . On Si , i > 0, we setΦc := f p−i+1

c . On S0, Φc = fc.

Fact 2.3 For an appropriate choice of the parameter L, depending onγ ,
in the construction of the Yoccoz partition, the following statements hold:

• Φc maps any∆i over the union of all∆ j .
• If K ⊂ ∆ j is relatively compact in∆ j , then Φ−1

c (K ) is relatively
compact in

⋃p−1
i=0 ∆i .

• If j �= 1, thenΦ−1
c (∆ j ) is relatively compact in

⋃p−1
i=0 ∆i .

• If the parameter L is chosen sufficiently small, depending only on the
set of rays converging at q(c) and if z∈ ∆i , Φc(z) ∈ ∆ j , j �= 1, then
the closureQ(z) of the Whitney neighborhood Q(z) is contained in∆i .

• The only critical value ofΦc is at c and is a branching point of degree d.
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Proof: To get Φc(z) we first map z to S0 and then one more time. The
properties of Φc depend on this last iteration, which can be easily understood
in terms of the map T acting the external angles of rays. Proofs are then
easy and mostly standard except for the claim concerning Q(z). If z ∈ ∆i
and Φc(z) ∈ ∆ j , j �= 1, then consider a piece of the equipotential curve
which passes through Φc(z) and joins the boundaries of ∆ j and two adjacent
sectors. This curve has a preimage in ∆i which is a piece of the equipotential
curve of level at most L/d ≤ L/2 and extends a fixed distance, as measured
in external angles, on both sides of z. If L/2 is smaller than that angular
distance, it means that Q(z) ⊂ ∆i . ��

We can now consider simplified itineraries ω(c, z) with respect to Φc.
ω(c, z) is easy to obtain from k′(c, z): we skip every symbol which has
a predecessor and this predecessor is different from 0. The transformation
z→ ω(c, z) semi-conjugates Φc to the full shift on p symbols.

2.3. The Bernoulli model

We can construct a mapping φ induced by T on the circle which corresponds
to Φc. Thus, φ = T on s0 and φ = T p−i+1 on any other si . The critical
itinerary ω(c) := ω(c, c) equals the itinerary of γ under φ according to
Lemma 2.3.

Notice that φ depends only on Λ, but not directly on γ . If cchanges along
∂Md, γ changes as well but Λ is locally fixed. This justifies an important
strategy for proving properties of the critical itinerary of ω(c) which are
valid almost everywhere with respect to the harmonic measure. Namely,
one fixes φ and proves that the property holds for almost all γ .

As to the structure of φ, it maps every gap si affinely onto s0 and
then piecewise affinely onto various gaps sj . Hence, for any q > 0 and
0 ≤ i, j < p,

P(i, j, q) = |φ
−q(sj ) ∩ si |
|si |

depends only on j but not on i or q. Hence the mapping c → S(ω(γ))
where Sdenotes the shift transports the harmonic measure from the bound-
ary of Md to the probability distribution of a Bernoulli shift on p symbols.
The shift, as a probability space, is determined by φ and hence properties
of codes that hold with probability 1 for the shift are typical with respect to
the harmonic measure.

Definition of the model. Consider a Bernoulli shift on p symbols denoted
0, 1, · · · , p−1, with its natural Tychonoff topology and product probability
measure. Let Ω denote the space of the shift and S the shift map. A point
ω ∈ Ω is identified with a sequence x0(ω) = 1, x1(ω), · · · , xn(ω), · · · with
xi (ω) ∈ {0, 1, · · · , p−1} for i > 0. The initial 1 reflects the fact that γ ∈ s1.
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Let us introduce a metric on Ω which induces the Tychonoff topology:
namely if ω1, ω2 ∈ Ω we find the least i ≥ 0 for which xi (ω1) �= xi (ω2)
and set d(ω1, ω2) = 2−i . Note the improved triangle inequality:

d(ω1, ω2) ≤ max(d(ω1, ω3), d(ω3, ω2)) .

Furthermore, S is 2-Lipschitz with respect to d.
Let N denote the set of positive integers, and Z+ = N ∪ {0}.

Definition 2.2 Givenω ∈ Ω, let us define a function

ρω : N→ N
as follows

ρω(k) = inf{ j > 0 : d(Sjω,ω) ≤ 2 j−k} .

Informally speaking, ρω(k) = j means that starting from j at least
through k− 1 the code xi (ω) repeats its initial sequence starting with x0(ω)
and j is the smallest positive number with this property. For j = k this
requirement becomes vacuous, so ρω(k) ≤ k.

The probability of 1. By Lemma 2.1 the symbol 1 corresponds to the
smallest gap which is mapped onto s0 by T p−1. Hence |s1| ≤ |s0|

d . Since T is
measure preserving, the preimage of s1 in s0 has length no more than |s0|/d
and so the probability of 1 is no more than 1/d ≤ 1/2.

We are now ready to state the result.

Theorem 2.1 In the Bernoulli model suppose that the probability of1 is
no more than1/2. Then there is a functionκ : Ω → N ∪ ∞, finite and
continuous almost for sure, and forω from a set of full measure one can
find an increasing infinite sequence of integers ki (ω) so that

• for every i, ki − ρω(ki ) < κ and xki+1(ω) �= 1,
• lim supi→∞

ki
i ≤ 9,

• lim ki+1
ki
= 1.

As we will later show the properties of ω(c) given by Theorem 2.1 easily
translate to the typical properties stipulated by our main theorem.

3. A theorem in symbolic dynamics

This section is devoted to the proof of Theorem 2.1 which proceeds entirely
inside the Bernoulli model.
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3.1. Combinatorial considerations

We will prove certain properties of the function ρω. We give formal proofs
based on the metric d. Alternative proofs can be constructed by using the
interpretation of function ρω in terms of repeating codes.

Lemma 3.1 If ω ∈ Ω is not periodic under S, then

lim
k→∞

ρω(k) = ∞ .

Proof: Function ρω is non-decreasing, so we have to prove that it does not
stabilize. If it does for a certain value j , then Definition 2.2 implies that

d(Sjω,ω) ≤ 2 j−q

for q arbitrarily large, so Sjω = ω contrary to the hypothesis. ��
Lemma 3.2 Letω ∈ Ω. If ρω(k+ 1) > ρω(k), then

ρω(k+ 1) ≥ ρω(k)+ ρω(k− ρω(k)) .

Proof: Denote j = ρω(k) and J = ρω(k+ 1). Then d(SJω,ω) ≤ 2J−k−1.
Next,

d(SJ− jω,ω) ≤ max(d(SJω,ω), d(SJ− jω, SJω)) (1)

and

d(SJω, SJ− jω) = d(SJ− j(Sjω), SJ− jω) ≤ 2J− j d(Sjω,ω) ≤ 2J−k .

Now estimate (1) leads to

d(SJ− jω,ω) ≤ max(2J−k−1, 2J−k) = 2J−k = 2(J− j)−(k− j) .

In view of Definition 2.2 this means that

ρω(k− j) ≤ J − j

which is precisely what the lemma claims. ��
In the first step of the proof of Theorem 2.1, we can now define function κ.

It will still depend on an integer parameter L to be specified later. Define κL
by the condition that for k ≥ κL(ω) we have ρω(k) ≥ L+1. If this condition
is impossible to satisfy, put κ(ω) = ∞. In view of Lemma 3.1 function κL
is finite for all ω not periodic under the shift. Also, wherever κL(ω) < ∞,
κL is constant on a neighborhood of ω, which means that the set of its points
of continuity has full measure.
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3.2. The key argument

Proposition 1 For a certain choice of a positive integer L the following
holds true. Let Gω be defined as the set of all k∈ N for which k− ρω(k) <
κL(ω).

Then almost surely forω ∈ Ω:

• κL(ω) <∞,

• lim inf
n→∞

|Gω ∩ {1, · · · , n}|
n

≥ 1

3
,

• except for finitely many n, if n∈ Gω, then

Gω ∩ (n, n+√n) �= ∅ .

The first property holds whenever ω is not periodic under S, which is true
almost everywhere regardless of L . Since κL is locally constant, we can
restrict the attention to a cylinder Ω0 on which κL is finite and constant. In
particular, we will talk of probabilities conditioned onto Ω0.

Let us start with an elementary lemma.

Lemma 3.3 Consider a sequence of m independent Bernoulli trials, each
with the probability of success at most P< 1. For some M> 0 let Xi be1
if the i-th trial is a success, or−M if it is a failure.

There is a constant M0 only depending on P so that if M≥ M0, then∑m
i=1 Xi ≤ −m with probability at least1− exp(−m1−P

4 ).

Proof: Consider a generating function

G(t) = E
(

exp(t
m∑

i=1

Xi )
)
≤ (Pet + (1− P)e−Mt)m

where t > 0. Choose M0(t) so as to ensure that e−tM0(t) ≤ 1−P
2 . Then

G(t) ≤
(1+ P

2

)m
exp tm≤ exp

(
mt−m

1− P

2

)
.

If α denotes the probability of the event consisting in
∑m

i=0 Xi > −m, then

α exp(−mt) ≤ G(t)

and

α ≤ exp
(

2mt−m
1− P

2

)
.

Fix t = 1−P
8 . Now the Lemma follows with M0 = M0(

1−P
8 ). ��
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We now indicate the idea of the proof of the remaining part of Propo-
sition 1. We watch a non-negative function rω(k) := k − ρω(k). As k
grows by 1, then rω(k) may increase at most by 1, and that only happens if
xk+1(ω) = xk−ρω(k)+1(ω). Call the event rω(k+ 1)(ω) > rω(k) a success at
k+ 1. Clearly, this defines independent trials with probabilities of success
all bounded by P < 1 where P is the maximum of probabilities of any
symbol. If k /∈ Gω meaning that rω(k) ≥ κL , then failure at k + 1 means
that we get ρω(rω(k)) ≥ L + 1 and rω(k+ 1)− rω(k) ≤ −L .

If we count only the trials which follow k /∈ Gω ∩ [n, n + m), then
by Lemma 3.3, with overwhelming probability rω will jointly drop by the
number of such k. Regardless of the outcome of trials following k ∈ Gω,
rω(k) may grow at most by 1. If k /∈ Gω are more than 2/3m, this implies
a drop by m/3. But on the other hand, rω(k) is non-negative which yields
a lower bound on the density of Gω in [n, n+m).

Let us state this reasoning formally.

Lemma 3.4 Fix L and considerω in a cylinder whereκL takes a constant
finite value, choose integers n> κL and m in such a way that10rω(n) ≤ m.
Let P denote the maximum of probabilities of any single symbol. There
is a constant L0 which depends only on P so that if L≥ L0, then with
probability at least1− exp(−m1−P

6 )

|Gω ∩ [n, n+m)| > m

3
.

Proof: Let βm be the number of integers in the set B = [n, n+m) \ Gω.
For any k ∈ B let us call it a success when ρω(k+ 1) = ρω(k). This defines
a sequence of Bernoulli trials with the probability of success at most P.
On the other hand, if k /∈ Gω, then rω(k) ≥ κL and by Lemma 3.2 and the
definition of κL , rω(k + 1) − rω(k) ≤ −L . We apply Lemma 3.3 to this
sequence of βm trials. We get that there is L0 := M0 depending only on P,
so that if L ≥ L0, then∑

k∈B

rω(k+ 1)− rω(k) ≤ −mβ (2)

with probability at least 1− exp(−mβ 1−P
4 ). For any k ∈ [n, n+m),

rω(k+ 1)− rω(k) ≤ 1 .

Let Bc := [n, n+m) ∩ Gω. Hence, assuming estimate (2),

rω(n+m)− rω(n) =
∑
k∈B

rω(k+ 1)− rω(k)+
∑
k∈Bc

rω(k+ 1)− rω(k)

≤ −mβ +m(1− β) ≤ m(1− 2β) .

But rω(n+m) ≥ 0 while rω(n) ≤ 0.1m by the hypothesis of the lemma, so

m(1− 2β) ≥ rω(n+m)− rω(n) ≥ −0.1m .
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Thus, estimate (2) implies β ≤ 0.55. Hence, if β ≥ 2/3, then estimate (2)
fails, which happens only with probability not exceeding

exp
(
−m

1− P

6

)
.

��
Now Proposition 1 follows easily. The claim regarding the asymptotic

density of Gω follows if we apply Lemma 3.4 with n = κL0 and mexpanding
to∞ and invoke Borel-Cantelli’s lemma. If we now apply the lemma with
m= [√n], we get that almost surely for almost all n either rω(n) > 0.1[√n]
or

|Gω ∩ [n, n+√n)| ≥ [√n]/3 .

For all n sufficiently large the first condition implies that n /∈ Gω and the
second one that Gω ∩ (n, n+√n) �= ∅ as needed.

3.3. Avoiding1’s in the itinerary

Choose an ω ∈ Ω for which the properties specified in Proposition 1 hold.
Let us order the elements of the set Gω in an increasing order. This gives
us a sequence kj (ω). If we try to satisfy Theorem 2.1 with this sequence, it
works except for one detail: there is no reason to expect that xkj (ω)+1(ω) �= 1.
Thus, we have to win now the sequence which satisfies this condition and
make sure that we don’t lose the desired density properties.

We can define a sequence of Bernoulli trials in which the j -th trial is
considered a success if and only if xkj (ω)+1(ω) �= 1.

Lemma 3.5 Almost surely forω ∈ Ω in addition to the properties listed in
Proposition 1 there is a set Hω of positive integers for which the following
hold:
• for every j∈ Hω, xkj (ω)+1(ω) �= 1,

• lim inf
n→∞

|Hω ∩ [1, n]|
n

≥ 1

3
,

• for almost every n∈ N, Hω ∩ (n, n+ 4
√

n) �= ∅.

Proof: We define the set Hω by the requirement that the first property hold.
Symbol 1 corresponds to the smallest gap in the set Λ and so its probability
is no more than 1/2 by the hypothesis of Theorem 2.1. So for every j , we
can consider a “trial” which succeeds when xkj+1(ω) �= 1. This defines
a sequence of Bernoulli trials with probability of success at least 1/2. By
techniques similar to those used in the proof of Lemma 3.3, one proves that
in the sequence of n such trials there are at least n/3 successes except for
an event with probability exponentially small in n.

Then the remaining two properties of Lemma 3.5 follow easily from
Borel-Cantelli’s lemma, just as in the proof of Proposition 1. ��
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We can now form an increasing sequence of elements of the set Hω,
and denote it with ji (ω). Ultimately we form a sequence kji (ω)(ω). From
now on we will skip the dependence on ω in order to unclutter the notation.
We claim that the sequence kji can be used as ki in Theorem 2.1. The first
property of Theorem 2.1 is now satisfied since the sequence was specifically
chosen that way. As regards the second one, we compute

lim sup
i→∞

kji

i
≤ lim sup

j→∞
kj

j
· lim sup

i→∞
ji
i
≤ 9

since both factors are bounded by 3: the first by Proposition 1 and the second
by Lemma 3.5.

To prove that last claim, we first observe based on Lemma 3.5 that for
almost every j ∈ N among kj , · · · , kj+[ 4√ j ] we can find an element of the
sequence kji . It will be enough to show that

lim
j→∞

kj+[ 4√ j ]
kj

= 1 .

From Proposition 1, for almost all j

kj+1

kj
≤ 1+ 1√

kj
.

Hence,

kj+[ 4√ j ]
kj

≤
[ 4√ j ]∏
s=0

(
1+ 1√

kj+s

)
≤
(

1+ 1√
kj

) 4√ j

.

Since obviously kj ≥ j , we further estimate

(
1+ 1√

kj

) 4√ j

≤
(

1+ 1√
j

) 4√ j

≤ exp
1

4
√

j

which tends to 1 as j tends to∞.
Theorem 2.1 has been proved.

4. Proofs of main theorems

As already observed, Theorem 2.1 lists properties of the critical itinerary
ω(c) which are typical with respect to the harmonic measure of ∂Md. We
will now translate these properties into a statement which already clearly
shows expansion along the critical orbit and proves Theorem 1.1.

We start with preparatory geometric considerations which go back to
the induced mapping Φc introduced by Definition 2.1.
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4.1. Yoccoz pieces

Consider an itinerary x0, · · · , xk. A Yoccoz pieceof order k following this
itinerary is any maximal connected set of points z for which the first k+ 1
symbols of their itineraries ω(c, z) are the same as x0, · · · , xk.

Lemma 4.1 If a Yoccoz piece D of order k follows the itinerary x0, · · · , xk,
thenΦk

c restricted to the piece is a proper holomorphic map onto∆xk.

Proof: Obviously, F := Φk
c is a holomorphic map from the Yoccoz piece

into ∆xk . We have to show that F is proper. The proof proceeds by induction
with respect to k. For k = 0, F is the identity map. In general, Φk

c =
Φc ◦Φk−1

c , both proper by the induction hypothesis. ��
As a consequence of Lemma 4.1, Φk

c is onto ∆xk and a finitely branched
cover. In particular, D is a topological disk. Here is another corollary:
Lemma 4.2 Consider two Yoccoz pieces: D of order k which follows an
itinerary x0, · · · , xk and D′ ⊂ D which follows the itinerary x0, · · · , xk, xk+1

with xk+1 �= 1. ThenD′ is contained in D.

Proof: Observe that

D′ ⊂ Φ−k
c

(
Φ−1

c (∆xk+1)
)

.

But by the properties of Φc, listed following its definition, Φ−1(∆xk+1) is
relatively compact in ∆xk and so the claim follows by Lemma 4.1. ��

The next lemma establishes a connection between the dynamics of Φc
on neighborhoods of c and the combinatorial function ρω(c).

Lemma 4.3 Suppose that D is a Yoccoz piece of order k which contains c
and follows the critical itineraryω(c). ThenΦ

j
c are univalent on D for all

j < ρω(c)(k).

Proof: Choose the smallest j for which Φ
j
c is not univalent. Then Φ

j
c (D)�c.

But then the k− j consecutive symbols of ω(c) starting from the beginning
and from the ω j (c) are the same, or d(Sjω(c), ω(c)) ≤ 2 j−k which implies
j ≥ ρω(c)(k) by Definition 2.2. ��

Another observation concerns Whitney domains Q(z).
Lemma 4.4 Consider a Yoccoz piece D of order k and suppose that z∈ D
and the itinerary of z has length at least k+1 with the k+1-st symbol other
than1. ThenQ(z) ⊂ D.

Proof: The proof follows by induction with respect to k. For k = 0, this is
one of the claims of Fact 2.3. Then Φc is proper from a piece of order k onto
a piece of order k− 1 and Φc(Q(z)) = Q(Φc(z)) so the claim follows. ��

Finally, on a Yoccoz piece of order at least k, Φk
c is the same as f mD(k)

c ,
which defines a function mD. Obviously, for every D,

k ≤ mD(k) ≤ pk

where p is the number of ray-sectors in the construction.
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4.2. Proof of Theorem 1.1

Let us reduce Theorem 1.1 to Theorem 2.1. Set H is chosen as the set of
external angles for which the Yoccoz partition is well-defined and the claim
of Theorem 2.1 holds for the critical itinerary ω(c). For γ ∈ H , choose
c0 ∈ Md ∩ rd(γ).

For c ∈ rd(γ), let V ′n(c) be the Yoccoz piece of order n which follows the
itinerary ω(c). Then K ′

n(c) is the union of pieces of order n+ 1 contained
in V ′n(c) which follow ω(c) up until xn, and then xn+1 runs through all
values other than 1. Both are well-defined for c close enough to Md. By
Lemma 4.2, the closure of K ′

n(c) is contained in V ′n(c).
For every fixed n, the set V ′n(c) \ K ′

n(c) contains an annulus A′n(c).
Pick some N, which will be specified later. Then the moduli of A′n(c) for
n = 0, · · · , N can be bounded from below by α(c) > 0. If c varies along
rd(γ), the sets K ′

n(c) and V ′n(c) move continuously in the Hausdorff metric
and hence α(c) can be chosen as a continuous function of c ∈ rd(γ). Hence,
for c sufficiently close to Md, we can extract a common lower bound α.
That c is close to Md can be guaranteed by choosing parameter ε small
enough in the hypothesis of Theorem 1.1.

We verify the first claim of Theorem 1.1. Recall the sequence ki from
Theorem 2.1. Suppose that the critical itinerary continues at least through
one more symbol beyond xki (γ). Let Ui be the Yoccoz piece of order ki
which contains c and follows the critical itinerary. Of course, Ui depends
on c, but we suppress that in our notation. By Lemma 4.3, Φ

ρω(c)(ki )
c maps

Ui as a branched cover of degree d with the only critical value at c onto
a Yoccoz piece of order ki − ρω(c)(ki ) which follows the critical trajectory.
But Theorem 2.1 states that ki − ρω(c)(ki ) < N := κ, so that in fact

Φ
ρω(c)(ki )
c (Ui ) = V ′n

for some n = 0, .., N−1. Thus we have specified N used before to choose α.
Moreover, Theorem 2.1 also states that the symbol in ω(c) following the
ρω(c)-th one is not 1. Thus, Φ

ρω(c)(ki )
c (c) ∈ K ′

n. Annulus A′n has a preimage Ai

by Φ
ρω(c)(ki )
c . Clearly, Ai−1 contains Ui in the bounded connected component

of its complement. Lastly, by Lemma 4.4 applied to D := Ui and z := c,
Q(c) ⊂ Ui .

To prove Theorem 1.1, we choose Vn(c) := f −1
c (V ′n(c)) and Kn(c) =

f −1
c (K ′

n(c)) so that Ui is mapped univalently onto Vn(c) by f mi
c , with

f mi
c (c) ∈ Kn(c). For a fixed c and n ≤ N, diam Kn(c) ≥ η(c) > 0. Since

Kn(c) move continuously with c in the Hausdorff metric, η can be made
independent of c for c close to Md. Since Vn(c) and Kn(c) are separated by
an annulus with modulus at least α/d and the diameter of Kn is at least η,
by Teichmüller’s module theorem, see [8] page 89, Vn(c) contains a ball
centered at f mi

c (c) with a fixed radius.
Finally, we have to justify our assumption that the critical itinerary

has length at least ki + 2. If not, Gc(Φ
ki
c (c)) is bounded from below by
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a constant which only depends on γ . But Φki
c = f mi+1

c and hence Gc( f mi
c (c))

has a similar lower bound. By making the constant ε in the statement of
Theorem 1.1 small enough, we can then satisfy the first claim in a vacuous
way.

It remains to verify the two claims of Theorem 1.1 which have only
to do with the sequence mi = mUi (ρω(c)(ki )) − 1. Recall that the func-
tion mUi simply recomputes iterates of Φc into iterates of fc. We have that
i ≤ mi ≤ pki and

i

mi
≥ 1

p

i

ki
. (3)

But inf i
ki
≥ 1/9 by Theorem 2.1, and so we put θ := 9p.

It remains to prove that

lim
i→0

mi+1 −mi

mi
= 0 .

We estimate

mi+1 −mi ≤ mUi+1((ki+1 − ki )+ (ki − ρωc(ki )) ≤ p(ki+1 − ki + N) .

Similarly,

mi ≥ ki − N and

lim
i→∞

mi+1 −mi

mi
≤ lim

i→∞ p
ki+1 − ki + N

ki − N
= 0

so limi→∞ ki+1
ki
= 1 by Theorem 2.1.

This concludes the proof of Theorem 1.1.

4.3. Exponential derivative growth

We will prove Theorem 1.2. Let us take γ from the set H of Theorem 1.1
and use notations of that Theorem.

We need a few auxiliary lemmas to start. Our estimates must be inde-
pendent of c ∈ rd(γ), but can and will depend on γ .

Lemma 4.5 There are constants C1 > 0 andζ1 > 1, depending only onγ ,
so that for every c∈ rd(γ), Gc(c) < ε, whenever Gc( f mi

c (c)) < ε, then
D f mi

c (c) ≥ C1 ζ
mi
1 .

Proof: Ui is surrounded by a sequence of nesting annuli Uj−1 \ U j , j =
1, · · · , i , each with modulus at least ε. Hence mod (U0 \U j ) ≥ iε. Recall
that U0 is contained within the region delimited by the equipotential curve
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Gc(z) = L , thus a bounded region of the plane. By Teichmüller’s module
theorem, see [8] page 89,

iε < 2 log 4+ log

(
1+ diam U0

diam Ui

)

and hence for i sufficiently large

diam Ui < diam U0 exp(−εi/2) .

Since lim supi→∞
mi
i ≤ θ, for all i ≥ i0, where i0 only depends on γ ,

diam Ui < diam U0 exp(−εmi/2θ) . (4)

But f mi
c maps Ui univalently over D( f mi

c (c), σ), so the Schwarz lemma
implies that |D f mi

c (c)| ≥ σ
diamUi

which ends the proof. ��
Lemma 4.6 Suppose that Gc(z) ≥ η > 0 and Gc(0) < η/4. For every
η > 0 there is r> 0 so that the Whitney domain Q(z) ⊃ D(z, r).

Proof: Let us look at the preimage of Q(z) by the Böttker coordinate Γc,
which is well defined on D(0, exp(−Gc(0))). This is a ring-sector with size
determined by η, so contains a ball centered at Γ−1

c (z) of radius determined
by η. Also, by compactness the derivative of Γc at the center of this ball
is bounded below depending on η. The lemma now follows from Köbe’s
one-quarter theorem. ��

We will use this lemma to estimate the derivative at the moment when
the orbit of c gets out of the region limited by the equipotential curve of
level ε. To this end, define

I(c) := min
{
i : Gc

(
f i
c(c)

) ≥ ε
}

.

It is understood that I(c) = +∞ if c ∈ Md.

Lemma 4.7 For c /∈ Md suppose that I(c) ≥ 2. Then there are constants
C2 > 0 andζ2 > 1, depending only onγ , so that∣∣D f I(c)

c (c)
∣∣ ≥ C2 ζ

I(c)
2 .

Proof: Given c, choose the largest i so that Gc( f mi
c (c)) < ε. Then I(c) ≤

mi+1. As a consequence, I(c) < Mmi where M only depends on the se-
quence mi , hence only on γ . By Theorem 1.1, Ui ⊃ Q(c). Then z := f I(c)

c (c)
satisfies the hypothesis of Lemma 4.6 with η := ε. In particular, since
I(c) ≥ 2, Gc( f 2

c (0)) < ε and Gc(0) < ε/4. Hence f I(c)
c (Q(c)) contains

a ball centered at z of radius r(ε). Taking an inverse branch and using the
Schwarz lemma, we see that

∣∣D f I(c)
c (c)

∣∣ ≥ r(ε)

diam Q(c)
.
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But diam Q(c) ≤ diam Ui ≤ K exp(−miε/2θ) by estimate (4) in the proof
of Lemma 4.5. Recalling I(c) < Mmi , we get

|D f I(c)
c (c)| ≥ C2 exp(I(c)ε/2θM)

as needed. ��
So far we have seen uniform expansion for times m1, · · · , mi , I(c). We

will now get it for all times in between.

Lemma 4.8 Chooseγ in the subsetH ∈ [0, 1) specified in Theorem 1.1
and consider the sequence mi given by the the same Theorem. Suppose that
I(c) ≥ 2, possibly infinite. Then there are constants C3 > 0 and ζ3 > 1
depending only onγ so that for each c∈ rd(γ) and every0 < n ≤ I(c),∣∣D f n

c (c)
∣∣ ≥ C3 ζn

3 .

Proof: Given n ≤ I(c) choose i to be the largest so that mi does not
exceed n, and M to be mi+1 or I(c), whichever is less. If ζ and C are the
minimum of ζ1 and C1 from Lemma 4.5 and ζ2 and C2 from Lemma 4.7,
respectively, then |D f M

c (c)| ≥ Cζ M . Points f n
c (c), · · · , f M−1

c (c) are in the
region bounded by the equipotential of level ε. Hence the derivatives at all
these points are bounded, independent of c, by some λ. Hence∣∣D f n

c (c)
∣∣ ≥ ∣∣D f M

c (c)
∣∣λ−M+n ≥ Cζ Mλmi−mi+1

= Cζ M
(
λ(mi+1−mi )/M

)−M
. (5)

Since limi→∞ mi+1
mi

= 1 by Theorem 1.1, except for finitely many i , hence
for all n ≥ n0, we have

λ(mi+1−mi )/M ≥ √ζ

and then estimate (5) yields ∣∣D f n
c (c)

∣∣ ≥ Cζn/2

as needed. For n < n0 the estimate gives a positive constant on the right
hand-side, which can be absorbed in C. ��

To finish the proof of Theorem 1.2, we need to establish expansion for
points which are far from Kc, as measured by the Green function.

Lemma 4.9 Suppose that Gc(z) ≥ η and Gc(0) ≤ Gc(z)/2. For every
η > 0 there exist constants C4 > 0 andζ4 > 1 so that for all n> 0,∣∣D f n

c (z)
∣∣ ≥ C4 ζn

4 .
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Proof: The filled-in Julia set contains a non-attracting fixed point q whose
distance to 0 is at least 1/2. Points f n

c (z), n ≥ 0, are all separated
from the Julia set and 0 by an annulus with modulus at least η/2, hence
|D fc( f n

c (c))| ≥ r(η) > 0 for all such n by Teichmüller’s module theorem.
For n >

log 100−log(η/2)

log d , such an annulus already has modulus at least 100

and by Teichmüller’s module theorem | f n
c (z)| > e50 which implies very

large derivative. ��
Theorem 1.2 is now proven. We split the orbit f n

c (c) in two parts. For
n ≤ I(c) if I(c) ≥ 2 the expansion follows from Lemma 4.7. For subsequent
n or if I(c) < 2 implying Gc(c) ≥ ε/d, we rely on Lemma 4.9.

Acknowledgement:We thank the referee for useful comments.
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