Invent. math. 142, 605-629 (2000) .
Digital Object Identifier (DOI) 10.1007/s002220000100 Inventiones

mathematicae

Harmonic measure and expansion on the boundary
of the connectedness locus

Jacek Graczyk-***, Grzegorz Swiatek? **

1 Department of Mathematics, Royal I nstitute of Technology, 100 44 Stockholm, Sweden
2 Department of Mathematics, Pennsylvania State University, University Park, PA 16802,
USA

Oblatum 6-X1-1998 & 12-V-2000
Published online: 11 October 2000 — [0 Springer-Verlag 2000

Abstract. The paper develops a technique for proving properties that are
typical in the boundary of the connectedness locus with respect to the
harmonic measure. A typical expansion condition along the critical orhit is
proved. This condition implies anumber of properties, including the Collet-
Eckmann condition, Hausdorff dimension less than 2 for the Julia set, and
the radial continuity in the parameter space of the Hausdorff dimensions of
totally disconnected Julia sets.

1. Introduction
1.1. Generic properties

Dynamics of unimodal polynomials f. = z + ¢ on the Riemann sphere
was a subject of intensive studies in a couple of last decades. The focus was
on determining generic systems and explaining their geometric structure.
Despite considerable effort, only a limited progress was achieved. The
research concentrated mainly onthesimplest classof quadratic polynomials.

The notion of ageneric map usually requires specification. Topological
and metrical pictures of atypical dynamical system are often drastically
different. This dichotomy is a staple of the dynamics of real quadratic
polynomials. We will see that an analogous phenomenon is present on the
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boundary of the connectedness locus
Mg ={ceC:sup|fl©) <oc}.
n>0

Generic maps on the connectedness locusLet f. = z¢ + c. Then its
filled Juliaset K is defined as

Ke={zeC:sup|fl(2)| < oo} .
n>0

The connectedness locus My is the set of parameters ¢ for which the
corresponding Julia set ¢, = 9K is connected. It is well known that Mg
is afull compact, that is its complement is an open topologica disk. For
€ € Mgy the critica orbit { f"(c)} belongs to the filled Julia set K. When
C traverses My in the outward direction, K. which is initialy connected
bifurcates into a Cantor set outside of Mg.

There are at least two intrinsic notions of a generic parameter on the
boundary of My, one with respect to the induced planar topology and the
other with respect to the harmonic measure. A possibility of using the two-
dimensional Lebesgue measure remains open sinceiit is not known whether
theareaof theboundary of .M 4 iszero or not. Werecall that the harmonic and
two-dimensional Lebesgue measure on the boundaries of planar domains
are dways mutually singular, [14].

Thetopology and “outside geometry” of .M (given by the distribution
of the harmonic measure) manifest themselves by very different properties
of the corresponding generic dynamics.

The harmonic measure at oo of d.My can be described in terms of the
Riemann map

Ryg:D={zl <> C\ Mg

which fixes co. Namely, R4 extends radially almost everywhere on the unit
circle with respect to the normalized Lebesgue measure A. Therefore,

® = Ry« (X) .

Logistic family. Thefamily 22+ ¢, c € M NR isaffinely equivalent to the
logistic family

fa: X — ax(1—Xx),

O<a<4andx e [0, 1].

The real Fatou conjecture, see [8], states that a set of parameters 0 < a
< 4forwhich f, hasan attracting cycleisopen and dense. In 1981 Jakobson
proved that for aset A C [0, 4] of positive Lebesgue measure, f, has an
invariant probability equivalent to the L ebesgue measure, [10].

These two notions of generic dynamics are fundamentally different. By
Jakobson'sresult, for aset of parametersof positive measure, the polynomial
has almost every orbit distributed according to the absolutely continuous
invariant measurewhileatopol ogically generic polynomial hasalmost every
orbit attracted to a unique attracting cycle.
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1.2. Expansion

For maps in the boundary of the connectedness locus one cannot expect
hyperbolicity in the usual sense, meaning uniform expansion on the Julia
set. The next best condition is uniform expansion on the w-limit set ¢, which
leadsto the Misiurewicz condition about non-recurrence of the critical orbit.
This s till too strong condition to be typical in the sense of the harmonic
measure, so one is left looking for even weaker properties of expansion
along the critical orbit.

Collet-Eckmann polynomials. The Collet-Eckmann condition serves as
anatural bridge between topol ogical and metrical aspectsof one-dimensional
dynamics. For unimodal polynomials f. = z% 4+ c, the condition is that

n
liminf M >0.
n—o00 n
Misiurewicz maps are defined by the condition that the critical point is not
recurrent and all periodic points are repelling.

Itiswell known that areal Collet-Eckmann unimodal polynomial hason
one hand an invariant absolutely continuous probability measure while on
the other hand its dynamics shares some properties with Misiurewicz maps.
Benedicks and Carleson’s theorem (see[1]) states that in the logistic family
the Collet-Eckmann condition holds for a set of positive L ebesgue measure.
Being “amost hyperbolic” and abundant, Collet-Eckmann maps on the
interval were studied intensively in the eighties. Yet, it took another decade
before in the mid-nineties Przytycki advanced the technique of “shrinking
neighborhoods’ to study complex maps which satisfy the Collet-Eckmann
condition.

In [15], Collet-Eckmann rational maps were studied for the first time,
mainly from the point of view of ergodic and measure theoretical properties.
Another direction was adopted in [6], where an interaction between the
Callet-Eckmann condition and regul arity problems of the Fatou components
was explored.

Definition 1.1 The boundary of a simply connected dom&ins called
a Holder compact (with exponent « € (0, 1]) if the Riemann mapping
¢ : D — Q can be extended to a Holder continuous (with exporgnt
mapping on the closed unit disk.

The Collet-Eckmann condition for unimodal polynomialsimpliesHolder
regularity of Juliasets, [6]. Theimmediate consequence, by thework of [11],
is that the Hausdorff dimension of the Julia set of a Collet-Eckmann uni-
modal polynomial is strictly less than 2.

A few definitions. Recall map Ry which uniformizes the complement of
My in the sphere and istangent to z — 1/z at 0. Denote
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rq(y) == {Rq(te¥7) : 0 <t < 1} \ {o0}.
The Green functiorof thefilled-in Juliaset KX . isdefined in termsof iterates
of f;as
log | (2|
dn '
Definition 1.2 For w in the unit disc, lelogw = X + iy. Define the set
Q(w) to be the image bgxp of the square:

G:(2) = nILrQO

{u+iv: lu—x|,v—y| < m} .
’ 2

If Ge(2) > 2G.(0), define a Whithney domain @ := FC(Q(Fgl(Z))),

wherel'. is the Bottker coordinate on @, exp(—Gc(0))).

Whitney domains are constructed to control distortion of f.. Since Q(2)
is avery simple set in the Bottker coordinate, the action of f. on Q(2) is
smple, i.e. f.(Q(2)) = Q(fc(2)).

Typical expansion statement. Let us state our main theorem which es-
tablishes an expansion along the critical orbit, typically with respect to the
harmonic measure.

Theorem 1.1 Fix d > 2. There is a set#¥ C [0,1) of full Lebesgue
measure with the following properties. For every: #¢ there exist positive
constants, 6, o and an infinite increasing sequence of integersso that
the following hold whenever e ryq(y) and G.(¢) < e:

o if G¢(f"(C)) < ¢, then there is a neighborhood; Wf ¢ which con-
tains Q(c), is mapped univalently by onto the geometric disc
D(fM(c), 0), and U_1 \ U; is a ring domain with conformal modu-
lus at least,
e limsup_ ™ <96,
° Iimi_,oo mrln_Tl =1
Theorem 1.1 establishes aform of Tsujii’s condition introduced in [19]
for amost every ¢ € My in the sense of the harmonic measure. In our
setting, this condition means that we can pass univalently to a large scale
from neighborhoods of the critical value with positive density and relative
gaps shrinking to 0. As such the condition appears stronger than the Collet-
Eckmann condition and infact impliesit easily. For all weknow, however, it
might still be equivalent. For ¢ notin Mg, the same expansion holds until the
orbit of ¢ gets far away from X .. The constant 6 has a purely combinatorial
meaning (see Sect. 2.2 and estimate (3)) and is bounded by 9p, where pis
the maximal number of external rays which land at a fixed point of z¢ + c,
c € rq(y). Infact, 6(y) is constant on open sets.

An added feature of Theorem 1.1 is some uniformity of estimates. We
claim uniformity along externa radii with arguments from #¢, which will
be used in some corollaries.
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Genericity of the Collet-Eckmann condition. We will derive this result
from Theorem 1.1.

Theorem 1.2 For every d> 2thereis a subsetf C [0, 1) of full Lebesgue
measure such that for evepy e J# there are constants K- Oandi > 1
so that for each & rq(y) and every n> 0

IDfl(0)| = KA".

In particular, for al ¢ € Uyeﬂrd(y) the Collet-Eckmann condition
holds. The fact that the Collet-Eckmann condition is satisfied for amost
every ¢ € My in the sense of the harmonic measure was independently
proved by S. Smirnov, see [18]. That work aso includes estimates of
the Hausdorff dimension of maps violating the Collet-Eckmann condition,
which we only show to be of measure zero. On the other hand, it is known
that the Collet-Eckmann condition cannot be satisfied by infinitely tunable
maps, see [9], which form a set with positive harmonic capacity, see [13].

Asan immediate corollary to Theorem 1.2 we obtain that

Corollary 1 For almost every parametere d.Mq, the corresponding Julia
setd.. is locally connected and has Hausdorff dimension strictly less2han

Also,

Corollary 2 For almost every @ Mg in the sense of the harmonic measure
the orbit of c is dense in the Julia set.

Corollary 2 follows since the Julia set islocally connected and the external
argument of c inthe parameter space isthe same asthe external angle of the
ray from oo which converges at c. But almost every externa angleis dense
in the circle under the action of the map x — dx (mod 1).

These corollaries about the outside geometry of the Mandelbrot set
should be contrasted with Shishikura's work on topologically generic quad-
ratic polynomials, [17]. He proved that for a residua set of parameters
from the boundary of the Mandelbrot set the Hausdorff dimension of the
corresponding Julia set is equal to 2, in contrast to Corollary 1. Implicitly,
he proved that the set of Misiurewicz parameters on the boundary of the
Mandelbrot set has the Hausdorff dimension 2. This again is contrasted by
Corollary 2.

The harmonic measure also admits a probabilistic interpretation. If we
release a Brownian particle p(t) from oo and E is asubset of the boundary
of My, then

w(E) = Prob{p(to) € E} ,

wherety isthefirst timethe particle p(t) hits M y. Hence, ageneric Brownian
particle on its trip to the Mandelbrot set omits a subset of its boundary of
the Hausdorff dimension 2 (Shishikura's result), and accumulates on a set
of dimension 1 (by Makarov'swork [12]) of parameters for which Julia sets
have Hausdorff dimension strictly less than 2.
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Radial limits of the Hausdorff dimension of Julia sets. For every uni-
critical Collet-Eckmann polynomial z% + ¢ with ¢ € d.My, there exists

asequence c, € C\ Mgy (Shishikura's theorem) such that
nIim HD(g.)=2.

By [6], HD(4.) < 2 and hence the Hausdorff dimension of Julia sets as

afunction of c € C \ Mg does not extend continuously to 9.Mg.

Another type of discontinuity of HD(-) is due to a parabolic implosion.
Assume that 2% + cg, ¢y € ry(y), has a parabolic cycle. In this setting, the
parabolic implosion means that ¢, is strictly smaller than the Hausdorff
limit of g, whenrgy(y) > ¢ — Co. It wasrecently shownin [3] that if d = 2
and ¢ > 1/4 then

HD(&1/4) < liminf HD(F,) < limsup HD(g.) < 2.
c—~>1/4 o—>1/4

Yet, typicaly with respect to the harmonic measure on d.M4, HD(-)
extends radially as a continuous function.

Corollary 3 For every d> 2 there is a subse¥ of [0, 1) of full Lebesgue
measure such that for evepye # and g € rq(y) N My,
lim HD(g.) = HD(g,,) -
ra(y)sc—Co
The proof of Corollary 3isbased on Theorem 1.2, in particular itsclaim
regarding uniform expansion along rq, and the continuity properties of the

Hausdorff dimension in the class of rational functions which satisfy the
so-called summability condition in auniform way, [7].

Definition 1.3 We say that polynomials;(z) = 2% + ¢, c € I, satisfy the
uniform summability condition with exponenif they do not have parabolic
orbits and there exists M 0 so that for every & T,

Z}chi(c)}‘“< M .
j=1

One of the main results of [6] asserts continuity of the Hausdorff (Minkow-
ski) dimension of Julia sets in the class of uniformly summable rational
functions. We formulate a weak version of this result for unicritical poly-
nomials.

Fact 1.1 If polynomials §(z) = z¢ + c satisfy the uniform summability

-y . 1
condition with an exponent < 5 then

lim HD(7) = HD(d,) -

If ¢ € rq(y) then, by Theorem 1.2, ¢ 4 ¢ are uniformly summable with
any positive exponent « and Corollary 3 follows.



Harmonic measure and expansion on the boundary of the connectedness locus 611

1.3. Outline of the proof

The main result is Theorem 1.1. Theorem 1.2 will be derived from it.

The paper begins with areview of Yoccoz partitions and their relation
with induced dynamics. We recall that to construct a Yoccoz partition one
needs to find a repelling fixed point and a periodic ray from oo which
converges at this point. These rays divide the plane into finitely many
pieces which we call ray-sectors. We show how such a point can be found
for polynomials outsideof My, and then demonstrate that it persists as ¢
tends to the boundary of My along almost every external radius. This part
of the paper basically recapitul ates known facts.

Thekey observation isthat itinerary of thecritical orbit under f. through
the ray-sectorsis easily predictable in terms of the externa argument y of ¢
defined by the Riemann map of the complement of Mq4. In fact, it is the
same as the itinerary of y under the map T(X) := dx (mod 1) with respect
to the partition of the circle by the external angles of the rays converging to
the fixed point.

We interpret the dynamical system defined by T probabilistically as
aBernoulli shift. Thisallows usto prove acertain property of almost every
itinerary purely in terms of the Bernoulli shift, essentially stating that the
critical itinerary does not come back too close to itself too often under the
shift. Thisproperty, however, trandlates into the same property of thecritical
itinerary with respect to the ray-sectors which holds almost everywhere with
respect to the harmonic measure, and that property implies Theorem 1.1.

The proof is self-contained except for rudiments from complex dynam-
ics.

2. Yoccoz partitions

We consider the dynamics of polynomials f.(z) = z% + c with c acomplex
parameter, zacomplex variable, and d aninteger greater than 1. Thedegreed
isfixed oncefor al inour proofs. The parameter cisvariable, but sometimes
we will still suppress it from the notation by writing f for f..

2.1. Rays fromo
Recall the Green function of thefilled-in Julia set K :

log| 17(2)|
o

When ¢ ¢ K, then the Green function has critical points at points ;' (0)
fori =0, 1, ---. A smooth rayn the phase spaceisagradient line of the G,
with closure that intersects both oo and X .. It is understood that a gradient
line by definition avoids critical points of G and is, therefore, smooth. The

G.(2) = nIi_)rpo
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literature sometimes talks of rays which are not smooth, but we will not
discuss those. For some smooth rays, the closure intersects K . at precisely
one point. We then say that the ray convergesat that point. Notice that the
image of asmooth ray p isanother smooth ray and if o converges at z, then
fc(p) converges a f.(2).

Dynamics near co. All gradient lines are well defined on the set
{z: Gc(2) > G¢(0)}. They are labeled by angles at which they enter
00, the so-called external anglesWe will follow the tradition and identify
the set of external angles with real numbers modulo 1. On the set of angles
we have the map T(x) := dx modulo 1. Map f; sends a gradient line with
external angle x to the gradient line with external angle T(x). Of particu-
lar importance is the critical external angley(c) which is the angle of the
gradient line which passes through c.

Each of these gradient lines near co continues until it meets either
a critical point of G or converges to K. If aline meets a critical point,
then someimage of it isagradient line which hits c. We see that a gradient
line with external angle x extends to a smooth ray provided that x is not
apreimage of y(c) under T.

Riemann map of the complement oiMy. We have the following basic
fact, see[2]:

The functiorexp(—G¢(c) + iy(c)) considered on the complement of the
connectedness locus on the Riemann sphere is univalent and maps onto the
unit disk. Its inverse is the Riemann ma&y.

Any linein the parameter space of the form y(c) = y, will betermed an
external radiuswith angle yy.

Rays converging at fixed points. We will now consider what happens
when c is outside of the connectedness locus and varies along an external
radius. This means that the external argument of the critical value c in the
phase plane remains fixed at .

Lemma 2.1 Suppose that the orbit ¢funder T is dense. Then for each cin
this external radius one can find a repelling fixed poitt)avhich depends
analytically on ¢ and an external anglewith the following properties:

A is periodic under T with period p- 1,

the entire orbit ofA under T is contained in a certain arc S, which
contains points T(y), 0 <i < p — 2, but no elements of T(y),

there is a smooth ray of external argumenivhich converges to(q),

A only depends om, i.e. remains constant along the external radius.

Proof: Choose ¢ on this external radius and consider the set L := {z :
G¢(2) < 0.9 G(0)}. Set L consists of d digoint smooth Jordan domains,
each of which ismapped by f. univalently over thedisc f.(L) containing L.
Since the mapping isan expansion in the hyperbolic metric of f.(L), setsof
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points characterized by finite itineraries through various components of L
shrink exponentially in diameter.

The boundary of each component of L attracts gradient lines from oo
with external angles contained between two preimages of y under T, con-
secutive in the cyclical ordering. At least one of these d setsisfree from the
fixed points of T. Choose one and call it S. The corresponding component
of L isLg. Lo contains afixed point of f. uniquely defined by the condition
that it remains in Lo forever under iteration by f.. Thisis q(c). Observe
that if an externa angle forever stays in S under iteration, then there is
a smooth ray with this angle which converges at q(c). Indeed, the orbit of
this angle under T is not dense, so it cannot hit y whose orbit is dense by
the hypothesis, thus the ray is smooth. Also, it intersects the boundaries of
all sets defined by finite itineraries Lo - - - Lo. These sets shrink to g(c) in
the Hausdorff metric, and so each such ray indeed converges at g(c).

Theset A = (N2, T~ (S isclearly compact, non-empty, nowhere dense
and T(A) C A. Wewill provethat A isperiodic. Let us first suppose that
A isinfinite.

Consider connected components of the complement of A and call them
gaps Those which are contained in S will be designated as inner. The
remaining outer gap has length greater than % Fix an orientation on the
circle so we may talk of the beginning and end of each gap. Since A is
infinite it has infinitely many gaps. Notice that each inner gap is mapped
by T onto some gap, possibly the outer one. Indeed, if x isinside an inner
gap and T(x) € A, then the orbit of x forever staysin Sand hence x € A.

We claim that for each i > 0, there is an inner gap G; mapped by T
onto the outer one. Write G, for the outer gap. For some i, consider the
st P o= U'j;loT‘j (Go). Since we assumed that there are infinitely many
gaps, the complement of P, hasinterior and so cannot be mapped into itself
under T. Then thereisan inner gap G; not in B, but with theimagein P,.
One easily seesthat T'(Gj) = Go.

Gaps Gj, i > 0, cannot be al distinct, since thelength of G; isd™ |Gy,
andtheir joint length would be morethan 1/d in contradiction to the fact that
al these gaps arein S. Thus G; = Gj for some j > i, or T'7'(Gg) = Go
which cannot be. Thus A isfinite, let's say with p elements. Observe that
since A is contained in an arc with length less than 1/d, T acts on A
as a permutation. The shortest gap Gp_1 is mapped on all other gaps by
consecutive iterations of T. Hence, the orbit of an endpoint of Gp_; is
trangitivein A, and A isasingle periodic orhit.

To finish the proof of Lemma 2.1, we still have to look at the second
clam. A was constructed so that it is contained between two consecutive
preimages of y. The point y belongsto agap of A. UnlessthisgapisG_,
it hasapreimage under T whichisanother inner gap. Then y hasapreimage
in that inner gap, contrary to the construction of A. Hence y € G,_; and
0 Ti(y) for0 <i < p— 2al belong to inner gaps. O
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Passage to the boundary

Lemma 2.2 Fix some g in the boundary of the connectedness locus and in
the closure of an external radius of angteFor almost every in the sense
of the Lebesgue measure, one gets the following picture.

The orbit ofy under T is dense on the circle, and for every ¢ on the
external radius one gets the repelling fixed poi@qvhich intercepts a peri-
odic smooth ray with external argumentby Lemma 2.1. Furthermore, the
function gc) has a limit g as c— ¢p, gp is repelling and the ray with angle
A still converges at g

Proof: Consider the subset I" of the circle consisting of al y with dense
orbitsunder T. Clearly, I' is of full measure. By subtracting from I" another
set of zero measure, we can assume that every externa radius with angle
from I" converges to some point on the boundary of the connectedness locus.
Clearly, if afixed point is repelling and attracts a smooth ray with external
angle «, then this situation is stable under a perturbation, moreover the ray
moves continuoudly in the Hausdorff metric on the sphere.

Let ¢, belong to the radius and converge to ¢q. The fixed points q(c,)
converge to a fixed point qo. If qo is repelling, then we are done. So it
remains to rule out the case of g neutral. The ray with external angle 2,
must converge to some periodic orbit Q of fe, which is either repelling or
neutral. Notice that ¢y € My, and in this situation convergence of rayswith
rational angles goes back to [5]. Point Q cannot be irrationally neutral by
the “snail argument”, see the proof of Lemma 2.4 on pages 7677 in [1]. It
may be parabolic. However, there are only countably many ¢, for which fg,
has a parabalic orbit, as we prove below. On the other hand, the harmonic
measure is non-atomic, see Theorem 17.18 on page 345 in [16]. So, the
harmonic measure of ¢y for which fg, has a parabolic orbit is null. So,
by subtracting from I' a set of zero measure we see that Q is repelling.
But then it persists under a perturbation, so a nearby periodic point Q(c,)
il intercepts the ray with external argument A for aimost al c,. Hence
Q(cy) = g(cn) and Q = qg in the limit which proves that qq isrepelling. O

For completeness, we prove the following.

Fact 2.1 For every d> 1 there are only countably many complex values
of ¢ for which the mapfz) = z% 4 ¢ has a parabolic periodic point.

Proof: We will prove a stronger statement.
If k > 0, and A is a complex number with absolute value less or equal
to 1, then the pair of equations

dfk
fX2 =z andd—zc(z) =

has only finitely many solutiorg, z).
The proof isbased on the following theorem about Riemann surfaces of
algebraic functions, see [4] Theorem IV.11.4 on pages 231-232,
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Fact 2.2 Consider the equation (B,z) = 0 where P is an irreducible
polynomial of two complex variables. Then the set of solutions, compactified
by adding points at infinity, has the structure of a compact Riemann surface.
Moreover, projections on ¢ and z are meromorphic of this surface.

This theorem applied to the polynomia fX(z) — z = 0implies that the
set of solutions splits into the union of finitely many compact Riemann
surfaces. On each of these, the function

dfx
E(Z)

is meromorphic. If it takes value A infinitely many times, by the identity
principle it must be constant on one of the surfaces, call it S. If apair (c, 2)
solves both equations, it means that ¢ must be in the connectedness locus
in the parameter space, and z is in the Julia set. Hence, both projections
map the finite points of Sinto a bounded set in the complex plane. The
image of Sunder either projection must be compact, since the projection is
continuous. But since the projections are also open mappings or constant,
the image of either of them isjust apoint. Hence, Smust be a point, which
isimpossible. O

2.2. Construction of symbolic dynamics

Ray-sectors and gaps. For this section, we assume that ¢ € Mq isin
the closure of the external radius with angle y and ¢ belongs to the set of
full measure on the circle on which the assertions of Lemmas 2.1 and 2.2
hold. In particular, f. has a fixed point g(c) which attracts a smooth ray
with external angle A. Thisray isperiodic under T with period p. Rayswith
external angles A, .., TP~1(3) divide that plane into p ray-sectors. These
sectors correspond to the gaps of thesst A = {T'(A) : i =0,---, p—1}
in the parlance of the proof of Lemma2.1. Namely, each gap consists of the
external angles of gradient lines from oo which belong to the corresponding
ray-sector. Asin the proof of Lemma 2.1 we distinguish inner and outer
gaps.

The action of f. on ray-sectors is easy to understand in terms of T
acting on gaps. Denote s; the gap which contains y and s the outer gap.
Then Lemma 2.1 implies that s; needs p — 1 iterates of T to be mapped
onto . This affords anatural labeling sy, - - - , sp—1 such that T(s) = S41
modulo p. Finaly s, is mapped over the whole picture severa times. We
apply the same labeling to ray-sectors S. Then f. is univalent on any S,
i > 0, and mapsit onto S, 1, and has acritical point 0in &. & is mapped
onto all ray-sectors.

Itineraries. We can now study itineraries of points in the phase plane of
f. with respect to the ray-sectors and points on the circle with respect to the
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gaps. Consider itinerariesk(c, z) = Ko, - - - , Ky, - - - defined by the condition
fi(z2) € § and £(y) = Lo, --- , £n,--- Qivenby T'(y) € s,. Since neither
the ray-sectors nor gaps form a complete covering, either itinerary may be
finite.

Here is akey observation.

Lemma 2.3 For c typical with respect to the harmonic measure, k) =
£(y) and both are infinite.

Proof: Choose a sequence ¢, of points in the external radius with argu-
ment y, in such away that ¢, — c. Typically, by Lemma2.1, £(y) isindeed
infinite. Moreover, k(c,, ¢,) = £(y) for every n, because ¢, belongs to the
gradient line from oo with external angle y. Thelimiting pictureasc, — ¢
is described by Lemma 2.2 which implies that the sets consisting of g(c,)
and the smooth rays with angles A, - - - , TP~1(%) in the phase space of f,
converge in the Hausdorff metric on the sphere to g(c) and the correspond-
ing rays in the phase space of f.. Thus, one gets k(c,, ¢,) — K(c, c) in
Tychonoff’s topology, and so k(c, ¢) = £(y) follows. O

The Yoccoz partition. Let us continue to develop the picture of ray-sectors
and corresponding gaps. Consider thetopological disc A:={z : G¢(2) < L},
L isaparameter which will be specified by Fact 2.3. A intersects each ray-
sector § aong a “curvilinear triangle” A;. The collection of these Ai’s
is sometimes referred to as the Yoccoz partitionfor f.. One can consider
itineraries K'(c, z) with respect to the Yoccoz partition. Clearly, K'(c, 2) is
an initial substring of k(c, z), but may be shorter if the orbit of z leaves A.
For z € KX, theitineraries are identical.

Induced maps. Theaction of f; onray-sectors §,i > 0, isboring: eachis
mapped univalently onto S, modulo p. Asaresult, codes k and ¢ contain
alot of redundant information, since every non-zero symbol predicts the
following one.

Definition 2.1 An induced mapd. is defined on the union of all ray-
sectors SON S, i > 0, we setd, := f*'. on S, ®. = f..

Fact 2.3 For an appropriate choice of the parameter L, dependingyon
in the construction of the Yoccoz partition, the following statements hold:

o ®:. maps anyA; over the union of aliA ;.

e If K C Aj is relatively compact inAj, then ®;1(K) is relatively
compact in P A;.

o If j # 1, then®d;1(A)) is relatively compact iruip:_o1 Aj.

o If the parameter L is chosen sufficiently small, depending only on the
set of rays converging at(q) and if ze Aj, ®¢(2) € Aj, j # 1, then
the closureQ(z) of the Whitney neighborhood (@ is contained inA;.

e The only critical value ofb. is at c and is a branching point of degree d.
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Proof: To get ®.(z) we first map z to § and then one more time. The
properties of ®. depend on thislast iteration, which can be easily understood
in terms of the map T acting the external angles of rays. Proofs are then
easy and mostly standard except for the claim concerning Q(2). If z € A,
and ®.(2) € Aj, j # 1, then consider a piece of the equipotential curve
which passes through ®(z) and joinsthe boundaries of A ; and two adjacent
sectors. Thiscurve hasapreimagein A; which isapiece of the equipotential
curveof level at most L /d < L /2 and extends afixed distance, as measured
in external angles, on both sides of z. If L/2 is smaller than that angular

distance, it meansthat Q(2) C A;. O

We can now consider simplified itineraries w(c, z) with respect to @..
w(C, 2) is easy to abtain from K'(c, z): we skip every symbol which has
a predecessor and this predecessor is different from 0. The transformation
Z — w(C, z) semi-conjugates & to the full shift on p symbols.

2.3. The Bernoulli model

We can construct amapping ¢ induced by T on the circle which corresponds
to ®c. Thus, ¢ = T on and ¢ = TP~'*! on any other 5. The critical
itinerary w(c) := w(c, ¢) equals the itinerary of y under ¢ according to
Lemma?2.3.

Noticethat ¢ dependsonly on A, but not directly on y. If c changesalong
.My, v changes aswell but A islocaly fixed. This justifies an important
strategy for proving properties of the critical itinerary of w(c) which are
valid almost everywhere with respect to the harmonic measure. Namely,
one fixes ¢ and proves that the property holds for aimost al y.

As to the structure of ¢, it maps every gap s affinely onto s and
then piecewise affinely onto various gaps s;. Hence, for any q > 0 and
0<i,j<np

lp~%s)) NS

Is|
depends only on j but not on i or g. Hence the mapping ¢ — S(w(y))
where Sdenotes the shift transports the harmonic measure from the bound-
ary of Mq to the probability distribution of a Bernoulli shift on p symbols.
The shift, as a probability space, is determined by ¢ and hence properties

of codes that hold with probability 1 for the shift are typical with respect to
the harmonic measure.

Pi, j, g =

Definition of the model. Consider aBernoulli shift on p symbols denoted
0,1,---, p—1, withitsnatura Tychonoff topology and product probability
measure. Let Q2 denote the space of the shift and Sthe shift map. A point
w € Qisidentified with asequence xp(w) = 1, X1 (@), - - - , Xp(w), - - - With
X (w) €{0,1,---, p—1}fori > 0. Theinitial 1reflectsthefactthaty € s;.
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Let us introduce a metric on  which induces the Tychonoff topology:
namely if w1, w, € © wefind theleast i > 0 for which X (w1) # X (w2)
and set d(w;, wp) = 27'. Note the improved triangle inequality:

d(w1, w2) < Max(d(wy, w3), d(ws, wy)) .

Furthermore, Sis 2-Lipschitz with respect to d.
Let N denote the set of positive integers, and Z, = N U {0}.

Definition 2.2 Givenw € Q, let us define a function

Po: N— N
as follows
po(K) =inf{j > 0: d(Sw,w) <27 .
Informally spesking, p,(k) = j means that starting from j at least

through k — 1 the code x; (w) repeatsitsinitial sequence starting with Xg(w)
and j is the smallest positive number with this property. For j = k this
requirement becomes vacuous, so p,,(K) < k.

The probability of 1. By Lemma 2.1 the symbol 1 corresponds to the
smallest gap which is mapped onto s by TP~1. Hence |s;| < '%0‘. SinceT is
measure preserving, the preimage of s; in S has length no more than |s|/d
and so the probability of 1isno morethan 1/d < 1/2.

We are now ready to state the resullt.

Theorem 2.1 In the Bernoulli model suppose that the probabilitylos
no more thanl/2. Then there is a functiorn : Q@ — N U oo, finite and
continuous almost for sure, and far from a set of full measure one can
find an increasing infinite sequence of integet@lk so that

o foreveryi, k— p,(ki) <« and % 11(w) # 1,
e limsup;_, 'f‘— <9,

o lim2 =1,

Aswewill later show the properties of w(c) given by Theorem 2.1 easily
trandate to the typical properties stipulated by our main theorem.

3. A theorem in symbolic dynamics

This section is devoted to the proof of Theorem 2.1 which proceeds entirely
inside the Bernoulli model.
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3.1. Combinatorial considerations

We will prove certain properties of the function p,,. We give formal proofs
based on the metric d. Alternative proofs can be constructed by using the
interpretation of function p,, in terms of repeating codes.

Lemma 3.1 If w € Q is not periodic under S, then
kIim Po(K) = 00 .

Proof: Function p,, is non-decreasing, so we have to prove that it does not
stabilize. If it does for a certain value j, then Definition 2.2 implies that

d(Sja), w) < 2i—4
for q arbitrarily large, so S'w = w contrary to the hypothesis. O
Lemma 3.2 Letw € Q. If p,(K+ 1) > p,(K), then
Po(K+ 1) = pu(K) + pu(K— pu(K) .

Proof: Denote j = p,(k) and J = p,(k+ 1). Then d(S'w, w) < 29-K-1,
Next,

d(Sw, w) < max(d(S’w, w), d(S v, Sw)) (1)

and

d(S’w, S w) = d(S (S w), S w) < 27 1d(Fw, w) < 277K

Now estimate (1) leadsto

d(Sw, w) < max(2) 7K1, 277K = 207k = p0=h=k=D

In view of Definition 2.2 this means that
which is precisely what the lemma claims. O

Inthefirst step of the proof of Theorem 2.1, wecan now definefunction«.
It will still depend on an integer parameter L to be specified later. Define x|
by the condition that for k > x| (w) wehave p,, (k) > L + 1. If thiscondition
isimpossible to satisfy, put x(w) = oo. In view of Lemma 3.1 function «_
isfinite for al w not periodic under the shift. Also, wherever k| (w) < oo,

Kk 1sconstant on aneighborhood of w, which means that the set of its points
of continuity has full measure.
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3.2. The key argument

Proposition 1 For a certain choice of a positive integer L the following
holds true. Let G be defined as the set of allkN for which k— p,, (k) <
ICL(C()).

Then almost surely fap € Q:

e Kk (w) < 00,

n—o00 n

9’

Wl

e except for finitely many n, if & G, then

Go,N(n,Nn+/N)#0.

The first property holds whenever w is not periodic under S, which istrue
almost everywhere regardless of L. Since « is locally constant, we can
restrict the attention to a cylinder €29 on which « | isfinite and constant. In
particular, we will talk of probabilities conditioned onto Q.

Let us start with an elementary lemma.

Lemma 3.3 Consider a sequence of m independent Bernoulli trials, each
with the probability of success at most<P1. For some M> 0O let X; bel
if the i-th trial is a success, oM if it is a failure.

There is a constant ylonly depending on P so that if M M, then
>, Xi < —m with probability at least. — exp(—m%).

Proof: Consider a generating function
m
G = E(exp(t )" X)) = (PE + (1 — Pe™)"
i=1
wheret > 0. Choose Mo(t) so asto ensure that e ™Mo® < 1P Then

G < (?)mexptm < exp (mt— m%) .

If & denotes the probability of the event consisting in 1" ; X; > —m, then
aexp(—mib < G(b)

and
o < exp <2mt— m%) .

Fix t = 1B, Now the Lemmafollows with Mg = Mo(152). o
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We now indicate the idea of the proof of the remaining part of Propo-
sition 1. We watch a non-negative function r,(k) := k — p,(K). As k
grows by 1, thenr (k) may increase at most by 1, and that only happens if
Xir1(w) = Xk_p, (0+1(@). Call theevent r,(k + 1)(w) > r,(K) asuccess at
k 4+ 1. Clearly, this defines independent trials with probabilities of success
al bounded by P < 1 where P is the maximum of probabilities of any
symbal. If k ¢ G, meaning that r, (k) > «, then failure a k + 1 means
that we get p,(r,(k)) > L +1andr,(k+ 1) —r,(k) < —L.

If we count only the trials which follow k ¢ G, N [n, n + m), then
by Lemma 3.3, with overwhelming probability r,, will jointly drop by the
number of such k. Regardless of the outcome of trials following k € G,,,
r,(k) may grow at most by 1. If k ¢ G, are more than 2/3m, this implies
adrop by m/3. But on the other hand, r,,(k) is non-negative which yields
alower bound on the density of G, in [n, n + m).

Let us state this reasoning formally.

Lemma 3.4 Fix L and considem in a cylinder wherec, takes a constant
finite value, choose integerssn k. and m in such a way thdOr,(n) < m.

Let P denote the maximum of probabilities of any single symbol. There
is a constant k which depends only on P so that if £ Lg, then with
probability at leastl — exp(—mizE)

m
|Gwﬂ[n,n+m)|>§.

Proof: Let Bm be the number of integersintheset B = [n,n+ m) \ G,,.
For any k € B let uscal it asuccesswhen p,(k+ 1) = p,(K). This defines
a sequence of Bernoulli trials with the probability of success at most P.
On the other hand, if k ¢ G,,, thenr,(k) > . and by Lemma 3.2 and the
definition of x|, r,(k+ 1) —r,(k) < —L. We apply Lemma 3.3 to this
sequence of Am trials. We get that thereis Lo := Mg depending only on P,
sothat if L > Lg, then

D rok+1) —r,(0 < —mp @)

keB
with probability at least 1 — exp(—mBi5E). For any k € [n, n + m),
ro,(k+1) —r (k) <1.
Let B®:=[n,n +m) N G,. Hence, assuming estimate (2),

Fu(M+M) —1,(M) =Y 1K+ 1) — 1,0 + Y ryk+1) —r,(K)
keB ke B¢
=-—mg+ml—p) =ml-2p).

Butr,(n+ m) > Owhiler,(n) < 0.1m by the hypothesis of the lemma, so
ml-26) >r,(n+m)—r,mn)>-01m.
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Thus, estimate (2) implies 8 < 0.55. Hence, if 8 > 2/3, then estimate (2)
fails, which happens only with probability not exceeding

exp(—m%).

O

Now Proposition 1 follows easily. The claim regarding the asymptotic
density of G,, followsif weapply Lemma3.4withn = k| , and m expanding
to co and invoke Borel-Cantelli’s lemma. If we now apply the lemma with
m = [/n], weget that amost surely for dmost all n eitherr,,(n) > 0.1[,/n]
or

|G, N[N, N+ /N > [/n]/3.

For all n sufficiently large the first condition implies that n ¢ G, and the
second onethat G, N (n, n + /n) # ¥ as needed.

3.3. Avoidingl'’s in the itinerary

Choose an w € 2 for which the properties specified in Proposition 1 hold.
Let us order the elements of the set G,, in an increasing order. This gives
us asequence K; (w). If wetry to satisfy Theorem 2.1 with this sequence, it
worksexcept for onedetail: thereisno reason to expect that Xy, ) +1(@) # 1.
Thus, we have to win now the sequence which satisfies this condition and
make sure that we don’t lose the desired density properties.

We can define a sequence of Bernoulli trials in which the j-th trial is
considered asuccess if and only if Xy, ) +1(w) # 1.

Lemma 3.5 Almost surely fok € 2 in addition to the properties listed in
Proposition 1 there is a set Hof positive integers for which the following
hold:

o forevery je H,, X @+1(®) # 1,

H,N[1, 1
° Iiminfﬁzé,

n—oo n

o for almost every re N, H, N (n, n + J/n) # @.

Proof: We define the set H,, by the requirement that the first property hold.
Symbol 1 corresponds to the smallest gap inthe set A and so its probability
is no more than 1/2 by the hypothesis of Theorem 2.1. So for every j, we
can consider a “trial” which succeeds when Xy, 11(w) # 1. This defines
a sequence of Bernoulli trials with probability of success at least 1/2. By
techniques similar to those used in the proof of Lemma 3.3, one proves that
in the sequence of n such trials there are at least n/3 successes except for
an event with probability exponentially small in n.

Then the remaining two properties of Lemma 3.5 follow easily from
Borel-Cantelli’s lemma, just asin the proof of Proposition 1. O
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We can now form an increasing sequence of elements of the set H,,,
and denote it with j;(w). Ultimately we form a sequence K, ., (@). From
now on we will skip the dependence on w in order to unclutter the notation.
We claim that the sequence Kkj; can be used as k; in Theorem 2.1. The first
property of Theorem 2.1 isnow satisfied since the sequence was specifically
chosen that way. As regards the second one, we compute

Iimsupﬁ < Iimsupk—.J . IimsupL <9
1—00 =00 1—00
since both factors are bounded by 3: thefirst by Proposition 1 and the second
by Lemma 3.5.

To prove that last claim, we first observe based on Lemma 3.5 that for
amost every j € N among k;, - - -, k; 47, we can find an element of the
sequence kj; . It will be enough to show that

jim S0

From Proposition 1, for aimost all |
@ < 1+ i .

Hence,

(¥ Nl
Ki+r4m) <T1(2+ 1 - 14+ 2)
K; s=0 \Y% Kjts \/kT

Since obviously kj > j, we further estimate

1+ ! <1/T<<l+ 1)M<exp 1

ki) T\ Vi) T g
which tendsto 1 as j tendsto oc.
Theorem 2.1 has been proved.

4. Proofs of main theorems

As dready observed, Theorem 2.1 lists properties of the critical itinerary
w(c) which are typical with respect to the harmonic measure of 3.My. We
will now trandate these properties into a statement which already clearly
shows expansion along the critical orbit and proves Theorem 1.1.

We start with preparatory geometric considerations which go back to
the induced mapping ®.. introduced by Definition 2.1.
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4.1. Yoccoz pieces

Consider anitinerary Xo, - - - , Xk- A Yoccoz piecef order k following this
itinerary isany maximal connected set of points z for which thefirst k 4 1
symbols of their itineraries w(c, z) arethe same as xg, - - - , Xk.

Lemma 4.1 If a Yoccoz piece D of order k follows the itinerary; x- - , X,
then®X restricted to the piece is a proper holomorphic map ontg.

Proof: Obviously, F := ®K is a holomorphic map from the Yoccoz piece
into Ay, . We haveto show that F isproper. The proof proceeds by induction
with respect to k. For k = O, F is the identity map. In general, ®¥ =
@ o ®K1, both proper by the induction hypothesis. O
Asaconsequence of Lemma4.1, ®X isonto A, and afinitely branched
cover. In particular, D isatopologica disk. Here is another corollary:

Lemma 4.2 Consider two Yoccoz pieces: D of order k which follows an
itinerary xo, - - - , xcand D' C D whichfollowstheitinerary, - - - , X, X1
with .1 # 1. ThenD’ is contained in D.

Proof: Observe that

D' C &M@ (Axy)) -
But by the properties of @, listed following its definition, ®~1(Ay,,,) is
relatively compact in Ay, and so the claim follows by Lemma4.1. O

The next lemma establishes a connection between the dynamics of @,
on neighborhoods of ¢ and the combinatorial function pg.
Lemma 4.3 Suppose that D is a Yoccoz piece of order k which contains ¢
and follows the critical itineraryw(c). Then®d{ are univalent on D for all
I < Poe)(K).
Proof: Choosethesmallest j for which d>(j; isnot univalent. Then <I>3; (D)>c.
But then the k — j consecutive symbols of w(c) starting from the beginning
and from the wj(c) are the same, or d(S'w(c), w(C)) < 2/ ~Kwhich implies
] = pue(K) by Definition 2.2. ]
Another observation concerns Whitney domains Q(2).
Lemma 4.4 Consider a Yoccoz piece D of order k and suppose tkatr
and the itinerary of z has length at leastK with the k+ 1-st symbol other
thanl. ThenQ(z) c D.
Proof: The proof follows by induction with respect to k. For k = 0, thisis

one of the claims of Fact 2.3. Then & isproper from apiece of order k onto
apiece of order k — 1 and ®,(Q(2)) = Q(®.(2)) sotheclamfollows. 0O

Finally, on a Yoccoz piece of order at least k, ®¥ isthe same as fmo®),
which defines afunction mp. Obvioudly, for every D,

k < mp(k) < pk
where p isthe number of ray-sectors in the construction.
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4.2. Proof of Theorem 1.1

Let us reduce Theorem 1.1 to Theorem 2.1. Set J#¢ is chosen as the set of
external angles for which the Yoccoz partition iswell-defined and the claim
of Theorem 2.1 holds for the critical itinerary w(c). For y € #, choose
Co € Mg Nrg(y).

For c e rq(y), let V/(c) bethe Yoccoz piece of order n which followsthe
itinerary w(c). Then K/ (c) is the union of pieces of order n + 1 contained
in V. (c) which follow w(c) up until x,, and then Xn1 runs through all
values other than 1. Both are well-defined for ¢ close enough to My. By
Lemma4.2, the closure of K/ (c) is contained in V, (C).

For every fixed n, the set V/(c) \ K/ (c) contains an annulus A/ (C).
Pick some N, which will be specified later. Then the moduli of A7 (c) for
n=0,---, N can be bounded from below by a(c) > 0. If ¢ varies along
ra(y), the sets K/ (c) and V,;(c) move continuously in the Hausdorff metric
and hence a(c) can be chosen as a continuous function of ¢ € rq(y). Hence,
for ¢ sufficiently close to My, we can extract a common lower bound «.
That c is close to My can be guaranteed by choosing parameter ¢ small
enough in the hypothesis of Theorem 1.1.

We verify the first claim of Theorem 1.1. Recall the sequence k; from
Theorem 2.1. Suppose that the critical itinerary continues at least through
one more symbol beyond x (y). Let U; be the Yoccoz piece of order k;
which contains ¢ and follows the critical itinerary. Of course, U; depends

on ¢, but we suppress that in our notation. By Lemma 4.3, o™ maps
U; as a branched cover of degree d with the only critical value at ¢ onto
aYoccoz piece of order ki — p,c (ki) which follows the critical trajectory.
But Theorem 2.1 states that ki — p,,) (ki) < N := «, so that in fact

forsomen = 0, .., N—1. Thuswehave specified N used beforeto choose «.

Moreover, Theorem 2.1 also states that the symbol in w(c) following the

Pu(e-thoneisnot 1. Thus, d)é’”“)(m(c) € K. Annulus A, hasapreimage A,

by cpé’“"”““). Clearly, A;_; contains U; in the bounded connected component
of its complement. Lastly, by Lemma 4.4 applied to D := U; and z := c,
Q(c) Cc U.

To prove Theorem 1.1, we choose V,(c) := f-1(V/(c)) and Kn(c) =
f-1(K/(c)) so that U; is mapped univaently onto V,(c) by fM™, with
fi(c) € Kn(c). For afixed cand n < N, diam K,(c) > n(c) > 0. Since
Ky (c) move continuously with ¢ in the Hausdorff metric, n can be made
independent of c for ¢ closeto My. Since V,,(c) and K, (c) are separated by
an annulus with modulus at least «/d and the diameter of K, isat least 7,
by Teichmiller’'s module theorem, see [8] page 89, V,(c) contains a ball
centered at " (c) with afixed radius.

Finally, we have to justify our assumption that the critica itinerary
has length at least k; + 2. If not, Gc(d>'§ (c)) is bounded from below by
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aconstant which only dependson y . But <I>§ = f +1 and hence G ( f(c))
has a similar lower bound. By making the constant ¢ in the statement of
Theorem 1.1 small enough, we can then satisfy the first claim in a vacuous
way.

It remains to verify the two claims of Theorem 1.1 which have only
to do with the sequence m; = my, (pu(ki)) — 1. Recall that the func-
tion my, simply recomputes iterates of @ into iterates of f.. We have that
i <m < pk and

[
ki

=

©)

ol

[
m;
But inf |Iq_ > 1/9 by Theorem 2.1, and so we put 0 := 9p.

It remains to prove that

oMy —m;
||m¥
i—0 mi

=0.

We estimate
Mg —m < my, ((Kgz —K) + (K — poe(ki)) < pkizs — ki +N) .
Similarly,
m >k — N and

™ Miy1 — M
i—o0 m; i—o00 ki —N
0 lim o % = 1 by Theorem 2.1.
This concludes the proof of Theorem 1.1.

4.3. Exponential derivative growth

We will prove Theorem 1.2. Let us take y from the set #¢ of Theorem 1.1
and use notations of that Theorem.

We need afew auxiliary lemmas to start. Our estimates must be inde-
pendent of ¢ € rq(y), but can and will depend on y.

Lemma 4.5 There are constantsC> 0 and¢; > 1, depending only o,
so that for every o= rq(y), Ge(€) < €, whenever G f"(c)) < ¢, then
DfM(c) > Cy ¢

Proof: U; is surrounded by a sequence of nesting annuli U;_1 \ Uj, j =
1,---,i, each with modulus at least €. Hence mod (Ug \ U,—) > je. Recall
that Uy is contained within the region delimited by the equipotential curve
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G¢(2) = L, thus a bounded region of the plane. By Teichmuller's module
theorem, see [8] page 89,

ie < 2log4 + log <1+ diam UO)

diam U;
and hence for i sufficiently large
diamU; < diam Ugexp(—e¢i/2) .
Sincelimsup;_, ., * < 6, forali > i, whereio only dependson y,
diamU; < diam Ugexp(—em;/20) . 4

But f™ maps U; univalently over D(f["(c), o), so the Schwarz lemma

impliesthat |D ™ (c)| > dia‘;ui which ends the proof. O

Lemma 4.6 Suppose that &z) > n > 0 and G.(0) < n/4. For every
n > Othere isr> 0 so that the Whithney domain(@ > D(zr).

Proof: Let uslook at the preimage of Q(z) by the Bottker coordinate I,
which iswell defined on D(0, exp(—G¢(0))). Thisisaring-sector with size
determined by ,, so contains aball centered at I'; 1 (z) of radius determined
by n. Also, by compactness the derivative of T'; at the center of this ball
is bounded below depending on 5. The lemma now follows from Kdbe's
one-quarter theorem. O

We will use this lemma to estimate the derivative at the moment when
the orbit of ¢ gets out of the region limited by the equipotential curve of
level €. To thisend, define

1(©) :=min{i : G¢(fi(0) > e} .
It is understood that 1(c) = +o0if ¢ € Mg.

Lemma 4.7 For ¢ ¢ My suppose that(t) > 2. Then there are constants
C, > 0and¢, > 1, depending only omr, so that

D@ > Cr 5,9 .

Proof: Given c, choose the largest i so that G¢(f"(c)) < €. Then I(c) <
m;i.1. As a consequence, 1(c) < Mm; where M only depends on the se-
quencem;, henceonly ony. By Theorem1.1,U; D Q(c). Thenz := f!©(c)
satisfies the hypothesis of Lemma 4.6 with  := €. In particular, since
l(c) > 2, G¢(f2(0)) < € and G.(0) < €/4. Hence f!©(Q(c)) contains
aball centered at z of radius r(¢). Taking an inverse branch and using the
Schwarz lemma, we see that

1(c) r(E)
Df®©] = diam Q(c)
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But diam Q(c) < diamU; < K exp(—m;e/20) by estimate (4) in the proof
of Lemma4.5. Recalling 1(c) < Mm;, we get

ID ()| > Czexp(l(c)e/20M)
as needed. O

So far we have seen uniform expansion for timesmy, --- , m;, 1(c). We
will now get it for al timesin between.

Lemma 4.8 Choosey in the subset¥# € [0, 1) specified in Theorem 1.1
and consider the sequence given by the the same Theorem. Suppose that
I(c) > 2, possibly infinite. Then there are constants € 0 and¢z > 1
depending only oy so that for each & rq(y) and eveny0 < n < 1(c),

[ACIEN:

Proof: Given n < I(c) choose i to be the largest so that m; does not
exceed n, and M to be m;;; or 1(c), whichever isless. If ¢ and C are the
minimum of ¢; and C; from Lemma 4.5 and ¢, and C, from Lemma 4.7,
respectively, then |D fM(c)| > C¢M. Points fl(c), -+, TM~1(c) areinthe
region bounded by the equipotentia of level €. Hence the derivatives at all
these points are bounded, independent of ¢, by some A. Hence

Dfl(0)| > DfM(C) ATMEN > C;M)Lmi—miu
i c \ i [
=C¢ v ()L(mi+1—mi)/|\/|)_ v ) ( )

Since lim;_ o mr'n—fl = 1 by Theorem 1.1, except for finitely many i, hence
for dl n > ng, we have

5 (Mi1—mi)/M > \/E
and then estimate (5) yields
IDfl(c)| > C¢"/?

as needed. For n < ng the estimate gives a positive constant on the right
hand-side, which can be absorbed in C. O

To finish the proof of Theorem 1.2, we need to establish expansion for
points which are far from X ¢, as measured by the Green function.

Lemma 4.9 Suppose that &z) > n and G.(0) < G.(2)/2. For every
n > 0there exist constants,C> 0 and¢, > 1 so that for all n> O,

IDfY(@)|>Caty .
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Proof: Thefilled-in Julia set contains a non-attracting fixed point g whose
distance to O is at least 1/2. Points fl'(z), n > O, are all separated
from the Julia set and O by an annulus with modulus at least 1/2, hence
D fe(fl(C))| = r(n) > Ofor all such n by Teichmuller's module theorem.

For n > '29100-1090/2) "g)ch an annulus already has modulus at least 100

logd
and by Teichmiiller's module theorem | f(z)| > € which implies very
large derivative. O

Theorem 1.2 is now proven. We split the orbit f['(c) in two parts. For
n < I(c)if 1(c) > 2theexpansion followsfrom Lemma4.7. For subsequent
norif 1(c) < 2implying G¢(c) > ¢/d, werely on Lemma4.9.
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