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Abstract. In this paper, we prove the validity of the Chern conjecture
in affine geometry [18], namely that an affine maximal graph of a smooth,
locally uniformly convex function on two dimensional Euclidean sp&Ze,
must be a paraboloid. More generally, we shall considenttienensional
caseR", showing that the corresponding result holds in higher dimensions
provided that a uniform, “strict convexity” condition holds. We also extend
the notion of “affine maximal” to non-smooth convex graphs and produce
a counterexample showing that the Bernstein result does not hold in this
generality for dimensiom > 10.

1. Introduction

In this paper, we prove the validity of the Chern conjecture in affine geom-
etry [18], namely that an affine maximal graph of a smooth, locally uni-
formly convex function on two dimensional Euclidean spdR&, must be

a paraboloid. More generally, we shall considerrikgimensional cas&",
showing that the corresponding result holds in higher dimensions provided
that a uniform, “strict convexity” condition holds. We also extend the notion
of “affine maximal” to non-smooth convex graphs and produce a counterex-
ample showing that the Bernstein result does not hold in this generality for
dimensionn > 10.

The Bernstein problem has been a core problem in the study of minimal
submanifolds, ever since Bernstein proved that an entire, two dimensional,
minimal graph must be a hyperplane [3]. The question of whether the Bern-
stein theorem carried over to higher dimensions provided a great impetus
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in the development of the higher dimensional theory of minimal surfaces. It
was eventually shown to be true by De Giorgi [20] fo= 3, Almgren [1]
for n = 4, and Simons [36] fon < 7. Finally Bombieri, De Giorgi, and
Giusti [6] gave an example showing that the result failsfor 8. The anal-
ogous spherical Bernstein problem, proposed by Chern [17], asks whether
an (n — 1)-sphere is an equator if it is embedded as a minimal hypersur-
faces in then-sphere,S. This is true forn = 3 [1, 11] but for all even
n > 4 and some odd, the result was shown false [25, 37]. The Bernstein
problem for maximal space-like hypersurfaces in Minkowski space is com-
pletely understood as an entire maximal graph must be a hyperplane in all
dimensions [15].

The Bernstein problem for affine maximal hypersurfaces was proposed
by Chern [18] and subsequently Calabi [13]. To formulate it, weMebe
a hypersurface immersed in the real affine- 1)-spaceA™ . In this paper
we restrict attention to locally conve®? hypersurfaces, namely? hyper-
surfaces with local supporting hyperplanes, and there is no loss of generality
in introducing a Euclidean structure i'+! so that we may work directly
in R™1. It is known that a complete, locally uniformly convex hypersur-
face must be globally convex, and hence the boundary of a convex domain
[24, 35]. Consequently ifi( is open, it can be represented as the graph of
a convex function over a domain R". The normal of the hypersurface
will be chosen on its convex side. We remark here that a locally convex
C? hypersurface is locally uniformly convex if its principal curvatures are
positive and was called strongly convex in [13].

SupposeM is given by

(1.1 Xnt1 = UX), X = (X1, , Xn),

whereu € C?(R2) is convex. OnM we can introduce a metric, called the
affine metric, given by

- Ui

1.2) gj = [detD2u]/12)’

whereD?u = [uij ] is the Hessian matrix of the second derivatives: off
u is locally uniformly convex irQ2, then deb?u > 0 andg is well defined.
From the metric, we introduce the affine aré®y defining

(1.3) AL 2) = [ [deD? o
Q

_ / K 1/(042)
Mg

whereK is the Gauss curvature df andMq = {(X, U(X)) € M \ X € Q}.
The metricg and the aredA are invariant under unimodular affine trans-
formations, that is linear transformations @i*+1) preserving Euclidean
volume and orientation, see [13].
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AhypersurfaceM, given by (1.1), is calledffine maximaif the function
u is a critical point of the affine area functional Calabi [13] proved that if
u € C*() is a critical point of the functionah\, the second variation ok
atu is non-positive, that is, the affine area.tff reaches a maximum under
smooth interior perturbations. Accordingly he proposed thabe called
an affine maximal hypersurface. The Euler equation of the functidnal
a fourth order, nonlinear partial differential equation, given by

(1.4) HalM] =: Dy (UM w) =0,
where
(1.5) w= [deDZU]—(n+l)/(n+2)’

and[U"] denotes the cofactor matrix g ]. Noting that
(1.6) D;Ul =0,

we see that the above equation may also be written as
(1.7) HalM] = U"Djw = 0.

The quantityHa[M] on the left hand side of equations (1.4) and (1.7)
represents the affine mean curvature of the hypersuiface
Denoting

(1.8) h = g"? = (defg;])
= (detD?u)” "

equation (1.4) can also be written as

1/2

1
(1.9) AM(H) —0,
whereA 4 is the Laplace-Beltrami operator with respect to the affine metric
(2.2), given by

1 . 1 .
(1.10) Ay = 7 Di(v9¢' D) = D (h*u' Dy),
and[g"], [u”] are the inverses dfj; 1, [u; . Therefore the hypersurfack

is affine maximal if and only if 1h is harmonic onM.

In [18], Chern conjectured that, in the two dimensional case, any entire
solution to (1.7) must be quadratic. From Bernstein [3], if the function
w = o(|X|), asx — oo, thenw is constant and Chern’s conjecture follows
from Jorgens’ theorem [26], that an entire convex solution of the Monge-
Ampére equation

(1.11) detD?u = constant
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is a quadratic function, (which is true in all dimensions). Calabi [13] verified
the Chern conjecture under the hypothesis that the affine metric of the graph
of the solution, defined by (1.2) is complete. Fonif 2, the Ricci tensor
under the affine metric is non-negative definite, and by a result of Blanc
and Fiala [4], (see [38] for the higher dimensional case), that a positive
harmonic function on a complete Riemannian manifold with non-negative
Ricci curvature is constant, the result follows again from Jérgens’ theorem.
Different conditions were imposed by Calabi [14]. However, the above
conditions represent fairly strong restrictions on the asymptotic behaviour
of the second derivatives of the functian Locally uniformly convex,
Euclidean complete hypersurfaces are not generally affine complete, as is
the case with the graphs of the functions, given by

1
(1.12) Uu==—+x3 (x>0,
X1
and
(1.13) u= 1+ |xY, k> 2.

The example (1.13) also violates the Bernstein conditior; o(|X|), for

k > 2. Li[28] proved that if all the affine principal curvatures are bounded,
then Euclidean completeness implies affine completeness, so that in the two
dimensional case, the Chern conjecture is valid if the affine Gauss curvature
is bounded from below; (see also [29]).

This paper is set out as follows. In the next section, we show how the
Bernstein problem can be reduced to a problena gfiori estimates for
solutions of the affine maximal surface equation (1.7), (Theorem 2.1). As
a byproduct of our argument, we deduce an extension of Jérgen’s theorem
in all dimensions. Sect. 3 is concerned with upper and lower bounds for the
Hessian determinant of solutions of (1.7). The upper bound, (Lemma 3.1),
is derived by typical nonlinear second order PDE techniques while for the
lower bound, (Lemma 3.2), we invoke the Legendre transformation, thereby
bringing in to play the modulus of convexity. In Sect. 4, we apply the re-
cent Holder estimate of Caffarelli and Ganiez, (Theorem 4.1), [9], for
the linearized Monge-Ampére equation, to conclude interior higher order
estimates, in terms of the modulus of convexity, and regularity, (Theo-
rem 4.2). The combination of Theorem 4.2 and our reduction in Sect. 2
yields the Bernstein property under a restrictiomniform strict convexity
(Corollary 4.3). In Sect. 5, we establish a modulus of convexity estimate
for solutions of equation (1.4), (1.7) itwo dimensions, (Lemma 5.1),
thereby completing the proof of the Chern conjecture, (Theorem 5.2). The
arguments here cannot be extended to higher dimensions. In Sect. 6, we
take up the issue of reduced smoothness. First we prove that our preced-
ing estimates in Theorem 4.2 and the two dimensional Bernstein property,
Theorem 5.2, extend 10 weak solutions of equation (1.4), (Theorem 6.2).
Next we consider the extension of the affine area functional (1.3) to arbitrary
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convex graphs, proving an approximation result, (Lemma 6.3), and upper
semi-continuity, (Lemma 6.4). Finally in Sect. 7, we provide an example
to illustrate the scope of our investigations. This example, in dimension
ten, violates the uniformly strict convexity condition but unfortunately has
a singularity (albeit mild) at one point.

To complete this introduction, we state the two dimensional Bernstein
property in its fully generality, taking account of the fact that a compact
surface cannot be affine maximal [18].

Theorem 1.1. A Euclidean complete, affine maximal, locally uniformly
convexC? hypersurface irR® must be an elliptic paraboloid.

2. Reduction to interior estimates

In this section, we show the Bernstein property can be reduced to the estab-
lishment of interior estimates for solutions of equations (1.4) in arbitrary
normalized convex domains. We will make use of the fact [21] that for any
bounded convex domai in R", there exists a unique ellipsokd, called

the minimum ellipsoidof 2, which attains the minimum volume among

all ellipsoids concentric with and containir§g, and a positive constant,,
depending only om, such that

(2.2) anE C Q CE,

whereanE is the o dilation of E with respect to its centre. L€l be
a dilation mappingz onto the unit ballB. From (2.1),

(2.2) anB C T(R) C B,

and we callT(2) thenormalized domainf 2, and2 normalizedf T(Q) =
Q, thatisE = B.
Letting L = U" Dy;, we write equation (1.4) in the form

(2.3) Lw=U"Djw =0,
where

- 1
2.4 = (detD2u)’ ™", o= ——.
(2.4) w = ( uy ", ——

HypothesisH,: For all normalized convex domairn@ C R" and locally
uniformly convex solutiona € C*(Q2) of equation (2.3) satisfying = 0
on a2, infg u = —1, we have the estimates

(2.5) D?u> C;l, |D%u<CGC,

in the ballyB, whereC,, C, andy are positive constants, depending only
onn.
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Theorem 2.1. Suppose thaH, is valid. Then ifu € C*(Q) is a locally
uniformly convex solution of equation (2.3) in a convex donfaic R"
satisfying

(2.6) lim u(x) = +oo,
X—0Q2

it follows that2 = R" andu is a quadratic function.

Proof. By subtracting a linear function, we may suppose

(2.7) u@) = Diu(©) =0, i=1---,n.

LetT; = [a{j] be a linear transformation which normalizes Heaetion
(2.8) S={xeQ|u<t}, (>0,

and definay; and€2; by

1
(2.9) U (X) = ;u(T*1<x>>, Q = {x|u <1} = T(S).

By the assumption of Theorem 21, € C*(Q) is uniformly convex and
satisfies the affine invariant equation (2.3Xin Furthermore by (2.5), we
have

(2.10) D?%uy(x) > C4!

for anyt > 1 andx € yB. Let A; denote the maximum eigenvalue Bt
We claim there exists a positive constan such that

(2.11) iMoot AZ < Ao.
To prove (2.11), we observe from (2.10),

U0 = tu(Te(x) = Cat| T2
and hence

(2.12) supu(x) > supCit|Ti(x)|? = CirtA2,
t

XerB xerB

wherer is chosen small enough to ensui®@ c Q. Next forx € Q, we
estimate

ID3u(x)| < CAZt|DPuy(Ti (%))
< CAYA Y2

for Ty(X) € yB, by (2.5) and (2.11). Hence lettifg— oo, we conclude
D3u = 0, whenceu is quadratic and2 = R". 0
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From the proof of Theorem 2.1, we can also deduce the following
extension of the Bernstein property for the Monge-Ampére equation (1.11),
which was proved by Jorgens [26] far= 2, Calabi [10] for 2< n < 5,
and Pogorelov [32] fon > 2.

Corollary 2.2. Let Q2 be a convex domain iR" andu a convex solution
of the equation

(2.13) deD?u=1 in Q
with limy_, 3o U(X) = co. Then2 = R" andu is quadratic.

To prove Corollary 2.2, we observe that equations of the form (1.11)
can be used in the Hypothesi4,, with the appropriate estimates (2.5)
guaranteed by the regularity theory for the Monge-Ampére equation, as in
[23] or [33]. We note also that the concept of solutions in Corollary 2.2 may
be understood in the generalized sense of Aleksandrov.

The third derivative estimate in (2.5) is stronger than necessary. By
inspection of the proof of Theorem 2.1, it can be replaced by a modulus of
continuity estimate for the second derivatives in the hBll

3. Bounds for the Hessian determinant

In this section, we derive upper and lower bounds for the Hessian determi-
nant, deD?u, of solutionsu of equation (2.3).

Lemma 3.1. Let2 be a bounded convex domainR? andu e CHQ) N
C%1(Q) alocally uniformly convex solution of equation (2.3¥Insatisfying

(3.1) u=0 on I irs12f u=-1

Then, fory € Q,
(3.2) detD?u(y) < C,
whereC depends om, dist(y, d€2), andsup, |Dul|.

Proof. Let

(3.3) z=log — A|Du|?,

w
(—w?

wherep and A are positive constants to be specified later. Sinee co on
92, it attains a minimum at some poirg € 2. At Xg, we then have

Wi

(3.4) O=z=—— ,BE — 2AU Uy,
w u
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and

(3.5)
0< [Zij] = |:—” -4 ZJ — —'8 J + P |2 L _ 2Aukiukj — 2AUkUkij:|.
w w u u

Recallingw = det~1D?%u, 6 = we have

n+2’
(3.6) u' uwij = (log detDzu)k = __%’

1-60w
where[ul ] = (detD?u)~*[U"] is the inverse oD?u. From (3.4),

w.wJ 5 Uj uJ 2,BA

2
oz = =B (Ui UkUij + UjUkUyi) + 4A%UU UG Uy,

and hence, atg, we have
(3.7)0 < ulz

pn ulwiw;  Auluju; i 2A Uy
ST T e T AU UGG T

uluju 4720
=—ﬂ——ﬂ(,3 1)~ — 2AAU U+ T—guiuy

1—-20|D 2
_ZﬂA_I ul
1-6 u

Du|?
§—AAu—ﬂ—+2,BA| | ,
u u

with the choice
1-06
(3.8) =
49 sup, |Du|?

Consequently, we obtain
(3.9) —UAU(X) < C(n, B) sup|Dul?.
Q

Setting8 = (1—-6)n=n(n+ 1)/(n+ 2), we obtain
Z(X) = z(Xo)

= (6 — 1) log |u|"detD?u(xg) — A|Du|?(Xo)

> (0 — Dnlog |u| Au(xo) — A|DU|*(Xo)

Z _C(na Ml)a
whereM; = sup, |Du|. Accordingly we estimate, for any € €2,

i n
detD?u < C(n, My - C(n,.Ml)(dlamQ)
luy)[" (dist(y, 92))"

by (3.1) and the convexity af, and hence Lemma 3.1 is proved. 0
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Remark. It is clear that Lemma 3.1 will hold for any € (0, 1) in (2.4),
with constantC in (3.2) depending also ah

We next derive a lower bound for d@tu in terms of a modulus of
strict convexity for the functioru. We first note that a locally uniformly
convex functionu on a convex domaif will be strictly convexthat is at
each pointP, of the graphM of u, there exists a supporting plane, lying
below M, and intersectingW only at P. For anyy € €, h > 0, we define
thesection(y, h) by

(3.10) Sy, h) = {x € Q| ux < u(y) + Du(y)(y — x) + h}.

We then define thenodulus of convexitgf u aty, by

(3.11) hyy(r) =sup{h > 0| S(y.h) C B/(y)}, r>0

and themodulus of convexitgf u on 2, by

3.12) h(r) =hy () = ;QIZ hyy(), r>0.

O”bservoe that a functionis strictly convex inQ if and only if h(r) > 0 for
allr > 0.

Lemma3.2. Letu € C4Q) be a locally uniformly convex solution of
equation (2.3) in a domai® c R", satisfying—1 < u < 0in Q. Then,
for y € Q, there exists a positive consta@tdepending om, dist(y, 9<2),
diam(€2), andh,, o, such that

(3.13) C ! < detD?u(x) < C.

Proof. Sinceu e C*(R2) is locally uniformly convex, so also is its Legendre
transform,u*, defined by

(3.14) u*(x) = sup(x -y —u(y)), xe Q*=Du(Q),
yeQ

with
(3.15) Du*(x) =y, detD?u*(x) = (delDzu(y))_l,

wheneverx = Du(y), y € €2, [34]. Sinceu is maximal with respect to the
functional A, given by (1.3), it follows that* is maximal with respect to
the functionalA* given by

(3.16) A, Q] = | [detD?u]™+D/(0+2).

Q*

Therefore, ifu satisfies (2.3), we see thait satisfies a similar equation

(3.17) (UHT (w*); =0,
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where[(U*)!] is the cofactor matrix ofu*); and
(3.18) w* = [detD?u*]~ Y2

We cannot apply Lemma 3.1, with = % directly as the functioru*
is not necessarily constant @2*. However, for any poiny € &, and
x = Du(y) € @* we can infer from (3.11) and (3.12) that the section
Sf(x, 8) of the Legendre transform®* lies in * for § = h(%dist(y, Q)).

Furthermore, we have, (for® 2),
(3.19) |Du*| < diam(2)

and hence the baBgr(x) C S*(x, §) for R < §/diam€2. Accordingly, we
may apply Lemma 3.1, witld = % to the functionu* in the domain
Sf(x, 8) to deduce the lower bound in (3.13). The upper bound follows
by applying Lemma 3.1 in the sectid¥y, §) where we would have the

gradient boundDu| < 2/dist(y, ). 0

4. Application of the Caffarelli-Guti érrez theory

In Sect. 3, we established bounds for the Hessian determinant of solutions
of equation (1.7) in bounded convex domaiasC R", namely, for any
subdomair®’ cc 2,

(4.1) 0 < A < detD?u < A

in ', whereix and A are positive constants depending onlyrgrdiamt?,
dist(Q’, 3$2), and the modulus of convexity af h. The functionu € C*(Q)
was also assumed to be locally uniformly convexXinand normalized by
—1 < u < 0in Q. Caffarelli and Gugrrez [9] have recently developed
a theory oflinear operators of the form

(4.2) Lv=U"Djjv = D;(U'Djv)

with coefficient matrixU' given as the cofactor matrix of a convex func-
tion u, which is analogous to the De Giorgi, Nash, Moser theory of uni-
formly elliptic divergence form linear operators and the Krylov-Safonov
theory of general form linear operators [23]. In their theory, Euclidean balls
are replaced by sections of the convex functioand Lebesgue measure
by the Monge-Ampeére measure associated wittVe will make use of the
following Holder estimate from [9].

Theorem 4.1. Letu € C%(2) be a convex function in a domasa ¢ R",
satisfying (4.1) and € C?(Q) a solution of the equation

(4.3) Lv=U"Djv=0
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in Q. Then for any section§(y, r) ¢ Sy, R) C 22, we have the estimate

r o
(4.4) 0SGg(y,nV < C<§> 0SGyy,R)V,

whereC and« are positive constants depending onlyroand A /4.
In order to apply Theorem 4.1 we observe that

(4.5) Br(y) C Sy, kn)
for k = 2sup, |Dul, and
(4.6) Sy, R cQ cc

whenevery C €/, R < h(dist(y, 2")). Consequently we infer from Lem-
mas 3.1 and 3.2 a Holder estimate for the funciigmamely,

(4.7) [wle,or =C

for any Q' cc 2, whereax andC are positive constants depending only
onn, dist(2’, 9R2), diam2, andh. By the Caffarelli-Schauder estimate for
the Monge-Ampére equation [7], we then conclude I&@%t estimates for
the functionu,

(48) |u|2,a,S2’ S C’

where againae and C are positive constants depending only an
dist(2’, 9€2), diam2, andh. Bootstrapping, via the classical Schauder es-
timates [23], we thus obtain our desired estimates. Analyticity of solutions
follows from [30].

Theorem 4.2. Let 2 be a bounded convex domainRf andu € C*(Q)
a locally uniformly convex solution of equation (1.4)nsatisfying—1 <
u <0in . Thenu € C*(2) and for any subdomaif’ cc 2,k > 2, we
have the estimates

(4.9) D?u > C4l, |D*u| < C,,

whereC, depends on, dist(2’, 9R2), diam€2, and the modulus of convexity
hy.q, andC, depends additionally ok. Moreover,u is also analytic in<.

In order to apply Theorem 4.2 to the Bernstein problem, we say that
a convex functioru in a domaing2 satisfies theuniform strict convexity
condition if there exists a positive constank 1 and a positive functioh
on (0, co) such that for somg € Q2 and allr,t > 0, x € yS(y, t), we have

(4.10) S(x, th(r)) € x4+ rS(y, t).
By combining Theorems 2.1 and 4.2, we then obtain

Corollary 4.3. Letu € C*) be a locally uniformly convex solution of
equation (1.4) in a convex domaid C R", satisfying (2.6). Then, if
satisfies the uniform strict convexity conditior¢init follows thatQ = R"
andu is a quadratic function.
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5. The two-dimensional case

In this section we show that in the two dimensional case-(2) a solution

to (1.4) with zero boundary condition satisfies a modulus of convexity
estimate. We sap € aD is an extreme point oD if there is a supporting
hyperplane ofD such thatD lies on one side of the plane amiltouches
the plane only ap. If D is convex, then any point iD can be represented
as a linear combination of extreme points»{34].

Lemma5.1. Let2 be a normalized convex domainR? andu € C*(2)

be a locally uniformly convex solution of (1.4), satisfying (3.1). Then there
exists a nondecreasing positive functioon (0, oo), independent af, such

that

1
(5.1) hyx(r) > h(r) for x = (X1, X2) € 50‘” B, r>0,

whereh, x(r) is defined in (3.11).

Proof. It suffices to prove (5.1) fox = 0. If the lemma is not true, then

there exist a sequence of functiofig}, and a sequence of normalized
domains{y}, satisfying (1.4), (3.1) witl2 = Qy, and a positive number

ro > 0 such that

(52) huk’o(l'o) —- 0 ask— oc.

Noticing thath, o is non-decreasing, we havg, o(r) — 0 ask — oo
uniformly forr € (0, ro). Since2x anduy are convex, we may suppose by
taking subsequences thi@®y} converges to a convex domat and {uy}
converges to a convex functian locally uniformly in 2. Let

(5.3) Dk = {(X, X3) € R® | uk(x) < x3 < O},
D = {(x,X3) € R®| u(x) < x5 < O}.

Then the sequence of convex dom&jibg} converges td. The graph ofl

is understood (only in this section) 8B\ {x,,1 = 0}, so that the sequence
of graphs of{uy} converges to the graph af as convex surfaces under
Hausdorff distance. For € 92, we defineu(x) = lim, _,, , oU(Y).

By (5.2) we see that is not strictly convex near the origin. Let =
{x3 = £(X)} be a supporting plane of the graphwtt the point(0, u(0))
such that the contact sefy =: {x € Q \ u(x) = £(x)} is a convex set
(possibly a line segment, but not a single point). kdte the closure abg.

We claim that ifp = (p1, p2) € dw and p3 = u(p) < 0, thenpis an
interior point of 2. SinceQ is convex, it suffices to show that ff is an
extreme point otv such thau(p) < 0, thenp € Q.

To prove this claim, we suppose to the contrary {hat 02, so that the
line segmen{(py, po, ) | ps <t < 0} lies on the graph ofi. We may
suppose thax = 0 is an interior point ofv (or the midpoint ofw if w is
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a line segment). Since equation (1.4) is affine invariant, we may suppose
p=(-10 and

(5.4) QC x> -1

Adding a linear function ta anduy, we may also suppose that

3 3
Then the line segments
V3
(5.6) X_[<t,0,?t)‘—l<t<0 ,

x*z[(—l,O,t)‘ —?<t<0}

lie on M, the graph ofu, and x and x* form an angle of; at the point

(-1,0, —?). HereM and My denote the graphs af anduy after adding
the linear function.
We introduce a new coordinate systéw, Y», y3) by letting

yi= L+ - 1xs+ D),
Y= 20+ 1) + ?(Xs + ?)

Then near the origin of the new coordinatdg,can be represented as the
graph of a convex function, which is nonnegative by (5.4), (5.5). Sinpe
is an extreme point ab, we see that is strictly convex aty = 0, namely,

v > 0 except at the origin. Hend@v is bounded on the s¢t < h} for

h > 0 small enough.

SinceMy is convex and M} converges taM locally uniformly under
Hausdorff distance, we see that, can also be represented as a graph
of a convex functiorwy in the new coordinatey for sufficiently largek.
Obviouslyvy — v near the origin. Hence the functiofi3vi| are uniformly
bounded in the setby < h/2} for k large enough. Since( is affine
maximal, it is affine maximal under any coordinate system. We can therefore
apply the argument of Lemma 3.1 t@ and conclude that the functions
detD?vy are locally uniformly bounded. Sinag — v uniformly near the
origin, the sequencgdetD?v,} converges to the Monge-Ampére measure
associated with, un[v], [2].

Fore > 0 small enough, let

(5.8) G: = {(y1. 2} | v(y1. Y2) < €}.
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By (5.4) and (5.5) we have(y) > +/3|yi| andv(ys, 0) = +/3|yi| for y;
small. HenceG, C {—*/?ée <y < ?e} and(i?s, 0) € 9G,. Let

(5.9) 8. = suplyzl | (y1. y2) € G.},
and letN, denote the normal mapping of One easily verifies that
(5.10) IN,(Ge)| = Ce/ée,

by comparingN, (G,) with the image of the normal mapping of the convex
cone with vertex at the origin and bas&,. On the other hand, by the
boundedness of dBfv we have

(5.11) IN,(Go)| = un[vl(Ge)
< Iiminfk_m/ detD?vy
G

< C|G|
< Cégé,.

Hences, > C > 0 for someC > 0 independent of. On the other hand,
we haves, — 0 ase — 0 sincev is strictly convex at 0. The contradiction
shows thatp must lie in the interior of2. The claim is proved.

Next we show that there is no extreme pointofh Q. Supposep € Q2
is an extreme point ab. By adding a linear function ta we may suppose
that

(5.12) u(p) = inf{u) | x € w},

andu = 0 on dQ2 by replacing2 by a subdomain if necessary. By the
affine invariance of the equation (1.4) we may also supgose (—1, 0),
u(p) = —1, andw C {X; > —1} such that/(x) = u(0) + x; is a tangent
plane ofu at p. Let x = 0 be an interior point of» or the midpoint ofw if

w is a line segment. Then fér> 0 small,£(X) — §x; < 0in Q. Fore > 0
small, let

(5.13) Qe = {(X1,%2) € Q| UX) < £(X) — exq}.
Let T, be a dilation which normalizes the domdin and let
1
(5.14) Us (Te()) = —(UG) — (£(9) — ex0)).
By taking a subsequence we may suppose The®,) converges to a nor-

malized domair2* andp, — p*, wherep, = T,(p).
Let

(5.15) D, = {(X,Xs) € R® | u.(x) < x5 < O}.



The Bernstein problem for affine maximal hypersurfaces 413

By (5.12) we have fox € Q,, 0> u, > —1 — 0o(1) ase — 0. Hence we
may supposd®, — D* as convex bodies ang. — u* locally uniformly
in Q*. Then the graph ofi, converges to that ofi* as convex surfaces
under Hausdorff distance, where the graphubfis defined as above by
aD*\{x3 = 0}.

Obviously u* is not strictly convex. Indeed, since the line segment
x = {(t,0) r —1<t <0} liesin,, we haveT.(x) — x* by tak-
ing a subsequence. It follows is linear on the line segment.. Moreover,
p* € x*. Next observing that2, C {x; > —1 — §,} for someé,, with
3. — 0ase — 0, we have by (2.2) that

2
(516) on —o0, <T.(&) < + o,
2 on

for someos, — 0 ase — 0, wheree; = (1, 0) is the unit vector orx; axis.
It follows that dist p., 3(T.(£2,))) — 0 and thatp* € 9Q*.

Finally, sinceu is the limit of the sequence of affine maximal functions
{uk}, we see thati, andu* are also the limits of sequences of affine maximal
functions. Therefore by the claim above we conclude fgifas an interior
point of Q*. This is in contradiction with our construction sinpé € 9Q2*.
This completes the proof. O

Combining Lemma 5.1 with Theorems 2.1 and 4.2 we obtain

Theorem 5.2. An entire, affine maximal, locally uniformly convéx
graph inR® must be an elliptic paraboloid.

6. Reduction of smoothness

In this section, we extend the affine area functional (1.3) to general convex
graphs and prove a regularity result for weak solutions of the affine maximal
surface equation (1.4). We recall that the affine area functidnsidefined

for convexu € C2(Q2) by

(6.1) A(u) = A(u, Q) = / [detDzu]l/(”+2).
Q

Since the functionf — (detr)¥ 2 is strictly concave on the cone of
positive symmetrigy x n matrices, so also is the functionA| that is
(6.2) Atu + (1 = tyv) > tAU) + (1 — ) A(v)

for all convexu, v € C?(2), 0 <t < 1, with equality holding if and only if
D?u = D?v a.e.. Moreover i1, n € C2(Q) are such thati + ty is convex
for sufficiently smallt > 0, we have, by calculation,

d 1 .
(63) aA(U + tn)|t20 = m /Q wyU"! Dij n,
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wherew = (detD?u)~"D/("+2 and as previouslyU! ] is the cofactor
matrix of D?u. Note that ifw is not integrable, the right hand side of (6.3)
may be infinite. Ifu is locally uniformly convex, we thus obtain from (6.2)
and (6.3) that the graph ofis affine maximal if and only if

Q

for all n € C2(Q), that is the weak form of equation (1.4) is satisfied. The
following Iemma then enables us to show that C*(2) and equation (1.4)

is satisfied in the classical sense.

Lemma6.1. LetL = a' D; be a linear elliptic operator on a bounded
domainQ c R", with boundarya2 € C*1, and coefficientga’ ] € C°(Q),

i,j =1 ---,n, satisfying[a;] > A1, for some positive constait Then,

if w e CO(Q) vanishes oW and satisfies

(6.5) /wano
Q

for all n € C3(Q), we havew = 0in Q.

Proof. Let v € W?9(Q), 1 < q < oo, be the unique solution of the
Dirichlet problem

(6.6) Lv=sighw in Q
v=0 on 99,

and take, as a test function in (6.5),

(6.7) n= xv,

wherey = x, € C? 5(82), 0 < x <1, x(x) = 1ford(x) = dist(x, 9Q2) > ¢,
IDx| < 9 |D2X| < £ for some smalle > 0. It is readily seen by

approxmaﬂonthaﬁ|savaI|dtestfunct|on in (6.5). Then, using the estimate,
v < Cd, we obtain

(6.8) / xlw| = —/ w(2al DixDjv + val Dij x)
Q {d(x) <&}

C
s—f w| = 0,
& Jidx<e)

so thatw = 0 in Q as required. ]
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To apply Lemma 6.1, we fix some b&l cc 2 and solve the Dirichlet
problem
(6.9) Lv=U"Djuv=0 in B,
v=w on 9%,
for unique solutiorv € W29(B) N C%(B), 1 < q < co. By approximation,

using the identityD; U = 0, for smoothu, we see thab also satisfies the
weak form of (6.9), that is,

(6.10) f Wi D=0
B

for all n € C3(B), and hence we infew = v, by replacingw by w — v

in Lemma 6.1. Consequently d@tu ¢ W29(Q) forall 1 < q < oo, and
further regularity follows, as in Sect. 4. Accordingly we have the following
regularity theorem, complementing Theorem 4.2.

Theorem 6.2. Letu € C?(Q2) be locally uniformly convex and affine maxi-
mal in adomair2 ¢ R". Thenu € C*(Q2) and satisfies the affine maximal
surface equation (1.4) i.

In particular we see from Theorem 6.2 that we need only assume
C2(Q2) in Theorem 4.2 and moreover that Corollary 4.3 and Theorem 5.2
extend toC? graphs.

To complete this section, we extend the affine area functional to non-
smooth convex functions and prove an upper semi-continuity result. First,
we note from the equivalent representation (1.3),

6.11) AU Q) = / K L/m+2)
Mo

o2 (n+1)/(n+2)
< ( / K) (Ao(Ms))
Mg

< C(Q)a)%/(n+2)

if —1 < u < 0inQ, whereAq denotes the usual Euclidean area. By scaling,
we then have the estimate

(6.12) A(U, Q) < C(osgu)” 2.

Next, if w is a Borel subset a2 with dist(w, 02) > §, we have

1/(n+2)
(613)/ (detDZU)l/(n+2) < |w|(n+1)/(n+2)(/detD2u>

n/(n+2)
< [oo| P/, 42 (ossﬂ)
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so that the functiongdetD?u)Y "2 are locally equi-integrable whenever
the functionau are bounded. Now let be an arbitrary convex function, and
for h > 0, u, be its mollification, namely,

_ph-n X-y
(6.14) Un() = h fQ oY )uryay

for h < dist(x, 3€2), wherep > 0, € C5°(R), suppp C By(0) and [ p = 1.
Since the second derivativeswhre signed measures, we can write

(6.15) D%u=u® 4 u®,

wheren@ is absolutely continuous with respect to Lebesgue measure and
w'® is supported on a se¥ of Lebesgue measure zero. We let

(6.16) 9%u = [Bju] = 0, € Lip, ()

denote the density @f® with respect to Lebesgue measure. It then follows
that D?u, — 9°u almost everywhere i® [39]. However, since the func-
tions (detD?u,)Y "2 are equi-integrable on subse&®s cc 2 and hence
relatively compact irLL (), we then obtain

(6.17) A(up, Q) — [ (detd?u)/™+2

Q

for any subdomair2?’ cc . The convergence result (6.17) is clearly
also true for any sequenda,,,} C C?(Q) of convex functions, converging
locally uniformly tou with D?u,, — 9°u a.e.. Accordingly, we define the
affine area of an arbitrary convex graph on a dongajiby

(6.18) AU, Q) = / (detd?u) ™/ ™2
Q

whered?u denotes the density of the regular part of the Hessian maiix
From our argument above, we have the approximation result
Lemma 6.3.

(6.19) AU, Q) = rLimO A(Un, 2n),
whereQ, = {x € Q | dist(x, 9Q) > h}.
From the representation (6.18), we can then extend the formula (6.3)

to arbitrary functionau, n such thatu + tn is convex for sufficiently small
t > 0, namely

(620) aA(u + tn)|t:0 = m /Q wyU" 8” n
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where noww = (de®?u)~ ™D/ U] denotes the cofactor matrix of
92u and[9;jn] the density of the regular part of the signed meaddte
(which exists sincey is a difference of convex functions). It follows that
a convex functioru is affine maximal if and only if

(6.21) f wUl9n <0
Q

for all suchn with compact support if2. From Lemma 6.1, we then infer
an extension of Theorem 6.2, namely thaddfi = D?uq for some locally
uniformly convex functiorug € C%(R2), thenuy € C*(R2) and satisfies the
affine maximal surface equation .

Finally we prove the upper semi-continuity of the extended affine area
functional (6.18) with respect to uniform convergence.

Lemma 6.4. Let{un} be a sequence of convex functiong2nconverging
locally uniformly tou. Then

(6.22) limsupA(um, 2) < A(u, Q).

m—o00

Proof. By virtue of Lemma 6.3, it suffices to prove (6.22) fgf € C%(Q).
Sinceu, — ulocally uniformly, deD?u,, — detD?u weakly as measures,
that is, for any closed subsEtc €2,

(6.23) lim sup de'rDzurn /detD2
m— oo

For givene, &’ > 0, let
wk = {X e | (k — e < detD?u < ks},

k=12 -.--,andF C wk be a closed set such thas, — F¢| < ¢. For
eachF, we have

1 1/(n+2) 1 Y2
lim sup— (detDzum) < lim sup<|Fk| detDzum)

m— o0 |Fk| m— o0

1 1/(n+2)
< (— detDzu)
| Fk| Fk

< (kg)l/(n+2)

so that

(6.24)  liMmSUPA(Um, Fo) < (ke)Y ™2 ||
m—oo

1
< A, R + n—el/<”+2>|Fk|

+2
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since deD?u > (k — 1)e in F,. Consequently

1
(6.25) lim sup A(Um, UF) < AU, Q) + ——&¥ M2 1Q.
m—oo n + 2

Using the equi-integrability (6.13) and sendiage’ — 0, we conclude
(6.22). ]

Note that by considering polygonal approximations, we can have strict
inequality in (6.22). Furthermore by combining Lemmas 6.3 and 6.4, we
deduce a further representation #gu, 2), namely

(6.26) A(u, ) = sup limsupA(un, 2),

{Um}C8y M—o00

where$, denotes the set of sequences of convex functiap C C2(Q),
converging locally uniformly irf2 to the convex function. We remark that

we could have equivalently defined the extended affine area through the
regular part of the Monge-Ampére measure. For other definitions see [27].

7. Example

In this section, we provide an example of affine maximal, convex graphs
which does not satisfy the Bernstein property, and which violates the uni-
form strict convexity in high dimensions. Specifically we take- 10 and
define

(7.1) u(x) = /IX'I° + x,,

wherex' = (X1, --- , Xo). It is readily shown thati € W22 (R so that

D?u = 9%u and we need to verify (6.21) to show thats affine maximal.
Forx £ 0, we consider the transformation

y/ — X/,
(7.2) Yio= X0+ U
v =U— Xjy0

so that the functiomw is given by

ly'I°
Y10

(7.3) v(y) =

for y10 > 0. To show thaw satisfies the affine maximal surface equation,
we consider, more generally, functions of the form,

r2¢x

(7.4) u= T
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wherea > 1,r = |Y[,t = |Vn|, Y = (Y1, - , Ya_1). Then

2ar2a—1
(7.5) Up = —
r2a
U = — 2
p 202
Ur = 20200 — 1) ,
2qr2e-1
U = z
2r 2
Uy = t—?”
Denote
pha—2
(76) A= U Uy — ur2t = 40[(0[ — 1) 7
_ 2 Uy \N—2 B r2n(e—1)+2
D —deD’u= () A =Cr—
n+1
w = ;DnTlrz_l = C/t
re’
where
C=2"a"Ya—-1), C =C MD/n+2)
2(n+1)
0= no —n+ 1).
Nt 2 (Na +1
Also, denote

(7-7)Z = Ugwyr + Uy wy — 2Urt Wit
C/tn 2

= ot (2006 + 1) + n(n + 1)20(20 — 1) — 4ae(n + 1)6).

Then we have

rw 1 X t”Jr2
where
n-— 2
(7.9 K = C’[

5 (9(9 + 1) +n(n+ Dae— 1) —2(n + 1)a9)].
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Foru to be affine maximal, we negd = 0, i.e.,

(7.10)
0O+ +nin+Da(2a—1) —2(n+ Do — (N —2)(¢ —1)0 =0

Substituting for, we obtain the equivalent quadratic equationdor
(7.12) 82— (N°—4n+12da+2(n—1)%=0

which is solvable fom > 10. In particular forn = 10, ¢ = % and we
conclude that the function (7.1) satisfies (1.4)xXo# 0. To verify (6.21) in
domains2 containing the origin, we first observe, by virtue of Lemma 6.3,
we may assume is smooth away from the origin. We next estimate the
integrand on the left hand side of (6.21) by

(7.12) wU" 37 < (detD?)™ ™2 > " u" > " (3|

C
=53 > lain|
wherer = |X'|,t = X;0 and since; is a difference of two convex functions,
> 13in| can be regarded as a Borel measyre; ,, satisfying
(7.13) lL(Br)| < CR!

for any ball B, (whereC depends o). Therefore, the integrability of
the function,wU" 9; n, follows from the following lemma whose proof is
elementary and is omitted here.

Lemma 7.1. Let u be a Borel measure oR" satisfying (7.13) for any
ball B;. Then, for any > 0,

(7.14) ‘/ i r_

wherex’ = (Xg, -+ , Xn_1)-
For sufficiently smalb > 0, we set

ws={x€ Q| X| <38, x| <8}
Integrating by parts, we then have

(7.15y‘ wU' ;7 =/ wy! 8ijn+f wUp;
Q ws Q\ws

=f wU”aim+/ wU iy —f n(wU)y
ws dws dws
—-0 asé—>0

sinceu satisfies equation (1.4) R%\ {o}. Consequently is affine maximal
in R,
If n > 10, it is easy to verify that the functiam given by
UO) = /[X'[9 + [x10l? + X1,
is affine maximal, wher& = (X11, - - - , Xn).
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