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Abstract. In this paper, we prove the validity of the Chern conjecture
in affine geometry [18], namely that an affine maximal graph of a smooth,
locally uniformly convex function on two dimensional Euclidean space,R2,
must be a paraboloid. More generally, we shall consider then-dimensional
case,Rn, showing that the corresponding result holds in higher dimensions
provided that a uniform, “strict convexity” condition holds. We also extend
the notion of “affine maximal” to non-smooth convex graphs and produce
a counterexample showing that the Bernstein result does not hold in this
generality for dimensionn ≥ 10.

1. Introduction

In this paper, we prove the validity of the Chern conjecture in affine geom-
etry [18], namely that an affine maximal graph of a smooth, locally uni-
formly convex function on two dimensional Euclidean space,R2, must be
a paraboloid. More generally, we shall consider then-dimensional case,Rn,
showing that the corresponding result holds in higher dimensions provided
that a uniform, “strict convexity” condition holds. We also extend the notion
of “affine maximal” to non-smooth convex graphs and produce a counterex-
ample showing that the Bernstein result does not hold in this generality for
dimensionn ≥ 10.

The Bernstein problem has been a core problem in the study of minimal
submanifolds, ever since Bernstein proved that an entire, two dimensional,
minimal graph must be a hyperplane [3]. The question of whether the Bern-
stein theorem carried over to higher dimensions provided a great impetus
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in the development of the higher dimensional theory of minimal surfaces. It
was eventually shown to be true by De Giorgi [20] forn = 3, Almgren [1]
for n = 4, and Simons [36] forn ≤ 7. Finally Bombieri, De Giorgi, and
Giusti [6] gave an example showing that the result fails forn ≥ 8. The anal-
ogous spherical Bernstein problem, proposed by Chern [17], asks whether
an (n − 1)-sphere is an equator if it is embedded as a minimal hypersur-
faces in then-sphere,Sn. This is true forn = 3 [1, 11] but for all even
n ≥ 4 and some oddn, the result was shown false [25, 37]. The Bernstein
problem for maximal space-like hypersurfaces in Minkowski space is com-
pletely understood as an entire maximal graph must be a hyperplane in all
dimensions [15].

The Bernstein problem for affine maximal hypersurfaces was proposed
by Chern [18] and subsequently Calabi [13]. To formulate it, we letM be
a hypersurface immersed in the real affine(n+1)-spaceAn+1. In this paper
we restrict attention to locally convexC2 hypersurfaces, namelyC2 hyper-
surfaces with local supporting hyperplanes, and there is no loss of generality
in introducing a Euclidean structure inAn+1 so that we may work directly
in Rn+1. It is known that a complete, locally uniformly convex hypersur-
face must be globally convex, and hence the boundary of a convex domain
[24, 35]. Consequently ifM is open, it can be represented as the graph of
a convex function over a domain inRn. The normal of the hypersurface
will be chosen on its convex side. We remark here that a locally convex
C2 hypersurface is locally uniformly convex if its principal curvatures are
positive and was called strongly convex in [13].

SupposeM is given by

xn+1 = u(x), x = (x1, · · · , xn),(1.1)

whereu ∈ C2(Ω) is convex. OnM we can introduce a metric, called the
affine metric, given by

gij = uij

[detD2u]1/(n+2)
,(1.2)

whereD2u = [uij ] is the Hessian matrix of the second derivatives ofu. If
u is locally uniformly convex inΩ, then detD2u > 0 andg is well defined.
From the metric, we introduce the affine areaA by defining

A(u,Ω) =
∫

Ω

[detD2u]1/(n+2)(1.3)

=
∫

MΩ

K1/(n+2),

whereK is the Gauss curvature ofM andMΩ = {(x,u(x)) ∈M
∣∣ x ∈ Ω}.

The metricg and the areaA are invariant under unimodular affine trans-
formations, that is linear transformations (inRn+1) preserving Euclidean
volume and orientation, see [13].
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A hypersurfaceM, given by (1.1), is calledaffine maximalif the function
u is a critical point of the affine area functionalA. Calabi [13] proved that if
u ∈ C4(Ω) is a critical point of the functionalA, the second variation ofA
at u is non-positive, that is, the affine area ofM reaches a maximum under
smooth interior perturbations. Accordingly he proposed thatM be called
an affine maximal hypersurface. The Euler equation of the functionalA is
a fourth order, nonlinear partial differential equation, given by

HA[M] =: Dij (U
ijw) = 0,(1.4)

where

w = [detD2u]−(n+1)/(n+2),(1.5)

and[Uij ] denotes the cofactor matrix of[uij ]. Noting that

Dj U
ij = 0,(1.6)

we see that the above equation may also be written as

HA[M] = Uij Dijw = 0.(1.7)

The quantityHA[M] on the left hand side of equations (1.4) and (1.7)
represents the affine mean curvature of the hypersurfaceM.

Denoting

h = g1/2 = (det[gij ]
)1/2

(1.8)

= (detD2u
)1/(n+2)

,

equation (1.4) can also be written as

∆M

(1

h

)
= 0,(1.9)

where∆M is the Laplace-Beltrami operator with respect to the affine metric
(1.2), given by

∆M = 1√
g

Di
(√

ggij D j
) = 1

h
Di
(
h2uij D j

)
,(1.10)

and[gij ], [uij ] are the inverses of[gij ], [uij ]. Therefore the hypersurfaceM
is affine maximal if and only if 1/h is harmonic onM.

In [18], Chern conjectured that, in the two dimensional case, any entire
solution to (1.7) must be quadratic. From Bernstein [3], if the function
w = o(|x|), asx→∞, thenw is constant and Chern’s conjecture follows
from Jörgens’ theorem [26], that an entire convex solution of the Monge-
Ampère equation

detD2u = constant(1.11)
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is a quadratic function, (which is true in all dimensions). Calabi [13] verified
the Chern conjecture under the hypothesis that the affine metric of the graph
of the solution, defined by (1.2) is complete. For ifn = 2, the Ricci tensor
under the affine metric is non-negative definite, and by a result of Blanc
and Fiala [4], (see [38] for the higher dimensional case), that a positive
harmonic function on a complete Riemannian manifold with non-negative
Ricci curvature is constant, the result follows again from Jörgens’ theorem.
Different conditions were imposed by Calabi [14]. However, the above
conditions represent fairly strong restrictions on the asymptotic behaviour
of the second derivatives of the functionu. Locally uniformly convex,
Euclidean complete hypersurfaces are not generally affine complete, as is
the case with the graphs of the functions, given by

u = 1

x1
+ x2

2, (x1 > 0),(1.12)

and

u = (1+ |x|k)1/k, k > 2.(1.13)

The example (1.13) also violates the Bernstein condition,w = o(|x|), for
k ≥ 2. Li [28] proved that if all the affine principal curvatures are bounded,
then Euclidean completeness implies affine completeness, so that in the two
dimensional case, the Chern conjecture is valid if the affine Gauss curvature
is bounded from below; (see also [29]).

This paper is set out as follows. In the next section, we show how the
Bernstein problem can be reduced to a problem ofa priori estimates for
solutions of the affine maximal surface equation (1.7), (Theorem 2.1). As
a byproduct of our argument, we deduce an extension of Jörgen’s theorem
in all dimensions. Sect. 3 is concerned with upper and lower bounds for the
Hessian determinant of solutions of (1.7). The upper bound, (Lemma 3.1),
is derived by typical nonlinear second order PDE techniques while for the
lower bound, (Lemma 3.2), we invoke the Legendre transformation, thereby
bringing in to play the modulus of convexity. In Sect. 4, we apply the re-
cent Hölder estimate of Caffarelli and Gutiérrez, (Theorem 4.1), [9], for
the linearized Monge-Ampère equation, to conclude interior higher order
estimates, in terms of the modulus of convexity, and regularity, (Theo-
rem 4.2). The combination of Theorem 4.2 and our reduction in Sect. 2
yields the Bernstein property under a restriction ofuniform strict convexity,
(Corollary 4.3). In Sect. 5, we establish a modulus of convexity estimate
for solutions of equation (1.4), (1.7) intwo dimensions, (Lemma 5.1),
thereby completing the proof of the Chern conjecture, (Theorem 5.2). The
arguments here cannot be extended to higher dimensions. In Sect. 6, we
take up the issue of reduced smoothness. First we prove that our preced-
ing estimates in Theorem 4.2 and the two dimensional Bernstein property,
Theorem 5.2, extend toC2 weak solutions of equation (1.4), (Theorem 6.2).
Next we consider the extension of the affine area functional (1.3) to arbitrary
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convex graphs, proving an approximation result, (Lemma 6.3), and upper
semi-continuity, (Lemma 6.4). Finally in Sect. 7, we provide an example
to illustrate the scope of our investigations. This example, in dimension
ten, violates the uniformly strict convexity condition but unfortunately has
a singularity (albeit mild) at one point.

To complete this introduction, we state the two dimensional Bernstein
property in its fully generality, taking account of the fact that a compact
surface cannot be affine maximal [18].

Theorem 1.1. A Euclidean complete, affine maximal, locally uniformly
convexC2 hypersurface inR3 must be an elliptic paraboloid.

2. Reduction to interior estimates

In this section, we show the Bernstein property can be reduced to the estab-
lishment of interior estimates for solutions of equations (1.4) in arbitrary
normalized convex domains. We will make use of the fact [21] that for any
bounded convex domainΩ in Rn, there exists a unique ellipsoidE, called
the minimum ellipsoidof Ω, which attains the minimum volume among
all ellipsoids concentric with and containingΩ, and a positive constantαn,
depending only onn, such that

αnE ⊂ Ω ⊂ E,(2.1)

whereαnE is the αn dilation of E with respect to its centre. LetT be
a dilation mappingE onto the unit ballB. From (2.1),

αn B ⊂ T(Ω) ⊂ B,(2.2)

and we callT(Ω) thenormalized domainof Ω, andΩ normalizedif T(Ω) =
Ω, that isE = B.

Letting L = Uij Dij , we write equation (1.4) in the form

Lw = Uij Dijw = 0,(2.3)

where

w = (detD2u
)θ−1

, θ = 1

n+ 2
.(2.4)

HypothesisHn: For all normalized convex domainsΩ ⊂ Rn and locally
uniformly convex solutionsu ∈ C4(Ω) of equation (2.3) satisfyingu = 0
on ∂Ω, infΩ u = −1, we have the estimates

D2u ≥ C1I, |D3u| ≤ C2(2.5)

in the ballγB, whereC1, C2 andγ are positive constants, depending only
on n.
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Theorem 2.1. Suppose thatHn is valid. Then ifu ∈ C4(Ω) is a locally
uniformly convex solution of equation (2.3) in a convex domainΩ ⊂ Rn

satisfying

lim
x→∂Ω

u(x) = +∞,(2.6)

it follows thatΩ = Rn andu is a quadratic function.

Proof. By subtracting a linear function, we may suppose

u(0) = Di u(0) = 0, i = 1, · · · ,n.(2.7)

Let Tt = [aij
t ] be a linear transformation which normalizes thesection

St = {x ∈ Ω
∣∣ u < t}, (t > 0),(2.8)

and defineut andΩt by

ut(x) = 1

t
u(T−1(x)), Ωt = {x

∣∣ ut < 1} = Tt(St).(2.9)

By the assumption of Theorem 2.1,ut ∈ C4(Ωt) is uniformly convex and
satisfies the affine invariant equation (2.3) inΩt . Furthermore by (2.5), we
have

D2ut(x) ≥ C1I(2.10)

for any t ≥ 1 andx ∈ γB. Let Λt denote the maximum eigenvalue ofTt.
We claim there exists a positive constantΛ0 such that

limt→∞tΛ2
t ≤ Λ0.(2.11)

To prove (2.11), we observe from (2.10),

u(x) = tut(Tt(x)) ≥ C1t|Tt(x)|2

and hence

sup
x∈rB

u(x) ≥ sup
x∈rB

C1t|Tt(x)|2 = C1r
2tΛ2

t ,(2.12)

wherer is chosen small enough to ensurerB ⊂ Ω. Next for x ∈ Ω, we
estimate

|D3u(x)| ≤ CΛ3
t t|D3ut(Tt(x))|

≤ CΛ
3/2
0 t−1/2

for Tt(x) ∈ γB, by (2.5) and (2.11). Hence lettingt → ∞, we conclude
D3u = 0, whenceu is quadratic andΩ = Rn. ut
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From the proof of Theorem 2.1, we can also deduce the following
extension of the Bernstein property for the Monge-Ampère equation (1.11),
which was proved by Jörgens [26] forn = 2, Calabi [10] for 2≤ n ≤ 5,
and Pogorelov [32] forn ≥ 2.

Corollary 2.2. Let Ω be a convex domain inRn andu a convex solution
of the equation

detD2u = 1 in Ω(2.13)

with limx→∂Ω u(x) = ∞. ThenΩ = Rn andu is quadratic.

To prove Corollary 2.2, we observe that equations of the form (1.11)
can be used in the HypothesisHn, with the appropriate estimates (2.5)
guaranteed by the regularity theory for the Monge-Ampère equation, as in
[23] or [33]. We note also that the concept of solutions in Corollary 2.2 may
be understood in the generalized sense of Aleksandrov.

The third derivative estimate in (2.5) is stronger than necessary. By
inspection of the proof of Theorem 2.1, it can be replaced by a modulus of
continuity estimate for the second derivatives in the ballγB.

3. Bounds for the Hessian determinant

In this section, we derive upper and lower bounds for the Hessian determi-
nant, detD2u, of solutionsu of equation (2.3).

Lemma 3.1. Let Ω be a bounded convex domain inRn andu ∈ C4(Ω) ∩
C0,1(Ω)a locally uniformly convex solution of equation (2.3) inΩ, satisfying

u = 0 on ∂Ω inf
Ω

u = −1.(3.1)

Then, fory ∈ Ω,

detD2u(y) ≤ C,(3.2)

whereC depends onn, dist(y, ∂Ω), andsupΩ |Du|.
Proof. Let

z= log
w

(−u)β
− A|Du|2,(3.3)

whereβ andA are positive constants to be specified later. Sincez→∞ on
∂Ω, it attains a minimum at some pointx0 ∈ Ω. At x0, we then have

0= zi = wi

w
− βui

u
− 2Aukuki ,(3.4)
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and

0≤ [zij ] =
[wij

w
− wiw j

w2
− βuij

u
+ βui u j

u2
− 2Auki uk j − 2Aukukij

]
.

(3.5)

Recallingw = detθ−1D2u, θ = 1
n+2, we have

uij ukij = (log detD2u)k = − 1

1− θ
wk

w
,(3.6)

where[uij ] = (detD2u)−1[Uij ] is the inverse ofD2u. From (3.4),

wiw j

w2
= β2ui u j

u2
+ 2βA

u
(ui ukuk j + uj ukuki)+ 4A2ukulukiul j ,

and hence, atx0, we have

0≤ uij zij(3.7)

= −βn

u
− uijwiw j

w2
+ βuij ui u j

u2
− 2Auij uk juk j + 2A

1− θ
ukwk

w

= −βn

u
− β(β − 1)

uij ui u j

u2
− 2A∆u+ 4A2θ

1− θ uij ui u j

− 2βA
1− 2θ

1− θ
|Du|2

u

≤ −A∆u− βn

u
+ 2βA

|Du|2
|u| ,

with the choice

A= 1− θ
4θ supΩ |Du|2 .(3.8)

Consequently, we obtain

−u∆u(x0) ≤ C(n, β) sup
Ω

|Du|2.(3.9)

Settingβ = (1− θ)n = n(n+ 1)/(n+ 2), we obtain

z(x) ≥ z(x0)

= (θ − 1) log |u|ndetD2u(x0)− A|Du|2(x0)

≥ (θ − 1)n log |u|∆u(x0)− A|Du|2(x0)

≥ −C(n,M1),

whereM1 = supΩ |Du|. Accordingly we estimate, for anyy ∈ Ω,

detD2u ≤ C(n,M1)

|u(y)|n ≤
C(n,M1)(diamΩ)n

(dist(y, ∂Ω))n

by (3.1) and the convexity ofu, and hence Lemma 3.1 is proved. ut
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Remark. It is clear that Lemma 3.1 will hold for anyθ ∈ (0,1) in (2.4),
with constantC in (3.2) depending also onθ.

We next derive a lower bound for detD2u in terms of a modulus of
strict convexity for the functionu. We first note that a locally uniformly
convex functionu on a convex domainΩ will be strictly convex, that is at
each pointP, of the graphM of u, there exists a supporting plane, lying
belowM, and intersectingM only at P. For anyy ∈ Ω, h > 0, we define
thesectionS(y,h) by

S(y,h) = {x ∈ Ω
∣∣ u(x) < u(y)+ Du(y)(y− x)+ h

}
.(3.10)

We then define themodulus of convexityof u at y, by

hu,y(r) = sup
{
h ≥ 0

∣∣ S(y,h) ⊂ Br (y)
}
, r > 0(3.11)

and themodulus of convexityof u onΩ, by

h(r) = hu,Ω(r) = inf
y∈Ω hu,y(r), r > 0.(3.12)

Observe that a functionu is strictly convex inΩ if and only if h(r) > 0 for
all r > 0.

Lemma 3.2. Let u ∈ C4(Ω) be a locally uniformly convex solution of
equation (2.3) in a domainΩ ⊂ Rn, satisfying−1 ≤ u ≤ 0 in Ω. Then,
for y ∈ Ω, there exists a positive constantC depending onn,dist(y, ∂Ω),
diam(Ω), andhu,Ω, such that

C−1 ≤ detD2u(x) ≤ C.(3.13)

Proof. Sinceu ∈ C4(Ω) is locally uniformly convex, so also is its Legendre
transform,u∗, defined by

u∗(x) = sup
y∈Ω

(
x · y− u(y)

)
, x ∈ Ω∗ = Du(Ω),(3.14)

with

Du∗(x) = y, detD2u∗(x) = (detD2u(y)
)−1
,(3.15)

wheneverx = Du(y), y ∈ Ω, [34]. Sinceu is maximal with respect to the
functional A, given by (1.3), it follows thatu∗ is maximal with respect to
the functionalA∗ given by

A∗[u,Ω] =
∫

Ω∗
[detD2u](n+1)/(n+2).(3.16)

Therefore, ifu satisfies (2.3), we see thatu∗ satisfies a similar equation

(U∗)ij (w∗)ij = 0,(3.17)
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where[(U∗)ij ] is the cofactor matrix of(u∗)ij and

w∗ = [detD2u∗]−1/(n+2).(3.18)

We cannot apply Lemma 3.1, withθ = n+1
n+2, directly as the functionu∗

is not necessarily constant on∂Ω∗. However, for any pointy ∈ Ω, and
x = Du(y) ∈ Ω∗, we can infer from (3.11) and (3.12) that the section
S∗(x, δ) of the Legendre transformu∗ lies in Ω∗ for δ = h(1

2dist(y, ∂Ω)).
Furthermore, we have, (for 0∈ Ω),

|Du∗| ≤ diam(Ω)(3.19)

and hence the ballBR(x) ⊂ S∗(x, δ) for R ≤ δ/diamΩ. Accordingly, we
may apply Lemma 3.1, withθ = n+1

n+2, to the functionu∗ in the domain
S∗(x, δ) to deduce the lower bound in (3.13). The upper bound follows
by applying Lemma 3.1 in the sectionS(y, δ) where we would have the
gradient bound|Du| ≤ 2/dist(y, ∂Ω). ut

4. Application of the Caffarelli-Guti érrez theory

In Sect. 3, we established bounds for the Hessian determinant of solutions
of equation (1.7) in bounded convex domainsΩ ⊂ Rn, namely, for any
subdomainΩ′ ⊂⊂ Ω,

0< λ ≤ detD2u ≤ Λ(4.1)

in Ω′, whereλ andΛ are positive constants depending only onn, diamΩ,
dist(Ω′, ∂Ω), and the modulus of convexity ofu, h. The functionu ∈ C4(Ω)
was also assumed to be locally uniformly convex inΩ, and normalized by
−1 ≤ u ≤ 0 in Ω. Caffarelli and Gutíerrez [9] have recently developed
a theory oflinear operators of the form

Lv = Uij Dij v = Di (U
ij D jv)(4.2)

with coefficient matrixUij given as the cofactor matrix of a convex func-
tion u, which is analogous to the De Giorgi, Nash, Moser theory of uni-
formly elliptic divergence form linear operators and the Krylov-Safonov
theory of general form linear operators [23]. In their theory, Euclidean balls
are replaced by sections of the convex functionu and Lebesgue measure
by the Monge-Ampère measure associated withu. We will make use of the
following Hölder estimate from [9].

Theorem 4.1. Let u ∈ C2(Ω) be a convex function in a domainΩ ⊂ Rn,
satisfying (4.1) andv ∈ C2(Ω) a solution of the equation

Lv = Uij Dij v = 0(4.3)
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in Ω. Then for any sectionsS(y, r) ⊂ S(y, R) ⊂ Ω, we have the estimate

oscS(y,r)v ≤ C

(
r

R

)α
oscS(y,R)v,(4.4)

whereC andα are positive constants depending only onn andΛ/λ.

In order to apply Theorem 4.1 we observe that

Br (y) ⊂ S(y, kr)(4.5)

for k = 2 supΩ′ |Du|, and

S(y, R) ⊂ Ω′ ⊂⊂ Ω(4.6)

whenevery ⊂ Ω′, R< h(dist(y, ∂Ω′)). Consequently we infer from Lem-
mas 3.1 and 3.2 a Hölder estimate for the functionw, namely,

[w]α,Ω′ ≤ C(4.7)

for any Ω′ ⊂⊂ Ω, whereα andC are positive constants depending only
on n, dist(Ω′, ∂Ω), diamΩ, andh. By the Caffarelli-Schauder estimate for
the Monge-Ampère equation [7], we then conclude localC2,α estimates for
the functionu,

|u|2,α,Ω′ ≤ C,(4.8)

where againα and C are positive constants depending only onn,
dist(Ω′, ∂Ω), diamΩ, andh. Bootstrapping, via the classical Schauder es-
timates [23], we thus obtain our desired estimates. Analyticity of solutions
follows from [30].

Theorem 4.2. Let Ω be a bounded convex domain inRn andu ∈ C4(Ω)
a locally uniformly convex solution of equation (1.4) inΩ satisfying−1 ≤
u ≤ 0 in Ω. Thenu ∈ C∞(Ω) and for any subdomainΩ′ ⊂⊂ Ω, k ≥ 2, we
have the estimates

D2u ≥ C1I, |Dku| ≤ C2,(4.9)

whereC1 depends onn, dist(Ω′, ∂Ω), diamΩ, and the modulus of convexity
hu,Ω, andC2 depends additionally onk. Moreover,u is also analytic inΩ.

In order to apply Theorem 4.2 to the Bernstein problem, we say that
a convex functionu in a domainΩ satisfies theuniform strict convexity
condition if there exists a positive constantγ ≤ 1 and a positive functionh
on (0,∞) such that for somey ∈ Ω and allr, t > 0, x ∈ γS(y, t), we have

S(x, th(r)) ⊂ x+ rS(y, t).(4.10)

By combining Theorems 2.1 and 4.2, we then obtain

Corollary 4.3. Let u ∈ C4(Ω) be a locally uniformly convex solution of
equation (1.4) in a convex domainΩ ⊂ Rn, satisfying (2.6). Then, ifu
satisfies the uniform strict convexity condition inΩ, it follows thatΩ = Rn

andu is a quadratic function.
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5. The two-dimensional case

In this section we show that in the two dimensional case (n = 2) a solution
to (1.4) with zero boundary condition satisfies a modulus of convexity
estimate. We sayp ∈ ∂D is an extreme point ofD if there is a supporting
hyperplane ofD such thatD lies on one side of the plane andD touches
the plane only atp. If D is convex, then any point inD can be represented
as a linear combination of extreme points ofD [34].

Lemma 5.1. LetΩ be a normalized convex domain inRn andu ∈ C4(Ω)
be a locally uniformly convex solution of (1.4), satisfying (3.1). Then there
exists a nondecreasing positive functionh on(0,∞), independent ofu, such
that

hu,x(r) ≥ h(r) for x = (x1, x2) ∈ 1

2
αn B, r > 0,(5.1)

wherehu,x(r) is defined in (3.11).

Proof. It suffices to prove (5.1) forx = 0. If the lemma is not true, then
there exist a sequence of functions{uk}, and a sequence of normalized
domains{Ωk}, satisfying (1.4), (3.1) withΩ = Ωk, and a positive number
r0 > 0 such that

huk,0(r0)→ 0 as k→∞.(5.2)

Noticing thathu,0 is non-decreasing, we havehuk,0(r) → 0 ask → ∞
uniformly for r ∈ (0, r0). SinceΩk anduk are convex, we may suppose by
taking subsequences that{Ωk} converges to a convex domainΩ and{uk}
converges to a convex functionu, locally uniformly inΩ. Let

Dk = {(x, x3) ∈ R3
∣∣ uk(x) < x3 < 0},(5.3)

D = {(x, x3) ∈ R3
∣∣ u(x) < x3 < 0}.

Then the sequence of convex domains{Dk} converges toD. The graph ofu
is understood (only in this section) as∂D\{xn+1 = 0}, so that the sequence
of graphs of{uk} converges to the graph ofu as convex surfaces under
Hausdorff distance. Forx ∈ ∂Ω, we defineu(x) = limy→x,y∈Ωu(y).

By (5.2) we see thatu is not strictly convex near the origin. LetL =
{x3 = `(x)} be a supporting plane of the graph ofu at the point(0,u(0))
such that the contact setω0 =: {x ∈ Ω

∣∣ u(x) = `(x)} is a convex set
(possibly a line segment, but not a single point). Letω be the closure ofω0.

We claim that ifp = (p1, p2) ∈ ∂ω and p3 = u(p) < 0, thenp is an
interior point ofΩ. SinceΩ is convex, it suffices to show that ifp is an
extreme point ofω such thatu(p) < 0, thenp ∈ Ω.

To prove this claim, we suppose to the contrary thatp ∈ ∂Ω, so that the
line segment{(p1, p2, t)

∣∣ p3 < t < 0} lies on the graph ofu. We may
suppose thatx = 0 is an interior point ofω (or the midpoint ofω if ω is
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a line segment). Since equation (1.4) is affine invariant, we may suppose
p= (−1,0) and

Ω ⊂ {x1 > −1}.(5.4)

Adding a linear function tou anduk, we may also suppose that

u(0) = 0, u(p) = −
√

3

3
, u ≥

√
3

3
x1,(5.5)

Then the line segments

χ =
{(

t,0,

√
3

3
t
) ∣∣∣ − 1< t < 0

}
,(5.6)

χ∗ =
{
(−1,0, t)

∣∣∣ − √3

3
< t < 0

}

lie on M, the graph ofu, andχ andχ∗ form an angle ofπ3 at the point

(−1,0,−
√

3
3 ). HereM andMk denote the graphs ofu anduk after adding

the linear function.
We introduce a new coordinate system(y1, y2, y3) by letting

y1 =
√

3
2 (x1+ 1)− 1

2(x3+
√

3
3 ),

y2 = x2,

y3 = 1
2(x1+ 1)+

√
3

2 (x3+
√

3
3 )

(5.7)

Then near the origin of the new coordinates,M can be represented as the
graph of a convex functionv, which is nonnegative by (5.4), (5.5). Sincep
is an extreme point ofω, we see thatv is strictly convex aty = 0, namely,
v > 0 except at the origin. HenceDv is bounded on the set{v < h} for
h > 0 small enough.

SinceMk is convex and{Mk} converges toM locally uniformly under
Hausdorff distance, we see thatMk can also be represented as a graph
of a convex functionvk in the new coordinatesy for sufficiently largek.
Obviouslyvk→ v near the origin. Hence the functions|Dvk| are uniformly
bounded in the sets{vk < h/2} for k large enough. SinceMk is affine
maximal, it is affine maximal under any coordinate system. We can therefore
apply the argument of Lemma 3.1 tovk and conclude that the functions
detD2vk are locally uniformly bounded. Sincevk → v uniformly near the
origin, the sequence{detD2vk} converges to the Monge-Ampère measure
associated withv, µn[v], [2].

Forε > 0 small enough, let

Gε =
{
(y1, y2}

∣∣ v(y1, y2) < ε
}
.(5.8)
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By (5.4) and (5.5) we havev(y) ≥ √3|y1| andv(y1,0) = √3|y1| for y1

small. HenceGε ⊂ {−
√

3
3 ε < y1 <

√
3

3 ε} and(±
√

3
3 ε,0) ∈ ∂Gε. Let

δε = sup{|y2|
∣∣ (y1, y2) ∈ Gε},(5.9)

and letNv denote the normal mapping ofv. One easily verifies that

|Nv(Gε)| ≥ Cε/δε,(5.10)

by comparingNv(Gε) with the image of the normal mapping of the convex
cone with vertex at the origin and base∂Gε. On the other hand, by the
boundedness of detD2v we have

|Nv(Gε)| = µn[v](Gε)(5.11)

≤ lim inf k→∞
∫

Gε

detD2vk

≤ C|Gε|
≤ Cεδε.

Henceδε > C > 0 for someC > 0 independent ofε. On the other hand,
we haveδε→ 0 asε→ 0 sincev is strictly convex at 0. The contradiction
shows thatp must lie in the interior ofΩ. The claim is proved.

Next we show that there is no extreme point ofω in Ω. Supposep ∈ Ω
is an extreme point ofω. By adding a linear function tou we may suppose
that

u(p) = inf {u(x) ∣∣ x ∈ ω},(5.12)

and u = 0 on ∂Ω by replacingΩ by a subdomain if necessary. By the
affine invariance of the equation (1.4) we may also supposep = (−1,0),
u(p) = −1, andω ⊂ {x1 ≥ −1} such that̀ (x) = u(0) + x1 is a tangent
plane ofu at p. Let x = 0 be an interior point ofω or the midpoint ofω if
ω is a line segment. Then forδ > 0 small,`(x)− δx1 < 0 in Ω. Forε > 0
small, let

Ωε =
{
(x1, x2) ∈ Ω

∣∣ u(x) < `(x)− εx1
}
.(5.13)

Let Tε be a dilation which normalizes the domainΩε and let

uε(Tε(x)) = 1

ε
(u(x)− (`(x)− εx1)).(5.14)

By taking a subsequence we may suppose thatTε(Ωε) converges to a nor-
malized domainΩ∗ and pε → p∗, wherepε = Tε(p).

Let

Dε =
{
(x, x3) ∈ R3

∣∣ uε(x) < x3 < 0
}
.(5.15)
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By (5.12) we have forx ∈ Ωε, 0 ≥ uε ≥ −1− o(1) asε→ 0. Hence we
may supposeDε → D∗ as convex bodies anduε → u∗ locally uniformly
in Ω∗. Then the graph ofuε converges to that ofu∗ as convex surfaces
under Hausdorff distance, where the graph ofu∗ is defined as above by
∂D∗\{x3 = 0}.

Obviously u∗ is not strictly convex. Indeed, since the line segment
χ = {(t,0)

∣∣ − 1 ≤ t ≤ 0} lies in Ωε, we haveTε(χ) → χ∗ by tak-
ing a subsequence. It followsu∗ is linear on the line segmentχ∗. Moreover,
p∗ ∈ χ∗. Next observing thatΩε ⊂ {x1 > −1− δε} for someδε, with
δε→ 0 asε→ 0, we have by (2.2) that

αn

2
− σε ≤ Tε(e1) ≤ 2

αn
+ σε(5.16)

for someσε→ 0 asε→ 0, wheree1 = (1,0) is the unit vector onx1 axis.
It follows that dist(pε, ∂(Tε(Ωε)))→ 0 and thatp∗ ∈ ∂Ω∗.

Finally, sinceu is the limit of the sequence of affine maximal functions
{uk}, we see thatuε andu∗ are also the limits of sequences of affine maximal
functions. Therefore by the claim above we conclude thatp∗ is an interior
point ofΩ∗. This is in contradiction with our construction sincep∗ ∈ ∂Ω∗.
This completes the proof. ut

Combining Lemma 5.1 with Theorems 2.1 and 4.2 we obtain

Theorem 5.2. An entire, affine maximal, locally uniformly convexC4

graph inR3 must be an elliptic paraboloid.

6. Reduction of smoothness

In this section, we extend the affine area functional (1.3) to general convex
graphs and prove a regularity result for weak solutions of the affine maximal
surface equation (1.4). We recall that the affine area functionalA is defined
for convexu ∈ C2(Ω) by

A(u) = A(u,Ω) =
∫

Ω

[detD2u]1/(n+2).(6.1)

Since the function,r → (detr)1/(n+2) is strictly concave on the cone of
positive symmetricn× n matrices, so also is the functionalA, that is

A(tu+ (1− t)v) ≥ tA(u) + (1− t)A(v)(6.2)

for all convexu, v ∈ C2(Ω), 0≤ t ≤ 1, with equality holding if and only if
D2u = D2v a.e.. Moreover ifu, η ∈ C2(Ω) are such thatu+ tη is convex
for sufficiently smallt ≥ 0, we have, by calculation,

d

dt
A(u+ tη)

∣∣
t=0 =

1

n+ 2

∫
Ω

wUij Dij η,(6.3)
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wherew = (detD2u)−(n+1)/(n+2), and as previously[Uij ] is the cofactor
matrix of D2u. Note that ifw is not integrable, the right hand side of (6.3)
may be infinite. Ifu is locally uniformly convex, we thus obtain from (6.2)
and (6.3) that the graph ofu is affine maximal if and only if∫

Ω

wUij Dij η = 0(6.4)

for all η ∈ C2
0(Ω), that is the weak form of equation (1.4) is satisfied. The

following lemma then enables us to show thatu ∈ C4(Ω) and equation (1.4)
is satisfied in the classical sense.

Lemma 6.1. Let L = aij Dij be a linear elliptic operator on a bounded
domainΩ ⊂ Rn, with boundary∂Ω ∈ C1,1, and coefficients[aij ] ∈ C0(Ω),
i, j = 1, · · · ,n, satisfying[aij ] ≥ λI , for some positive constantλ. Then,
if w ∈ C0(Ω) vanishes on∂Ω and satisfies∫

Ω

w Lη = 0(6.5)

for all η ∈ C2
0(Ω), we havew = 0 in Ω.

Proof. Let v ∈ W2,q(Ω), 1 ≤ q < ∞, be the unique solution of the
Dirichlet problem

Lv = signw in Ω(6.6)
v = 0 on ∂Ω,

and take, as a test function in (6.5),

η = χv,(6.7)

whereχ = χε ∈ C2
0(Ω), 0≤ χ ≤ 1, χ(x) = 1 for d(x) = dist(x, ∂Ω) ≥ ε,

|Dχ| ≤ C
ε

, |D2χ| ≤ C
ε2 for some smallε > 0. It is readily seen by

approximation thatη is a valid test function in (6.5). Then, using the estimate,
v ≤ Cd, we obtain∫

Ω

χ|w| = −
∫
{d(x)<ε}

w(2aij DiχDjv+ vaij Dij χ)(6.8)

≤ C

ε

∫
{d(x)<ε}

|w| → 0,

so thatw = 0 in Ω as required. ut
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To apply Lemma 6.1, we fix some ballB ⊂⊂ Ω and solve the Dirichlet
problem

Lv = Uij Dij v = 0 in B,(6.9)
v = w on ∂Ω,

for unique solutionv ∈ W2,q(B) ∩ C0(B), 1≤ q<∞. By approximation,
using the identity,DiUij = 0, for smoothu, we see thatv also satisfies the
weak form of (6.9), that is, ∫

B
vUij Dij η = 0(6.10)

for all η ∈ C2
0(B), and hence we inferw = v, by replacingw by w − v

in Lemma 6.1. Consequently detD2u ∈ W2,q(Ω) for all 1 ≤ q < ∞, and
further regularity follows, as in Sect. 4. Accordingly we have the following
regularity theorem, complementing Theorem 4.2.

Theorem 6.2. Letu ∈ C2(Ω) be locally uniformly convex and affine maxi-
mal in a domainΩ ⊂ Rn. Thenu ∈ C∞(Ω) and satisfies the affine maximal
surface equation (1.4) inΩ.

In particular we see from Theorem 6.2 that we need only assumeu ∈
C2(Ω) in Theorem 4.2 and moreover that Corollary 4.3 and Theorem 5.2
extend toC2 graphs.

To complete this section, we extend the affine area functional to non-
smooth convex functions and prove an upper semi-continuity result. First,
we note from the equivalent representation (1.3),

A(u,Ω) =
∫

MΩ

K1/(n+2)(6.11)

≤
(∫

MΩ

K

)1/(n+2)(
A0(MΩ)

)(n+1)/(n+2)

≤ C(Ω)ω1/(n+2)
n

if −1≤ u ≤ 0 inΩ, whereA0 denotes the usual Euclidean area. By scaling,
we then have the estimate

A(u,Ω) ≤ C
(
oscΩu

)n/(n+2)
.(6.12)

Next, if ω is a Borel subset ofΩ with dist(ω, ∂Ω) ≥ δ, we have∫
ω

(
detD2u

)1/(n+2) ≤ |ω|(n+1)/(n+2)

(∫
ω

detD2u

)1/(n+2)

(6.13)

≤ |ω|(n+1)/(n+2)ω1/(n+2)
n

(
oscu

δ

)n/(n+2)
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so that the functions(detD2u)1/(n+2) are locally equi-integrable whenever
the functionsu are bounded. Now letu be an arbitrary convex function, and
for h > 0, uh be its mollification, namely,

uh(x) = h−n
∫

Ω

ρ
(x− y

h

)
u(y)dy(6.14)

for h ≤ dist(x, ∂Ω), whereρ ≥ 0,∈ C∞0 (R), suppρ ⊂ B1(0) and
∫
ρ = 1.

Since the second derivatives ofu are signed measures, we can write

D2u = µ(a) + µ(s),(6.15)

whereµ(a) is absolutely continuous with respect to Lebesgue measure and
µ(s) is supported on a setN of Lebesgue measure zero. We let

∂2u = [∂ij u] ≥ 0, ∈ L1
loc(Ω)(6.16)

denote the density ofµ(a) with respect to Lebesgue measure. It then follows
that D2uh → ∂2u almost everywhere inΩ [39]. However, since the func-
tions (detD2uh)

1/(n+2) are equi-integrable on subsetsΩ′ ⊂⊂ Ω and hence
relatively compact inL1

loc(Ω), we then obtain

A(uh,Ω
′)→

∫
Ω′
(det∂2u)1/(n+2)(6.17)

for any subdomainΩ′ ⊂⊂ Ω. The convergence result (6.17) is clearly
also true for any sequence{um} ⊂ C2(Ω) of convex functions, converging
locally uniformly tou with D2um → ∂2u a.e.. Accordingly, we define the
affine area of an arbitrary convex graph on a domainΩ, by

A(u,Ω) =
∫

Ω

(
det∂2u

)1/(n+2)
,(6.18)

where∂2u denotes the density of the regular part of the Hessian matrixD2u.
From our argument above, we have the approximation result

Lemma 6.3.

A(u,Ω) = lim
h→0

A(uh,Ωh),(6.19)

whereΩh = {x ∈ Ω
∣∣ dist(x, ∂Ω) > h}.

From the representation (6.18), we can then extend the formula (6.3)
to arbitrary functionsu, η such thatu+ tη is convex for sufficiently small
t ≥ 0, namely

d

dt
A(u+ tη)

∣∣
t=0 =

1

n+ 2

∫
Ω

wUij ∂ij η(6.20)
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where noww = (det∂2u)−(n+1)/(n+2), [Uij ] denotes the cofactor matrix of
∂2u and [∂ij η] the density of the regular part of the signed measureD2η
(which exists sinceη is a difference of convex functions). It follows that
a convex functionu is affine maximal if and only if∫

Ω

wUij ∂ij η ≤ 0(6.21)

for all suchη with compact support inΩ. From Lemma 6.1, we then infer
an extension of Theorem 6.2, namely that if∂2u = D2u0 for some locally
uniformly convex functionu0 ∈ C2(Ω), thenu0 ∈ C∞(Ω) and satisfies the
affine maximal surface equation inΩ.

Finally we prove the upper semi-continuity of the extended affine area
functional (6.18) with respect to uniform convergence.

Lemma 6.4. Let {um} be a sequence of convex functions inΩ, converging
locally uniformly tou. Then

lim sup
m→∞

A(um,Ω) ≤ A(u,Ω).(6.22)

Proof. By virtue of Lemma 6.3, it suffices to prove (6.22) forum ∈ C2(Ω).
Sinceum→ u locally uniformly, detD2um→ detD2u weakly as measures,
that is, for any closed subsetF ⊂ Ω,

lim sup
m→∞

∫
F

detD2um ≤
∫

F
detD2u.(6.23)

For givenε, ε′ > 0, let

ωk =
{
x ∈ Ω

∣∣ (k− 1)ε ≤ detD2u < kε
}
,

k = 1,2, · · · , and Fk ⊂ ωk be a closed set such that|ωk − Fk| < ε′. For
eachFk, we have

lim sup
m→∞

1

|Fk|
∫

Fk

(
detD2um

)1/(n+2) ≤ lim sup
m→∞

(
1

|Fk|
∫

Fk

detD2um

)1/(n+2)

≤
(

1

|Fk|
∫

Fk

detD2u

)1/(n+2)

≤ (kε)1/(n+2)

so that

lim sup
m→∞

A(um, Fk) ≤ (kε)1/(n+2)|Fk|(6.24)

≤ A(u, Fk)+ 1

n+ 2
ε1/(n+2)|Fk|
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since detD2u ≥ (k− 1)ε in Fk. Consequently

lim sup
m→∞

A(um,∪Fk) ≤ A(u,Ω) + 1

n+ 2
ε1/(n+2)|Ω|.(6.25)

Using the equi-integrability (6.13) and sendingε, ε′ → 0, we conclude
(6.22). ut

Note that by considering polygonal approximations, we can have strict
inequality in (6.22). Furthermore by combining Lemmas 6.3 and 6.4, we
deduce a further representation forA(u,Ω), namely

A(u,Ω) = sup
{um}⊂Su

lim sup
m→∞

A(um,Ω),(6.26)

whereSu denotes the set of sequences of convex functions{um} ⊂ C2(Ω),
converging locally uniformly inΩ to the convex functionu. We remark that
we could have equivalently defined the extended affine area through the
regular part of the Monge-Ampère measure. For other definitions see [27].

7. Example

In this section, we provide an example of affine maximal, convex graphs
which does not satisfy the Bernstein property, and which violates the uni-
form strict convexity in high dimensions. Specifically we taken = 10 and
define

u(x) =
√
|x′|9+ x2

10,(7.1)

wherex′ = (x1, · · · , x9). It is readily shown thatu ∈ W2,1
loc (R

10) so that
D2u = ∂2u and we need to verify (6.21) to show thatu is affine maximal.
For x 6= 0, we consider the transformation

y′ = x′,
y10= x10+ u
v = u− x10

(7.2)

so that the functionv is given by

v(y) = |y
′|9

y10
(7.3)

for y10 > 0. To show thatv satisfies the affine maximal surface equation,
we consider, more generally, functions of the form,

u = r 2α

t
,(7.4)
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whereα ≥ 1, r = |y′|, t = |yn|, y′ = (y1, · · · , yn−1). Then

ur = 2αr 2α−1

t
,(7.5)

ut = −r 2α

t2
,

urr = 2α(2α − 1)
r 2α−2

t
,

urt = −2αr 2α−1

t2
,

utt = 2r 2α

t3
,

Denote

∆ = urr utt − u2
rt = 4α(α− 1)

r 4α−2

t4
,(7.6)

D = detD2u =
(ur

r

)n−2
∆ = C

r 2n(α−1)+2

tn+2
,

w = D
1

n+2−1 = C′
tn+1

r θ
,

where

C = 2nαn−1(α− 1), C′ = C−(n+1)/(n+2),

θ = 2(n+ 1)

n+ 2
(nα− n+ 1).

Also, denote

∆̃ = uttwrr + urrwtt − 2urtwrt ,(7.7)

= C′tn−2

r θ−2α+2

(
2θ(θ + 1)+ n(n+ 1)2α(2α − 1)− 4α(n+ 1)θ

)
.

Then we have

L[u] := uijwij = (n− 2)
r

ur

wr

r
+ 1

∆
∆̃ = tn+2

r θ+2α
K,(7.8)

where

K = C′
[
− n− 2

2α
θ(7.9)

+ 1

2α(α− 1)

(
θ(θ + 1)+ n(n+ 1)α(2α− 1)− 2(n+ 1)αθ

)]
.
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For u to be affine maximal, we needK = 0, i.e.,

θ(θ + 1)+ n(n+ 1)α(2α− 1)− 2(n+ 1)αθ − (n− 2)(α− 1)θ = 0.
(7.10)

Substituting forθ, we obtain the equivalent quadratic equation forα,

8α2− (n2− 4n+ 12)α + 2(n− 1)2 = 0,(7.11)

which is solvable forn ≥ 10. In particular forn = 10, α = 9
2 and we

conclude that the function (7.1) satisfies (1.4) forx 6= 0. To verify (6.21) in
domainsΩ containing the origin, we first observe, by virtue of Lemma 6.3,
we may assumeη is smooth away from the origin. We next estimate the
integrand on the left hand side of (6.21) by

wUij ∂ij η ≤ (detD2u)1/(n+2)
∑

uii
∑
|∂ii η|(7.12)

≤ C

r 3

∑
|∂ii η|

wherer = |x′|, t = x10 and sinceη is a difference of two convex functions,∑ |∂ii η| can be regarded as a Borel measure,µ = µη, satisfying

|µ(BR)| ≤ CRn−1(7.13)

for any ball BR, (whereC depends onη). Therefore, the integrability of
the function,wUij ∂ij η, follows from the following lemma whose proof is
elementary and is omitted here.

Lemma 7.1. Let µ be a Borel measure onRn satisfying (7.13) for any
ball Br . Then, for anyε > 0,∣∣∣ ∫

B1

dµ

|x|n−2−ε
∣∣∣ <∞,(7.14)

wherex′ = (x1, · · · , xn−1).

For sufficiently smallδ > 0, we set

ωδ =
{
x ∈ Ω

∣∣ |x′| < δ, |x10| < δ
}
.

Integrating by parts, we then have∫
Ω

wUij ∂ij η =
∫
ωδ

wUij ∂ij η+
∫

Ω\ωδ
wUij ηij(7.15)

=
∫
ωδ

wUij ∂ij η+
∫
∂ωδ

wUij ηiγ j −
∫
∂ωδ

η(wUij )iγ j

→ 0 as δ→ 0

sinceu satisfies equation (1.4) inR10\{o}. Consequentlyu is affine maximal
in R10.

If n > 10, it is easy to verify that the functionu, given by

u(x) =
√
|x′|9+ |x10|2+ |̃x|2,

is affine maximal, wherẽx = (x11, · · · , xn).
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