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Abstract
A C∞ smooth surface diffeomorphism admits an SRB measure if and only if the set
{x, lim supn

1
n

log‖dxf
n‖ > 0} has positive Lebesgue measure. Moreover the basins

of the ergodic SRB measures are covering this set Lebesgue almost everywhere. We
also obtain similar results for Cr surface diffeomorphisms with +∞ > r > 1.
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1 Introduction

One fundamental problem in dynamics consists in understanding the statistical be-
haviour of the system. Given a topological system (X,f ) we are more precisely in-

terested in the asymptotic distribution of the empirical measures
(

1
n

∑n−1
k=0 δf kx

)
n

for

typical points x with respect to a reference measure. In the setting of differentiable
dynamical systems the natural reference measure to consider is the Lebesgue measure
on the manifold.

The basin of a f -invariant measure μ is the set B(μ) of points whose empirical
measures are converging to μ in the weak-∗ topology. By Birkhoff’s ergodic theorem
the basin of an ergodic measure μ has full μ-measure. An invariant measure is said
to be physical when its basin has positive Lebesgue measure. We may wonder when
such measures exist and then study their basins.

In the works of Y. Sinai, D. Ruelle and R. Bowen [10, 38, 42] these questions have
been successfully solved for uniformly hyperbolic systems. An SRB measure of a
C1+ system is an invariant probability measure with at least one positive Lyapunov
exponent almost everywhere, which has absolutely continuous conditional measures
on unstable manifolds [45]. Physical measures may neither be SRB measures nor
sinks (as in the famous figure-eight attractor), however hyperbolic ergodic SRB mea-
sures are physical measures [30]. For uniformly hyperbolic systems, there is a finite
number of such measures and their basins cover a full Lebesgue subset of the mani-
fold. Beyond the uniformly hyperbolic case such a picture is known for large classes
of partially hyperbolic systems [1, 2, 9, 35]. Corresponding results have been estab-
lished for unimodal maps with negative Schwartzian derivative [25]. SRB measures
have been also deeply investigated for parameter families such as the quadratic family
and Hénon maps [4–6, 24]. In his celebrated ICM’s talk, M. Viana conjectured that a
C1+ diffeomorphism admits an SRB measure, whenever the set of points with non-
zero Lyapunov exponents has full Lebesgue measure. In recent works some weaker
versions of the conjecture (with some additional assumptions of recurrence and Lya-
punov regularity) have been proved [7, 18, 19]. Finally we mention that J. Buzzi, S.
Crovisier, O. Sarig have also recently shown the existence of an SRB measure for C∞
surface diffeomorphims when the set of points with a positive Lyapunov exponent has
positive Lebesgue measure [16] (Corollary 2).

In this paper we define a general entropic approach to build SRB measures. We
strongly believe that this approach may be used to recover the existence of SRB
measures for weakly mostly expanding partially hyperbolic systems [1] and to give
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another proof of Ben Ovadia’s criterion for C1+ diffeomorphisms in any dimension
[7].

We state now the main results of our paper. Let (M,‖·‖) be a compact Riemannian
surface and let Leb be a volume form on M , called Lebesgue measure. We consider
a C∞ surface diffeomorphism f : M �. The maximal Lyapunov exponent at x ∈
M is given by χ(x) = lim supn

1
n

log‖dxf
n‖. When μ is a f -invariant probability

measure, we let χ(μ) = ∫
χ(x)dμ(x). For two Borel subsets A and B of M we

write A
o⊂ B (resp. A

o= B) when we have Leb(A \ B) = 0 (resp. Leb(A�B) = 0).
For c ∈ R and � ⊂ R we also let {χ > c} := {x ∈ M, χ(x) > c}, {χ = c} := {x ∈
M, χ(x) = c} and {χ ∈ �} := {x ∈ M, χ(x) ∈ �}.

Theorem 1 Let f : M � be a C∞ surface diffeomorphism. There are countably many
ergodic SRB measures (μi)i∈I , such that we have with � = {χ(μi), i ∈ I } ⊂ R>0:

• {χ > 0} o= {χ ∈ �},
• {χ = λ} o⊂ ⋃

i,χ(μi)=λB(μi) for all λ ∈ �.

Corollary 1 Let f : M � be a C∞ surface diffeomorphism. Then

{χ > 0} o⊂
⋃

μ SRB ergodic

B(μ).

Corollary 2 (Buzzi-Crovisier-Sarig [16]) Let f : M � be a C∞ surface diffeomor-
phism.

If Leb(χ > 0) > 0, then there exists an SRB measure.

In fact we establish a Cr , 1 < r < +∞, stronger version, which implies straight-
forwardly Theorem 1:

Main Theorem Let f : M � be a Cr , R � r > 1, surface diffeomorphism. Let
R(f ) := limn

1
n

log+ supx∈M ‖dxf
n‖. There are countably many ergodic SRB mea-

sures (μi)i∈I with � := {χ(μi), i ∈ I } ⊂]R(f )
r

,+∞[, such that we have:

•
{
χ >

R(f )
r

}
o= {χ ∈ �},

• {χ = λ} o⊂ ⋃
i,χ(μi)=λB(μi) for all λ ∈ �.

In others terms, Lebesgue almost every point x with χ(x) >
R(f )

r
lies in the basin

of an ergodic SRB measure μ with χ(x) = χ(μ).
When f is a C1+ topologically transitive surface diffeomorphism, there is at most

one SRB measure, i.e. �I ≤ 1 [23]. If moreover the system is topologically mixing,
then the SRB measure when it exists is Bernoulli [30]. By the spectral decomposition
of Cr surface diffeomorphisms for 1 < r ≤ +∞ [14] there are at most finitely many
ergodic SRB measures with entropy and thus maximal exponent larger than a given
constant b >

R(f )
r

. Therefore, in the Main Theorem, the set � = {χ(μi), i ∈ I } is
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either finite or a sequence decreasing to R(f )
r

. When r is finite, there may also exist

ergodic SRB measures μ with χ(μ) ≤ R(f )
r

.
We prove in a forthcoming paper [11] that the above statement is sharp by building

for any finite r > 1 a Cr surface diffeomorphism f : M � with a periodic saddle
hyperbolic point p such that χ(x) = χ(δp)

r
> 0 for all x ∈ U for some set U ⊂ B(μp)

with Leb(U) > 0, where μp denotes the periodic measure associated to p (see [13]
for such an example of interval maps).

In higher dimensions we let 	kχ(x) := lim supn
1
n
‖�kdxf

n‖ where �kdf de-
notes the action induced by f on the kth exterior power of T M for k = 1, . . . , d

with d being the dimension of M . By convention we also let 	0χ = 0. For any
C1 diffeomorphism (M,f ) we have Leb(	dχ > 0) = 0 (see [3]). The product of a
figure-eight attractor with a surface Anosov diffeomorphism does not admit any SRB
measure whereas χ is positive on a set of positive Lebesgue measure. However we
conjecture:

Conjecture Let f : M � be a C∞ diffeomorphism on a compact manifold (of any
dimension).

If Leb
(
	kχ > 	k−1χ ≥ 0

)
> 0, then there exists an ergodic measure with at least

k positive Lyapunov exponents, such that its entropy is larger than or equal to the sum
of its k smallest positive Lyapunov exponents.

In the present two-dimensional case the semi-algebraic tools used to bound the
distortion and the local volume growth of C∞ curves are elementary. This is a chal-
lenging problem to adapt this technology in higher dimensions.

When the empirical measures from x ∈ M are not converging, the point x is said
to have historic behaviour [39]. A set U is contracting when the diameter of f nU

goes to zero when n ∈ N goes to infinity. In a contracting set the empirical measures
of all points have the same limit set, however they may not converge. P. Berger and
S. Biebler have shown that C∞ densely inside the Newhouse domains [8] there are
contracting domains with historic behaviour. In intermediate smoothness, such do-
mains have been previously built in [27]. As a consequence of the Main Theorem,
Lebesgue almost every point x with historic behaviour satisfies χ(x) ≤ 0 for C∞
surface diffeomorphisms. We also show the following statement.

Theorem 2 Let f be a C∞ diffeomorphism on a compact manifold (of any dimen-
sion). Then Lebesgue a.e. point x in a contracting set satisfies χ(x) ≤ 0.

We explain now in few lines the main ideas to build an SRB measure under the
assumptions of the Main Theorem. The geometric approach for uniformly hyperbolic

systems (see e.g. [17]) consists in considering a weak limit of
(

1
n

∑n−1
k=0 f k∗ LebDu

)
n
,

where Du is a local unstable disc and LebDu denotes the normalized Lebesgue mea-
sure on Du induced by its inherited Riemannian structure as a submanifold of M .
Here we take a smooth Cr embedded curve D such that

χ(x, vx) := lim sup
n

1

n
log‖dxf

n(vx)‖ > b >
R(f )

r
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for (x, vx) in the unit tangent space T 1D of D with x in a subset B of D of positive
LebD-measure. For x in B we define a subset E(x) of positive integers, called the
geometric set, such that the following properties hold for any n ∈ E(x):

• the geometry of f nD around f nx is bounded meaning that for some uniform ε >

0, the connected component Dε
n(x) of f nD intersected with the ball at f nx of

radius ε > 0 is a curve with bounded s-derivative for s ≤ r ,
• the distortion of df −n on the tangent space of Dε

n(x) is controlled,

• for some τ > 0 we have ‖dxf l(vx)‖
‖dxf k(vx)‖ ≥ e(l−k)τ for any l > k ∈ E(x).

We show that E(x) has positive upper asymptotic density for x in a subset A of B of
positive LebD-measure. Let F : PT M � be the map induced by f on the projective
tangent bundle PT M . We build an SRB measure by considering a weak limit μ of a

sequence of the form
(

1
�Fn

∑
k∈Fn

F k∗ μn

)
n

such that:

• (Fn)n is a Følner sequence, so that the weak limit μ will be invariant by F ,
• for all n, the measure μn is the probability measure induced by LebD on An ⊂ A,

the LebD-measure of An being not exponentially small,
• the sets (Fn)n are in some sense filled with the geometric set E(x) for x ∈ An. Then

the measure μ on PT M will be supported on the unstable Oseledec’s bundle.

Finally we check with some Følner Gibbs property that the limit empirical measure
μ projects to an SRB measure on M by using the Ledrappier-Young entropic charac-
terization.

The paper is organized as follows. In Sect. 2 we recall for general sequences of
integers the notion of asymptotical density and we build for any sequence E with
positive upper density a Følner set F filled with E. Then we use a Borel-Cantelli
argument to define our sets (An)n and the Følner sequence (Fn)n. In Sect. 3, we
study the maximal Lyapunov exponent and the entropy of the generalized empirical
measure μ assuming some Gibbs property. We introduce the geometric set in Sect. 4
by using the Reparametrization Lemma of [12]. We build then SRB measures in
Sect. 5 by using the abstract formalism of Sect. 2 and 3. Then we prove the covering
property of the basins in Sect. 6 by the standard argument of absolute continuity of
Pesin stable foliation. The last section is devoted to the proof of Theorem 2.

Comment: In a first version of this work, by following [12] (incorrectly) the author
claimed that, at b-hyperbolic times n of the sequence

(‖dxf
k(vx)‖

)
k

for some b > 0,
the geometry of f nD at f nx was bounded. J. Buzzi, S. Crovisier and O. Sarig gave
then in [16] another proof of Corollary 2 by using their analysis of the entropic conti-
nuity of Lyapunov exponents from [15]. But our claim on the geometry at hyperbolic
times is wrong in general and we manage to show it only when χ(x) >

R(f )
2 . Here we

correct our proof based on the Reparametrization Lemma of [12] by showing directly
that the set of times with bounded geometry has positive upper asymptotic density on
a set of positive LebD-measure.
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2 Some asymptotic properties of integers

2.1 Asymptotic density

We first introduce some notations. The set of positive integers is denoted by N
∗. In the

following we let PN and Pn be respectively the power sets of N and {0,1,2, . . . , n −
1}, n ∈N. For a ≤ b ∈N we write �a, b� (resp. �a, b�, �a, b�) the interval of integers k

with a ≤ k ≤ b (resp a ≤ k < b, a < k ≤ b). The connected components of E ∈ PN

are the maximal intervals of integers contained in E. An interval of integers �a, b� is
said to be E-irreducible when we have a, b ∈ E and �a, b�∩E = {a}. The boundary
∂E of E is the symmetric difference of E and E +1 with E +1 := {k +1, k ∈ E}. In
particular ∂ �a, b�= {a, b}. Observe that ∂E completely determines E. For M ∈ N

∗,
we denote by EM the union of the intervals �a, b� with a, b ∈ E and 0 < b − a ≤
M . We let N be the set of increasing sequences of natural integers, which may be
identified with the subset of PN given by infinite subsets of N. For n ∈ N we define
the generalized power set of n as Qn := ∏

n∈nPn.
We recall now the classical notion of upper and lower asymptotic densities. For

n ∈N
∗ and F ∈PN we let dn(F ) be the frequency of F in �0, n�:

dn(Fn) = �F ∩ �0, n�

n
.

The upper and lower asymptotic densities d(E) and d(E) of E ∈ PN are respec-
tively defined by

d(E) := lim sup
n∈N

dn(E) and

d(E) := lim inf
n∈N dn(E).

We just write d(E) for the limit, when the frequencies dn(E) are converging. For any
n ∈ N we let similarly d

n
(E) := lim supn∈n dn(E) and dn(E) := lim infn∈n dn(E).

The concept of upper and lower asymptotic densities of E ∈ PN may be extended to
generalized power sets as follows. For n ∈N and F = (Fn)n∈n ∈ Qn we let

d
n
(F) := lim sup

n∈n
dn(Fn) and

dn(F) := lim inf
n∈n dn(Fn).

Again we just write dn(E) and dn(F) when the corresponding frequencies are con-
verging.

2.2 Følner sequence and density along subsequences

We say that E ∈ PN is Følner along n ∈ N when its boundary ∂E has zero up-
per asymptotic density with respect to n, i.e. dn(∂E) = 0. More generally F =
(Fn)n∈n ∈Qn with n ∈N is Følner when we have dn(∂F) = 0 with ∂F = (∂Fn)n∈n.
In general this property seems to be weaker than the usual Følner property, which re-
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quires limn∈n �∂Fn

�Fn
= 0. But in the following we will work with sequences F with

dn(F) > 0. In this case our definition coincides with the standard one.
Let E,F ∈ PN and n ∈ N. We say that F is n-filled with E or E is dense in F

along n when we have

dn(F \ EM)
M→+∞−−−−−→ 0.

Observe that
(
d(EM)

)
M

is converging nondecreasingly to some a ≥ d(E) when M

goes to infinity. The limit a is in general strictly less than 1. For example if E :=⋃
n�22n,22n+1� one easily computes d(EM) = d(E) = 2/3 for all M . In this case,

the set E is moreover a Følner set.
Also F = (Fn)n∈n ∈Qn is said to be filled with E when we have with F \EM :=

(Fn \ EM)n∈n:

dn(F \ EM)
M→+∞−−−−−→ 0.

2.3 Følner set F filled with a given E with d(E) > 0

Given a set E with positive upper asymptotic density we build a Følner set F filled
with E by using a diagonal argument. More precisely we will build F by filling the
holes in E of larger and larger size when going to infinity.

Lemma 1 For any E ∈ PN with d(E) > 0 there is a subsequence m ∈ N and F ∈PN

with ∂F ⊂ E such that

• dm(F ) ≥ dm(E ∩ F) = d(E);
• F is Følner along m;
• E is dense in F along m.

Proof By using a Cantor diagonal argument there is a subsequence N � p ⊂ E with
dp(E) = d(E) such that the limits �k := dp(Ek) = limp∈p dp(Ek) exist for all k ∈
N

∗. The sequence (�k)k is nondecreasing and bounded from above by 1. We let
�∞ = limk→+∞ �k . For k ∈N

∗, we take mk ∈ p, such that

∀mk ≤ p ∈ p,
∣∣dp(Ek) − �k

∣∣ <
1

2k
. (2.1)

One can ensure that the sequence (mk)k∈N∗ is increasing. We put

m= (mk)k and F =
⋃
k

�mk,mk+1�∩Ek.

Clearly we have ∂F ⊂ ⋃
k(∂�mk,mk+1�) ∪ (∂Ek) ⊂ E.

Any two integers l < l′ lying both in E \ Ek satisfy l′ − l > k, therefore d(E \
Ek) ≤ 1/k for all k ∈N

∗. Since F contains �mk,+∞�∩Ek for all k, we have then:

∀k ∈ N
∗, dm(E ∩ F) ≥ dm(E ∩ Ek),

≥ dp(E) − d(E \ Ek),

≥ d(E) − 1/k.
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By letting k go to infinity we get dm(E ∩ F) ≥ d(E) ≥ d
m

(E ∩ F), thus dm(E ∩
F) = d(E).

Let us prove now the Følner property of the set F . For mk < K ∈ ∂F ⊂ E ei-
ther K or K − 1 does not belong to F . But K − 1 ≥ mk and F ⊃ �mk,+∞�∩Ek .
Consequently

• either K does not belong to Ek , then �K,K + k�⊂ N \ E ⊂ N \ ∂F ,
• or K − 1 does not belong to Ek , then �K − k,K�⊂ N \ E ⊂ N \ ∂F .

Therefore d
m

(∂F ) ≤ 2
k

. As it holds for all k, the set F is Følner along m.
Finally we have �0,mk�∩F ⊂ �0,mk�∩Ek , therefore for any M < k we get:

�0,mk�∩ (F \ EM) ⊂ �0,mk�∩(Ek \ EM),

dmk
(F \ EM) ≤ dmk

(Ek) − dmk
(EM), as EM ⊂ Ek,

dmk
(F \ EM) ≤ �k − �M + 1

2k
+ 1

2M
, by (2.1).

By taking the limits when k goes to infinity we get

d
m

(F \ EM) ≤ �∞ − �M + 1

2M
,

therefore

d
m

(F \ EM)
M→+∞−−−−−→ 0.

By using once more a Cantor diagonal argument, we may finally assume the limits
dm(F ) and dm(F \ EM), M ∈N

∗, exist. �

2.4 Borel-Cantelli argument

Let (X,A, λ) be a measure space with λ being a finite measure. A map E : X → PN

is said to be measurable, when for all n ∈ N the set {x, n ∈ E(x)} belongs to A
(equivalently writing E as an increasing sequence n = (ni )i∈N the integers valued
functions ni are measurable). For such measurable maps E and n, the upper asymp-
totic density d

n
(E) defines a measurable function.

Lemma 2 Assume E is a measurable sequence of integers such that d(E(x)) > β > 0
for x in a measurable set A of a positive λ-measure. Then there exist n ∈N, measur-
able subsets (An)n∈n of X and F = (Fn)n∈n ∈ Qn with ∂Fn ⊂ E(x) for all x ∈ An,
n ∈ n such that:

• λ(An) ≥ e−nδn

n2 for all n ∈ n with δn
n�n→+∞−−−−−−→ 0;

• F is a Følner sequence;
• E is dense in F uniformly on An, i.e.

lim sup
n∈n

sup
x∈An

dn (Fn \ EM(x))
M→+∞−−−−−→ 0.
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•
dn(F) ≥ lim inf

n∈n inf
x∈An

dn (E(x) ∩ Fn) ≥ β.

Proof The sequences m = (mk)k∈N and F built in the previous lemma define mea-
surable sequences on A. By taking a smaller subset A we may assume that mk(x) is
bounded on A for all k and that the following sequences of functions are converging
uniformly in x ∈ A by using Egorov’s theorem:

(1) dmk(x)(∂F (x))
k−→ 0,

(2) dm(x)(F (x) \ EM(x))
M→+∞−−−−−→ 0,

(3) dmk(x)(F (x) \ EM(x))
k→+∞−−−−→ dm (F (x) \ EM(x)) for any M ∈N

∗,

(4) dmk(x)(E(x) ∩ F(x))
k−→ dm(x)(E(x) ∩ F(x)) ≥ β .

For a uniformly converging sequence of real bounded functions f = limn fn we
have supf = limn supfn and inff = limn inffn. Applying this fact to the above third
item we get:

sup
x∈A

dmk(x)(F (x) \ EM(x))
k→+∞−−−−→ sup

x∈A

dm(x) (F (x) \ EM(x)) .

Together with the second item, we get:

lim
k

sup
x∈A

dmk(x)(F (x) \ EM(x))
M−→ 0.

For the last item we obtain by taking the infimum:

lim
k

inf
x∈A

dmk(x)(E(x) ∩ F(x)) = inf
x∈A

dm(x)(E(x) ∩ F(x)) ≥ β.

By Borel-Cantelli Lemma, the subset An := {x ∈ A, n ∈m(x)} has λ-measure larger
than 1/n2 for infinitely many n ∈ N. We let n be this infinite subset of integers. We
observe firstly that:

αn := sup
x∈An

dn(∂F (x))
n∈n−−→ 0. (2.2)

For any n we let kn be the largest integer k satisfying supx∈Amk(x) < n. As the

functions (mk)k are bounded on A, we get kn
n→+∞−−−−→ +∞. Then, by item (1), for

any given ε > 0 we may find k′
ε ∈ N such that supx∈A dmk(x)(∂F (x)) < ε for any

k ≥ k′
ε . Therefore for any n so large that kn > k′

ε and for any x ∈ An ⊂ A we have
n = ml (x) for some l = l(x) > kn, therefore dn(∂F (x)) < ε. This shows (2.2). By a
similar argument, we can show that:

lim sup
n∈n

sup
x∈An

dn(F (x) \ EM(x)) ≤ lim
k

sup
x∈A

dmk(x)(F (x) \ EM(x))
M−→ 0

and

lim inf
n∈n inf

x∈An

dn (E(x) ∩ F(x)) ≥ lim
k

inf
x∈A

dmk(x)(E(x) ∩ F(x)) ≥ β.



1028 D. Burguet

As ∂F (x) ∩ �0, n� determines F(x) ∩ �0, n�, there are at most
∑[nαn]

k=1

(
n
k

)
choices

for F(x) ∩ �0, n�, x ∈ An, and thus it may be fixed by dividing the measure of An by∑[nαn]
k=1

(
n
k

) = enδn for some δn
n−→ 0. We let Fn be the common value of F(x) ∩ �0, n�

for x in this new set An for any n ∈ n. Then the conclusions of the lemma hold with
(An)n∈n and F = (Fn)n∈n. �

3 Empirical measures associated to Følner sequences

Let (X,T ) be a topological system, i.e. X is a compact metrizable space and T :
X � is continuous. We denote by M(X) the set of Borel probability measures on X

endowed with the weak-∗ topology and by M(X,T ) the compact subset of invariant
measures. We will write δx for the Dirac measure at x ∈ X. We let T∗ be the induced
(continuous) action on M(X), where for μ ∈ M(X) the measure T∗μ is defined as
T∗μ(A) = μ(T −1A) for any Borel set A. For μ ∈ M(X) and a finite subset F of N,
we let μF be the empirical measure μF := 1

�F

∑
k∈F T k∗ μ.

3.1 Invariant measures

The following lemma is standard, but we give a proof for the sake of completeness.
We fix n ∈N and F = (Fn)n∈N ∈ Qn.

Lemma 3 Assume F is a Følner sequence and dn(F) > 0. Let (μn)n∈n be a family in

M(X) indexed by n. Then any limit of
(
μ

Fn
n

)
n∈n is a T -invariant Borel probability

measure.

Proof Let n′ be a subsequence of n such that
(
μ

Fn
n

)
n∈n′ is converging to some μ′. It

is enough to check that
∣∣∣∫ φ dμ

Fn
n − ∫

φ ◦ T dμ
Fn
n

∣∣∣ goes to zero when n′ � n → +∞
for any φ : X → R continuous.

This follows from the following inequalities:

∫
φ dμFn

n −
∫

φ ◦ T dμFn
n = 1

�Fn

∫
⎛
⎜⎜⎝

∑
k∈Fn

k−1/∈Fn

φ ◦ T k −
∑
k /∈Fn

k−1∈Fn

φ ◦ T k

⎞
⎟⎟⎠ dμn,

∣∣∣∣
∫

φ dμFn
n −

∫
φ ◦ T dμFn

n

∣∣∣∣ ≤ sup
x∈X

|φ(x)|�∂Fn

�Fn

,

lim sup
n∈n

∣∣∣∣
∫

φ dμFn
n −

∫
φ ◦ T dμFn

n

∣∣∣∣ ≤ sup
x∈X

|φ(x)| lim sup
n∈n

�∂Fn

�Fn

,

≤ sup
x∈X

|φ(x)|d
n(∂F)

dn(F)
= 0. �
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3.2 Positive exponent of empirical measures for superadditive cocycles

We fix a general continuous superadditive cocycle � = (φn)n∈N with respect to
(X,T ), i.e. φ0 = 0, φn : X → R is a continuous function for all n and φn+m ≥
φn + φm ◦ T n for all m, n. By the subadditive ergodic theorem [26], the limit
φ∗(x) = limn

φn(x)
n

exists for x in a set of full measure with respect to any invariant
measure μ. In the proof of the main theorem we will only consider additive cocycles,
but we think it could be interesting to consider general superadditive cocycles in other
contexts.

Let E : Y → PN be a measurable sequence of integers defined on a Borel subset
Y of X. The set valued map E is said to bea-large with respect to � for some a ∈ R

when for any x ∈ Y we have φq−p(T px) ≥ (q − p)a for all integers q > p in E(x).
For a finite subset of integers J we let φJ (x) be the sum of φq−p(T px) where �p,q�
runs over all connected components of J . By superadditivity of � we always have
φJ (x) ≥ φ1(x)�J .

Lemma 4 Let (An)n∈n and F = (Fn)n∈n as in Lemma 2 and let (μn)n∈n be a family
in M(X) indexed by n with μn(An) = 1 for all n ∈ n. Assume E is a-large with
a ∈R. Then for any weak-∗ limit μ of μ

Fn
n = 1

�Fn

∑
k∈Fn

T k∗ μn, n ∈ n, we have

φ∗(x) ≥ a for μ a.e. x.

Proof Without loss of generality we can take a = 0 by considering the cocycle (φn −
na)n, which is again superadditive. By taking a subsequence we can also assume that(
μ

Fn
n

)
n∈n is converging to μ. Fix α < 0 and M < N ∈ N

∗. For x ∈ An, n ∈ n, we let

Fα
n (x) :=

{
k ∈ Fn,

φN(T kx)

N
≤ α

}
.

For l ∈N and k ∈ �0,N� with k+ lN ∈ Fn, the interval of integers Jk,l = �k+ lN, k+
(l + 1)N� may be written as

Jk,l = I 1
k,l

∐
I 2
k,l

∐
I 3
k,l

∐
I 4
k,l

where

• I 1
k,l is the union of disjoint E(x)-irreducible intervals of length less than M con-

tained in Jk,l . As E(x) is 0-large, we have φI 1
k,l

(x) ≥ 0 by superadditivity of �,

• I 2
k,l consists of a subinterval of an E(x)-irreducible interval of length less than M ,

which does not lie entirely in Jk,l but may contain the right extreme of Jk,l . In
particular �I 2

k,l ≤ M , therefore φI 2
k,l

(x) ≥ −M supy∈X |φ1(y)|,
• I 3

k,l ⊂ Fn \ EM(x),

• I 4
k,l ⊂ N \ Fn.

Note that the subsets (I
j
k,l)j depend on x, but we do not make this dependence

explicit to simplify the notations. If I 4
k,l is non empty then Jk,l contains an element
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of ∂Fn, therefore for a fixed k we get from �
(⋃

l, I 4
k,l �=∅ Jk,l

)
≤ N�∂Fn:

∑
l, k+lN∈Fα

n

I 4
k,l �=∅

φJk,l
(x) ≥ −N�∂Fn sup

y∈X

|φ1(y)|. (3.1)

Then, if I 4
k,l = ∅ we have by superadditivity of �:

φJk,l
(x) ≥ φI 1

k,l
(x) +

∑
j=2,3

φ
I

j
k,l

(x),

≥ −(�I 3
k,l + M) sup

y∈X

|φ1(y)|.

As Fn is a subset of �0, n�, the cardinality of {l, k + lN ∈ Fn} is less than or equal to
� n

N
�. Therefore by summing this last inequality over l we obtain

∑
l, k+lN∈Fα

n

I 4
k,l=∅

φJk,l
(x) ≥ −

(
�(Fn \ EM(x)) + M� n

N
�
)

sup
y∈X

|φ1(y)|. (3.2)

By combining (3.1) and (3.2) we have

∑
l, k+lN∈Fα

n

φJk,l
(x) ≥ −

(
N�∂Fn + �(Fn \ EM(x)) + M� n

N
�
)

sup
y∈X

|φ1(y)|.

After summing over k ∈ �0,N� and dividing by N�Fn we obtain

∫

{ φN
N

≤α}
φN

N
dδFn

x = 1

N�Fn

∑
k,l, k+lN∈Fα

n

φJk,l
(x),

≥ − 1

�Fn

(
N�∂Fn + �(Fn \ EM(x)) + M� n

N
�
)

sup
y∈X

|φ1(y)|.

We integrate then with respect to μn (recall that An has full μn-measure):

∫

{ φN
N

≤α}
φN

N
dμFn

n

≥ − 1

�Fn

(
N�∂Fn + sup

x∈An

�(Fn \ EM(x)) + M� n

N
�
)

sup
y∈X

|φ1(y)|,

≥ − 1

dn(Fn)

(
Ndn(∂Fn) + sup

x∈An

dn(Fn \ EM(x)) + M

n
� n

N
�
)

sup
y∈X

|φ1(y)|,
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Since the sequence F = (Fn)n∈n is Følner and dn(F) ≥ β , we get by taking the
limsup when n ∈ n goes to infinity:

lim sup
n∈n

∫

{ φN
N

≤α}
φN

N
dμFn

n ≥ − 1

β
lim sup

n∈n

(
sup
x∈An

dn(Fn \ EM(x)) + M

N

)
sup
y∈X

|φ1(y)|.

Then, the set {φN

N
≤ α} being closed, we get:

∫

{ φN
N

≤α}
φN

N
dμ ≥ lim sup

n∈n

∫

{ φN
N

≤α}
φN

N
dμFn

n .

On the other hand we have:

αμ

({
φN

N
≤ α

})
≥

∫

{ φN
N

≤α}
φN

N
dμ,

therefore we get for all M :

lim
N→+∞μ

({
φN

N
≤ α

})
≤ 1

−αβ
lim sup

n∈n
sup
x∈An

dn(Fn \ EM(x)) sup
y∈X

|φ1(y)|.

By taking the limit in M we finally have limN→+∞ μ
({

φN

N
≤ α

})
= 0 by the

third item of Lemma 2, therefore φ∗ ≥ α almost everywhere. As it holds for any
α < 0, we conclude that φ∗ = limn

φn

n
≥ 0 almost everywhere. �

3.3 Entropy of empirical measures

Following Misiurewicz’s proof of the variational principle, we estimate the entropy
of empirical measures from below. For a finite partition P of X and a finite subset
F of N, we let P F be the iterated partition P F = ∨

k∈F f −kP . When F = �0, n�,
n ∈N, we just let P F = P n. We denote by P(x) the element of P containing x ∈ X.

For a Borel probability measure μ on X, the static entropy Hμ(P ) of μ with
respect to a (finite measurable) partition P is defined as follows:

Hμ(P ) = −
∑
A∈P

μ(A) logμ(A),

= −
∫

logμ(P (x)) dμ(x).

When μ is T -invariant, we recall that the measure theoretical entropy of μ with
respect to P is then

hμ(P ) = lim
n

1

n
Hμ(P n)

and the entropy h(μ) of μ is

h(μ) = sup
P

hμ(P ).
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We will use the two following standard properties of the static entropy [20]:

• for a fixed partition P , the map μ �→ Hμ(P ) is concave on M(X),
• for two partitions P and Q, the joined partition P ∨ Q satisfies

Hμ(P ∨ Q) ≤ Hμ(P ) + Hμ(Q). (3.3)

Lemma 5 Let F = (Fn)n∈n be a Følner sequence with dn(F) > 0. For any measur-
able finite partition P and m ∈ N

∗, there exist a sequence (εn)n∈n converging to 0
such that

∀n ∈ n,
1

m
H

μ
Fn
n

(P m) ≥ 1

�Fn

Hμn(P
Fn) − εn.

Proof When Fn is an interval of integers, we have [32]:

1

m
H

μ
Fn
n

(P m) ≥ 1

�Fn

Hμn(P
Fn) − 3m log �P

�Fn

. (3.4)

Consider a general set Fn ∈Pn. We decompose Fn into connected components Fn =∐
k=1,...,K F k

n . Observe K ≤ �∂Fn. Then we get:

1

m
H

μ
Fn
n

(P m) ≥
K∑

k=1

�F k
n

m�Fn

H
μ

Fk
n

n

(P m),by concavity of μ �→ Hμ(P m),

≥ 1

�Fn

K∑
k=1

Hμn(P
Fk

n ) − 3mK log �P

�Fn

, by applying (3.4) to each Fk
n ,

≥ 1

�Fn

Hμn(P
Fn) − 3m log �P

�∂Fn

�Fn

, according to (3.3).

This concludes the proof with εn = 3m
�∂Fn

�Fn
log �P , because F is a Følner sequence

with dn(F) > 0. �

With the notations of Lemma 2 we let μn be the probability measure induced by λ

on An, i.e. μn = λ(An∩·)
λ(An)

. In the following we consider an additive cocycle � = (ψn)n

associated to a continuous function ψ : X → R, i.e. ψ0 = 0 and ψn = ∑n−1
k=0 ψ ◦

T k for a positive integer n. Then for any finite subset of integers J we have ψJ =∑
k∈J ψ ◦T k . The measure λ is said to satisfy the Følner Gibbs property with respect

to the additive cocycle � = (ψn)n and the Følner sequence F = (Fn)n when:

There exists ε > 0 such that

we have for any partition P with diameter less than ε: (H)

∃N ∀x ∈ An with N < n ∈ n,
1

λ
(
P Fn(x) ∩ An

) ≥ eψFn(x).
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Proposition 3 Under the above hypothesis (H), any weak-∗ limit μ of (μ
Fn
n )n∈n sat-

isfies

h(μ) ≥ ψ(μ).

Proof Assume again without loss of generality that (μ
Fn
n )n∈n is converging to μ. Take

a partition P with μ(∂P ) = 0 and with diameter less than ε. Then for n � N � m

we obtain:

1

m
Hμ(P m) ≥ lim sup

n∈n
1

�Fn

Hμn(P
Fn), by Lemma 5,

≥ lim sup
n∈n

1

�Fn

∫ (
− logλ

(
P Fn(x) ∩ An

)
+ logλ(An)

)
dμn(x).

Note that by the first item of Lemma 2 we have logλ(An) ≥ −nδn − 2 logn, then

logλ(An)

�Fn

≥ −nδn − 2 logn

dn(Fn)n

n�n→+∞−−−−−−→ 0 because δn → 0 and dn(F) > 0, thus

1

m
Hμ(P m) ≥ lim sup

n∈n
− 1

�Fn

∫
logλ

(
P Fn(x) ∩ An

)
dμn(x).

It follows from our definitions of ψFn and δ
Fn
x that:

∀x,
ψFn(x)

�Fn

=
∫

ψ dδFn
x .

By Hypothesis (H) we get therefore:

1

m
Hμ(P m) ≥ lim sup

n∈n

∫
ψFn(x)

�Fn

dμn(x),

≥ lim sup
n∈n

∫
ψ dμFn

n ,

≥ ψ(μ).

Letting m go to infinity, we conclude that h(μ) ≥ hμ(P ) ≥ ψ(μ). �

4 Geometric times

Let (M,‖ · ‖) be a Cr , r > 1, smooth compact Riemannian manifold, not necessarily
a surface for the moment. We denote by d the distance induced by the Riemannian
structure on M . We also consider a distance d̂ on the projective tangent bundle PT M

(compatible with the standard topology on PT M), such that d̂(x̂, ŷ) ≥ d(πx̂,πŷ) for
all x̂, ŷ ∈ PT M with π : PT M → M being the natural projection. For a Cr map
f : M → M or a Cr curve σ : [0,1] → M we may define the norm ‖dsf ‖∞ and
‖dsσ‖∞ for 1 ≤ s ≤ r as the supremum norm of the s-derivative of the induced
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maps through the charts of a given atlas or through the exponential map exp. In
the following, to simplify the presentation we lead the computations as M was an
Euclidean space or a flat torus. For a C1 embedded curve σ : I → M , I being a
compact interval of R, we let σ∗ = σ(I). The length of σ∗ for the induced Riemannian
metric is denoted by �(σ∗). For x ∈ σ∗ we also let vx ∈ PT M be the line tangent to
σ∗ at x and we write x̂ = (x, vx).

We denote by F the projective action F : PT M � induced by f , i.e. F(x, v) =(
f (x),

dxf (v)
‖dxf (v)‖

)
, and we consider the additive derivative cocycle � = (φk)k for F

on PT M given by φ(x, v) = φ1(x, v) = log‖dxf (v)‖, where we have identified the
line v of TxM with one of its unit generating vectors.

4.1 Bounded curve

Following [12] a Cr smooth curve γ : [−1,1] → M is said to be bounded when

max
s=2,...,r

‖dsγ ‖∞ ≤ 1

6
‖dγ ‖∞.

We first recall some basic properties of bounded curves (see Lemma 7 in [12]). A
bounded curve has bounded distortion meaning that

∀t, s ∈ [−1,1], ‖dγ (t)‖
‖dγ (s)‖ ≤ 3/2. (4.1)

Indeed, we have for all t, s ∈ [−1,1],
‖dγ (t) − dγ (s)‖ ≤ 2‖d2γ ‖∞,

≤ 1

3
‖dγ (t)‖,

therefore
2

3
‖dγ (t)‖ ≤ ‖dγ (s)‖.

The projective component of γ oscillates also slowly. If we identify M with R
2,1 we

have

‖dγ (t)‖ · sin�(dγ (t), dγ (s)) ≤ ‖dγ (t) − dγ (s)‖ ≤ 1

3
‖dγ (t)‖,

�(dγ (t), dγ (s)) ≤ π/6. (4.2)

When moreover ‖dγ ‖∞ ≤ ε we say that γ is strongly ε-bounded. In particular
such a map satisfies ‖γ ‖r := max1≤s≤r ‖dsγ ‖∞ ≤ ε, which is the standard Cr upper
bound required for the reparametrizations in the usual Yomdin’s theory. But this last
condition does not allow to control the distortion along the curve in general.

1This will be always possible as we will only consider curves with diameter less than the radius of injec-
tivity.
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If γ is bounded then so is γa,b = γ (a ·+b) : [−1,1] → M for any a, b with |a| ≤ 2
3

and |a| + |b| ≤ 1:

∀s ≥ 2, ‖dsγa,b‖∞ ≤ 1

6
|a|s‖dγ ‖∞,

≤ 1

6
|a|s 3

2
‖dγ (0)‖,

≤ 1

6
|a|s−1‖dγ (0)‖,

≤ 1

6
‖dγa,b‖∞.

As ‖dγa,b‖∞ ≤ |a|‖dγ ‖∞, if γ is moreover strongly ε-bounded, then γa,b is strongly
|a|ε-bounded.

Lemma 6 Let γ : [−1,1] → M be a Cr bounded curve with ‖dγ ‖∞ ≥ ε. Then there
is a family of affine maps ιj : [−1,1] �, j ∈ L := L ∪ L such that:

• each γ ◦ ιj is strongly ε-bounded and ‖d(γ ◦ ιj )(0)‖ ≥ ε
6 ,

• [−1,1] is the union of
⋃

j∈L ιj ([−1,1]) and
⋃

j∈L ιj ([− 1
3 , 1

3 ]),
• �L ≤ 2 and �L ≤ 6

( ‖dγ ‖∞
ε

+ 1
)

,

• for any x ∈ γ∗, we have �{j ∈ L, (γ ◦ ιj )∗ ∩ B(x, ε) �= ∅} ≤ 100.

Sketch of proof For the first three items it is enough to consider affine reparametriza-
tions of [−1,1] with rate 2ε

3‖dγ ‖∞ . As the bounded map γ stays in a cone of opening
angle π/6, its intersection with B(x, ε) is a curve of length less than 2ε. The last item
follows then easily. �

Fix a Cr smooth diffeomorphism f : M �. A curve γ : [−1,1] → M is saidn-
bounded (resp. strongly (n, ε)-bounded) when f k ◦ γ is bounded (resp. strongly ε-
bounded) for k = 0, . . . , n. A strongly ε-bounded curve γ is contained in the dynam-
ical ball Bn(x, ε) := {y ∈ M, ∀k = 0, . . . , n − 1, d(f kx,f ky) < ε} with x = γ (0).

Fix a Cr curve σ : I → M . For x ∈ σ∗, a positive integer n is called an (α, ε)-
geometric time of x when there exists an affine map θn : [−1,1] → I such that
γn := σ ◦ θn is strongly (n, ε)-bounded, γn(0) = x and ‖d(f n ◦ γn)(0)‖ ≥ 3

2αε. One
can easily check that the curvature of f n ◦ σ at f nx is bounded from above by 1

αε
,

when n is a (α, ε)-geometric time of x. It follows from the discussion just before
Lemma 6 that, if n is a (α, ε)-geometric time of x, then it is also a (α, ε′)-geometric
time for ε′ < 2ε

3 .
We let Dn(x) and Hn(x) be the images of f n ◦ γn and γn respectively with γn as

above of maximal length. Observe that for all y = γn(t), t ∈ [−1,1], we have for any
0 ≤ l < n:

eφn−l (F
l ŷ) = ‖d(f n ◦ γn)(t)‖

‖d(f l ◦ γn)(t)‖ .
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The bounded distortion property of bounded curves (4.1) then implies:

∀y, z ∈ Hn(x)∀0 ≤ l < n,
eφn−l (F

l ŷ)

eφn−l (F
l ẑ)

≤ 9

4
. (4.3)

4.2 Reparametrization lemma

We consider a Cr smooth diffeomorphism g : M � and a Cr smooth curve σ : I →
M with r > 1. To simplify the exposition we deal with r ∈ N. The general case
follows from standard arguments, see e.g. [12]. We state a global reparametrization
lemma to describe the dynamics on σ∗. We will apply this lemma to g = f p for large
p with f being the Cr smooth system under study. We denote by G the map induced
by g on PT M .

We will encode the dynamics of g on σ∗ with a tree, in a similar way the sym-
bolic dynamic associated to monotone branches encodes the dynamic of a continu-
ous piecewise monotone interval map. A weighted directed rooted tree T is a directed
rooted tree (by making all its edges point away from the root) whose edges are la-
belled. Here the weights on the edges are pairs of integers. Moreover the nodes of
our tree will be coloured, either in blue or in red. The level of a node is the number
of edges along the unique path between it and the root node.

We let Tn (resp. Tn, Tn) be the set of nodes (resp. blue, red nodes) of level n.
For all k ≤ n − 1 and for all in ∈ Tn, we also let ink be the node of level k leading
to in. For in ∈ Tn, we let k(in) = (k1(in), k′

1(i
n), k2(in) · · · , k′

n(i
n)) be the 2n-tuple of

integers given by the sequence of labels along the path from the root i0 to in, where(
kl(in), k′

l (i
n)

)
denotes the label of the edge joining inl−1 and inl .

For x ∈ σ∗, we recall that x̂ = (x, vx) ∈ PT M denotes the line tangent to σ at x.
Then we let k(x) ≥ k′(x̂) be the following integers:

k(x) := [
log‖dxg‖] ,

k′(x̂) := [
log‖dxg(vx)‖

]
.

Moreover for all n ∈ N
∗ we define:

kn(x) = (k(x), k′(x̂), k(gx), . . . k′(Gn−2x̂), k(gn−1x), k′(Gn−1x̂)).

For a 2n-tuple of integers kn = (k1, k
′
1, . . . kn, k

′
n) we consider then

H(kn) := {
x ∈ σ∗, kn(x) = kn

}
.

We restate the Reparametrization Lemma (RL for short) proved in [12] in a global
version. Let expx be the exponential map at x and let Rinj be the radius of injectivity

of (M,‖ · ‖). For
Rinj

2 > ε > 0 we let gx
2ε = g ◦ expx(2ε·) : {w ∈ TxM, ‖w‖ ≤ 1} →

M . Then ‖dsgx
2ε‖∞ ≤ (2ε)s sup w∈TxM,‖w‖≤2ε

‖ds(g ◦ expx)(w)‖. In particular there is ε0 =
ε0(g) <

Rinj

2 depending only on M and ‖dkg‖∞, k = 1, . . . , r , such that ‖dsgx
2ε‖∞ ≤

3ε‖dxg‖ for all s = 1, . . . , r , all x ∈ M and all ε ≤ ε0(g).
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Fig. 1 Picture by J. Paik. Color figure online.

Reparametrization Lemma Let ε0(g) ≥ ε > 0 and let σ : [−1,1] → M be a strongly
ε-bounded curve.

Then there is T , a bicoloured weighted directed rooted tree, and (θin)in∈Tn
, n ∈N,

families of affine reparametrizations of [−1,1], such that for some universal constant
Cr depending only on r :

(1) ∀in ∈ Tn, the curve σ ◦ θin is strongly (n, ε)-bounded.
(2) ∀in ∈ Tn, the affine map θin may be written as θinn−1

◦ ϕin with ϕin being an affine

contraction with rate smaller than 1/100. Moreover, when inn−1 belongs to Tn−1,
we have also θin([−1,1]) ⊂ θinn−1

([−1/3,1/3]).
(3) ∀in ∈ Tn, we have ‖d (gn ◦ σ ◦ θin) (0)‖ ≥ ε/6.
(4) ∀kn ∈ (Z×Z)n, the set σ−1H(kn) is contained in the union of

⋃

in∈Tn
k(in)=kn

θin([−1/3,1/3]) and
⋃

in∈Tn

k(in)=kn

θin([−1,1]).

Moreover any term of these unions have a non-empty intersection with σ−1 ×
H(kn).

(5) ∀in−1 ∈ Tn−1 and (kn, k
′
n) ∈ Z×Z we have

�
{

in ∈ Tn, inn−1 = in−1 and (kn(in), k′
n(i

n)) = (kn, k
′
n)

}
≤ Cre

max

(
k′
n,

kn−k′
n

r−1

)

,

�
{

in ∈ Tn, inn−1 = in−1 and (kn(in), k′
n(i

n)) = (kn, k
′
n)

}
≤ Cre

kn−k′
n

r−1 .

The images of the curve σ together with the tree are represented in Figure 1.

Proof We argue by induction on n. For n = 0 we let T0 = T0 = {i0} and we just
take θi0 equal to the identity map on [−1,1]. Assume the tree and the associated
reparametrizations have been built till the level n.
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Fix in ∈ Tn and let

θ̂in :=
{

θin(
1
3 ·) if in ∈ Tn,

θin if in ∈ Tn.

We will define the children in+1 of in, i.e. the nodes in+1 ∈ Tn+1 with in+1
n = in. The

label on the edge joining in to in+1 is a pair (kn+1, k
′
n+1) such that the 2(n + 1)-tuple

kn+1 = (k1(in), . . . , k′
n(i

n), kn+1, k
′
n+1) satisfies H(kn+1) ∩

(
σ ◦ θ̂in

)
∗ �= ∅. We fix

such a pair (kn+1, k
′
n+1) and the associated sequence kn+1. We let η,ψ : [−1,1] →

M be the curves defined as:

η :=σ ◦ θ̂in ,

ψ :=gn ◦ η.

We will make use of the two following well-known multivariate formulas for the
derivatives of a product and a composition of Cr functions on R

d . For positive inte-
gers m, p, q we let Mp,q(R) be the set of real valued p × q matrices and we denote
A · B ∈ Mp,m(R) the product of two matrices A ∈ Mp,q(R) and B ∈ Mq,m(R). We
have with the standard multi-index notations:

• General Leibniz rule: Let u : Rd → Mp,q(R) and v : Rd → Mq,m(R) be Cr maps,
then for any α = (α1, . . . , αd) ∈ N

d with |α| := ∑
i αi ≤ r , we have

∂α(u · v) =
∑

β:β≤α

(
α

β

)
(∂βu) · (∂α−βv). (4.4)

• Faà di Bruno’s formula (see e.g. [22]): Let u : Rd → R and v = (v1, . . . , vd) :
R

e → R
d be Cr maps, then for any α ∈ N

e with |α| ≤ r , we have

∂α(u ◦ v) =
∑

β∈Nd , |β|≤|α|
(∂βu) ◦ v × Pβ

((
∂γ vi

)
γ,i

)
, (4.5)

where Pβ

(
(∂γ vi)γ,i

)
is a universal polynomial in ∂γ vi for i = 1, . . . , d and γ ∈N

e

with |γ | ≤ |α|.
First step: Taylor polynomial approximation. One computes for an affine map

θ : [−1,1] � with contraction rate b made precise later and with y = ψ(t) ∈
gnH(kn+1), t ∈ θ([−1,1]):

‖dr(g ◦ ψ ◦ θ)‖∞ ≤ br
∥∥dr

(
g

y

2ε ◦ ψ
y

2ε

)∥∥∞ ,with ψ
y

2ε := (2ε)−1 exp−1
y ◦ψ,

≤ br
∥∥∥dr−1

(
dψ

y
2ε

g
y

2ε ◦ dψ
y

2ε

)∥∥∥∞ .

From Leibniz rule (4.4) we get for any α ∈ N
2 with |α| = r − 1:

∥∥∥∂α
(
dψ

y
2ε

g
y

2ε ◦ dψ
y

2ε

)∥∥∥∞ ≤
∑
β≤α

(
α

β

)
‖∂β(dψ

y
2ε

g
y

2ε)‖∞‖∂α−β(dψ
y

2ε)‖∞,
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≤ max
s=0,...,r−1

∥∥∥ds
(
dψ

y
2ε

g
y

2ε

)∥∥∥∞ ‖ψy

2ε‖r

∑
β≤α

(
α

β

)
.

By the multi-binomial formula we have
∑

β≤α

(
α
β

) = 2r , so that we obtain finally

‖dr(g ◦ ψ ◦ θ)‖∞ ≤ br2r max
s=0,...,r−1

∥∥∥ds
(
dψ

y
2ε

g
y

2ε

)∥∥∥∞ ‖ψy

2ε‖r .

By assumption on ε, we have ‖dsg
y

2ε‖∞ ≤ 3ε‖dyg‖ for any r ≥ s ≥ 1. More-
over ‖ψy

2ε‖r ≤ (2ε)−1‖dψ‖∞ ≤ 1 as ψ is strongly ε-bounded. Therefore by Faà
di Bruno’s formula (4.5), we get for some2 constants Cr > 0 depending only on r :

max
s=0,...,r−1

‖ds
(
dψ

y
2ε

g
y

2ε

)
‖∞ ≤ εCr‖dyg‖,

then,

‖dr(g ◦ ψ ◦ θ)‖∞ ≤ εCrb
r‖dyg‖‖ψy

2ε‖r ,

≤ Crb
r‖dyg‖‖dψ‖∞,

≤ (Crb
r−1‖dyg‖)‖d(ψ ◦ θ)‖∞,

≤ (Crb
r−1ekn+1)‖d(ψ ◦ θ)‖∞, because y belongs to gnH(kn+1),

≤ ek′
n+1−4‖d(ψ ◦ θ)‖∞, by taking b =

(
Cre

kn+1−k′
n+1+4

)− 1
r−1

.

The Taylor polynomial P at 0 of degree r − 1 of d(g ◦ ψ ◦ θ) satisfies on [−1,1]:
‖P − d(g ◦ ψ ◦ θ)‖∞ ≤ ek′

n+1−4‖d(ψ ◦ θ)‖∞.

We may cover [−1,1] by at most b−1 + 1 such affine maps θ . This term b−1 + 1 is

the source of the factor e
kn−k′

n
r−1 in the last item of RL.

Second step: Bezout theorem. Let an := ek′
n+1‖d(ψ ◦ θ)‖∞. Note that for s ∈

[−1,1] with η ◦ θ(s) ∈ H(kn+1) we have

e
k′
(
ψ̂◦θ(s)

)
‖d(ψ ◦ θ)(s)‖ ≤ ‖d(g ◦ ψ ◦ θ)(s)‖ ≤ e

1+k′
(
ψ̂◦θ(s)

)
‖d(ψ ◦ θ)(s)‖,

ek′
n+1‖d(ψ ◦ θ)(s)‖ ≤ ‖d(g ◦ ψ ◦ θ)(s)‖ ≤ e1+k′

n+1‖d(ψ ◦ θ)(s)‖.
Then, as ψ ◦ θ is bounded, we get by the bounded distortion property (4.1):

2

3
ek′

n+1‖d(ψ ◦ θ)‖∞ ≤ ‖d(g ◦ ψ ◦ θ)(s)‖ ≤ e1+k′
n+1‖d(ψ ◦ θ)‖∞ = ane.

In particular, ‖d(g ◦ ψ ◦ θ)(s)‖ ∈ [ane
−1, ane], therefore ‖P(s)‖ ∈ [ane

−3, ane
3].

Moreover if we have now ‖P(s)‖ ∈ [ane
−3, ane

3] for some s ∈ [−1,1] we get also
‖d(g ◦ ψ ◦ θ)(s)‖ ∈ [ane

−4, ane
4].

2Although these constants may differ at each step, they are all denoted by Cr .
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By Bezout theorem the semi-algebraic set {s ∈ [−1,1], ‖P(s)‖ ∈ [e−3an, e
3an]}

is the disjoint union of closed intervals (Ji)i∈I with �I depending only on r (see e.g.
Proposition 4.5 in [44]). Let θi be the composition of θ with an affine reparametriza-
tion from [−1,1] onto Ji .

Third step: Landau-Kolmogorov inequality. By the Landau-Kolmogorov in-
equality on the interval (see Lemma 6 in [12]), we have for some constants Cr ∈ N

and for all 1 ≤ s ≤ r with |Ji | being the length of Ji :

‖ds(g ◦ ψ ◦ θi)‖∞ ≤ Cr

(‖dr(g ◦ ψ ◦ θi)‖∞ + ‖d(g ◦ ψ ◦ θi)‖∞
)
,

≤ Cr

|Ji |
2

(
‖dr(g ◦ ψ ◦ θ)‖∞ + sup

t∈Ji

‖d(g ◦ ψ ◦ θ)(t)‖
)

,

≤ Cran

|Ji |
2

.

We cut again each Ji into 1000Cr intervals J̃i of the same length with (η ◦ θ)(J̃i) ∩
H(kn+1) �= ∅. Let θ̃i be the affine reparametrization from [−1,1] onto θ(J̃i). We
check that g ◦ ψ ◦ θ̃i is bounded:

∀s = 2, . . . , r, ‖ds(g ◦ ψ ◦ θ̃i )‖∞ ≤ (1000Cr)
−2‖ds(g ◦ ψ ◦ θi)‖∞,

≤ 1

6
(1000Cr)

−1 |Ji |
2

ane
−4,

≤ 1

6
(1000Cr)

−1 |Ji |
2

min
s∈Ji

‖d(g ◦ ψ ◦ θ)(s)‖,

≤ 1

6
(1000Cr)

−1 |Ji |
2

min
s∈J̃i

‖d(g ◦ ψ ◦ θ)(s)‖,

≤ 1

6
‖d(g ◦ ψ ◦ θ̃i )‖∞.

Last step: Strongly ε-bounded curve. Either g ◦ψ ◦ θ̃i is strongly ε-bounded and
θ̂in ◦ θ̃i = θin+1 for some in+1 ∈ T n+1. Or we apply Lemma 6 to g ◦ ψ ◦ θ̃i : the new
affine parametrizations θ̂in ◦ θ̃i ◦ ιj , j ∈ L (resp. j ∈ L) then define θin+1 for a node
in+1 in T n+1 (resp. T n+1). Note finally that:

�L ≤ 6

(
‖d(g ◦ ψ ◦ θ̃i )‖∞

ε
+ 1

)
,

≤ 100 max(ek′
n+1b,1), as ψ is strongly ε-bounded and ‖dθ̃i‖∞ ≤ b,

≤ Cr max

⎛
⎝ ek′

n+1

e
kn+1−k′

n+1
r−1

,1

⎞
⎠ ,
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therefore

�

⎧⎨
⎩in+1 ∈ Tn+1

∣∣∣
in+1
n =in and

(kn+1(in+1), k′
n+1(i

n+1)) = (kn+1, k
′
n+1)

⎫⎬
⎭

≤
∑

θ̃i

Cr max

⎛
⎝ ek′

n+1

e
kn+1−k′

n+1
r−1

,1

⎞
⎠ ,

≤ �{θ̃i}Cr max

⎛
⎝ ek′

n+1

e
kn+1−k′

n+1
r−1

,1

⎞
⎠ ,

≤ Cre
max

(
k′
n+1,

kn+1−k′
n+1

r−1

)

.

and

�

⎧⎨
⎩in+1 ∈ Tn+1

∣∣∣
in+1
n =in and

(kn+1(in+1), k′
n+1(i

n+1)) = (kn+1, k
′
n+1)

⎫⎬
⎭ ≤ �{θ̃i},

≤ Cre
kn+1−k′

n+1
r−1 . �

As a corollary of the proof of RL we state a local reparametrization lemma, i.e.
we only reparametrize the intersection of σ∗ with some given dynamical ball (with
respect to the projective action G induced by g). For x ∈ σ∗, n ∈N and ε > 0 we let

BG
σ (x, ε, n) :=

{
y ∈ σ∗, ∀k = 0, . . . , n, d̂(Gkx̂,Gkŷ) < ε

}
. (4.6)

For all (x, v) ∈ PT M , we also let w(x, v) = wg(x, v) := log‖dxg‖ − log‖dxg(v)‖
and for all n ∈ N we let wn(x, v) = wn

g(x, v) := ∑n−1
k=0 w(Gk(x, v)) with the con-

vention w0 = 0. We consider ε > 0 as in the Reparametrization Lemma. We assume
moreover that

[d̂((x, v), (y,w)) < ε] ⇒ [∣∣log‖dxg(v)‖ − log‖dyg(w)‖∣∣ < 1 and
∣∣log‖dxg‖ − log‖dyg‖∣∣ < 1]. (4.7)

Corollary 3 For any strongly ε-bounded curve σ : [−1,1] → M and for any x ∈ σ∗,
we have for some constant Cr depending only on r :

∀n ∈N, �
{

in ∈ Tn, (σ ◦ θin)∗ ∩ BG
σ (x, ε, n) �= ∅

}
≤ Cn

r e
wn(x̂)
r−1 . (4.8)

Sketch of proof The Corollary follows from the Reparametrization Lemma together
with the two following facts:

• for y ∈ BG
σ (x, ε, n) we have kn(x) � kn(y) up to 1 on each coordinate,
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• for any in−1 there is at most Cre
k(gnx)−k′(Gnx̂)

r−1 nodes in ∈ T n with inn−1 = in−1 and
θin([−1,1]) ∩ σ−1BG

σ (x, ε, n + 1) �= ∅.

This last point is a consequence of the last item of Lemma 6 applied to the bounded
map g ◦ ψ ◦ θ̃i introduced in the third step of the proof of the reparametrization
lemma. �

4.3 The geometric set E

We apply the Reparametrization Lemma to g = f p for some positive integer p. For
x ∈ σ∗ we define the set Ep(x) ⊂ pN of integers mp such that there is im ∈ Tm with
k(im) = km(x) and x ∈ σ ◦ θim([−1/3,1/3]).

Lemma 7 There are αp > 0 and εp > 0 depending only on r , f and p such that any
n ∈ Ep(x) is a (αp, εp)-geometric time of x (with respect to f ).

Proof Write x = σ ◦ θim(b) with b ∈ [−1/3,1/3] and let n = mp. Then for ε =
ε0(f

p), the curve γn = σ ◦ θim(b + 2
3 ·) is strongly (m, ε)-bounded with respect to

f p according to the discussion before Lemma 6. By item (3) of RL we have also
‖d(f n ◦ γn)(0)‖ = 2

3‖d(f n ◦ σ ◦ θim)(b)‖ ≥ 4
9‖d(f n ◦ σ ◦ θim)(0)‖ ≥ 4

9
ε
6 = 2

27ε.
Consequently m is a ( 4

81 , ε)-geometric time of x with respect to f p . For 0 < a ≤ 1
we let γ a

n = γn(a·). Let 0 ≤ n′ ≤ n and let m′ ∈ N with m′p ≤ n′ < (m′ + 1)p. By
arguing as in the first step of RL, we have for some constant C > 1 depending only
on f , p and r :

∀s = 2, . . . , r, ‖ds(f n′ ◦ γ a
n )‖∞ ≤ as‖ds(f n′−m′p ◦ (f m′p ◦ γn))‖∞,

≤ Cas‖d(f m′p ◦ γn)‖∞,

then as f m′p ◦ γn is bounded:

∀s = 2, . . . , r, ‖ds(f n′ ◦ γ a
n )‖∞ ≤ 3

2
Cas‖d(f m′p ◦ γn)(0)‖,

≤ 3

2
Cas max(1,‖df −1‖)p‖d(f n′ ◦ γn)(0)‖,

≤ 3

2
Cas−1 max(1,‖df −1‖)p‖d(f n′ ◦ γ a

n )‖∞.

We fix a = 1
9C max(1,‖df −1‖)p so that γ a

n is n-bounded with respect to f . As γn

is strongly (m, ε)-bounded with respect to f p , the curve γ a
n is strongly (n, εp)-

bounded with respect to f with εp = aε‖df ‖p∞. Finally ‖d(f n ◦γ a
n )(0)‖ = a‖d(f n ◦

γn)(0)‖ ≥ 2
27aε = 3

2αpεp with αp = 4
81‖df ‖p∞

, therefore n is a (αp, εp)-geometric

time of x with respect to f . �
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Observe now that if k < m we have with x = σ ◦ θim(t) and θim(t) = θimk
(s):

eφmp−kp(F kpx̂)

= ‖d (f mp ◦ σ ◦ θim) (t)‖∥∥d
(
f kp ◦ σ ◦ θim

)
(t)

∥∥ ,

≥ 2

3

‖d (f mp ◦ σ ◦ θim) (0)‖∥∥d
(
f kp ◦ σ ◦ θim

)
(t)

∥∥ , since σ ◦ θim is m-bounded,

≥ 2

3

‖d (f mp ◦ σ ◦ θim) (0)‖∥∥∥d
(
f kp ◦ σ ◦ θimk

)
(s)

∥∥∥
100m−k,by item (2) of RL,

≥ 2

3ε

∥∥d
(
f mp ◦ σ ◦ θim

)
(0)

∥∥100m−k, as σ ◦ θink
is strongly (k, ε)-bounded,

≥ 1

9
100m−k ≥ 10m−k, by item (3) of RL.

Therefore Ep is τp-large with τp = log 10
p

.
The next proposition is the key statement, which will ensure positive density of

geometric times on a set of a positive Lebesgue measure of a curve with exponential
growth length (see the beginning of Sect. 5.3). In the following, Lebσ∗ denotes the
Lebesgue measure on σ∗ induced by its inherited Riemannian structure as a subman-
ifold of M . This is a finite measure with Lebσ∗(M) = � (σ∗).

Proposition 4 Let f : M � be a Cr diffeomorphism and b >
R(f )

r
. For p large

enough there exists βp > 0 such that

lim sup
n

1

n
log Lebσ∗

({
x, dn(Ep(x)) < βp and ‖dxf

n(vx)‖ ≥ enb
})

< 0.

Proof Let

En :=
{
x ∈ A, dn(Ep(x)) < βp and ‖dxf

n(vx)‖ ≥ enb
}

.

It is enough to consider n = mp ∈ pN. We apply the Reparametrization Lemma
to g = f p with ε > 0 being the scale. Let T be the corresponding tree and
(θim)im∈Tm

, m ∈ N, its associated affine reparametrizations. Let Af := log‖df ‖∞ +
log‖df −1‖∞ + 1. We will show the following three claims later on:

(i) for a node im ∈ Tm with (σ ◦ θim)∗ ∩ En �= ∅ the length of (σ ◦ θim)∗ is less than
3εe−nb ,

(ii) the number of sequences km with H(km) ∩ En �= ∅ is bounded from above by
(2pAf + 1)2m,

(iii) for a fixed sequence km the number of nodes im ∈ Tm with k(im) = km and (σ ◦
θim)∗ ∩H(km)∩En �= ∅ is bounded from above by 2mCm

r em‖df p‖
m
r∞‖df ‖βpp2m

∞
for some constant Cr depending only on r .
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Assume these three items already shown and let us conclude the proof of Proposi-
tion 4:

Lebσ∗(En) ≤
∑

km, H(km)∩En �=∅
Lebσ∗(H(km) ∩ En),

≤
∑

km, H(km)∩En �=∅

∑
im∈Tm,k(im)=km,

(σ◦θim)∗∩H(km)∩En �=∅

�((σ ◦ θim)∗), by (4) of RL,

≤
[
(2pAf + 1)2m

]
×

[
2mCm

r em‖df p‖
m
r∞‖df ‖βpp2m

∞
]

×
[
3εe−nb

]
, by using (i), (ii) and (iii).

Finally we obtain:

lim sup
n∈pN

1

n
log Lebσ∗ (En) ≤ 2

p
log(2pAf + 1)

+ log(2Cre)

p
+ log‖df p‖∞

pr
+ pβpAf − b.

As p goes to infinity the right member is bounded from above by R(f )
r

− b +
Af lim supp(pβp). As b is larger than R(f )

r
one can choose firstly p ∈ N

∗ large then
βp > 0 small in such a way this right member is negative.

We show now the three items (i), (ii), (iii):

(i) Let im ∈ Tm with (σ ◦ θim)∗ ∩ En �= ∅. For x = σ ◦ θim(t) ∈ En we have
‖dxf

n(vx)‖ ≥ enb . Then by the distortion property (4.1) of the bounded maps
f n ◦ σ ◦ θim and σ ◦ θim we get

� ((σ ◦ θim)∗) ≤ 2‖d(σ ◦ θim)‖∞,

≤ 3‖d(σ ◦ θim)(t)‖, as σ ◦ θim is bounded,

≤ 3
‖d(f n ◦ σ ◦ θim)(t)‖

‖dxf n(vx)‖ ,

≤ 3εe−nb, as f n ◦ σ ◦ θim is strongly ε-bounded.

(ii) As the functions k and k′ associated to g takes values in [−pAf ,pAf ] the
number of sequences km with km = km(x) for some x ∈ σ∗ is bounded from
above by (2pAf + 1)2m.

(iii) For a fixed sequence km we estimate now the number of nodes im ∈ Tm whose
path to the root is labelled with km and such that (σ ◦ θim)∗ has a non empty
intersection with En ∩ H(km). When x belongs to (σ ◦ θim)∗ for some im ∈ Tm

and satisfies dn(Ep(x)) < βp , then we have �
{
0 < k < m, imk ∈ Tk

} ≤ nβp . But,
by the estimates on the valence of T given in the last item of RL, the number
of m-paths from the root labelled with km and with at most nβp red nodes are
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less than 2mCm
r e

∑
i

ki−k′
i

r−1 ‖df ‖βpp2m
∞ for some constant Cr depending only on r

(the factor 2m is a rough upper bound for the number of ways to distribute the
colours blue and red along the path). Then if x ∈H(km) satisfies ‖dxf

n(vx)‖ ≥
enb , we have e

∑
i

ki−k′
i

r−1 ≤ emem
log‖df p‖∞−bp

r−1 . But, as b is larger than log‖df p‖∞
pr

for large p, we get for such values of p: log‖df p‖∞−bp
r−1 ≤ 1− 1

r

r−1 · log‖df p‖∞ =
log‖df p‖∞

r
. �

From now we fix p and the associated quantities satisfying the conclusion of
Proposition 4 and we will simply write E, τ , α, ε, β for Ep , τp , αp , εp , βp . The
set E(x) is called the geometric set of x.

4.4 Cover of F -dynamical balls by bounded curves

As a consequence of Corollary 3, we give now an estimate of the number of
strongly (n, ε′)-bounded curves reparametrizing the intersection of a given strongly
ε′-bounded curve with a F -dynamical ball of length n and radius ε′. This estimate
will be used in the proof of the Følner Gibbs property (Proposition 6).

For any q ∈ N
∗ we let ωq : PT M → R be the map defined for all (x, v) ∈ PT M

by

ωq(x, v) := 1

q

(
log‖dxf

q‖ − log‖dxf
q(v)‖) .

Note that ωq = wf q

q
. We also write (ωn

q)n for the additive associated F -cocycle, i.e.

ωn
q(x, v) =

∑
0≤k<n

ωq(F k(x, v)).

Recall that the dynamical ball BF
σ (x, ε′, n) has been defined in (4.6).

Lemma 8 For any q ∈ N
∗, there exist ε′

q > 0 and Bq > 0 such that for any strongly
ε′
q -bounded curve σ : [−1,1] → M , for any x ∈ σ∗ and for any n ∈ N

∗ there exists a
family (θi)i∈In of affine maps of [−1,1] such that:

• BF
σ (x, ε′

q, n) ⊂ ⋃
i∈In

(σ ◦ θi)∗,
• σ ◦ θi is strongly (n, ε′

q)-bounded (with respect to f ) for any i ∈ In,

• �In ≤ BqC
n
q
r e

ωn
q (x̂)

r−1 , with Cr being a universal constant depending only on r .

Proof Fix q . Let ε′
q = ε/2 with ε as in Corollary 3 for g = f q . There is a finite family

� of affine maps of [−1,1] with
⋃

θ∈� θ∗ = [−1,1] such that for any strongly ε′
q -

bounded map γ : [−1,1] → M and for any θ ∈ �, the map γ ◦ θ is strongly (q, ε′
q)-

bounded.
Fix now a strongly ε′

q -bounded curve σ : [−1,1] → M and let x ∈ σ∗. We consider
only the map θ ∈ � such that BF

σ (x, ε′
q, n) ∩ (σ ◦ θ)∗ �= ∅. For such a map θ we let
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xθ ∈ BF
σ (x, ε′

q, n) ∩ (σ ◦ θ)∗. By the choice of ε′
q and the inequalities (4.7), we have

|wmk

f q (F kx̂θ ) − w
mk

f q (F kx̂)| ≤ 2.

Take any 0 ≤ k < q and let mk =
[

n−k
q

]
. By applying Corollary 3 to “g = f q”,

“σ = f k ◦σ ◦θ”, “x = f k(xθ )” and “n = [n−k
q

]”, we get a family �θ,k of affine maps

of [−1,1] with ��θ,k ≤ C
mk
r e

w
mk
f q (Fk x̂θ )

r−1 ≤ C
mk
r e

w
mk
f q (Fk x̂)+2

r−1 such that

⋃
ψ∈�θ,k

(σ ◦ θ ◦ ψ)∗ ⊃ f −kBFq

f k◦σ◦θ

(
f k(xθ ), ε,

[
n − k

q

])
⊃ BF

σ◦θ (x, ε′
q, n)

such that f mq+k ◦ σ ◦ θ ◦ ψ is strongly ε-bounded for ψ ∈ �θ,k and integers m with
0 ≤ mq + k ≤ n. Then �k = {θ ◦ψ ◦ θ ′, ψ ∈ �θ,k and (θ, θ ′) ∈ �2} satisfies the two
first items of the conclusion. Moreover we have:

��k ≤ Cmk
r ��2e

w
mk
f q (Fk x̂)+2

r−1 .

But for some constant Aq depending only on q we have

min
0≤k<q

e
w

mk
f q (F kx̂) ≤

⎛
⎝ ∏

0≤k<q

e
w

mk
f q (F kx̂)

⎞
⎠

1/q

≤ Aqeωn
q(x̂).

Take 0 ≤ k = l < q achieving the minimum in min0≤k<q e
w

mk
f q (F kx̂)

. As �� de-
pends only on q , we get for some Bq > 0:

��l ≤ BqC
n
q
r e

ωn
q (x̂)

r−1 .

This concludes the proof of the lemma by taking (θi)i∈In := �l . �

5 Existence of SRB measures

5.1 Entropy formula

By Ruelle’s inequality [40], for any C1 system, the entropy of an invariant measure
is less than or equal to the integral of the sum of its positive Lyapunov exponents. For
C1+ systems, the following entropy characterization of SRB measures was obtained
by Ledrappier and Young:

Theorem 5 [28] An invariant measure of a C1+ diffeomorphism on a compact man-
ifold is an SRB measure if and only if it has a positive Lyapunov exponent almost
everywhere and the entropy is equal to the integral of the sum of its positive Lya-
punov exponents.

As the entropy is harmonic (i.e. preserves the ergodic decomposition), the ergodic
components of an SRB measures are also SRB measures.



SRB measures for C∞ surface diffeomorphisms 1047

5.2 Lyapunov exponents

We consider in this subsection a C1 diffeomorphism f : M �. Let ‖‖ be a Rieman-
nian structure on M . The (forward upper) Lyapunov exponent of (x, v) for x ∈ M and
v ∈ TxM is defined as follows (see [34] for an introduction to Lyapunov exponents):

χ(x, v) := lim sup
n→+∞

1

n
log‖dxf

n(v)‖.

The function χ(x, ·) admits only finitely many values χ1(x) > · · · > χp(x)(x) on
TxM \ {0} and generates a flag 0 � Vp(x)(x) � · · · � V1 = TxM with Vi(x) = {v ∈
TxM, χ(x, v) ≤ χi(x)}. In particular, χ(x, v) = χi(x) for v ∈ Vi(x) \ Vi+1(x). The
function p as well the functions χi and the vector spaces Vi(x), i = 1, . . . , p(x) are
invariant and depend Borel measurably on x. One can show the maximal Lyapunov
exponent χ introduced in the introduction coincides with χ1 (see the Appendix).

A point x is said to be regular when there exists a decomposition

TxM =
p(x)⊕
i=1

Hi(x)

such that

∀v ∈ Hi(x) \ {0}, lim
n→± ∞

1

n
log‖dxf

n(v)‖ = χi(x)

with uniform convergence in {v ∈ Hi(x), ‖v‖ = 1} and

lim
n→± ∞

1

|n| log Jac
(
dxf

n
) =

∑
i

dim(Hi(x))χi(x).

In particular we have Vi(x) = ⊕p(x)
j=i Hj (x) for all i. The set R of regular points

is an invariant measurable set of full measure for any invariant measure [29]. The
invariant subbundles Hi are called the Oseledec’s bundles. We also let R∗ := {x ∈
R, ∀i χi(x) �= 0}. For x ∈ R∗ we put Eu(x) = ⊕

i, χi (x)>0 Hi(x) and Es(x) =⊕
i, χi (x)<0 Hi(x).
In the following we only consider surface diffeomorphisms. Therefore we always

have p(x) ≤ 2 and when p(x) is equal to 1, we let χ2(x) = χ1(x). When ν is f -
invariant we let χi(ν) = ∫

χi dν.

5.3 Building SRB measures

Assume f is a Cr , r > 1, surface diffeomorphism and lim supn
1
n

log‖dxf
n‖ > b >

R(f )
r

on a set of positive Lebesgue measure as in the Main Theorem. Take p (de-

pending only on b − R(f )
r

> 0) as in Proposition 4, then ε = ε0(f
p) as in RL. From

now β = βp is also fixed. By using Fubini’s theorem as in [13] there is a Cr smooth
embedded curve σ : I → M , which can be assumed to be strongly ε-bounded, and a
subset A of σ∗ with Lebσ∗(A) > 0, such that we have lim supn

1
n

log‖dxf
n(vx)‖ > b
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for all x ∈ A (recall vx is the line tangent to σ∗ at x, which is identified with an asso-
ciated unit vector). We can also assume that the countable set of periodic sources has
an empty intersection with σ∗.

It follows from Proposition 4 that

∑
n

Lebσ∗
({

x ∈ A, dn(E(x)) < β and ‖dxf
n(vx)‖ ≥ enb

})
< +∞.

Therefore, by taking a smaller subset A (still with positive Lebσ∗ -measure), we may
assume that there is N > 0 such that for any n > N it holds that

∀x ∈ A,
[
‖dxf

n(vx)‖ ≥ enb
]

⇒ [dn(E(x)) ≥ β] .

As we have lim supn
1
n

log‖dxf
n(vx)‖ > b for all x ∈ A, the set of geometric times

has positive upper density in A:

∀x ∈ A, d(E(x)) ≥ β.

We prove now the existence of an SRB measure. This is a first step in the proof of
the Main Theorem. For any q ∈N

∗ we let:

ψq = φ − ωq

r − 1
.

We will apply the results of the first sections to the projective action F : PT M �
induced by f , where we consider:

• the additive derivative cocycle � = (φk)k given by φk(x, v) = log‖dxf
k(v)‖,

• the measure λ = λσ on PT M given by s∗ Lebσ∗ with s : x ∈ σ∗ �→ (x, vx),
• the geometric set E, which is τ -large with respect to �,
• the additive cocycles �q associated to ψq − δq for any q ∈ N

∗.

The topological extension π : (PT M,F) → (M,f ) is principal3 by a straightfor-
ward application of Ledrappier-Walters variational principle [31] and Lemma 3.3 in
[41]. In fact this holds in any dimension and more generally for any finite dimensional
vector bundle morphism instead of df : T M �.

Let F = (Fn)n∈n and (An)n∈n be the sequences associated to E given by
Lemma 2. As in Proposition 3 we denote by μn the probability measure induced
by λ on An, i.e. μn = λ(An∩·)

λ(An)
. Rigorously E should be defined on the projective tan-

gent bundle, but as π is one-to-one on PT σ∗ there is no confusion. In the same way
we see the sets An, n ∈N, as subsets of A ⊂ σ∗.

Any weak-∗ limit μ of μ
Fn
n := 1

�Fn

∑
k∈Fn

F k∗ μn is invariant under F and thus
supported by Oseledec’s bundles. Let ν = πμ. By Lemma 4, μ is supported by the
unstable bundle Eu and φ∗(x̂) > τ for μ a.e. x̂ ∈ PT M . Note also that φ∗(x̂) ∈
{χ1(πx̂),χ2(πx̂)} for μ-almost every x̂. We claim that φ∗(x̂) = χ1(πx̂). If not ν

would have an ergodic component with two positive exponents. It is well known such
a measure is necessarily a periodic measure associated to a periodic source S (see e.g.

3i.e. hf (πμ) = hF (μ) for all F -invariant measure μ.
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Proposition 4.4 in [36]). But there is an open neighborhood U of the orbit of S with
f −1U ⊂ U and σ∗ ∩ U = ∅. In particular we have πμ

Fn
n (U) = 0 for all n because

πμ
Fn
n

(⋃
N∈N f Nσ∗

) = 1 and f Nσ∗ ∩U = f N(σ∗ ∩f −NU) ⊂ f N(σ∗ ∩U) = ∅. By
taking the limit in n we would obtain ν(U) = ν(S) = 0. Therefore φ∗(x̂) = χ1(πx̂) >

τ for μ-almost every x̂ and χ1(x) > τ > 0 ≥ χ2(x) for ν-almost every x.
We conclude the construction of an SRB measure by assuming the following

proposition, whose proof is given in the next section.

Proposition 6 There exists an infinite sequence of positive real numbers (δq)q with

δq
q→∞−−−→ 0 such that the property (H) with respect to F holds with respect to the

additive cocycle on PT M associated to the observable ψq − δq for any q ∈N
∗.

Then by Proposition 3 and Proposition 6 we obtain:

h(ν) = h(μ) ≥
∫

ψq dμ − δq,

≥
∫

φ dμ − 1

r − 1

∫
ωq dμ − δq,

≥ χ1(ν) − 1

r − 1

(
1

q

∫
log‖dxf

q‖dν(x) − χ1(ν)

)
− δq .

By a standard application of the subadditive ergodic theorem, we have

1

q

∫
log‖dxf

q‖dν(x)
q→+∞−−−−→

∫
χ1(x) dν(x) = χ1(ν).

Therefore h(ν) ≥ χ1(ν), since δq
q→∞−−−→ 0. Then Ruelle’s inequality implies h(ν) =

χ1(ν). According to Ledrappier-Young characterization (Theorem 5), the measure ν

is an SRB measure of f . Note also that any ergodic component ξ of ν is also an
SRB measure, therefore h(ξ) = χ1(ξ) > τ . But by Ruelle inequality applied to f −1,
we get also h(ξ) ≤ −χ2(ξ). In particular we have χ1(x) > τ > 0 > −τ > χ2(x) for
ν-almost every x.

5.4 Proof of the Følner Gibbs property (H)

In this subsection we prove Proposition 6. We will show that for any δ > 0 there is
q arbitrarily large and ε′

q > 0 such that we have for any partition P of PT M with
diameter less than ε′

q :

∃n∗ ∀x ∈ An ⊂ σ∗ with n∗ < n ∈ n,
1

λσ

(
P Fn(x̂) ∩ π−1An

) ≥ e−δ�Fneψ
Fn
q (x̂),

(5.1)
where we denote ψ

Fn
q (x̂) := ∑

k∈Fn
ψq(F kx̂) to simplify the notations.

For G ⊂ N we let AG be the set of points x ∈ A with G ⊂ E(x). When G = {k}
or {k, l} with k, l ∈N, we just let AG = Ak or Ak,l . We recall that ∂Fn ⊂ E(x) for all
x ∈ An, in others terms An ⊂ A∂Fn . We will show (5.1) for A∂Fn in place of An.
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Fix the error term δ > 0. Let q be so large that C
1/q
r < eδ/3 and let ε′

q > 0 as in
Lemma 8 (with Cr being the universal constant in the same lemma). Without loss of
generality we may assume ε′

q < ε
81 . Recall that ε corresponds to the fixed scale in the

definition of the geometric set E. We can also ensure that

∀x̂, ŷ ∈ PT M with d̂(x̂, ŷ) < ε′
q, |φ(x̂) − φ(ŷ)| < δ/3. (5.2)

Let us remember some notations and definitions introduced just before Sect. 4.2.
For x ∈ σ∗ the curve Dn(x) denotes the image of f n ◦ γn where γn = σ ◦ θn is the
subcurve of maximal length satisfying the following three items:

• θn : [−1,1] � is affine,
• γn is strongly (n, ε)-bounded,
• γn(0) = x.

The integer n is a (α, ε)-geometric time of x, when ‖d(f n ◦ γn)(0)‖ ≥ 3
2αε. We

define the semi-length of Dn(x) as the minimum of the lengths of f n ◦ γn([0,1]) and
f n ◦ γn([−1,0]). The semi-length of Dn(x) is larger than αε at a (α, ε)-geometric
time n.

In the next three lemmas we consider a strongly ε-bounded curve σ .

Lemma 9 For any subset N of M , any k ∈ N and any ball Bk of radius less than ε′
q ,

there exists a finite family (yj )j∈J of Ak ∩ f −kBk ∩ N such that:

• Bk ∩ f k(Ak ∩ N) ⊂ ⋃
j∈J Dk(yj ),

• Dk(yj ), j ∈ J , are pairwise disjoint.

Proof For y, y′ ∈ Ak ∩f −kBk ∩N we let y ∼ y′ when Dk(y)∩Dk(y
′) �= ∅. We claim

that [y ∼ y′] ⇒ [Dk(y) ∩ Bk = Dk(y
′) ∩ Bk]. In particular ∼ defines an equivalence

relation on Ak ∩ f −kBk ∩ N (with finite quotient set). Then if (yi)i is a family of
representatives, the curves Dk(yj ), j ∈ J , are pairwise disjoint and Bk ∩ f k(Ak ∩
N) ⊂ ⋃

j∈J Dk(yj ). It remains to show our claim. For y, y′ ∈ Ak ∩ f −kBk ∩ N with
Dk(y)∩Dk(y

′) �= ∅, the curves Dk(y), Dk(y
′) and Dk(y)∪Dk(y

′) lie in a cone with
opening angle π/6 by (4.2) and their length are larger than 4

81ε > 4ε′
q . By elementary

Euclidean geometric arguments, the intersection of one of these curves with 2Bk is a
curve crossing 2Bk , i.e. its two endpoints lies in the boundary of 2Bk (see Figure 2).
Two such subcurves of Bk ∩ (f k ◦ σ)∗ if not disjoint are necessarily equal. Therefore(
Dk(y) ∪ Dk(y

′)
) ∩ 2Bk = Dk(y) ∩ 2Bk = Dk(y

′) ∩ 2Bk . �

As the distortion is bounded on Dk(yj ), j ∈ J , by (4.3), we get:

∑
j∈J

4

9
e−φk(ŷj )�

(
Dk(yj )

) ≤
∑
j∈J

�
(
f −kDk(yj )

)
.

The curves (Dk(yi))i , being pairwise disjoint, we have:

∑
j∈J

�
(
f −kDk(yj )

)
≤ � (σ∗) ≤ 2ε,
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Fig. 2 The curve Dk(y) crossing the ball 2Bk

therefore

∑
j∈J

4

9
e−φk(ŷj )�

(
Dk(yj )

) ≤ 2ε.

The semi-length of Dk(yj ) is larger than αε because yj belongs to Ak , so that we
obtain finally:

∑
j∈J

e−φk(ŷj ) ≤ 9

4α
. (5.3)

Below we consider the dynamical ball BF
σ (x, ε′

q, k) defined in (4.6).

Lemma 10 For any subset N of M and any dynamical ball B�0,k� := BF
σ (x, ε′

q, k),

there exists a finite family (zi)i∈I of Ak ∩ B�0,k� ∩ N such that

• f k
(
Ak ∩ B�0,k� ∩ N

)
⊂ ⋃

i∈I Dk(zi),

• Dk(zi), i ∈ I , are pairwise disjoint,

• �I ≤ Bqeδk/3e
ωk
q (x̂)

r−1 for some constant Bq depending only on q .

Proof As in the previous lemma we consider the subcurves Dk(z) for z ∈ Ak ∩
B�0,k� ∩N . By Lemma 8 we can reparametrize B�0,k� by a family of strongly (k, ε′

q)-

bounded curves with cardinality less than BqC
k
q
r e

ωk
q (x̂)

r−1 . Each of these curves is con-
tained in some f −kDk(z) with z ∈ Ak ∩ B�0,k�. Arguing as in the proof of Lemma 9,
such curves can be chosen pairwise disjoint. �

Lemma 11 For any dynamical ball B�k,l� := f −kBF
f k◦σ (f kx, ε′

q, l − k), there exists

a finite family (yi)i∈I of Ak,l ∩ B�k,l� and a partition I = ∐
j∈J Ij of I with j ∈ Ij

for all j ∈ J ⊂ I such that
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Fig. 3 For 0 ≤ t < k the image of f t ◦ σ in black may be large and the disks Dt (yi ) are scattered through
the surface. For t = k, the sets Dk(yj ) for j ∈ J are covering (f k ◦ σ)∗ ∩ Bk . For t = l, we drew in blue

the sets Dl(yi ) ⊂ f l−kDk(yj ) for i ∈ Ij (Color figure online)

• f l(Ak,l ∩ B�k,l�) ⊂ ⋃
i∈I Dl(yi),

• Dl(yi), i ∈ I , are pairwise disjoint,
• ∀j ∈ J ∀i, i′ ∈ Ij , Dk(yi) ∩ B(f kx, ε′

q) = Dk(yi′) ∩ B(f kx, ε′
q),

• ∀j ∈ J , �Ij ≤ Bqeδ(l−k)/3e
ω

l−k
q (Fk x̂)

r−1 for some constant Bq depending only on q .

Proof We first apply Lemma 9 to σ and N = Ak,l ∩ B�k,l� to get the collection of

strongly ε-bounded curves
(
Dk(yj )

)
j∈J

. For j ∈ J we let σk
j be the strongly ε-

bounded curve σ given by Dk(yj ). Then we apply Lemma 10 to each σk
j for j ∈ J

and N = f k(B�k,l� ∩Ak) to get a family (zi)i∈Ij
of Dk(yj )∩Al−k ∩f k(B�k,l� ∩Ak)

satisfying:

• f l−k
(
Dk(yj ) ∩ Al−k ∩ f k(B�k,l� ∩ Ak)

)
⊂ ⋃

j∈J Dk(zi),

• Dl−k(zi), i ∈ Ij , are pairwise disjoint,

• �Ij ≤ Bqeδ(l−k)/3e
ω

l−k
q (Fk x̂)

r−1 .

For all j ∈ J we can take j ∈ Ij and zj = f k(yj ). We conclude the proof by
letting yi = f −kzi ∈ Ak,l ∩ B�k,l� for all i ∈ I := ∐

j∈J Ij . See figure 3. �

We prove now (H). Recall that λ = λσ is the push-forward on PT M of the
Lebesgue measure on σ∗. As �∂Fn = o(n) and dn(F) > 0 by Lemma 2, it is enough
to show there is a constant C such that for any strongly ε-bounded curve σ we have
for x ∈ A∂Fn :

λσ

(
P Fn(x̂) ∩ π−1A∂Fn

)
≤ C�∂Fne2δ�Fn/3e−ψ

Fn
q (x̂). (5.4)

To prove (5.4) we argue by induction on the number of connected components of Fn.
Let �k, l�, 0 ≤ k ≤ l, be the first connected component of Fn and write Gn−l = N

∗ ∩
(Fn − l). As P has diameter less than ε′

q , the set PT σ∗ ∩ P Fn(x̂) is contained in the

intersection of π−1B�k,l� = π−1
(
f −kBF

f k◦σ (f kx, ε′
q, l − k)

)
and F−lP Gn−l (F l x̂).

Then with the notations of Lemma 11 we get:

λσ

(
P Fn(x̂) ∩ π−1A∂Fn

)
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≤ λσ

(∐
i∈I

F−l
(
π−1A∂Gn−l ∩ P Gn−l (F l x̂) ∩ Dl(yi)

))
,

≤ λσ

⎛
⎝∐

j∈J

F−k

⎛
⎝∐

i∈Ij

F−(l−k)
(
π−1A∂Gn−l ∩ P Gn−l (F l x̂) ∩ Dl(yi)

)⎞
⎠

⎞
⎠

We recall that σk
j denotes the strongly ε-bounded curve σ given by Dk(yj ) for

j ∈ J . By the bounded distortion property (4.3) we get:

λσ

(
P Fn(x̂) ∩ π−1A∂Fn

)

≤ 3
∑
j∈J

e−φk(ŷj )λσk
j

⎛
⎝∐

i∈Ij

F−(l−k)
(
π−1A∂Gn−l ∩ P Gn−l (F l x̂) ∩ Dl(yi)

)⎞⎠ .

By using again the bounded distortion property (now between the times k and l) we
get with σ l

i being the curve associated to Dl(yi):

λσ

(
P Fn(x̂) ∩ π−1A∂Fn

)

≤ 9
∑
j∈J

e−φk(ŷj )
∑
i∈Ij

e−φl−k(F
kŷi )λσ l

i

(
π−1A∂Gn−l ∩ P Gn−l (F l x̂)

)
.

We may assume that any ŷi , i ∈ I , lies in P Fn(x̂). In particular we have
|φl−k(F

kŷi) − φl−k(F
kx̂)| < (l − k)δ/3 by (5.2). Then

λσ

(
P Fn(x̂) ∩ π−1A∂Fn

)
≤ 9

⎛
⎝∑

j∈J

e−φk(ŷj )

⎞
⎠ eδ(l−k)/3e−φl−k(F

kx̂) sup
j

�Ij

× sup
i∈I

λσ l
i

(
π−1A∂Gn−l ∩ P Gn−l (F l x̂)

)
.

By (5.3) and the last item of Lemma 11 we obtain:

λσ

(
P Fn(x̂) ∩ π−1∂AFn

)

≤ 81

4α
Bqe2δ(l−k)/3e−φl−k(F

kx̂)+ ω
l−k
q (Fk x̂)

r−1 sup
i∈I

λσ l
i

(
π−1A∂Gn−l ∩ P Gn−l (F l x̂)

)
,

≤ 81

4α
Bqe2δ(l−k)/3e−ψ

�k,l�
q (x̂) sup

i∈I

λσ l
i

(
π−1A∂Gn−l ∩ P Gn−l (F l x̂)

)
.

By induction hypothesis (5.4) applied to Gn−l for each σ l
i , we have for all i ∈ I :

λσ l
i

(
π−1A∂Gn−l ∩ P Gn−l (F l x̂)

)
≤ C�∂Gn−l e2δ�Gn−l /3e−ψ

Gn−l
q (F l x̂).
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Note that �∂Fn = �∂Gn−l +2 and �Fn = (l −k +1)+ �Gn−l . We conclude by taking

C =
√

81Bq

4α
that:

λσ

(
P Fn(x̂) ∩ π−1A∂Fn

)
≤ 81

4α
Bqe2δ�Fn/3C�∂Gn−l e−ψ

Fn
q (x̂),

≤ C�∂Fne2δ�Fn/3e−ψ
Fn
q (x̂).

This completes the proof of (5.1).

6 End of the proof of the Main Theorem

6.1 The covering property of the basins

For x ∈ M the stable/unstable manifold Ws/u(x) at x are defined as follows:

Ws(x) := {y ∈ M, lim sup
n→+∞

1

n
logd(f nx,f ny) < 0},

Wu(x) := {y ∈ M, lim sup
n→+∞

1

n
logd(f −nx,f −ny) < 0}.

For a subset � of M we let Ws(�) = ⋃
x∈� Ws(x). Let R∗ be the set of regular

points and Es/u be the subbundles of T M as defined in Sect. 5.2. According to Pesin’s
theory, there are a nondecreasing sequence of compact, a priori non-invariant, sets
(Kn)n (called the Pesin blocks) with R∗ = ⋃

n Kn and two families of embedded
C∞ discs (Ws

loc(x))x∈R∗ and (Wu
loc(x))x∈R∗ (called the local stable and unstable

manifolds) such that:

• W
s/u
loc (x) are tangent to Es/u at x,

• the splitting Eu(x) ⊕ Es(x) and the discs W
s/u
loc (x) are continuous on x ∈ Kn for

each n.

For γ > 0 and x ∈ R∗ we let W
s/u
γ (x) be the connected component of B(x, γ ) ∩

W
s/u
loc (x) containing x.

Proposition 7 The set
{
χ >

R(f )
r

}
is covered by the basins of ergodic SRB measures

μi , i ∈ I , up to a set of zero Lebesgue measure.

In fact we prove a stronger statement by showing that
{
χ >

R(f )
r

}
is contained

Lebesgue a.e. in Ws(�) where � is any f -invariant subset of
⋃

i∈I B(μi)i∈I with
μi(�) = 1 for all i ∈ I .

So far we only have used the characterization of SRB measure in terms of en-
tropy (Theorem 5). In the proof of Proposition 7 we will use the absolute continu-
ity property of SRB measures. Let μ be a Borel measure on M . We recall a mea-
surable partition ξ in the sense of Rokhlin [37] is said to be μ-subordinate to Wu
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when ξ(x) ⊂ Wu(x) and ξ(x) contains an open neighborhood of x in the topology
of Wu(x) for μ-almost every x. The measure μ is said to have absolutely continu-
ous conditional measures on unstable manifolds if for every measurable partition
ξ μ-subordinate to Wu, the conditional measures μ

ξ
x of μ with respect to ξ satisfy

μ
ξ
x � LebWu(x) for μ-almost every x.

Proof We argue by contradiction. Take � as above. Assume there is a Borel set B

with positive Lebesgue measure contained in the complement of Ws(�) such that we
have χ(x) > b >

R(f )
r

for all x ∈ B . Then we follow the approach of Sect. 5.3. We
consider a Cr smooth disc σ with χ(x, vx) > b for x ∈ B ′ ⊂ B , Lebσ∗(B

′) > 0. One
can then define the geometric set E on a subset B ′′ of B with Lebσ∗(B

′′) > 0. We
also let τ , β , α and ε be the parameters associated to E. Recall that:

• E is τ -large with respect to the derivative cocycle �,
• d(E(x)) ≥ β > 0 for x ∈ B ′′,
• Dk(y) = f k(Hk(y)) has semi-length larger than αε when k ∈ E(y), y ∈ B ′′.

Let B ′′′ be the subset of B ′′ given by density points of B ′′ with respect to Lebσ∗ .
In particular, we have

∀x ∈ B ′′′,
Lebσ∗

(
Hk(x) ∩ B ′′)

Lebσ∗(Hk(x))

k→+∞−−−−→ 1.

We choose a subset A of B ′′′ with Lebσ∗(A) > 0 such that the above convergence
is uniform in x ∈ A. Then from this set A and the geometric set E on A we may build
n, (Fn)n∈n and (μ

Fn
n )n∈n as in Sects. 2 and 3. As proved in Sect. 5.3 any limit measure

μ of μ
Fn
n is supported on the unstable bundle and projects to an SRB measure ν with

χ1(x) ≥ τ > 0 > −τ ≥ χ2(x) for ν a.e. x. The measure ν is a barycenter of ergodic
SRB measures with such exponents, in particular ν(�) = 1. Take P = KN a Pesin
block with ν(P ) > 1 − β

2 . We let θ and l be respectively the minimal angle between
Eu and Es and the minimal length of the local stable and unstable manifolds on P .

Let ξ be a measurable partition ν-subordinate to Wu with diameter less then γ >

0. We have ν(P ) = ν(� ∩ P) = ∫
ν

ξ
x (� ∩ P)dν(x) and ν

ξ
x � LebWu

γ (x) for ν a.e. x.
Then

ν
(
x, LebWu

γ (x)(� ∩ P) = 0
)

≤ ν
(
x, ν

ξ
x (� ∩ P) = 0

)
,

≤ 1 − ∫
ν

ξ
x (� ∩ P)dν(x),

≤ 1 − ν(P ) <
β
2 .

Therefore we get for some c > 0:

ν
(
x, LebWu

γ (x)(� ∩ P) > c
)

> 1 − β

2
.

We let G = {x ∈ � ∩ P, LebWu
γ (x)(� ∩ P) > c}. Observe that:

ν(G) ≥ ν
(
x, LebWu

γ (x)(� ∩ P) > c
)

− ν(M \ P) > 1 − β.
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Fig. 4 Holonomy of the local stable foliation between the transversals Dn(xn) and Wu
γ (yn) (Color figure

online)

For x ∈ σ∗ and y ∈ P we use the following notations:

x̂σ = (x, vx) ∈ PT σ∗ ŷu = (y, vu
y ) ∈ PT M,

where vu
y is the element of PT M representing the line Eu(y). Let Ĝ

γ
u be the open

γ /8-neighborhood of Ĝu := {ŷu, y ∈ G} in PT M . Recall E(x) denotes the set of
geometric times of x. We let for n ∈ n:

ζn :=
∫

1

�Fn

∑
k∈E(x)∩Fn

δFkx̂σ
dμn(x̂σ ).

Observe that ζn(PT M) ≥ infx∈An dn(E(x) ∩ Fn). By the last item in Lemma 2, we
have lim infn∈n infx∈An dn(E(x) ∩ Fn) ≥ β . Therefore there is a weak-∗ limit ζ =
limk ζpk

with ζ ≤ μ and ζ(PT M) ≥ β . From μ(Ĝ
γ
u ) ≥ μ(Ĝu) = ν(G) > 1 − β we

get 0 < ζ(Ĝ
γ
u ) ≤ limk ζpk

(Ĝ
γ
u ). Note also Âσ := {ŷσ , y ∈ A} has full μn-measure

for all n. In particular, for infinitely many n ∈ N there is (xn, vxn) = x̂n
σ ∈ Âσ with

Fnx̂n
σ ∈ Ĝ

γ
u and n ∈ E(xn). Let ŷn

u = (yn, vu
yn) ∈ Ĝu which is γ /8-close to Fnx̂n

σ .

Then for γ � δ � min(θ, l, αε) independent of n, the curve Dδ
n(x

n) := Dn(x
n) ∩

B(f nxn, δ) is transverse to Ws(P ∩ � ∩ Wu
γ (yn)) and may be written as expyn

(
�ψ

)
where �ψ is the graph of a Cr smooth function ψ : E ⊂ Eu(y

n) → Es(y
n) with

‖dψ‖ < L for a universal constant L.
By Theorem 8.6.1 in [34] the associated holonomy map h : Wu

γ (yn) → Dδ
n(x

n),
represented in Figure 4, is absolutely continuous and its Jacobian is bounded from be-
low by a positive constant depending only on the Pesin block P = KN (not on xn and
yn). Since we have LebWu

γ (x)(� ∩ P) > c, we get for some constant c′ independent
of n:

LebDn(xn)

(
Ws(� ∩ P)

) ≥ c′. (6.1)

The distortion of df n on Hn(x
n) being bounded by 3, we get (recall f nHn(x

n) =
Dn(x

n)):

LebDn(xn) (Dn(x
n) \ f nB)

LebDn(xn) (Dn(xn))
≤ 9

LebHn(xn) (Hn(x
n) \ B)

LebHn(xn) (Hn(xn))

n→∞−−−→ 0.
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As Dn(x
n) is the image of a strongly ε-bounded curve, its length is bounded from

above by 2ε, so that we get:

(2ε)−1LebDn(xn)

(
Dn(x

n) \ f nB
) ≤ LebDn(xn) (Dn(x

n) \ f nB)

LebDn(xn) (Dn(xn))

n→∞−−−→ 0. (6.2)

It follows from (6.1) and (6.2) that for n large enough, there exists x ∈ f nB ∩
Ws(� ∩ P), in particular B ∩ f −nWs(�) = B ∩ Ws(�) �= ∅. This contradicts the
definition of B . �

6.2 The maximal exponent

In Proposition 7 we proved that Lebesgue almost every point x with χ(x) >
R(f )

r
lies

in the basin of an ergodic SRB measure μ. To complete the proof of Theorem 1 it
remains to show χ(x) = χ(μ) for a.e. such points x.

For uniformly hyperbolic systems, we have

	χ(x) := max
k

	kχ(x) = lim
n

1

n
log Jac(dxf

n
Eu

) = lim
n

∫
log Jac(dyfEu) dδn

x .

As the geometric potential y �→ log Jac(dyfEu) is continuous in this case, any point
in the basin of an SRB measure μ satisfies 	χ(x) = ∫

	χ(y)dμ(y). As the geo-
metric potential is not continuous in our context, the proof of this last point is not
straightforward.

As mentioned after Proposition 7, we proved in Sect. 6.1 that
{
χ >

R(f )
r

}
is con-

tained Lebesgue a.e. in Ws(�) where � is any f -invariant subset of
⋃

i∈I B(μi)i∈I

with μi(�) = 1 for all i. For such a set � we have Ws(�) ⊂ ⋃
i∈I B(μi)i∈I and there-

fore it is enough to find such a set � satisfying χ(x) = χ(μi) for x ∈ Ws(�)∩B(μi),
i ∈ I .

Let R+∗ denote the invariant subset of Lyapunov regular points x of (M,f ) with
χ1(x) > 0 > χ2(x). Such a point admits so called regular neighborhoods (or ε-Pesin
charts):

Lemma 12 [33] For a fixed ε > 0 there exists a measurable function q = qε :
R+∗ → (0,1] with e−ε < q(f x)/q(x) < eε and a collection of embeddings �x :
B(0, q(x)) ⊂ TxM = Eu(x) ⊕ Es(x) ∼ R

2 → M with �x(0) = x such that fx =
�−1

f x ◦ f ◦ �x satisfies the following properties:

•

d0fx =
(

a1
ε (x) 0
0 a2

ε (x),

)

with e−εeχi(x) < ai
ε(x) < eεeχi(x) for i = 1,2,

• the C1 distance between fx and d0fx is less than ε,
• there exists a constant K and a measurable function A = Aε : R+∗ → R such that

for all y, z ∈ B(0, q(x))

Kd(�x(y),�x(z)) ≤ ‖y − z‖ ≤ A(x)d(�x(y),�x(z)),
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with e−ε < A(f x)/A(x) < eε .

For any i ∈ I we let

Ei := {x, χ(x) = χ(μi)}.
The set Ei has full μi -measure by the subadditive ergodic theorem. Put �i = B(μi)∩
Ei ∩ R+∗ and � = ⋃

i �i . Clearly � is f -invariant. We finally check that χ(x) =
χ(μi) for x ∈ Ws(�i).

Lemma 13 If y ∈ Ws(x) with x ∈ R+∗, then χ(y) = χ(x).

Proof Fix x ∈ R+∗ and δ > 0. We apply Lemma 12 with ε � χ1(x). For α > 0 we
let Cα be the cone Cα = {(u, v) ∈R

2, α‖u‖ ≥ ‖v‖}. We may choose α > 0 and ε > 0
so small that for all k ∈ N we have dzff kx(Cα) ⊂ Cα and ‖dzff kx(v)‖ ≥ eχ1(x)−δ for
all v ∈ Cα and all z ∈ B(0, qε(f

kx)).
Let y ∈ Ws(x). There is C > 0 and λ such that d(f nx,f ny) < Cλn holds for all

n ∈ N. We can choose ε � λ. In particular there is N > 0 such that f ny belongs
to �f nxB(0, q(f nx)) for n ≥ N since we have A(f nx) < eεnA(x) and q(f nx) >

eεnq(x). Let z ∈ B(0, q(f Nx)) with �f Nx(z) = y. Then for all v ∈ Cα and for all n ≥
N we have ‖dz

(
�−1

f n−Nx
◦ f n−N ◦ �f Nx

)
(v)‖ ≥ e(n−N)(χ1(x)−δ). As the conorm of

df n−Nyψf nx is bounded from above by A(f nx)−1 for all n we get

χ(y) = lim sup
n

1

n
log‖dyf

n−N‖,

= lim sup
n

1

n
log‖dz

(
f n−N ◦ �f Nx

)
‖,

≥ lim sup
n→+∞

1

n
log

(
A(f nx)−1

∥∥∥dz

(
�−1

f nx ◦ f n ◦ �f Nx

)∥∥∥
)

,

≥ χ1(x) − δ − ε.

On the other hand we have

∥∥∥dz

(
�−1

f nx ◦ f n ◦ �f Nx

)∥∥∥ ≤
n−1∏
k=N

sup
t∈B(0,q(f kx))

‖dtff kx‖,

≤
(
eχ1(x)+ε + ε

)n−N

,

≤ e(n−N)(χ1(x)+2ε).

Then it follows from ‖df n−Nyψf nx‖ ≤ K :

χ(y) ≤ lim sup
n→+∞

1

n
log

(∥∥∥dz

(
�−1

f nx ◦ f n ◦ �f Nx

)∥∥∥
)

,
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≤ χ1(x) + 2ε.

As it holds for arbitrarily small ε and δ we get χ(y) = χ1(x) = χ(x). �

We conclude with � = {χ(μi), i ∈ I } that for Lebesgue a.e. point x, we have

χ(x) ∈
]
−∞,

R(f )
r

]
∪ � and that {χ = λ} o⊂ ⋃

i∈I,χ(μi)=λB(μi) for all λ ∈ �. The

proof of the Main Theorem is now complete. It follows also from Lemma 13, that
the converse statement of Corollary 2 holds: if (f,M) admits an SRB measure then
Leb(χ > 0) > 0.

7 Nonpositive exponent in contracting sets

In this last section we show Theorem 2. For a dynamical system (M,f ) a subset
U of M is said to be almost contracting when for all ε > 0 the set Eε = {k ∈
N, diam(f kU) > ε} satisfies d(Eε) = 0. In [21] the authors build subsets with his-
toric behaviour and positive Lebesgue measure which are almost contracting but not
contracting. We will show Theorem 2 for almost contracting sets.

We borrow the next lemma from [12] (Lemma 4 therein), which may be stated
with the notations of Sect. 5 as follows:

Lemma 14 Let f : M � be a C∞ diffeomorphism and let U be a subset of M with
Leb ({χ > a} ∩ U) > 0 for some a > 0. Then for all γ > 0 there is a C∞ smooth
embedded curve σ : [0,1] → M and I ⊂ N with �I = ∞ such that

∀n ∈ I, Lebσ∗
({x ∈ U ∩ σ∗, ‖dxf

n(vx)‖ > ena}) > e−nγ .

We are now in a position to prove Theorem 2 for almost contracting sets.

Proof of Theorem 2 We argue by contradiction by assuming Leb ({χ > a} ∩ U) > 0
for some a > 0 with U being a almost contracting set. By Yomdin’s Theorem on
one-dimensional local volume growth for C∞ dynamical systems [43] there is ε > 0
so small that

v∗(f, ε) := sup
σ

lim sup
n→∞

1

n
sup
x∈M

log Leb(f n◦σ)∗
(
f nBn(x, ε)

)
< a/2, (7.1)

where the supremum holds over all C∞ smooth embedded curves σ : [0,1] → M .
As U is almost contracting, there are subsets (Cn)n∈N of M with limn

log �Cn

n
= 0

satisfying for all n:

U ⊂
⋃

x∈Cn

Bn(x, ε). (7.2)

Fix an error term γ ∈]0, a
2 [. Then by Lemma 14 there is a C∞-smooth curve

σ∗ ⊂ U and an infinite subset I of N such that for all n ∈ I :
∑
x∈Cn

Leb(f n◦σ)∗
(
f nBn(x, ε)

) ≥ Leb(f n◦σ)∗(f
n(U ∩ σ∗)),
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≥ enaLebσ∗
({x ∈ U ∩ σ∗, ‖dxf

n(vx)‖ > ena}) ,

≥ en(a−γ ) by (7.1),

�Cn sup
x∈M

Leb(f n◦σ)∗
(
f nBn(x, ε)

) ≥ en(a−γ ) by (7.2).

Therefore we get the contradiction v∗(f, ε) > a − γ > a/2. �

Appendix

Let A = (An)n∈N be a sequence in Md(Rd). For any n ∈ N we let An = An−1 . . .

A1A0. We define the Lyapunov exponent χ(A) of A with respect to v ∈ R
d \ {0} as

χ(A, v) := lim sup
n

1

n
log‖An(v)‖,

Lemma 15

sup
v∈Rd\{0}

χ(A, v) = lim sup
n

1

n
log

∣∣∣∣∣∣An
∣∣∣∣∣∣.

Proof The inequality ≤ is obvious. Let us show the other inequality. Let vn ∈R
d with

‖vn‖ = 1 and ‖An(vn)‖ = |||An|||. Then take v = limk vnk
with limk

1
nk

log |||Ank ||| =
lim supn

1
n

log |||An|||. We get

‖Ank (v)‖ ≥ ‖Ank (vk)‖ − ‖Ank (v − vk)‖,
≥ ∣∣∣∣∣∣Ank

∣∣∣∣∣∣(1 − ‖v − vk‖),

lim sup
k

1

nk

log‖Ank (v)‖ ≥ lim sup
n

1

n
log

∣∣∣∣∣∣An
∣∣∣∣∣∣. �
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