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Abstract

A C smooth surface diffeomorphism admits an SRB measure if and only if the set
{x, limsup, % log ||dy f"]| > 0} has positive Lebesgue measure. Moreover the basins
of the ergodic SRB measures are covering this set Lebesgue almost everywhere. We
also obtain similar results for C" surface diffeomorphisms with +00 > r > 1.
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1 Introduction

One fundamental problem in dynamics consists in understanding the statistical be-

haviour of the system. Given a topological system (X, f) we are more precisely in-

terested in the asymptotic distribution of the empirical measures (}l Z;(l) 8k x) for

typical points x with respect to a reference measure. In the setting of differentiable
dynamical systems the natural reference measure to consider is the Lebesgue measure
on the manifold.

The basin of a f-invariant measure p is the set B(w) of points whose empirical
measures are converging to w in the weak-* topology. By Birkhoft’s ergodic theorem
the basin of an ergodic measure u has full -measure. An invariant measure is said
to be physical when its basin has positive Lebesgue measure. We may wonder when
such measures exist and then study their basins.

In the works of Y. Sinai, D. Ruelle and R. Bowen [10, 38, 42] these questions have
been successfully solved for uniformly hyperbolic systems. An SRB measure of a
C!* system is an invariant probability measure with at least one positive Lyapunov
exponent almost everywhere, which has absolutely continuous conditional measures
on unstable manifolds [45]. Physical measures may neither be SRB measures nor
sinks (as in the famous figure-eight attractor), however hyperbolic ergodic SRB mea-
sures are physical measures [30]. For uniformly hyperbolic systems, there is a finite
number of such measures and their basins cover a full Lebesgue subset of the mani-
fold. Beyond the uniformly hyperbolic case such a picture is known for large classes
of partially hyperbolic systems [1, 2, 9, 35]. Corresponding results have been estab-
lished for unimodal maps with negative Schwartzian derivative [25]. SRB measures
have been also deeply investigated for parameter families such as the quadratic family
and Hénon maps [4-6, 24]. In his celebrated ICM’s talk, M. Viana conjectured that a
C!'* diffeomorphism admits an SRB measure, whenever the set of points with non-
zero Lyapunov exponents has full Lebesgue measure. In recent works some weaker
versions of the conjecture (with some additional assumptions of recurrence and Lya-
punov regularity) have been proved [7, 18, 19]. Finally we mention that J. Buzzi, S.
Crovisier, O. Sarig have also recently shown the existence of an SRB measure for C*°
surface diffeomorphims when the set of points with a positive Lyapunov exponent has
positive Lebesgue measure [16] (Corollary 2).

In this paper we define a general entropic approach to build SRB measures. We
strongly believe that this approach may be used to recover the existence of SRB
measures for weakly mostly expanding partially hyperbolic systems [1] and to give
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SRB measures for C surface diffeomorphisms 1021

another proof of Ben Ovadia’s criterion for C'* diffeomorphisms in any dimension
[7].

We state now the main results of our paper. Let (M, || - ||) be a compact Riemannian
surface and let Leb be a volume form on M, called Lebesgue measure. We consider
a C* surface diffeomorphism f : M . The maximal Lyapunov exponent at x €
M is given by x(x) = limsup, %log llde f*l. When p is a f-invariant probability
measure, we let y (u) = fx(x)du(x). For two Borel subsets A and B of M we

write A & B (resp. A Z B) when we have Leb(A \ B) =0 (resp. Leb(AAB) =0).
ForceRandT' CRwealsolet {xy >c}:={xeM, x(x)>c},{x=c}={x€
M, x(x)=cland {y eT}:={xe M, x(x)eTl}.

Theorem 1 Let f : M O be a C* surface diffeomorphism. There are countably many
ergodic SRB measures (W;)icy, such that we have with A = {x (i), i € I} C R.q:

o {x>0}={x €A}
[ {X = )\,} C Ui!X(Mi):}t B(Mi)fO}" all A € A.

Corollary 1 Let f: M O be a C* surface diffeomorphism. Then

x=0c U Bw.

1 SRB ergodic

Corollary 2 (Buzzi-Crovisier-Sarig [16]) Let f : M O be a C*™ surface diffeomor-
phism.
If Leb(x > 0) > 0, then there exists an SRB measure.

In fact we establish a C", 1 < r < +o00, stronger version, which implies straight-
forwardly Theorem 1:

Main Theorem Let f: M O be a C", R > r > 1, surface diffeomorphism. Let
R(f) :=lim, Llog* sup,cp lldx f" . There are countably many ergodic SRB mea-

n

sures (i)ier with A :={x(u;), i € I} C]@, +o0l, such that we have:

. {X>M}Q{XGA},

r

o
[ {X = )\,} C Ui,X(Mi):}L B(M,’)fOr all L € A.

In others terms, Lebesgue almost every point x with y (x) > @ lies in the basin
of an ergodic SRB measure u with x (x) = x (u).

When f is a C!T topologically transitive surface diffeomorphism, there is at most
one SRB measure, i.e. 1/ < 1 [23]. If moreover the system is topologically mixing,
then the SRB measure when it exists is Bernoulli [30]. By the spectral decomposition
of C" surface diffeomorphisms for 1 < r < 400 [14] there are at most finitely many
ergodic SRB measures with entropy and thus maximal exponent larger than a given

constant b > @. Therefore, in the Main Theorem, the set A = {x(u;), i € I} is
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1022 D. Burguet

either finite or a sequence decreasing to @

ergodic SRB measures u with x (u) < @.

We prove in a forthcoming paper [11] that the above statement is sharp by building
for any finite r > 1 a C" surface diffeomorphism f : M O with a periodic saddle
hyperbolic point p such that x (x) = @ > 0 forall x € U for some set U C B(ip)
with Leb(U) > 0, where 1), denotes the periodic measure associated to p (see [13]
for such an example of interval maps).

In higher dimensions we let =¥y (x) := lim sup,, %HAkdx ™|l where A*df de-
notes the action induced by f on the kth exterior power of TM for k=1,...,d
with d being the dimension of M. By convention we also let £°x = 0. For any
c! diffeomorphism (M, f) we have Leb(EdX > 0) = 0 (see [3]). The product of a
figure-eight attractor with a surface Anosov diffeomorphism does not admit any SRB
measure whereas x is positive on a set of positive Lebesgue measure. However we

conjecture:

. When r is finite, there may also exist

Conjecture Let f : M O be a C*™ diffeomorphism on a compact manifold (of any
dimension).

IfLeb (Ekx > nk-1 X > 0) > 0, then there exists an ergodic measure with at least
k positive Lyapunov exponents, such that its entropy is larger than or equal to the sum
of its k smallest positive Lyapunov exponents.

In the present two-dimensional case the semi-algebraic tools used to bound the
distortion and the local volume growth of C* curves are elementary. This is a chal-
lenging problem to adapt this technology in higher dimensions.

When the empirical measures from x € M are not converging, the point x is said
to have historic behaviour [39]. A set U is contracting when the diameter of f"U
goes to zero when n € N goes to infinity. In a contracting set the empirical measures
of all points have the same limit set, however they may not converge. P. Berger and
S. Biebler have shown that C*° densely inside the Newhouse domains [8] there are
contracting domains with historic behaviour. In intermediate smoothness, such do-
mains have been previously built in [27]. As a consequence of the Main Theorem,
Lebesgue almost every point x with historic behaviour satisfies x (x) < 0 for C*®
surface diffeomorphisms. We also show the following statement.

Theorem 2 Let f be a C* diffeomorphism on a compact manifold (of any dimen-
sion). Then Lebesgue a.e. point x in a contracting set satisfies x (x) <0.

We explain now in few lines the main ideas to build an SRB measure under the
assumptions of the Main Theorem. The geometric approach for uniformly hyperbolic

systems (see e.g. [17]) consists in considering a weak limit of (% ZZ;& ff LebDu) ,
n
where D, is a local unstable disc and Lebp, denotes the normalized Lebesgue mea-
sure on D, induced by its inherited Riemannian structure as a submanifold of M.

Here we take a smooth C” embedded curve D such that
L 1 . R(f)
X (x ve) =limsup ~ log ldy f" (u)|| > b > ===

n
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SRB measures for C surface diffeomorphisms 1023

for (x, vy) in the unit tangent space T!D of D with x in a subset B of D of positive
Lebp-measure. For x in B we define a subset E(x) of positive integers, called the
geometric set, such that the following properties hold for any n € E(x):

e the geometry of f” D around f"x is bounded meaning that for some uniform € >
0, the connected component D, (x) of f"D intersected with the ball at f"x of
radius € > 0 is a curve with bounded s-derivative for s <r,

o the distortion of 4f ~" on the tangent space of D, (x) is controlled,

lde /' @Ol - (k)T

e for some 7 > 0 we have -
ldx fX oIl =

forany l > k € E(x).

We show that E (x) has positive upper asymptotic density for x in a subset A of B of
positive Lebp-measure. Let F : PT M O be the map induced by f on the projective
tangent bundle P7'M. We build an SRB measure by considering a weak limit 1 of a

sequence of the form (ﬁ% Y keF Ffu,,) such that:
n n n

e (Fy,), is a Fglner sequence, so that the weak limit p will be invariant by F,

o for all n, the measure p, is the probability measure induced by Lebp on A, C A,
the Lebp-measure of A, being not exponentially small,

o the sets (F},), are in some sense filled with the geometric set E (x) for x € A,,. Then
the measure u on PT M will be supported on the unstable Oseledec’s bundle.

Finally we check with some Fglner Gibbs property that the limit empirical measure
1 projects to an SRB measure on M by using the Ledrappier-Young entropic charac-
terization.

The paper is organized as follows. In Sect. 2 we recall for general sequences of
integers the notion of asymptotical density and we build for any sequence E with
positive upper density a Fglner set F filled with E. Then we use a Borel-Cantelli
argument to define our sets (A,), and the Fglner sequence (Fy),. In Sect. 3, we
study the maximal Lyapunov exponent and the entropy of the generalized empirical
measure p assuming some Gibbs property. We introduce the geometric set in Sect. 4
by using the Reparametrization Lemma of [12]. We build then SRB measures in
Sect. 5 by using the abstract formalism of Sect. 2 and 3. Then we prove the covering
property of the basins in Sect. 6 by the standard argument of absolute continuity of
Pesin stable foliation. The last section is devoted to the proof of Theorem 2.

Comment: In a first version of this work, by following [12] (incorrectly) the author
claimed that, at b-hyperbolic times # of the sequence (||dx f k(vx) ||) X for some b > 0,
the geometry of f"D at f"x was bounded. J. Buzzi, S. Crovisier and O. Sarig gave
then in [16] another proof of Corollary 2 by using their analysis of the entropic conti-
nuity of Lyapunov exponents from [15]. But our claim on the geometry at hyperbolic
times is wrong in general and we manage to show it only when y (x) > @. Here we
correct our proof based on the Reparametrization Lemma of [12] by showing directly
that the set of times with bounded geometry has positive upper asymptotic density on
a set of positive Lebp-measure.
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1024 D. Burguet

2 Some asymptotic properties of integers
2.1 Asymptotic density

We first introduce some notations. The set of positive integers is denoted by N*. In the
following we let Py and P, be respectively the power sets of N and {0, 1,2,...,n —
1},n € N.Fora < b € N we write [a, b] (resp. [a, b[, ]a, b]) the interval of integers k
witha <k <b (respa <k < b, a <k <b). The connected components of £ € Py
are the maximal intervals of integers contained in E. An interval of integers [[a, b[ is
said to be E-irreducible when we have a, b € E and [[a, b[NE = {a}. The boundary
dE of E is the symmetric difference of £ and E+ 1 with E+1:={k+1, k€ E}.In
particular 9 [a, b[= {a, b}. Observe that d E completely determines E. For M € N*,
we denote by Ejs the union of the intervals [a, b[ with a,b € E and 0 < b —a <
M. We let 1 be the set of increasing sequences of natural integers, which may be
identified with the subset of Py given by infinite subsets of N. For n € 91 we define
the generalized power set of n as Qy, :=[], ., Pu.

We recall now the classical notion of upper and lower asymptotic densities. For
n € N* and F € Py we let d,,(F) be the frequency of F in [0, n[:

dy(Fyy = 002 mnﬂo’”[[.

The upper and lower asymptotic densities d(E) and d(E) of E € Py are respec-
tively defined by

d(E) :=limsupd,(E) and
neN

d(E) :=liminfd, (E).
neN

We just write d (E) for the limit, when the frequencies d,, (E) are converging. For any
n € 9 we let similarly En(E) :=limsup, ¢, d,(E) and d"(E) := liminf,en d, (E).
The concept of upper and lower asymptotic densities of E € Py may be extended to
generalized power sets as follows. For n € 9t and F = (Fy)pen € Qn we let

d" (F) :=limsupd, (F,) and

nen

d"™(F) :=liminfd, (F,).
nen

Again we just write d"(E) and d"(F) when the corresponding frequencies are con-
verging.

2.2 Felner sequence and density along subsequences
We say that E € Py is Fglner along n € 91 when its boundary 9 E has zero up-
per asymptotic density with respect to n, i.e. d"(dE) = 0. More generally F =

(F)nen € Qn with n € 9 is Fglner when we have d"(0.F) = 0 with 9.F = (0 F),)nen-
In general this property seems to be weaker than the usual Fglner property, which re-
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SRB measures for C surface diffeomorphisms 1025

quires limyeqn % = 0. But in the following we will work with sequences F with
d"(F) > 0. In this case our definition coincides with the standard one.

Let E, F € Py and n € 1. We say that F is n-filled with E or E is dense in F
along n when we have

d(F\ Ey) 2255 0,

Observe that (d(Ey)),, is converging nondecreasingly to some a > d(E) when M
goes to infinity. The limit a is in general strictly less than 1. For example if E :=
U, [227,227+1] one easily computes d(Ey) = d(E) = 2/3 for all M. In this case,
the set E is moreover a Fglner set.

Also F = (Fy)nen € Qn is said to be filled with E when we have with 7\ Ey :=
(Fn \ Ep)nen:

dN(F\ Ey) X220,

2.3 Folner set F filled with a given E with d(E)>0

Given a set E with positive upper asymptotic density we build a Fglner set F filled
with E by using a diagonal argument. More precisely we will build F by filling the
holes in E of larger and larger size when going to infinity.

Lemma 1 Forany E € Py with d(E) > 0 there is a subsequence m € W and F € Py
with 0 F C E such that

o d™(F)=d™(ENF)=d(E);
e F is Fglner along m;
e E isdensein F along m.

Proof By using a Cantor diagonal argument there is a subsequence 91 > p C E with
dP(E) = d(E) such that the limits Ag := dP(Ey) = limep dp (Ey) exist for all k €
N*. The sequence (Ag) is nondecreasing and bounded from above by 1. We let
Aso = limg_, 4o Ag. For k € N*, we take my, € p, such that

1
dp(Ep) — Ax| < 5 2.1

Yy < pep,
One can ensure that the sequence (my)ren+ is increasing. We put

m=(mg)r and F = U[[mk, my41[NEk.
k

Clearly we have d F C | J, (8 [mg, mg11[) U (QEx) C E. _
Any two integers [ < [’ lying both in E \ Ej satisfy I’ — [ > k, therefore d(E \
Ey) < 1/k for all k € N*. Since F contains [my, +0o[NEy for all k, we have then:

Vk e N*,d™(ENF)>d™(ENEy),
> dP(E) —d(E \ Ex),
>d(E) —1/k.
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1026 D. Burguet

By letting k go to infinity we get {™(E N F) > d(E) >d" (E N F), thus d™(E N
F)=d(E).

Let us prove now the Fglner property of the set F. For my < K € 0F C E ei-
ther K or K — 1 does not belong to F. But K — 1 > my and F D [my, +00[NE}.
Consequently

e cither K does not belong to Ey, then [K, K + k[C N\ E CN\JF,
e or K — 1 does not belong to Ej, then [K —k, K[CN\ ECN\JF.

Therefore Em(a F)< % As it holds for all k, the set F' is Fglner along m.
Finally we have [0, mg[NF C [0, mg[NE, therefore for any M < k we get:

[0, i [N (F \ En) C [0, mg [N(Ex \ Epmp),
A (F\ Ey) <dwm (Ey) —dm, (Eyp), as Ey C Ey,

by (2.1).

1 1
dmk(F\EM)SAk_AM‘FF‘I‘z—M,

By taking the limits when k goes to infinity we get

_ 1
dm(F\EM>sAoo—AM+2—M,

therefore

d(F\ Ey) X210,

By using once more a Cantor diagonal argument, we may finally assume the limits
d™(F)and d™(F \ Ey), M € N*, exist. O

2.4 Borel-Cantelli argument

Let (X, A, 1) be a measure space with X being a finite measure. A map E : X — Py
is said to be measurable, when for all n € N the set {x, n € E(x)} belongs to A
(equivalently writing E as an increasing sequence n = (n;);cN the integers valued
functions n; are measurable). For such measurable maps E and n, the upper asymp-
totic density En(E ) defines a measurable function.

Lemma2 Assume E is a measurable sequence of integers such that d(E (x)) > 8 > 0

for x in a measurable set A of a positive L-measure. Then there exist n € N, measur-
able subsets (Ay)nen of X and F = (Fy)nen € On with 0F, C E(x) forall x € A,,
n € n such that:

o L(A,) > = forall n e nwith §,
o F is a Fplner sequence;
e E isdense in F uniformly on Ay, i.e.

e~ n nsn—-+o00

0;

limsup sup d, (F, \ Ep(x)) M=too 0.
nen  xeA,
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SRB measures for C surface diffeomorphisms 1027

d™(F) > liminf inf d, (E(x) N Fy) > B.
nen xeA,

Proof The sequences m = (my)xen and F built in the previous lemma define mea-
surable sequences on A. By taking a smaller subset A we may assume that m (x) is
bounded on A for all k£ and that the following sequences of functions are converging
uniformly in x € A by using Egorov’s theorem:

k
(1) dmyx)(F (x)) = 0,
m(x) M—+o00
2) d™V(F(x)\ En(x)) —— 0,
k—

() dmyx)(F(x)\ Ey (x)) 2 4™ (F(x) \ Ey(x)) for any M € N¥,
(4) dmg (EG) N F()) > d™ (E(x) N F(x) > 6.

For a uniformly converging sequence of real bounded functions f = lim,, f,, we
have sup f =lim,, sup f;, and inf f =lim,, inf f,,. Applying this fact to the above third
item we get:

sup Ay (x) (F (X)) \ Ep (X)) 2% Supd™ ) (F(x) \ E(x)).

xeA X€eA

Together with the second item, we get:

hm SUp dmy (x) (F(x) \ Epr(x)) M, 0.

x€eA

For the last item we obtain by taking the infimum:

lim inf dgy, () (E(x) N F(x)) = inf d™¥ (E(x) N F(x)) > B.
k xeA X€eA

By Borel-Cantelli Lemma, the subset A, := {x € A, n € m(x)} has A-measure larger
than 1/n? for infinitely many n € N. We let n be this infinite subset of integers. We
observe firstly that:

ap = sup dp(AF (x)) —> 0. (2.2)

X€A,

For any n we let k, be the largest integer k satisfying sup, ., mx(x) < n. As the

functions (mg); are bounded on A, we get &, ntos +o00. Then, by item (1), for
any given € > 0 we may find k. € N such that sup, 4 dm,(x)(dF(x)) < € for any
k > k.. Therefore for any n so large that k,, > k. and for any x € A, C A we have
n =y (x) for some [/ =1(x) > k,, therefore d,,(0 F (x)) < €. This shows (2.2). By a
similar argument, we can show that:

limsup sup d,(F(x)\ Epy(x)) < hrn sup A ) (F()\ Ey(x)) M, 0

nen  xeA,

and

hmlnf 1nf d, (E(x)NF(x)) > hm 1nf dmk(x)(E(x) NF(x)) > pB.

X€A,
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1028 D. Burguet

As 3F (x) N [0, n[ determines F(x) N [0, n[, there are at most Y_v*! () choices
for F(x) N[0, n[, x € A,, and thus it may be fixed by dividing the measure of A, by

,[:f{’] (’;) = "3 for some 8, — 0. We let F,, be the common value of F(x) N [0, n[
for x in this new set A, for any n € n. Then the conclusions of the lemma hold with

(Anen and F = (Fy)nen.- O

3 Empirical measures associated to Fglner sequences

Let (X, T) be a topological system, i.e. X is a compact metrizable space and 7 :
X O is continuous. We denote by M (X) the set of Borel probability measures on X
endowed with the weak-* topology and by M (X, T') the compact subset of invariant
measures. We will write 8, for the Dirac measure at x € X. We let T be the induced
(continuous) action on M (X), where for u € M(X) the measure T, u is defined as
Ty (A) = (T~ A) for any Borel set A. For € M(X) and a finite subset F of N,
we let 1" be the empirical measure u := 2= 37 T p.

3.1 Invariant measures

The following lemma is standard, but we give a proof for the sake of completeness.
We fix n e and F = (Fy)em € On.

Lemma 3 Assume F is a Fplner sequence and d™(F) > 0. Let (it )nen be a family in
M(X) indexed by n. Then any limit of (/Lf”) is a T-invariant Borel probability

nen
measure.

Proof Let 1’ be a subsequence of n such that (/L,f”) | is converging to some w' Tt
nen

is enough to check that ’fqbd,un" —[¢oT du,f” goes to zero when n’ 3 n — +00
for any ¢ : X — R continuous.

This follows from the following inequalities:

1
/¢>du«n"—/¢onun"=nF/ Do boTh = > ¢oT"|dun,

keF, k¢ Fy
k—1¢F, k—1€eF,
o F,
‘/Mu,f" - [sorauf] <swioen "
xeX ttFn
oF,
lim sup /¢>du5" —/¢>on;1,5" §sup|<j)(x)llimsupIj .
nen xeX nen ﬁFn
d"(0.F)
<sup |p(x)| =7 =0. O
ren VNN (F)
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SRB measures for C surface diffeomorphisms 1029

3.2 Positive exponent of empirical measures for superadditive cocycles

We fix a general continuous superadditive cocycle ® = (¢,,),en With respect to
(X,T), ie. o =0, ¢, : X — R is a continuous function for all n and ¢y, >
¢n + ¢ o T" for all m, n. By the subadditive ergodic theorem [26], the limit
¢« (x) = lim, d”’Tm exists for x in a set of full measure with respect to any invariant
measure w. In the proof of the main theorem we will only consider additive cocycles,
but we think it could be interesting to consider general superadditive cocycles in other
contexts.

Let E : Y — Py be a measurable sequence of integers defined on a Borel subset
Y of X. The set valued map F is said to bea-large with respect to ® for some a € R
when for any x € Y we have ¢,_,(T*x) > (g — p)a for all integers g > p in E(x).
For a finite subset of integers J we let ¢ (x) be the sum of ¢, ,(T”x) where [p,ql
runs over all connected components of J. By superadditivity of & we always have

oy (x) = P10

Lemma4 Let (Ay)nen and F = (Fy)nen as in Lemma 2 and let (jiy)nen be a family
in M(X) indexed by n with u,(A,) = lfor all n € n. Assume E is a-large with
a € R. Then for any weak-* limit ofun I:F ZkeF T Un, N €N, we have

O«(x) >aforpae. x.

Proof Without loss of generality we can take a = 0 by considering the cocycle (¢, —
na),, which is again superadditive. By taking a subsequence we can also assume that

(/L,f”) is converging to . Fix @ <0and M < N € N*. For x € A, n € n, we let
nen

k
FO(x) {keF,,, MSW},
N

Forl e Nand k € [0, N[ with k+IN € F,, the interval of integers Jy ; = [k+IN, k+
(I + 1)N[ may be written as

T =1}, ]_[ 2, ]_[ Iy ]_[ It

where

o I .1 1s the union of disjoint E (x)-irreducible intervals of length less than M con-
tained in Ji1. As E(x) is O-large, we have ¢ 1, (x) > 0 by superadditivity of P,

o/ ,{2 ; consists of a subinterval of an E(x)- 1rreduc1ble interval of length less than M,
which does not lie entirely in J;; but may contain the right extreme of Ji ;. In
particular sz,l < M, therefore d),kzl(x) >-M SUpPyecx o1 (W),

L4 Il?,l C Fp\ Ey(x),

o I},CN\F,.

Note that the subsets (I,'C’ ;)j depend on x, but we do not make this dependence
explicit to simplify the notations. If I,f ; is non empty then Ji; contains an element
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1030 D. Burguet

of 3 F,,, therefore for a fixed k we get from f (Ul I} 20 Jk,l> < N0 F,:

3 ¢, @) = —NEIF, sup g1 (). G.1)
I, k+INEF? yex
I,fﬂé@

Then, if 1 ,?’ ; = ¥ we have by superadditivity of ®:
D1 ) Z by (O + ) ¢ (),
j=2.3

> — (12, + M) sup [¢1 ().
yeX

As F, is a subset of [0, n[, the cardinality of {/, k +IN € F} is less than or equal to
[+ 1. Therefore by summing this last inequality over / we obtain

Y bz — (5 \ EnG) + MI]) sip il (32)
o yeX
I, k+IN€F?
1,;{,:@

By combining (3.1) and (3.2) we have

D G0z (NEIF, +8(F \ En(0) + MT1) sup [$1 ().

N/,
I, k+INEF yeX

After summing over k € [0, N[ and dividing by N F,, we obtain

‘PN F, 1
—dén = s
/N’/ysd} N L S

k1, k+INeF

1 n
2~ (NOFs + 2 \ Ew(0) + MTG1) sup i1 ()1

We integrate then with respect to u,, (recall that A,, has full w,-measure):

N
A _dlvl‘;f”

%Nia} N

1
> “UF <Nﬁ3Fn + sup 4(F, \ Em(x)) + Mf%T) sup [p1(y)],

n X€eA, yeX
> L (Na@F) + sup du(Fa\ En @)+ 21 257) sup 11 ()]
> — su X — | u 1 )
dy(Fyy \ 070 SOR nfn A EM n N ey
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Since the sequence F = (Fj)nen is Fglner and d"(F) > B, we get by taking the
limsup when n € n goes to infinity:

1 M
lim sup ¢—N d,uF” > — E lim sup < sup d,(F, \ Ep(x)) + N) sup |1 (¥)].

nen { <a} N nen X€eA, yeX

Then, the set {%" < a} being closed, we get:

PN
—d > lim su / Zduln,
/—‘bN <a) N H nenp { N<oz} N Hon

On the other hand we have:

a((F=el)= [ ¥
N (% <ay N

therefore we get for all M:

NEIEOOM ({%\/ < a}) —(1)413 limsup sup d, (F, \ Ep(x)) sup [¢p1(¥)].

nen  xeA, yeX

By taking the limit in M we finally have limy_, oo 1 (i oy < a}) = 0 by the

third item of Lemma 2, therefore ¢, > o almost everywhere. As it holds for any
o < 0, we conclude that ¢, = lim,, dl’q—” > 0 almost everywhere. O

3.3 Entropy of empirical measures

Following Misiurewicz’s proof of the variational principle, we estimate the entropy
of empirical measures from below. For a finite partition P of X and a finite subset
F of N, we let PF be the iterated partition P¥ =\/,_ f~*P. When F = [0, n][,
n eN, we just let P = P". We denote by P (x) the element of P containing x € X.

For a Borel probability measure @ on X, the static entropy H,(P) of u with
respect to a (finite measurable) partition P is defined as follows:

Hy(P)=—" u(A)logu(A),
AeP

=- f log 1t (P(x)) dus(x).

When p is T-invariant, we recall that the measure theoretical entropy of p with
respect to P is then

! n
hu(P) = 11’?1 ;HM(P )
and the entropy h(u) of w is

h(w) = sgp hu(P).
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We will use the two following standard properties of the static entropy [20]:

o for a fixed partition P, the map u — H,, (P) is concave on M (X),
e for two partitions P and Q, the joined partition P Vv Q satisfies

H,(Pv Q)<H,(P)+ H,(Q). (3.3)

Lemma5 Let F = (F,)nen be a Fplner sequence with d"(F) > 0. For any measur-
able finite partition P and m € N*, there exist a sequence (€,)pen converging to 0
such that

1
VnEn, ZHPLII;H _ﬂFn Mn )_6}’['
Proof When F,, is an interval of integers, we have [32]:
1 3mlogdP
> g (PT) — ———. 34
gFn gk,

Consider a general set F,, € P,,. We decompose F}, into connected components F,, =
[1i—;  x FX. Observe K < #dF,. Then we get:

.....

1 tF
—H 5 (P™) > "_H ,x(P™),by concavity of u +— H,(P™),
m Hn /; mtF, f
3mK logtP
> 1y (P71) — w, by applying (3.4) to each F,’f,
gFn 1 gFn
F, .
> Un , according to (3.3).
IiF gFn

This concludes the proof with €, = 3m =7+ ﬁaF “ log 1P, because F is a Fglner sequence
with d"(F) > 0. a

With the notations of Lemma 2 we let u,, be the probability measure induced by A

onA,,ie. u, = % In the following we consider an additive cocycle W = (¥,,),

associated to a continuous function ¢ : X — R, i.e. Yo =0 and ¢, = Z'k';g) /e
T* for a positive integer n. Then for any finite subset of integers J we have y; =
YkegVoT k. The measure  is said to satisfy the Fplner Gibbs property with respect
to the additive cocycle W = (v,,),, and the Fglner sequence F = (F,), when:

There exists € > 0 such that

we have for any partition P with diameter less than €: H)

1

- - Vi, ()
KPP N Ay =

INVxe A, withN <nen,
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Proposition 3 Under the above hypothesis (H), any weak-+ limit . of (u,f")nen sat-
isfies

h(w) = ¥ ().

Proof Assume again without loss of generality that (M,f”),,en is converging to p. Take
a partition P with u(dP) = 0 and with diameter less than €. Then for n > N > m
we obtain:

1 m . 1 F
—H,, (P™) = limsup ﬂ_HlJ«n(P "), by Lemma 5,
m

nen F}’L

> lim sup
nen n

/ (—toga (PP () N Ay) +loga(An) ) dian (o).

Note that by the first item of Lemma 2 we have logA(A,) > —né, — 2logn, then

logA(Ay) - —nd, —2logn nan—+oo
gF, - dn(Fp)n

0 because §, — 0 and d"(F) > 0, thus

1
—H, (P™) > limsup — 7 /logk (PF" x)N An> d, (x).
m

nen n

It follows from our definitions of ¥/, and § Fn that:

1ﬂFﬂ(x) o F,
Vx, oF, —/Wdfsx .

By Hypothesis (H) we get therefore:

%HM(P’”) zlimsup/ %dun(x),

nen
. F,
> 11msupf Yvdp,",
nen
= Y.
Letting m go to infinity, we conclude that A (@) > h, (P) > ¥ (1). Il
4 Geometric times
Let (M, | -|) bea C", r > 1, smooth compact Riemannian manifold, not necessarily

a surface for the moment. We denote by d the distance induced by the Riemannian
structure on M. We also consider a distance d on the projective tangent bundle PT M
(compatible with the standard topology on PT M), such that d(%, ) > d(= £, 7 §) for
all X,y € PTM with x : PTM — M being the natural projection. For a C" map
f:M— MoraC" curve o : [0,1] - M we may define the norm ||d* f|» and
ld*c |l for 1 <s <r as the supremum norm of the s-derivative of the induced
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maps through the charts of a given atlas or through the exponential map exp. In
the following, to simplify the presentation we lead the computations as M was an
Euclidean space or a flat torus. For a C! embedded curve o : I — M, I being a
compact interval of R, we let o, = o (I). The length of o, for the induced Riemannian
metric is denoted by £(oy). For x € o, we also let vy € PT M be the line tangent to
oy at x and we write X = (x, vy).

We denote by F' the projective action F : PTM O induced by f, i.e. F(x,v) =

( fx), HZ ;EZ;H) and we consider the additive derivative cocycle ® = (¢ )y for F

on PT M given by ¢ (x,v) = ¢1(x, v) =log||dy f (v)||, where we have identified the
line v of T, M with one of its unit generating vectors.

4.1 Bounded curve

Following [12] a C" smooth curve y : [—1, 1] — M is said to be bounded when

1
n;ax 1d°y oo < 6||d3/||oo-

,,,,,

We first recall some basic properties of bounded curves (see Lemma 7 in [12]). A
bounded curve has bounded distortion meaning that

ldy Ol

Vt, —-1,1 <
reel=L g on =

“.1)

Indeed, we have forall t,s € [—1, 1],

ldy (1) — dy ()] < 2/1d°Y |lco,
1

glldy(t)ll

2
therefore §||d)/(t)|| <|ldy )|

The projective component of y oscillates also slowly. If we identify M with R?,! we
have

1
ldy @l - sin£(dy (1), dy(s)) < lldy (1) —dy ()]l < glldy(t)ll,
L(dy(1),dy(s)) <7 /6. (4.2)

When moreover ||dy ||coc < € we say that y is strongly e-bounded. In particular
such a map satisfies ||y ||, := maxi<s<, [|d°¥ oo < €, which is the standard C” upper
bound required for the reparametrizations in the usual Yomdin’s theory. But this last
condition does not allow to control the distortion along the curve in general.

I This will be always possible as we will only consider curves with diameter less than the radius of injec-
tivity.
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If y is bounded then sois v, p, =y (a-+b) : [—1, 1] = M for any a, b with |a| < %
and |a| + |p| < 1:

1

Vs =2, [ld*vaplloo < 6|a|s||d)/”oo,
1| N 5 I1dy Ol
Zlalf2
=5 14

1|a|? Ydy ol
-6

1
= glldvaplico.

As |[dVa.plloo < lallldy |loc, if y 1s moreover strongly e-bounded, then y, j, is strongly
|a|e-bounded.

Lemmaé Lety :[—1,1] = M be a C" bounded curve with ||dy |loc = €. Then there
is a family of affine maps ¢; : [—1,1] O, j € L := L U L such that:

o each y o is strongly e-bounded and ||d(y o ¢;)(0)|| > 6’
e [—1, 1] is the union of ;¢ t; (-1, 1]) and UjeL‘j([ L %])’
. ﬂL§2andﬁZ§6<%+l)’

o forany x € ys, we have g{j € L, (y o) N B(x, €) # 0} = 100.

Sketch of proof For the first three items it is enough to consider affine reparametriza-

tions of [—1, 1] with rate My T d ” . As the bounded map y stays in a cone of opening
angle /6, its intersection w1th B(x, €) is a curve of length less than 2¢. The last item
follows then easily. 0

Fix a C" smooth diffeomorphism f : M O. A curve y : [—1,1] — M is saidn-
bounded (resp. strongly (1, €)-bounded) when f* oy is bounded (resp. strongly e-
bounded) for k =0, ..., n. A strongly e-bounded curve y is contained in the dynam-
ical ball B,(x,€):={ye M, Vk=0,...,n—1, d(f*x, f¥y) < €} with x = y(0).

Fix a C" curve o : I — M. For x € oy, a positive integer n is called an («, €)-
geometric time of x when there exists an affine map 6, : [—1,1] - [ such that
Yn i= 0 o0, is strongly (n, €)-bounded, y,,(0) = x and ||d(f" o y,)(0)] > zae One
can easily check that the curvature of f" o o at f"x is bounded from above by - e
when 7 is a («, €)-geometric time of x. It follows from the discussion just before
Lemma 6 that, if n is a (@, €)-geometric time of x, then it is also a («, €”)-geometric
time for €’ < 236

We let D, (x) and H, (x) be the images of f” oy, and y, respectively with y,, as
above of maximal length. Observe that for all y = y,,(¢), t € [—1, 1], we have for any
0<l<n:

oy _ 14" ol
Ild(f! o y) (@)l
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The bounded distortion property of bounded curves (4.1) then implies:

b1 (F'9)

Vy,ZGHn(x)VO§l<n, m

9
< 7 “4.3)

4.2 Reparametrization lemma

We consider a C” smooth diffeomorphism g : M © and a C" smooth curve o : I —
M with r > 1. To simplify the exposition we deal with r € N. The general case
follows from standard arguments, see e.g. [12]. We state a global reparametrization
lemma to describe the dynamics on o,.. We will apply this lemma to g = f? for large
p with f being the C" smooth system under study. We denote by G the map induced
by g on PT M.

We will encode the dynamics of g on o, with a tree, in a similar way the sym-
bolic dynamic associated to monotone branches encodes the dynamic of a continu-
ous piecewise monotone interval map. A weighted directed rooted tree 7 is a directed
rooted tree (by making all its edges point away from the root) whose edges are la-
belled. Here the weights on the edges are pairs of integers. Moreover the nodes of
our tree will be coloured, either in blue or in red. The level of a node is the number
of edges along the unique path between it and the root node.

We let 7, (resp. E, T7,,) be the set of nodes (resp. blue, red nodes) of level n.
For all k <n — 1 and for all i" € 7,, we also let i} be the node of level k leading
toi". Fori" € T, we let k(i") = (k1 (i"), k| ("), k2(i") - - - , k;,(i")) be the 2n-tuple of
integers given by the sequence of labels along the path from the root i” to i”, where
(k; ("), k; (i”)) denotes the label of the edge joining i}’ , and ij.

For x € oy, we recall that X = (x, vy) € PT M denotes the line tangent to o at x.
Then we let k(x) > k’(X) be the following integers:

k(x) := [log I dxgll].
K'(%) := [log ldxg (wo)ll] -
Moreover for all n € N* we define:
K (x) = (k(x), k' (R), k(gx), ...k (G" %), k(g"'x), k' (G"~'%)).
For a 2n-tuple of integers k" = (k1, k{, ...k, k;) we consider then
HEK") = {x €0y, K"(x) = k”} .

We restate the Reparametrization Lemma (RL for short) proved in [12] in a global

version. Let exp, be the exponential map at x and let R;;; be the radius of injectivity

of (M, | - ). For R;"-f >e>0welet gy, =goexp,(2e) : {we LM, |w| <1} —

M. Then ||d° gy, llco < (2€)° sup yer,m. [|d° (g o exp,)(w)]l. In particular there is €y =
\

|wll<2e

co(g) < %52 depending only on M and |d*glloc. k= 1. r, such that | d* g3, lloc <

3e|ldy gl foralls =1,...,r,all x € M and all € < ¢p(g).
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& foo fZO&

Fig.1 Picture by J. Paik. Color figure online.

Reparametrization Lemma Let €g(g) > € >0 and let o : [—1, 1] = M be a strongly
e-bounded curve.

Then there is T, a bicoloured weighted directed rooted tree, and (Qiil)ine’];' ,neN,
families of affine reparametrizations of [—1, 1], such that for some universal constant
C, depending only on r:

(1) Vi" € T,, the curve o o 6y is strongly (n, €)-bounded.

(2) Vi" € 7,, the affine map 6y may be written as Bi:_l o @i with gy being an affine
contraction with rate smaller than 1/100. Moreover, when i, _| belongs to T, 1,
we have also 6y ([—1,1]) C 91271 ([—1/3,1/3D.

(3) Vi" € T,,, we have ||d (8" o & 0 6yn) (0)|| > €/6.
(4) VK" € (Z x Z)", the set o "' H(K") is contained in the union of

U e@=1/3.1/3Dand | 6o(-1.10).

ieTy "eTn

k(in)=krl k(in):k)l

Moreover any term of these unions have a non-empty intersection with o~ x
HEK").
(5) Vi*~! € To—1 and (kn, k},) € Z x Z we have

r kn—kp
ﬂ{i" T, i =" and (k, @), K. (")) = (k k/)} <C emax(k”’ . )
n, L, 1= n s Ky =WKn,K,) = Cr s

r

kn—kp
! and (@), K, (") = ke, ki) | = Cre T

E=4
e,
L

3
m
o
—
I3

L
Il

The images of the curve o together with the tree are represented in Figure 1.

Proof We argue by induction on n. For n =0 we let To = To = {i%} and we just
take 6; equal to the identity map on [—1, 1]. Assume the tree and the associated
reparametrizations have been built till the level n.
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Fix i" € 7, and let
b oG ifi"eTy,
R if i" € 7.

We will define the children i"*! of i?, i.e. the nodes i"*! € 7,41 with i"+! =i". The

label on the edge joining i” to i"*! is a pair (k,1, k;z+l) such that the 2(n + 1)-tuple
K = (ky (), ..., K, ("), knt1, k. ,) satisfies HE*TH N (o oéin>* # . We fix
such a pair (kn+1,k;,+1) and the associated sequence K" We let Yy [—1,1]—
M be the curves defined as:
n =0 o éin s
¥ i=g"on.
We will make use of the two following well-known multivariate formulas for the
derivatives of a product and a composition of C” functions on R¥. For positive inte-
gers m, p, g we let M, ,(R) be the set of real valued p x g matrices and we denote

A- B € M, ,;,(R) the product of two matrices A € M), ;,(R) and B € M, ,,(R). We
have with the standard multi-index notations:

e General Leibniz rule: Let u : RY — Mp,(R)and v: R? — My m(R) be C" maps,

then for any o = (a1, ..., ag) € N? with || := >, a; <r,wehave

% - v) = Z (O‘)(af’u) (3% Pv). (4.4)
B:B=a Z
e Faa di Bruno’s formula (see e.g. [22]): Let u : RY > R and v = (vy,...,0q) :
R¢ — R9 be C" maps, then for any o € N¢ with || <r, we have
“wovy= Y (@Pwovx Py ((ayu,»)w.) , (4.5)
BeNY, |BI<|al

where Pg ((87’1),')%,-) is a universal polynomial in 8 v; fori =1,...,d and y € N¢

with [y < |al.

First step: Taylor polynomial approximation. One computes for an affine map
6 : [—1,1] O with contraction rate b made precise later and with y = ¢ () €
gHEH, reo(—1,1]):

ld" (g oy 0 O)lloo < B [d” (g3, © ¥3.) | o » With Y3, := (2€) " exp; ! oy,

& (dyy 5 0.

<b

’ oo

From Leibniz rule (4.4) we get for any « € N? with |o| =r — 1:

9 (dy 3 0dv3.)

»

o o
< ﬂZ (ﬂ)naﬂ(dﬁ;g;e)uwna P30 oo
<o
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y o
\oo||w25||rﬂ§<ﬂ).

By the multi-binomial formula we have » 45 _, (‘E) = 2", so that we obtain finally

< max Hd (dwygze)

.....

4" (g0 0)lloe <2 max | (dy; ¢3,)

s=0,...,

)7
AR

By assumption on €, we have ||dsg§€||c><> < 3¢||dyg|l for any r > s > 1. More-

over ||1ﬁ2y€||r < Qe) 'd¥|loo <1 as ¥ is strongly e-bounded. Therefore by Faa

2

di Bruno’s formula (4.5), we get for some” constants C, > 0 depending only on r:

N (dyy 83, ) oo = €Clldygll
then,
ld" (g 0 00)llos < €C,b"lldygll| ¥, 1
< Cr b dygll1dlloo
< (Cb" M dygIDlld (¥ 0 0) oo
< (C B 1) | d (¥ 06) |00, because y belongs to g"H (k" 1),

1

< 14 d (W 0 0) ||, by taking b = (cre’<n+'—’<é+1+4)fﬁ .
The Taylor polynomial P at 0 of degree r — 1 of d(g o ¥ 0 6) satisfies on [—1, 1]:

1P —d(g 0V 00) oo < e 1™l d (Y 060) .

We may cover [—1, 1] by at most b~ + 1 such affine maps 6. This term b~! + 1 is

kn—Fkj,
the source of the factor ¢ =T in the last item of /RL.
Second step: Bezout theorem. Let a, := ernti ld(¢ 0 0)||c0. Note that for s €
[—1, 1] with n 0 6(s) € H(K"t!) we have

ek’(w/w(\s)) )

ld(yo0)(s)l < lld(goyob)(s)| <e ld (o 6)(s)I,
et |d(Y 0 0) ()| < lld(g o ¥ 0 O) ()| < e st [ld (0 0)(s)]|.
Then, as ¥ o 6 is bounded, we get by the bounded distortion property (4.1):

2 /
gek"“ ld(¥ 00)loo < lld(g 0 Y 00)(s)]| < ' Trs1]ld(Y 0 0) oo = ane.

In particular, ||d(g o ¥ 0 0)(s)| € lane™ !, anel, therefore ||P(s)|| € [ane 3, ane’).
Moreover if we have now || P(s)|| € [ane ™3, ane’] for some s € [—1, 1] we get also
ld(g o 00)(9)|| € [ane™, ane?].

2Although these constants may differ at each step, they are all denoted by C;-.
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By Bezout theorem the semi-algebraic set {s € [—1, 1], ||P(s)] € [e 3ay,, e3an]}
is the disjoint union of closed intervals (J;);<c; with i/ depending only on r (see e.g.
Proposition 4.5 in [44]). Let 6; be the composition of # with an affine reparametriza-
tion from [—1, 1] onto J;.

Third step: Landau-Kolmogorov inequality. By the Landau-Kolmogorov in-
equality on the interval (see Lemma 6 in [12]), we have for some constants C, € N
and for all 1 <s <r with |J;| being the length of J;:

d*(g o ¥ 0)llco = Cr (Ild" (g 0 ¥ 0 6)lloc + lld(g 0 ¥ 0 6)lec) ,

tel;

J;
<c <||d’(g oY o0l +suplld(goy 09)(t)ll> ,

[J; ]

<Cray—

We cut again each J; into 1000C, intervals J; of the same length with (1 o 9)(] )n
HEK" ) £ (. Let 6; be the affine reparametrization from [—1, 1] onto 0(J;). We
check that g o ¥ o 6; is bounded:

Vs=2,....r, ld*(go ¥ 0 0)lloc < (1000Cr)_2||ds(g oY 00l

I :
< £(1000C,)" urmn ld(g 0¥ 0 0)(s)]l

1 f
g(1000c ) 1% min ||d(g o ¥ 0 6)(s)],

YEJ,

1 -
= ¢lld(g oy ot)lco.

Last step: Strongly e-bounded curve. Either g o o6 is strongly e-bounded and
b 0 6; = Bin+1 for some i"+1 € T 41 Or we apply Lemma 6 to g o ¥ o 6;: the new
affine parametrizations B 06 00; j» j €L (tesp. j € L) then define 611 for a node
i"*1in T, | (resp. T y+1). Note finally that:

ﬁzf6<||d<gol/foei>||oo+l>,

€

< IOOmax(ek;Hb, 1), as ¢ is strongly e-bounded and ||d§i loo < b,

1%
e n+l
< Cr max { —————, 1 N
k"+17kn+l
e r—1
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therefore
#1=i" and
an+1 an+1 / +1\y /
A0 e Tt | (it ), Ky ) = G K )
k/
e n+l
SZCrmax —1
= kn+l_k,1+1
0'- e r—1
~ gk:l-H
<#{6;}C; max | ————, 1],
k’1+17kn+1
e r—1
k4 —k'
max | k’ ,7’L+l,'l+l)
S Cre (n+1 r—1 .
and

i+!=i" and

#di"t! e Th ‘ (kn+](i"+1),k,’1+l(i”+1)) = (knt1.kppp) < 2461),

’
Kkn41 _kn+]

<Cre —1 . O

As a corollary of the proof of RL we state a local reparametrization lemma, i.e.
we only reparametrize the intersection of o, with some given dynamical ball (with
respect to the projective action G induced by g). For x € 0., n € N and € > 0 we let

BC(x,e,n) = {y co,, Yk=0,...,n, A(G*%, G*§) < e} . (4.6)

For all (x,v) € PT M, we also let w(x, v) = wg(x,v) :=loglld, gl — log|ld:g(v) |l
and for all n € N we let w"(x,v) = wg (x,v) = ZZ;(I) w(G*(x, v)) with the con-
vention w” = 0. We consider € > 0 as in the Reparametrization Lemma. We assume
moreover that

[d((x, v). (v, w)) < €] = [[log [|dx g (v)|| — log | dyg(w)||| < 1 and
|log l|dx gll —log lldygll| < 11. “.7)

Corollary 3 For any strongly e-bounded curve o :[—1, 1] — M and for any x € oy,
we have for some constant C, depending only on r:

VneN, ¢ [i" € Tn. (6 06) N BO(x, e,n) # @} <Cre' . (48)

Sketch of proof The Corollary follows from the Reparametrization Lemma together
with the two following facts:

e forye B(,G (x, €,n) we have k" (x) >~ k" (y) up to 1 on each coordinate,
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1 . k"0 k(G D) T a—1
e for any i”7" there is at most C,e =1 nodes i" € T, with i) | =i""" and

O ([—1, 1D N0~ 'BY (x,e,n+ 1) #0.

This last point is a consequence of the last item of Lemma 6 applied to the bounded
map g o ¥ o 6; introduced in the third step of the proof of the reparametrization
lemma. d

4.3 The geometric set E

We apply the Reparametrization Lemma to g = f” for some positive integer p. For
x € oy we define the set E,(x) C pN of integers mp such that there is i” € 7,, with
k@) =k"(x) and x € 0 0 Gpm ([—1/3,1/3]).

Lemma7 There are ap > 0 and €, > 0 depending only on r, f and p such that any
n e Ey(x)isa(ap, €p)-geometric time of x (with respect to f).

Proof Write x = o o Oy (b) with b € [—1/3,1/3] and let n = mp. Then for € =
€o(fP), the curve y, =0 o im (b + %-) is strongly (m, €)-bounded with respect to
fP according to the discussion before Lemma 6. By item (3) of RL we have also
ld(f" 0 y) (O] = Fld(f" 0 0 0 G)(B)I| = §Id(f" 0 7 0 Gm)(O)]| = §§ = e.
Consequently m is a (gil, €)-geometric time of x with respect to f”.For 0 <a <1
we let ¢ = y,(a-). Let 0 <n’ <n and let m' e N with m’p <n’ < (m’ + 1)p. By
arguing as in the first step of RL, we have for some constant C > 1 depending only
on f, pandr:

Vs=2,....r, 1d°(f" oyl <@ lld°(F" P 0 (f"™7 0 yu)) oo
<Ca’1d(f™? o yu)lloo,

then as f’"/” o ¥, is bounded:

Vs =2, or [d°(f" oy los < %Caslld(f’"/’] oy O],
< 2ca’ max(1, I~ DPIAC o )OI,
< 2Ca ™ max(1, 1df DI 0 7 e
We fix a = —————— 50 that v is n-bounded with respect to f. As y,

9C max(1,|df TP
is strongly (m, €)-bounded with respect to f7, the curve y,’ is strongly (n,€p)-
bounded with respect to f with €, = ae ldf 1% Finally ||d(f" o YO =alld(f"o
) (O] > %ae = %apep with o), = W’ therefore n is a (o, €,)-geometric
time of x with respect to f. - O
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Observe now that if k < m we have with x = o o 0 (¢t) and Gy (1) = Gikm (s):

e¢mp—kp(ka£)

_ ld(f™ oo obm) @

ld (57 0 0 0 63m) (1)
_ 2ld(f™ oo 0 bm) O
T3 d (oo obm) @)
o 2 1ld(f™ oo obm) O
-3 Hd (o0 oty) (s)H

2
>
~ 3e

3

, since o o Oy is m-bounded,

100" %, by item (2) of RL,

ld (™ 00 06m) (0)] 100" *,as o o Oy is strongly (k, €)-bounded,

1
> 5100’”"‘ > 10"k, by item (3) of RL.

Therefore E), is 1p-large with 7, = log10,

The next proposition is the key statement, which will ensure positive density of
geometric times on a set of a positive Lebesgue measure of a curve with exponential
growth length (see the beginning of Sect. 5.3). In the following, Leb,, denotes the
Lebesgue measure on o, induced by its inherited Riemannian structure as a subman-
ifold of M. This is a finite measure with Leb,, (M) = £ (04).

Proposition 4 Let f: M O be a C" diffeomorphism and b > @. For p large
enough there exists 8, > 0 such that

1
lim sup — log Leb,, ({x dn(Ep(x)) < Bp and ||dy f" (vo)|| > e”b]) <0.
n n

Proof Let
Eni= v € A, dy(Ep () < By and Id f" (o)l = ¢}

It is enough to consider n = mp € pN. We apply the Reparametrization Lemma
to g = fP with € > 0 being the scale. Let 7 be the corresponding tree and
(Bym)imeT;,,» m € N, its associated affine reparametrizations. Let A ¢ :=log [|df[|oo +
log ldf Voo + 1. We will show the following three claims later on:

(i) for anode i" € T, with (o 0 6ym), N E, # O the length of (o o Gim), is less than

3ee,

(i) the number of sequences k™ with H(k™) N &, # @ is bounded from above by
Q2pAy+ 1),

(iii) for a fixed sequence k™ the number of nodes i € 7T, with k(i") = k™ and (o o

m 2

B ) NHK™) N E, # @ is bounded from above by 27 C"e™ | d £ P || L||d f 227"
for some constant C, depending only on r.
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Assume these three items already shown and let us conclude the proof of Proposi-
tion 4:

Lebo,(E) < Y. Lebg (HK™NEy,
k", HK™)NE, 0

Z Z £((0 0 6m)4), by (4) of RL,

K, HKMNE 2D i eTom k(i™)=k",
(0 00m ) NH.(K™)NE, £

IA

IA

m 2
[@pa;+ 1] x [2’"C:"e”’||df”||go||df||’§5” ’”}
x [3ee—"b] , by using (i), (ii) and (ii).
Finally we obtain:

1 2
limsup —logLeby, (£,) < — log(2pAf +1)
nepN 1t

| log(2Cre) |, log /e
P pr

+pBpAs—b

As p goes to infinity the right member is bounded from above by R(f ) b+

Aylim sup,,(p,Bp) As b is larger than R(f) one can choose firstly p € N* large then
Bp > 0 small in such a way this right member is negative.
We show now the three items (i), (i), (iii):

(1) Let i" € T, with (0 0 Om), N E, # @. For x = 0 o Oim(t) € &, we have
lldx £ (vy)|| = €"?. Then by the distortion property (4.1) of the bounded maps
f" oo 0By and o o Gim we get
£((o 06im)x) <2|ld(0 0 bpm)lloc,
<3||d(o 0 b6im)(t)||, as o o B is bounded,
<3 ld(f" o0 0bm) (D)l
lldx f™ (ol

b

)

<3ee™,as f" oo oBm is strongly e-bounded.

(ii) As the functions k and k' associated to g takes values in [—pA . pAy] the
number of sequences kK with k™ = k" (x) for some x € o, is bounded from
above by 2pA s + 1)*".

(iii) For a fixed sequence k™ we estimate now the number of nodes i” € 7, whose
path to the root is labelled with k" and such that (o o =), has a non empty
intersection with &, N H(K™). When x belongs to (o o 0y ), for some i” € Ty,
and satisfies d,, (E,(x)) < Bp, then we have # {0 <k <m, if' € Ty} <np,.But,
by the estimates on the valence of 7 given in the last item of RL, the number
of m-paths from the root labelled with k™ and with at most nf,, red nodes are
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less than 2" C)"e Z, r— |d ldf ||’3 prm for some constant C, depending only on r
(the factor 2™ is a rough upper bound for the number of ways to distribute the
colours blue and red along the path). Then if x € H (k™) satisfies ||d, " (vy)| >

ki 2k log ldf P so—bp ) »
e"?, we have eXi T <eme” =1 . But, as b is larger than —k)g 14/ lloo
P
for large p, we get for such values of p: w < — . log|ldf?|lec =
log dfPlloc O

r

From now we fix p and the associated quantities satisfying the conclusion of
Proposition 4 and we will simply write E, 7, «, €, B for Ep, ), atp, €p, Bp. The
set E(x) is called the geometric set of x.

4.4 Cover of F-dynamical balls by bounded curves

As a consequence of Corollary 3, we give now an estimate of the number of
strongly (n, €’)-bounded curves reparametrizing the intersection of a given strongly
€’-bounded curve with a F-dynamical ball of length n and radius ¢’. This estimate
will be used in the proof of the Fglner Gibbs property (Proposition 6).

For any g € N* we let w, : PT M — R be the map defined for all (x,v) e PTM
by

1 q q
wq (X, v) 1= 7 (log [ldx f91 = log lldx f4 ()]} -
Note that w, = wqi. We also write (a)g)n for the additive associated F-cocycle, i.e.

wp(xv)= Y wg(F*(x,v)).

O<k<n

Recall that the dynamical ball Bcf (x, €/, n) has been defined in (4.6).

Lemma 8 For any q € N*, there exist 621 > 0 and By > 0 such that for any strongly
e(/] -bounded curve o : [—1,1] — M, for any x € o and for any n € N* there exists a
Sfamily (6;);c1, of affine maps of [—1, 1] such that:

° B(f(xs 6(/1’ n) C Uie[n(a O@i)*,
e 000 is strongly (n, e(’l)—bounded (with respect to f) foranyi € I,
o wg (x)

o i1, < B, C" e T , with C, being a universal constant depending only onr.

Proof Fix q.Let E; = ¢/2 with € as in Corollary 3 for g = f9. There is a finite family
® of affine maps of [—1, 1] with (ycg 0« = [—1, 1] such that for any strongly €, -
bounded map y : [—1, 1] = M and for any 6 € ©, the map y o 6 is strongly (g, 6(/1)—
bounded.

Fix now a strongly e’ -bounded curve o : [—1, 1] — M and let x € o,.. We consider

only the map 0 € ® such that BF(x e ,n) N (o 00), # . For such a map 6 we let
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X9 € B(f (x, e;, n) N (o o 6),. By the choice of eé and the inequalities (4.7), we have
|w'hs (FX%o) — w'hf (FF3)| < 2.

Take any 0 < k < ¢ and let my = [”q;k] By applying Corollary 3 to “g = f97,
“o = fk 0000”, “x = fk(xg)” and “n = [”q;k]”, we get a family Wy ;. of affine maps

w'Ttk (K sg) W'k (F* )42
of [—1,1] with Wy x < C;"*e™ =T~ < C,"*e™ =T such that

. —k )
L (@obov).> f*"Bqﬁkm@ (fk(xQ), €, [”T]) D Bl (x.€,.n)

VeV k

such that 9% o & 0 6 oy is strongly e-bounded for v € Wy ; and integers m with
0<mq+k=<n.Then O ={0oy o8, ¥ € Yy and (9,0') € ®2} satisfies the two
first items of the conclusion. Moreover we have:

wmzlf (Fk)?)JrZ

1O, < CMkg@%e ™ T
But for some constant A, depending only on ¢ we have

1/q
Mok mpc ko PR
min ewfq(F X) < 1—[ ewfq(F X) SAqewq(x).
0<k<gq
0<k<q
.. .. . . whk(Fkg)
Take 0 < k =1 < ¢ achieving the minimum in minp<x <4 e /* . As 10 de-
pends only on g, we get for some B, > 0:

no gl (%)

40, < B,Cle7 T .

This concludes the proof of the lemma by taking (6;);cs, := ©;. O

5 Existence of SRB measures
5.1 Entropy formula

By Ruelle’s inequality [40], for any C! system, the entropy of an invariant measure
is less than or equal to the integral of the sum of its positive Lyapunov exponents. For
C'* systems, the following entropy characterization of SRB measures was obtained
by Ledrappier and Young:

Theorem 5 [28] An invariant measure of a C'* diffeomorphism on a compact man-
ifold is an SRB measure if and only if it has a positive Lyapunov exponent almost
everywhere and the entropy is equal to the integral of the sum of its positive Lya-
punov exponents.

As the entropy is harmonic (i.e. preserves the ergodic decomposition), the ergodic
components of an SRB measures are also SRB measures.
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5.2 Lyapunov exponents

We consider in this subsection a C! diffeomorphism f : M O. Let |||| be a Rieman-
nian structure on M. The (forward upper) Lyapunov exponent of (x, v) for x € M and
v € Ty M is defined as follows (see [34] for an introduction to Lyapunov exponents):

x (x,v) :=limsup — 1 log |ldy f" ().

n—+oo N

The function x (x,-) admits only finitely many values xi(x) > --- > xp)(x) on
T M \ {0} and generates a flag 0 C V,(1)(x) € --- C Vi =T M with Vi(x) ={v €
T:M, x(x,v) < xi(x)}. In particular, x (x,v) = x;(x) for v € V;(x) \ Vi+1(x). The
function p as well the functions x; and the vector spaces V;(x),i =1,..., p(x) are
invariant and depend Borel measurably on x. One can show the maximal Lyapunov
exponent x introduced in the introduction coincides with x; (see the Appendix).

A point x is said to be regular when there exists a decomposition

px)

M =D Hi(x)

i=1

such that
. 1
Yoe Hi()\ (0}, lim ~loglldyf" ) = xi(x)

with uniform convergence in {v € H;(x), ||v|| =1} and

lim Llog]ac dy f™) Zdlm(H (X)) xi (x).

n—+ oo |n|

In particular we have V;(x) = fixl.) Hj(x) for all i. The set R of regular points
is an invariant measurable set of full measure for any invariant measure [29]. The
invariant subbundles H; are called the Oseledec’s bundles. We also let R* := {x €
R, Vi xi(x) #0}. For x € R* we put E,(x) = @i’ x>0 Hi(x) and Ej(x) =
@i, xi (x)<0 Hi (x).

In the following we only consider surface diffeomorphisms. Therefore we always
have p(x) <2 and when p(x) is equal to 1, we let x2(x) = x1(x). When v is f-
invariant we let x; (v) = [ x; dv.

5.3 Building SRB measures

Assume f isa C”, r > 1, surface diffeomorphism and limsup,, %log ldx f"*]| > b >

@ on a set of positive Lebesgue measure as in the Main Theorem. Take p (de-

pending only on b — R(rf) > 0) as in Proposition 4, then € = €y(f?) as in RL. From
now 8 = B, is also fixed. By using Fubini’s theorem as in [13] there is a C” smooth
embedded curve o : I — M, which can be assumed to be strongly e-bounded, and a
subset A of o, with Lebg, (A) > 0, such that we have limsup,, -- L log ||dx f" (ve)|l > b

n
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for all x € A (recall vy is the line tangent to o, at x, which is identified with an asso-
ciated unit vector). We can also assume that the countable set of periodic sources has
an empty intersection with o.

It follows from Proposition 4 that

3" Leb, ([x € A, dy(E(x)) < B and ||y " (vo)|| > e’”’}) < to0.

Therefore, by taking a smaller subset A (still with positive Leb,, -measure), we may
assume that there is N > 0 such that for any n > N it holds that

Ve A, [Id s ol = | = 1 (Ee) = B1.

As we have limsup,, %log lldx f*(vy)|| > b for all x € A, the set of geometric times
has positive upper density in A:

Vx € A, d(E(x)) > B.

We prove now the existence of an SRB measure. This is a first step in the proof of
the Main Theorem. For any g € N* we let:

Vo =¢——

1

r

We will apply the results of the first sections to the projective action F : PTM O
induced by f, where we consider:

o the additive derivative cocycle ® = (¢ ), given by ¢k (x, v) =log||dy f JOIR
e the measure A = A, on PT'M given by s* Leb,, withs:x € o, = (x, vy),

e the geometric set E, which is t-large with respect to @,

o the additive cocycles W, associated to ¥, — &, for any g € N*.

The topological extension 77 : (PT M, F) — (M, f) is principal® by a straightfor-
ward application of Ledrappier-Walters variational principle [31] and Lemma 3.3 in
[41]. In fact this holds in any dimension and more generally for any finite dimensional
vector bundle morphism instead of df : TM O.

Let 7 = (Fy)nen and (Aj,)nen be the sequences associated to E given by
Lemma 2. As in Proposition 3 we denote by u, the probability measure induced
by Aon A,,ie. u, = ki’é{{;)'). Rigorously E should be defined on the projective tan-
gent bundle, but as 7 is one-to-one on PT o, there is no confusion. In the same way
we see the sets A, n € N, as subsets of A C 0.

Any weak-x limit u of u,,f" = ﬁ D ke F, Fff WUy is invariant under F and thus
supported by Oseledec’s bundles. Let v = . By Lemma 4, u is supported by the
unstable bundle E, and ¢.(x) > t for u a.e. x € PTM. Note also that ¢.(x) €
{x1(X), x2(7x)} for p-almost every x. We claim that ¢4(x) = x1(7x). If not v
would have an ergodic component with two positive exponents. It is well known such
a measure is necessarily a periodic measure associated to a periodic source S (see e.g.

3ie. hg(wp) =hp(u) for all F-invariant measure .
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Proposition 4.4 in [36]). But there is an open neighborhood U of the orbit of S with
f~'U c U and 0, N U = @. In particular we have nu,f" (U) =0 for all n because
mukn (Uyen fNow)=1and fNo,nU = fN(o.n fNU) C fN(0.NU) =0. By
taking the limit in n we would obtain v(U) = v(S) = 0. Therefore ¢ (X) = x1(7x) >
t for p-almost every X and x;(x) > 7 > 0> x2(x) for v-almost every x.

We conclude the construction of an SRB measure by assuming the following
proposition, whose proof is given in the next section.

Proposition 6 There exists an infinite sequence of positive real numbers (8,)q with

8y 470 such that the property (H) with respect to F holds with respect to the
additive cocycle on PT M associated to the observable Y, — 8, for any q € N*.

Then by Proposition 3 and Proposition 6 we obtain:

ho) =) = [ vy du =3,

1
2/¢du—:/wqdu—84,

1 1
zxnw) = (;/IOg dx £ dv(x) — Xl(V)) — 8.

By a standard application of the subadditive ergodic theorem, we have

1 q—>+0
;/log lldx f41I dV(X)—>/X1(X)dV(X)=X1(V)-

Therefore h(v) > x1(v), since §, 97%% 0. Then Ruelle’s inequality implies i (v) =
x1(v). According to Ledrappier-Young characterization (Theorem 5), the measure v
is an SRB measure of f. Note also that any ergodic component £ of v is also an
SRB measure, therefore /(&) = x1(£) > 7. But by Ruelle inequality applied to f~1,
we get also h(§) < —x2(€). In particular we have x1(x) >t > 0> —1 > x2(x) for
v-almost every x.

5.4 Proof of the Falner Gibbs property (H)

In this subsection we prove Proposition 6. We will show that for any é > O there is
q arbitrarily large and e; > 0 such that we have for any partition P of PT M with

diameter less than 6,’]:

1

_ > o tF¥y" ()
Ao (PE(R)N7—1A,)

dn, Vx € A, C oy withn, <n en,

(5.1)
where we denote 1//;7 (X)) =) e F, Vg (F k%) to simplify the notations.
For G C N we let AC be the set of points x € A with G C E(x). When G = {k}
or {k, 1} with k, I € N, we just let AS = A¥ or A%, We recall that 9 F,, C E(x) for all
x € A, in others terms A, C A?F». We will show (5.1) for A?F in place of A,,.
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Fix the error term § > 0. Let g be so large that Crl/q < ¢%3 and let e(/i > 0 as in
Lemma 8 (with C, being the universal constant in the same lemma). Without loss of
generality we may assume 66/1 < g7~ Recall that € corresponds to the fixed scale in the

definition of the geometric set E. We can also ensure that
Vi, $ e PTM with d(%, $) < e;, lp(X) —p(P)| <8/3. (5.2)

Let us remember some notations and definitions introduced just before Sect. 4.2.
For x € o, the curve D, (x) denotes the image of f” oy, where y,, =0 o6, is the
subcurve of maximal length satisfying the following three items:

e 0,:[—1,1] O is affine,
e y, is strongly (n, €)-bounded,
o 1, (0)=x.

The integer n is a («, €)-geometric time of x, when ||d(f" o y,)(0)|| > %ae. We
define the semi-length of D, (x) as the minimum of the lengths of f" oy, ([0, 1]) and
f" o yu([—1,0]). The semi-length of D, (x) is larger than we at a (o, €)-geometric
time n.

In the next three lemmas we consider a strongly e-bounded curve o

Lemma9 For any subset N of M, any k € N and any ball By of radius less than 6;,
there exists a finite family (y;) jey of AKN f=*By NN such that:

o BN fY(A*NN) CUjc; Dr(y),
o Di(y;), j € J, are pairwise disjoint.

Proof For y,y’ € AxN f=*B, NN welet y ~y’ when Dy (y) N Dy (y’) # . We claim
that [y ~ y'1 = [Dx(y) N By = Di(y’) N Bi]. In particular ~ defines an equivalence
relation on AK N f —k By N N (with finite quotient set). Then if (y;); is a family of
representatives, the curves Di(y;), j € J, are pairwise disjoint and By N f k (Ak N
N) C Ujej Dy (y;). It remains to show our claim. For y, y" € AR f7%B N N with
Dy (y) N Di(y") # @, the curves Dy (y), Di(y") and Dy (y) U D (y") lie in a cone with
opening angle /6 by (4.2) and their length are larger than 84—16 > 46;. By elementary
Euclidean geometric arguments, the intersection of one of these curves with 2By is a
curve crossing 2By, i.e. its two endpoints lies in the boundary of 2By (see Figure 2).
Two such subcurves of By N (f¥ 0 o), if not disjoint are necessarily equal. Therefore
(Dk(y) U Dk (")) N2Bi = Dy (y) N 2Bk = Dy (y') N 2Bx. O

As the distortion is bounded on D (y;), j € J, by (4.3), we get:

Zg O (Dey) = e (SED0))

jedJ jedJ

The curves (D (y;));, being pairwise disjoint, we have:

ZK <f_ka(yj)) < £ (0y) <2,

jeJ
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Fig.2 The curve Dy (y) crossing the ball 2By,

therefore

> ge*¢k<9ﬂz (Di(y))) < 2e.
jel

The semi-length of Dy (y;) is larger than ae because y; belongs to AF, so that we
obtain finally:

> e %) < 2 (5.3)

~ 4a
jeJ
Below we consider the dynamical ball BF (x, e , k) defined in (4.6).

Lemma 10 For any subset N of M and any dynamical ball B ;] := BF(x 6 k),
there exists a finite family (z;)ier ofA N B[[O,k]] N N such that

o F4(A N B NN) € Ujes Dita),
e Di(z;), i €I, are pairwise disjoint,

g (X)
o il < quSk/3e,”T. for some constant B, depending only on q.

Proof As in the previous lemma we consider the subcurves Dy (z) for z € A N
Bjo ) N N. By Lemma 8 we can reparametrize B[ ;] by a family of strongly (k, e[’l)-
k wk (X)

bounded curves with cardinality less than B,C/ e =T . Each of these curves is con-
tained in some f ¥ Dy (z) with z € A¥ N B[[O’ k] - Arguing as in the proof of Lemma 9,
such curves can be chosen pairwise disjoint. g
Lemma 11 For any dynamical ball Bl = f- kakw
a finite family (y;)icr of AR N Bl and a partition I = ]_[jej i of I with j €l
forall j € J C I such that

(f*x, e/ [ — k), there exists
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% DYs) D (vi), i€l

O<t<k

Fig.3 For 0 <t < k the image of f* o o in black may be large and the disks Dy (y;) are scattered through
the surface. For =k, the sets Dy (y;) for j € J are covering (fk o0 0)x N By. For t =1, we drew in blue

the sets D;(y;) C fl_k Dy (yj) for i € I; (Color figure online)

o 1AM N B ) € Uier Dii),
e Di(yi), i €1, are pairwise disjoint,
o VjeJVii'el}, Di(y)N B(f"x €g) = Di(yi) N B(f*x. ),
<fkv)
e VjeJ, iil; <By SU=R/3 =5 for some constant B, depending only on q.

Proof We first apply Lemma 9 to o and N = A*/ N By i to get the collection of

strongly e-bounded curves (Dk 6 j)) . For j € J we let 0]]? be the strongly e-

jeJ
bounded curve o given by Dy (y;). Then we apply Lemma 10 to each Ujl.‘ for jelJ
and N = f*(By;y N Ax) to geta family (zi)ier; of D (y;) N A5 N fX (B ;N Ax)
satisfying:

° fl—k <Dk(yj) n Al_k N fk(B[[k,[]] n Ak)) C UjE] Dk(zi)’

o D;_i(z;), i €1}, are pairwise disjoint,

l k( kx)

° ﬂl <B 68(1 k)/3

For all j € J we can take j € I; and z; = f*(y;). We conclude the proof by
letting y; = f*z; € AKI N Bpyp foralli e I := ]_[jeJ I;. See figure 3. O

We prove now (H). Recall that A = A, is the push-forward on PTM of the
Lebesgue measure on oy. As 0 F, = o(n) and d,(F) > 0 by Lemma 2, it is enough
to show there is a constant C such that for any strongly e-bounded curve o we have
for x € A%Fn:

o (PP N1 A < O3 230 ), (5.4)
To prove (5.4) we argue by induction on the number of connected components of F,.

Let [k, I[, 0 < k <1, be the first connected component of F,, and write G,,_; = N* N
(F,, — ). As P has diameter less than 6 , the set PTo. N PP (%) is contained in the

intersection of rr_lB[[kJ]] =" (f kBF (ka e/ [ — k)) and F~! pOn-i (Fl)?).
Then with the notations of Lemma 11 We get

ho (PP N7 A7)
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<o (]_[ F! (n—lAf"Gn—f N PO-1(Fl3)N Dl(yi)>> ,

iel
<o [ LT F [ LT P07 (7 4% 0 POt (Pl 8y 0 Dy )
JjeJ ielj

We recall that oj’.‘ denotes the strongly e-bounded curve o given by Dy (y;) for
j € J. By the bounded distortion property (4.3) we get:

ho (PP Nt AP

< 3267@(@1‘))‘0? ]_[ F=h (n*]A3Gn71 N PG””(FI)?) N Dl()’i))
jeld IGI]'

By using again the bounded distortion property (now between the times k and /) we
get with ail being the curve associated to D;(y;):

Ao (PF" *) ﬂn_lAaF”>

<9 e hin 3" etk 50 (,,—IABGH n PGH(FI,;)) .
jed icl; '

We may assume that any 3;, i € I, lies in Pf(%). In particular we have
|61k (F*31) — 1k (F¥3)| < (I = k)8/3 by (5.2). Then

Ay (PF,I ) m,flAaFn> <9 Zewk(ﬁ,‘) U0 /3 =1k (F¥3) suptl;
jed J

X Suph_i <n_1AaG"*l N PG”*’(F[)?)> .

iel !
By (5.3) and the last item of Lemma 11 we obtain:
o (PF” )N n_laAF">

8L . 2su—k)/3 Py 2D 149G G I
< —Bye (U=K)/3 =1 (F7X) =T SupA_ (71_ AdCn—1 0 pOn-i(F x)),
da iel i

81 P ; X
< 4—qu2‘3(1_")/36_‘”‘/ &) Sup A (rr_lAdG”*l n PG"*Z(le)> .
o iel !

By induction hypothesis (5.4) applied to G,,—; for each ail , we have forall i € I:
Iy (n—lAaGn_z A pGn—l(Fl)E)> < CHGn-1 251G 13 =0y " (F1S).
Ul- —
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Note that 0 F,, =40G,—; +2and 8F,, = (I —k+ 1) +18G,,—;. We conclude by taking
81B
C= £ that:

Ay (PFn (%) N n—lAaFn> < 2_1quzaaFn/SCuaG,Hg—w/f{"@)’
o
< CHOFn 288 /3 =" (®)

This completes the proof of (5.1).

6 End of the proof of the Main Theorem
6.1 The covering property of the basins

For x € M the stable/unstable manifold W9/ (x) at x are defined as follows:

Wi(x):={yeM, hmsupllogd(f x, fy) <0},

n——+00

WH(x):={yeM, hmsupllogd(f x, f7"y) <0}

n—+oo N

For a subset I of M we let W*(I') = (J, . W*(x). Let R* be the set of regular
points and Ej , be the subbundles of T M as defined in Sect. 5.2. According to Pesin’s
theory, there are a nondecreasing sequence of compact, a priori non-invariant, sets
(Kn)n (called the Pesin blocks) with R* = | J,, K, and two families of embedded
C™ discs (W .(x))xer+ and (W} (x))xer+ (called the local stable and unstable
manifolds) such that:

o W;/ (x) are tangent to Ej, at x,
e the splitting E,(x) & E;(x) and the discs W;O/C" (x) are continuous on x € K, for
each n.
For y >0 and x € R* we let Wb/"
s/u
loc

(x) be the connected component of B(x, y) N

(x) containing x.

R(f)
r

Proposition 7 The set {X > } is covered by the basins of ergodic SRB measures

Wi, i €1, up to a set of zero Lebesgue measure.

: RO\ s ;
In fact we prove a stronger statement by showing that { X > T} is contained

Lebesgue a.e. in W*(I') where I" is any f-invariant subset of | J;; B(ii)ies with
ui(Cy=1foralli el.

So far we only have used the characterization of SRB measure in terms of en-
tropy (Theorem 5). In the proof of Proposition 7 we will use the absolute continu-
ity property of SRB measures. Let u be a Borel measure on M. We recall a mea-
surable partition £ in the sense of Rokhlin [37] is said to be w-subordinate to W*
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when &(x) C W¥(x) and &(x) contains an open neighborhood of x in the topology
of W*(x) for p-almost every x. The measure u is said to have absolutely continu-
ous conditional measures on unstable manifolds if for every measurable partition
& u-subordinate to W*, the conditional measures ui of p with respect to & satisfy
,ui & Lebwu(y) for p-almost every x.

Proof We argue by contradiction. Take I" as above. Assume there is a Borel set B
with positive Lebesgue measure contained in the complement of W*(I") such that we
have x(x) > b > @ for all x € B. Then we follow the approach of Sect. 5.3. We
consider a C" smooth disc o with x (x, vy) > b for x € B’ C B, Lebg, (B’) > 0. One
can then define the geometric set E on a subset B” of B with Leb,, (B”) > 0. We
also let T, B, o and € be the parameters associated to E. Recall that:

e E'is t-large with respect to the derivative cocycle @,
o d(E(x))>pB>0forxeB”,
e Di(y) = f¥(Hy(y)) has semi-length larger than e when k € E(y), y € B”.

Let B” be the subset of B” given by density points of B” with respect to Leby, .
In particular, we have

Lebo* (Hk()C) N B//) k—+00

Vx € B”,
Leby, (H (x))

1.

We choose a subset A of B” with Leb,, (A) > 0 such that the above convergence
is uniform in x € A. Then from this set A and the geometric set £ on A we may build

n, (Fy)nen and (,u,f" Jnen asin Sects. 2 and 3. As proved in Sect. 5.3 any limit measure
uof ,u,f” is supported on the unstable bundle and projects to an SRB measure v with
x1(x) > 17 >0> —1 > x2(x) for v a.e. x. The measure v is a barycenter of ergodic
SRB measures with such exponents, in particular v(I") = 1. Take P = Ky a Pesin
block with v(P) > 1 — g We let 6 and [ be respectively the minimal angle between
E, and E; and the minimal length of the local stable and unstable manifolds on P.

Let & be a measurable partition v-subordinate to W* with diameter less then y >
0. We have v(P) =v(CNP) = f vf(F N P)dv(x) and vi < Lebwﬁ(x) for v a.e. x.
Then

v (x, Lebyy (o) (I N P) =0) <v (x, Wvarnpe) =0),
<1—[Vi(I'NP)dv(x),
< 1-wp) <L

Therefore we get for some ¢ > 0:

v (x, Lebyy vy (' N P) > c) 11— g
WeletG={xel' NP, Lebwg(x)(f‘ N P) > c}. Observe that:
W(G) > v (x, Lebyy (o) (T N P) > c) — WM\ P)>1—§.
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y PAW" (YY)

We fAND, (x7

Fig.4 Holonomy of the local stable foliation between the transversals D, (x) and W}L,‘(y") (Color figure
online)

For x € 0, and y € P we use the following notations:
Yo =(x,vx) €PTox  Ju=(,vy) ePTM,

where vy is the element of PT'M representing the line E, (y). Let G be the open

y /8-neighborhood of Gy = {yu, vy € G} in PTM. Recall E(x) denotes the set of
geometric times of x. We let for n € n:

1 .
n :=/ oF Z Spky, din(Xe)-
" keE(x)NF,

Observe that £, (PT M) > infyca, d,(E(x) N Fy). By the last item in Lemma 2, we
have liminf,cy infyea, dy (E(x) N F,;) > B. Therefore there is a weak-* limit ¢ =
limy ¢p, with ¢ < p and ¢(PTM) > B. From /L(GZ) > /L(G,,,) =v(G)>1—-8 we
get 0 < {(GZ) < limy §pk(CA}Z). Note also Aa = {5, y € A} has full u,-measure
for all n. In particular, for infinitely many n € N there is (x", vyn) = X € Ay with
F"x! e Gl and n € E(x"). Let =", v’y’n) € G, which is y /8-close to F"X1.
Then for y < § < min(8, [, xe) independent of n, the curve Dfl x") =D, (x")N
B(f"x",8) is transverse to W*(P N T N W/ (y")) and may be written as exp, (Ty)
where I'y, is the graph of a C” smooth function ¢ : £ C E,(y") — Es(y") with
ld¥|| < L for a universal constant L.

By Theorem 8.6.1 in [34] the associated holonomy map 7 : W}’f " - Dfl ™),
represented in Figure 4, is absolutely continuous and its Jacobian is bounded from be-
low by a positive constant depending only on the Pesin block P = Ky (not on x" and
y™). Since we have Lebwy @ T N P) > ¢, we get for some constant ¢’ independent
of n:

Lebp, ) (W' N P)) > ¢ (6.1)

The distortion of df”" on H,(x") being bounded by 3, we get (recall f"H,(x") =
Dy (x™)):

Lebp, xn) (Dn(x™)\ f"'B) - 9Lean(xn) (H,(x")\'B) n—>oo
Lebp, ) (Dp(x™)) = Lebpg,ny (Hy(x™))
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As D, (x™) is the image of a strongly e-bounded curve, its length is bounded from
above by 2e¢, so that we get:

Lebp, xmy (Dp(x™") \ f"B) n—soo
Lebp, xn) (Dp(x™))

2€)"'Lebp, vy (Du(x™) \ f"B) < 0. (6.2)

It follows from (6.1) and (6.2) that for n large enough, there exists x € f*B N
WS (" N P), in particular B N f~"WS([') = B N W¥(I") # @. This contradicts the
definition of B. O

6.2 The maximal exponent

In Proposition 7 we proved that Lebesgue almost every point x with x (x) > @ lies
in the basin of an ergodic SRB measure . To complete the proof of Theorem 1 it
remains to show x (x) = x(u) for a.e. such points x.

For uniformly hyperbolic systems, we have
1
Tx(x):= mlflx T x (x) = lim — logJac(d, f ) = lim/ logJac(dy fE,) db%.
n n u n

As the geometric potential y — logJac(d,y fE,) is continuous in this case, any point
in the basin of an SRB measure u satisfies Xy (x) = f Yx(y)du(y). As the geo-
metric potential is not continuous in our context, the proof of this last point is not
straightforward.

R(f)

As mentioned after Proposition 7, we proved in Sect. 6.1 that { X > =1 iscon-

tained Lebesgue a.e. in W*(I") where I is any f-invariant subset of | ;o; B(ii)ier
with y1; (T") = 1 for all i. For such a set I' we have W*(I") C | J;.; B(ui)ier and there-
fore it is enough to find such a set I satisfying x (x) = x (u;) forx € WS(I) N B(w;),
iel.

Let R* denote the invariant subset of Lyapunov regular points x of (M, f) with
X1(x) > 0> x2(x). Such a point admits so called regular neighborhoods (or ¢-Pesin
charts):

Lemma 12 [33] For a fixed € > O there exists a measurable function q = q. :
RY* — (0,1] with e™€ < q(fx)/q(x) < e and a collection of embeddings W, :
B(0,q(x)) C TeM = E,(x) ® Es(x) ~ R = M with W,(0) = x such that f, =
\IJJTXI o f o W, satisfies the following properties:

_ ael(x) 0
dOf"_< 0 ag(x),)

with e €eXi®) < aé(x) <eeli® fori=1,2,
o the C! distance between frx and dy fy is less than €,
e there exists a constant K and a measurable function A = A : R™ — R such that

forall y,z € B(0, g(x))

Kd(Wx(y), ¥x(2) < lly — zll = A(x)d (Wi (y), ¥x(2)),
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withe € < A(fx)/A(x) < €.
For any i € I we let

Ei:={x, x(x)=x(u)}.

The set E; has full u;-measure by the subadditive ergodic theorem. Put I'; = B(u;) N
E;NRY and I' =, T;. Clearly T is f-invariant. We finally check that x (x) =
x (i) for x € WH(Iy).

Lemma 13 Ify € W¥(x) with x € RT*, then x(y) = x (x).

Proof Fix x € R™* and § > 0. We apply Lemma 12 with € < x1(x). For a > 0 we
let C, be the cone Cy = {(u, v) € R?, a|ju|l > ||v]|}. We may choose & > 0 and € > 0
so small that for all k € N we have dszkx(Ca) C Cy and ldz fre I = eX1 (=3 for
all v e Cy and all z € B(0, ge (f*x)).

Let y € W¥(x). There is C > 0 and A such that d(f"x, f"y) < CA" holds for all
n € N. We can choose € < A. In particular there is N > 0 such that "y belongs
to Wny B(0,g(f"x)) for n > N since we have A(f"x) < e“"A(x) and g(f"x) >
e“"g(x).Letz € B(O q(fNx)) with W n,(z) =y. Thenforallv € Cy and for alln >

N we have ||d, ( =Ny © " No Uon, )(v)|| > e=N01()=8)  Ag the conorm of
d pn-n ¥ gnx is bounded from above by A(f"x)~! for all n we get

. 1 _
X(y)thSUP;lOglldyf" M,
n
: 1 n—N
= limsup — log ||d; (f o \IJfo> Il
n N

1
> lim sup —log (A(f x)7!

n—+oo N

).

d: (Wplo 1" oW pn)
> i) —8—e.

On the other hand we have

n—1
(=TT sw leifpecll
k=N 1€B(0,q(f*x))

< (em(x)Jre + 6)"_N ’

< =N (X1 (x)+2€)

: (‘I’.?nlx o f"o ‘I’fo)

Then it follows from ||d pn-n ¥ prx || < K

1
x () <l1msup—10g( Z (lll;llx o f" o\I'fo) ‘)

n—>+oo N
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< x1(x) + 2e.

As it holds for arbitrarily small € and § we get x (y) = x1(x) = x (x). O

We conclude with A = {x(u;), i € I} that for Lebesgue a.e. point x, we have

R o
x(x) e ]—oo, @] U A and that {y = A} C Uiel,x(u,-):k B(u;) for all A € A. The
proof of the Main Theorem is now complete. It follows also from Lemma 13, that

the converse statement of Corollary 2 holds: if (f, M) admits an SRB measure then
Leb(x > 0) > 0.

7 Nonpositive exponent in contracting sets

In this last section we show Theorem 2. For a dynamical system (M, f) a subset
U of M is said to be almost contracting when for all € > 0 the set E. = {k €
N, diam(f¥U) > €} satisfies d(E¢) = 0. In [21] the authors build subsets with his-
toric behaviour and positive Lebesgue measure which are almost contracting but not
contracting. We will show Theorem 2 for almost contracting sets.

We borrow the next lemma from [12] (Lemma 4 therein), which may be stated
with the notations of Sect. 5 as follows:

Lemma 14 Let f: M O be a C* diffeomorphism and let U be a subset of M with
Leb({x > a}NU) > 0 for some a > 0. Then for all y > 0 there is a C* smooth
embedded curve o . [0,1] > M and I C N with I = oo such that

Vn € 1, Leby,, ({x ceUNoy, |ldy f" (0] > e”“}) >e ",
We are now in a position to prove Theorem 2 for almost contracting sets.

Proof of Theorem 2 We argue by contradiction by assuming Leb ({x >a}NU) >0
for some a > 0 with U being a almost contracting set. By Yomdin’s Theorem on
one-dimensional local volume growth for C*° dynamical systems [43] there is € > 0
so small that

1
v*(f, €) :=suplimsup — sup logLeb(fnoq), (f"Bn (x, e)) <a/2, (7.1)

o n—oo Nyxem

where the supremum holds over all C* smooth embedded curves o : [0, 1] — M.
As U is almost contracting, there are subsets (Cy)pen of M with lim,, lothC" =0
satisfying for all n:

Uc | Bux.e). (7.2)

xeCy,

Fix an error term y €]0, %[. Then by Lemma 14 there is a C°°-smooth curve
04 C U and an infinite subset / of N such that foralln € I:

> " Leb( ooy, (" Bu(x, €)) = Leb( pog), (f"(U Na3)),

xeCy
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= enaLeba* ({x eUNoy, ”dxfn(vx)” > ena}) ,
> ") by (7.1),
£C,, sup Leb(frog), (" Bu(x, €)) = ") by (7.2).
xeM

Therefore we get the contradiction v*(f,€) >a —y > a/2. g

Appendix

Let A = (A;)nen be a sequence in Md(]Rd). For any n e N we let A" = A,_1...
A1 Ag. We define the Lyapunov exponent y (A) of A with respect to v € R \ {0} as

1
x (A, v) :=limsup - log [|A" (),
n

Lemma 15

sup X(A,v)=1imsupllog|||A”|||.
veRd\ {0} n N

Proof The inequality < is obvious. Let us show the other inequality. Let v, € RY with
lvall =1 and ||A"(vy)]l = [IA"]l. Then take v = limy v, with limy ﬁlog A =

limsup, 1 log [| A™||. We get

[A™ )|l > [|A™ (v) || — [|A™ (v — i),
> [||A™ ][ (1 = llv = velD),

_ | . 1
lim sup — log || A" (v)|| > lim sup — log ||| A”]- -
K Nk n n
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