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Abstract
We investigate the behavior of the spectrum of the continuous Anderson Hamiltonian
HL, with white noise potential, on a segment whose size L is sent to infinity. We
zoom around energy levels E either of order 1 (Bulk regime) or of order 1 �E � L

(Crossover regime). We show that the point process of (appropriately rescaled) eigen-
values and centers of mass converge to a Poisson point process. We also prove expo-
nential localization of the eigenfunctions at an explicit rate. In addition, we show that
the eigenfunctions converge to well-identified limits: in the Crossover regime, these
limits are universal. Combined with the results of our companion paper (Dumaz and
Labbé in Ann. Probab. 51(3):805–839, 2023), this identifies completely the transition
between the localized and delocalized phases of the spectrum of HL. The two main
technical challenges are the proof of a two-points or Minami estimate, as well as an
estimate on the convergence to equilibrium of a hypoelliptic diffusion, the proof of
which relies on Malliavin calculus and the theory of hypocoercivity.
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1 Introduction

In a celebrated article [4], Anderson proposed the Hamiltonian −�+V on the lattice
Zd as a simplified model for electron conduction in a crystal. The so-called disorder
V is a random potential that models the defects of the crystal. The question was
whether those defects can trap the electron i.e. localize the electronic wave function.
He argued that for a large enough disorder V , the spectrum is pure point and the
eigenfunctions exponentially localized – a phenomenon now referred to as Anderson
localization. Mathematically, one can see this model as the interpolation between the
discrete Laplacian −� on the grid Zd , which has delocalized eigenfunctions and the
multiplication by a potential V on each site, whose eigenfunctions are the coordinate
vectors.

One of the first rigorous results of Anderson localization was obtained by Gold-
sheid, Molchanov and Pastur [15]: it concerned the continuum analogue of the above
model in dimension d = 1, namely the operator −∂2

x + V on R, for some specific
random potential V . This was followed by a series of major articles [3, 10, 13, 23] to
name but a few, in the discrete or the continuum setting, and for general dimension
d ≥ 1. One can summarize the main results as follows: (1) In dimension d = 1, An-
derson localization holds in the whole spectrum; (2) In dimension d ≥ 2, for a large
enough disorder or at a low enough energy, Anderson localization holds. In dimen-
sion d ≥ 3, it is expected (but not proved) that there is a delocalized phase for V weak
enough while in dimension d = 2, the question remains open. We refer to [6, 20] for
more details.

In the present article, we consider the case where the potential is a white noise ξ in
dimension d = 1. This is a random Gaussian distribution with covariance given by the
Dirac delta: it models physical situations where the disorder is totally uncorrelated.
Due to its universality property (white noise arises as scaling limit of appropriately
rescaled noises with finite variance), this is a natural choice of potential in the con-
tinuum. However, white noise is a highly irregular potential as it is only distribution
valued, and therefore falls out of scope of virtually all general results of the literature.

It is standard to tackle Anderson localization by considering first the Hamiltonian
truncated to a finite box, before passing to the infinite volume limit. In this article we
focus on the truncated Hamiltonian HL = −∂2

x + ξ on (−L/2,L/2) with Dirichlet
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Fig. 1 The five regimes of HL

b.c., and investigate its entire spectrum in the limit L→∞. More precisely, we study
the local statistics of the operator recentered around energy levels E that are either
finite or diverge with L: note that the infinite volume limit only captures energy levels
that do not depend on L. The results of this article, complemented by those presented
in our companion papers [7, 9], reveal a rich variety of behaviors for the eigenval-
ues/eigenfunctions of HL according to the energy regime considered: in particular,
delocalized eigenfunctions arise at large enough energies. This is to be compared
with the aforementioned general results of Anderson localization in dimension d = 1
that assert localization in the full spectrum. A proof of Anderson localization for the
infinite volume Hamiltonian with white noise potential was given by Minami [25],
see also [8] for an alternative proof.

Let us now present the main results of the present article, and their connections
with the results already obtained in [7, 9]. We recenter HL around some energy level
E =E(L) and distinguish five regimes:

(1) Bottom: E ∼−( 3
8 lnL)2/3,

(2) Bulk: E is fixed with respect to L,
(3) Crossover: 1 �E � L,
(4) Critical: E � L,
(5) Top: E � L.

For each regime, we investigate the local statistics of the eigenvalues λi near E, and
the behavior of the corresponding normalized eigenfunctions ϕi . In [7, 9], we covered
the Bottom, Critical and Top regimes, while in the present article we derive the Bulk
and Crossover regimes. The main results are summarized on Fig. 1.

The transition between Poisson statistics and Picket Fence occurs in the Critical
regime where E � L. In [9], we prove that, in that regime, the eigenvalue statistics
are given by the Sch point process introduced by Kritchevski, Valkó and Virág [24].
Actually, we obtain a convergence at the operator level, and show not only that the
eigenvalues converge towards Sch but also that the eigenfunctions converge to a uni-
versal limit given by the exponential of a two-sided Brownian motion plus a negative
linear drift. Note that this limit lives on a finite interval thus making the eigenfunc-
tions delocalized. Our denomination universal is justified by the fact that this shape
already appeared in the work of Rifkind and Virág [33] who conjectured that it should
arise in various critical models.

In the present article, we show that in the Bulk and Crossover regimes, the local
statistics of the eigenvalues (jointly with the centers of mass of the eigenfunctions)
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converge to a Poisson point process. Moreover, we establish exponential decay of the
eigenfunctions (from their centers of mass) at an explicit rate, which is of order 1 in
the Bulk regime and of order E in the Crossover regime.

Actually we provide much more information about the eigenfunctions. We show
that the eigenfunctions (recentered at their centers of mass and rescaled in space by
1 in the Bulk and by E in the Crossover) converge to explicit limits. In the Bulk
regime, the limits are some well-identified diffusions YE , whose law depend of E.
In the Crossover regime, the limits are given by the same universal shape as in the
Critical regime: namely, the exponential of a two-sided Brownian motion plus a neg-
ative linear drift. However since the space scale is E � L, the eigenfunctions are
still localized and the limiting shape lives on an infinite interval, in contrast with the
Critical regime. As E ↑ L, one formally recovers delocalized states and this justifies
a posteriori the denomination Crossover: this regime of energy interpolates between
the (localized) Bulk regime and the (delocalized) Critical regime and shares features
with both (Poisson statistics with the former and universal shape with the latter).

Finally, in the Bottom regime, investigated in [7], we also obtained Poisson statis-
tics for the eigenvalues (and centers of mass). Furthermore we showed that the eigen-
functions are strongly localized: at space scale 1/(logL)1/3 and recentered at their
centers of mass, they converge to the deterministic limit 1/ cosh.

Let us comment on the regime of energies −( 3
8 lnL)2/3 � E �−1. In this case,

the eigenvalues (and centers of mass) should still converge to a Poisson point process,
while the eigenfunctions, at space scale 1/

√|E| and recentered at their centers of
mass, should still converge to the deterministic limit 1/ cosh. A modification of the
proof presented in [7] should suffice to prove these claims for energies E that go to
−∞ fast enough.

Overall, our results provide a transition from strongly localized states to totally
delocalized states and identify explicitly the local statistics of the eigenvalues together
with the asymptotic shapes of the eigenfunctions.

Let us now comment on the technical challenges that these results represent. Since
white noise is out of scope of usual standing assumptions, we do not rely on general
results from Anderson localization literature, so that our article is self-contained. Let
us point out two major difficulties that we encounter. First, the derivation of the two-
points estimate, often called Minami estimate [26], is delicate in the context of the
irregular potential given by the white noise, whereas some general 1-d results [21] are
available for some related models with smoother potential. To prove this estimate, we
rely on a thorough study of a joint diffusion, see Sect. 8. Second, in the Crossover
regime the phase function rotates at an unbounded speed on the unit circle and this
yields many technical challenges. In particular, to obtain quantitative (with respect
to the unbounded parameter E) estimates on the convergence to equilibrium of this
phase, we cannot simply apply Hörmander’s Theory of hypoellipticity in contrast
with the situation in [5, 28]: we obtain these estimates using Malliavin Calculus and
the theory of hypocoercivity, and this constitutes one of the main technical achieve-
ments of the present article, see Sect. 5.
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Let us relate our results to other studies in the literature. The discrete counterpart1

of our model is given by the N ×N random tridiagonal matrix −�N +σN VN where
�N is the discrete Laplacian on {1, . . . ,N}, VN is a diagonal matrix with i.i.d. entries
of mean 0 and variance 1 and σN a positive parameter, possibly depending on N . If
σN does not depend on the size N of the matrix, then the limit N →∞ of the model
falls into the scope of general 1-d Anderson localization results, and the spectrum is
localized. On the other hand, one recovers delocalized states when σN = O(N−1/2),
see [11]. Actually for σN = σN−1/2 with σ > 0 the point process of eigenvalues
of the matrix in the bulk converges to the Sch random point process [24] and the
eigenfunctions are delocalized [33].

The aforementioned Russian model of Goldsheid, Molchanov and Pastur
[15] deals with a potential V (x)= F(Bx) where F is a smooth bounded function and
(Bx, x ∈ R) is a stationary Brownian motion taking values in a compact manifold.
Molchanov [27, 28] established for this model Poisson statistics for the appropriately
rescaled eigenvalues in the large volume limit and for energies that correspond to our
Bulk regime; he mentioned that his results should remain true in the white noise case.
The present article confirms this statement. Let us point out that the boundedness of
V provides many a priori estimates on the eigenvalues and eigenfunctions which are
not available anymore in the white noise case.

Let us mention that Minami [26] showed that for Anderson operators in arbitrary
dimension, the local statistics of the eigenvalues converge to Poisson point processes
provided some control on the density of states and the exponential decay of the frac-
tional moments of the Green’s function.

There are also connections with recent investigations in [22, 30, 31] of the afore-
mentioned Russian model of Goldsheid, Molchanov and Pastur [15], in which, as in
the random matrix model, a parameter depending on the size of the system is added
in front of the potential to reduce its influence.

Our description of the local statistics of the eigenvalues/centers of mass is in
the vein of results obtained by Nakano [29], on the local statistics of eigenval-
ues/eigenfunctions for discrete Anderson operators, and more recently by Germinet
and Klopp [14], who proved precise results on the local and global eigenvalue statis-
tics for a large class of Schrödinger operators. On the other hand, we provide a com-
plete and explicit description of the asymptotic shape taken by the eigenfunctions: to
the best of our knowledge, such results are very rare in the literature on Anderson
localization.

2 Main results

Let ξ be a Gaussian white noise on R, that is, the derivative of a Brownian motion
B . We consider the truncated Anderson Hamiltonian (sometimes also called Hill’s
operator)

HL =−∂2
x + ξ , x ∈ (−L/2,L/2) , (1)

1Note that in our case, due to the scaling property of the white noise, our study covers the case where there
is an additional parameter σL → 0 in front of the white noise.
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endowed with homogeneous Dirichlet boundary conditions. It was shown in [12] that
this operator is self-adjoint on L2(−L/2,L/2) with pure point spectrum of multi-
plicity one bounded from below λ1 < λ2 < · · · We let (ϕk)k be the corresponding
eigenfunctions normalized in L2 and satisfying2 ϕ′

k(−L/2) > 0. These r.v. depend
on L, but for notational simplicity we omit writing this dependence.

This operator has a deterministic density of states n(E), see [12, 18]. This is de-
fined as n(E) := dN(E)/dE where

N(E) := lim
L→∞

1

L
#{λi : λi ≤E} , E ∈ R . (2)

Here the convergence is almost sure and the limit is deterministic. Roughly speaking,
1/(Ln(E)) measures the typical spacing between two consecutive eigenvalues lying
near E for the operator HL. From the explicit integral expression of n(E), see [12],
one deduces that E �→ n(E) is smooth and that

n(E)∼ 1

2π
√

E
, E →+∞ .

In the present article, we focus on two regimes of energy:

(1) Bulk regime: the energy E is fixed with respect to L,
(2) Crossover regime: the energy E =E(L) satisfies 1 �E � L,

and investigate the asymptotic behavior as L → ∞ of the eigenvalues λi and of
the eigenfunctions, seen as probability measures by considering ϕ2

i (t)dt . For every
eigenfunction ϕi , a relevant statistics to its localization center is3 the center of mass
Ui defined through

Ui :=
∫
[−L/2,L/2]

tϕ2
i (t)dt .

Our first result shows convergence, in both regimes, of the point process of
rescaled eigenvalues and centers of mass.

Theorem 1 (Poisson statistics) In the Bulk and the Crossover regimes, the following
random measure on R × [−1/2,1/2]

∑
i≥1

δ(Ln(E)(λi−E),Ui/L)

converges in law as L →∞ to a Poisson random measure on R × [−1/2,1/2] of
intensity dλ⊗ du.

In this statement, the convergence holds for the vague topology on the set of Radon
measures on R × [−1/2,1/2], that is, the smallest topology that makes continuous

2The normalized eigenfunctions are unique up to a sign change: by imposing the sign of the derivative at
−L/2, we recover uniqueness.
3Other statistics could be considered without altering the results.



Localization crossover for the Anderson Hamiltonian 351

the maps m �→ 〈m,f 〉 with f : R× [−1/2,1/2]→ R bounded continuous and com-
pactly supported in its first variable.

Our second result establishes exponential localization of the eigenfunctions from
their centers of mass. In the Bulk regime, the exponential rate is given by (1/2)νE

where

νE =
∫ +∞

0

√
u exp(−2Eu− u3

6 )du∫ ∞
0

1√
u

exp(−2Eu− u3

6 )du
, (3)

while in the Crossover regime it is given by 1/(2E). This rate is of course related to
the Lyapunov exponent of the underlying diffusions.

Theorem 2 (Exponential localization) Fix h > 0 and set � := [E − h/(Ln(E)),E +
h/(Ln(E))]. For every ε > 0 small enough, there exist some r.v. ci > 0 such that:

(1) for every eigenvalue λi ∈� we have in the Bulk regime

(
ϕi(t)

2 + ϕ′
i (t)

2)1/2 ≤ ci exp
(
− (νE − ε)

2
|t −Ui |

)
, ∀t ∈ [−L/2,L/2] ,

and in the Crossover regime

(
ϕi(t)

2 + ϕ′
i (t)

2

E

)1/2 ≤ ci√
E

exp
(
− (1 − ε)

2

|t −Ui |
E

)
, ∀t ∈ [−L/2,L/2] ,

(2) in both regimes, there exists q = q(ε) > 0 such that

lim sup
L→∞

E

[ ∑
λi∈�

c
q
i

]
<∞ .

Our third result shows that the eigenfunctions (rescaled into probability measures)
converge to a Poisson point process with an explicit intensity. Actually the conver-
gence will be taken jointly with the eigenvalues and the centers of mass, so the result
is a strengthening of Theorem 1.

Let us start with the definition of the probability measures associated with the
eigenfunctions. Given the rate of exponential localization appearing in the previous
result, one needs to recenter the eigenfunctions appropriately to get convergence, so
we define for every eigenvalue λi

wi(dt) :=
{

ϕi(Ui + t)2dt in the Bulk regime,

Eϕi(Ui + tE)2dt in the Crossover regime,

which is an element of the set M=M(R) of all probability measures on R endowed
with the topology of weak convergence.

In the statement below, we rely on a probability measure on M that describes
the law of the limits. In the Crossover regime, this probability measure σ∞ admits a
simple definition: it is the law of the random probability measure

Y∞(t +U∞)2dt∫
Y∞(t +U∞)2dt

,
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with Y∞(t) := 1√
2

exp
(
− |t |

8
+ B(t)

2
√

2

)
, U∞ :=

∫
tY∞(t)2dt∫
Y∞(t)2dt

, (4)

where B is a two-sided Brownian motion on R.
In the Bulk regime, this probability measure σE is the law of the random proba-

bility measure

YE(t +UE)2dt∫
YE(t +UE)2dt

, UE :=
∫

tYE(t)2dt∫
YE(t)2dt

, (5)

where YE is the concatenation at t = 0 of two processes (YE(t), t ≥ 0) and
(YE(−t), t ≥ 0) with explicit laws. The precise definition of YE requires some no-
tations and is given in Sect. 9.1.

Theorem 3 (Shape) In the Bulk and the Crossover regimes, the random measure

NL :=
∑
i≥1

δ(Ln(E)(λi−E),Ui/L,wi) ,

converges in law as L→∞ to a Poisson random measure on R× [−1/2,1/2] ×M
of intensity dλ ⊗ du ⊗ σE in the Bulk regime and of intensity dλ ⊗ du⊗ σ∞ in the
Crossover regime.

Here NL is seen as a random element of the set of measures on R×[−1/2,1/2]×
M that give finite mass to K ×[−1/2,1/2]×M, for any given compact set K ⊂ R.
The topology considered in the convergence above is then the smallest topology on
this set of measures that makes continuous the maps m �→ 〈f,m〉, for every bounded
and continuous function f : R× [−1/2,1/2] ×M→ R that is compactly supported
in its first coordinate.

Let us make some comments on the limits of these eigenfunctions. First of all, the
localization length is of order 1 in the Bulk regime and E in the Crossover regime:
this is in line with the exponential decay of Theorem 2. Moreover, this localisation
length increases with the level of energy, and this is coherent with the general fact
that: the lower we look into the spectrum, the more localized the eigenfunctions are.
Second, it suggests that for E of order L the eigenfunctions are no longer localized:
this is rigorously proved in our companion paper [9].

Remark 2.1 Informally, our result shows that in the Crossover regime the eigenfunc-
tion ϕλ, properly rescaled, converges as a probability measure towards Y∞ (rescaled
by its L2 mass). It is possible to go further. Introduce the distorted polar coordinates
ϕ′

λ

E
+ iϕλ = rλe

iθλ and note that the phase θλ oscillates very fast (as soon as E →∞).
After removing deterministic oscillations from the phase θλ, the arguments presented
in this article can be adapted to show that it converges towards a non-trivial limiting
phase. Moreover, the modulus rλ, after a proper rescaling, converges to

√
2Y∞.

We now outline the remaining of this article. We introduce in Sect. 3 the diffusions
associated to our eigenvalue equation as they play a central role in this article. Then
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we detail in Sect. 4 our strategy of proof: this section presents the main intermediate
results of this paper and contains the proofs of Theorems 1, 2 and 3. The subsequent
sections are then devoted to proving these intermediate results, more details on their
contents and relationships will be given at the end of Sect. 4.

3 The diffusions

The eigenvalue problem associated to the operator HL gives rise to a family yλ, λ ∈ R
of ODEs, corresponding to the solution of the eigenvalue equation:

−y′′λ(t)+ ξ(dt)yλ(t)= λyλ(t) , t ∈ (−L/2,L/2) . (6)

Up to fixing two degrees of freedom there is a unique solution to this equation for ev-
ery parameter λ ∈ R. If we fix the starting conditions yλ(−L/2)= 0 and y′λ(−L/2) to
an arbitrary value different from 0, then the map λ �→ yλ(L/2) is continuous. The ze-
ros of this map are the eigenvalues of HL, and the corresponding solutions yλ are the
eigenfunctions of HL (which are defined up to a multiplicative factor corresponding
to y′λ(−L/2) of course).

It is crucial in our analysis to consider the evolution of both yλ and y′λ, and this is
naturally described by the complex function y′λ+ iyλ. It will actually be convenient to
work in polar coordinates (also called Prüfer variables): we consider (rλ, θλ) where

y′λ + iyλ = rλe
iθλ .

The process θλ is called the phase of the above ODE. It is instrumental for the study
of the spectrum of HL as we will see later on. It is also convenient to define

ρλ(t) := ln r2
λ(t) .

In these new coordinates, we have the following coupled stochastic differential equa-
tions:

dθλ(t)=
(
1 + (λ− 1) sin2 θλ + sin3 θλ cos θλ

)
dt − sin2 θλdB(t) , (7)

dρλ(t)=
(− (λ− 1) sin 2θλ − 1

2
sin2 2θλ + sin2 θλ

)
dt + sin 2θλdB(t) . (8)

where dB(t)= ξ(dt).
The two degrees of freedom given by the initial conditions yλ(−L/2) and

y′λ(−L/2) are transferred to θλ(−L/2) and rλ(−L/2) (or equivalently ρλ(−L/2)).
Note that

yλ(−L/2)= 0 & y′λ(−L/2) > 0

⇐⇒ θλ(−L/2)≡ 0[2π] & rλ(−L/2)= y′λ(−L/2) ,

while

yλ(−L/2)= 0 & y′λ(−L/2) < 0

⇐⇒ θλ(−L/2)≡ π[2π] & rλ(−L/2)=−y′λ(−L/2) .
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For any angle θ ∈ R, we define

�θ�π := �θ/π� ∈ Z , and {θ}π := θ − �θ�ππ ∈ [0,π) .

Let us point out an important property of the process θλ: at the times t such that
{θλ(t)}π = 0, the drift term is strictly positive while the diffusion coefficient vanishes.
Consequently {θλ}π cannot hit 0 from above: this readily implies that t �→ �θλ(t)�π is
non-decreasing. Moreover, the evolution of θλ depends only on {θλ}π so that the latter
is a Markov process. We let pλ,t (θ0, θ) be the density of its transition probability at
time t when it starts from θ0 at time 0. When this process starts from 0 at time 0, we
drop the first variable and simply write pλ,t (θ).

At some occasions, we will write P(t0,θ0) for the law of the process θλ starting
from θ0 at time t0, and we will write P(t0,θ0)→(t1,θ1) to denote the law of the bridge of
diffusion that starts from θ0 at time t0 and is conditioned to reach θ1 + πZ at time t1.

Most of the time, we will take θλ(−L/2)= 0 and rλ(−L/2) > 0. In this setting, λ

is an eigenvalue of HL iff {θλ(L/2)}π = 0 and then, the function yλ is the associated
eigenfunction. Since λ �→ �θλ(L/2)�π is non-decreasing, we deduce the so-called
Sturm-Liouville property: almost surely,

#{λi : λi ≤ λ} = �θλ(L/2)�π , for all λ ∈ R , (9)

This phase function θλ(·) is a powerful tool to investigate the spectrum of HL. It
has been used in numerous articles on 1d-Schrödinger operators, sometimes under
the form of the so-called Riccati transform y′λ/yλ which is nothing but cotan θλ.

3.1 The distorted coordinates

For large energies, that is, whenever λ is of order E for some E = E(L) →∞, the
phase θλ takes a time of order 1/

√
E to make one rotation so that the solutions yλ, y′λ

oscillate very fast. It is then more convenient to use distorted and sped up coordinates.
We set

y′λ(tE)√
E

+ iyλ(tE)=: r(E)
λ (t)eiθ

(E)
λ (t) , t ∈ [−L/(2E),L/(2E)] ,

and

y
(E)
λ (t) := r

(E)
λ (t) sin θ

(E)
λ (t) ,

(y
(E)
λ )′(t)=E3/2r

(E)
λ (t) cos θ

(E)
λ (t) , t ∈ [−L/(2E),L/(2E)] .

Defining the Brownian motion B(E)(t) = E−1/2B(tE) and setting ρ
(E)
λ :=

ln(r
(E)
λ )2, the evolution equations take the form

dθ
(E)
λ =

(
E3/2 +√

E(λ−E) sin2 θ
(E)
λ + sin3 θ

(E)
λ cos θ

(E)
λ

)
dt

− sin2 θ
(E)
λ dB(E)(t) ,
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dρ
(E)
λ = (−√

E(λ−E) sin 2θ
(E)
λ − 1

2
sin2 2θ

(E)
λ + sin2 θ

(E)
λ

)
dt

+ sin 2θ
(E)
λ dB(E)(t) .

Let p
(E)
λ,t (θ0, θ) be the density of the transition probability at time t of the processes

{θ(E)
λ }π starting from θ0 at time t = 0. When this process starts from 0 at time 0, we

drop the first variable and simply write p
(E)
λ,t (θ). The change of variable formula

shows that

p
(E)
λ,t (θ)= pλ,tE(arccotan (

√
Ecotan θ))

√
E

sin2 θ +E cos2 θ
. (10)

Again, we use the notation P(t0,θ0), resp. P(t0,θ0)→(t1,θ1), to denote the law of the
diffusion, resp. bridge of diffusion.

3.2 Condensed notation

The distorted coordinates will be used in the Crossover regime, while we will rely
on the original coordinates in the Bulk regime. However most of our arguments apply
indifferently to both cases. Consequently, we will adopt condensed notations as much
as possible. First we introduce

E :=
{

1 original coordinates ,

E distorted coordinates .

Moreover, when the arguments apply to both sets of coordinates, we will use the
generic notation θ

(E)
λ , ρ

(E)
λ to denote θλ, ρλ in the original coordinates, and θ

(E)
λ ,

ρ
(E)
λ in the distorted coordinates. We will sometimes introduce quantities of interest

such as processes, measures, etc. using the generic notation at once. For instance, we
could have introduced the SDE satisfied by θλ, ρλ and θ

(E)
λ , ρ

(E)
λ by simply writing

dθ
(E)
λ =

(
E3/2 +√

E(λ− E) sin2 θ
(E)
λ + sin3 θ

(E)
λ cos θ

(E)
λ

)
dt − sin2 θ

(E)
λ dB(E)(t) ,

(11)

dρ
(E)
λ = (−√

E(λ− E) sin 2θ
(E)
λ − 1

2
sin2 2θ

(E)
λ + sin2 θ

(E)
λ

)
dt + sin 2θ

(E)
λ dB(E)(t) .

(12)

3.3 Invariant measure

The Markov process {θ(E)
λ }π admits a unique invariant probability measure whose

density μ
(E)
λ has a simple integral expression, see Sect. A.4 of the Appendix for more

details. Straightforward computations relying on this expression show the following
estimates:
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Lemma 3.1 (Bounds on the invariant measure) Original coordinates. For any com-
pact interval � ⊂ R, there are two constants 0 < c < C such that for all θ ∈ [0,π)

and all λ ∈� we have

c ≤ μλ(θ) < C , |∂θμλ(θ)|< C .

Distorted coordinates. For any h > 0 there are two constants c,C > 0 such that for
all E > 1, all θ ∈ [0,π) and all λ ∈� := [E − h

En(E)
,E + h

En(E)
]

c ≤ μ
(E)
λ (θ) < C , |∂θμ

(E)
λ (θ)|< C .

Finally, we have as E →∞

sup
λ∈�

sup
θ∈[0,π)

|∂θμ
(E)
λ (θ)| → 0 , sup

λ∈�

sup
θ∈[0,π)

∣∣μ(E)
λ (θ)− 1

π

∣∣→ 0 .

The last convergence shows that our distorted coordinates are the “right ones” in
the Crossover regime: as E →∞ the corresponding invariant measure converges to
a non-degenerate limit given by the uniform measure on the circle.

Remark 3.2 The length of � is of order 1 for the original coordinates and of order
E−1/2 in the distorted coordinates. The parameter L does not play any role in this
setting. This should not be confused with the setting of Theorem 2 (and of many
other estimates/statements of the article) where we consider an interval � on length
1/L� 1 in the Bulk regime and of order E1/2/L�E−1/2 in the Crossover regime.

3.4 Rotation time and density of states

Let us introduce the first rotation time of the diffusion θ
(E)
λ

ζ
(E)
λ := inf{t ≥ 0 : θ(E)

λ (t)= θ
(E)
λ (0)+ π} .

Lemma 3.3 The law of ζ
(E)
λ is independent of the initial condition θ

(E)
λ (0).

Proof Write θ
(E)
λ (0) = nπ + θ with θ ∈ [0,π[ and n ∈ Z. Introduce Hπ := inf{t ≥

0 : θ(E)
λ (t) = (n + 1)π} and H ′

θ := inf{t ≥ 0 : θ(E)
λ (t + Hπ) = θ

(E)
λ (0) + π}. By the

strong Markov property, H ′
θ is independent of Hπ . Furthermore, H ′

θ has the same law
as T0,θ , and Hπ has the same law as Tθ,π where Tθ0,θ1 is the first hitting time of θ1
for the diffusion starting from θ0.

We thus showed that ζ
(E)
λ =Hπ +H ′

θ has the same law as T0,θ + Tθ,π where Tθ,π

is independent of T0,θ . But the strong Markov property implies that T0,θ + Tθ,π has
the law of ζ

(E)
λ when θ

(E)
λ (0)= 0, thus concluding the proof. �

As a consequence the expectation of ζ
(E)
λ does not depend on the initial condition

and we thus set

m
(E)
λ := E[ζ (E)

λ ] .
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This expectation of the rotation time admits the following integral expression

m
(E)
λ =

√
2π

E

∫ ∞

0

1√
u

exp(−2λu− u3

6
)du . (13)

In the original coordinates, this expression is established in [2]. On the other hand,
the mere definition of our distorted coordinates implies that ζ

(E)
λ is equal in law to

ζλ/E, so that m
(E)
λ =mλ/E and the integral expression follows in this case as well.

Note that mλ is nothing but 1/N(λ), that is, the inverse of the integrated density of
states introduced in (2). Indeed, by the law of large numbers, the number of rotations
of θλ on the interval [−L/2,L/2] is of order L/mλ, so that the Sturm-Liouville
property recalled above implies that the number of eigenvalues of HL that lie below
λ is of the same order.

From the integral expression, one can check that

mλ ∼ π√
λ

, λ→∞ . (14)

and this allows to recover the asymptotic of N(λ) stated in the introduction. Let us
finally mention that some moment estimates on ζ

(E)
λ are presented in Appendix A.3.

3.5 Forward and backward diffusions

We introduce in this paragraph the so-called forward and backward diffusions as
their concatenation will be instrumental in our study. Let us consider the original
coordinates first.

The eigenproblem is symmetric in law under the map t �→ −t since B ′(·) and
B ′(−·) have the same law. To take advantage of this symmetry, we consider the solu-

tions (r±λ = e
1
2 ρ±

λ , θ±λ ) of

dθ±λ (t)=
(

1 + (λ− 1) sin2 θ±λ + sin3 θ±λ cos θ±λ
)
dt − sin2 θ±λ dB±(t) , (15)

dρ±
λ (t)= (− (λ− 1) sin 2θ±λ − 1

2
sin2 2θ±λ + sin2 θ±λ

)
dt + sin 2θ±λ dB±(t) , (16)

for t ∈ [−L/2,L/2] where

B+(t) := B(t) , B−(t) := B(L/2)−B(−t) .

The processes (r+λ , θ+λ ) will be called the forward diffusions, while (r−λ , θ−λ ) will
be called the backward diffusions. We also introduce (y±λ )′ + iy±λ := r±λ exp(iθ±λ ).
Of course the forward diffusions coincide with the original diffusions (rλ, θλ).

Take θ+λ (−L/2) = θ−λ (−L/2) = 0. We have already seen that λ is an eigenvalue
of HL if and only if {θ+λ (L/2)}π = 0. From the symmetry of the eigenvalue problem,
we can also read off the set of eigenvalues out of the backward diffusions: namely, λ

is an eigenvalue if and only if {θ−λ (L/2)}π = 0.
It will actually be convenient to combine these two criteria in the following way:

one follows the forward diffusion up to some given time u ∈ [−L/2,L/2], and the
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backward diffusion up to time −u. The set of eigenvalues can then be read off using
the following fact (whose proof is postponed below):

Lemma 3.4 Take θ±λ (−L/2)= 0. It holds:

λ is an eigenvalue of HL if and only if {θ+λ (u)+ θ−λ (−u)}π = 0 .

It is therefore natural to consider concatenations of the forward and backward
diffusions. For any time u ∈ [−L/2,L/2], we set:

r+λ (u)= r−λ (−u)= 1 , (17)

and we define4

(r̂λ(t), θ̂λ(t)) :=
{

(r+λ (t), θ+λ (t)), t ∈ [−L/2, u] ,
(r−λ (−t), kπ − θ−λ (−t)), t ∈ (u,L/2] , (18)

where k := �θ+λ (u) + θ−λ (−u)�π . Note that r̂λ, θ̂λ depend on u, but for notational
convenience we omit writing explicitly this dependence.

We also define the process ŷλ by setting

ŷλ(t) := r̂λ(t) sin θ̂λ(t) . (19)

Using the identity (r±λ (t) sin θ±λ (t))′ = r±λ (t) cos θ±λ (t), we deduce that for all t ∈
[−L/2,L/2]\{u}

(ŷλ)
′(t)= r̂λ(t) cos θ̂λ(t) ,

and that this identity remains true at u+ and u−, with possibly a discontinuity there.
When λi is an eigenvalue, denoting ‖ · ‖2 the L2-norm, we have the identity (valid
for all u ∈ [−L/2,L/2]):

ϕi(t)= ŷλi
(t)

‖ŷλi
‖2

, t ∈ [−L/2,L/2] .

Proof of Lemma 3.4 If λ is an eigenvalue of HL, and provided {θ±λ (−L/2)}π = 0, the
functions y+λ and y−λ (−·) coincide up to a multiplicative factor (which is related to
the values r±λ (−L/2)). Consequently if λ is an eigenvalue then we must have the
following equality in {−∞} ∪ R

lim
ε↓0

(y+λ )′(u− ε)

y+λ (u− ε)
=− lim

ε↓0

(y−λ )′(−u+ ε)

y−λ (−u+ ε)
.

This is equivalent to cotan (θ+λ (u−))= cotan (π − θ−λ ((−u)+)), which is itself equiv-
alent to {θ+λ (u−)}π = {π − θ−λ ((−u)+)}π . Note that {θ+λ (u−)}π = {θ+λ (u)}π , and

4One role of the parameter k is to ensure consistency of the sign of the process ŷλ in the particular case
where λ is an eigenvalue.
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similarly {π − θ−λ ((−u)+)}π = {π − θ−λ (−u)}π . We end up with {θ+λ (u)}π = {π −
θ−λ ((−u))}π which is equivalent to {θ+λ (u)+ θ−λ (−u)}π = 0.

On the other hand, if {θ+λ (u) + θ−λ (−u)}π = 0 then the concatenation ŷλ is
continuously differentiable at u (recall that r±λ (±u) = 1), satisfies (6) at all points
t ∈ [−L/2,L/2] and satisfies the Dirichlet b.c., consequently λ is an eigenvalue. �

With distorted coordinates, all the above quantities find naturally their coun-
terparts. For u ∈ [−L/(2E),L/(2E)], we denote by ŷ

(E)
λ , r̂

(E)
λ , θ̂

(E)
λ the con-

catenation of the respective backward θ
−,(E)
λ and forward diffusions θ

+,(E)
λ on

[−L/(2E),L/(2E)]. In particular, ŷ
(E)
λ = r̂

(E)
λ sin θ̂

(E)
λ , (ŷ

(E)
λ )′/E3/2 = r̂

(E)
λ cos θ̂

(E)
λ

and when {θ±λ (−L/2)}π = 0, the link between ŷ
(E)
λi

and ϕi becomes:

ϕi(t)=
ŷ

(E)
λi

(t/E)
√

E‖ŷ(E)
λi

‖2

, t ∈ [−L/2,L/2] .

For both sets of coordinates and for any u ∈ [−L/(2E),L/(2E)] we will denote by
P

(u)

θ,θ ′ the product law P
+
(−L/(2E),0)→(u,θ)

⊗ P
−
(−L/(2E),0)→(−u,θ ′) under which θ

±,(E)
λ

are two independent bridges of diffusion between (−L/(2E),0) and (u, θ + πZ) for
θ
+,(E)
λ , and between (−L/(2E),0) and (−u, θ ′ + πZ) for θ

−,(E)
λ . Then, the processes

r̂
(E)
λ , θ̂ (E)

λ and ŷ
(E)
λ are defined under P(u)

θ,θ ′ according to (18) and (19) with the original
coordinates, and according to similar equations with distorted coordinates.

4 Strategy of proof

4.1 Convergence to equilibrium of the phase

Our proofs rely on the following exponential convergence of the transition probability
of the phase θ

(E)
λ toward its equilibrium measure μ

(E)
λ .

Theorem 4 (Exponential convergence to the invariant measure) In the original co-
ordinates, fix a compact set of energies �. Then there exist c,C > 0 such that for all
t ≥ 1

sup
λ∈�

sup
θ0,θ∈[0,π]

|pλ,t (θ0, θ)−μλ(θ)| ≤ ce−C t .

In the distorted coordinates, fix h > 0 and set � = [E − h
n(E)E

,E + h
n(E)E

]. There
exist c,C > 0 such that uniformly over all E > 1 and for all t ≥ 1

sup
λ∈�

sup
θ0,θ∈[0,π]

|p(E)
λ,t (θ0, θ)−μ

(E)
λ (θ)| ≤ ce−C t .

The proof of this estimate is delicate, especially in the distorted coordinates since
the bound is uniform over all E ∈ [1,∞). The proof relies on tools from Malliavin
calculus and the theory of hypocoercivity, it is an important technical step in our arti-
cle. This result will be crucial for deriving the exponential decay of the eigenfunctions
and evaluating the expectation of the number of eigenvalues in small intervals.
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4.2 Goldscheid-Molchanov-Pastur (GMP) formula

We have seen that the Sturm-Liouville property allows to extract a lot of spectral in-
formation from the phase function. A major observation on which this article relies is
that we can extract even more information through a beautiful formula, originally ob-
tained by Goldscheid, Molchanov and Pastur [15] in a similar but smoother context,
and that we name GMP formula from now on. This formula expresses the intensity
of the point process

∑
i≥1

δ(λi ,ϕi ,ϕ
′
i )

in terms of concatenations of the forward and backward diffusions introduced earlier.
Roughly speaking, it shows that in average the eigenfunctions are concatenations of
the forward and backward diffusions at uniform points u ∈ (−L/2,L/2). Below ‖·‖2
denotes the L2-norm.

Proposition 4.1 (GMP formula) Let D be the Skorohod space of càdlàg functions on
[−L/2,L/2]. For any measurable map G from R×D×D into R+, with the original
coordinates we have

E
[∑

i≥1

G(λi,ϕi, ϕ
′
i )

]=
∫ L

2

u=−L
2

∫
λ∈R

∫ π

θ=0
p

λ, L
2 +u

(θ)p
λ, L

2 −u
(π − θ) sin2 θ

×E
(u)
θ,π−θ

[
G

(
λ,

ŷλ

‖ŷλ‖2
,

(ŷλ)
′

‖ŷλ‖2

)]
dθ dλdu ,

and with the distorted coordinates this becomes

E
[∑

i≥1

G
(
λi, ϕi, ϕ

′
i

)]=√
E

∫ L
2E

u=− L
2E

∫
λ∈R

∫ π

θ=0
p

(E)

λ, L
2E

+u
(θ)p

(E)

λ, L
2E

−u
(π − θ) sin2 θ

×E
(u)
θ,π−θ

[
G

(
λ,

ŷ
(E)
λ (·/E)√
E‖ŷ(E)

λ ‖2

,
(ŷ

(E)
λ )′(·/E)

E3/2‖ŷ(E)
λ ‖2

)]
dθ dλdu .

To exploit this formula, one needs to analyze both the transition probabilities of
the phase and the concatenation ŷ

(E)
λ for λ in the regime of energies under consider-

ation. Regarding the transition probabilities, Theorem 4 allows to replace them, up
to an error that vanishes as L →∞, by the equilibrium measure whose expression
is explicit. On the other hand, the concatenation of the diffusions can be thoroughly
studied since the SDEs at stake are tractable.

Taking G = 1�(λ), we will derive a Wegner estimate, that is an estimate on the
number of eigenvalues in small (microscopic) intervals: this will be an important
ingredient for the convergence to a Poisson point process, see Sect. 4.4. Studying
carefully the concatenation ŷ

(E)
λ , we will prove the exponential decay of the eigen-

functions and we will derive their asymptotic behavior, see the next paragraph.
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4.3 Exponential decay

Until the end of Sect. 4, we are given a function E =E(L) of L that satisfies either

1. Bulk regime: E is fixed with respect to L,
2. Crossover regime: E =E(L) satisfies 1 �E � L,

and all the forthcoming estimates lie in that setting.
Let us fix again h > 0 and let � := [E − h

Ln(E)
,E + h

Ln(E)
]. Introduce

νE :=
{

νE Bulk regime ,

1 Crossover regime ,
(20)

where νE was defined in (3). As we will see in Sect. 7.2, this quantity is related to
the Lyapunov exponent of our diffusions, that is, the rate of linear growth in time of
ln r

(E)
λ (t).
The main technical step towards the exponential decay is the following result:

Proposition 4.2 (Exponential decay of the eigenfunctions) In the Bulk and Cros-
sover regimes, for any ε > 0 small enough, there exists q0(ε) > 0 such that for all
q ∈ [0, q0(ε)]

lim sup
L→∞

E

[ ∑
λi∈�

(
inf

u∈[−L/2,L/2]Gu(λi, ϕi, ϕ
′
i )

)q
]

<∞ ,

where

Gu(λ,ϕ,ψ) := sup
t∈[−L

2 , L
2 ]

(
ϕ2(t)+ ψ2(t)

E

)1/2√
E e

1
2 (νE−ε)

|t−u|
E .

With this result at hand, we can present the proof of the exponential decay of the
eigenfunctions.

Proof of Theorem 2 Fix ε > 0 small enough. From the last proposition, we deduce
that for every eigenvalue λi ∈� there exists Ũi (depending on ε) such that

(
ϕi(t)

2 + ϕ′
i (t)

2

E

)1/2 ≤ c̃i√
E

exp
(
− (νE − ε)

2

|t − Ũi |
E

)
, ∀t ∈ [−L/2,L/2] ,

where c̃i := infu∈[−L/2,L/2] Gu(λi, ϕλi
, ϕ′

λi
). Recentering the exponential term at Ui ,

we obtain

(
ϕi(t)

2 + ϕ′
i (t)

2

E

)1/2 ≤ ci√
E

exp
(
− (νE − ε)

2

|t −Ui |
E

)
, ∀t ∈ [−L/2,L/2] ,

with ci = c̃i exp
(

(νE−ε)
2

|Ũi−Ui |
E

)
. We need some control on the distance Ũi − Ui

to conclude the proof. From the definition of Ui and since ϕ2
i (t)dt is a probability
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measure, we have

Ũi −Ui =
∫

(Ũi − t)ϕ2
i (t)dt .

By Jensen’s inequality, we thus have for any a ∈ (0,νE − ε)

exp
(
a
|Ũi −Ui |

E

)
≤

∫
exp

(
a
|Ũi − t |

E

)
ϕ2

i (t)dt

≤ c̃i
2

E

∫
exp

(
(a − (νE − ε))

|Ũi − t |
E

)
dt

≤ 2
c̃i

2

νE − ε − a
.

From the bound of the proposition, we already know that

lim sup
L→∞

E

[ ∑
λi∈�

c̃
q
i

]
<∞ .

Using the previous bound, this remains true with ci instead of c̃i , up to decreasing
q . �

The main ideas of the proof of Proposition 4.2 are simple. First of all, we apply
the GMP formula to rephrase our statement on the eigenfunctions in terms of the con-
catenation of the forward/backward processes. Second, we establish precise moment
bounds on the exponential growth of r

(E)
λ . Third, we transfer these estimates to the

concatenation ŷ
(E)
λ . We refer to Sect. 7 for the details.

4.4 Poisson statistics

Obviously, Theorem 3 implies Theorem 1 so we concentrate on the former statement.
The argument is twofold. First, we introduce an approximation N̄L of the random
measure NL that possesses more independence, and we prove that it converges to the
Poisson random measure of the statement. Second we show that NL − N̄L goes to 0.

There are some topological difficulties arising in the spaces at stake, which will be
explained in more details in the proof of Theorem 3, see below. For the time being, we
view the r.v. NL and N̄L as random Radon measures on R × [−1/2,1/2] ×M(R̄),
where M̄ :=M(R̄), the set of probability measures on R̄ endowed with the topology
of weak convergence, and where R̄ is the compactification of R.

Let us present the approximation scheme that leads to the definition of N̄L. We
subdivide the interval (−L/2,L/2) into k (microscopic) disjoint boxes (tj−1, tj )

where tj = −L/2 + jL/k and where k = k(L) is a quantity that goes to +∞ at

a sufficiently small speed.5 We consider the Anderson Hamiltonian H(j)
L =−∂2

x + ξ

5Restrictions on the speed of k are collected in Sects. 8 and 9.
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restricted to (tj−1, tj ) with Dirichlet b.c., and we denote by λ
(j)
i its eigenvalues, ϕ

(j)
i

its eigenfunctions, Ui
(j) its centers of mass and w

(j)
i (dt)= Eϕ

(j)
i (Ui

(j)+E t)2dt the

associated probability measure (after recentering at U
(j)
i ). We then define

N (j)
L :=

∑
i

δ
(Ln(E)(λ

(j)
i −E),U

(j)
i /L,w

(j)
i )

,

as well as

N̄L :=
k∑

j=1

N (j)
L . (21)

Proposition 4.3 In the Bulk and Crossover regimes, provided k →∞ slowly enough,
the random measure NL − N̄L converges in law to the null measure as L→∞.

The proof of this proposition is presented in Sect. 9.3 and relies on two inputs:
(1) the eigenfunctions of HL and H(j)

L are exponentially localized, (2) N̄L converges
to a Poisson random measure. Point (1) is the content of the previous proposition
(the exponential localization of the eigenfunctions of H(j)

L holds for exactly the same
reasons). Point (2) is proven below. Given these two inputs, the proof of Proposition
4.3 consists in building a one-to-one correspondence between the atoms of NL and
N̄L, when these measures are restricted to some arbitrary set [−h,h]×[−1/2,1/2]×
M̄, and to show that the corresponding pairs of atoms are close in the topology at
stake.

Let us now explain the main steps towards the convergence of N̄L to a Poisson
random measure. We fix a constant h > 0 (independent of L) and define the interval
of energies

� :=
[
E − h

Ln(E)
,E + h

Ln(E)

]
. (22)

For convenience, we set

NL(�) := #{λi ∈�} =
∫

1[−h,h](λ)NL(dλ, dx, dw) , (23)

as well as

N
(j)
L (�) := #{λ(j)

i ∈�} =
∫

1[−h,h](λ)N (j)
L (dλ, dx, dw) . (24)

First, we control the second moments of N
(j)
L (�). Note that the N

(j)
L (�) are i.i.d.,

so it suffices to consider j = 1. (We also state a similar estimate on NL(�) for later
convenience).

Proposition 4.4 In the Bulk and Crossover regimes, provided k →∞ slowly enough,
we have

lim sup
L→∞

E[NL(�)2]<∞ , lim sup
L→∞

k E[N(1)
L (�)2]<∞ .
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Second, we show that, with large probability, every box (tj−1, tj ) contains at most
one eigenvalue that lies in the interval of energy �.

Proposition 4.5 (Minami estimate) In the Bulk and Crossover regimes, provided k →
∞ slowly enough,

lim
L→∞ kP(N

(1)
L (�)≥ 2)= 0 .

Our proof of this two points estimate, which is usually named after Minami [26],
is technically involved and appears as one of the main achievements of this paper.
As mentioned in the introduction, it relies on probabilistic tools, and can be viewed
as an alternative approach to the strategy of proof of Molchanov [28] (in a smoother
context). The proofs of Propositions 4.4 and 4.5 are given in Sect. 8.

Remark 4.6 The arguments presented in the proof are sufficient to prove the stronger
statement: there exists C > 0 such that for all L large enough

E

[
N

(1)
L (�)

(
N

(1)
L (�)− 1

)]≤ Cn(E)2
(L

k

)2|�|2 .

This is another form of the so-called Minami estimate.

Third, we identify the limit of the intensity measure of N̄L. Let σE be the measure
σE (introduced in (5)) in the Bulk regime, and σ∞ (defined in (4)) in the Crossover
regime. Note that the definition in the Bulk regime will be given in Sect. 9, while the
definition in the Crossover regime was presented above Theorem 3.

Proposition 4.7 (Intensity of N̄L) In the Bulk and Crossover regimes, provided
k →∞ slowly enough, for any compactly supported, continuous function f : R ×
[−1/2,1/2] × M̄→ R, we have

lim
L→∞E

[∫
f dN̄L

]
=

∫
R×[− 1

2 , 1
2 ]×M̄

f dλ⊗ dx ⊗ σE .

The proof of this proposition is presented in Sect. 9.1: it combines many different
arguments and definitions introduced earlier in the article.

Proofs of Theorems 1 and 3 As already explained, it suffices to concentrate on the
stronger statement given by Theorem 3. Let us now explain the topological difficul-
ties at stake. The space M(R) is not locally compact so that the tightness of (NL)L≥1
or (N̄L)L≥1 is not elementary in R × [−1/2,1/2] ×M(R). One option would have
been to prove directly this tightness (using the exponential decay of the eigenfunc-
tions), but we prefer a simpler point of view. Namely, we deal with M̄ :=M(R̄), the
set of probability measures on R̄ endowed with the topology of weak convergence,
where R̄ is the compactification of R. Note that M(R̄) is compact. We then view the
r.v. NL and N̄L as random Radon measures on R×[−1/2,1/2]×M(R̄), so that we
are in a more common setting to prove convergences. It can be checked that if the
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convergence of Theorem 3 holds in R × [−1/2,1/2] ×M(R̄), then it also holds in
R × [−1/2,1/2] ×M(R).

Given Proposition 4.3, we only need to show that N̄L converges to a Poisson
random measure of intensity dλ⊗dx⊗σE . By standard criteria, see for instance [19,
Th 16.16], the convergence follows if we can show that for any given compactly
supported, continuous function f : R × [−1/2,1/2] × M̄→ R we have

E

[
exp

(
i

∫
f dN̄L

)]
→ exp

(∫
R×[− 1

2 , 1
2 ]×M̄

(eif − 1)dλ⊗ dx ⊗ σE

)
.

We fix such a function and concentrate on the proof of this convergence. From the
independence of the N (j)

L we have

E

[
exp

(
i

∫
f dN̄L

)]
=

k∏
j=1

E

[
exp

(
i

∫
f dN (j)

L

)]
. (25)

Choose h > 0 large enough such that f (λ, ·, ·) = 0 whenever λ /∈ [−h,h], and set
� as in (22). The main observation is that on the event {N(j)

L (�) = 1}, the random

measure N (j)
L has at most one atom on the support of f and therefore on this event

exp
(
i

∫
f dN (j)

L

)
− 1 =

∫
(eif − 1)dN (j)

L .

We can therefore write

exp
(
i

∫
f dN (j)

L

)
= 1{N(j)

L (�)=0} + 1{N(j)
L (�)≥1} exp

(
i

∫
f dN (j)

L

)

= 1 + 1{N(j)
L (�)≥1}

(
exp

(
i

∫
f dN (j)

L

)
− 1

)

= 1 + 1{N(j)
L (�)=1}

∫
(eif − 1)dN (j)

L

+ 1{N(j)
L (�)≥2}

(
exp

(
i

∫
f dN (j)

L

)
− 1

)
.

The third term on the r.h.s. is bounded by a constant (independent of j and L) times
1{N(j)

L (�)≥2}, so that by Proposition 4.5 its expectation is negligible compared to 1/k.

We write the expectation of the second term

E

[
1{N(j)

L (�)=1}

∫
(eif − 1)dN (j)

L

]
= E

[∫
(eif − 1)dN (j)

L

]

−E

[
1{N(j)

L (�)≥2}

∫
(eif − 1)dN (j)

L

]
.



366 L. Dumaz, C. Labbé

Set C := ‖eif − 1‖∞ < ∞. Using Proposition 4.4 there exists C′ > 0 such that for
all L large enough

E

[∫
(eif − 1)dN (j)

L

]
≤ CE

[
N

(j)
L (�)

]≤ CE
[
N

(j)
L (�)2]≤ C′

k
.

Moreover
∣∣∣E

[
1{N(j)

L (�)≥2}

∫
(eif − 1)dN (j)

L

]∣∣∣≤ CE[1{N(j)
L (�)≥2}N

(j)
L (�)]

≤ C P(N
(j)
L (�)≥ 2)1/2

E[N(j)
L (�)2]1/2 .

By Propositions 4.4 and 4.5, this last term is negligible compared to 1/k, uniformly
over all j and L large enough. Putting everything together, we obtain

lnE
[

exp(i

∫
f dN (j)

L )
]
= ln

(
1 +E

[∫
(eif − 1)dN (j)

L

]
+ o(1/k)

)

= E

[∫
(eif − 1)dN (j)

L

]
+ o(1/k)

uniformly over all j and all L large enough. Plugging this identity into (25), we get

lnE
[

exp
(
i

∫
f dN̄L

)]
=

∑
j

E

[∫
(eif − 1)dN (j)

L

]
+ o(1)

= E

[∫
(eif − 1)dN̄L

]
+ o(1) ,

which converges to the desired limit by Proposition 4.7 (note that eif −1 is compactly
supported, since f (λ, ·, ·)= 0 whenever λ /∈ [−h,h]). �

The remaining sections are organized as follows. In Sect. 5, we prove the conver-
gence to equilibrium stated in Theorem 4. In Sect. 6, we establish the GMP formula
of Proposition 4.1 and collect some corollaries. In Sect. 7 we prove Proposition 4.2
on the exponential decay of the eigenfunctions. In Sect. 8 we establish the estimates
on N

(j)
L (�) stated in Propositions 4.4 and 4.5. These four sections can be read inde-

pendently of each other.
On the other hand, Sect. 9, where the proofs of Proposition 4.3 and 4.7 are pre-

sented, relies extensively on definitions and intermediate results collected in Sect. 7.
In order not to interrupt the flow of arguments, we have postponed to Appendix A

some technical (but elementary) results used along the article.

5 Convergence to equilibrium

The goal of this section is to prove Theorem 4. This result is delicate for three reasons.
First we stated L∞ bounds on the density thus requiring much finer control than the
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more usual total-variation bounds. Second, the (generator of the) diffusion that we
are considering is not uniformly elliptic, but simply hypoelliptic, thus making both
regularization and convergence estimates delicate. Third for E →∞, the drift term
of the diffusion θ

(E)
λ is unbounded and makes the process rotate very fast on the

circle: it is then a priori unclear whether one can obtain bounds on the density that
are uniform over E > 1.

The proof consists of two distinct steps. First, we show quantitative regularization
estimates on the density of the diffusion. The existence and the smoothness of the
density at any time t > 0 is due to the hypoellipticity of the associated generator
and follows from Hörmander’s Theorem [16]. However this result does not provide
any quantitative estimate on this density: this is problematic in particular in the case
where E →∞. We establish a quantitative estimate using Malliavin calculus (which
was originally introduced to give a probabilistic proof of Hörmander’s Theorem).

Second, we show exponential convergence to equilibrium in H 1: by Sobolev em-
bedding, this readily implies exponential convergence in L∞. From the first step, we
know that at a time of order 1, the H 1-norm of the density is itself of order 1. To
establish an exponential convergence to equilibrium, one would use coercivity in H 1

of the (adjoint in L2(μ
(E)
λ ) of the) generator of the diffusion: however the lack of

ellipticity prevents one from getting this coercivity. We thus rely on hypocoercivity
techniques following Villani’s monograph [35]: we identify a “twisted” H 1-norm,
equivalent to the original one, in which the (adjoint in L2(μ

(E)
λ ) of the) generator of

the diffusion is coercive. In particular, when working with distorted coordinates, we
obtain a control on the coercivity constant which is uniform over E > 1.

From now on, all the functions are defined on the circle R/πZ and take values in
R. We will denote by Ck the space of k-times continuously differentiable functions
on the circle. Furthermore “uniformly over all parameters” will mean uniformly over
all λ ∈ � when working with the original coordinates and uniformly over all E > 1
and λ ∈� with the distorted coordinates.

Remark 5.1 Let us mention that the result of Theorem 4 controls the exponential
decay in L∞ while a control in L2 would have sufficed for our purpose, however the
proof would have been only marginally simpler if we had worked in L2 instead of
L∞.

5.1 Hypoellipticity - regularization step

We apply Malliavin calculus to the diffusion θ
(E)
λ following Norris [32] and

Hairer [17]. We drop the superscript (E) but we argue simultaneously in both sets
of coordinates. We also drop the subscript λ. We let Pθ0 denote the law of the diffu-
sion starting from θ0 at time 0 and pt (θ0, ·) the density of this diffusion. The goal of
this step is to show the following estimate: for any k ≥ 1, there exists Ck > 0 such
that uniformly over all parameters

sup
θ0

‖p1(θ0, ·)‖Ck < Ck . (26)
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We write

dθ(t)= V0(θ(t))dt + V1(θ(t))dB(t) ,

with

V0(x)= E3/2 +√
E(λ− E) sin2 x + sin3 x cosx , V1(x)=− sin2 x .

Remark 5.2 The diffusion is not elliptic since V1 vanishes at x = 0. However, it sat-
isfies the so-called Hörmander’s Bracket Condition which can be stated as follows.
Let us associate to any function F an operator defined through Ff (x) := F(x)f ′(x).
Introduce the Lie bracket [A,B] :=AB −BA for any two operators A, B . The con-
dition then reads: there exists k ≥ 0 (here k = 2 works) such that

inf
x∈[0,π)

max
F∈Vk

|F |(x) > 0 ,

where V0 := {V1} and Vn+1 := {[F, Ṽ0], [F,V1] : F ∈ Vn} ∪ Vn where Ṽ0 = V0 +
(1/2)V ′

1V1.

We rely on the process J0,t which is the derivative of the flow associated to the
SDE satisfied by θ :

dJ0,t = ∂xV0(θ(t))J0,t dt + ∂xV1(θ(t))J0,t dB(t) , J0,0 = 1 .

We will also need the inverse J−1
0,t that satisfies

dJ−1
0,t =−

(
∂xV0(θ(t))− (∂xV1(θ(t))2

)
J−1

0,t dt − ∂xV1(θ(t))J−1
0,t dB(t) , J−1

0,0 = 1 .

We also set Js,t := J0,t J
−1
0,s .

Lemma 5.3 Fix t > 0. For every p ≥ 1, there exists cp > 0 such that uniformly over
all parameters

sup
θ0

Eθ0

[
sup

s∈[0,t]
|J0,s |p ∨ |J0,s |−p

]1/p

< cp .

Proof The proof is virtually the same for J and J−1. If we let U be the logarithm of
either of these processes, then it solves

dU(t)= α(t)dt + β(t)dB(t) ,

where α and β are adapted processes. The crucial observation is that |α(t)| and |β(t)|
are bounded by some deterministic constant C > 0 uniformly over all parameters:
indeed, the unbounded term E3/2 that appears in V0 (when working with the distorted
coordinates) is “killed” upon differentiation. Lemma A.2 then suffices to conclude.

�
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Define the so-called Malliavin covariance matrix (which is a scalar here since our
diffusion is one-dimensional):

Ct :=
∫ t

0
J−2

0,s V 2
1 (θ(s))ds , t ≥ 0 .

The following is a standard result of Malliavin calculus: the only specificity is
that our estimates are uniform over all parameters (in particular, w.r.t. E > 1 in the
distorted coordinates) and this requires some extra care in the proof.

Proposition 5.4 Fix t > 0. Assume that for every p ≥ 1 there exists Kp > 0 such that
supθ0

Eθ0 [C−p
t ] < Kp . Then for every k ≥ 1 there exists ck > 0 such that uniformly

over all parameters

sup
θ0

‖pt(θ0, ·)‖Ck < ck .

Proof Assume that for every k ≥ 1 there exists Ck > 0 such that for all C∞ function
G there exists a r.v. Zk such that

Eθ0 [∂kG(θ(t))] = Eθ0[G(θ(t))Zk] , (27)

and such that uniformly over all parameters

sup
θ0

Eθ0[|Zk|] ≤ Ck . (28)

Then, we deduce that for all C∞ function G uniformly over all parameters

sup
θ0

Eθ0 [∂kG(θ(t))] ≤ Ck‖G‖∞ ,

so that standard functional analysis arguments, see for instance [32, Th. 0.1], ensure
that the bound of the statement holds.

To establish (27) and (28) we rely on the notion of Malliavin derivative that we
do not recall, see for instance [17, Sect. 3 and 5]. Let Y be a Malliavin differentiable
r.v. and denote by DsY the Malliavin derivative at time s of Y . We recall the following
properties of the Malliavin derivative [17, Sect. 3]:

Dsf (X)= f ′(X)DsX , Ds(XY)=XDsY + YDsX . (29)

The key tool in Malliavin Calculus is the so-called integration by parts formula
which writes

Eθ0

[〈D·Q,u(·)〉L2([0,t])
]= Eθ0

[
Q

∫ t

0
u(s)dB(s)

]
,

for any (regular enough) adapted process u. In the sequel all derivatives will be taken
in direction u where u(s) := J−1

0,s V1(θ(s)), s ∈ [0, t]. For convenience, we use the
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notation DuQ := 〈D·Q,u(·)〉L2([0,t]). We also introduce the successive derivatives

in direction u by setting recursively D (k)
u Q :=Du(D

(k−1)
u Q).

Let us state a general result on the Malliavin derivative of the solution of an SDE.
Assume that X = (Xj )1≤j≤d ∈ Rd solves the autonomous SDE

dX(s)=A(X(s))dt +C(X(s))dB(s) , (30)

where A and C are smooth maps from Rd to Rd . Then the d-dimensional process
Y = (Yj )1≤j≤d whose j -th coordinate is Yj (s) := 〈D·Xj(s), u(·)〉L2([0,s]) solves

dY (s)=∇A(X(s))Y (s)ds +∇C(X(s))Y (s)dB(s)+C(X(s))u(s)ds , Y (0)= 0 .

In this last equation, ∇A(x) is the d × d matrix whose (i, j)-entry equals ∂xj
Ai(x),

and similarly for ∇C(x). This result can be established as follows. First of all if
JX(r, s) stands for the d × d Jacobian matrix associated to the SDE X then for any
0 ≤ r ≤ s

dJX(r, s)=∇A(X(s))JX(r, s)ds +∇C(X(s))JX(r, s)dB(s) , JX(r, r)= I ,

see for instance [17, Eq. (5.2)]. By [17, Eq. (5.6)], DrXj (s) =(
JX(r, s)C(X(r))

)
j

and consequently the following identity holds in Rd

Y (s)=
∫ s

0
JX(r, s)C(X(r))u(r)dr ,

from which we derive the above SDE.
In the particular case where X = θ , we find

Dsθ(t)= Js,tV1(θ(s))= J0,tu(s) .

We observe that

Duθ(t)= 〈D·θ(t), u(·)〉L2([0,t]) = J0,t 〈u,u〉L2([0,t]) = J0,tCt =:Nt .

Combined with the chain rule (29), we deduce that for any integer k ≥ 1,

DuN
−k
t =−kN −(k+1)

t DuNt =−kN −(k+1)
t D (2)

u θ(t) .

Let us set R(t) := ∫ t

0 u(s)dB(s). For every smooth function G and any Malliavin
differentiable r.v. Z, we apply the integration by parts formula to Q=G(θ(t))N −1

t Z

and get

Eθ0 [G′(θ(t))Z] = Eθ0 [G(θ(t))Z̃] ,

where Z̃ is given by

Z̃ :=N −1
t

(
ZR(t)−DuZ

)
+ZN −2

t D (2)
u θ(t) .
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Starting with Z0 = 1 and applying iteratively this identity we obtain for some r.v. Zk

Eθ0 [∂kG(θ(t))] = Eθ0[G(θ(t))Zk] ,
thus proving (27). It remains to establish the bound (28).

First, observe that Zk is a polynomial in N −1
t , in Duθ(t), D (2)

u θ(t), . . . and in
R(t), DuR(t), D (2)

u R(t), . . .. Indeed, the class of all such polynomials contains Z0,
is stable under the action of Du, and thus, remains stable under the map that leads
from Z to Z̃.

The assumption of the statement together with Lemma 5.3 allow to bound the
moments of N −1

t uniformly over all parameters. In addition, the Burkholder-Davis-
Gundy inequality combined with Lemma 5.3 allows to bound the moments of R(t)

uniformly over all parameters. We are left with bounding the moments of Duθ(t),
D (2)

u θ(t), . . . and DuR(t), D (2)
u R(t), . . ..

Consider the triplet X(0)(s) = (θ(s), J−1
0,s ,R(s)) ∈ R3. This is the solution of an

autonomous SDE of the form (30) with6

A(0)(x)= (V0(x1), x2(V
′
1(x1)

2 − V ′
0(x1)),0) ,

C(0)(x)= (V1(x1),−x2V
′
1(x1), x2V1(x1)) .

We can thus apply the general result stated above and let Y (0) ∈ R3 be the process of
the Malliavin derivative of X(0) in direction u. Note that the only problematic term
is the first component of A(0) which contains the factor E3/2. However, the function
C(0), together with the functions ∇A(0)(x) and ∇C(0)(x) that appear in the evolution
equation of Y (0), are bounded uniformly over all parameters. This remains true for
any higher order derivatives of these functions and this will suffice for our purpose.

We then consider the process X(1) := (X(0), Y (0)) ∈ R6. It is straightforward that
X(1) solves an autonomous SDE of the form (30). We can thus iterate the arguments
and build recursively some processes X(n) and Y (n). The functions ∇A(n)(x) and
∇C(n)(x) that appear in the evolution equation of Y (n) are bounded uniformly over
all parameters.

Since the r.v. Duθ(t), D (2)
u θ(t), . . . and DuR(t), D (2)

u R(t), . . . eventually appear
in the entries of the sequence Y (n), n≥ 0, it suffices to bound the moments of |Y (n)(t)|
for any given n≥ 0.

We write Y for a generic element among the sequence Y (n), n ≥ 0. Recall that it
solves

dY (s)=∇A(X(s))Y (s)ds +∇C(X(s))Y (s)dB(s)+C(X(s))u(s)ds ,

where C(x), ∇A(x), ∇C(x) are bounded uniformly over all parameters. Applying
Itô’s formula, one can check that the process U(s) := ln(1 + |Y(s)|2) satisfies

U(t)=
∫ t

0

d∑
j=1

2Yj (s)Cj (X(s))

1 + |Y(s)|2 u(s)ds +
∫ t

0
α(s)ds +

∫ t

0
β(s)dB(s) ,

6x = (x1, x2, x3) and x1 corresponds to θ(s), x2 to J−1
0,s

and x3 to R(s).
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where |α(s)| and |β(s)| are adapted processes that are bounded by some determinis-
tic constant K > 0 uniformly over all parameters and all s ≥ 0. Lemma A.2 allows
to obtain bounds on the p-th moments of

∫ t

0 α(s)ds + ∫ t

0 β(s)dB(s). In addition,
the moments of the first term on the r.h.s. can be bounded since there exists some
deterministic constant K ′ > 0 such that

|
d∑

j=1

2Yj (s)Cj (X(s))

1 + |Y(s)|2 u(s)| ≤K ′|J−1
0,s V1(θ(s))| .

�

It remains to check the assumption of Proposition 5.4 at time t = 1 (this is arbi-
trary). In the classical proof of Hörmander’s Theorem with Malliavin Calculus, this
is where one uses the so-called Hörmander’s Bracket Condition (see Remark 5.2) via
repeated applications of Itô’s formula involving the process Ct , see for instance [17,
Proof of Theorem 6.3]. This would work with the original coordinates, but with the
distorted coordinates this does not seem to work out (easily). We proceed differently
and write

Eθ0 [C−p

1 ] = Eθ0

[(∫ 1

0
J−2

0,s V1(θ(s))2ds
)−p]

≤ Eθ0

[(∫ 1

0
V1(θ(s))2ds

)−2p]1/2
Eθ0

[
sup

t∈[0,1]
J

4p

0,t

]1/2
.

Lemma 5.3 allows to bound the second term. To bound the first term, we need some
control on the time spent near πZ by the diffusion θ : this is provided by Lemma A.6,
that relies on a comparison of θ with the solution of the deterministic part of its SDE.
This completes the proof of (26).

5.2 Hypocoercivity - convergence step

In this subsection, we argue simultaneously in the two sets of coordinates. We abbre-
viate μλ and μ

(E)
λ to μ. All the Lp spaces will be taken w.r.t. the measure μ (and not

the Lebesgue measure). We write ‖ · ‖ and 〈·, ·〉 for the L2 norm and inner product
w.r.t. μ.

By Lemma 3.1, uniformly over all parameters the measure μ is equivalent to
Lebesgue measure. This implies that the corresponding Lp norms are equivalent.
In addition, we have the following Poincaré inequality

∥∥∥f −
∫

f dμ

∥∥∥2
� ‖f ′‖2 , (31)

uniformly over all parameters. Indeed,
∥∥∥f −

∫
f dμ

∥∥∥2 = 1

2

∫∫
(f (x)− f (y))2μ(dx)μ(dy) ,

and

(f (x)− f (y))2 =
(∫

[x,y]
f ′(u)du

)2
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≤
∫
[x,y]

(|x − y|f ′(u))2 du

|x − y| ≤ |x − y|
∫ π

0

∣∣f ′(u)
∣∣2

du ,

so that

∥∥∥f −
∫

f dμ

∥∥∥2 ≤ 1

2

∫∫∫ π

0
|x − y|μ(dx)μ(dy)

∣∣f ′(u)
∣∣2

du≤ π

2
‖f ′‖2 .

For some constant c > 0 (to be adjusted later on) we define the following H 1 norm
(w.r.t. μ)

‖f ‖2
H 1 := ‖f ‖2 + c‖f ′‖2 .

Let L be the generator of our diffusion

Lf = σ 2f ′′ + bf ′ ,

where

σ = sin2 x√
2

,

b = E3/2 +√
E(λ− E) sin2 x + sin3 x cosx= E3/2 +√

2
√

E(λ− E)σ + σσ ′ .

Let L∗ be its adjoint in L2. The unique decomposition of −L∗ into a symmetric
(actually self-adjoint) and an anti-symmetric part is given by −L∗ =A∗A+B where

Af = σf ′ , Bf = b̃f ′ , b̃ := b − 2σσ ′ − σ 2 μ′

μ
,

and A∗ is the adjoint in L2 of A

A∗f =− (σμf )′

μ
.

It is a standard fact that the centered density qt = (pt/μ − 1) w.r.t. the invariant
measure of a diffusion satisfies the PDE

∂tqt = L∗qt .

In the previous section we dealt with regularity issues and showed that p1 (and there-
fore q1 since μ is bounded from above and below) is smooth: more precisely, its
C1-norm is bounded uniformly over all parameters. Our goal is to prove an expo-
nential decay of the L∞ norm of pt . By Sobolev embedding it suffices to prove an
exponential decay in H 1.

The natural route to such an estimate is to prove some coercivity: unfortunately
this fails. Indeed, we have

〈f,L∗f 〉 = −‖Af ‖2 ,
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and since σ vanishes at 0, ‖Af ‖ is not equivalent to ‖f ′‖ and so we cannot use
Poincaré inequality to get a bound in terms of ‖f ‖. Actually it is possible to check
that the operator A∗A does not have spectral gap so that one cannot get exponential
decay of the L2-norm of qt from the previous computation. In H 1 the situation is
similar. Generally speaking, if we work with “standard” norms then we do not have
enough control on the derivative(s) of the function at stake near 0.

These computations do not take advantage of the anti-symmetric part B of L∗. The
general idea of hypocoercivity [35] consists in exploiting the successive Lie brackets
between A and B to recover some coercivity. One can check that [A,B]f :=ABf −
BAf contains the term −E3/2σ ′f ′ and [[A,B],B]f contains the term E3σ ′′f ′: since
σ ′′ does not vanish anymore at x = 0, these terms should offer the required control
on the derivative at 0. To implement this idea, one constructs a twisted H 1-norm,
denoted H1, that contains some successive Lie brackets of A and B , see below for
the precise expression, and that satisfies the following properties.

Proposition 5.5 There exists a norm ‖ · ‖H1 , derived from an inner product 〈·, ·〉H1

such that:

(1) There exists κ > 0 such that uniformly over all parameters we have

‖f ‖H 1 ≤ ‖f ‖H1 ≤ (1 + κ)‖f ‖H 1 .

(2) There exists K > 0 such that uniformly over all parameters we have

〈f,L∗f 〉H1 ≤−K‖f ′‖2 .

With this proposition at hand, we can easily conclude the proof of the main result
of this section.

Proof of Theorem 4 In the previous subsection, we showed that there exists C1 > 0
such that uniformly over all parameters

sup
θ0

‖p1(θ0, ·)‖C1 < C1 . (32)

Set qt := pt

μ
− 1 and recall that ∂tqt = L∗qt . The second property of the proposition

then yields

∂t‖qt‖2
H1 ≤−2K‖q ′t‖2 .

Since
∫

qtdμ = 0, Poincaré inequality (31) together with the first property of the
proposition show that for some constant K ′ > 0

∂t‖qt‖2
H1 ≤−K ′‖qt‖2

H1 .

Applying the first property again, we deduce that uniformly over all the parameters,
for all t ≥ 1,

‖qt‖H 1 ≤ c′‖q1‖H 1e
−C′(t−1) ,
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for some constants c′,C′ > 0. Combining this bound with (32), applying the Sobolev
embedding H 1(dx) ⊂ L∞(dx) and the fact that μ is equivalent to the Lebesgue
measure, we obtain the desired result. �

The rest of this subsection is devoted to the proof of Proposition 5.5. We start by
introducing successive Lie brackets: actually we identify within the successive Lie
brackets between A and B the terms E3/2Ck that will allow us to gain coercivity and
we denote the remainder Rk . Introduce C0f :=Af , and recursively for k = 1,2

Ckf := (−1)kσ (k)f ′ , Rkf := [Ck−1,B]f − E3/2Ckf ,

and finally

C3f := 0 , R3f := [C2,B]f .

We now introduce a family of coefficients indexed by δ ∈ (0,1/4). Set b−1 := δ

and for every k ≥ 0

ak := δ6−2kbk−1 , bk := δ5−2kak .

One can check that for all 0 ≤ k ≤ 2

bk ≤ δak , ak ≤ δbk−1 , a2
k = δbk−1bk , b2

k = δakak+1 . (33)

We then introduce

‖f ‖2
H1 := ‖f ‖2

H 1 + 1

E3/2

2∑
k=0

(
ak‖Ckf ‖2 + 2bk〈Ckf,Ck+1f 〉

)
,

as well as 〈f,g〉H1 = 〈f,g〉H 1 + [[f,g]] where

[[f,g]] := 1

E3/2

2∑
k=0

(
ak〈Ckf,Ckg〉 + bk(〈Ckf,Ck+1g〉 + 〈Ckg,Ck+1f 〉)

)
.

This norm depends on two parameters, c and δ, that will be adjusted later on.
As b2

k = δakak+1, we have

∣∣∣2bk〈Ckf,Ck+1f 〉
∣∣∣≤√

δak‖Ckf ‖2 +√
δak+1‖Ck+1f ‖2 .

Note that for every k ∈ {0,1,2,3}, we have ‖Ckf ‖ ≤ 2‖f ′‖. Since E ≥ 1, we easily
deduce that 0 ≤ [[f,f ]] ≤ κ‖f ′‖ for some constant κ > 0 independent of all parame-
ters, and the first property of Proposition 5.5 follows.

The proof of the second property is carried out in two steps. First, we show that
there exists a constant C > 0 such that uniformly over all parameters,

〈f ′, (L∗f )′〉 ≤ C‖f ′‖2 . (34)
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Second we show that there exists δ ∈ (0,1/4) and K ′ > 0 such that uniformly over
all parameters

〈f,L∗f 〉 + [[
f,L∗f

]]≤−K ′‖f ′‖2 . (35)

With these two bounds at hand, we get

〈f,L∗f 〉H1= 〈f,L∗f 〉 + c〈f ′, (L∗f )′〉 + [[
f,L∗f

]]≤ (cC −K ′)‖f ′‖2 .

It suffices to set c :=K ′(2C)−1 and K =K ′/2 in order to deduce the second property
of the proposition.

Remark 5.6 Our proof is close to [35, Proof of Theorem 24] and would be essentially
the same if we had taken c = 0, that is, if we had taken ‖f ‖2

2 instead of ‖f ‖2
H 1 in the

definition of the H1 norm. Actually, with the original coordinates, the proof would
carry through with c = 0. With the distorted coordinates however, the first property
of Proposition 5.5 would fail with c = 0.

We proceed with the proof of (34). For convenience, we define the operator Df =
f ′. We then have

〈f ′, (L∗f )′〉 = −〈Df,DA∗Af 〉 − 〈Df,DBf 〉 .

Since B is anti-symmetric we find 〈Df,DBf 〉 = 〈Df, [D,B]f 〉. Note that
[D,B]f = (b − 2σσ ′ − σ 2 μ′

μ
)′f ′. The key point here is that the only unbounded

factor (E3/2 which appears in b) is killed upon differentiation. A simple computation
shows that there exists C1 such that

∣∣〈Df, [D,B]f 〉∣∣≤ C1‖Df ‖2 . (36)

On the other hand, we have

〈Df,DA∗Af 〉 = −〈D2f,A∗Af 〉 − 〈Df,
μ′

μ
A∗Af 〉

= 〈σD2f,σD2f 〉 + 〈D2f,
(σ 2μ)′

μ
Df 〉 − 〈Df,

μ′

μ
A∗Af 〉 .

Recall the bounds on μ stated in Lemma 3.1. Recall that Young’s inequality yields
XY ≤ εX2 + 1

4ε
Y 2 for all ε > 0. There exists C2 > 0 such that

∣∣〈D2f,
(σ 2μ)′

μ
Df 〉∣∣≤ C2‖σD2f ‖‖Df ‖≤ C2

( 1

4C2
‖σD2f ‖2 +C2‖Df ‖2

)
,

and

∣∣〈Df,
μ′

μ
A∗Af 〉∣∣≤ C2(‖σDf ‖‖σD2f ‖ + ‖Df ‖2)
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≤ C2

( 1

4C2
‖σD2f ‖2 + (C2 + 1)‖Df ‖2

)
.

We deduce that there exists C3 > 0 such that

〈Df,DA∗Af 〉 ≥ ‖σD2f ‖2 −C2

( 1

2C2
‖σD2f ‖2 + (2C2 + 1)‖Df ‖2

)

≥ 1

2
‖σD2f ‖2 −C3‖Df ‖2 . (37)

Combining (36) and (37) we obtain (34).
We turn to the proof of (35), which is very close to [35, Proof of Theorem 24]. The

main difference lies in the unboundedness of the coefficients of the operator at stake,
namely the term E3/2 in B in the distorted coordinates, that requires some additional
care.

First of all, we say that an operator Q is bounded relatively to some operators
{Ej }j if

‖Qf ‖2 �
∑
j

‖Ejf ‖2 ,

uniformly over all parameters.

Lemma 5.7 (i) For every 0 ≤ k ≤ 2, [A,Ck] is bounded relatively to {Cj }0≤j≤k ,
(ii) For every 0 ≤ k ≤ 2, [Ck,A

∗] is bounded relatively to {I } ∪ {Cj }0≤j≤k ,
(iii) For every 1 ≤ k ≤ 2, Rk is bounded relatively to {Cj }0≤j≤k−1,
(iv) R3 is bounded relatively to {E3/2C1} ∪ {E3/2C2}.

Proof Let us first point out that, apart from E3/2, all the terms appearing in σ , b

and b̃ are bounded uniformly over all parameters. In particular, as already noticed,√
E(λ−E) remains of order 1.
A computation shows that [A,Ck]f = (−1)k

(
σσ (k+1) − σ ′σ (k)

)
f ′. For k = 0,

this vanishes. For k = 1,2, we observe that ‖[A,Ck]f ‖2 � ‖σf ′‖2 + ‖σ ′f ′‖2 =
‖C0f ‖2 + ‖C1f ‖2. This proves (i). Regarding (ii), a computation yields [Ck,A

∗] =
(−1)k+1σ (k)

(
(σμ)′

μ

)′
f + [A,Ck]f . Using the bounds stated in Lemma 3.1, we de-

duce that the first term can be controlled by ‖f ‖, while the second term was al-
ready controlled at point (i). We turn to (iii). For k ∈ {1,2}, we compute Rkf =
(−1)k−1

(
σ (k−1)b̃′ − σ (k)(b̃ −E3/2)

)
f ′. For k = 1, we find

σ b̃′ − σ ′(b̃ −E3/2)= σ b̃′ + σσ ′(σ ′ + σ
μ′

μ
−√

2
√

E(λ−E)
)
,

so that the L2-norm of R1f can be controlled by the L2 norm of C0f . For k = 2, we
find

σ ′b̃′ − σ ′′(b̃ −E3/2)= σ ′b̃′ + σσ ′′(σ ′ + σ
μ′

μ
−√

2
√

E(λ−E)) .
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Consequently

‖R2f ‖2 ≤ 2‖σ ′b̃′f ′‖2 + 2‖σσ ′′(σ ′ + σ
μ′

μ
−√

2
√

E(λ−E))f ′‖2

� ‖σf ′‖2 + ‖σ ′f ′‖2 = ‖C0f ‖2 + ‖C1f ‖2 .

Finally

‖R3f ‖2 = ‖(σ ′′b̃′ − σ (3)b̃
)
f ′‖2 � E3‖f ′‖2

and this last expression is bounded from above, up to a multiplicative constant, by
‖E3/2C1f ‖2 + ‖E3/2C2f ‖2. �

Recall that −L∗ =A∗A+B . We have

[[
f,−L∗f

]]= 1

E3/2

2∑
k=0

(
ak

[
(I)kA + (I)kB ] + bk[(II)kA + (II)kB

])
, (38)

where

(I)kA = 〈Ckf,CkA
∗Af 〉 , (I)kB = 〈Ckf,CkBf 〉 ,

and

(II)kA = 〈Ckf,Ck+1A
∗Af 〉 + 〈CkA

∗Af,Ck+1f 〉 ,

(II)kB = 〈Ckf,Ck+1Bf 〉 + 〈CkBf,Ck+1f 〉; .

Linear algebra manipulations and the Cauchy-Schwarz inequality yield (see [35,
Proof of Theorem 24, pp.25-26] for details, one simply needs to take λk =�k = E3/2

therein):

(I)kA ≥‖CkAf ‖2 − ‖CkAf ‖‖[A,Ck]f ‖ − ‖Ckf ‖‖[Ck,A
∗]Af ‖ ,

(I)kB ≥ − E3/2‖Ckf ‖‖Ck+1f ‖ − ‖Ckf ‖‖Rk+1f ‖ ,

(II)kA ≥ − ‖Ckf ‖‖[Ck+1,A
∗]Af ‖ − ‖CkAf ‖‖Ck+1Af ‖ − ‖Ck+1Af ‖‖[A,Ck]f ‖

− ‖CkAf ‖‖Ck+1Af ‖ − ‖CkAf ‖‖[A,Ck+1]f ‖ − ‖Ck+1f ‖‖[Ck,A
∗]Af ‖ ,

(II)kB ≥E3/2‖Ck+1f ‖2 − ‖Ck+1f ‖‖Rk+1f ‖ − E3/2‖Ckf ‖‖Ck+2f ‖
− ‖Ckf ‖‖Rk+2f ‖ .

At this point, the proof differs from [35, Proof of Theorem 24, pp.26]: indeed therein
the parameters λk , �k are of order 1, while in our case they are taken equal to E3/2

and therefore need extra care.
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Take ε = √
δ. By Young’s inequality we have XY ≤ εX2 + (4ε)−1Y 2. We thus

get7 for any k ∈ {0,1,2}

ak

[
(I)kA + (I)kB ] + bk[(II)kA + (II)kB

]

≥ ak‖CkAf ‖2 + bkE3/2‖Ck+1f ‖2 (39)

− εE3/2bk−1‖Ckf ‖2 − E3/2 a2
k

4εbk−1
‖Ck+1f ‖2 (40)

− εbk−1‖Ckf ‖2 − a2
k

4εbk−1
‖Rk+1f ‖2 (41)

− εak‖CkAf ‖2 − ak

4ε
‖[A,Ck]f ‖2 (42)

− εbk−1‖Ckf ‖2 − a2
k

4εbk−1
‖[Ck,A

∗]Af ‖2 (43)

− εbk‖Ck+1f ‖2 − bk

4ε
‖Rk+1f ‖2 (44)

− εE3/2bk−1‖Ckf ‖2 − E3/2 b2
k

4εbk−1
‖Ck+2f ‖2 (45)

− εbk−1‖Ckf ‖2 − b2
k

4εbk−1
‖Rk+2f ‖2 (46)

− εbk−1‖Ckf ‖2 − b2
k

4εbk−1
‖[Ck+1,A

∗]Af ‖2 (47)

− εak‖CkAf ‖2 − b2
k

4εak

‖Ck+1Af ‖2 (48)

− εak+1‖Ck+1Af ‖2 − b2
k

4εak+1
‖[A,Ck]f ‖2 (49)

− εak‖CkAf ‖2 − b2
k

4εak

‖Ck+1Af ‖2 (50)

− εak‖CkAf ‖2 − b2
k

4εak

‖[A,Ck+1]f ‖2 (51)

− εbk‖Ck+1f ‖2 − bk

4ε
‖[Ck,A

∗]Af ‖2 , (52)

with the further condition that (44) to (52), as well as (40), are not present for k = 2.
The inequalities (33) combined with Lemma 5.7 ensure that for δ small enough

(uniformly over all parameters) the sum over k of all the terms from (40) to (52),

7The terms at Equations (40) and (41) come from (I)k
B

, those at Equations (42) and (43) come from (I)k
A

,

those at Equations (44) to (46) come from (II)k
B

, and those at Equations (47) to (52) come from (II)k
A

.
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except the first terms of (40) and (45) for k = 0, is larger than

−1

4
‖Af ‖2 − 1

2

2∑
k=0

(
ak‖CkAf ‖2 + bkE3/2‖Ck+1f ‖2

)
.

For more details see [35, Proof of Theorem 24, pp.27]. We now control the contribu-
tion to (38) of the first terms of (40) and (45) for k = 0. This contribution is given by
(recall that δ < 1/4):

−2εb−1E3/2‖Af ‖2 =−2δ3/2E3/2‖Af ‖2 ≥−1

4
E3/2‖Af ‖2 .

Consequently

[[
f,−L∗f

]]≥ − 1

4
(1 + 1

E3/2 )‖Af ‖2

+ 1

2E3/2

2∑
k=0

(
ak‖CkAf ‖2 + bkE3/2‖Ck+1f ‖2

)
.

On the other hand, 〈f,−L∗f 〉 = ‖Af ‖2. Putting everything together, we thus showed
that

〈f,−L∗f 〉 + [[
f,−L∗f

]]

≥ 1

2
‖Af ‖2 + 1

2E3/2

2∑
k=0

(
ak‖CkAf ‖2 + bkE3/2‖Ck+1f ‖2

)

≥ 1

2
‖Af ‖2 + 1

2

1∑
k=0

bk‖Ck+1f ‖2

≥ 1

4

∫
[0,π)

(
sin4 x + b0 sin2(2x)+ 4b1 cos2(2x)

)
f ′(x)2μ(x)dx

≥K‖f ′‖2 ,

for some K only depending on δ. This completes the proof.

6 GMP formula

In this section, we prove the GMP formula stated in Proposition 4.1 and we deduce
some simple facts from it. Actually, we will prove a slightly stronger statement for
later convenience:
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Proposition 6.1 Fix u ∈ (−L/(2E),L/(2E)) and a, b ∈ R. For any bounded and
measurable map G from R ×D×D into R+, we have

E

[∑
i≥1

(
aϕi(Eu)2 + b ϕ′

i (Eu)2) G(λi, ϕi, ϕ
′
i )

]

= 1√
E

∫
λ∈R

∫ π

θ=0
p

(E)

λ, L
2E+u

(θ)p
(E)

λ, L
2E−u

(π − θ)(a sin2 θ + b E cos2 θ)

×E
(u)
θ,π−θ

[
G

(
λ,

ŷ
(E)
λ (·/E)√
E‖ŷ(E)

λ ‖
,
(ŷ

(E)
λ )′(·/E)

E3/2‖ŷ(E)
λ ‖

)]
dθdλ

Given this proposition, the proof of the GMP formula is simple.

Proof of Proposition 4.1 Recall that the eigenfunctions ϕi are normalized in L2. It suf-
fices to take a = 1, b = 0 in the previous proposition, to integrate w.r.t. u and to apply
Fubini’s Theorem. �

Before we proceed to the proof of Proposition 6.1, note that λ �→ θ
(E)
λ is differen-

tiable and let us introduce z
(E)
λ = ∂λθ

(E)
λ , the derivative with respect to λ of the angle

θ
(E)
λ . It satisfies the SDE

dz
(E)
λ (t)=√

E sin2 θ
(E)
λ dt − z

(E)
λ

[
dρ

(E)
λ (t)− 1

2
d〈ρ(E)

λ 〉t
]

.

We thus obtain the following integral expression for z
(E)
λ :

z
(E)
λ (t)= 1

(r
(E)
λ (t))2

∫ t

− L
2E

√
E sin2 θ

(E)
λ (s)(r

(E)
λ (s))2ds . (53)

Proof of Proposition 6.1 It suffices to prove the statement with the original coordi-
nates, since the statement with the distorted coordinates follows from (10) and
the change of variable θ �→ arccotan ( 1√

E
cotan θ) whose Jacobian is given by

(
√

E(sin2 θ + 1
E

cos2 θ))−1.
By the monotone convergence theorem, we can assume that G is a continuous

map from R ×D ×D into R+ such that G(λ,ϕ,ψ) = 0 whenever λ /∈ [−A,A] or
‖ϕ‖L∞ > A or ‖ψ‖L∞ > A, for some given A > 0. Fix u ∈ (−L/2,L/2). Recall
from Lemma 3.4 that the set of eigenvalues (λi)i≥1 coincides with the set of λ ∈ R
such that

{
θ+λ (u)+ θ−λ (−u)

}
π
= 0 ,

and the eigenfunction ϕλ associated to the eigenvalue λ coincides with ŷλ/‖ŷλ‖.
Therefore,

∑
i≥1

G(λi,ϕi, ϕ
′
i )

(
a ϕi(u)2 + b ϕ′

i (u)2)
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=
∑

λ :
{
θ+λ (u)+θ−λ (−u)

}
π
=0

G
(
λ,

ŷλ

‖ŷλ‖ ,
(ŷλ)

′

‖ŷλ‖
) a(ŷλ(u))2 + b(ŷ′λ(u))2

‖ŷλ‖2
.

From the positivity of z±λ , we deduce that almost surely the map λ �→ θ+λ (u) +
θ−λ (−u) is a diffeomorphism from R to R. We denote its inverse by θ �→ λ(θ). We
can rewrite the last sum as:

∑
θ∈πZ

G
(
λ(θ),

ŷλ(θ)

‖ŷλ(θ)‖ ,
(ŷλ(θ))

′

‖ŷλ(θ)‖
) a(ŷλ(θ)(u))2 + b(ŷ′λ(θ)(u))2

‖ŷλ(θ)‖2
.

Set for any ε ∈ (0,π)

Gε(u) := 1

2ε

∫
θ∈πZ+[−ε,ε]

G
(
λ(θ),

ŷλ(θ)

‖ŷλ(θ)‖ ,
(ŷλ(θ))

′

‖ŷλ(θ)‖
)

× a(ŷλ(θ)(u))2 + b(ŷ′
λ(θ)

(u))2

‖ŷλ(θ)‖2
dθ . (54)

Almost surely Gε(u) is bounded by ‖G‖∞(|a|+ |b|)A2
(
#{λi ∈ [−A,A]}+2

)
. From

Lemma A.4 in the Appendix, this r.v. has a finite expectation. Furthermore, by conti-
nuity Gε(u) converges a.s. as ε ↓ 0 to

∑
i≥1

G(λi,ϕi, ϕ
′
i )

(
aϕi(u)2 + b(ϕ′

i (u))2) .

By the Dominated Convergence Theorem, we deduce that,

E

[∑
i≥1

G(λi,ϕi, ϕ
′
i )

(
aϕi(u)2 + b(ϕ′

i (u))2)]= lim
ε↓0

E
[
Gε(u)

]
.

We now compute the expectation of Gε(u). Note that ∂λ(θ
+
λ (u) + θ−λ (−u)) =

z+λ (u)+ z−λ (−u). Using (53) and given the boundary condition imposed on r±λ , this
equals ‖ŷλ‖2. We then apply the change of variable θ �→ λ(θ) and obtain

Gε(u)= 1

2ε

∫
λ∈R

1{πZ+[−ε,ε]}(θ+λ (u)+ θ−λ (−u))G
(
λ,

ŷλ

‖ŷλ‖ ,
(ŷλ)

′

‖ŷλ‖
)

× (
a sin2 θ+λ (u)+ b cos2 θ+λ (u)

)
dλ .

We then take expectation, use Fubini’s Theorem, and integrate with respect to the
value of the forward diffusion at time u:

E[Gε(u)] = 1

2ε

∫
λ∈R

∫ π

θ=0

∫ ε

θ ′=−ε

pλ,u(θ)pλ,L−u(π − θ + θ ′)(a sin2 θ + b cos2 θ)

×E
(u)

θ,π−θ−θ ′
[
G

(
λ,

ŷλ

‖ŷλ‖ ,
(ŷλ)

′

‖ŷλ‖
)]

dθ ′dθdλ .
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By the Dominated Convergence Theorem, the boundedness of the transition proba-
bilities and the continuity w.r.t. θ ′, we can permute the integrals with respect to λ, θ

and the limit as ε ↓ 0 to find

lim
ε↓0

E[Gε(u)] =
∫

λ∈R

∫ π

θ=0
pλ,u(θ)pλ,L−u(π − θ)(a sin2 θ + b cos2 θ)

×E
(u)
θ,π−θ

[
G

(
λ,

ŷλ

‖ŷλ‖ ,
(ŷλ)

′

‖ŷλ‖
)]

dθdλ ,

thus concluding the proof. �

As a first application of the GMP formula, one can derive an expression of the
density of states in terms of the stationary measure of the process {θλ}π . There is an-
other (actually simpler) formula for this density of states given by n(λ) = ∂λ(1/mλ)

where mλ is introduced in Sect. A.3, see [12].

Corollary 6.2 The density of states satisfies

n(λ)=
∫ π

0
μλ(θ)μλ(π − θ) sin2 θdθ , λ ∈ R .

We also have for any E ≥ 1

n(λ)= 1√
E

∫ π

0
μ

(E)
λ (θ)μ

(E)
λ (π − θ) sin2 θdθ , λ ∈ R .

Proof Fix some interval � ⊂ R and set NL(�) := #{λi : λi ∈ �}. By the uniform
integrability stated in Lemma A.4,

∫
�

n(λ)dλ is not only the a.s. limit of NL(�)/L

but also its limit in L1. The GMP formula allows to compute E[NL(�)] by simply
choosing G(λ)= 1�(λ). By Theorem 4 one can then replace the product of the den-
sities of the forward/backward diffusions p

λ, L
2 +u

(θ)p
λ, L

2 −u
(π −θ) by the product of

the densities of the invariant measure μλ(θ)μλ(π −θ), and derive the first expression
of the statement. The formula involving distorted coordinates follows from a change
of variables. �

Recall the r.v. defined in (23) and (24).

Proposition 6.3 (Wegner estimates) Fix h > 0 and set � := [E − h/(Ln(E)),E +
h/(Ln(E))]. In the Bulk and the Crossover regimes, we have as L→∞:

(1) E[NL(�)] = 2h(1 + o(1)),
(2) E[N(1)

L (�)] = 2h
k

(1 + o(1)).

Proof By Proposition 4.1, we have:

E
[
NL(�)

]=√
E

∫ L
2E

− L
2E

∫
λ∈�

∫ π

θ=0
p

(E)

λ, L
2E+u

(θ)p
(E)

λ, L
2E−u

(π − θ) sin2 θdθdλdu
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If one replaces the transition probabilities by the equilibrium densities, then one gets

L√
E

∫
λ∈�

∫ π

θ=0
μ

(E)
λ (θ)μ

(E)
λ (π − θ) sin2 θdθdλ ,

which goes to 2h by Corollary 6.2. The error made upon this replacement is of order
E/L by Theorem 4 and Lemma 3.1 and therefore vanishes in the limit L → ∞.
Consequently we get the first estimate.

The second estimate is derived from the same argument, one simply replaces the
interval [−L/E,L/E] by an interval of length L/(Ek) and uses that L/(Ek) � 1.

�

7 Exponential decay

The goal of this section is to prove the exponential decay of the eigenfunctions stated
in Proposition 4.2. We first introduce in Sect. 7.1 the adjoint diffusions as they will
naturally arise in the proof of the estimate of the exponential decay, then we compute
the Lyapunov exponent associated to the diffusions in Sect. 7.2. Finally in Sect. 7.3
we present the proof of Proposition 4.2. Until the middle of Sect. 7.2, we investigate
some properties of the diffusions for any parameter λ, that is, we do not work in
the specific Bulk and Crossover regimes. From the middle of Sect. 7.2, we restrict
ourselves to the Bulk and Crossover regimes, and we establish asymptotic estimates
in L.

7.1 Adjoint diffusions

We introduce the process θ̄
(E)
λ as the solution of the following SDE driven by a Brow-

nian motion B̄(E)

dθ̄
(E)
λ (t)= (− E3/2 −√

E(λ− E) sin2 θ̄
(E)
λ + 3 sin3(θ̄

(E)
λ ) cos(θ̄ (E)

λ )

+ sin4 θ̄
(E)
λ

∂θμ
(E)
λ (θ̄

(E)
λ )

μ
(E)
λ (θ̄

(E)
λ )

)
dt

− sin2 θ̄
(E)
λ dB̄(E)(t) .

(55)

By coherence with previous notations, we denote by P̄(s,θ0) the law of the process

θ̄
(E)
λ starting from θ0 at time s, and by P̄(s,θ0)→(t,θ1) the law of the bridge from (s, θ0)

to (t, θ1).
The process θ̄

(E)
λ is the adjoint diffusion of θ

(E)
λ with respect to the invariant mea-

sure μ
(E)
λ . In other words, its generator is the operator L∗ which is the adjoint in

L2(μ
(E)
λ ) of the generator L of θ

(E)
λ , see the beginning of Sect. 5.2 for more de-

tails on the generators involved. Let us recall that this adjunction implies that the
law of the process θ

(E)
λ starting from the invariant measure is the same as the law of
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the process θ̄
(E)
λ , read backward-in-time, and starting from the invariant measure. In

mathematical terms: for any measurable set A⊂ C([0, t],R), we have
∫ π

θ0=0
μ

(E)
λ (θ0)P(0,θ0)(A)dθ0 =

∫ π

θ1=0
μ

(E)
λ (θ1)P̄(0,θ1)(Ā)dθ1 ,

where Ā := {f : f (t − ·) ∈A} is the image of A upon reversing time. Disintegrating
this last expression, we further get

μ
(E)
λ (θ0)p

(E)
λ,t (θ0, θ1)P(0,θ0)→(t,θ1)(A)= μ

(E)
λ (θ1)p̄

(E)
λ,t (θ1, θ0)P̄(0,θ1)→(t,θ0)(Ā) ,

(56)
We would like to introduce the counterpart of the process ρ

(E)
λ at the level of the

adjoint diffusion. We introduce the process ρ̄
(E)
λ as the solution of

dρ̄
(E)
λ =

(√
E(λ− E) sin 2θ̄

(E)
λ + 1

2
sin2 2θ̄

(E)
λ + sin2 θ̄

(E)
λ

− 8 sin2 θ̄
(E)
λ cos2 θ̄

(E)
λ − 2 sin3 θ̄

(E)
λ cos θ̄

(E)
λ

∂θμ
(E)
λ (θ̄

(E)
λ )

μ
(E)
λ (θ̄

(E)
λ )

)
dt

+ sin 2θ̄
(E)
λ dB̄(E)(t) .

(57)

Our next result shows that this is the “right” object.

Lemma 7.1 Under P
μ

(E)
λ

, the process (ρ
(E)
λ (s)− ρ

(E)
λ (0), s ∈ [0, t]) has the same law

as the process (ρ̄
(E)
λ (t − s)− ρ̄

(E)
λ (t), s ∈ [0, t]) under P̄

μ
(E)
λ

.

Proof We give a sketch of proof. First of all, we show that the process ρ
(E)
λ , resp. ρ̄(E)

λ ,

is measurable w.r.t. the process θ
(E)
λ , resp. θ̄

(E)
λ . Indeed, the drift term of the evolution

equation only depends on θ
(E)
λ , resp. θ̄ (E)

λ , while the martingale term can be expressed

formally8 using Itô’s formula applied to ln sin θ
(E)
λ (t), resp. ln sin θ̄

(E)
λ (t)

∫ t

0
sin 2θ

(E)
λ (s)dB(E)(s)= 2

(
ln sin θ

(E)
λ (0)− ln sin θ

(E)
λ (t)

)
+

∫ t

0
F(θ

(E)
λ (s))ds ,

with

F(θ)= 2cotan θ
(
E3/2 +√

E(λ− E) sin2 θ + sin3 θ cos θ
)− sin2 θ ,

respectively

∫ t

0
sin 2θ̄

(E)
λ (s)dB̄(E)(s)= 2

(
ln sin θ̄

(E)
λ (0)− ln sin θ̄

(E)
λ (t)

)
+

∫ t

0
F̄ (θ̄

(E)
λ (s))ds ,

8A rigorous version of these identities can be obtained by introducing stopping times at the hitting times
of πZ. Since these hitting times are isolated points in R+, this does not raise any issue with the subsequent
arguments.
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with

F̄ (θ)= 2cotan θ
(− E3/2 −√

E(λ− E) sin2 θ + 3 sin3 θ cos θ + sin4 θ
∂θμ

(E)
λ (θ)

μ
(E)
λ (θ)

)

− sin2 θ .

As a consequence,

ρ
(E)
λ (t)− ρ

(E)
λ (0)= 2

(
ln sin θ

(E)
λ (0)− ln sin θ

(E)
λ (t)

)
+

∫ t

0
F(θ

(E)
λ (s))ds

+
∫ t

0
D(θ

(E)
λ (s))ds ,

with

D(θ)=−√E(λ− E) sin 2θ − 1

2
sin2 2θ + sin2 θ .

The adjunction relation ensures that the law of ρ
(E)
λ (t) − ρ

(E)
λ (0) under P

μ
(E)
λ

, coin-

cides with the law of

2
(

ln sin θ̄
(E)
λ (t)− ln sin θ̄

(E)
λ (0)

)
+

∫ t

0
F(θ̄

(E)
λ (t − s))ds +

∫ t

0
D(θ̄

(E)
λ (t − s))ds ,

under P̄
μ

(E)
λ

. A simple computation then shows that this last quantity coincides with

ρ̄
(E)
λ (0)− ρ̄

(E)
λ (t) .

This can be generalized to any finite dimensional marginals of the process. �

Finally, let us introduce the first rotation time ζ̄
(E)
λ of the diffusion θ̄

(E)
λ

ζ̄
(E)
λ := inf{t ≥ 0 : θ̄ (E)

λ (t)= θ̄
(E)
λ (0)+ π} .

By the same argument as in Sect. 3.4, the law of this r.v. is independent of θ̄
(E)
λ (0).

Consequently, its law can be computed when starting from the invariant measure.
Using the adjunction relation above, we thus deduce that ζ̄

(E)
λ and ζ

(E)
λ have the same

law, and therefore

Ē[ζ̄ (E)
λ ] = E[ζ (E)

λ ] =m
(E)
λ .

7.2 Lyapunov exponent and the main growth estimate

Recall the definition of the SDEs (11) and (12). Take ρ
(E)
λ (0) := 0. The Lyapunov

exponent is usually defined as the almost sure limit of

ln r
(E)
λ (t)

t
, t →∞ .
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This deterministic quantity is intimately related to the rate of exponential decay of
the eigenfunctions. For technical convenience, we manipulate the almost sure limit
of

2
ln r

(E)
λ (t)

t
= ρ

(E)
λ (t)

t
, t →∞ ,

that we denote by ν
(E)
λ . In other words, ν

(E)
λ is twice the Lyapunov exponent.

Our next proposition gives an explicit expression of this exponent. It also shows
that the Lyapunov exponent associated with ρ̄

(E)
λ is the opposite of ν

(E)
λ .

Proposition 7.2 (Lyapunov exponent) The random variables ζ
(E)
λ , ζ̄

(E)
λ and

ρ
(E)
λ (ζ

(E)
λ ), ρ̄

(E)
λ (ζ̄

(E)
λ ) are integrable, and we have

ν
(E)
λ = E[ρ(E)

λ (ζ
(E)
λ )]

E[ζ (E)
λ ]

= −E[ρ̄(E)
λ (ζ̄

(E)
λ )]

E[ζ̄ (E)
λ ]

.

Moreover for any λ ∈ R

ν
(E)
λ = E

∫ +∞
0

√
u exp(−2λu− u3

6 )du∫ ∞
0

1√
u

exp(−2λu− u3

6 )du
> 0 . (58)

We have a remarkably simple expression for the quantity ν
(E)
λ , from which we can

deduce important properties. In particular, a crucial point for our proof is that this
expression is positive for all λ and E. The proof of this proposition follows from
elementary (but not straightforward) computations on the SDEs, and is deferred to
the Appendix A.4.2.

Fix h > 0 and set � := [E− h
n(E)L

,E+ h
n(E)L

] until the end of the section. Recall
that in the Bulk regime, E ∈ R is fixed while in the Crossover regime E = E(L) →
∞ as L→∞.

It is easy to check that in both regimes, uniformly over all λ ∈ � we have as
L→∞

ν
(E)
λ /ν

(E)
E → 1 .

Moreover in the Crossover regime we have

ν
(E)
E → 1, as E →∞ .

As a consequence, we can safely approximate νλ by νE in the Bulk regime, and ν
(E)
λ

by 1 in the Crossover regime. A posteriori, this explains the definition of νE in (20).
Finally, let us mention that uniformly over all λ ∈� and all L > 1

m
(E)
λ �

{
1 in the Bulk regime ,

E−3/2 in the Crossover regime .
(59)
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The main estimate needed for the proof of Proposition 4.2 is presented in the fol-
lowing lemma. From now on, we work simultaneously in the Bulk and the Crossover
regimes.

Lemma 7.3 (Linear growth/decay of the diffusions ρ
(E)
λ and ρ

(E)
λ ) Set Z

(E)
λ (t) :=

ρ
(E)
λ (t)− ν

(E)
λ t and Z̄

(E)
λ (t) := ρ̄

(E)
λ (t)+ ν

(E)
λ t . For any ε > 0, there exists q > 0 such

that

lim sup
L→∞

sup
λ∈�

sup
θ∈[0,π)

E(0,θ)

[
sup
t≥0

eq|Z(E)
λ (t)|e−qtε

]
<∞ ,

and

lim sup
L→∞

sup
λ∈�

sup
θ∈[0,π)

Ē(0,θ)

[
sup
t≥0

eq|Z̄(E)
λ (t)|e−qtε

]
<∞ .

Proof We present the proof in details for Z
(E)
λ , then we make a comment on how to

treat Z̄
(E)
λ . Let n := �E3/2�. Let 0 =: T0 < T1 < · · · be the stopping times defined by

Tk := inf{t > Tk−1 : θ(E)
λ (t)= θ

(E)
λ (Tk−1)+ nπ} .

The r.v. Tk is equal in law to the sum of kn i.i.d. r.v. distributed as ζ
(E)
λ . We then

define the i.i.d. r.v.

Gk := Z
(E)
λ (Tk)−Z

(E)
λ (Tk−1) , k ≥ 1 .

Decomposing Z
(E)
λ (Tk) − Z

(E)
λ (Tk−1) into the sum of the increments of Z

(E)
λ in

between the successive hitting times of πZ by the phase θ
(E)
λ , we see that E[Gk] = 0

by Proposition 7.2. Introduce also

Yk := sup
t∈[Tk−1,Tk]

|Z(E)
λ (t)−Z

(E)
λ (Tk−1)| , k ≥ 1 .

We have for any q ≥ 0

sup
t≥0

eqZ
(E)
λ (t)e−qtε ≤

∑
k≥0

eq(G1+···+Gk)eqYk+1e−qTkε

sup
t≥0

e−qZ
(E)
λ (t)e−qtε ≤

∑
k≥0

e−q(G1+···+Gk)eqYk+1e−qTkε .

We aim at bounding the expectations of the two r.v. on the left hand side. By sym-
metry of the arguments, we only present the details on the bound of the first term.
Using the Cauchy-Schwarz inequality twice and the fact that the Yk’s, the Gk’s and
the (Tk − Tk−1)’s are i.i.d., we have for every k ≥ 0

E[eq(G1+···+Gk)eqYk+1e−qTkε] ≤ E[e4qG1 ]k/4
E[e−4qT1ε]k/4

E[e2qY1 ]1/2 . (60)
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Assume that there exist C0 > 0 and q0 > 0 such that for all L > 1, all λ ∈ � and all
q ∈ [−q0, q0] we have

E[eqY1 ]< C0 , E[eqT1 ]< C0 .

Note that |G1| ≤ Y1 almost surely. Note also that E[T1] = nm
(E)
λ and recall E[G1] =

0. By Lemma A.1 we deduce that there exist C1, q1 > 0 such that the r.h.s. of (60) is
bounded by

(1 + 16C1q
2)k/4(1 − 4qεnm

(E)
λ + 16C1q

2ε2)k/4C
1/2
0 ,

for all q ∈ (0, q1). Recall from (59) that m
(E)
λ � E−3/2 so that nm

(E)
λ is bounded

from below by a positive constant uniformly over all parameters. Recall also that ε is
fixed. We deduce that by choosing q small enough, the last term is bounded by Cηk

for some constants C > 0 and η ∈ (0,1). Summing this term over k ≥ 0, we get the
desired upper bound.

It remains to prove the exponential bounds on the non-negative r.v. Y1 and T1.
Regarding T1, we use Lemma A.3 to deduce that for q > 0 small enough we have

E[eqT1 ] = E[eqζ
(E)
λ ]n ≤

( 1

1 − qm
(E)
λ

)n = e−n log(1−qm
(E)
λ ) .

Since nm
(E)
λ is of order 1, this suffices to conclude. We turn to Y1. For any x,T > 0

we have

P(Y1 > x)≤ P(T1 > T )+ P( sup
t∈[0,T ]

|Z(E)
λ (t)|> x) .

The first term on the r.h.s decays exponentially in T by the exponential bound already
obtained. The second term decays exponentially in x2/T by Lemma A.2 as soon as
x is large enough. Adjusting T and x, we easily obtain an exponential decay in x

uniformly over all parameters, thus concluding the proof.
These arguments apply verbatim to Z̄

(E)
λ . The only specific points are the last

bounds on the exponential moments. Regarding T1 the argument is exactly the same
since ζ̄

(E)
λ has the same law as ζ

(E)
λ . Regarding Y1, the only ingredient used for the

exponential bound is the uniform boundedness of the coefficients of the SDE solved
by Z

(E)
λ , and this remains true for Z̄

(E)
λ . �

7.3 Proof of Proposition 4.2

By analogy with Gu, let us introduce the observable:

Hu(λ,ϕ,ψ) := 1

(
∫

ϕ2(s)ds)1/2
sup

t∈[− L
2E , L

2E ]

(
ϕ2(t)+ ψ2(t)

E3

)1/2
e

1
2 (ν

(E)
λ −ε)|t−u| .
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Set H = inf
u∈[− L

2E , L
2E ] Hu. By the GMP formula given in Proposition 4.1, it suf-

fices to bound

√
E

∫ L
2E

u=− L
2E

∫
λ∈�

∫ π

θ=0
p

(E)

λ,u+ L
2E

(θ)p
(E)

λ, L
2E−u

(π − θ) sin2 θ

×E
(u)
θ,π−θ

[(
H

(
λ, ŷ

(E)
λ , (ŷ

(E)
λ )′

))q]
dθdλdu

≤√
E

∫ L
2E

u=− L
2E

∫
λ∈�

∫ π

θ=0
p

(E)

λ,u+ L
2E

(θ)p
(E)

λ, L
2E−u

(π − θ) sin2 θ

×E
(u)
θ,π−θ

[(
Hu

(
λ, ŷ

(E)
λ , (ŷ

(E)
λ )′

))q]
dθdλdu .

Note that at the second line, we have bounded H by Hu where u is the concatenation
time.

Under P(u)
θ,π−θ we have

Hu(λ, ŷ
(E)
λ , (ŷ

(E)
λ )′)= ‖ŷ(E)

λ ‖−1
2 sup

t∈[− L
2E , L

2E ]
r̂
(E)
λ (t)e

1
2 (ν

(E)
λ −ε)|t−u| . (61)

The Lebesgue measure of � is 2h/(n(E)L) � √
E/L. Consequently, it suffices to

show that
∫ π

θ=0
p

(E)

λ,u+ L
2E

(θ)p
(E)

λ, L
2E−u

(π − θ) sin2 θ E
(u)
θ,π−θ

[(
Hu

(
λ, ŷ

(E)
λ , (ŷ

(E)
λ )′

))q]
dθ (62)

is bounded by some constant uniformly over all u ∈ [−L/(2E),L/2E] and all λ ∈�.
By the Cauchy-Schwarz inequality and the bound

√
x ≤ 1 + x for any x ≥ 0, we

have

E
(u)
θ,π−θ

[(
Hu

(
λ, ŷ

(E)
λ , (ŷ

(E)
λ )′

))q]

≤
(

1 +E
(u)
θ,π−θ

[
sup

t∈[− L
2E , L

2E ]
r̂
(E)
λ (t)2q exp

(
q(ν

(E)
λ − ε)|t − u|)])

E
(u)
θ,π−θ

[
‖ŷ(E)

λ ‖−2q

2

]1/2
.

By Theorem 4, for all L large enough the term
∫ π

θ=0
p

(E)

λ,u+ L
2E

(θ)p
(E)

λ, L
2E−u

(π − θ) sin2 θdθ ,

is bounded by some constant uniformly over all parameters. To conclude, it therefore
suffices to prove that for all L large enough (for a different choice of q)

∫ π

0
p

(E)

λ,u+ L
2E

(θ)p
(E)

λ, L
2E−u

(π − θ) sin2 θ
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×E
(u)
θ,π−θ

[
sup

t∈[− L
2E , L

2E ]
r̂
(E)
λ (t)q exp

(q

2
(ν

(E)
λ − ε)|t − u|)]dθ , (63)

and

sup
θ

E
(u)
θ,π−θ

[
‖ŷ(E)

λ ‖−q

2

]
, (64)

are bounded by some constant uniformly over all u and λ.
We aim at applying the estimates of Lemma 7.3. The difficulty is twofold. First,

the estimates in the lemma concern unconditioned processes while in (63) we have
(a concatenation of) conditioned processes. Second, in (63) the process r̂

(E)
λ is set to

1 at u so we have to be careful with this normalisation in the bounds.
To deal with conditioned processes, we use our estimates on the convergence to

equilibrium of the diffusions to prove the following.

Lemma 7.4 (Absolute continuity of the bridges) There exists t0 ≥ 1, a constant C >

0 and L0 ≥ 1 such that for all L ≥ L0, for all λ ∈ �, t > 0, θ ∈ [0,π) and for all
events A that depend on θ

(E)
λ (s), s ∈ [0, t] we have

sup
θ ′

P(0,θ)→(t+t0,θ
′)(A)≤ C P(0,θ)(A) ,

and

sup
θ ′

P̄(0,θ)→(t+t0,θ
′)(A)≤ C P̄(0,θ)(A) .

In addition, as t0 →∞ we have

P(0,θ)→(t+t0,θ
′)(A)= (1 + o(1))P(0,θ)(A) ,

P̄(0,θ)→(t+t0,θ
′)(A)= (1 + o(1))P̄(0,θ)(A) ,

uniformly over all θ, θ ′ ∈ [0,π], all λ ∈� and all events A as above.

Proof The proof is identical for θ
(E)
λ and θ̄

(E)
λ so we restrict to the former. For any

given t > 0 and for any event A that only depends on the trajectory of θ
(E)
λ (s) for

s ∈ [0, t], by the Markov property we have

P(0,θ)→(t+t0,θ
′)(A)= lim

δ↓0

E(0,θ)

[
1AP(0,θ

(E)
λ (t))

(θ
(E)
λ (t0) ∈ [θ ′ − δ, θ ′ + δ])]

P(0,θ)(θ
(E)
λ (t + t0) ∈ [θ ′ − δ, θ ′ + δ])

= lim
δ↓0

E(0,θ)

[
1A

(
1 +

P
(0,θ

(E)
λ

(t))
(θ

(E)
λ (t0)∈[θ ′−δ,θ ′+δ])−μ

(E)
λ (θ ′)

μ
(E)
λ (θ ′)

)]
(

1 + P(0,θ)(θ
(E)
λ (t+t0)∈[θ ′−δ,θ ′+δ])−μ

(E)
λ (θ ′)

μ
(E)
λ (θ ′)

) .
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By Theorem 4 and Lemma 3.1 the quantity

sup
λ∈�

sup
θ0,θ∈[0,π]

|p(E)
λ,t (θ0, θ)−μ

(E)
λ (θ)|

μ
(E)
λ (θ)

, (65)

is finite for all t0 ≥ 1 and converges to 0 as t0 →∞. This suffices to conclude. �

Let us now bound (64). By symmetry, we restrict to u ∈ [− L
2E ,0]. For all L large

enough, we have u+ 1 < L/(2E) and thus

E
(u)
θ,π−θ [‖ŷ(E)

λ ‖−q

2 ] ≤ E
(u)
θ,π−θ

[(∫ u+1

u

(ŷ
(E)
λ (t))2dt

)−q/2]
.

This expression only involves the backward diffusion. Using (56) this last term equals

μ
(E)
λ (π − θ)p̄

(E)

λ, L
2E−u

(π − θ,0)

μ
(E)
λ (0)p

(E)

λ, L
2E−u

(0,π − θ)
Ē

(0,π−θ)→( L
2E−u,0)

[(∫ 1

0
(ȳ

(E)
λ (t))2dt

)−q/2]
,

with r̄
(E)
λ (0) = 1 (recall that r̂

(E)
λ (u) = 1). By Theorem 4 and Lemma 3.1, the pref-

actor is bounded by a constant uniformly over all parameters. By Lemma 7.4 the
expectation can be bounded by a constant times

Ēπ−θ

[(
inf

t∈[0,1] r̄
(E)
λ (t)

)−2q]1/2
Ēπ−θ

[(∫ 1

0
sin2 θ̄

(E)
λ (t)dt

)−q]1/2
.

To bound the first term we apply Lemma 7.3. To bound the second term we use
Lemma A.6.

We turn to (63), which is more involved. Let us denote by ũ := u + L/(2E) the
distance of u to the left boundary of the interval and ṽ := −u+L/(2E) the distance
to the right boundary. By symmetry, it suffices to bound

∫ π

0
p

(E)

λ,ũ
(θ)p

(E)

λ,ṽ
(π − θ) sin2 θ

E
(u)
θ,π−θ

[
sup

t∈[− L
2E ,u]

r̂
(E)
λ (t)q exp

(q

2
(ν

(E)
λ − ε)|t − u|)]dθ .

This expression only involves the forward diffusion. By shifting time appropriately,
it rewrites∫ π

0
p

(E)

λ,ũ
(θ)p

(E)

λ,ṽ
(π − θ) sin2 θ

×E(0,0)→(ũ,θ)

[
sup

t∈[0,ũ]

( r
(E)
λ (t)

r
(E)
λ (ũ)

)q

exp
(q

2
(ν

(E)
λ − ε)|t − ũ|)]dθ ,

with r
(E)
λ (0)= 1. Let us take t0 from Lemma 7.4. We distinguish two cases according

to the relative values of ũ and 3t0.
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Assume ũ≤ 3t0. Theorem 4 and Lemma 3.1 allow to bound p
(E)

λ,ṽ
(π −θ) by a con-

stant. Bounding sin2 θ by one, and integrating in θ , we see that it suffices to bound:

E(0,0)

[
sup

t∈[0,ũ]

( r
(E)
λ (t)

r
(E)
λ (ũ)

)q

exp
(q

2
(ν

(E)
λ − ε)|t − ũ|)] ,

which is itself bounded thanks to Lemma 7.3.
Assume ũ > 3t0. It suffices to bound (uniformly over all the parameters):

E(0,0)→(ũ,θ)

[
sup

t∈[0,ũ]

( r
(E)
λ (t)

r
(E)
λ (ũ)

e
1
2 (ν

(E)
λ −ε)|t−ũ|)q]

. (66)

Indeed, either ṽ > 3t0 and then we bound p
(E)

λ,ũ
(θ)p

(E)

λ,ṽ
(π − θ) using Theorem 4 and

Lemma 3.1; or ṽ ≤ 3t0 and then we apply the same arguments to bound pλ,ũ(θ) while
we integrate over θ the term pλ,ṽ(π − θ). To bound (66), we split the supremum into
two parts:

• For the supremum over t ∈ [2t0, ũ], we use the adjoint diffusion and the identity
(56) so that it suffices to bound

Ē(0,θ)→(ũ,0)

[
sup

t∈[0,ũ−2t0]

(
r̄
(E)
λ (t)e

1
2 (ν

(E)
λ −ε)t

)q]
,

with r̄
(E)
λ (0)= 1. Using Lemma 7.4, the latter is bounded from above by a constant

times

Ē(0,θ)

[
sup

t∈[0,ũ−2t0]

(
r̄
(E)
λ (t)e

1
2 (ν

(E)
λ −ε)t

)q]
,

and we can then apply Lemma 7.3.
• For the supremum over t ∈ [0,2t0], we write

r
(E)
λ (t)

r
(E)
λ (ũ)

e
1
2 (ν

(E)
λ −ε)(ũ−t) = e

1
2 (Z

(E)
λ (t)−Z

(E)
λ (2t0)−ε(2t0−t))e

1
2 (Z

(E)
λ (2t0)−Z

(E)
λ (ũ)−ε(ũ−2t0)) .

Using the Cauchy-Schwarz inequality we thus find

E(0,0)→(ũ,θ)

[
sup

t∈[0,2t0]

( r
(E)
λ (t)

r
(E)
λ (ũ)

e
1
2 (ν

(E)
λ −ε)|t−ũ|)q

]

≤ E(0,0)→(ũ,θ)

[
sup

t∈[0,2t0]
eq(Z

(E)
λ (t)−Z

(E)
λ (2t0)−ε(2t0−t))

]1/2

×E(0,0)→(ũ,θ)

[
eq(Z

(E)
λ (2t0)−Z

(E)
λ (ũ)−ε(ũ−2t0))

]1/2
.
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The second expectation on the r.h.s. can be bounded using the adjoint diffusion as
above. By Lemma 7.4, the first expectation is bounded by a constant times

E(0,0)

[
sup

t∈[0,2t0]
eq(Z

(E)
λ (t)−Z

(E)
λ (2t0)−ε(2t0−t))

]
,

which is itself bounded by a constant by Lemma 7.3.

This concludes the proof of Proposition 4.2.

8 Fine estimates on the diffusion

Set � := [E − h/(Ln(E)),E + h/(Ln(E))]. In this section, we concentrate on the
r.v. NL(�) and N

(j)
L (�) and establish Propositions 4.4 and 4.5. To simplify the no-

tation, we work on the interval [0,L/E] instead of [−L/(2E),L/(2E)] since our
arguments will only rely on diffusions going forward in time. As a consequence, in
this whole section, the diffusion θ

(E)
λ starts from 0 or sometimes some value θ0 at

time 0 and live on the interval of time [0,L/E].
Recall that k = k(L) is the number of disjoint boxes (tj−1, tj ) into which the

interval (−L/2,L/2) is subdivided. All the results of this section hold true provided
k →∞ slowly enough: within the proofs, various constraints will arise on this speed.

8.1 A thorough study of a joint diffusion

The whole discussion revolves around a thorough study of the joint diffusion
(θ

(E)
λ , θ

(E)
μ ) where [λ,μ] := �. Actually, it is more convenient to deal with (θ

(E)
λ , α)

where

α(t) := θ(E)
μ (t)− θ

(E)
λ (t) , t ≥ 0 .

Let us collect a few facts about this pair of processes.

Lemma 8.1 ({α}π , {θλ}π ) is a Markov process. In addition, the process t �→ �α(t)�π
is non-decreasing.

Proof Recall that ({θ(E)
μ }π , {θ(E)

λ }π ) is a Markov process. Since ({α}π , {θλ}π ) is the
image of the latter through a bijection, we deduce the first property. For the second
property, suppose that α(t) = kπ . Then θ

(E)
μ (t) = θ

(E)
λ (t) + kπ and from the SDEs

(11) we deduce that dα(t)= d(θ
(E)
μ − θ

(E)
λ )(t)≥ 0. �

Let us take θ
(E)
λ (0) = θ

(E)
μ (0) = 0. Since we shifted the interval [−L/(2E),

L/(2E)] to [0,L/E], the number of eigenvalues of HL in the interval [λ,μ] is given
by NL(�) = �θ(E)

μ (L/E)�π − �θ(E)
λ (L/E)�π . As this quantity is not very tractable,

we instead look at �α(L/E)�π but we need to argue that it is a faithful approximation
of the former.
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Since x = �x�ππ + {x}π , we have the identity

α(L/E)=NL(�)π + {θ(E)
μ (L/E)}π − {θ(E)

λ (L/E)}π , (67)

from which one deduces the following simple inequalities

NL(�)− 1 ≤ �α(L/E)�π ≤NL(�) . (68)

We define the length of the successive excursions of {θ(E)
λ }π as

ζ (0) := 0, ζ (i) := inf{t ≥ 0 : θ(E)
λ (ζ (1) + · · · + ζ (i−1) + t)= iπ} for i ≥ 1 . (69)

We introduce the analogous stopping times for α, namely

τ (0) := 0, τ (i) := inf{t ≥ 0 : α(τ (1) + · · · + τ (i−1) + t)= iπ} for i ≥ 1 .

At this point, let us observe that the ζ (i) are typically of order E−3/2 since their
expectation equals m

(E)
λ . On the other hand, the τ (i) should typically be of order

L/E since the number of eigenvalues in � is of order 1. This illustrates that the two
processes θ

(E)
λ and α do not evolve at all on the same time-scale. It is also important

to note that the τ (i)’s are not i.i.d. since they are coupled by the values of the diffusion
θ

(E)
λ at the times

∑i−1
j=1 τ (j)’s.

To circumvent this difficulty, we show that the τ (i)’s are stochastically larger than
a sequence of i.i.d. r.v. whose law is almost the law of τ (1): this is the content of the
next lemma, on which the rest of our arguments rely.

Lemma 8.2 (Stochastic lower bound of the hitting times τ (i)) Let (τ̃ (i), ζ̃ (i))i≥1 be
a sequence of i.i.d. r.v. such that each (τ̃ (i), ζ̃ (i)) has the law of (τ (1), ζ (1)). Then the
sequence (τ (i))i≥1 is stochastically larger than the sequence ((τ̃ (i) − ζ̃ (i))+)i≥1, that
is, for any n≥ 1 and any bounded and non-decreasing function f : Rn → R, we have

E[f (τ (1), . . . , τ (n))] ≥ E[f ((τ̃ (1) − ζ̃ (1))+, . . . , (τ̃ (n) − ζ̃ (n))+)] .

Proof Define X0 = 0 and for every i ≥ 1

Xi := {θ(E)
λ (τ (1) + · · · + τ (i))}π .

The strong Markov property implies that the conditional law of τ (i) given
Fτ (1)+···+τ (i−1) is νXi−1 , where νx is the law of τ (1) given (θ

(E)
λ (0), α(0)) = (x,0).

For any bounded and non-decreasing function f : Rn → R we thus have

E
[
f (τ (1), . . . , τ (n)) |Fτ (1)+···+τ (n−1)

]= F(τ (1), . . . , τ (n−1),Xn−1) ,

where

F(v1, . . . , vn−1, xn−1)=
∫

y

f (v1, . . . , vn−1, y)νxn−1(dy) .
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Fig. 2 Coupling of (θλ,α) and
(θ̃λ, α̃)

Let ν̃ be the law of (τ̃ (1) − ζ̃ (1))+. We claim that for every x ∈ [0,π), νx is larger9

than ν̃. We deduce that

F(v1, . . . , vn−1, xn−1)≥G(v1, . . . , vn−1) :=
∫

y

f (v1, . . . , vn−1, y)ν̃(dy) .

Note that G is bounded and non-decreasing so that a simple recursion yields

E
[
f (τ (1), . . . , τ (n))] ≥

∫
f (y1, . . . , yn)ν̃(dy1) . . . ν̃(dyn)

= E[f ((τ̃ (1) − ζ̃ (1))+, . . . , (τ̃ (n) − ζ̃ (n))+)] .

To prove the claim, we fix x ∈ [0,π) and we consider the process (θ
(E)
λ , α) starting

from (x,0) and driven by the Brownian motion B: the law of the associated r.v. τ (1)

is therefore νx . We consider an independent Brownian motion B̃ and we build a
diffusion (θ̃λ, α̃) starting from (0,0) as follows: up to the stopping time Sx := inf{t ≥
0 : θ̃λ(t) = x}, the diffusion (θ̃λ, α̃) is driven by B̃; at any time t ≥ Sx , the diffusion
is driven by B(t − Sx). Consequently θ̃λ(Sx + t) = θ

(E)
λ (t) for all t ≥ 0. We claim

that for all t ≥ 0, α̃(t + Sx) ≥ α(t). Indeed α̃(t + Sx) + θ
(E)
λ (t) and α(t) + θ

(E)
λ (t)

follow the same SDE (namely: the SDE satisfied by θ
(E)
μ ) but start from ordered initial

conditions and therefore remain ordered.
Thus we have almost surely

(τ̃ (1) − Sπ)+ ≤ (τ̃ (1) − Sx)+ ≤ τ (1) .

Since Sπ = ζ̃ (1), we deduce that (τ̃ (1) − ζ̃ (1))+ is stochastically lower than τ (1) (see
Fig. 2 for an illustration of this coupling). This concludes the proof. �

We can now provide the proof of Proposition 4.4.

Proof of Proposition 4.4 We start with the bound of NL(�)2. Without loss of gener-
ality, we can assume that h is small. Indeed, since NL(� ∪�′) = NL(�)+NL(�′)

9We say ν is larger than μ if for any non-decreasing and bounded function f we have
∫

f dν ≥ ∫
f dμ.
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for any two disjoint intervals � and �′, the bound of the second moment for a small
interval propagates to larger intervals.

By (68), it suffices to prove that

lim sup
L→∞

E
[�α(L/E)�2

π

]
<∞ .

By Lemma 8.2, we have

P(τ (1) + · · · + τ (n) ≤ L/E)≤ P
( n∑

i=1

(τ̃ (i) − ζ̃ (i))+ ≤ L/E
)

≤ P
(
(τ̃ (1) − ζ̃ (1))+ ≤ L/E

)n

≤ (
P(τ̃ (1) ≤ 2L/E)+ P(ζ̃ (1) > L/E)

)n
.

Observe that

P(τ̃ (1) ≤ 2L/E)= P(�α(2L/E)�π ≥ 1)≤ P(N2L(�)≥ 1)≤ E[N2L(�)] ,
which, by Proposition 6.3 and provided that h is small enough, is smaller than 1/4
for all L large enough. Furthermore, recall that m

(E)
λ � E−3/2, and by Markov’s in-

equality

P(ζ̃ (1) > L/E)≤m
(E)
λ

E
L

,

which is also smaller than 1/4 for all L large enough. As a consequence

E
[�α(L/E)�2

π

]=∑
n≥1

(2n− 1)P(τ1 + · · · + τn ≤ L/E) ,

is bounded uniformly over all L large enough.
Regarding the bound of N

(1)
L (�)2, let us set L′ = L/(kE). One needs to show that

sup
L>1

kE
[�α(L′)�2

π

]
<∞ .

Repeating the same steps, we see that

P(τ̃ (1) ≤ 2L′)≤ E[N(1)
2L (�)] ,

which, by Proposition 6.3 and provided that h is small enough, is bounded by 1/(4k)

for all L large enough. Moreover

P(ζ̃ (1) > L′)≤m
(E)
λ /L′ ,

which is smaller than 1/(4k) provided10 k2 � L
√

E. This suffices to conclude. �

10This is a restriction on the speed at which k can go to ∞.
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Before we present the proof of Proposition 4.5, we need a last estimate whose
proof is involved and therefore postponed to the next subsection.

Lemma 8.3 (Key bound on α and θ ) Set L′ = L/(kE). Provided k → ∞ slowly
enough, we have kP({α(L′)}π + {θλ(L

′)}π ≥ π)→ 0 as L→∞.

Proof of Proposition 4.5 Identities (67) and (68) remain true upon replacing NL(�) by
N

(1)
L (�) and the time L/E, at which the processes are evaluated, by L′ := L/(kE).

Inequalities (68) imply that N
(1)
L (�) = �α(L′)�π or N

(1)
L (�) = �α(L′)�π + 1.

Therefore, if N
(1)
L (�) ≥ 2, then necessarily one of the two events {�α(L′)�π ≥ 2}

or {N(1)
L (�) != �α(L′)�π } must be satisfied. We will control the probabilities of the

two events. For the last event, note that (67) implies:

N
(1)
L (�)= �α(L′)�π ⇔{θ(E)

μ (L′)}π − {θE
λ (L′)}π ≥ 0 .

Since we have

{α(L′)}π =
{
{θ(E)

μ (L′)}π − {θ(E)
λ (L′)}π if {θ(E)

μ (L′)}π − {θ(E)
λ (L′)}π ≥ 0 ,

π + {θ(E)
μ (L′)}π − {θ(E)

λ (L′)}π if {θ(E)
μ (L′)}π − {θ(E)

λ (L′)}π < 0 .

we deduce that

N
(1)
L (�)= �α(L′)�π ⇔{α(L′)}π + {θ(E)

λ (L′)}π < π .

Consequently

kP(N
(1)
L (�)≥ 2)≤ kP(�α(L′)�π ≥ 2)+ kP({α(L′)}π + {θ(E)

λ (L′)}π ≥ π) .

By Lemma 8.3 the second term on the r.h.s. goes to 0 as L→∞. Regarding the first
term, by Lemma 8.2 we have

P
(�α(L′)�π ≥ 2

)= P(τ (1) + τ (2) ≤ L′)≤ P((τ̃ (1) − ζ̃ (1))+ + (τ̃ (2) − ζ̃ (2))+ ≤ L′)

≤ (P((τ̃ (1) − ζ̃ (1))+ ≤ L′))2

≤ (P(τ̃ (1) ≤ 2L′))+ P(ζ̃ (1) ≥ L′))2 .

Applying the same arguments as in the previous proof, we get

kP
(�α(L′)�π ≥ 2

)≤ k
(m

(E)
λ

L′ + 5h

k

)2
,

which goes to 0 since mλ � E−3/2 and provided11 k3 � L2E. �

11This is another restriction on the speed at which k can go to ∞.
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Fig. 3 Effective potential in
which R evolves

8.2 Proof of Lemma 8.3

Recall that L′ := L/(kE). The proof relies on a small parameter (whose precise value
is relatively arbitrary):

εL :=
{

1
ln ln lnL′ in the Bulk regime ,

1
ln ln lnL′∧lnE

in the Crossover regime .

We also define uL := ln ε−1
L .

From the estimates on the invariant measure stated in Lemma 3.1 and the conver-
gence of the densities of Theorem 4, there exist two constant c,C > 0 such that

P({θ(E)
λ }π(L′) > π − 3εL)≤ c(εL + e−CL′

) ,

for all L large enough and therefore kP({θ(E)
λ }π (L′) > π −3εL) goes to 0 as L→∞,

provided k goes to ∞ slowly enough. To establish the lemma it suffices to show that

lim
L→∞ kP({α(L′)}π >

5

2
εL)= 0 . (70)

Recall that ({θ(E)
λ }π , {α}π ) is markovian. If we can show that for some C > 0

lim
L→∞ k sup

θ0,α0∈[0,π)

P({α(C lnL′)}π >
5

2
εL | θλ(0)= θ0, α(0)= α0)= 0 , (71)

then the Markov property applied at time L′ −C lnL′ yields (70). The order of mag-
nitude lnL′ will be justified by the discussion below.

The proof of this convergence relies on a thorough study of the process

R := log tan({α}π/2) ∈ [−∞,∞) ,

which happens to behave very much like a diffusion in R within a potential repre-
sented on Fig. 3 (note that this potential is similar to the one studied in [1] for the
small β limit of the Sineβ process). The main features of this potential are: −∞ is
an entrance point while +∞ is an exit point; the potential admits a well centered at
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− lnL′ and an unstable equilibrium point near 0; the drift generated by this potential
is (roughly) a negative constant, resp. a positive constant, on (− lnL′,0), resp. on
(0, lnL′).

Actually, the process {α}π (and therefore the process R) is not markovian as its
evolution depends on the Markov process θλ: however, θλ evolves at a smaller time-
scale than R so that after “averaging” over the evolution of θλ, the process R can be
seen as a diffusion. One difficulty in our proofs will then consist in controlling the
error made upon this replacement.

To alleviate the notation, we write Pθ0,R0 for the law of (θλ,R) starting from
(θ0,R0) at time 0. The convergence (71) is implied by

lim
L→∞ k sup

θ0∈[0,π),R0∈[−∞,∞)

Pθ0,R0(R(C lnL′) >− ln ε−1
L )= 0 . (72)

Recall uL := ln ε−1
L . We divide the proof of (72) according to the initial position of

R. The first lemma shows that if R starts in the interval [−∞,−2uL], that is, within
the well of the potential of Fig. 3, then it typically remains in [−∞,−uL) up to time
C lnL′.

Lemma 8.4 (Small initial values) For any constant C > 0, provided k →∞ slowly
enough, we have

lim
L→∞ k sup

θ0∈[0,π),R0∈[−∞,−2uL]
Pθ0,R0( sup

[0,C lnL′]
R >−uL)= 0 .

The second lemma shows that if R starts in the interval [−2uL,2uL], that is, near
the unstable equilibrium point of the potential of Fig. 3, then it typically escapes this
interval by time 2 lnL′.

Lemma 8.5 (Intermediate initial values) Provided k →∞ slowly enough, we have

lim
L→∞ k sup

θ0∈[0,π),R0∈[−2uL,2uL]
Pθ0,R0(|R| does not hit 2uL by time 2 lnL′)= 0 .

Finally we show that if R starts in the interval [2uL,∞), that is, near the exit point
+∞ of the potential of Fig. 3, then it typically explodes to +∞ within a time of order
lnL′. As R restarts from −∞ when it hits +∞, we are then back to the regime of the
first lemma.

Lemma 8.6 (Large initial values) Provided k →∞ slowly enough, there exists a con-
stant C > 0 such that

lim
L→∞ k sup

θ0∈[0,π),R0∈[2uL,∞)

Pθ0,R0(R does not hit +∞ by time C lnL′)= 0 .

It is straightforward to deduce (72) from the three lemmas and the Markov prop-
erty.

Before we proceed with the proofs of these three lemmas, let us compute the SDE
solved by R.
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Lemma 8.7

dR =
(√

E(μ− λ) sin2(α + θ
(E)
λ ) coshR + √

E(λ− E) sin(α + 2θ
(E)
λ )

+ 1

2
cos(α + 2θ

(E)
λ )

+ tanhR

4
(1 + cos(2α + 4θ

(E)
λ ))

)
dt − sin(α + 2θ

(E)
λ )dB(E)(t) .

Note that we intentionally left some occurrences of the process α in this expres-
sion. Depending on the range of values α (or equivalently, R) at which our analysis
focuses, we will neglect some terms of this SDE.

Proof Trigonometric identities yield

sin2 θ(E)
μ − sin2 θ

(E)
λ = sinα sin(α + 2θ

(E)
λ ) ,

sin3 θ(E)
μ cos θ(E)

μ − sin3 θ
(E)
λ cos θ

(E)
λ = 1

2
sinα cos(α + 2θ

(E)
λ )

− 1

2
sinα cosα cos(2α + 4θ

(E)
λ ) .

Starting from (11) and applying these identities, we can write the SDE solved by α

dα =
(√

E(μ− λ) sin2(α + θ
(E)
λ )+√

E(λ− E) sinα sin(α + 2θ
(E)
λ )

+ 1

2
sinα cos(α + 2θ

(E)
λ )

− 1

2
sinα cosα cos(2α + 4θ

(E)
λ )

)
dt − sinα sin(α + 2θ

(E)
λ )dB(E)(t) .

If f (x) = log tan(x/2), then f ′(x) = 1/ sinx and f ′′(x) =− cos(x)/ sin2(x). Let us
assume that α(0) ∈ [0,π). Then α remains non-negative, and until its first hitting
time of π we obtain by Itô’s formula

dR = 1

sinα
dα − cosα

2
sin2(α + 2θ

(E)
λ )dt .

Using the identities sinα = 1/ coshR and cosα =− tanhR, the asserted expression
for the SDE follows, at least until the first hitting time of π by α. Now if α ∈ [nπ, (n+
1)π), then it is not difficult to check that {α}π , until its next hitting time of π , satisfies
the same SDE as α. Consequently, we can again apply Itô’s formula and derive the
desired SDE for R. Patching together the successive excursions of α, we derive the
lemma. �

Proof of Lemma 8.4 By monotonicity, it suffices to consider the case R0 =−2uL. Let
S := inf{t ≥ 0 : R(t) ∈ {−(3/4) lnL′,−uL}}. We are going to prove that there exist



402 L. Dumaz, C. Labbé

c, c′ > 0 such that for all L large enough

inf
θ0∈[0,π)

Pθ0,R0(R(S)=−(3/4) lnL′;S > c′ lnL′) > 1 − εc
L . (73)

From this estimate and the Markov property, one deduces the statement of the lemma
provided12 k � ε−c

L .

Let us write dR(t)=A(t)dt+dM(t) where M(t) := ∫ t

0 − sin(α+2θ
(E)
λ )dB(E)(t)

is the martingale part of the SDE. One can check that for all t ≤ S, the drift term
satisfies

A(t)= C(t)+O(εL + (L′)−1/4) ,

where

C(t)=√
E(λ− E) sin(2θ

(E)
λ )+ 1

2
cos(2θ

(E)
λ )− 1

4
(1 + cos(4θ

(E)
λ )) .

Note that the first term in C(t) is of order O(E/L) while the two others are of order

O(1) but it is more convenient to keep this term. By (92) we have E[∫ ζ
(E)
λ

0 C(s)ds] =
−ν

(E)
λ m

(E)
λ . Recall that the expectation of ζ

(E)
λ is m

(E)
λ . Therefore for t large enough

and as long as t < S, the process R(t) − R0 roughly behaves like −ν
(E)
λ t + M(t),

where ν
(E)
λ is of order O(1), so that it has a negligible probability to reach large

values. Note that −ν
(E)
λ , the value of the approximate drift, is consistent with the

effective potential of Fig. 3.
To put that on firm ground, introduce dR̃(t) := C(t)dt + dM(t) with R̃(0) :=R0.

For any ε > 0 there exists q > 0 such that

lim sup
L→∞

sup
θ0

Eθ0,R0[sup
t≥0

eq|R̃(t)−R0+ν
(E)
λ t |e−qεt ]<∞ .

Indeed for the integral
∫ t

0 C(s)ds, it follows from the very same arguments as in
Lemma 7.3 and we can deal with the martingale part using Lemma A.2.

Using sups≤t |R(s) − R̃(s)| ≤ O(εL + (L′)−1/4) × t for all t ≤ S, we therefore
deduce that there exists L0 > 1 such that

sup
L>L0

sup
θ0

Eθ0,R0 [ sup
t∈[0,S]

eq|R(t)−R0+ν
(E)
λ t |e−2qεt ]<∞ .

Call K the expression on the l.h.s. Provided 2ε < ν
(E)
λ we deduce that for all L large

enough

sup
θ0

Pθ0,R0(R(S)=−uL)≤Ke−quL .

12This is a further constraint on k.



Localization crossover for the Anderson Hamiltonian 403

In addition, taking c′ > 0 small enough we observe that there exists C′ > 0 such that
for all L large enough

R(S)=−(3/4) lnL′ ; S ≤ c′ lnL′ ⇒ sup
t∈[0,S]

|R(t)−R0 + ν
(E)
λ t | − 2εt ≥ C′ lnL′ ,

and consequently for all L large enough

sup
θ0

Pθ0,R0

(
R(S)=−(3/4) lnL′ ; S ≤ c′ lnL′)≤Ke−qC′ lnL′

.

This concludes the proof of (73). �

For our next proof, recall the definitions of the hitting times (69) and set Tk =
ζ (1) + · · · + ζ (k). We set n := �E3/2�, τk := Tnk for every k ≥ 1 and τ0 = 0. The
sequence τk should not be confused with the sequence τ (k) introduced in Sect. 8.1.

Proof of Lemma 8.5 It suffices to prove the statement of the lemma with θ0 = 0 and
with 2 lnL′ replaced by lnL′. Indeed, if θ0 != 0, then by Lemma A.3 there exists c > 0
such that with probability at least 1 − e−c lnL′E3/2

the process {θ(E)
λ }π hits 0 by time

lnL′. Therefore, we now assume that θ0 = 0.
Introduce the stopping time

S := inf{t ≥ 0 :R(t) /∈ [−2uL,2uL]} .

We claim that on any excursion of the diffusion θ
(E)
λ from njπ to n(j + 1)π , R has

a small chance to escape from [−2uL,2uL] i.e.

inf
R0∈[−2uL,2uL]

Pθ0=0,R0(S < τ1)≥ δL , δL := exp(−ε−33
L ) . (74)

We postpone the proof of the claim and proceed with the proof of the lemma. By the
strong Markov property, we have for all R0 ∈ [−2uL,2uL] and N ≥ 1,

Pθ0=0,R0(S ≥ τN)= Pθ0=0,R0(S ≥ τN |S ≥ τN−1) Pθ0=0,R0(S ≥ τN−1)

≤ sup
R′

0∈[−2uL,2uL]
Pθ0=0,R′

0
(S ≥ τN) Pθ0=0,R0(S ≥ τN−1) ,

which gives with (74):

Pθ0=0,R0(S ≥ τN)≤ (1 − δL)N .

Set N := κ lnL′ and define the event B := {τN < lnL′}. If κ > 0 is small enough
then by Lemma A.3 there exists c > 0 such that for all L large enough we have

P(B�) < e−cE3/2 lnL′
.

Therefore uniformly over all R0 ∈ [−2uL,2uL]
Pθ0=0,R0(S ≤ lnL′)≥ Pθ0=0,R0(B ∩ {S ≤ τN })≥ Pθ0=0,R0(S ≤ τN)− P(B�)
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≥ 1 − (1 − δL)N − e−cE3/2 lnL′

so that

kPθ0=0,R0(S > lnL′) < ke−κ lnL′δL + ke−cE3/2 lnL′
.

Since ε−1
L ≤ ln ln lnL′, we have lnL′δL →+∞. Provided k does not go too fast to

+∞ (for instance provided k � lnL′), we deduce that kPθ0=0,R0(S > lnL′) goes to
0 uniformly over all R0 ∈ [−2uL,2uL].

We now prove (74). Let us write dR(t)=A(t)dt + dM(t) where

M(t)=
∫ t

0
− sin(α + 2θ

(E)
λ )dB(E)(s) .

Set S′ := inf{t ≥ 0 :R(t) /∈ [−10uL,10uL]}. Set α± := 2 arctan e±10uL and introduce
the martingale

N(t) := −
∫ t

0
sin(α− ∨ α ∧ α+ + 2θ

(E)
λ )dB(E)(s) ,

which coincides with M(t) for all time t ≤ S′. There exists C > 0 such that whenever
t ≤ S′, the drift satisfies |A(t)|< C almost surely, and therefore

−Ct +Nt ≤R(t)−R(0)≤ Ct +Nt . (75)

Recall that n= �E3/2� so that nm
(E)
λ is of order 1. We then note that

P(S < τ1)≥ P(∃t < τ1 ∧ S′ :Nt ≥ Ct + 4uL)

≥ P(∃t < (2nm
(E)
λ )∧ τ1 ∧ S′ :Nt ≥ 5uL)

≥ P(∃t < (2nm
(E)
λ )∧ τ1 ∧ S′ : sup

[0,t]
N = 5uL , inf[0,t]N ≥−uL) .

Note that, if at some time t < (2nm
(E)
λ )∧τ1 we have sup[0,t] N = 5uL and inf[0,t] N ≥

−uL then by the inequalities (75) we have t < S′. Consequently

P(S < τ1)≥ P(∃t < (2nm
(E)
λ )∧ τ1 : sup

[0,t]
N = 5uL , inf[0,t]N ≥−uL) .

Let qr := inf{s ≥ 0 : 〈N〉s ≥ r}, and define βr := Nqr . By Dubins-Schwarz’s The-
orem, β is a Brownian motion. We thus get for any r > 0

P(S < τ1)≥ P(βr ≥ 5uL; inf[0,r]β ≥−uL;qr < (2nm
(E)
λ )∧ τ1)

≥ P(βr ≥ 5uL; inf[0,r]β ≥−uL)− P(qr ≥ (2nm
(E)
λ )∧ τ1) .

(76)

We now set r := ε32
L . By symmetry

P(βr > 5uL; inf[0,r]β ≥−uL)= P(sup
[0,r]

β ≤ uL;βr <−5uL)
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= P(βr <−5uL)− P(sup
[0,r]

β > uL;βr <−5uL) .

By the Reflection Principle [34, Exercise III.3.14], this last term coincides with
P(βr <−7uL). Therefore, by symmetry again

P(βr > 5uL; inf[0,r]β ≥−uL)= P(βr <−5uL)− P(βr <−7uL)

= P(−7uL < βr <−5uL)

= P(5uL < βr < 7uL) .

Since u2
L/r →∞ as L→∞, there exists c > 0 such that for all L large enough

P(5uL < βr < 7uL)= 1√
2πr

∫ 7uL

5uL

e−
x2
2r dx ≥ 2uL√

2πr
e−

49u2
L

2r ≥ e−c
u2
L
r . (77)

To bound from above P(qr ≥ (2nm
(E)
λ ) ∧ τ1), we distinguish the Bulk and the

Crossover regimes.
We start with the Crossover regime. We have

P(qr ≥ (2nm
(E)
λ )∧ τ1)= P(〈N〉

(2nm
(E)
λ )∧τ1

≤ r)≤ P(τ1 > 2nm
(E)
λ )+ P(〈N〉τ1 ≤ r) .

From Lemma A.3, for all α ∈ [0,1)

P(τ1 > 2nm
(E)
λ )≤ E[eαζ

(E)
λ /m

(E)
λ ]ne−2nα = e

n
(

ln 1
1−α

−2α
)
.

Consequently there exists c′ > 0 such that

P(τ1 > 2nm
(E)
λ )≤ e−c′E3/2

.

Regarding the second term, we claim that

〈N〉τ1 =
∫ τ1

0
sin2(α− ∨ α ∧ α+ + 2θ

(E)
λ )ds ≥ 1

2
ε20
L

∫ τ1

0
1{{θ(E)

λ (s)}π≤ε11
L }ds .

To prove the claim, note that arctanx ∼ x as x → 0 and arctanx ∼ π
2 − 1

x
as x →

+∞. Consequently for all L large enough

ε10
L ≤ α− ∨ α ∧ α+ ≤ π − ε10

L .

Fix κ ∈ (0,1). If {θ(E)
λ (s)}π ≤ ε11

L , then provided L is large enough we find

(1 − κ)ε10
L ≤ {α− ∨ α(s)∧ α+ + 2θ

(E)
λ (s)}π ≤ π − (1 − κ)ε10

L ,

and therefore, picking an appropriate value κ , we find sin2(α− ∨ α(s) ∧ α+ +
2θ

(E)
λ (s))≥ 1

2ε20
L .
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We now bound from above P( 1
2ε20

L

∫ τ1
0 1{{θ(E)

λ (s)}π≤ε11
L }ds ≤ r). Note that the inte-

gral that appears in this r.v. is a sum of n i.i.d. r.v. Xk with

X1 =
∫ ζ

(E)
λ

0
1{|θ(E)

λ (s)|≤ε11
L }ds .

Introduce σ := inf{t ≥ 0 : θ(E)
λ (t) = ε11

L }. Note that X1 ≥ σ . Consider the process

θ
(E)
λ (· ∧ σ). Since n is of order E3/2, its drift term is bounded by nC′

α , where C′
α is a

given constant independent of L, and the square of its diffusion coefficient is bounded
by Cβ = ε44

L . By Lemma A.2 there exists δ > 0 such that for all L large enough

P(X1 >
δε11

L

n
)≥ P(σ >

δε11
L

n
)= P( sup

s∈[0,
δε11

L
n

]
θ

(E)
λ (s ∧ σ) < ε11

L )≥ 1

2
.

Putting the previous arguments together, the computation boils down to an estimate
on the Binomial distribution:

P(〈N〉τ1 ≤ r)≤ P
( n∑

k=1

δ

2n
ε31
L 1

{Xk>
δε11

L
n

}
≤ r

)≤ P(Bin(n,1/2)≤ 2nεL

δ
) .

Let us point out that δ is independent of L, so that εL/δ goes to 0 as L →∞ and
therefore 2nεL

δ
is much smaller than the mean of the Binomial distribution at stake. A

multiplicative Chernoff bound gives for some constant c′′ > 0:

P(Bin(n,1/2)≤ 2nεL

δ
)≤ e−

n
2 ((1−4εL/δ)+(4εL/δ) ln(4εL/δ)) ≤ e−c′′E3/2

.

We henceforth obtain (recalling that uL = ln ε−1
L )

P(S < τ1)≥ e
−c

ln2 ε
−1
L

ε32
L − e−c′E3/2 − e−c′′E3/2

.

Since ε−1
L ≤ lnE, we obtain (74).

Let us now consider the Bulk regime, for which n= 1 and τ1 = ζλ. We have

P(qr ≥ (2nmλ)∧ τ1)= P(〈N〉(2mλ)∧ζλ
≤ r) .

Then we introduce σ := inf{t ≥ 0 : θλ(t) = ε11
L }, which is smaller than ζλ, and we

write

〈N〉(2mλ)∧ζλ
=

∫ (2mλ)∧ζλ

0
sin2(α− ∨ α ∧ α+ + 2θλ)ds ≥ 1

2
ε20
L

(
σ ∧ (2mλ)

)
.

Since mλ is of order 1, we thus have

P(〈N〉(2mλ)∧ζλ
≤ r)≤ P(σ ∧ (2mλ)≤ 2ε12

L )= P(σ ≤ 2ε12
L ) .
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To bound this last term, we consider the process θλ(· ∧ σ). Its drift term is bounded
by some constant Cα > 0 (which is of order 1) and the quadratic variation of its
martingale term is bounded by Cβ = ε44

L . By Lemma A.2, we thus get

P(σ ≤ 2ε12
L )≤ P( sup

s∈[0,2ε12
L ]

θλ(s ∧ σ)≥ 1

2
ε11
L )≤ 2e−

ε
−34
L
64 .

Consequently

P(S < τ1)≥ e
−c

ln2 ε
−1
L

ε32
L − 2e−

ε
−34
L
64 ≥ δL . �

We turn to the case where the initial value is “large”.

Proof of Lemma 8.6 By monotonicity, it suffices to consider the case R0 = 2uL.
Whenever R(t) ∈ [uL,∞),

dR(t)=−
(√

E(λ− E) sin(2θ
(E)
λ )+ 1

2
cos(2θ

(E)
λ )− 1

4
(1 + cos(4θ

(E)
λ ))

)
dt

+√
E(μ− λ) sin2 θ

(E)
λ

sinh2 R

coshR
dt − sin(α + 2θ

(E)
λ )dB(t)

+O(εL + (L′)−1
)dt .

The proof consists of two steps. First, we apply essentially the same arguments as in
the proof of Lemma 8.4 to show that with large probability R hits 10 lnL′ before uL

within a time C′ lnL′. Second, we consider the process R starting from 10 lnL′ and
we show that with large probability, R is bounded from below by the solution of an
ODE which explodes within a time smaller than lnL′.

We start with the first step. Recall that R0 = 2uL. Let S := inf{t ≥ 0 : R(t) ∈
{uL,10 lnL′}}. We claim that there exist c,C′ > 0 such that for all L large enough

inf
θ0∈[0,π)

Pθ0,R0(R(S)= 10 lnL′;S < C′ lnL′) > 1 − εc
L . (78)

Since
√

E(μ − λ) sin2 θ
(E)
λ

sinh2 R
coshR

≥ 0 up to time S, it suffices to show the desired
estimate but for the process

R̃(t)=R(t)−
∫ t

0

√
E(μ− λ) sin2 θλ

sinh2 R

coshR
ds ,

and the stopping time S̃ := inf{t ≥ 0 : R̃(t) ∈ {uL,10 lnL′}}. Fix ε > 0. The same
arguments as in the proof of Lemma 8.4 show that there exist q > 0 and L0 > 1 such
that

sup
L>L0

sup
θ0

Eθ0,R0

[
sup

t∈[0,S̃]
eq|R̃(t)−R0−ν

(E)
λ t |e−2qεt

]
<∞ .
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Call K the expression on the l.h.s. Provided 2ε < ν
(E)
λ we deduce that for all L large

enough

sup
θ0

Pθ0,R0

(
R̃(S̃)= uL

)≤ sup
θ0

Pθ0,R0

(
eq|R̃(S̃)−R0−ν

(E)
λ S̃|e−2qεS̃ ≥ equL

)≤Ke−quL .

In addition, taking c′ > 0 large enough we observe that there exists C′ > 0 such that
for all L large enough

R̃(S̃)= 10 lnL′ & S̃ > c′ lnL′ ⇒ sup
t∈[0,S̃]

|R̃(t)−R0 − ν
(E)
λ t | − 2εt ≥ C′ lnL′ ,

and consequently for all L large enough

sup
θ0

Pθ0,R0

(
R̃(S̃)= 10 lnL′ ; S̃ > c′ lnL′)≤Ke−qC′ lnL′

.

This proves (78) for R̃, and by monotononicity, for R as well.
We turn to the second step. We now take R0 = 10 lnL′ and we set S′ := inf{t ≥ 0 :

R(t) ∈ {2 lnL′,+∞}}. Take ε > 0 such that 2ε < ν
(E)
λ . The same arguments as in the

first step show that there exist q > 0 and L0 > 1 such that

sup
L>L0

sup
θ0

Eθ0,R0 [ sup
t∈[0,S̃′]

eq|R̃(t)−R0−ν
(E)
λ t |e−2qεt ]<∞ ,

where S̃′ := inf{t ≥ 0 : R̃(t) ∈ {2 lnL′,+∞}}. Call K the expression on the l.h.s.
Note that for any t ≥ 0

R̃(t) < 5 lnL′ ⇒ |R̃(t)−R0 − ν
(E)
λ t | − 2εt > 5 lnL′ .

We deduce that with a probability at least 1 −Ke−q5 lnL′
, we have for all t ∈ [0, S̃′]

R̃(t)≥ 5 lnL′ .

Call G this event. On G, if S̃′ < ∞ then necessarily R̃(S̃′) =+∞ and then, S′ ≤ S̃′
and R(S′)=+∞.

Note that there exists a constant c > 0 such that for all t ∈ [0, S′]
√

E(μ− λ) sin2 θ
(E)
λ (t)

sinh2 R(t)

coshR(t)
≥ cE

L
sin2 θ

(E)
λ (t)eR(t) .

On the event G, for all t ∈ [0, S′] we thus have

R(t)= R̃(t)+
∫ t

0

√
E(μ− λ) sin2 θλ

sinh2 R

coshR
ds

≥ 5 lnL′ + cE
L

∫ t

0
sin2 θ

(E)
λ (s)eR(s)ds .
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Set for any r ≥ 0, qr := inf{t ≥ 0 : ∫ t

0 sin2 θ
(E)
λ (s)ds ≥ r}. Whenever qr ≤ S′, a

change-of-variable yields

R(qr)≥ 5 lnL′ + cE
L

∫ r

0
eR(qv)dv .

Now the solution to the differential equation

f ′(r)= cE
L

ef (r) , f (0)= 5 lnL′ ,

is explicitly given by f (r)=− ln(e−f (0) − cE
L

r) which explodes at time

r0 := L

cEef (0)
= k

cL′4 .

Let us require k ≤ cL′4. Then f explodes by time 1. By comparison, on the event G

we also deduce that r �→R(qr) explodes before time 1. To conclude, we also need to
estimate

sup
θ0

Pθ0(q1 > lnL′)= sup
θ0

Pθ0

(∫ lnL′

0
sin2 θ

(E)
λ (s)ds < 1

)
.

Given θ0, recall Tk = inf{t ≥ 0 : θ(E)
λ (t)= θ0 + kπ} for any k ≥ 1. Set p :=

⌊
lnL′

2m
(E)
λ

⌋
.

We have

sup
θ0

Pθ0

(∫ lnL′

0
sin2 θ

(E)
λ (s)ds < 1

)
≤ sup

θ0

Pθ0(Tp > lnL′)

+ sup
θ0

Pθ0

(∫ Tp

0
sin2 θ

(E)
λ (s)ds < 1

)
.

From Lemma A.3, there exists c1 > 0 such that

sup
θ0

P(Tp > lnL′)≤ e−c1 lnL′E3/2
.

Now observe that
∫ Tp

0 sin2 θ
(E)
λ (s)ds has the same law as a sum of p i.i.d. r.v. Xj with

X1 :=
∫ ζ

(E)
λ

0
sin2 θ

(E)
λ (s)ds .

From Lemma A.2 (and similarly as we did in the previous proof), there exists δ > 0
such that

P(X1 >
δ

E3/2
) >

1

2
.



410 L. Dumaz, C. Labbé

Therefore

sup
θ0

Pθ0

(∫ Tp

0
sin2 θ

(E)
λ (s)ds < 1

)
≤ P(Bin(p,1/2) <

E3/2

δ
) .

Note that there exists c > 0 such that p = � lnL′
2m

(E)
λ

� ≥ cE3/2 lnL′. Using again a mul-

tiplicative Chernov bound, we get for some c2 > 0,

P(Bin(p,1/2) <
E3/2

δ
)≤ e−c2 lnL′E3/2

.

Putting everything together, in this second step we have shown that for R0 = 10 lnL′

inf
θ0

Pθ0,R0(R does not hit +∞ by time lnL′)≤Ke−q5 lnL′ + e−c1 lnL′E3/2

+ e−c2 lnL′E3/2
.

Combining the two steps, we conclude provided k →∞ slowly enough. �

9 Poisson statistics

The goal of this section is to prove Propositions 4.7 and 4.3. The former provides the
intensity of the random measure N̄L, which was defined in (21): this result, combined
with the arguments presented in Sect. 4.4, establishes the convergence of N̄L towards
a Poisson random measure. Subsequently, Proposition 4.3 shows that NL − N̄L goes
to 0 as L→∞, and therefore concludes the proof of the main theorems.

The proof of Proposition 4.7 is presented in Sects. 9.1 and 9.2, while Sect. 9.3 is
devoted to the proof of Proposition 4.3.

9.1 The limiting intensity

Let us start by defining the two random processes YE and Y∞ introduced before the
statement of Theorem 3.

In the Crossover regime, we have defined for some two-sided Brownian motion B,

Y∞(t) := 1√
2

exp
(
− |t |

8
+ B(t)

2
√

2

)
, t ∈ R .

In the Bulk regime, the definition of YE requires more notations. Consider two
independent adjoint diffusions (θ̄+E (t), ρ̄+

E (t); t ≥ 0) and (θ̄−E (t), ρ̄−
E (t); t ≥ 0), satis-

fying the SDEs (55) and (57), and starting from

θ̄+E (0)= θ , θ̄−E (0)= π − θ , ρ̄+
E (0)= ρ̄−

E (0)= 0 .

In other words, we work under the product measure P̄
+
(0,θ)

⊗ P̄
−
(0,π−θ)

with the addi-

tional convention that r̄±E (0) = 1. We let ȳ±E (t) := e
1
2 ρ̄±

E (t) sin θ̄±E (t). We define their
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concatenation13

ˆ̄yE(t) :=
{

ȳ−E (t) if t ≥ 0 ,

ȳ+E (−t) if t ≤ 0 .

We then consider a mixture of these concatenations over different values of θ : under
the probability measure

μE(θ)μE(π − θ) sin2 θ

n(E)
P̄
+
(0,θ) ⊗ P̄

−
(0,π−θ)(·)dθ ,

we define the process

YE(t) := ˆ̄yE(t) , t ∈ R .

One can now provide the definition of the limiting probability measure σE , which
is a unified notation for the probability measures σE in the Bulk regime and σ∞ in
the Crossover regime that appear in the statement of Theorem 3. Let us denote by YE

the process YE in the Bulk regime, and the process Y∞ in the Crossover regime. In
both regimes, σE is the law of the random element in M̄ defined as

wE(dt)= YE(t +UE)2dt∫
YE(t)2dt

,

where UE is the associated center of mass

UE :=
∫

tYE(t)2dt∫
YE(t)2dt

.

The rest of this subsection is devoted to the proof of Proposition 4.7. From now
on, let us fix some function f as in Proposition 4.7, and we let h > 0 be such
that f (λ, ·, ·) = 0 whenever λ /∈ [−h,h]. We also set � := [E − h/(Ln(E)),E +
h/(Ln(E))].

Recall the notations for the concatenation of the diffusions from Sect. 3.5. For u ∈
[− L

2kE , L
2kE ], let us consider the product law P

+
(−L/(2kE),0)→(u,θ)

⊗
P
−
(−L/(2kE),0)→(−u,π−θ)

. With a slight abuse of notation, we still denote this prod-

uct law by P
(u)
θ,π−θ (originally, this notation was for the time interval [−L/(2E),

L/(2E)]). Then, we define under this product law the probability measure on R built
from the concatenation process ŷ

(E)
λ :

ŷ
(E)
λ (t)2dt∫
ŷ

(E)
λ (t)2dt

.

13We follow ȳ− on [0,∞) and ȳ+(−·) on (−∞,0] in order to be consistent with the definition of the
concatenation of Sect. 3.5.
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The support of this measure is [− L
2kE , L

2kE ]. We let Ûλ/E be the center of mass of
this measure

Ûλ

E
:=

∫
t ŷ

(E)
λ (t)2dt∫

ŷ
(E)
λ (t)2dt

. (79)

We then recenter the probability measure by defining:

ŵ
(E)
λ (dt) := ŷ

(E)
λ (Ûλ/E + t)2dt∫
ŷ

(E)
λ (Ûλ/E + t)2dt

.

We introduce the measure

Q
(u)
λ (·) := 1√

En(λ)

∫ π

θ=0
μ

(E)
λ (θ)μ

(E)
λ (π − θ) sin2 θ P

(u)
θ,π−θ (·)dθ .

By Corollary 6.2, this is a probability measure. We now proceed with the proof of
Proposition 4.7.

Proof of Proposition 4.7 Step 1. For any j ∈ {1, . . . , k} we have

∫
f dN (j)

L =
∑
i≥1

f
(
Ln(E)(λ

(j)
i −E),U

(j)
i /L,w

(j)
i

)
.

Note that the operator at stake here is H(j)
L on (tj−1, tj ). Let aj be the midpoint

of (tj−1, tj ). By the GMP formula of Proposition 4.1, using forward/backward pro-
cesses on the interval [−L/(2kE),L/(2kE)] and then shifting the evaluations by aj ,
we find (recall that � := [E − h/(Ln(E)),E + h/(Ln(E))] and that f (μ, ·, ·) = 0
whenever μ /∈ [−h,h])

Ij := E

[∑
i≥1

f
(
Ln(E)(λ

(j)
i −E),U

(j)
i /L,w

(j)
i

)]

=√
E

∫ L
2kE

u=− L
2kE

∫
λ∈�

∫ π

θ=0
p

(E)

λ, L
2kE+u

(θ)p
(E)

λ, L
2kE−u

(π − θ) sin2 θ

×E
(u)
θ,π−θ

[
f

(
Ln(E)(λ−E), (Ûλ + aj )/L, ŵ

(E)
λ

)]
dθ dλdu .

(80)

Step 2. We now show that

Ij = E
∫ L

2kE−tL

u=− L
2kE+tL

∫
λ∈�

n(λ)Q
(u)
λ

[
f (Ln(E)(λ−E), (aj + uE)/L, ŵ

(E)
λ )

]
dλdu

+ o(1/k) ,

where o(1/k) is a negligible term compared to 1/k uniformly over all j .
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To that end, let us first observe that there exists a constant C > 0 such that for all
L large enough, for all u ∈ [− L

2kE , L
2kE ] and λ ∈�

∫ π

θ=0
p

(E)

λ, L
2kE+u

(θ)p
(E)

λ, L
2kE−u

(π − θ)dθ ≤ C . (81)

Indeed, at least one of the two densities that appear in this expression satisfies the
conditions of Theorem 4, while the other can be integrated over θ : consequently,
the integral over θ of the product of the densities can be bounded by some constant
independent of all L large enough.

Note that |Ûλ/L| ≤ 1/(2k) and |uE/L| ≤ 1/(2k) so that they vanish as L →∞.
Since f is uniformly continuous, we can replace the expectation term in (80) by

E
(u)
θ,π−θ

[
f (Ln(E)(λ−E), (aj + uE)/L, ŵ

(E)
λ )

]
.

Indeed, denoting by κf (·) the modulus of continuity of f and using (81), the error
made upon this replacement is bounded by

√
E

∫ L
2kE

u=− L
2kE

∫
λ∈�

∫ π

θ=0
p

(E)

λ, L
2kE+u

(θ)p
(E)

λ, L
2kE−u

(π − θ) sin2 θ κf (1/k)dθ dλdu

≤ C
√

E
L

kE
2h

Ln(E)
κf (1/k)

= C 2h

k

κf (1/k)√
En(E)

.

Since the modulus of continuity vanishes at 0, this term is negligible compared to
1/k.

Let tL be such that ln(L/E) � tL � L/(kE). In (80), the integral over u ∈ J :=
[− L

2kE ,− L
2kE + tL] ∪ [ L

2kE − tL, L
2kE ] can be bounded by

√
E

∫
u∈J

∫
λ∈�

∫ π

θ=0
p

(E)

λ, L
2kE+u

(θ)p
(E)

λ, L
2kE−u

(π − θ)dθ dλdu × ‖f ‖∞ . (82)

Using (81), this last quantity is bounded by a term of order

√
EtL

1

Ln(E)
� 1

k

kE
L

tL ,

which is negligible compared to 1/k as required.
In the remaining integral, Theorem 4 allows to replace both of the densities by the

invariant measure, up to some negligible term o(1/k). We are left with

√
E

∫ L
2kE−tL

u=− L
2kE+tL

∫
λ∈�

∫ π

θ=0
μ

(E)
λ (θ)μ

(E)
λ (π − θ) sin2 θ

×E
(u)
θ,π−θ

[
f (Ln(E)(λ−E), (aj + uE)/L, ŵ

(E)
λ )

]
dθ dλdu
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= E
∫ L

2kE−tL

u=− L
2kE+tL

∫
λ∈�

n(λ)Q
(u)
λ

[
f (Ln(E)(λ−E), (aj + uE)/L, ŵ

(E)
λ )

]
dλdu ,

where we used Corollary 6.2 at the second line. This completes Step 2.
Step 3. Summing over j the quantities above, we have shown that

E[
∫

f dN̄L] = E
∑
j

∫ L
2kE−tL

u=− L
2kE+tL

∫
λ∈�

n(λ)

×Q
(u)
λ

[
f (Ln(E)(λ−E), (aj + uE)/L, ŵ

(E)
λ )

]
dλdu+ o(1) .

Set DL := ∪j

(
[ tj
L
− tL

E
L
,

tj
L
+ tL

E
L
] ∩ [−1/2,1/2]

)
.

Applying the change of variables μ = Ln(E)(λ−E) and v = (aj + uE)/L, this
rewrites

E[
∫

f dN̄L] =
∫

v∈[−1/2,1/2]

∫
μ∈[−h,h]

n(λ(μ))

n(E)
1v /∈DL

×Q
(u(v))
λ(μ)

[
f (μ,v, ŵ

(E)
λ(μ)

)
]

dμdv + o(1) ,

where λ(μ) and u(v) are the reciprocals of the change of variables. Note that
n(λ)/n(E) → 1 uniformly over all λ ∈ �. Consequently we only have to show that
as L→∞

∫
v∈[−1/2,1/2]

∫
μ∈[−h,h]

1v /∈DL
Q

(u(v))
λ(μ)

[
f (μ,v, ŵ

(E)
λ(μ)

)
]

dμdv ,

converges to

∫
v∈[−1/2,1/2]

∫
μ∈[−h,h]

∫
w∈M̄

f (μ,v,w) dμdv σE(dw) .

To that end, it suffices to show that for any sequence Lk →∞, there exists a subse-
quence along which the convergence holds. Fix some sequence Lk →∞, and extract
a subsequence Lki

in such a way that the Lebesgue measure of

D := lim sup
i→∞

DLki
,

vanishes. As w �→ f (μ,v,w) is a bounded continuous function, using the Dominated
Convergence Theorem, it suffices to show that along the subsequence Lki

and for any
v /∈D

Q
(u(v))
λ(μ)

[
f (μ,v, ŵ

(E)
λ(μ))

]
→

∫
M̄

f (μ,v,w) σE(dw) .

It is the object of Lemma 9.1 stated below. �
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Lemma 9.1 We use the notations of the previous proof. For every v ∈ [−1/2,1/2]\D
and for every μ ∈ [−h,h], the law of ŵ

(E)
λ(μ) under Q

(u(v))
λ(μ) converges weakly, along

the subsequence Lki
, to σE on M̄.

9.2 Proof of Lemma 9.1

We fix some v ∈ [−1/2,1/2]\D and some μ ∈ [−h,h]. For notational convenience,
we write L instead of Lki

. We also set λ = λ(μ) = E +μ/(Ln(E)) and u = u(v) =
(Lv − aj )/E where aj is the midpoint of the interval (tj−1, tj ) in which Lv falls.
Since v /∈ D, for all L large enough u ∈ [− L

2kE + tL, L
2kE − tL]. Assume that we can

show:

(1) For every compactly supported, continuous function g : R → R the r.v.

∫
g(t)ŷ

(E)
λ (t + u)2dt ,

under Q(u)
λ converges in law as L→∞ to

∫
g(t)YE(t)2dt .

(2) Control of the mass at infinity. There exists q > 0 such that

lim sup
x→∞

lim sup
L→∞

Q
(u)
λ

(∫
eq|t−u|ŷ(E)

λ (t)2dt > x
)
= 0 .

Given these two assumptions, we can proceed with the proof of the lemma.

Proof of Lemma 9.1 The control of the mass at infinity (2) allows to lift the conver-
gence in law stated in (1): for every continuous function g : R → R with at most
polynomial growth at infinity, the r.v.

∫
g(t)ŷ

(E)
λ (t + u)2dt ,

under Q(u)
λ converges in law to

∫
g(t)YE(t)2dt . This convergence remains true for

n-dimensional vectors associated to continuous functions g1, . . . , gn with at most
polynomial growth, for any n≥ 1. In particular

∫
ŷ

(E)
λ (t + u)2dt ⇒

∫
YE(t)2dt ,

and

Ûλ

E
− u=

∫
t ŷ

(E)
λ (t + u)2dt∫

ŷ
(E)
λ (t + u)2dt

⇒
∫

tYE(t)2dt∫
YE(t)2dt

=UE .
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In addition, this implies [19, Th 16.16] that the following probability measures con-
verge in law in M̄

ŷ
(E)
λ (t + u)2dt∫
ŷ

(E)
λ (t + u)2dt

⇒ YE(t)2dt∫
YE(t)2dt

. (83)

Using Skorohod’s Representation Theorem, the previous convergences imply that the
following convergence in law in M̄ holds

ŷ
(E)
λ (t + Ûλ/E)2dt∫
ŷ

(E)
λ (t + Ûλ/E)2dt

⇒ YE(t +UE)2dt∫
YE(t +UE)2dt

,

as required. �

Let us now prove the two assumptions above.

Proof of Assumption (2) It suffices to show

lim sup
x→∞

lim sup
L→∞

sup
θ

P
(u)
θ,π−θ

(∫
eq|t−u|ŷ(E)

λ (t)2dt > x
)
= 0 .

Recall that P(u)
θ,π−θ stands for P+

(−L/(2kE),0)→(u,θ)
⊗ P

−
(−L/(2kE),0)→(−u,π−θ)

, conse-
quently

P
(u)
θ,π−θ

(∫
eq|t−u|ŷ(E)

λ (t)2dt > x
)

≤ P
+
(−L/(2kE),0)→(u,θ)

(∫
t≤u

eq|t−u|y(E),+
λ (t)2dt > x/2

)

+ P
−
(−L/(2kE),0)→(−u,π−θ)

(∫
t≥u

eq|t−u|y(E),−
λ (t)2dt > x/2

)
.

We concentrate on bounding the probability that concerns the forward diffusion, but
the exact same arguments apply to the backward diffusion. Shifting the time parame-
ter by L/(2kE), writing ũ = u+L/(2kE) and bounding sin2 θ

(E)
λ by 1, it suffices to

show

lim sup
x→∞

lim sup
L→∞

sup
θ

P(0,0)→(ũ,θ)

(∫ ũ

0
eq|t−ũ| r

(E)
λ (t)2

r
(E)
λ (ũ)2

dt > x
)
= 0 ,

with r
(E)
λ (0)= 1. Take q < ν

(E)
λ − ε. We find

∫ ũ

0
eq|t−ũ| r

(E)
λ (t)2

r
(E)
λ (ũ)2

dt ≤
∫ ũ

0
e(q−ν

(E)
λ +ε)|t−ũ|dt sup

t∈[0,ũ]

( r
(E)
λ (t)

r
(E)
λ (ũ)

e
1
2 (ν

(E)
λ −ε)|t−ũ|)2

≤ 1

ν
(E)
λ − ε − q

sup
t∈[0,ũ]

( r
(E)
λ (t)

r
(E)
λ (ũ)

e
1
2 (ν

(E)
λ −ε)|t−ũ|)2

.
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For any q ′ > 0, set x′ = (
x(ν

(E)
λ − ε − q)

)q ′/2 and observe that

P(0,0)→(ũ,θ)

(∫ ũ

0
eq|t−ũ| r

(E)
λ (t)2

r
(E)
λ (ũ)2

dt > x
)

≤ P(0,0)→(ũ,θ)

( 1

ν
(E)
λ − ε − q

sup
t∈[0,ũ]

( r
(E)
λ (t)

r
(E)
λ (ũ)

e
1
2 (ν

(E)
λ −ε)|t−ũ|)2

> x
)

≤ P(0,0)→(ũ,θ)

(
sup

t∈[0,ũ]

( r
(E)
λ (t)

r
(E)
λ (ũ)

e
1
2 (ν

(E)
λ −ε)|t−ũ|)q ′

> x′
)

≤ 1

x′
E(0,0)→(ũ,θ)

[
sup

t∈[0,ũ]

( r
(E)
λ (t)

r
(E)
λ (ũ)

e
1
2 (ν

(E)
λ −ε)|t−ũ|)q ′]

.

The expectation coincides with (66), which we already proved is bounded uniformly
over all parameters provided q ′ > 0 is small enough (recall that ũ≥ tL and that tL →
∞ as L →∞ so that tL ≥ t0). Since x′ →∞ as x →∞, this suffices to conclude.

�

Proof of Assumption (1) The adjunction relation (56) shows that the process ŷ
(E)
λ (t +

u), t ∈ [−u−L/(2kE),−u+L/(2kE)] under Q(u)
λ has the same law as the process

ˆ̄y(E)
λ (t + u) := ȳ−λ (t)1t≥0 + ȳ+λ (−t)1t<0 , t ∈ [−u−L/(2kE),−u+L/(2kE)] ,

under the probability measure

∫
θ

1√
En(λ)

μ
(E)
λ (θ)μ

(E)
λ (π − θ) sin2 θ(1 + κL(u, θ))

× P̄
+
(0,θ)→(u+ L

2kE ,0)
⊗ P̄

−
(0,π−θ)→( L

2kE−u,0)
(·)dθ ,

where

κL(u, θ)= μ
(E)
λ (θ)

p
λ, L

2kE+u
(0, θ)

p̄
λ, L

2kE+u
(θ,0)

μ
(E)
λ (0)

μ
(E)
λ (π − θ)

p
λ, L

2kE−u
(0,π − θ)

×
p̄

λ, L
2kE−u

(π − θ,0)

μ
(E)
λ (0)

− 1 .

This last probability measure can be written as the sum of two measures: one which
is associated with κL(u, θ), and another with 1. The total-variation of the former can
be bounded by

1√
En(λ)

∫ π

0
|κL(u, θ)|dθ .



418 L. Dumaz, C. Labbé

Since u is tL-away from ±L/(2kE), by Theorem 4 and Lemma 3.1 there exists a
constant c′ > 0 such that |κL(u, θ)| ≤ c′e−CtL and this quantity goes to 0 uniformly
over all θ , as L→∞.

We can therefore deal with the law of ˆ̄y(E)
λ (u + t), t ∈ [−u − L/(2kE),−u +

L/(2kE)] under the probability measure
∫

θ

1√
En(λ)

μ
(E)
λ (θ)μ

(E)
λ (π − θ) sin2 θ P̄

+
(0,θ)→(u+ L

2kE ,0)
⊗ P̄

−
(0,π−θ)→( L

2kE−u,0)
(·)dθ .

Fix a compactly supported, continuous function g. We can restrict ourselves to the
law of ŷ

(E)
λ (u+ t), t ∈ I where I is a given bounded interval that contains the support

of g. Thus, the last part of Lemma 7.4 ensures that we can disregard the conditioning
of the diffusions and work under

Q̃λ(·) := 1√
En(λ)

∫
θ

μ
(E)
λ (θ)μ

(E)
λ (π − θ) sin2 θ P̄

+
(0,θ) ⊗ P̄

−
(0,π−θ)(·)dθ .

The rest of the proof is presented separately for the Bulk and the Crossover
regimes. In the Bulk regime, we aim at showing that the random variable

∫
R

g(t)
(
ȳ−λ (t)21t≥0 + ȳ+λ (−t)21t<0

)
dt ,

under the probability measure Q̃λ(·) converges as L→∞ to the random variable
∫

R
g(t)

(
ȳ−E (t)21t≥0 + ȳ+E (−t)21t<0

)
dt ,

under Q̃E(·). Lemma A.5 shows that, as L→∞ and uniformly over all θ ∈ [0,π]
1

n(λ)
μλ(θ)μλ(π − θ)→ 1

n(E)
μE(θ)μE(π − θ) .

To conclude, it suffices to show that ȳ−λ (t)21t≥0 + ȳ+λ (−t)21t<0 under P̄
+
(0,θ) ⊗

P̄
−
(0,π−θ)(·) converges in law as L → ∞ for the local uniform topology towards

ȳ−E (t)21t≥0 + ȳ+E (−t)21t<0 under P̄+(0,θ) ⊗ P̄
−
(0,π−θ)(·), and that this convergence is

uniform over all θ ∈ [0,π]. This can be achieved through a coupling under which
almost surely the process

R × [0,π] × R & (λ, θ, t) �→ ȳ−λ (t)21t≥0 + ȳ+λ (−t)21t<0 ,

is continuous, and therefore uniformly continuous on �× [0,π] × I , where I is the
compact set defined above that contains the support of g.

We turn to the Crossover regime. Contrary to the Bulk regime, that the law of the
process Y∞ is not a mixture over some parameter θ ∈ [0,π]. It suffices to show that
uniformly over θ the r.v.

∫
R

g(t)
(
ȳ
−,(E)
λ (t)21t≥0 + ȳ

+,(E)
λ (−t)21t<0

)
dt ,
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under P̄+(0,θ) ⊗ P̄
−
(0,π−θ)(·) converge in law as L→∞ to

∫
R

g(t)Y∞(t)2dt .

Note that (Y∞(t), t ≥ 0) and (Y∞(−t), t ≥ 0) are i.i.d. Furthermore, (ȳ
−,(E)
λ (t), t ≥

0) and (ȳ
+,(E)
λ (t), t ≥ 0) are independent and distributed according to P̄(0,θ) and

P̄(0,π−θ). To prove the convergence, it is thus sufficient to show that for any com-
pactly supported and continuous function h : [0,∞)→ R, uniformly over θ the r.v.

∫
[0,∞)

h(t)ȳ
(E)
λ (t)2dt ,

under P̄(0,θ) converges in law as L→∞ towards

∫
[0,∞)

h(t)Y∞(t)2dt .

This is the content of Lemma 9.2 which is stated right below, and whose proof is
based on very similar arguments to those presented in [9, Prop. 3]. �

Lemma 9.2 Fix h > 0 and set λ = E + h/(Ln(E)). In the Crossover regime, uni-
formly over all θ ∈ [0,π) the process

(θ̄
(E)
λ (t)+E3/2t, ρ̄

(E)
λ (t); t ≥ 0) , with θ̄

(E)
λ (0)= θ , ρ̄

(E)
λ (0)= 0 ;

converges in law to (�̄(t), R̄(t); t ≥ 0) which solves the following SDEs:

d�̄(t)=−1

2
dB(t)+ 1

2
√

2
'(e2i�̄(t)dW(t)) , t ≥ 0

dR̄(t)=−1

4
dt + 1√

2
((e2i�̄(t)dW(t)) , t ≥ 0 ,

starting from �̄(0) = θ , R̄(0) = 0, where W is a complex Brownian motion14 and B
is an independent real Brownian motion.

As a consequence, for any compactly supported, continuous function h : [0,∞)→
R, the following convergence in law as L→∞ holds uniformly over all θ ∈ [0,π)

∫
h(t)ȳ

(E)
λ (t)2dt ⇒

∫
h(t)Y∞(t)2dt .

Proof of Lemma 9.2 The proof of the first part is essentially the same as the proof
of [9, Prop. 3] (the proof therein concerns the convergence of the process (θ

(E)
λ , �

(E)
λ )

14We mean that the real and imaginary parts are independent, standard Brownian motions.
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in the regime of energy L/E → τ ∈ (0,∞)) so we only present the main steps. Set
vλ(t)= θ̄

(E)
λ (t)+E3/2t . Introduce the martingale

dW̄ (E)(t)=√
2 cos(−2E3/2t)dB̄(E)(t)+ i

√
2 sin(−2E3/2t)dB̄(E)(t) .

One can write the SDEs (55) and (57) solved by these two processes as follows

dvλ(t)=−1

2
dB̄(E)(t)+ 1

2
√

2
'(e2ivλ(t)dW̄ (E)(t))+ E(vλ)(t)dt

dρ̄
(E)
λ (t)=−1

4
dt + 1√

2
((e2ivλ(t)dW̄ (E)(t))+ E(ρ̄

(E)
λ )(t)dt ,

where E(vλ)(t) and E(ρ̄
(E)
λ )(t) should be seen as negligible terms

E(vλ)(t)=−√E(λ−E) sin2 θ
(E)

λ + sin4 θ
(E)

λ

∂θμ
(E)
λ (θ

(E)

λ )

μ
(E)
λ (θ

(E)

λ )

+ 3 sin3(θ
(E)

λ ) cos(θ
(E)

λ ) ,

E(ρ̄
(E)
λ )(t)=√

E(λ−E) sin 2θ
(E)

λ + 3

4
cos 4θ̄

(E)
λ (t)− 1

2
cos 2θ̄

(E)
λ (t)

− 2 sin3 θ̄
(E)
λ cos θ̄

(E)
λ

∂θμ
(E)
λ (θ̄

(E)
λ )

μ
(E)
λ (θ̄

(E)
λ )

.

Note that the pair θ̄
(E)
λ (t)+E3/2t , ρ̄(E)

λ (t) is indexed by t ≥ 0 and θ ∈ [0,π]. Note
also that the putative limit �̄(t), R̄(t) is indexed by the same pair.

The proof consists of three steps. First, the tightness of these processes can be de-
rived by estimating the moments of their increments, with the help of the Burkholder-
Davis-Gundy inequality. Second, one shows that the integrals in time of the terms E(·)
are negligible: the main argument is a quantitative Riemann-Lebesgue Lemma, see [9,
Lemma 4.1], that takes advantage of the rapid oscillations of θ̄

(E)
λ (t)= vλ(t)−E3/2t .

Finally, one identifies the limit of any converging subsequence by a martingale prob-
lem. We refer to [9, Prop 4.2] for more details.

We turn to the last part of the statement. First of all, note that if we set β(t) :=∫ t

0 ((e2i�̄(s)dW(s)) then β is a standard Brownian motion. Consequently the process

1

2
eR̄(t) = 1

2
e
− t

4+ β(t)√
2 , t ≥ 0 ,

has the same law as Y 2∞(t), t ≥ 0. Fix h : [0,∞) → R a compactly supported con-
tinuous function. By Skorohod’s Representation Theorem, we can assume that the
process

(θ̄
(E)
λ (t)+E3/2t, ρ̄

(E)
λ (t); t ≥ 0; θ ∈ [0,π]) ,
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converges almost surely towards

(�̄(t), R̄(t); t ≥ 0; θ ∈ [0,π]) .

Then, using that the function sin2 is Lipschitz, the term

∫
h(t)ȳ

(E)
λ (t)2dt =

∫
h(t)eρ̄

(E)
λ (t) sin2 θ̄

(E)
λ (t)dt ,

is asymptotically as close as desired to

∫
g(t)eR̄(t) sin2 (

�̄(t)−E3/2t
)
dt = 1

2

∫
g(t)eR̄(t)dt

− 1

2

∫
g(t)eR̄(t) cos

(
2(�̄(t)−E3/2t)

)
dt .

The second term on the r.h.s. rewrites

1

2

∫
g(t)eR̄(t)

(
cos

(
2�̄(t)

)
cos(2E3/2t)+ sin

(
2�̄(t)

)
sin(2E3/2t)

)
dt ,

and this goes to 0 as L→∞ by a quantitative Riemann-Lebesgue Lemma. �

9.3 Controlling the approximation

We fix h > 0 and set �= [E − h/(Ln(E)),E + h/(Ln(E))].
Recall the definition of the points (tj )j at the beginning of Sect. 4.4. Let us intro-

duce for n≥ 1 and j ∈ {0, . . . , k}, the following neighborhood of tj :

Dj (n) := [tj − ntLE, tj + ntLE] ∩ [−L/2,L/2] ,

where tL is such that15 ln(L/E)� tL � L/(kE). We also set D(n) := ∪jDj (n).
Recall that we have already proven Theorem 2. Fix ε > 0 small enough. We intro-

duce the event BL on which:

(i) for every λi ∈�, we have

(
ϕi(t)

2 + ϕ′
i (t)

2

E

)1/2 ≤ tL√
E

e−
1
2 (νE−ε)

|t−Ui |
E , ∀t ∈ [−L/2,L/2] ,

(ii) for every λi ∈�, we have Ui /∈D(3),

(iii) we have
∫
D(2)

(∑
λi∈� |ϕi | + |ϕ′

i |√
E

)2
ds < e−(νE−2ε)tL ,

Lemma 9.3 We have P(BL)→ 1 as L→∞.

15This implicitly forces k to go to ∞ not too fast.
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Proof The proof requires the following preliminary estimate: there exists c > 0 such
that uniformly over all L large enough we have

E

[∫
D(4)

∑
λi∈�

(
ϕi(v)2 + ϕ′

i (v)2

E

)
dv

]
≤ c

ktLE
L

. (84)

This bound easily follows from Proposition 6.1 (with a = 1, b = E−1 and G ≡ 1�),
Theorem 4 and Lemma 3.1.

Applying Markov’s inequality in the estimates of Theorem 2, we see that (i) holds
true with a probability that goes to 1 as L→∞. We now work on this event.

Assume that there exists λi ∈� such that Ui ∈D(3). We find

∫
|s−Ui |≤tLE

ϕ2
i (s)ds = 1 −

∫
|s−Ui |>tLE

ϕ2
i (s)ds ≥ 1 − 2t2

L

νE − ε
e−(νE−ε)tL .

By assumption {s ∈ [0,L] : |s −Ui | ≤ tLE} ⊂D(4). Markov’s inequality applied to
(84) and our assumption tL � L/(kE) therefore show that the probability of (ii) goes
to 1.

We now prove (iii). By Cauchy-Schwarz’s inequality we have

( ∑
λi∈�

|ϕi | + |ϕ′
i |√
E

)2 ≤NL(�)
∑
λi∈�

(
|ϕi | + |ϕ′

i |√
E

)2

≤ 2NL(�)
∑
λi∈�

ϕ2
i +

( ϕ′
i√
E

)2
.

We deduce that on the event where (i) and (ii) hold we have

∫
D(2)

( ∑
λi∈�

|ϕi | + |ϕ′
i |√
E

)2
ds ≤ 2NL(�)

∑
λi∈�

∫
D(2)

ϕ2
i +

( ϕ′
i√
E

)2
ds

≤ 2NL(�)2
∫

s∈R:|s|≥tLE

t2
L

E
e−(νE−ε) s

E ds

≤ 4NL(�)2 t2
L

νE − ε
e−(νE−ε)tL .

Markov’s inequality combined with Proposition 4.4 shows that P(NL(�)2 < tL) →
1. We thus deduce (iii) (we use a factor εtL in the exponential term to “kill” the
prefactors). �

We also need estimates on the exponential decay of the ϕ
(j)
i . We let B̄L be the

event on which for every j ∈ {1, . . . , k} and for every λ
(j)
i ∈�, we have

(
ϕ

(j)
i (t)2 + (ϕ

(j)
i )′(t)2

E

)1/2 ≤ tL√
E

e−
1
2 (νE−ε)

|t−U
(j)
i

|
E , ∀t ∈ (tj−1, tj ) .
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Lemma 9.4 We have P(B̄L)→ 1 as L→∞.

Proof A adaptation of the proof of Proposition 4.2 allows to show the counterpart
of Theorem 2 for the operators H(j)

L . Namely, there exist some r.v. c
(j)
i such that for

every λ
(j)
i ∈�

(
ϕ

(j)
i (t)2 + (ϕ

(j)
i )′(t)2

E

)1/2 ≤ c
(j)
i√
E

e−
1
2 (νE−ε)

|t−U
(j)
i

|
E , (85)

and for some q > 0 we have

lim sup
L→∞

E

[ k∑
j=1

∑
λ

(j)
i ∈�

(c
(j)
i )q

]
<∞ .

This being given, the proof of the lemma follows from Markov’s inequality. �

Finally, we need some control on the gaps between the eigenvalues of H(j)
L and

on the distance of these eigenvalues to the boundary of �. Take some δL → 0 as
L→∞. Let GL be the event on which for any (i, j) != (i′, j ′) we have

λ
(j)
i , λ

(j ′)
i′ ∈�=⇒ |Ln(E)(λ

(j)
i − λ

(j ′)
i′ )|> δL , (86)

and

∀i, j , dist(Ln(E)(λ
(j)
i −E), {−h,h}) > δL .

Since we already know from the arguments in Sect. 4.4 that N̄L converges to a
Poisson point process, we deduce that

P(GL)→ 1 , L→∞ .

Note that this convergence holds for any given sequence δL that converges to 0. In
the proof below, we will need to impose some restriction on the speed at which δL

goes to 0.
Let us also state a simple fact of the theory of generalized Sturm-Liouville oper-

ators, see for instance [8, Sect. 3], which is based upon the work of Weidmann [36].
The domain of HL is given by

{
f ∈ L2([0,L]) : f (0)= f (L)= 0, f A.C., f ′ −Bf A.C.,

and − (f ′ −Bf )′ −Bf ′ ∈ L2([0,L])
}

.

As a consequence, if one multiplies an element of the domain by some smooth func-
tion, compactly supported in (tj−1, tj ), then one gets an element of the domain of

H(j)
L . We will use this fact in the next proof.
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Finally, let us recall the Lévy-Prokhorov distance on M =M(R) that metrizes
the weak convergence topology:

dM(w,w′) := inf
{
ε > 0 : ∀B ∈ B(R), w(B)≤w′(Bε)+ ε and

w′(B)≤w(Bε)+ ε
}

, (87)

where Bε is the ε-neighborhood of B .
Recall also that we actually work on M̄ = M(R̄) and that one can define dM̄

similarly as above: the only difference is that the ε-neighborhoods need to be taken
w.r.t. a distance that metrizes R̄. If one chooses this distance in such a way that the
ε-neighborhoods on R̄ always contain the ε-neighborhoods on R, then one can check
that for any measures w,w′ ∈M(R) we have

dM̄(w,w′)≤ dM(w,w′) .

Consequently, since all the measures that we manipulate are actually elements of M,
in the sequel we will only deal with dM.

Proof of Proposition 4.3 Fix � := [E − h/(Ln(E)),E + h/(Ln(E))]. We will show
that, if we restrict ourselves to [−h,h] × [−1/2,1/2] × M̄, then with large proba-
bility there is a one-to-one correspondence between the atoms of NL and of N̄L, and
that the distance between the corresponding pairs of atoms goes to 0 as L→∞. The
proof consists of two steps.

Step 1. We argue deterministically on the event BL ∩ B̄L ∩ GL introduced above
and for large enough L. Let (λ,ϕ) be an eigenvalue/eigenfunction of HL such that
λ ∈ �. Let U be its center of mass. From the conditions stated in the event BL, we
know that there exists j ∈ {1, . . . , k} such that

U ∈ (tj−1 + 3tLE, tj − 3tLE) .

We consider a smooth function χj : [−L/2,L/2] → [0,1] that equals 1 on [tj−1 +
2tLE, tj − 2tLE] and 0 on (tj−1 + tLE, tj − tLE)�, and such that

sup
t
|χ ′

j (t)| ∨ |χ ′′
j (t)| ≤ 2

tLE
.

We then set

ψ := ϕχj

‖ϕχj‖2
.

Note that ψ is a compactly supported function in (tj−1, tj ) whose L2 norm equals
one. Furthermore, by (iii) of BL

‖ψ − ϕ‖2
2 ≤ e−KtL , (88)

for some constant K > 0. From now on, the constant K will never depend on L and
j , but may change from line to line.
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By construction, ψ belongs to the domain of H(j)
L and we have

(H(j)
L − λ)ψ

=
{

0 on (tj−1 + 2tLE, tj − 2tLE)

‖ϕχj‖−1
2

(− ϕχ ′′
j − 2ϕ′χ ′

j

)
on (tj−1, tj−1 + 2tLE] ∪ [tj − 2tLE, tj ) .

Henceforth by (iii) of BL

‖(H(j)
L − λ)ψ‖2

L2(tj−1,tj )
≤ 1

E
e−KtL . (89)

On the other hand, we can expand ψ on the L2(tj−1, tj )-basis made of the eigen-

functions of H(j)
L :

‖(H(j)
L − λ)ψ‖2

L2(tj−1,tj )
=

∑
i

|λ(j)
i − λ|2〈ψ,ϕ

(j)
i 〉2 .

The r.h.s. is a convex combination of the |λ(j)
i −λ|2. Given the bound (89), there must

exist some �≥ 1 such that

|λ(j)
� − λ|2 ≤ 1

E
e−KtL .

Recall that tL � ln(L/E) so that L2n(E)2/E � eKtL/4. We thus impose (recall
that the speed at which δL goes to 0 can be taken as small as desired):

L2n(E)2

E
e−

K
4 tL � δ2

L ,

and we deduce that Ln(E)|λ(j)

� −λ| ≤ Ln(E)√
E

e−K
2 tL � δL. Given the definition of the

event GL we deduce that the integer � above is unique, that λ
(j)
� ∈ �, and that for all

i != �

Ln(E)|λ(j)
i − λ|> δL/2 .

We thus deduce that

∑
i:i !=�

〈ψ,ϕ
(j)
i 〉2 ≤

∑
i:i !=�

|λ(j)
i − λ|2〈ψ,ϕ

(j)
i 〉2 (2Ln(E))2

δ2
L

≤
∑

i

|λ(j)
i − λ|2〈ψ,ϕ

(j)
i 〉2 (2Ln(E))2

δ2
L

≤ (2Ln(E))2

δ2
LE

e−KtL ≤ e−K ′tL ,
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for some constant K ′ > 0. Therefore 〈ψ,ϕ
(j)

� 〉2 ≥ 1 − e−K ′tL , and thus

‖ψ − ϕ
(j)
� ‖2

2 ≤ 2e−K ′tL .

Together with (88), we find (possibly for a smaller constant K)

‖ϕ − ϕ
(j)
� ‖2

2 ≤ e−KtL .

Let w(dt)= Eϕ(U + tE)2dt be the probability measure built from ϕ and recentered
at its center of mass denoted by U . Recall that w

(j)
� (introduced in Sect. 4.4) is the

corresponding object for ϕ
(j)

� . By BL and B̄L, we have some exponential decay of ϕ

and ϕ
(j)

� from their centers of mass. We thus apply Lemma A.7 (note that the constant
c in this lemma depends polynomially on tL and is killed by the exponential decay)
and deduce that

|U −U
(j)

� |
E

≤ e−KtL , dM(w,w
(j)

� )≤ e−KtL .

These quantities vanish when L→∞.
We have built a map that associates to any eigenvalue λ ∈ � of the operator HL

an eigenvalue λ
(j)

� ∈� in such a way that

|λ(j)

� − λ|2 ≤ 1

E
e−KtL ,

|U −U
(j)

� |
E

≤ e−KtL , dM(w,w
(j)

� )≤ e−KtL ,

as well as ‖ϕ − ϕ
(j)
� ‖2

2 ≤ e−KtL . This map is necessarily injective: indeed, we cannot
find two orthonormal functions ϕ and ϕ̃ satisfying

‖ϕ − ϕ
(j)

� ‖2
2 ≤ e−KtL , ‖ϕ̃ − ϕ

(j)

� ‖2
2 ≤ e−KtL .

To conclude the proof, it remains to show that this map is actually bijective, this is
the purpose of the second step.

Step 2. Let FL be the event {∑k
j=1 N

(j)
L (�)≥NL(�)}. By the first step, P(FL)→

1 as L → ∞. Proposition 4.4 ensures uniform integrability of the collection of
r.v. NL(�), L > L0 (for some L0 > 1) so that

lim
L→∞E[NL(�)1

F �
L
] = 0 .

Since

0 ≤ E

[(
NL(�)−

∑
j

N
(j)
L (�)

)
1
F �

L

]
≤ E

[
NL(�)1

F �
L

]
,

we deduce that the term in the middle vanishes as L →∞. Combining this conver-
gence with (1) and (2) of Proposition 6.3, we deduce that

lim
L→∞E

[(∑
j

N
(j)
L (�)−NL(�)

)
1FL

]
= lim

L→∞E

[∑
j

N
(j)
L (�)−NL(�)

]
= 0 .
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Since (
∑

j N
(j)
L (�)−NL(�))1FL

is a non-negative r.v. taking values in N, we deduce
that

lim
L→∞P

( k∑
j=1

N
(j)
L (�)=NL(�)

)
= 1 .

Consequently, the injective map constructed in Step 1 on BL ∩ B̄L ∩ GL is actually
bijective, possibly on a smaller event, but whose probability still goes to one. �

Appendix A: Technical results

A.1 Simple estimate on the Laplace transform

The following elementary lemma provides a quantitative estimate on the difference
between the Laplace transform of a r.v. and its Taylor expansion at 0 (here we only
push the Taylor expansion to the second order).

Lemma A.1 Let X be a real-valued r.v. Assume that there exist C0 > 0 and q0 > 0
such that E[eq|X|] < C0 for all q ≤ q0. Then, for any q1 < q0 there exist a constant
C1 > 0, that only depends on C0, q0 and q1, which is such that for all q ∈ [−q1, q1]∣∣E[eqX] − 1 − qE[X]∣∣≤ C1q

2 .

Proof The map q �→ E[eqX] is real-analytic on (−q0, q0) and therefore for any such
q we have

E[eqX] − 1 − qE[X] =
∑
k≥2

qk E[Xk]
k! .

By assumption supk≥2 qk
0
|E[Xk]|

k! ≤ C0 so that for any |q|< q0 we have

∣∣E[eqX] − 1 − qE[X]∣∣≤ C0
(q/q0)

2

1 − q/q0
,

and the bound of the statement follows. �

A.2 Elementary deviation estimate for general SDEs

Lemma A.2 Let X be the solution of dX(t) = α(t)dt + β(t)dB(t) with X(0) = 0.
Assume that α, β are adapted processes and that there exist C1,C2 > 0 such that
almost surely for all t ≥ 0

|α(t)| ≤ C1 , |β(t)|2 ≤ C2 .

Then for all x > 2C1t we have

P( sup
s∈[0,t]

|X(s)|> x)≤ 2 exp(− x2

8C2t
) .
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Proof Let M(t) := ∫ t

0 β(s)dB(s). Given the bound on the drift, it suffices to show
that for all y > C1t

P( sup
s∈[0,t]

|M(s)|> y)≤ 2 exp(− y2

2C2t
) .

This is precisely the exponential martingale inequality of [34, p.153-154]. �

A.3 Moments estimates

Lemma A.3 For every α ∈ [0,1)

sup
λ∈R

E

[
exp

( α

m
(E)
λ

ζ
(E)
λ

)]
≤ 1

1 − α
.

Proof Since ζ
(E)
λ /m

(E)
λ is equal in law to ζλ/mλ, it suffices to work with the original

coordinates. It is shown in [2, Appendix A] that for all α < 0 we have

E[e α
mλ

ζλ ] = 1 + α +
∑
n≥2

( α

mλ

)n

v(n,λ) ,

for some 0 ≤ v(n,λ) ≤ mn
λ. The function on the r.h.s. is analytic in α on {z ∈ C :

|z| < 1} so that a standard analytic continuation argument allows to deduce that the
identity actually holds for all α ∈ (−∞,1). The bound of the statement then follows
easily. �

Next, we obtain a bound on the exponential moment of the number of eigenvalues
of HL below some energy E. Therein, we work in the original coordinates exclu-
sively.

Lemma A.4 (Uniform bound of Laplace transform of the number of eigenvalues)
There exists q > 0, such that for every E ∈ R

sup
L≥1

E

[
exp

(
q
(mE

L
∧ 1

2

)
#{λi : λi ≤E}

)]
<∞ .

In particular, for any given E ∈ R the collection of r.v. (#{λi : λi ≤ E}/L)L≥1 is
uniformly integrable.

Proof Set X := #{λi : λi ≤E}. We need exponential tails on the probability that X ≥
k. Let θE start from θE(0)= 0 and denote by ζ

(k)
E , k ≥ 1 the i.i.d. r.v. which are such

that
∑k

i=1 ζ
(i)
E is the hitting time of kπ by θE . By the Sturm-Liouville and the strong

Markov properties, we have for all q > 0,

P(X ≥ k)= P

( k∑
i=1

ζ
(i)
E ≤ L

)
= P

(
q

k∑
i=1

(1 − ζ
(i)
E /mE)≥ qk − qL/mE

)

≤ E[exp(q(1 − ζE/mE))]k exp(−qk + qL/mE) .
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By Lemma A.1 and A.3, there exists a constant C1 (independent of E) such that for
all q > 0 small enough,

P(X ≥ k)≤ (1 +C1q
2)k exp(−qk + qL/mE) .

Taking q0 > 0 small enough, we deduce that there exists C > 0 such that for all for
all q ∈ [0, q0] and all u≥ 0

P(X ≥ u)≤ 1 ∧C exp(−q
2

3
u+ q

L

mE

) .

Note that

E

[
exp

(
q
(mE

L
∧ 1

2

)
X

)]
= 1 +

∫
u≥0

q
(mE

L
∧ 1

2

)
e
q

(
mE
L

∧ 1
2

)
u
P(X ≥ u)du .

Using the estimate on the tail of X, one can bound separately the contributions to the
integral coming from u≤ 3

2
L

mE
and u > 3

2
L

mE
, and conclude. �

A.4 Integral formulas

In this paragraph, we gather useful integral formulas about the invariant measure of
the phase function.

A.4.1 Invariant measure

The phase function {θ(E)
λ }π can be mapped to a simple additive SDE via the function

cotan, namely X
(E)
λ := cotan {θ(E)

λ }π satisfies the SDE:

dX
(E)
λ =−(V

(E)
λ )′(X(E)

λ )dt + dB(E)(t), with V
(E)
λ (x) := λ

√
Ex + E3/2 x3

3
,

and where X
(E)
λ immediately restarts from +∞ when it blows up to −∞. The dif-

fusion X
(E)
λ admits a unique invariant measure whose density writes f

(E)
λ (x)/m

(E)
λ

where:

f
(E)
λ (x) := 2e−2V

(E)
λ (x)

∫ x

−∞
e2V

(E)
λ (y)dy , x ∈ R ,

(see [2, 7] for more details). Note that
∫ ∞
−∞ f

(E)
λ (x)dx coincides with m

(E)
λ , which is

defined as the expectation of ζ
(E)
λ .

Therefore, the unique invariant measure μ
(E)
λ of the Markov process {θ(E)

λ }π is the

image of f
(E)
λ (x)dx/m

(E)
λ through the map x �→ arccotan x. Its density writes

μ
(E)
λ (θ)= f

(E)
λ (cotan θ)

sin2 θ m
(E)
λ

= g
(E)
λ (cotan θ) , θ ∈ [0,π) ,

where g
(E)
λ (x)= (1 + x2)f

(E)
λ (x)/m

(E)
λ .
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Proof of Lemma 3.1 We concentrate on the distorted coordinates: indeed, since the
bounds need to be taken uniformly over the unbounded parameter E > 1, this is the
most involved setting. For simplicity, we make the further assumption that E is large:
that is, for fixed h > 0 we will assume that E > E0(h) for some quantity E0(h) ≥ 1
to be defined below. The complementary case follows by adapting the arguments (and
is actually simpler).

Let us abbreviate V
(E)
λ by Vλ to ease the notations. Pick E0(h) ≥ 1 such that for

some constant K > 1 and for all E ≥E0(h) and all λ ∈�

h

En(E)
≤ E

2
, K−1 < n(E)

√
E ≤K , K−1 < E3/2m

(E)
λ < K . (90)

Since V ′
λ(x) = λ

√
E + E3/2x2, the first bound implies that for all E ≥ E0(h), all

λ ∈� and all x ∈ R, V ′
λ(x) > 0.

We claim that there exists C > 0 such that for all E ≥ E0(h), all λ ∈ � and all
θ ∈ [0,π]

|∂θμ
(E)
λ (θ)| ≤ C

E3/2
.

Assume that the claim holds. Up to increasing E0(h), we can assume that for all
E ≥ E0(h), 1

π
− Cπ

E3/2 > 0. Since μ
(E)
λ integrates to 1 on [0,π], this is enough to

deduce that there exist 0 < c′ < C′ such that for all E ≥ E0(h), all λ ∈ � and all
θ ∈ [0,π]

c′ ≤ μ
(E)
λ (θ) < C′ , |∂θμ

(E)
λ (θ)|< C′ ,

and that supλ∈� supθ∈[0,π) |μ(E)
λ (θ) − 1

π
| → 0 as E →∞. We are left with proving

the claim.
Observe that (f

(E)
λ )′ = 2 − 2f

(E)
λ V ′

λ. Consequently ∂θμ
(E)
λ (θ) = q

(E)
λ (cotan θ)

where

q
(E)
λ (x)= (1 + x2)2

m
(E)
λ

(
− 2 + 2f

(E)
λ (x)V ′

λ(x)− 2x

1 + x2
f

(E)
λ (x)

)
.

To prove the claim, it suffices to show that for all E ≥E0(h), all λ ∈� and all x ∈ R

|q(E)
λ (x)| ≤ C

E3/2
.

Applying successive integrations by parts we obtain

f
(E)
λ (x)= 1

V ′
λ(x)

+ V ′′
λ (x)

2(V ′
λ(x))3

+ e−2Vλ(x)

∫ x

−∞
e2Vλ(y)

(3(V ′′
λ (y))2 − V ′′′

λ (y)V ′
λ(y)

2(V ′
λ(y))4

)
dy .
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A computation yields

(
− 2 + 2f

(E)
λ (x)V ′

λ(x)− 2x

1 + x2
f

(E)
λ (x)

)
= I1(x)+ I2(x) ,

with

I1(x)=
V ′′

λ (x)− 2x

1+x2 V ′
λ(x)− x

1+x2
V ′′

λ (x)

V ′
λ(x)

V ′
λ(x)2

,

and

I2(x)=
(

2V ′
λ(x)− 2x

1 + x2

)
e−2Vλ(x)

∫ x

−∞
e2Vλ(y)

(3(V ′′
λ (y))2 − V ′′′

λ (y)V ′
λ(y)

2(V ′
λ(y))4

)
dy .

Recall from (90) that m
(E)
λ is of order E−3/2. To prove the claim, it suffices to check

that |I1(x)| and |I2(x)| are bounded from above by a term of order 1
E3(1+x2)2 uni-

formly over all E ≥ E0(h), all λ ∈ � and all x ∈ R. Regarding the first term, using
(90), note that |E3/2 − λ

√
E| ≤K so that there exists a constant C1 > 0 such that

E3/2(1 + x2)2|I1(x)| = E3/2(1 + x2)(
λ
√

E +E3/2x2
)2

∣∣∣2x(E3/2 − λ
√

E)− 2E3/2x2

λ
√

E +E3/2x2

∣∣∣

≤ C1
E3/2(1 + x2)

E3
(
1 + x2

)2

(|x| + 1
)

so that the desired bound follows. Regarding I2(x), assume that there exists C > 0
such that for all E ≥E0(h), all λ ∈� and all x ∈ R

∣∣∣e−2Vλ(x)

∫ x

−∞
e2Vλ(y)

(3(V ′′
λ (y))2 − V ′′′

λ (y)V ′
λ(y)

2(V ′
λ(y))4

)
dy

∣∣∣≤ C
1

E9/2(1 + x2)3
. (91)

Since there exists C′ > 0 such that uniformly over the same set of parameters we
have |2V ′

λ(x) − 2x
1+x2 | ≤ C′E3/2(1 + x2), we deduce the desired bound. Let us now

prove (91). First of all there exists c > 0 such that uniformly over all E ≥ E0(h), all
λ ∈� and all x ∈ R

∣∣∣3(V ′′
λ (x))2 − V ′′′

λ (x)V ′
λ(x)

2(V ′
λ(x))4

∣∣∣=
∣∣∣ 5E3x2 −E2λ

(λ
√

E +E3/2x2)4

∣∣∣≤ c

E3(1 + x2)3
,

and such that the following rough bound holds

∣∣∣3(V ′′
λ (x))2 − V ′′′

λ (x)V ′
λ(x)

4(V ′
λ(x))5

∣∣∣≤ c .

Consequently there exists C′′ > 0 such that

∣∣∣e−2Vλ(x)

∫ x

x−1
e2Vλ(y)

(3(V ′′
λ (y))2 − V ′′′

λ (y)V ′
λ(y)

2(V ′
λ(y))4

)
dy

∣∣∣
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≤ e−2Vλ(x)

∫ x

x−1

2V ′
λ(y)

2V ′
λ(y)

e2Vλ(y)dy sup
y∈[x−1,x]

c

E3(1 + y2)3

≤ e−2Vλ(x)
(
e2Vλ(x) − e2Vλ(x−1)

)
sup

y∈[x−1,x]
1

2V ′
λ(y)

sup
y∈[x−1,x]

c

E3(1 + y2)3

≤ C′′ 1

E9/2(1 + x2)4
.

In addition

∣∣∣e−2Vλ(x)

∫ x−1

−∞
e2Vλ(y)

(3(V ′′
λ (y))2 − V ′′′

λ (y)V ′
λ(y)

2(V ′
λ(y))4

)
dy

∣∣∣

=
∣∣∣e−2Vλ(x)

∫ x−1

−∞
2V ′

λ(y)e2Vλ(y)
(3(V ′′

λ (y))2 − V ′′′
λ (y)V ′

λ(y)

4(V ′
λ(y))5

)
dy

∣∣∣

≤ ce−2Vλ(x)

∫ x−1

−∞
2V ′

λ(y)e2Vλ(y)dy

≤ ce−2Vλ(x)+2Vλ(x−1) = ce−2λ
√

E−2E3/2((x− 1
2 )2+ 1

12 ) ,

and this suffices to conclude. �

Let us state an additional regularity result on the invariant measure and the density
of states, which is used in Sect. 9.

Lemma A.5 The map λ �→ (μλ(θ), θ ∈ [0,π]) is continuous from R into the set of
continuous functions on [0,π]. As a consequence, λ �→ n(λ) is continuous.

Proof The second part of the lemma is a consequence of the first part and of the
integral formula for the density of states stated in Corollary 6.2. To prove the first
part of the lemma, it suffices to check that λ �→ supθ |∂λμλ(θ)| is locally bounded.
Recall that μλ(θ) = gλ(cotan θ) where gλ(x) = (1 + x2)fλ(x)/mλ for all x ∈ R.
The desired property can then be deduced from direct computations on the integral
formula for fλ(x) and mλ. �

A.4.2 Expression of the Lyapunov exponent

Proof of Proposition 7.2 We already saw that ζ
(E)
λ is integrable. Assume that

sup
t∈[0,ζ

(E)
λ ] |ρ

(E)
λ (t)| is integrable. Decomposing the trajectory of ρ

(E)
λ into i.i.d. ex-

cursions in between the successive hitting times of πZ by θ
(E)
λ , one deduces from the

law of large numbers that almost surely

ρ
(E)
λ (t)

t
→ E[ρ(E)

λ (ζ
(E)
λ )]

E[ζ (E)
λ ]

, t →∞ .

This deterministic limit is denoted ν
(E)
λ .
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Before we check the integrability assumption and compute ν
(E)
λ , let us deal with

the adjoint diffusion. Arguments based on the strong Markov property show that the
ratio of expectations that we obtained in the previous limit remains unchanged if we
start the diffusion from its invariant measure, and the same holds with the adjoint
diffusions. Applying the adjunction relations of Sect. 7.1, we deduce that

E[ρ(E)
λ (ζ

(E)
λ )] = −Ē[ρ̄(E)

λ (ζ̄
(E)
λ )] , E[ζ (E)

λ ] = Ē[ζ̄ (E)
λ ] ,

so that the Lyapunov exponent of the adjoint diffusion is the opposite of ν
(E)
λ .

Let us check the integrability assumption. The drift and diffusions coefficients
of the (additive) SDE satisfied by ρ

(E)
λ are bounded. Standard stochastic calculus

arguments suffice to conclude and allow to show that

E[ρ(E)
λ (ζ

(E)
λ )] = E

[∫ ζ
(E)
λ

0

(
−√

E(λ− E) sin 2θ
(E)
λ − 1

2
sin2 2θ

(E)
λ + sin2 θ

(E)
λ

)
dt

]
.

(92)

We now compute ν
(E)
λ . Recall that m

(E)
λ = E[ζ (E)

λ ] admits the explicit integral expres-
sion (13). To complete the proof, it suffices to show that

E[ρ(E)
λ (ζ

(E)
λ )] =√

2π

∫ +∞

0

√
u exp(−2λu− u3

6
)du .

By the standard characterization of the invariant probability measure of positive re-
current Markov processes, we have

E[ρ(E)
λ (ζ

(E)
λ )] =

∫ π

0

(
−√

E(λ− E) sin 2θ − 1

2
sin2 2θ + sin2 θ

)
μ

(E)
λ (θ)m

(E)
λ dθ .

Applying the change of variable x = cotan θ , we get

E[ρ(E)
λ (ζ

(E)
λ )] =

∫ (2x
√

E(E − λ)

1 + x2
+ 1 − x2

(1 + x2)2

)
f

(E)
λ (x)dx . (93)

We compute the r.h.s. of (93). By the Dominated Convergence Theorem, we have

E[ρ(E)
λ (ζ

(E)
λ )] = lim

A→∞

∫ A

−A

(√
E(E − λ)

2x

1 + x2 + 1 − x2

(1 + x2)2

)
f

(E)
λ (x)dx .

Fix A > 0. We have (from now on, we abbreviate f
(E)
λ , V

(E)
λ in fλ, Vλ)

√
E(E − λ)

2x

1 + x2 = 2xE3/2 − 2x

1 + x2 V ′
λ(x) .

Using the identity f ′
λ(x)=−2V ′

λ(x)fλ(x)+ 2, an integration by parts yields

∫ A

−A

− 2x

1 + x2
V ′

λ(x)fλ(x)dx =
∫ A

−A

x

1 + x2
(f ′

λ(x)− 2)dx
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=
[ x

1 + x2
fλ(x)

]A

−A
−

∫ A

−A

1 − x2

(1 + x2)2
fλ(x)dx

−
∫ A

−A

2x

1 + x2
.

The last term vanishes by symmetry. We deduce from the previous computation that

∫ A

−A

(√
E(E − λ)

2x

1 + x2
+ 1 − x2

(1 + x2)2

)
fλ(x)dx =

∫ A

−A

2xE3/2fλ(x)dx

+
[ x

1 + x2 fλ(x)
]A

−A
.

The second term vanishes as A → ∞. Indeed Lemma 3.1 ensures that fλ(x) ≤
Cm

(E)
λ /(1 + x2). Regarding the first term, we have

∫ A

−A

2xfλ(x)dx =
∫ A

−A

4xe−2Vλ(x)

∫ x

−∞
e2Vλ(y)dydx .

We then apply the change of variables (u, v) := (x − y, x + y) and get

∫ A

−A

2xfλ(x)dx =
∫

u∈(0,∞)

∫
v∈R

1{u+v∈[−2A,2A]}ue−2λ
√

Eu−E3/2
6 u3

e−
E3/2

2 uv2
dvdu

+
∫

u∈(0,∞)

∫
v∈R

1{u+v∈[−2A,2A]}ve−2λ
√

Eu−E3/2
6 u3

e−
E3/2

2 uv2
dvdu .

It is straightforward to check that the second term on the r.h.s. goes to 0 as A →∞.
By the Dominated Convergence Theorem, the first term converges as A→∞ to

∫ +∞

0
ue−2λ

√
Eu−E3/2

6 u3
(

∫ +∞

−∞
e−

E3/2
2 uv2

dv)du=
√

2π

E3/2

∫ +∞

0

√
ue−2λu− u3

6 du ,

as required. �

A.5 Control of the time spent near πZ

In the previous sections, we needed a moment bound on the r.v.

(∫ 1

0
F(θ

(E)
λ (t))dt

)−1
and

(∫ 1

0
F(θ̄

(E)
λ (t))dt

)−1
,

where F is either F(x) = sin2(x) or F(x) = sin4(x). To prove such a bound, one
needs to show that θ

(E)
λ does not spend too much time near πZ (since the function F

vanishes there).
In both cases, F : R → R+ is a π -periodic smooth function that satisfies, for some

k ≥ 1 and some c > 0

F(x)≥ c d(x,πZ)k , x ∈ R , (94)
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where d is the Euclidean distance. Our proof will only rely on this property, and
therefore applies to a large class of functions F .

Lemma A.6 (Control of the time spent near πZ by the phase function) Original
coordinates. For any compact interval �⊂ R, there exists a constant q > 0 such that

sup
λ∈�

sup
θ∈[0,π)

E(0,θ)

[
exp

(
q
(∫ 1

0
F(θλ(t))dt

)− 1
k+1

)]
<∞ .

Distorted coordinates. Fix h > 0 and set � := [E − h/(n(E)E),E + h/(n(E)E)].
There exists a constant q > 0 such that

sup
E>1

sup
λ∈�

sup
θ∈[0,π)

E(0,θ)

[
exp

(
q
(∫ 1

0
F(θ

(E)
λ (t))dt

)− 1
k+1

)]
<∞ .

The same holds with θλ, θ
(E)
λ replaced by θ̄λ, θ̄

(E)
λ , the adjoint diffusions defined in

(55).

Proof From now on, “all the parameters” will refer to λ and θ when working with
the original coordinates, and E, λ, θ when working with the distorted coordinates.

We only need to prove that there exists a constant c′ > 0 such that for all ε > 0
small enough, and for all the parameters

P(0,θ)

(∫ 1

0
F(θ

(E)
λ (t))dt < ε

)
≤ exp

(− c′ ε−
1

k+1
)
. (95)

The idea of the proof is to consider the solution γλ of the ODE corresponding
to the deterministic part of our diffusion, to estimate the integral of F(γλ) on some
interval [0, T ], with T < 1, and to control the probability that γλ and θ

(E)
λ differ on

[0, T ].
Let γλ be the solution of

dγλ(t)=
(

E3/2 +√
E(λ− E) sin2 γλ + sin3 γλ cosγλ

)
dt ,

starting from γλ(0)= θ
(E)
λ (0)= θ . We would like to bound from below the time spent

by γλ near πZ on the time interval [0, T ].
Let us introduce a := supt∈[0,T ] d(γλ(t),πZ). We claim that:

• The distance a is not too small i.e. there exists a constant c0 ∈ (0,1) independent
of all the parameters and of T such that

a ≥ c0 min(T E3/2,1)≥ c0T . (96)

• The function γλ spends some time above a/2: There exists a constant c1 > 0 inde-
pendent of all the parameters and of T such that

∫ T

0
1{d(γλ(t),πZ)>a/2}dt ≥ c1T . (97)
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Given these two claims, we now control the difference between θ
(E)
λ and γλ. By

Grönwall’s Lemma there exists a constant C > 0 such that for all T ∈ [0,1],
sup

t∈[0,T ]
|θ(E)

λ (t)− γλ(t)| ≤ C sup
t∈[0,T ]

|M(t)| ,

where M(t) := − ∫ t

0 sin2 θ
(E)
λ dB(s). Let τ := inf{t ≥ 0 : |θ(E)

λ (t)−γλ(t)| ≥ a/4}. We
deduce that

P(τ ≤ T )≤ P

(
sup

t∈[0,T∧τ ]
|M(t)| ≥ a

4C

)
.

Recall that a = supt∈[0,T ] d(γλ(t),πZ). There exists a constant C′ > 0 such that
for all t ≤ T ∧ τ , ∂t 〈M〉t ≤ C′a4. Consequently Lemma A.2 yields the existence of
C0 > 0 such that

P(τ ≤ T )≤ 2e−
C0
T .

Combining (94), (96) and (97), we deduce that on the event {τ > T } we have

∫ T

0
F(θ

(E)
λ (t))dt =

∫ T

0
F(γλ(t)+ θ

(E)
λ (t)− γλ(t))dt ≥ c1c T (a/4)k ≥ c2T

k+1 ,

for some constant c2 > 0 independent of all parameters and of T . For any ε ∈ (0, c2],
one can choose T ∈ [0,1] such that ε = c2T

k+1. Then we have

P

(∫ T

0
F(θ

(E)
λ (t))dt < ε

)
≤ P(τ ≤ T ) < 2 exp

(
−C0

(c2

ε

) 1
k+1

)
,

as required. It remains to prove the two claims stated above.
For the first point, there exists a constant c′ > 0 such that uniformly over the

parameters the derivative of γλ is larger than c′E3/2 whenever γλ lies in some fixed
neighborhood of πZ, say [−δ, δ] + πZ with δ ≤ π/2. Set c0 := min(c′/4, δ). We
now distinguish two cases. If d(θ,πZ) is larger than min((c′/4)T E3/2, δ) then

a ≥ d(θ,πZ)≥ min((c′/4)T E3/2, δ)≥ c0 min(T E3/2,1) .

If d(θ,πZ) is smaller than min((c′/4)T E3/2, δ), then until γλ reaches δ mod [π], its
derivative is larger than c′E3/2. Therefore by time T , the distance of γλ to πZ passes
above min((c′/2)T E3/2, δ), and this yields a ≥ c0 min(T E3/2,1). Finally, since T ∈
[0,1] and E ≥ 1, the bound c0 min(T E3/2,1)≥ c0T is immediate.

For the second point, the absolute value of the derivative of γλ is bounded from
above by KE3/2 for some K > 0. Consequently (the distance to πZ of) γλ takes a
time at least a/(2KE3/2) to go from a/2 to a (or from a to a/2). With the original
coordinates, using (96) we thus get a/(2K)≥ c0T/(2K) as required.

Let us now consider the distorted coordinates: for convenience, we work under the
further assumption that E > E0(h) where E0(h) ≥ 1 is a constant that depends only
on h; the complementary case follows from an easy adaptation. Then the derivative
of γλ is larger than E3/2/2 everywhere. First assume that T E3/2 < 4π . Then by
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(96) we have a ≥ c0T E3/2/(4π) and thus we find a/(2KE3/2) ≥ c0T/(8πK) as
required. We now assume that T E3/2 ≥ 4π . The function γλ makes a number of
rotations over the circle which is at least �T E3/2/(2π)� ≥ 2. Necessarily a = π/2.
On each rotation, it spends a time at least a/(2KE3/2) in the favorable region. We
easily conclude to the second point of our claim. �

A.6 A bound on the centers of mass

Let f , g be two functions with L2(R)-norm equal to one such that
∫ |t |f 2(t)dt <∞

and
∫ |t |g2(t)dt < ∞. Let Vf , Vg be their centers of mass, that is, Vf := ∫

tf 2(t)dt

and Vg := ∫
tg2(t)dt , and let wf , wg be the associated probability measures on R

recentered at Vf , Vg , that is, wf (dt)= f 2(Vf + t)dt and wg(dt)= g2(Vg + t)dt .

Lemma A.7 Assume that there exist some constants q, c > 0 and some δ ∈ (0,1/10)

such that
∫

|f (t)− g(t)|2dt ≤ δ2 ,

and for all t ∈ R , |f (t)| ≤ c e−q|t−Vf | , |g(t)| ≤ c e−q|t−Vg | .

Then, there exists a function C := C(q, c) > 0 depending only on q and c, and which
grows at most polynomially in c, such that |Vf − Vg| ≤ Cδ1/2 and dM(wf ,wg) ≤
Cδ1/2, where dM is the Lévy-Prokhorov distance introduced in (87).

Proof Let X, Y be two r.v. with densities f 2 and g2 respectively. Note that Vf =
E[X] and Vg = E[Y ]. By assumption, we have for any A > 0

P(|X −E[X]|> A) <
c2

q
e−2qA , P(|Y −E[Y ]|> A) <

c2

q
e−2qA .

Furthermore

∣∣P(|X −E[Y ]| ≤A)− P(|Y −E[Y ]| ≤A)
∣∣

=
∣∣∣
∫
[E[Y ]−A,E[Y ]+A]

(f 2(t)− g2(t))dt

∣∣∣

≤ (∫
|f (t)− g(t)|2dt

)1/2(∫
|f (t)+ g(t)|2dt

)1/2

≤ 2δ .

Choose A > 0 such that (it can be chosen in such a way that it grows logarithmically
in c)

2
c2

q
e−2qA + 2δ < 2

c2

q
e−2qA + 2

1

10
< 1 .
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Assume that |E[X] −E[Y ]|> 2A. Then

P(|X −E[Y ]| ≤A)≤ P(|X −E[X]|> A) <
c2

q
e−2qA ,

while

P(|Y −E[Y ]| ≤A)≥ 1 − c2

q
e−qA ,

so that

∣∣P(|X −E[Y ]| ≤A)− P(|Y −E[Y ]| ≤A)
∣∣ > 1 − 2

c2

q
e−qA > 2δ ,

thus raising a contradiction. Consequently, |E[X] −E[Y ]| ≤ 2A.
This being given, take A′ > 0 and define the interval I := [min(E[X],E[Y ]) −

A′,max(E[X],E[Y ])+A′], and let m be its midpoint. We have

E[X] −m=
∫

I

(t −m)f 2(t)dt +
∫

R\I
(t −m)f 2(t)dt ,

E[Y ] −m=
∫

I

(t −m)g2(t)dt +
∫

R\I
(t −m)g2(t)dt .

Since the length of I is smaller than 2(A+A′), we deduce that

∣∣∣
∫

I

(t −m)f 2(t)dt −
∫

I

(t −m)g2(t)dt

∣∣∣≤ (A+A′)
∫

R
|f 2(t)− g2(t)|dt

≤ 2(A+A′)δ .

Moreover,

∣∣∣
∫

R\I
(t −m)f 2(t)dt

∣∣∣≤
∫

R\[E[X]−A′,E[X]+A′])
(|t −E[X]| +A)c2e−2q|t−E[X]|

≤
(A′

q
+ 1

2q2
+ A

q

)
c2e−2qA′

.

The same bound holds for
∣∣ ∫

R\I (t −m)g2(t)dt
∣∣. This ensures that

∣∣E[X] −E[Y ]∣∣≤ 2(A+A′)δ + 2
(A′

q
+ 1

2q2
+ A

q

)
c2e−2qA′

.

Choosing A′ = δ−1/2, we get the desired bound on |Vf − Vg|. Let w′
f be the proba-

bility measure associated with f 2 recentered at Vg , that is, w′
f (dt) = f 2(Vg + t)dt .

Then, it is easy to check that

dM(wg,w
′
f )≤

∫
|f 2 − g2|(t)dt ≤ 2(

∫
|f − g|2dt)1/2 ≤ 2δ .
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Furthermore for any Borel set B ⊂ R, note that for any ε > |Vf − Vg| we have Vf +
B ⊂ Vg +Bε and Vg +B ⊂ Vf +Bε so that

wf (B)=
∫

Vf +B

f 2(t)dt ≤
∫

Vg+Bε

f 2(t)dt =w′
f (Bε) ,

w′
f (B)=

∫
Vg+B

f 2(t)dt ≤
∫

Vf +Bε

f 2(t)dt =wf (Bε) ,

so that dM(wf ,w′
f )≤ |Vf − Vg|, thus concluding the proof. �
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28. Molčanov, S.A.: The local structure of the spectrum of the one-dimensional Schrödinger opera-
tor. Commun. Math. Phys. 78(3), 429–446 (1980/81)

29. Nakano, F.: Distribution of localization centers in some discrete random systems. Rev. Math.
Phys. 19(9), 941–965 (2007). https://doi.org/10.1142/S0129055X07003176

30. Nakano, F.: Level statistics for one-dimensional Schrödinger operators and Gaussian beta en-
semble. J. Stat. Phys. 156, 66–93 (2014). https://doi.org/10.1007/s10955-014-0987-x

31. Nakano, F.: The scaling limit of eigenfunctions for 1d random Schrödinger operator (2019).
arXiv:1912.01436

32. Norris, J.: Simplified Malliavin calculus. In: Séminaire de Probabilités, XX, 1984/85. Lec-
ture Notes in Math., vol. 1204, pp. 101–130. Springer, Berlin (1986). https://doi.org/10.1007/
BFb0075716

33. Rifkind, B., Virág, B.: Eigenvectors of the 1-dimensional critical random Schrödinger operator.
Geom. Funct. Anal. 28(5), 1394–1419 (2018). https://doi.org/10.1007/s00039-018-0460-0

34. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293.
Springer, Berlin (1999)

35. Hypocoercivity, C.V.: Mem. Am. Math. Soc. 202(950), iv+141 (2009). https://doi.org/10.1090/
S0065-9266-09-00567-5.

36. Weidmann, J.: Spectral Theory of Ordinary Differential Operators. Lecture Notes in Mathemat-
ics. Springer, Berlin (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and appli-
cable law.

https://doi.org/10.1515/crelle-2012-0026
https://doi.org/10.1515/crelle-2012-0026
https://doi.org/10.1214/17-EJP91
https://doi.org/10.1007/s00220-012-1537-5
https://doi.org/10.1007/s00220-012-1537-5
https://doi.org/10.21099/tkbjm/1496161019
https://doi.org/10.21099/tkbjm/1496161019
https://doi.org/10.1142/S0129055X07003176
https://doi.org/10.1007/s10955-014-0987-x
http://arxiv.org/abs/arXiv:1912.01436
https://doi.org/10.1007/BFb0075716
https://doi.org/10.1007/BFb0075716
https://doi.org/10.1007/s00039-018-0460-0
https://doi.org/10.1090/S0065-9266-09-00567-5
https://doi.org/10.1090/S0065-9266-09-00567-5

	Localization crossover for the continuous Anderson Hamiltonian in 1-d
	Abstract
	Contents
	Introduction
	Main results
	The diffusions
	The distorted coordinates
	Condensed notation
	Invariant measure
	Rotation time and density of states
	Forward and backward diffusions

	Strategy of proof
	Convergence to equilibrium of the phase
	Goldscheid-Molchanov-Pastur (GMP) formula
	Exponential decay
	Poisson statistics

	Convergence to equilibrium
	Hypoellipticity - regularization step
	Hypocoercivity - convergence step

	GMP formula
	Exponential decay
	Adjoint diffusions
	Lyapunov exponent and the main growth estimate
	Proof of Proposition 4.2

	Fine estimates on the diffusion
	A thorough study of a joint diffusion
	Proof of Lemma 8.3

	Poisson statistics
	The limiting intensity
	Proof of Lemma 9.1
	Controlling the approximation

	Appendix A: Technical results
	Simple estimate on the Laplace transform
	Elementary deviation estimate for general SDEs
	Moments estimates
	Integral formulas
	Invariant measure
	Expression of the Lyapunov exponent

	Control of the time spent near πZ
	A bound on the centers of mass

	Acknowledgements
	References


