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Abstract We introduce a new approach to determining the structure of topo-
logical cyclic homology by means of a descent spectral sequence. We carry
out the computation for a p-adic local field with Fp-coefficients, including the
case p = 2 which was only covered by motivic methods except in the totally
unramified case.
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1 Introduction

We fix a prime number p. Let K be a p-adic local field, i.e. a finite extension
of Qp. In this paper, we introduce the descent spectral sequence to determine
the structure of topological cyclic homology groups TC∗(OK ) and its variants
TC−∗ (OK ) and TP∗(OK ). In contrast to all earlier methods, we do not make
any additional assumption on p or K . In fact, we carry out the computation
in the modulo p case, and obtain the structure of TC∗(OK ; Fp), which in turn
determines the mod p algebraic K -theory ofOK by the cyclotomic trace map.
Moreover, our computation implies that the natural map

TC(OK ; Zp) → LK(1)TC(OK ; Zp),

where LK(1) denotes the Bousfield localization functor (cf. [16, §3.1]), is
0-truncated (see Remark 1.7 for more details). Consequently, one may com-
pletely determine the homotopy type of TC(OK ; Zp) because the homotopy
type of LK(1)TC(OK ; Zp) is well-understood.

In fact, our approach for determining the topological cyclic homology may
apply to more general setup. In a forthcoming paper [10], we will treat the
case of locally complete intersection schemes over Zp.

We fix a uniformizer�K of K throughout. Let k be the residue field ofOK ,
and let SW (k) be the corresponding spherical Witt vectors (cf. [13, §5.2]). We
considerOK as an E∞-algebra over the spherical polynomial algebra SW (k)[z]
via the composition

SW (k)[z] → W (k)[z] → OK ,

where the second map is the W (k)-algebra morphism sending z to �K . The
topological Hochschild homology THH(OK /SW (k)[z]) of OK over SW (k)[z],
which has the structure of an E∞-algebra in cyclotomic spectra, is introduced
by Bhatt–Morrow–Scholze [4, §11]. Using THH(OK /SW (k)[z]), one may fur-
ther define the periodic topological cyclic homologyTP(OK /SW (k)[z]) and the
negative topological cyclic homology TC−(OK /SW (k)[z]) (See §2 for more
details.)

The descent spectral sequence for THH(OK ) is obtained via descent along
the base change map in cyclotomic spectra

THH(OK /SW (k)) → THH(OK /SW (k)[z]). (1.1)
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Topological cyclic homology of local fields 853

It turns out that the resulting augmented cosimplicial E∞-algebra in cyclo-
tomic spectra

THH(OK /SW (k)) → THH(OK /SW (k)[z]⊗[−]),

where the tensor products in the target are taken relative to SW (k), is a limit
diagram

THH(OK /SW (k)) � lim[n]∈�THH(OK /SW (k)[z]⊗[n]).

This in turn gives rise to the descent spectral sequence for THH(OK ), which
is of homology type and in the second quadrant,

E1
i, j (THH(OK )) = THH j (OK /SW (k)[z]⊗[−i]) ⇒ THHi+ j (OK /SW (k)).

Similarly, we get the descent spectral sequences

E1
i, j (TC

−(OK )) = TC−
j (OK /SW (k)[z]⊗[−i]) ⇒ TC−

i+ j (OK /SW (k))

and

E1
i, j (TP(OK )) = TP j (OK /SW (k)[z]⊗[−i]) ⇒ TPi+ j (OK /SW (k)).

Combining these two spectral sequences we obtain the descent spectral
sequence for TC(OK ):

E2
i, j (TC(OK )) ⇒ TCi+ j (OK /SW (k)),

where E2
i, j (TC

−(OK )), E2
i, j (TP(OK )) and E2

i, j (TC(OK )) are related by a
long exact sequence induced from the fiber sequence

TC(OK /SW (k)) → TC−(OK /SW (k))
can−ϕ−−−→ TP(OK /SW (k)).

(See §5 for more details).
The descent spectral sequence is an analogue of the Adams spectral

sequence in the ∞-category of cyclotomic spectra. Indeed, as in the case
of standard Adams spectral sequence, the E2-term of the descent spectral
sequence for THH(OK ) (resp. TP(OK )) may be identified with the cobar
complex for THH∗(OK /SW (k)[z]) (resp. TP∗(OK /SW (k)[z])) with respect to
the Hopf algebroid

(THH∗(OK /SW (k)[z]),THH∗(OK /SW (k)[z0, z1]))
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(resp. (TP0(OK /SW (k)[z]),TP0(OK /SW (k)[z0, z1]))).
In terms of geometric language, the simplicial scheme

[n] 	→ Spec(TP0(OK /SW (k)[z]⊗[n]))

forms a groupoid scheme, and there is the associated stack

X = colim[n]∈�opSpec(TP0(OK /SW (k)[z]⊗[n])). (1.2)

It follows that E2
i, j (TP(OK ))may be identified with the coherent cohomology

H j−i (X ,OX (
j
2 )) with the understanding that this group is zero for j odd,

and the aforementioned cobar complex is nothing but the Čech complex with
respect to the covering

Spec(TP0(OK /SW (k)[z])) → X

for determining the said cohomology.
To understand the structure of these Hopf algebroids, we make use of the

theory of δ-rings. Recall that a δ-ring structure on a p-torsion free commutative
ring A is equivalent to the datumof a ringmapϕ : A → A lifting the Frobenius
on A/p; the corresponding δ-structure is given by

δ(x) = ϕ(x) − x p

p
.

Note that there is a Frobenius liftϕ onW (k)[z0, . . . , zn]which is the Frobenius
on W (k) and sends zi to z pi . This makes W (k)[z0, . . . , zn] into a δ-ring.

By [4, §11], we know that the cyclotomic Frobenius on TP0(OK /SW (k)[z])
is a Frobeninus lift. Moreover, as a δ-ring, TP0(OK /SW (k)[z]) is isomorphic to
the EK (z)-adic completion of W (k)[z]; here EK (z) is a minimal polynomial
of �K over W (k), normalized such that EK (0) = p.

It remains to determine THH0(OK /SW (k)[z0, z1]) and TP0
(OK /SW (k)[z0, z1]), which constitutes a key step of the paper. Let DW (k)[z0,z1]
((EK (z0), z0 − z1)) be the divided power envelope of (EK (z0), z0 − z1) in
W (k)[z0, z1], and equip it with the topology induced by the Nygaard filtration
N≥•. In §3, we will prove the following result.

Theorem 1.3 The cyclotomic Frobenius on TP0(OK /SW (k)[z0, z1]) is a
Frobenius lift. Moreover, TP0(OK /SW (k)[z0, z1]) is isomorphic to the closure
of the subring of DW (k)[z0,z1]((EK (z0), z0 − z1))∧N generated by W (k)[z0, z1]
and {δk( ϕ(z0−z1)

ϕ(EK (z0))
)}k≥0.

In the course of the proof, we also establish a variant of the classical
Hochschild–Kostant–Rosenberg theorem (Appendix A), which might be of
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some independent interest.Moreover,weprove that for alln ≥ 1, theTate spec-
tral sequence for TP(OK /SW (k)[z]⊗[n]) collapses at the E2-term. Therefore,
(THH∗(OK /SW (k)[z]),THH∗(OK /SW (k)[z0, z1])) is canonically isomorphic
to the associated graded Hopf algebroid of

(TP0(OK /SW (k)[z]),TP0(OK /SW (k)[z0, z1]))
with respect to the Nygaard filtration. (See §3, §4 for more details).

The explicit description of (THH∗(OK /SW (k)[z]),THH∗(OK /

SW (k)[z0, z1])) allows us to determine the E2-term of the descent spectral
sequence for THH(OK ) by the standard relative injective resolution; this was
carry out in §5.

Note that E1(TP(OK )) is naturally endowed with the Nygaard filtration,
which is inherited from the Nygaard filtration on TP(OK /SW (k)[z]⊗[−]).
Moreover, the associated graded is isomorphic to E1(THH(OK ))[σ±] by the
fact that the Tate spectral sequence for TP(OK /SW (k)[z]⊗[n]) collapses at the
E2-term. Hence the spectral sequence associated with the filtered chain com-
plex E1(TP(OK )) takes the form

E2(THH(OK ))[σ±] ⇒ E2(TP(OK )).

We call this spectral sequence the algebraic Tate spectral sequence. Similarly,
we construct the algebraic homotopy fixed points spectral sequence

E2(THH(OK ))[v] ⇒ E2(TC−(OK )),

which is the spectral sequence associated with the Nygaard filtration on
E1(TC−(OK )).
Using these two spectral sequences, we conclude that both the descent spec-

tral sequences for TC−(OK ) and TP(OK ) collapse at the E2-term for degree
reasons.

However, extra complication occurs when applying the above approach
to determining the E2-terms of the mod p descent spectral sequences.
To remedy this, we introduce a refinement of the Nygaard filtration on
TP∗(OK /SW (k)[z]⊗[−]; Fp), and determine all the differentials of the refined
algebraic Tate spectral sequence in §6.Using the explicit description of refined
algebraic Tate differentials, we determine the E2-terms of the descent spectral
sequences for TC−∗ (OK ; Fp) and TP∗(OK ; Fp) in §7. In §8, we determine
the E2-term of the descent spectral sequence for TC∗(OK ; Fp). Moreover, we
show that all mod p descent spectral sequences collapse at the E2-term.

Remark 1.4 In terms of geometric language, the collapse of the descent
spectral sequences forTP(OK ) andTC−(OK ) at the E2-term is a formal conse-
quence of the fact that the stackX has coherent cohomology in degrees 0 and 1
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only.Hence the problemof determining the homotopy groups TP∗(OK /SW (k))

is reduced to the purely algebraic problem of determining the coherent coho-
mology of the stack X . This is the reason that we can avoid the problems
inherent in homotopy theory concerning reduction mod p and introduce the
refined Nygaard filtration. Note that the latter has no topological analogue.

Finally, we conclude our main result

Theorem 1.5 Let d = [K (ζp) : K ] and fK = [k : Fp]. Then we explicitly
construct

β ∈ E2
0,2d(TC(OK ); Fp), λ ∈ E2−1,0(TC(OK ); Fp),

γ ∈ E2−1,2d+2(TC(OK ); Fp),

and

α
( j)
i,l ∈ E2−1,2 j (OK ; Fp), 1 ≤ i ≤ eK , 1 ≤ j ≤ d, 1 ≤ l ≤ fK

such that as Fp[β]-modules,

E2
0,∗(TC(OK ); Fp) = Fp[β], E2−2,∗(TC(OK ); Fp) = Fp[β]{λγ },

E2−1,∗(TC(OK ); Fp) = Fp[β]{λ, γ } ⊕ Fp[β]
{α( j)

i,l |1 ≤ i ≤ eK , 1 ≤ j ≤ d, 1 ≤ l ≤ fK },

and

E2
i,∗(TC(OK ); Fp) = 0

for i �= 0, −1, −2. Moreover, both E2
0,∗(TC(OK ); Fp) and E2−2,∗(TC(OK );

Fp) are concentrated in even degrees. Consequently, the descent spectral
sequence converging to TC(OK ; Fp) collapses at the E2-term.

Remark 1.6 UsingTheorem1.5,wemaycompletely determineTC∗(OK ; Fp).
In fact, it turns out that the collapsing descent spectral sequence for
TC(OK ; Fp) does not have hidden additive extensions unless p = 2 and
[K : Q2] is odd. See Theorems 8.20 and 8.21 for more details.

Remark 1.7 In fact, after base change to K (ζp), (up to a scalar and up to higher
filtrations) β is equal to the d-th power of a Bott element (see Remark 8.24).
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It follows that LK(1)TC(OK ; Fp) may be identified with TC(OK ; Fp)[β−1].
Thus Theorem 1.5 implies that

TC(OK ; Fp) → LK(1)TC(OK ; Fp)

is 0-truncated. Consequently, both

TC(OK ; Zp) → LK(1)TC(OK ; Zp)

and

K(OK ; Zp) → LK(1)K(OK ; Zp)

are 0-truncated as well. Note that the last statement is one formulation of the
Lichtenbaum–Quillen conjecture for K (cf. [20]).

Remark 1.8 The E2-terms of the standard Adams spectral sequences for S,
which are obtained via the descent along S → HFp or S → MU, are far
from being understood, let alone the abutments. In contrast, we are able to
completely determine the E2-term of the descent spectral sequence converging
to TC∗(OK ; Fp), and in addition, all the E2-differentials are zero.

Remark 1.9 In this paper we only consider the case of p-adic local fields. For
the case of local fields of characteristic p, our approach applies equally well.
Moreover, one may apply the results in [4, §8] in place of our constructions in
Sect. 3 to simplify the process.

In §9, we observe that the descent spectral sequence converging to TC∗(OK ;
Fp) is reminiscent of the motivic spectral sequence converging to K∗(K , Fp).
We expect that the descent spectral sequence will provide some incarnation of
the motivic spectral sequence in the p-adic setting.

Topological cyclic homology is an important tool for understanding alge-
braic K -theory. The case of p-adic local fields has been extensively studied
by many people. For example, the case p odd and eK = 1 is determined in
[5,21]; the case p odd and eK arbitrary is determined in [7]. The case p = 2
and eK = 1 is determined in [19]. The case p = 2 and eK arbitrary follows
from the corresponding computation for 2-completed algebraic K -theory [15],
which in turn is based on the work on the 2-adic Lichtenbaum–Quillen con-
jecture [18].
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These prior works [5,7,19,21] all adopt a common strategy, which is differ-
ent form ours; the difference may be summarized by the following diagram

E2(THH(OK ))[σ±]
descent algebraic Tate

THH∗(OK )[σ±]

Tate

E2(TP(OK )).

descent

TP∗(OK )

More precisely, in these works one starts with a descent style spectral sequence
for THH(OK ), which collapses at the E2-term in consideration of degrees.
Then one applies the Tate spectral sequence to determine the structure of
TP∗(OK ). The hard part is to determine the Tate differentials, and the main
technique for doing this is to inductively determine the structures of the Tate
spectral sequences for all finite subgroups of the circle group T.

Our approach proceeds in another direction. We first run the (mod
p) algebraic Tate spectral sequence to determine the E2-term of the
descent spectral sequence for TP(OK ). Since the cobar complex can be
described explicitly thanks to the determination of the Hopf algebroid
(TP0(OK /SW (k)[z]),TP0(OK /SW (k)[z0, z1])), the computation of algebraic
Tate differentials is purely algebraic. It follows that the descent spectral
sequence for TP(OK ) collapses at the E2-term in consideration of degrees.
Indeed, it turns out that the structure of the algebraic Tate spectral sequence is
similar to the structure of the Tate spectral sequence (see Remark 6.45). That
is to say, using the descent spectral sequence and the Nygaard filtration, we
transform the problem of determining the Tate differentials, which is topolog-
ical in nature, into a purely algebraic problem which in turn can be solved by
hand.

One particular merit of our method is that it allows us to handle all finite
extensions K/Q2, whichwas out of reachwith earlier methods. In fact, the ear-
lier methods cannot work with F2-coefficients multiplicatively as the Moore
spectrum does not have a multiplication in this case due to the non-vanishing
of the Toda bracket 〈2, η, 2〉; if one goes to Z/4-coefficients, then the various
spectral sequences will depend on finer information (as encoded in the coef-
ficients of EK (z)) of the structure of K . On the other hand, in our method,
all the nontrivial differentials appear in the algebraic Tate spectral sequence,
which is algebraic in nature, and there is no difficulty in making modulo 2
reductions. In other words, by introducing the descent spectral sequence, the
obstruction for the multiplicativity of the Moore spectrum goes to a higher
filtration, hence does not affect the determinations of the E2-terms.
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As indicated in the above diagram, our approach consists of two steps.
The first step is to determine the algebraic Tate differentials, which is purely
algebraic. The second step is to determine the descent spectral sequence for
TP. As mentioned at the beginning, we will apply this approach to investigate
topological cyclic homology of locally complete intersection schemes over
Zp. It turns out that for those schemes, the descent spectral sequence for TP is
no longer degenerate; the abutment filtrations (which is conjectured to be the
motivic filtration of Bhatt–Morrow–Scholze [4]) are bounded by the number
of generators of the sheaf of regular functions.

Relation with other works

The present work started with an attempt to determine the structure of
TC∗(OK ) using the motivic-like spectral sequence introduced by Bhatt–
Morrow–Scholze relating the prisms and topological cyclic homology [4, The-
orem 1.12]. In fact, one may resolveOK by perfectoids in the quasi-syntomic
site, and obtain a cosimplicial object similar to THH(OK /SW (k)[z]⊗[−]), but
having p-fractional powers of zi ’s in the base. Moreover, the E2-term of the
resulting spectral sequence has the descent spectral sequence as a subcom-
plex consisting of terms with integer exponents. We conjecture that the the
second pages of these two spectral sequences are quasi-isomorphic, i.e. the
subcomplex consisting of terms with non-integer exponents is acyclic.
In [8], Krause–Nikolaus also introduce a descent style spectral sequence to
determine the topological Hochschild homology of quotients of DVRs. Their
work also recover themain result of Lindenstrauss–Madsen [9] as ours (Corol-
lary 5.19).
Recently, Bhatt–Lurie [3] andDrinfeld [6] introduced the stacky reformulation
of the prismatic cohomology, called the “prismatization”. We believe that the
stacks of Bhatt–Lurie and Drinfeld should be closely related to the stacks
defined by our Hopf algebroids. For example, we conjecture that one may
identify the prismatization of Spf(OK ), i.e. the Cartier–Witt stack WCartOK

constructed in [3], with the stack X given by (1.2).

Notation and conventions

We fix a prime p. Let K be a finite extension of Qp with residue field k.
Denote by K0 = W (k)[1/p] the maximal unramified subextension of K over
Qp. Let eK and fK be the ramification index and inertia degree of K over Qp
respectively. Let �K be a uniformizer of OK , and let EK (z) be the minimal
polynomial of �K over K0, normalized such that E(0) = p. Let μ denote the
leading coefficient of EK (z), and put μ̃ = − μp

δ(EK (z0))
.
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We equipW (k)[z0, . . . , zn]with the Frobenius lift ϕ which is the Frobenius
on W (k) and sends zi to z pi . This makes W (k)[z0, . . . , zn] into a δ-ring.

In this paper, all spectral sequences with two indices (descent spectral
sequence, Tate spectral sequence, and homotopy fixed point spectral sequence)
are homology type spectral sequences with differentials

dr : Er
i, j → Er

i−r, j+r−1.

Warning: Throughout this paper, all Nygaard filtrations involved only jump
at even degrees. For our purpose, we rescale the index of Nygaard filtrations
by 2 after Convention 6.8.

2 Cyclotomic structures on THH

Let E be an E∞-algebra in spectra, and let A be an E∞-algebra over E . Recall
that the topological Hochschild homology of A over E is defined by the cyclic
bar construction over the base.

Definition 2.1 The topological Hochschild homology of A over E is defined
as

THH(A/E) = A⊗ET

in the∞-category of E∞-algebras in spectra. It is universal among the objects
of T-equivariant E∞-algebras over E equipped with a (non-equivariant) map
from A. Denote THH(A/S) by THH(A).

The universal property of THH implies the following multiplicative prop-
erty

THH(A1/E1) ⊗THH(A2/E2) THH(A3/E3) � THH(A1 ⊗A2 A3/E1 ⊗E2 E3).

(2.2)

In general, THH(A/E) may not have cyclotomic structures. For example,
the Hochschild homology HH(−) = THH(−/Z) is not cyclotomic ([17,
III.1.10]). However, we may put more conditions on E to obtain a natural
cyclotomic structure on THH(A/E).

Lemma 2.3 The following statements are true.

(1) Let E be an E∞-algebra in cyclotomic spectra such that the underlying
T-action is trivial. Then a lift of the augmentation map

THH(E) → E
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to a map of E∞-algebras in cyclotomic spectra naturally determines a
lift of the functor THH(−/E) to a functor from E∞-algebras over E to
E∞-algebras in cyclotomic spectra.

(2) Moreover, suppose we have a commutative diagram of E∞-algebras in
cyclotomic spectra

THH(E1) E1

THH(E2) E2

with trivial T-actions on E1 and E2 such that it extends to a commutative
diagram of E∞-algebras in spectra

THH(E1) E1 A1

THH(E2) E2 A2.

If we equip THH(A1/E1) and THH(A2/E2) with the structure of E∞-
algebras in cyclotomic spectra given by (1), then the natural map
THH(A1/E1) → THH(A2/E2) is a map of E∞-algebras in cyclotomic
spectra.

Proof Part (1) is essentially [4, Construction 11.5]. In fact, by (2.2), we get

THH(X/E) � THH(X) ⊗THH(E) E

in the ∞-category of E∞-algebras in spectra. Since the forgetful functor from
E∞-algebras in cyclotomic spectra to E∞-algebras in spectra is symmetric
monoidal and preserves small colimits, wemay lift THH(X/E) as the pushout
of

THH(X) ← THH(E) → E

in the ∞-category of E∞-algebras in cyclotomic spectra. Part (2) follows
immediately. ��
Definition 2.4 When the condition of Lemma 2.3(1) holds, we set negative
cyclic homology

TC−(−/E) = THH(−/E)hT
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and the periodic cyclic homology

TP(−/E) = (THH(−/E)tT.

As in the case E = S, for any prime l, the cyclotomic structure on THH(−/E)

induces the Frobenius

ϕl : THH(−/E) � 
lTHH(−/E) → THH(−/E)tCl . (2.5)

Moreover, there is the canonical map

can : TC−(−/E) � (THH(−/E)hCl )h(T/Cl )

= (THH(−/E)hCl )hT → (THH(−/E)tCl )hT. (2.6)

The topological cyclic homology is defined by the fiber sequence

TC(−/E) → TC−(−/E)

∏
l (ϕ

hT
l −can)−−−−−−−−→

∏

l

(THH(−/E)tCl )hT.

Using the argument of [17, Lemma II 4.2], we have

TP(−/E; Zp) � (THH(−/E)tCp)hT.

Taking p-completion of ϕhT

l and can for l = p, we get

ϕ : TC−(−/E; Zp) → TP(−/E; Zp),

can : TC−(−/E; Zp) → TP(−/E; Zp)

and the fiber sequence

TC(−/E; Zp) → TC−(−/E; Zp)
ϕ−can−−−→ TP(−/E; Zp).

As in the case E = S, there are the homotopy fixed point spectral sequence

E2
i, j = THH∗(−/E)[v] ⇒ TC−

i+ j (−/E) (2.7)

and the Tate spectral sequence

E2
i, j = THH∗(−/E)[σ±1] ⇒ TPi+ j (−/E), (2.8)

where THH j (−/E) has degree (0, j), |v| = (−2, 0), |σ | = (2, 0), and
can(v) = σ−1. The Nygaard filtrationN≥ j is defined to be the filtration E∞∗, j
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on the abutment; it is multiplicative as the Tate spectral sequence is multiplica-
tive. When the Tate spectral sequence collapses at the E2-term, we denote by
p j the natural projection

N≥ j (TP0(−/E)) → THH j (−/E). (2.9)

Recall that by [4, Proposition 11.3],S[z] admits an E∞-cyclotomic structure
over THH(S[z]) in which the T-action is trivial and the Frobenius sends z to
z p.

Proposition 2.10 The following statments are true.

(1) There is a functorial E∞-cyclotomic structure on THH(−/SW (k)).
(2) There is a functorial E∞-cyclotomic structure on THH(−/SW (k)[z]).
Proof We set the Frobenius on SW (k) to be the unique E∞-automorphism
inducing the Frobenius on π0. It follows that the resulting cyclotomic struc-
ture on SW (k) agrees with the p-completion of the cyclotomic structure on
THH(SW (k)) via the augmentation map [17, IV.1.2]. This yields (1) by Lemma
2.3.

For (2), note that

SW (k)[z] � SW (k) ⊗S S[z]

in the ∞-category of E∞-algebras in spectra. We then define the cyclotomic
structure onSW (k)[z] using the cyclotomic structures onSW (k) andS[z], and the
monoidal structure on the ∞-category of E∞-algebras in cyclotomic spectra.
We conclude (2) by (1) and Lemma 2.3. ��
Convention 2.11 Henceforth we equip THH(−/SW (k)) and THH(−/

SW (k)[z]) with the cyclotomic structures given by Proposition 2.10.
Remark 2.12 Since SW (k) is equivalent to the p-completion of THH(SW (k)),
it follows that

THH(OK /SW (k)) � THH(OK ) ⊗THH(SW (k)) SW (k)

is isomorphic to the p-completionofTHH(OK ). Similarly,THH(OK /SW (k)[z])
is isomorphic to the p-completion of THH(OK /S[z]).
Remark 2.13 By the previous remark, we see that TC(OK /SW (k)),
TC(OK /SW (k)[z]), TC−(OK /SW (k)), TC−(OK /SW (k)[z]), TP(OK /SW (k))

andTP(OK /SW (k)[z]) are isomorphic to p-completions of TC(OK ), TC(OK /

S[z]), TC−(OK ), TC−(OK /S[z]), TP(OK ) and TP(OK /S[z]) respectively.
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Note that the composite

S[z] → THH(−/S[z]),
which is a map of E∞-algebras in cyclotomic spectra, induces

iC : S[z]hT → TC−
0 (−/S[z]; Zp), iP : (S[z]tCp)hT → TP0(−/S[z]; Zp).

Recall that S[z] is equipped with the trivial T-action. In the following, when
the context is clear, we abusively use z to denote the its images under iC and
can ◦ iC .

Proposition 2.14 We have ϕ(z) = z p.

Proof Recall that the Frobenius ϕp on S[z] is the composite

S[z] z 	→z p−−−→ S[z] → S[z]hCp can−→ S[z]tCp .

It follows that the composite

ϕhT

p : S[z]hT z 	→z p−−−→ S[z]hT → S[z]hT can−→ (S[z]tCp)hT

satisfies ϕhT
p (z) = can(z)p. On the other hand, it is straightforward to see

ϕ ◦ iC = iP ◦ ϕhT

p and can ◦ iC = iP ◦ can.

The desired result follows. ��
Nowwe specialize to the case ofOK . Firstly recall the Bökstedt periodicity

THH∗(k) = k[u],
where u ∈ THH2(k) is the Bökstedt element. Recall the following result from
[17].

Theorem 2.15 (1) Both the Tate spectral sequence forTP∗(Fp) and the homo-
topy fixed point spectral sequence for TC−∗ (Fp) collapse at the E2-term.
Consequently,

TP∗(Fp) = TP0(Fp)[σ±1
Fp

], |σFp | = 2,

and the canonical map can : TC−
j (Fp) → TP j (Fp) is an isomorphism for

j ≤ 0.
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(2) We have TP0(Fp) = Zp and p0 : TP0(Fp) → THH0(Fp) is the natural
projection Zp → Fp. Moreover, the cyclotomic Frobenius on TC−

0 (Fp) is
the identity map under the isomorphism can : TC−

0 (Fp) ∼= TP0(Fp).
(3) For any uFp ∈ TC−

2 (Fp) lifting the Bökstedt element under p0, there exists
a unique vFp ∈ TC−

−2(Fp) such that

TC−∗ (Fp) = TC−
0 (Fp)[uFp , vFp ]/(uFpvFp − p).

(4) For any (uFp , vFp) in (3),

ϕ(uFp) = can(vFp)
−1.

Proof See Corollary IV.4.16 [17] and the discussion after that. ��
Definition 2.16 Let EK (z) be the minimal polynomial of �K over K0, nor-
malized such that EK (0) = p.

Theorem 2.17 (1) We have

THH∗(OK /SW (k)[z]) = OK [u],

where u ∈ THH2(OK /SW (k)[z]) is any lift of the Bökstedt element in
THH2(k).

(2) The Tate spectral sequence for TP∗(OK /SW (k)[z]) collapses at the E2-
term. Consequently,

TP∗(OK /SW (k)[z]) = TP0(OK /SW (k)[z])[σ±1]

with |σ | = 2.
(3) We have

TP0(OK /SW (k)[z]) = W (k)[[z]],

and p0 : TP0(OK /SW (k)[z]) → THH0(OK /SW (k)[z]) is the W (k)-
algebra morphism

W (k)[[z]] z 	→�K−−−−→ OK .

(4) The homotopy fixed point spectral sequence for TC−∗ (OK /SW (k)[z]) col-
lapses at the E2-term. Consequently, the canonical map

can : TC−
j (OK /SW (k)[z]) → TP j (OK /SW (k)[z])
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induces an isomorphism TC−
j (OK /SW (k)[z]) ∼= N≥ jTP j (OK /SW (k)[z])

for all j ∈ Z. In particular,

can : TC−
j (OK /SW (k)[z]) → TP j (OK /SW (k)[z])

is an isomorphism for j ≤ 0.
(5) Under (3) and (4), the cyclotomic Frobenius

ϕ : TC−
0 (OK /SW (k)[z]) → TP0(OK /SW (k)[z])

is the map W (k)[[z]] → W (k)[[z]] which is the Frobenius on W (k) and
sends z to z p.

(6) For any uFp given in Theorem 2.15, there exist unique u ∈ TC−
2 (OK /

SW (k)[z]), v ∈ TC−
−2(OK /SW (k)[z]) and σ ∈ TP2(OK /SW (k)[z]) such

that u lifts uFp , ϕ(u) = σ , can(v) = σ−1, TP∗(OK /SW (k)[z]) =
TP0(OK /SW (k)[z])[σ±1] and

TC−∗ (OK /SW (k)[z]) = TC−
0 (OK /SW (k)[z])[u, v]/(uv − EK (z)).

As a consequence, under (3), the Nygaard filtration on TP0(OK /SW (k)[z])
is given by

N≥2 jTP0(OK /SW (k)[z]) = N≥2 j−1TP0(OK /SW (k)[z])
= (EK (z)) j , j ≥ 0. (2.18)

Proof By Remark 2.13, we see that all the statements except (6) follow imme-
diately from [4, Proposition 11.10]. In fact, the argument given in loc. cit. is
enough to show the following statement:

(6)’ For any ũ ∈ TC−
2 (OK /SW (k)[z]) lifting the u given in (1), there exist

ṽ ∈ TC−
−2(OK /SW (k)[z]) and σ̃ ∈ TP2(OK /SW (k)[z]) such that

can(ṽ) = σ̃−1, ϕ(ũ) = σ̃ ,

TP∗(OK /SW (k)[z]) = TP0(OK /SW (k)[z])[σ̃±1]

and

TC−∗ (OK /SW (k)[z]) = TP0(OK /SW (k)[z])[ũ, ṽ]/(ũṽ − λ(z)EK (z))

for some λ(z) ∈ W (k)[[z]]×.
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In the following, we give a proof of (6) based on (6)’. By Lemma 2.3, the
commutative diagram

SW (k)[z] z 	→0

z 	→�K

SW (k)

OK k

induces a map of E∞-algebras in cyclotomic spectra THH(OK /SW (k)[z]) →
THH(k). By (3) and (4), the induced map

TC−
0 (OK /SW (k)[z]) → TC−

0 (k)

is the W (k)-algebra morphism W (k)[[z]] z 	→0−−→ W (k), which is sur-
jective. Moreover, by (6)’, TC−

2 (OK /SW (k)[z]) is free of rank 1 over
TC−

0 (OK /SW (k)[z]). Hence

TC−
2 (OK /SW (k)[z]) → TC−

2 (k)

is surjective as well.
Now take a lift ũ ∈ TC−

2 (OK /SW (k)[z]) of the image of uFp , which is given
by Theorem 2.15, in TC−

2 (k). Using (6)’, we have ṽ, σ̃ such that

can(ṽ)= σ̃−1, ϕ(ũ)= σ̃ , TP∗(OK /SW (k)[z]) = TP0(OK /SW (k)[z])[σ̃±1]

and

TC−∗ (OK /SW (k)[z]) = TP0(OK /SW (k)[z])[ũ, ṽ]/(ũṽ − λ(z)EK (z))

for some λ(z) ∈ W (k)[[z]]×. Now by the constructions of EK (z) and ũ, and
applyingTheorem2.15,we deduce thatλ(z) has constant term 1. It follows that
there exists b(z) ∈ W (k)[[z]] with constant term 1 such that λ(z) = ϕ(b(z))

b(z) .

Then we set u = b(z)u′, σ = ϕ(b(z))σ ′, v = ϕ(b(z))−1v′.
For the uniqueness, suppose (u′, v′, σ ′) is another choice, it follows that

there exists λ(z) ∈ W (k)[[z]]× such that u′ = λ(z)u, v′ = λ(z)−1v, σ ′ =
λ(z)σ . Thus the conditions that u′ lifts uFp and ϕ(u′) = σ ′ imply that λ(0) = 1
and ϕ(λ) = λ, yielding λ = 1. The rest of (6) follows immediately. ��
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Convention 2.19 Henceforth we fix u, v, σ as in Theorem 2.17(6).

3 Structure of TP0(OK/SW(k)[z0, z1])
This section is devoted to determining the structure of TP0(OK /SW (k)[z0, z1]).
Here we regard OK as an SW (k)[z0, z1]-algebra via the map

SW (k)[z0, z1] z0,z1 	→�K−−−−−−→ OK .

Proposition 3.1 The topological Hochschild homology THH(OK /

SW (k)[z0, z1]) has a natural structure of E∞-algebra in cyclotomic spectra.

Proof Recall that in [17] the ∞-category of cyclotomic spectra is promoted
to a symmetric monoidal ∞-category. By the multiplicative property of THH
(2.2), we have

THH(OK /SW (k)[z0, z1])
� THH(OK /SW (k)[z0]) ⊗THH(OK /SW (k)) THH(OK /SW (k)[z1]).

The cyclotomic structures on THH(OK /SW (k)[zi ]), i = 0, 1, and the sym-
metric monoidal structure on the ∞-category of E∞-algebras in cyclotomic
spectra give rise to the E∞-cyclotomic structure on THH(OK /SW (k)[z0, z1]).

��
For ♥ ∈ {THH,TC,TC−,TP}, the left unit ηL and right unit ηR are the

maps

♥(OK /SW (k)[z]) → ♥(OK /SW (k)[z0, z1])

induced by z 	→ z0 and z 	→ z1 respectively. For ? ∈ {z, u, v, σ }, we denote
by ?0 and ?1 the images of ? under the left and right units respectively. In the
following, we regard THH∗(OK /SW (k)[z0, z1]) as anOK [u0]-module via ηL .

In the following, for a commutative ring R and an ideal I ⊂ R, denote by
DR(I ) the divided power envelope of I in R. We equip it with the Nygaard
filtrationN≥• whereN≥2 j DR(I ) = N≥2 j−1DR(I ) is the R-submodule gen-
erated by I [l] for all l ≥ j . For an R-module M , denote by �R(M) the
divided power envelope of SymR(M) with respect to the ideal generated by
M ⊂ SymR(M). Recall that if M is a free R-module with a basis x1, . . . , xn ,
then �R(M) is just the divided power algebra R〈x1, ..., xn〉.

To proceed, we need a variant of the classical Hochschild-Kostant-
Rosenberg theorem, whose proof is given in the appendix.

Theorem 3.2 (Theorem A.1) Let R be a commutative ring over Zp, and let
I be a locally complete intersection ideal of R. Let A = R/I . Suppose R is
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I -separated and A is p-torsion free. Then as filtered rings, the periodic cyclic
homology HP0(A/R) is canonically isomorphic to the completion of DR(I )
with respect to the Nygaard filtration. Moreover, the Tate spectral sequence
for HP0(A/R) collapses at the E2-term. Consequently, there is a canonical
isomorphism of graded rings

HH∗(A/R) ∼= �A(I/I 2).

Remark 3.3 One may obtain a similar result by combing the motivic filtration
forHP developed in [4, §5] (see also [1]) and the computation about the derived
de Rham cohomology for lci maps ([2, Theorem 3.27]).

Let I be the kernel of the W (k)-algebra map W (k)[z0, z1] z0,z1 	→�−−−−−→ OK ,
and let tz0−z1 denote the image of z0 − z1 in THH2(OK /SW (k)[z0, z1]) under
the isomorphism

I/I 2 ∼= HH2(OK /W (k)[z0, z1]) = THH2(OK /SW (k)[z0, z1]).
given by Theorem 3.2.

Lemma 3.4 The graded algebra associated to the filtration on THH∗(OK /

SW (k)[z0, z1]) defined by powers of u0 is isomorphic to OK [u0] ⊗OK

OK 〈tz0−z1〉.
Proof By Theorem 2.17(1), we have

THH(OK /SW (k)[z0, z1])/(u0)
� THH(OK /SW (k)[z0, z1]) ⊗THH(OK /SW (k)[z0]) THH(OK /OK )

� THH(OK /OK [z1]).
(3.5)

Since THH∗(OK /OK [z]) = HH∗(OK /OK [z]) = OK 〈t〉 for any generator
t ∈ HH2(OK /OK [z]), we deduce that the u0-Bockstein spectral sequence
collapses since everything is concentrated in even degrees. Hence the asso-
ciated graded algebra is isomorphic to OK [u0] ⊗OK OK 〈t〉. Note that under
the isomorphism (3.5), tz0−z1 maps to a generator of THH2(OK /OK [z]). This
yields the desired result. ��

The following result follows immediately.

Corollary 3.6 The graded ring THH∗(OK /SW (k)[z0, z1]) is a p-torsion free
integral domain.

Corollary 3.7 Both the Tate spectral sequence for TP∗(OK /SW (k)[z0, z1])
and the homotopy fixed point spectral sequence for TC−∗ (OK /SW (k)[z0, z1])
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collapse at the E2-term. Consequently, both TC−∗ (OK /SW (k)[z0, z1]) and
TP∗(OK /SW (k)[z0, z1]) are concentrated in even degrees, and the canonical
map

can : TC−
j (OK /SW (k)[z0, z1]) → TP j (OK /SW (k)[z0, z1])

induces an isomorphism TC−
j (OK /SW (k)[z0, z1]) ∼= N≥ jTP j (OK /

SW (k)[z0, z1]) for all j ∈ Z. In particular,

can : TC−
j (OK /SW (k)[z0, z1]) → TP j (OK /SW (k)[z0, z1])

is an isomorphism for j ≤ 0.

Proof By Lemma 3.4, THH∗(OK /SW (k)[z0, z1]) is concentrated in even
degrees. It follows that both the Tate spectral sequence and the homotopy fixed
point spectral sequence degenerate at the E2-term. The rest of the corollary
follows immediately. ��
Remark 3.8 In general, for n ≥ 0, wemay regardOK as an SW (k)[z0, . . . , zn]-
module by sending all zi to�K . Using the argument of Lemma 3.4 inductively,
one easily shows that THH(OK /SW (k)[z0, . . . , zn]) is concentrated in even
degrees. Consequently, Corollary 3.7 generalizes to this case.

Lemma 3.9 The graded algebra associated to the Nygaard filtration of
TP0(OK /SW (k)[z0, z1]) is isomorphic to THH∗(OK /SW (k)[z0, z1]).
Proof This follows from Corollary 3.7. ��
Remark 3.10 The isomorphism given by Lemma 3.9 is not canonical: it
depends on the choice of the generator σ . By Theorem 2.17 and Theorem
2.15, our choice of σ is fixed up to a unit in Zp (Convention 2.19).

The following two results follow immediately from the fact that theNygaard
filtration on TP0(OK /SW (k)[z0, z1]) is separated .
Corollary 3.11 For a ∈ TP0(OK /SW (k)[z0, z1]), it has Nygaard filtration j
if and only if pa has Nygaard filtration j .

Corollary 3.12 The ring TP0(OK /SW (k)[z0, z1]) is a p-torsion free integral
domain.

Henceforth we identify TC−
0 (OK /SW (k)[z0, z1]) with TP0(OK /

SW (k)[z0, z1]) via the canonical map, and regard the cyclotomic Frobenius
ϕ as a map on TP0(OK /SW (k)[z0, z1]). By Proposition 2.14, we first have

ϕ(z0) = z p0 , ϕ(z1) = z p1 . (3.13)
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Lemma 3.14 If a ∈ N≥2 jTP0(OK /SW (k)[z0, z1]), then ϕ(a) is divisible by
ϕ(EK (z0)) j .

Proof ByCorollary 3.7, theTate spectral sequence forTP∗(OK /SW (k)[z0, z1])
collapses at the E2-term. We may write a = σ

− j
0 a0 for some

a0 ∈ N≥2 jTP2 j (OK /SW (k)[z0, z1]) = TC−
2 j (OK /SW (k)[z0, z1]).

Hence by Theorem 2.17,

ϕ(a) = ϕ(σ−1
0 ) jϕ(a0) = ϕ(v0)

jϕ(u0)
jσ

− j
0 ϕ(a0) = ϕ(EK (z0))

jσ
− j
0 ϕ(a0),

yielding the desired result. ��
Remark 3.15 By Theorem 2.17, EK (z) has Nygaard filtration 2 in TP0(OK /

SW (k)[z]). Hence EK (zi ) has Nygaard filtration 2 in TP0(OK /SW (k)[z0, z1]).
By Lemma 3.14, ϕ(EK (zi )) is divisible by ϕ(EK (z1−i )) for i = 0, 1. Thus
ϕ(EK (z0))ϕ(EK (z1))−1 is a unit in TP0(OK /SW (k)[z0, z1]).
Definition 3.16 For a ring R equipped with a multiplicative decreasing fil-
tration N≥•, we call the topology on R defined by the filtration N≥• the
N -topology. We define the (p,N )-topology on R to be the topology in which
{(p j ) + N≥ j } j≥0 forms a basis of open neighborhoods of 0.

Note that in general neither theN nor the (p,N )-topology is adic topology.
Clearly R becomes a topological ring under either the N or the (p,N )-
topology.

Remark 3.17 By Theorem 2.17, it is straightforward to see that TP0(OK /

SW (k)[z]) is complete and separated under either theN or the (p,N )-topology.
Moreover, the cyclotomic Frobenius is continuous with respect to the (p,N )-
topology, but not the N -topology.

Lemma 3.18 Both the N and (p,N )-topology on TP0(OK /SW (k)[z0, z1])
are complete and separated.

Proof The assertion for the N -topology follows from the isomorphism

TP0(OK /SW (k)[z0, z1]) ∼= TC−
0 (OK /SW (k)[z0, z1])

given by Corollary 3.7 and the fact that TC−∗ (OK /SW (k)[z0, z1]) are all com-
plete with respect to the N -topology. For the (p,N )-topology, we first note
that by Lemma 3.4, THH∗(OK /SW (k)[z0, z1]) are all p-complete. By degen-
eration of the Tate spectral sequence, this implies that for each j ≥ 0,

TP0(OK /SW (k)[z0, z1])/N≥ jTP0(OK /SW (k)[z0, z1])
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is p-complete and separated. Hence the (p,N )-completeness (resp. separate-
ness) follows from the N -completeness (resp, separateness). ��
Lemma 3.19 The cyclotomic Frobenius on TP0(OK /SW (k)[z0, z1]) is contin-
uous with respect to the (p,N )-topology.

Proof By Lemma 3.14, we have ϕ((p2 j ) + N≥2 j ) ⊂ (p2 j ) + N≥2 j . The
desired result follows. ��

In the rest of this section, we give an explicit description of TP0(OK /

SW (k)[z0, z1]). To this end, we make use of the theory of δ-rings.

Definition 3.20 A δ-ring is a pair (R, δ) where R is a commutative ring and
δ : R → R is a map of sets with δ(0) = δ(1) = 0, satisfying the following
two identities

δ(xy) = xδ(y) + yδ(x) + pδ(x)δ(y),

δ(x + y) = δ(x) + δ(y) + x p + y p − (x + y)p

p
.

When R is p-torsion free, a δ-ring structure on R is equivalent to the datum
of a ring map ϕ : R → R lifting the Frobenius on R/p; the corresponding
δ-structure is given by

δ(x) = ϕ(x) − x p

p
.

By Theorem 2.17, it is clear that the cyclotomic Frobenius on TP0(OK /

SW (k)[z]) gives rise to a δ-ring structure. Moreover, the congruence

ϕ(EK (z)p
j
) ≡ EK (z)p

j+1
mod p j+1

implies that δ is continuous with respect to the (p,N )-topology. In the follow-
ing, we will show that the same properties hold for TP0(OK /SW (k)[z0, z1]) as
well.

Using Theorem 2.17, we deduce that

p0 : TP0(OK /SW (k)[z0, z1]) → THH0(OK /SW (k)[z0, z1]) = OK

sends zi to �K . It follows that z0 − z1 lies in

ker(p0) = N≥2TP0(OK /SW (k)[z0, z1]).
By Lemma 3.14, there exists h ∈ TP0(OK /SW (k)[z0, z1]) such that

hϕ(EK (z0)) = ϕ(z0 − z1) = z p0 − z p1 .
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For k ≥ 0, we inductively define δk(h), f (k) ∈ TP0(OK /SW (k)[z0, z1])[1/p]
by setting

δ0(h) = h, δk+1(h) = ϕ(δk(h)) − δk(h)p

p
(3.21)

and

f (0) = z0 − z1, f (k+1) = −( f (k))p + δk(h)EK (z0)p
k+1

p
. (3.22)

Proposition 3.23 For each k ≥ 0, we have δk(h) ∈ TP0(OK /SW (k)[z0, z1]),
f (k) ∈ N≥2pkTP0(OK /SW (k)[z0, z1]) and

δk(h)ϕ(EK (z0))
pk = ϕ( f (k)) (3.24)

Proof We will proceed by induction on k to show that δk(h) ∈ TP0(OK /

SW (k)[z0, z1]),

f (k) ∈ W (k)[z0, z1][h, . . . , δk−1(h)] ∩ N≥2pkTP0(OK /SW (k)[z0, z1])
(3.25)

and

δk(h)ϕ(EK (z0))
pk = ϕ( f (k)).

The initial case is obvious. Now suppose for some l ≥ 0, the claim holds for
k = l. Using (3.24) for k = l, we get

f (l+1) = −( f (l))p + δl(h)EK (z0)p
l+1

p

= (ϕ( f (l)) − ( f (l))p) + (δl(h)EK (z0)p
l+1 − δl(h)ϕ(EK (z0))p

l
)

p

= δ( f (l)) − δl(h)δ(EK (z0)
pl ). (3.26)

Since TP0(OK /SW (k)[z]) is a δ-ring, we have δ(EK (z0)p
l
) ∈ TP0(OK /

SW (k)[z0, z1]). By the inductive hypothesis,we conclude f (l+1) ∈W (k)[z0, z1]
[h, . . . , δl(h)]. Moreover, by the inductive hypothesis and Remark 3.15,
p f (l+1) has Nygaard filtration ≥ 2pl+1. Hence f (l+1) has Nygaard filtration
≥ 2pl+1 by Corollary 3.11.
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To show (3.24) for k = l + 1, applying ϕ to (3.22) for k = l and using the
inductive hypothesis, we get

ϕ( f (l+1)) = −ϕ( f (l))p + ϕ(δl(h))ϕ(EK (z0))p
l+1

p

= −δl(h)pϕ(EK (z0))p
l+1 + ϕ(δl(h))ϕ(EK (z0))p

l+1

p

= δl+1(h))ϕ(EK (z0))
pl+1

.

Finally, using (3.24) for k = l +1 and Lemma 3.14, we deduce that δl+1(h) ∈
TP0(OK /SW (k)[z0, z1]). This completes the proof. ��
Lemma 3.27 The sub-W (k)[z0, z1]-algebra R ⊂ TP0(OK /SW (k)[z0, z1])
generated by the family of elements { f (k)|k ≥ 0} is dense with respect to
the N -topology.

Proof It suffices to show that for every j ≥ 0, the projection

p2 j : R ∩ N≥2 jTP0(OK /SW (k)[z0, z1]) → THH2 j (OK /SW (k)[z0, z1]),
which is induced by (2.9), is surjective.

Firstly, by Theorem 2.17, we see that p2(EK (z)) = u, yielding

p2(EK (z0)
j ) = u j

0

by functoriality of the Tate spectral sequence. To conclude, by Lemma 3.4, it
suffices to show that p2 j (R) contains t [ j]z0−z1 for all j ≥ 0.

By the commutative diagram

N≥2TP0(OK /SW (k)[z0, z1]) THH2(OK /SW (k)[z0, z1])
∼=

N≥2HP0(OK /W (k)[z0, z1]) HH2(OK /W (k)[z0, z1])

one immediately checks that f (0) and tz0−z1 have the same image in
HH2(OK /W (k)[z0, z1]). Hence p2( f (0)) = (tz0−z1). For k ≥ 0, we have

−( f (k))p ≡ p f (k+1) mod EK (z0)
pk+1

by (3.22). By induction, we deduce that for all k ≥ 0, t [p
k ]

z0−z1 lies in the image

of R ∩N≥2pkTP0(OK /SW (k)[z0, z1]). Note that in the divided power algebra
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OK 〈t〉, for j = j0 + pj1 + · · · + jk pk with 0 ≤ ji ≤ p − 1, t [ j] is equal
to t j0(t [p]) j1 · · · (t [pk ]) jk up to a unit of Zp. It follows that the image of R ∩
N≥2 jTP0(OK /SW (k)[z0, z1]) contains t [ j]z0−z1 for all j ≥ 0. ��

Remark 3.28 In Corollary 4.12, wewill prove that p2pk ( f
(k)) is equal to t [p

k ]
z0−z1

up to a unit of Zp.

Proposition 3.29 The cyclotomic Frobenius on TP0(OK /SW (k)[z0, z1]) is a
Frobenius lift, making TP0(OK /SW (k)[z0, z1]) a δ-ring. Moreover, δ is con-
tinuous with respect to the (p,N )-topology on TP0(OK /SW (k)[z0, z1]).
Proof We equip TP0(OK /SW (k)[z0, z1]) with the (p,N )-topology. Put
φ(a) = ϕ(a) − a p for a ∈ TP0(OK /SW (k)[z0, z1]). By Lemma 3.19, φ is
continuous. On the other hand, by Corollary 3.11, it is straightforward to see
that the map

TP0(OK /SW (k)[z0, z1]) a 	→pa−−−→ TP0(OK /SW (k)[z0, z1])
induces an embedding. Using Lemma 3.18, we deduce that (p) ⊂ TP0(OK /

SW (k)[z0, z1]) is a closed ideal. It remains to show that Im(φ) ⊂ (p). Put
R′ = W (k)[{δk(h)}k≥0]. Then R′ is stable under δ. That is, φ(R′) ⊂ (p).
Note that R′ is dense by (3.25) and Lemma 3.27. We therefore conclude that
φ−1((p)), which is a closed subset of TP0(OK /SW (k)[z0, z1]), is forced to be
TP0(OK /SW (k)[z0, z1]). ��

To describe the structure of TP0(OK /SW (k)[z0, z1]), we compare it with
the periodic cyclic homology HP0(OK /W (k)[z0, z1]). Let I be the kernel of
W (k)[z] z 	→�K−−−−→ OK (resp.W (k)[z0, z1] z0,z1 	→�K−−−−−−→ OK ), and let tEK (z) (resp.
tEK (zi )) denote the imageof EK (z) (resp. EK (zi )) inHH2(OK /SW (k)[z])under
the isomorphism

I/I 2 ∼= HH2(OK /W (k)[z]) (resp. I/I 2 ∼= HH2(OK /W (k)[z0, z1]))
given by Theorem 3.2.

The following result follows from Theorem 3.2 immediately.

Corollary 3.30 The following statements are true.

(1) As filtered rings, HP0(OK /W (k)[z]) and HP0(OK /W (k)[z0, z1]) are
canonically isomorphic to DW (k)[z]((EK (z)))∧N and DW (k)[z0,z1]((EK (z0),
z0 − z1))∧N respectively.

(2) As graded rings, HH∗(OK /W (k)[z]) = OK 〈tEK (z)〉 and
HH∗(OK /W (k)[z0, z1]) = OK 〈tEK (z0), tz0−z1〉.
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Using Definition 3.16, we consider the N and (p,N )-topologies for
HP0(OK /W (k)[z]) and HP0(OK /W (k)[z0, z1]).
Lemma 3.31 BothHP0(OK /W (k)[z]) andHP0(OK /W (k)[z0, z1]) are com-
plete and separated with respect to the N and (p,N )-topologies.

Proof For the N -topology, it is an immediate consequence of Corollary
3.30(1). For the (p,N )-topology, as in the proof of Lemma 3.18, it suf-
fices to show that the associated graded algebras, which are isomorphic
to HH∗(OK /W (k)[z]) and HH∗(OK /W (k)[z0, z1]) respectively, are all p-
complete and separated. This in turn follows immediately from Corollary
3.30(2). ��
Lemma 3.32 Both the natural maps

TP0(OK /SW (k)[z]) → HP0(OK /W (k)[z])

and

TP0(OK /SW (k)[z0, z1]) → HP0(OK /W (k)[z0, z1])

are injective and strict with respect to the Nygaard filtrations. Moreover, both
maps are embeddings with respect to the (p,N )-topology.

Proof Since both maps are compatible with the Nygaard filtration, for the first
assertion, we are reduced to show that the induced maps on associated graded
algebras

THH∗(OK /SW (k)[z]) → HH∗(OK /W (k)[z]) (3.33)

and

THH∗(OK /SW (k)[z0, z1]) → HH∗(OK /W (k)[z0, z1]) (3.34)

are injective. For the second assertion, it is sufficient to show that both (3.33)
and (3.34) are embeddings under the p-adic topology.

Firstly, note that under the identification HH2(OK /W (k)[z]) =
THH2(OK /SW (k)[z]), tEK (z) maps to u up to a unit ofOK . ByTheorem2.17(1)
and Corollary 3.30(2), we deduce that (3.33) induces an embedding under the
p-adic topology.
By Lemma 3.4, we deduce that THH2 j (OK /SW (k)[z0, z1]) is a successive

extension ofOKu2l0 t
[2 j−2l]
z0−z1 for l = 0, 1, . . . , j . On the other hand, byCorollary
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3.30(2), we see that HH2 j (W (k)/SW (k)[z0, z1]) is a successive extension of

OK t
[2l]
EK (z0)

t [2 j−2l]
z0−z1 for j = 0, 1, . . . , k. Since for each 0 ≤ l ≤ j ,

OKu
2l
0 t

[2 j−2l]
z0−z1 → OK t

[2l]
EK (z0)

t [2 j−2l]
z0−z1

is an embedding under the p-adic topology, we conclude that (3.34) is an
embedding under the p-adic topology as well. ��
Corollary 3.35 The periodic topological cyclic homology group TP0(OK /

SW (k)[z0, z1]) is isomorphic to the closureof the subringof DW (k)[z0,z1]((EK (z0),
z0 − z1))∧N generated by W (k)[z0, z1] and {ι(δk(h))}k≥0 under either theN -
topology or the (p,N )-topology.

Proof This follows from the combination of Lemmas 3.18, 3.27, 3.31, 3.32.
��

4 Hopf algebroid

We recall that a Hopf algebroid object in a symmetric monoidal category (with
colimits) is a cogroupoid object in commutative algebras, i.e. (following [12,
Definition 6.1.2.7]) a cosimplicial object A : � → CAlg such that

for any partition [n] = S ∪ S′ with S ∩ S′ = {s},
the canonical map AS ⊗A{s} AS′ → A[n] is an equivalence.

(4.1)

In the following, by abuse of notation, we will refer to a Hopf algebroid A
by the pair (A[0], A[1]). The goal of this section is to show that the pairs
(TP0(OK /SW (k)[z]),TP0(OK /SW (k)[z0, z1])) and (THH∗(OK /SW (k)[z]),
THH∗(OK /SW (k)[z0, z1])) form Hopf algebroids in appropriate categories.

We first recall some basics on (complete) filtered modules and graded
modules. By a filtered ring we mean a commutative ring R equipped with
a decreasing filtration F≥• on additive subgroups indexed by Z such that
F≥i R · F≥ j R ⊂ F≥i+ j R. For our purpose, we assume that R is a complete
filtered ring, i.e. R is complete and separated with respect to the topology
defined by the filtration. Moreover, we assume that R is a non-negative filtered
ring. That is, F≥i R = R for all i ≤ 0. Consequently, all F≥i R are ideals of
R.
By afiltered R-modulewemean an R-moduleM equippedwith a decreasing

filtrationF≥• on additive subgroups indexed by Z such that F≥i R ·F≥ j M ⊂
F≥i+ j M . By our assumption on R, we see that all F≥i M are R-submodules
of M . We say M is non-negative ifF≥i M = M for all i ≤ 0. For non-negative
filtered R-modules M1, M2, their tensor product in the category of filtered R-
modules is defined to beM1⊗R M2 equippedwith the tensor product filtration.

123



878 R. Liu, G. Wang

We say a filtered R-module M complete if it is complete and separated with
respect to the topology defined by the filtration. By taking completion with
respect to the filtration, we obtain a functor M 	→ M̂ from the category of
filtered R-modules to the category of complete filtered R-modules. For non-
negative complete filtered R-modules M1, M2, their completed tensor product
M1⊗̂RM2 is defined to be the completion of the filtered R-module M1⊗RM2.
By a graded ring we mean a commutative ring S together with a decompo-

sition S = ⊕i∈ZSi of additive subgroups such that Si · S j ⊂ Si+ j . For our
purpose, in the following we assume that S is non-negative. That is, Si = 0
for all i < 0.

By a graded S-module we mean an S-module N together with a decompo-
sition N = ⊕i∈ZNi of additive subgroups such that Si · N j ⊂ Ni+ j . We say
N is non-negative if Ni = 0 for all i < 0. For non-negative graded S-modules
N1, N2, wemay define their tensor product N1⊗S N2 in the category of graded
S-modules by setting

(N1 ⊗S N2)
i = ⊕ j+k=i N

j
1 ⊗S0 N

k
2 .

By taking associated graded,weobtain a functor from the category of filtered
R-modules to the category of graded S-modules, where

S = Gr(R) := ⊕i∈ZF≥i R/F≥i+1R

is a non-negative graded ring, and

N = Gr(M) := ⊕i∈ZF≥i M/F≥i+1M

is a graded S-module. If M is non-negative, then so is Gr(M). Moreover, it is
clear that Gr(M) = Gr(M̂).

Definition 4.2 Let M be a complete filtered R-module with a filtrationN≥•.
We say M is free and locally finite over R if there exists a family of elements
{mi }i∈I ⊂ M such that the following two conditions hold.

1. For any j ∈ Z, there are only finitely many i ∈ I such that mi /∈ N≥ j M .

2. The induced morphism ⊕i∈I Rxi
xi 	→mi−−−−→ M of filtered R-modules

becomes an isomorphism after taking completion.

Definition 4.3 We say a graded S-module N is free and locally finite if there
exists a family of homogeneous elements {ni }i∈I ⊂ N such that the following
conditions hold.

1. For any j ∈ Z, there are only finitely many i ∈ I such that for some k ≤ j ,
the image of mi in Nk is non-zero.
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2. The induced morphism ⊕i∈I Sxi
xi 	→ni−−−−→ N of graded S-modules is an

isomorphism.

For a complete filtered R-module M , one easily checks that M is free and
locally finite over R if and only if the associated graded module Gr(M) is
free and locally finite over S = Gr(R). Moreover, if M1 and M2 are non-
negative, free and locally finite over R. Then M1⊗̂RM2 is free and locally
finite over R as well. Moreover, Gr(M1⊗̂RM2) is canonically isomorphic to
Gr(M1) ⊗S Gr(M2) as graded S-modules.

Proposition 4.4 The following statements are true.

(1) Both d0 and d1 (which are just ηR and ηL defined in §3 respec-
tively) exhibit TP0(OK /SW (k)[z0, z1]) as a free and locally finite filtered
TP0(OK /SW (k)[z])-module.

(2) Both d0 and d1 (which are just ηR and ηL defined in §3 respectively)
exhibit THH∗(OK /SW (k)[z0, z1]) as a free and locally finite graded
THH∗(OK /SW (k)[z])-module.

Proof Since the associated graded algebra of (TP0(OK /SW (k)[z])),
TP0(OK /SW (k)[z0, z1])) is canonically isomorphic to (THH∗(OK /SW (k)[z]),
THH∗(OK /SW (k)[z0, z1])), we have (2) implies (1). For (2), We only need to
treat the case ofηL . ByLemma3.4,we see thatTHH∗(OK /SW (k)[z0, z1])/(u0)
is a free OK -module with a basis of degrees 0, 2, 4, . . . respectively.
Using Corollary 3.6, we may further deduce that such a basis lifts to a
basis of THH∗(OK /SW (k)[z0, z1]) over THH∗(OK /SW (k)[z]) with the same
degrees. Hence THH∗(OK /SW (k)[z0, z1]) is free and locally finite over
THH∗(OK /SW (k)[z]) via ηL . ��
Corollary 4.5 We consider TP0(OK /SW (k)[z0, z1]) (resp. THH∗(OK /

SW (k)[z0, z1])) as a filtered TP0(OK /SW (k)[z])-module (resp. graded
THH∗(OK /SW (k)[z])-module) via either ηL or ηR. Then it is completely flat.

For 0 ≤ i ≤ n, consider the natural maps

THH∗(OK /SW (k)[z0, . . . , zi ]) ⊗THH∗(OK /S[zi ])
THH∗(OK /SW (k)[zi , . . . , zn])

→ THH∗(OK /SW (k)[z0, . . . , zn]) (4.6)

and

TP0(OK /S[z0, . . . , zi ]) ⊗TP0(OK /S[zi ]) TP j (OK /SW (k)[zi , . . . , zn])
→ TP j (OK /SW (k)[z0, . . . , zn]).
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By Remark 3.8, the Tate spectral sequence for TP∗(OK /S[z0, . . . , zn])
degenerates at the E2-term. It follows that the Nygaard filtration on
TP j (OK /S[z0, . . . , zn]) is complete by the same argument as in the proof
of Lemma 3.18. Hence the second map induces

TP0(OK /S[z0, . . . , zi ])⊗̂TP0(OK /S[zi ])TP j (OK /SW (k)[zi , . . . , zn])
→ TP j (OK /SW (k)[z0, . . . , zn]). (4.7)

Lemma 4.8 Both (4.6) and (4.7) are isomorphisms.

Proof The first assertion follows from the multiplicative property of THH.
This in turn implies that (4.7) becomes an isomorphism after taking associated
graded algebras on both sides. Thus (4.7) itself is an isomorphism. ��
Corollary 4.9 The cosimplicial objects THH∗(OK /SW (k)[z]⊗[−]) and
TP0(OK /SW (k)[z]⊗[−]) are cogroupoid objects (i.e. Hopf algebroids) in the
categories of graded rings and complete filtered rings respectively.

Proof We need to check the condition (4.1). By Lemma 4.8, we deduce
the case S = [0, . . . , i] and S′ = [i, . . . , n]. We conclude the general
case using the action of symmetric groups on THH∗(OK /SW (k)[z]⊗[−]) and
TP0(OK /SW (k)[z]⊗[−]). ��
Convention 4.10 For an Hopf algebroid, we denote its coproduct, counit and
conjugation by �, ε and c respectively.

In the following, we give an explicit description of the Hopf algebroid

(THH∗(OK /SW (k)[z]),THH∗(OK /SW (k)[z0, z1])).
Recall that the cyclotomic Frobenius on TP0(OK /SW (k)[z0, z1]) induces a
δ-ring structure (Proposition 3.29) .

Lemma 4.11 For any i ≥ 0, δi (h) ∈ N≥2TP0(OK /SW (k)[z0, z1]).
Proof Firstly, it is clear that ε(ϕ(z0−z1)) = 0 and ε(ϕ(EK (z0))) = ϕ(EK (z)).
It follows that ε(h) = 0. Hence for all i ≥ 0,

ε(δi (h)) = δi (ε(h)) = 0.

On the other hand, note that ε induces an isomorphism

Gr0(TP0(OK /SW (k)[z0, z1])) ∼= Gr0(TP0(OK /SW (k)[z])).
This implies that ker(ε) ⊂ N≥2TP0(OK /SW (k)[z0, z1]). The lemma follows.

��
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Corollary 4.12 As graded rings, we have

THH∗(OK /SW (k)[z0, z1]) = OK [u0] ⊗OK OK 〈tz0−z1〉. (4.13)

Proof By Lemma 4.11 and (3.22), we get that −( f (k))p and p f (k+1) have the
same image in THH2pk+1(OK /SW (k)[z0, z1]). Using the argument of Lemma
3.27, we conclude that the images of { f (k)}k≥0 in THH∗(OK /SW (k)[z0, z1])
generates t [ j]z0−z1 for all j ≥ 0 over Zp. This allows us to define the OK [u0]-
linear map

OK [u0] ⊗OK OK 〈t〉 → THH∗(OK /SW (k)[z0, z1]), t [ j] 	→ t [ j]z0−z1 .

By Lemma 3.4, this map induces isomorphisms on associated graded modules
under the u0-filtrations. Hence it is an isomorphism. ��
Remark 4.14 Since we already know that THH∗(OK /SW (k)[z0, z1]) is p-
torsion free (Corollary 3.12), the existence of the divided powers in (4.13)
is a merely a ring-theoretical property and not additional structure that needs
to be defined.

Proposition 4.15 Under the isomorphism (4.13), we have

u1 = u0 − E ′
K (�K )tz0−z1, (4.16)

and

�(t [i]z0−z1) =
∑

0≤ j≤i

t [ j]z0−z1 ⊗ t [i− j]
z0−z1, ε(tz0−z1) = 0. (4.17)

Proof Write

EK (z1) = EK (z0) − E ′
K (z0)(z0 − z1) + (z0 − z1)

2F(z0, z1)

for some F ∈ K0[x, y]. Since z0 − z1 ∈ N≥2TP0(OK /SW (k)[z0, z1]), by
Theorem 2.17, we deduce that

u1 = p2(EK (z1)) = p2(EK (z0) − E ′
K (z0)(z0 − z1))

= u0 − E ′
K (�K )tz0−z1 .

This yields (4.16). We conclude (4.17) by the binomial expansion

(z0 − z2)
i =

∑

0≤ j≤i

i !
j !(i − j)!(z0 − z1)

j (z1 − z2)
i− j .

��
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5 The descent spectral sequence

We consider the SW (k)[z]-Adams resolution for SW (k):

SW (k) → SW (k)[z]⊗[−], (5.1)

where the tensor product SW (k)[z]⊗[n] is taken relative to SW (k). It induces the
augmented cosimplicial E∞-algebra in cyclotomic spectra

THH(OK /SW (k)) → THH(OK /SW (k)[z]⊗[−]), (5.2)

which in turn induces augmented cosimplicial E∞-algebras in spectra

TC−(OK /SW (k)) → TC−(OK /SW (k)[z]⊗[−]) (5.3)

and

TP(OK /SW (k)) → TP(OK /SW (k)[z]⊗[−]). (5.4)

By the multiplicative property of THH, THH(OK /SW (k)[z]⊗[n]) is equiva-
lent to THH(OK /SW (k)[z])⊗[n], where the tensor product is taken relative to
THH(OK /SW (k)). Hence (5.2) is an Adams resolution for THH(OK /SW (k))

in the category of THH(OK /SW (k)[z])-modules.

Proposition 5.5 The augmented cosimplicial E∞-algebra in cyclotomic spec-
tra (5.2) induces

THH(OK /SW (k)) � lim�THH(OK /SW (k)[z]⊗[−]). (5.6)

Proof By [14, Proposition 2.14], the fiber of

THH(OK /SW (k)) → lim�≤nTHH(OK /SW (k)[z]⊗[−]) (5.7)

is homotopy equivalent to (n + 1)-fold self-smash product of the fiber of

THH(OK /SW (k)) → THH(OK /SW (k)[z]). (5.8)

It follows that the fiber of (5.7) is n-connected as the fiber of (5.8) is 0-
connected. The proposition follows. ��
Corollary 5.9 The augmented cosimplicial spectra (5.3), (5.4) induce

TC−(OK /SW (k)) � lim�TC
−(OK /SW (k)[z]⊗[−]) (5.10)
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and

TP(OK /SW (k)) � lim�TP(OK /SW (k)[z]⊗[−]). (5.11)

Proof The claim for TC− follows from the natural equivalence

(lim�THH(OK /SW (k)[z]⊗[−]))hT � lim�THH(OK /SW (k)[z]⊗[−])hT.

For the case of TP, first note the natural equivalence

(lim�≤nTHH(OK /SW (k)[z]⊗[−]))hT � lim�≤nTHH(OK /SW (k)[z]⊗[−])hT.

Since the fiber of (5.7) is n-connected by the proof of Proposition 5.5, the fiber
of

THH(OK /SW (k))hT → (lim�≤nTHH(OK /SW (k)[z]⊗[−]))hT

is n-connected as well. Hence the fiber of

THH(OK /SW (k))hT → lim�≤nTHH(OK /SW (k)[z]⊗[−])hT

is n-connected, concluding the natural equivalence

THH(OK /SW (k))hT � lim�THH(OK /SW (k)[z]⊗[−])hT.

This yields the claim for TP. ��
Using Proposition 5.5 and Corollary 5.9, the coskeleton filtrations of

THH(OK /SW (k)[z]⊗[−]), TP(OK /SW (k)[z]⊗[−]) andTC−(OK /SW (k)[z]⊗[−])
give rise to multiplicative second quadrant homology type spectral sequences
converging to THH∗(OK /SW (k)), TP∗(OK /SW (k)) and TC−∗ (OK /SW (k))

respectively.

• The descent spectral sequence for THH(OK /SW (k)):

E1
i, j (THH(OK )) = THH j (OK /SW (k)[z]⊗[−i])) ⇒ THHi+ j (OK /SW (k)).

By Lemma 4.8 and Corollary 4.5, the E1-term may be identified with the
cobar complex for THH∗(OK /SW (k)[z])with respect to theHopf algebroid

(THH∗(OK /SW (k)[z0, z1]),THH∗(OK /SW (k)[z])).
It follows that

E2
i, j (THH(OK )) ∼= Ext−i, j

THH∗(OK /SW (k)[z0,z1])(THH∗(OK /SW (k)[z])).
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• The descent spectral sequence for TP(OK /SW (k)):

E1
i, j (TP(OK )) = TP j (OK /SW (k)[z]⊗[−i]) ⇒ TPi+ j (OK /SW (k)).

By Lemma 4.8 and Corollary 4.5, the j-th row of the E1-term may be
identifiedwith the cobar complex forTP j (OK /SW (k)[z])with respect to the
Hopf algebroid (TP0(OK /SW (k)[z0, z1]),TP0(OK /SW (k)[z])). It follows
that

E2
i, j (TP(OK )) ∼= Ext−i

TP0(OK /SW (k)[z0,z1])(TP j (OK /SW (k)[z])).

• The descent spectral sequence for TC−(OK /SW (k)):

E1
i, j (TC

−(OK )) = TC−
j (OK /SW (k)[z]⊗[−i]) ⇒ TC−

i+ j (OK /SW (k)).

The Ext-groups appearing in the E2-terms are considered in the abelian cate-
gories of comodules over the corresponding Hopf algebroids. Here we adopt
the convention that for graded objects, Exti, j means the degree j part of the
graded abelian group Exti . In terms of geometric language, these abelian cat-
egories are the abelian categories of quasicoherent sheaves on the respective
stacks defined by the Hopf algebroids, and the multiplicative structure on the
E2-terms are induced from the symmetric monoidal structure in the category
of quasicoherent sheaves.

Remark 5.12 Indeed, the E2-term of the descent spectral sequence for
TC−(OK /SW (k)) may also be identified with certain Ext-groups in the cate-
gory of complete filtered comodules over filtered Hopf algebroids. The details
will be given in [10].

Using (5.10) and (5.11), wemay also construct a spectral sequence converg-
ing toTC∗(OK /SW (k)). Firstly, themaps can, ϕ induce themaps of cosimplical
E∞-algebras in spectra

can, ϕ : TC−(OK /SW (k)[z]⊗[−]) → TP(OK /SW (k)[z]⊗[−]).

Define TC(OK /SW (k))(n) to be the fiber of

can − ϕ : lim�≤nTC−(OK /SW (k)[z]⊗[−]) → lim�≤n−1TP(OK /SW (k)[z]⊗[−]).
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By construction, we get

TC(OK /SW (k))(n)

TC(OK /SW (k))(n+1)
� lim�≤nTC−(OK /SW (k)[z]⊗[−])

lim�≤n+1TC−(OK /SW (k)[z]⊗[−])

⊕�−1 lim�≤n−1TP(OK /SW (k)[z]⊗[−])
lim�≤nTP(OK /SW (k)[z]⊗[−])

.

The tower {TC(OK )(n)}n≥0 gives rise to the descent spectral sequence for
TC(OK /SW (k)):

E1
i, j (TC(OK )) ⇒ TCi+ j (OK /SW (k)).

Note that E1(TC(OK ))may be identified with the total complex of the double
complex

E1(TC−(OK ))
can−ϕ−−−→ E1(TP(OK )).

Consequently, there is a multiplicative spectral sequence

Ẽ2
i,k, j (TC(OK )) ⇒ E2

i−k, j (TC(OK )), k ∈ {0, 1},

associated with this double complex, so

Ẽ2
i,0, j (TC(OK )) = ker(can − ϕ : E2

i, j (TC
−(OK )) → E2

i, j (TP(OK ))),

and

Ẽ2
i,1, j (TC(OK )) = coker(can − ϕ : E2

i, j (TC
−(OK )) → E2

i, j (TP(OK ))).

In the rest of this section, we will determine E2
i, j (THH(OK )) explicitly. To

this end, first note that it follows from Corollary 4.12 and (4.17) that the map
of left-THH∗(OK /SW (k)[z])-modules

D : THH∗(OK /SW (k)[z0, z1]) → THH∗(OK /SW (k)[z0, z1]),

which sends t [i]z0−z1 to t
[i−1]
z0−z1 , is indeed a map of left THH(OK /SW (k)[z0, z1])-

modules. It follows that the complex

0 → THH∗(OK /SW (k)[z]) ηL−→ THH∗(OK /SW (k)[z0, z1])
a 	→D(a)dz−−−−−−→ THH∗(OK /SW (k)[z0, z1])dz → 0, (5.13)
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where dz has degree 2, is a relative injective resolution for THH∗(OK /

SW (k)[z]) as left THH∗(OK /SW (k)[z0, z1])-modules.

Proposition 5.14 The extensionExtTHH∗(OK /SW (k)[z0,z1])(THH∗(OK /SW (k)[z])
is computed by the complex

THH∗(OK /SW (k)[z]) (D0◦ηR)dz−−−−−−→ THH∗(OK /SW (k)[z])dz, (5.15)

where

D0 : THH∗(OK /SW (k)[z0, z1]) → THH∗(OK /SW (k)[z])

is the map of left THH∗(OK /SW (k)[z])-modules given by

D0(tz0−z1) = 1, D0(t
[i]
z0−z1) = 0 for i �= 1.

Proof Using (5.13), we first get that Exti, jTHH∗(OK /SW (k)[z0,z1])(THH∗(OK /

SW (k)[z]) is computed by the complex

HomTHH∗(OK /SW (k)[z0,z1])(THH∗(OK /SW (k)[z]),THH∗(OK /SW (k)[z0, z1]))
f 	→(D◦ f )dz−−−−−−−→ HomTHH∗(OK /SW (k)[z0,z1])(THH∗(OK /SW (k)[z]),THH∗(OK /SW (k)[z0, z1]))dz.

(5.16)

Recall that for a (commutative) Hopf algebroid (A, �), a left�-module M and
an A-module N , there is a canonical isomorphism

HomA(M, N ) ∼= Hom�(M, � ⊗A N ), f 	→ f̃ = (id ⊗ f ) ◦ �. (5.17)

It is straightforward to check that D0 corresponds to D under this isomorphism.
It follows that (5.16) may be identified with the complex

HomTHH∗(OK /SW (k)[z])(THH∗(OK /SW (k)[z]),THH∗(OK /SW (k)[z]))
f 	→(D◦ f̃ )dz−−−−−−−→ HomTHH∗(OK /SW (k)[z])(THH∗(OK /SW (k)[z]),THH∗(OK /SW (k)[z]))dz.

(5.18)

Note that under the isomorphism (5.17), the identity map on THH∗(OK /

SW (k)[z]) corresponds to ηR . We thus conclude the proposition by the iso-
morphism

HomTHH∗(OK /SW (k)[z])(THH∗(OK /SW (k)[z]),
THH∗(OK /SW (k)[z])) ∼= THH∗(OK /SW (k)[z]),

which sends f to f (1). ��
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The following results follow immediately.

Corollary 5.19 There are canonical isomorphisms

Ext0,0THH∗(OK /SW (k)[z0,z1])(THH∗(OK /SW (k)[z])) ∼= OK

and

Ext1,2nTHH∗(OK /SW (k)[z0,z1])(THH∗(OK /SW (k)[z])) ∼= OK /(nE ′
K (�K )), n ≥ 1.

The other Ext-groups vanish. As a consequence, the descent spectral sequence
for THH(OK /SW (k)) collapses at the E2-term.

Remark 5.20 Corollary 5.19 recovers the main result of [9]. A different proof
of this statement was given by Krause–Nikolaus [8].

In the remainder of this section, we introduce the algebraic Tate spectral
sequence and the algebraic homotopy fixed points spectral sequence. First note
that the d1-differentials of the E1-terms of these descent spectral sequences

d1 : E1
i, j → E1

i−1, j

leave j unchanged, giving these E1-terms a structure of chain complexes.
Moreover, the Nygaard filtration defines filtrations on the E1-terms of the
descent spectral sequences for TC− and TP. The algebraic homotopy fixed
points spectral sequence

E1
i, j,k(TC

−(OK )) = Hi (Gr2k(TC−
j (OK /SW (k)[z]⊗[−])))

⇒ E2−i, j (TC
−(OK )), (5.21)

and the algebraic Tate spectral sequence

E1
i, j,k(TP(OK )) = Hi (Gr2k(TP j (OK /SW (k)[z]⊗[−])))

⇒ E2−i, j (TP(OK )) (5.22)

are the spectral sequence associatedwith the resultingfiltered chain complexes.
They are multiplicative spectral sequences with differentials

dr : Er
i, j,k → Er

i+1, j,k+r .

Since dr leaves j unchanged, so these “algebraic” spectral sequences may be
considered one j at a time.
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By Remark 3.8, we see that the associated graded of the Nygaard filtrations
of E1(TP(OK )) may be identified with part of E1(THH(OK ))[σ±1]. That is,

E1
i, j,k(TP(OK )) =

{
0, j odd,

E1−i,2k(THH(OK ))σ
j
2 , j even.

Moreover, under this identification, the dr -differential (for j even) is given by

dr : E1−i,2k(THH(OK ))σ
j
2

cσ
j
2 →dr (c)σ

j
2−−−−−−−−−→ E1−i−1,2k(THH(OK ))σ

j
2 .

Since the algebraic homotopy fixed points spectral sequence is a truncation
of the algebraic Tate spectral sequence, using Corollary 5.19, the following
result follows immediately.

Proposition 5.23 Both E2(TC−(OK )) and E2(TP(OK )) are concentrated
in E2

0,∗ and E2−1,∗. In particular, both the descent spectral sequences for

TC−(OK /SW (k)) and TP(OK /SW (k)) collapse at the E2-term.

6 Refined algebraic Tate differentials

In this section, we consider mod p version of descent spectral sequences.
To determine the E2-terms of mod p descent sequences for TP(OK ) and
TC−(OK ), we introduce refined version of algebraic Tate and algebraic homo-
topy fixed point spectral sequences, and completely determine the refined
algebraic Tate differentials.

By Lemma 4.8 and induction on n, we get that THH∗(OK /SW (k)[z]⊗[n]) is
p-torsion free for all n ≥ 0. Hence TP∗(OK /SW (k)[z]⊗[n]) and
TC−∗ (OK /SW (k)[z]⊗[n]) are all p-torsion free as well by the fact that both
the Tate and the homotopy fixed point spectral sequence degenerate. It follows
that for n ≥ 1,

THH∗(OK /SW (k)[z]⊗[n]; Fp) = THH∗(OK /SW (k)[z]⊗[n]) ⊗Z Fp,

TP∗(OK /SW (k)[z]⊗[n]; Fp) = TP∗(OK /SW (k)[z]⊗[n]) ⊗Z Fp

and

TC−∗ (OK /SW (k)[z]⊗[n]; Fp) = TC−∗ (OK /SW (k)[z]⊗[n]) ⊗Z Fp.

This in turn implies that the Tate and homotopy fixed point spectral sequences
for TP∗(OK /SW (k)[z]⊗[n]; Fp) and TC−∗ (OK /SW (k)[z]⊗[n]; Fp) collapse at
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the E2-term respectively. Moreover, analogues of Proposition 5.5 and Corol-
lary 5.9 hold as well. Thus the coskeleton filtrations of the cosimplicial spectra

THH(OK /SW (k)[z]⊗[−]; Fp), TP(OK /SW (k)[z]⊗[−]; Fp),

TC−(OK /SW (k)[z]⊗[−]; Fp)

give rise to mod p descent spectral sequences converging to THH∗(OK ; Fp),
TP∗(OK ; Fp) and TC−∗ (OK ; Fp) as follows.

• The descent spectral sequence for THH(OK ; Fp):

E1
i, j (THH(OK ); Fp) = THH j (OK /SW (k)[z]⊗[−i]; Fp)

⇒ THHi+ j (OK ; Fp).

The E1-term may be identified with the cobar complex for THH∗(OK /

SW (k)[z]; Fp) with respect to the Hopf algebroid

(THH∗(OK /SW (k)[z0, z1]; Fp),THH∗(OK /SW (k)[z]; Fp)).

Hence

E2
i, j (THH(OK ); Fp) ∼= Ext−i, j

THH∗(OK /SW (k)[z0,z1];Fp)
(THH∗(OK /SW (k)[z]; Fp)).

• The descent spectral sequence for TP(OK ; Fp):

E1
i, j (TP(OK ); Fp) = TP j (OK /SW (k)[z]⊗(−i+1); Fp) ⇒ TPi+ j (OK ; Fp).

The j-th row of the E1-term may be identified with the cobar complex for
TP j (OK /SW (k)[z]; Fp) with respect to the Hopf algebroid

(TP0(OK /SW (k)[z0, z1]; Fp),TP0(OK /SW (k)[z]; Fp)).

It follows that

E2
i, j (TP(OK ); Fp) ∼= Ext−i

TP0(OK /SW (k)[z0,z1];Fp)
(TP j (OK /SW (k)[z]; Fp)).

• The descent spectral sequence for TC−(OK ; Fp):

E1
i, j (TC

−(OK ); Fp) = TC−
j (OK /SW (k)[z]⊗[−i]; Fp) ⇒ TC−

i+ j (OK ; Fp).

• The descent spectral sequence for TC(OK ; Fp):

Ei, j
1 (TC(OK ); Fp) ⇒ TCi+ j (OK ; Fp).
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Similarly, there is a multiplicative spectral sequence

Ẽ2
i,k, j (TC(OK ); Fp) ⇒ E2

i−k, j (TC(OK ); Fp), k ∈ {0, 1},

where

Ẽ2
i,0, j (TC(OK ); Fp) = ker(can − ϕ : E2

i, j (TC
−(OK ); Fp)

→ E2
i, j (TP(OK ); Fp),

and

Ẽ2
i,1, j (TC(OK ); Fp) = coker(can − ϕ : E2

i, j (TC
−(OK ))

→ E2
i, j (TP(OK ); Fp).

Remark 6.1 Recall that the mod p Moore spectrum is multiplicative if and
only if p �= 2. It follows that the spectra THH(OK ; Fp), TC−(OK ; Fp),
TP(OK ; Fp) and TC(OK ; Fp) are multiplicative if and only if p �= 2. On the
other hand, since the descent spectral sequences for OK are multiplicative,
and the reduction maps of the E1-terms are surjective, we deduce that the E1

and E2-terms of the mod p descent spectral sequences are multiplicative for
all p.

In the following, we will first determine the E2-term of the descent spectral
sequence for THH(OK ; Fp). To simplify the notations, from now on for

? ∈ {z, zi , σ, σi , u, ui , v, vi , tz0−z1},

we denote its image in the mod p reduction by the same symbol. Moreover,
we abusively use z, zi to denote their images in THH∗(OK /SW (k)[z]; Fp) and
THH∗(OK /SW (k)[z0, z1]; Fp) respectively under p0 . Under these notations,
we have

TP0(OK /SW (k)[z]; Fp) = W (k)[[z]] ⊗Z Fp = k[[z]]

and

THH∗(OK /SW (k)[z]; Fp) = OK [u] ⊗Z Fp = (OK /(p))[u] = k[z]/(zeK )[u],

where z corresponds to �K under the last identification. Moreover, we have

THH∗(OK /SW (k)[z0, z1]; Fp) = (OK 〈tz0−z1〉 ⊗OK OK [u0]) ⊗Z Fp

= (k[z]/(zeK1 )[u0]〈tz0−z1〉.
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Recall that we denote the leading coefficient of EK (z) by μ which is typically
not 1. Also recall that THH(OK ) is an OK -module, so THH∗(OK ; Fp) is
naturally a k-vector space.

Proposition 6.2 The following statements are true.

(1) The k-vector space E2
0,∗(THH(OK ); Fp) has a basis given by

{
zlun, 1 ≤ l ≤ eK − 1 or p | eK n, if eK > 1

un, p | n, if eK = 1.

(2) The k-vector space E2−1,∗(THH(OK ); Fp) has a basis given by the family
of cycles

⎧
⎪⎨

⎪⎩

zl1(u
n−1
0 tz0−z1 − (n − 1)E ′

K (z0)u
n−2
0 t [2]z0−z1),

0 ≤ l ≤ eK − 2 or p | eK n, if eK > 1
∑l

j=1
(n−1)!
(n− j)!(−μ̄) j un− j

0 t [ j]z0−z1, p | n, if eK = 1.

(3) For i �= 0, −1, E2
i,∗(THH(OK ); Fp) = 0.

Proof By an argument similar to the proof of Proposition 5.14, we get that
E2(THH(OK ); Fp) is computed by the complex

0→THH∗(OK /SW (k)[z]; Fp)
(D0◦ηR)dz−−−−−−→ THH∗(OK /SW (k)[z]; Fp)dz→0.

(6.3)

This implies (3) immediately. Using (4.16) and E ′
K (z) ≡ eKμzeK−1 mod p,

(6.3) may be identified with

0 → (k[z]/(zeK ))[u] f (u)	→−eK μ̄zeK −1 f ′(u)dz−−−−−−−−−−−−−−−−→ (k[z]/(zeK ))[u]dz → 0.

(6.4)

Then a short computation shows that H0 is the k-vector space with a basis
given by

{
zlun, 1 ≤ l ≤ eK − 1 or p | eK n if eK > 1,

un, p | n if eK = 1.

and H1 is the k-vector space with a basis given by the family of cocycles
{
zlun−1dz, 0 ≤ l ≤ eK − 2 or p | eK n if eK > 1,

un−1dz, p | n if eK = 1.
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To compare (6.3) with the cobar complex, for n ≥ 1, set

u(n) =
n∑

j=1

(n − 1)!
(n − j)!(−E ′

K (z)) j−1un− j
0 t [ j]z0−z1

= un0 − un1
nE ′

K (z)
∈ THH∗(OK /SW (k)[z0, z1]). (6.5)

It is straightforward to see that u(n) is a cocycle in the cobar complex for
THH∗(OK /SW (k)[z]). Now consider the diagram

THH∗(OK /SW (k)[z]; Fp)
(D0◦ηR)dz

id

THH∗(OK /SW (k)[z]; Fp)dz

β

THH∗(OK /SW (k)[z]; Fp)
ηL−ηR THH∗(OK /SW (k)[z0, z1]; Fp),

(6.6)

where β is the k[z]-linear map sending undz to u(n+1).
By (6.5), it is straightforward to check that (6.14) is commutative.

Thus it gives rise to a morphism from (6.3) to the cobar complex of
THH∗(OK /SW (k)[z]; Fp). Note that the right vertical map of (6.14) is injec-
tive. Since both (6.3) and the cobar complex compute the E2-term of the
descent spectral sequence,we deduce that (6.14) induces a quasi-isomorphism.
Finally, note that if eK > 1, then E ′

K (z)2 = 0 in k[z]/(zeK ). Now the propo-
sition follows. ��
Remark 6.7 The extra complication of E2(THH(OK ; Fp)) originates from
the “accidental” filtration clash of the differentials

zmeK 	→ meK μ̄zmeK−1
1 dz

in degree 2m. To remedy this, we will refine the Nygaard filtration in what
follows. Note that we have reduced the determination of TP(OK ) to the purely
algebraic problem of determining the cohomology of the stack X (defined
in (1.2)). This is what makes it possible to refine the Nygaard filtration, a
possibility that, as far as we know, is not available in homotopy theory.

Convention 6.8 From now on, we rescale the index of Nygaard filtrations by
2. That is, N≥ j takes place of N≥2 j .

Definition 6.9 Let M be a filtered TP0(OK /SW (k)[z]; Fp)-module equipped
with the filtration N≥• indexed by Z. Define a refinement of N≥•, which is
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indexed by 1
eK

Z, on M by setting

N≥ j+ m
eK M = zmN≥ j M + N≥ j+1M

for j ∈ Z and 0 ≤ m < eK , and call it the refined filtration of N≥•; it
is refined in the sense that restriction along Z ⊂ 1

eK
Z gives back the orig-

inal filtration. Note that under the refined filtrations, M is still a filtered
TP0(OK /SW (k)[z]; Fp)-module.

Lemma 6.10 Let M be a filtered TP0(OK /SW (k)[z]; Fp)-module equipped
with the filtration N≥• indexed by Z. If the filtration N≥• is multiplicative,
then so is the refined filtration.

Proof This follows from the definition of refined filtrations and the fact that,
if 0 ≤ m1,m2 < eK and m1 + m2 ≥ eK , then

zm1zm2 ≡ zm1+m2−eK EK (z) mod p.

��
In the following, regard TP∗(OK /SW (k)[z]⊗[−]; Fp) and TC−∗ (OK /

SW (k)[z]⊗[−]; Fp) as TP0(OK /SW (k)[z]; Fp)-modules via the left unit.We call
the refined filtration of the Nygaard filtration the refined Nygaard filtration.
Note that we may refine the Nygaard filtration of TP0(OK /SW (k)[z0, z1]; Fp)

via both ηL and ηR . However, since

zm0 − zm1 ∈ N≥1TP0(OK /SW (k)[z0, z1]; Fp)

for m ≥ 1, we get that both ways end up with the same filtration. Combining
Corollary 4.12 and Proposition 4.15, we reach the following result.

Lemma 6.11 The associated graded of the refined Nygaard filtration on the
Hopf algebroid

(
TP0(OK /SW (k)[z]; Fp),TP0(OK /SW (k)[z0, z1]; Fp)

)

is

(k[z], k[z0] ⊗k k〈tz0−z1〉),
in which the following holds.

(1) If eK = 1, then z1 = z0 − tz0−z1 . If eK > 1, then z1 = z0; in this case the
Hopf algebroid becomes the Hopf algebra

(k[z], k[z] ⊗k k〈tz0−z1〉).
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(2) The coproduct � and counit ε satisfy

�(t [i]z0−z1) =
∑

0≤ j≤i

t [ j]z0−z1 ⊗ t [i− j]
z0−z1, ε(t [i]z0−z1) = 0

for all i ≥ 0.

The refinedNygaard filtration on E1-terms of the descent spectral sequences
for TP(OK ; Fp) and TC−(OK ; Fp) give rise to the refined algebraic Tate
spectral sequence

Ẽ
1
eK
i, j,k(TP(OK ); Fp) = Hi (Grk(TP j (OK /SW (k)[z]⊗[−])))

⇒ E2−i, j (TP(OK ); Fp)

and the refined algebraic homotopy fixed points spectral sequence

Ẽ
1
eK
i, j,k(TC

−(OK ); Fp) = Hi (Grk(TC−
j (OK /SW (k)[z]⊗[−])))

⇒ E2−i, j (TC
−(OK ); Fp).

Note that k takes values in 1
eK

Z. They are multiplicative spectral sequences in

view of Lemma 6.10, with Ẽr -terms for all r ∈ 1
eK

Z≥1, and with differentials

dr : Ẽr
i, j,k → Ẽr

i+1, j,k+r .

Moreover, by Remark 3.8, Lemma 6.11 and functoriality of the Tate spectral

sequence, we see that Ẽ
1
eK (TP(OK ); Fp) may be identified with the cobar

complex for k[z][σ±1] with respect to the Hopf algebroid (k[z], k[z0] ⊗k

k〈tz0−z1〉), and Ẽ
1
eK (TC−(OK ); Fp) is a truncation of Ẽ

1
eK (TP(OK ); Fp).

Lemma 6.12 The following statements are true.

(1) If eK > 1, then

Ẽ
1− 1

eK
0, j,∗ (TP(OK ); Fp) = k[z]σ j , Ẽ

1− 1
eK

1, j,∗ (TP(OK ); Fp) = k[z0]tz0−z1σ
j .

Moreover, d
1− 1

eK (zσ j ) = tz0−z1σ
j .

(2) If eK = 1, then

Ẽ1
0, j,∗(TP(OK ); Fp) = k[z p]σ j , Ẽ1

1, j,∗(TP(OK ); Fp) =
⊕

n∈pZ>0

krn
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where rn = ∑n
j=1

(n−1)!
(n− j)!(−1) j zn− j

0 t [ j]z0−z1σ
j .

(3) For i �= 0, 1, Ẽ
1
eK
i,∗,∗(TP(OK ); Fp) = 0.

Proof By functoriality of the Tate spectral sequence, we have

σ0σ
−1
1 − 1 ∈ N≥1TP0(OK /SW (k)[z0, z1]).

It follows that σ0 = σ1 in the associated graded of the cobar complex for
TP∗(OK /SW (k)[z]). Therefore we reduce to the case j = 0.

By an argument similar to the proof of Proposition 5.14, we first see that
Extk[z0]⊗kk〈t〉(k[z], k[z]) is computed by the complex

0 → k[z] f (z)	→− f ′(z)dz−−−−−−−−−→ k[z]dz → 0. (6.13)

Then we proceed as in the poof of Proposition 6.2. We consider the commu-
tative diagram

k[z] f (z)	→− f ′(z)dz

id

k[z]dz
β

k[z] ηL−ηR k[z0] ⊗k k〈t〉,

(6.14)

where β is the k[z]-linear (under ηL ) map sending zndz to
∑n

j=0
n!

(n− j)!
(−1) j zn− j

0 t [ j+1]
z0−z1 . By an argument similar to the proof of Proposition 6.2, we

deduce that it gives rise to an quasi-isomorphism between (6.13) and the cobar
complex. This yields the desired result on cohomology of the cobar complex.
Finally, when eK > 1, the differential of the cobar complex sends

zn ∈ N≥ n
eK \ N≥ n+1

eK

to

zn1 − zn0 =
∑

1≤ j≤n

(
n

j

)

(z1 − z0)
j zn− j

1 ,

which belongs to N≥ n
eK

+1− 1
eK TP0(OK /SW (k)[z0, z1]; Fp). It follows that

Ẽ
1
eK∗,0,∗(TP(OK ); Fp) = Ẽ

2
eK∗,0,∗(TP(OK ); Fp) = · · · = Ẽ

1− 1
eK∗,0,∗ (TP(OK ); Fp)

and d
1− 1

eK (z) = tz0−z1 . ��
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Corollary 6.15 Both E2(TC−(OK ); Fp) and E2(TP(OK ); Fp) are concen-
trated in E2

0,∗ and E2−1,∗. In particular, both the descent spectral sequences

for TC−(OK ; Fp) and TP(OK ; Fp) collapse at the E2-term.

Convention 6.16 Motivated by the results of Lemma 6.12, in what follows,
denote tz0−z1 by dz. When eK = 1, denote

n∑

j=1

(n − 1)!
(n − j)!(−1) j zn− j

0 t [ j]z0−z1,

which is formally equal to
zn0−zn1

n (say, in the fraction field of THH(OK /

SW (k)[z0, z1])), by zn−1
0 dz.

Under Convention 6.16, we may reformulate Lemma 6.12(1), (2) as follows.

Corollary 6.17 For eK > 1, we have

Ẽ
1− 1

eK∗, j,∗ (TP(OK ); Fp) = k[z]σ j ⊕ k[z0]σ j dz,

and d
1− 1

eK (zσ j ) = σ j dz. For eK = 1, we have

Ẽ1∗, j,∗(TP(OK ); Fp) = k[z p]σ j ⊕ z p−1
0 k[z p0 ]σ j dz.

In the rest of this section,wewill determine higher differentials of the refined
algebraic Tate spectral sequence. We will prove in Proposition 6.43 that for
n ≥ 0, j ∈ Z, l = vp(n − peK j

p−1 ), μ̃ = − μp

δ(EK (z0))
and n′ ≡ p−l(n − peK j

p−1 )

mod p, we have

d
pl+1−1
p−1 − 1

eK (znσ j ) = n′ ¯̃μ pl−1
p−1 z

peK
pl−1
p−1 +n−1

0 σ j dz, (6.18)

which accounts for all the nontrivial refined algebraic Tate differentials.
Recall that the algebraic Tate spectral sequences can be considered one j at

a time because the differentials respect j . We will begin with the case j = 0
before treating the case of a general j . In our treatment all that is used is the
definition of the differentials in the spectral seuqence associated with a filtered
chain complex and some tricks in linear algebra.

In the following, when the context is clear, for j ∈ Z≥0, we will sim-
ply denote N≥ jTP0(OK /SW (k)[z0, z1]) by N≥ j . For r ∈ 1

eK
Z≥0, we denote

N≥rTP0(OK /SW (k)[z0, z1]; Fp) byN≥r , and denote by (p,N≥r ) the preim-
age of N≥rTP0(OK /SW (k)[z0, z1]; Fp) under the natural projection

TP0(OK /SW (k)[z0, z1]) → TP0(OK /SW (k)[z0, z1]; Fp).
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For a ∈ TP0(OK /SW (k)[z0, z1]) (resp. a ∈ TP0(OK /SW (k)[z0, z1]; Fp)), we
denote by ν(a) the smallest j ∈ Z≥0 (resp. r ∈ 1

eK
Z≥0) such that a ∈ N≥ j

(resp. a ∈ N≥r ). Since the associated graded algebras are integral in both
cases, we have ν(ab) = ν(a) + ν(b).

Recall f (0) = z0 − z1, put ξ0 = −δ( f (0))/ f (0).

Lemma 6.19 We have ξ0 ∈ TP0(OK /SW (k)[z0, z1]). Moreover,

ξ0 ≡ z p−1
0 mod (p,N≥ p−2

eK
+1

).

In particular, ξ0 ∈ (p,N≥ p−1
eK ).

Proof For the first claim, we have

δ( f (0)) = ϕ( f (0)) − ( f (0))p

p

= z p0 − (z0 − f (0))p − ( f (0))p

p

= − f (0)(z p−1
0 − p − 1

2
z p−2
0 f (0) + · · · +

(

(−1)p + 1)
( f (0))p−1

p

)

.

Note that (−1)p+1
p ∈ Z. Hence

ξ0 = z p−1
0 − p − 1

2
z p−2
0 f (0) + · · · + ((−1)p + 1)

( f (0))p−1

p

belongs to TP0(OK /SW (k)[z0, z1]). For 1 ≤ i ≤ p−1, p−1−i
eK

+ i ≥ p−2
eK

+1.

Thus for such i , z p−1−i
0 ( f (0))i ∈ (p,N≥ p−2

eK
+1

). This implies that ξ0 − z p0 ∈
(p,N≥ p−2

eK
+1

), yielding the second claim. ��
Recall that we put μ̃ = − μp

δ(EK (z0))
.

Lemma 6.20 We have

ϕ( f (0)) ≡ μ̃z peK+p−1
0 f (0) mod (p,N≥2p).

Proof Recall that hϕ(EK (z0)) = ϕ( f (0)). Note that

ϕ(EK (z0)) ≡ μpz peK0 mod p.
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Thus

ϕ( f (0)) ≡ μpz peK0 h mod p. (6.21)

On the other hand, using (3.26) for l = 0, we have

f (1) = δ( f (0)) − hδ(EK (z0)). (6.22)

Since f (1) ∈ N≥p, we get

h ≡ δ( f (0))/δ(EK (z0)) mod N≥p.

Combining this with Lemma 6.19 and the fact that peK + p−2
eK

+ 2 ≥ 2p, we
deduce that

μ̃z peK+p−1
0 f (0) ≡ μ̃ξ0z

peK
0 f (0) = μpz peK0 δ( f (0))/δ(EK (z0)) ≡ μpz peK0 h

≡ ϕ( f (0)) mod (p,N≥2p),

concluding the lemma. ��
Lemma 6.23 Suppose p > 2 and eK > 1. Then for l ≥ 1,

ϕl( f (0)) ≡ μ̃
pl−1
p−1 z

(peK+p−1) pl−1
p−1

0 f (0) mod (p,N≥pl (1+ 1
p−1+ 1

eK
)
) (6.24)

Proof We will establish the lemma by induction on l. The case l = 1 follows
from Lemma 6.20 and the inequality 1

eK
+ p

p−1 ≤ 1
2 + 3

2 = 2.
Now suppose the claim holds for some l ≥ 1. Raising both sides of (6.24)

to the p-th power, we get

ϕl+1( f (0)) ≡ μ̃
pl+1−p
p−1 z

(peK+p−1) pl+1−p
p−1

0 ϕ( f (0)) mod (p,N≥pl+1(1+ 1
p−1+ 1

eK
)
). (6.25)

Using Lemma 6.20 again, we have

μ̃
pl+1−p
p−1 z

(peK+p−1) pl+1−p
p−1

0 ϕ( f (0)) ≡ μ̃
pl+1−1
p−1 z

(peK+p−1) pl+1−1
p−1

0 f (0)

mod

(

p,N≥ pl+2−p2

p−1 + pl+1−p
eK

+2p
)

. (6.26)

On the other hand, it is straightforward to see that

pl+2 − p2

p − 1
+ pl+1 − p

eK
+ 2p ≥ pl+1(1 + 1

p − 1
+ 1

eK
). (6.27)
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Putting (6.25), (6.26) and (6.27) together, we complete the inductive step. ��
Lemma 6.28 For p = 2 and l ≥ 1, we have

( f (1))2
l ∈ (2,N≥2l+1(1+ 1

4 )).

Proof Recall that by construction, we have

2 f (2) = −( f (1))2 + δ2(h)EK (z0)
4.

By Lemma 4.11, δ2(h) ∈ N≥1. It follows that

( f (1))2 ∈ (2,N≥5).

We thus conclude by raising to the 2l−1-th power. ��
Lemma 6.29 Suppose p = 2 and eK > 3. Then for l ≥ 1,

ϕl( f (0)) ≡ μ̃2l−1z(2
l−1)(2eK+1)

0 f (0) mod (2,N≥2l (2+ 1
eK

)− 2
eK ).

Proof We proceed by induction on l. The case l = 1 follows from Lemma
6.20. Now suppose the claim holds for some l ≥ 1. Using (6.21), (6.22), we
first have

ϕ( f (0)) ≡ μ2z2eK0 h ≡ μ̃z2eK0 (ξ0 f
(0) + f (1)) mod 2

Raising to the power of 2l , we get

ϕl+1( f (0)) ≡ μ̃2l z2
l+1eK

0 (ξ2
l

0 ϕl( f (0)) + ( f (1))2
l
) mod 2.

By the inductive hypothesis, we have

ϕl( f (0)) ≡ μ̃2l−1z(2
l−1)(2eK+1)

0 f (0) mod (2,N≥2l (2+ 1
eK

)− 2
eK ).

It follows that

ϕl( f (0)) ∈ (2,N≥(2l−1)(2+ 1
eK

)+1
).

On the other hand, using Lemma 6.19, we get

ξ2
l

0 ≡ z2
l

0 mod (2,N≥2l ).
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Putting these together, we deduce that

μ̃2l z2
l+1eK

0 ξ2
l

0 ϕl( f (0)) ≡ μ̃2l+1−1z2
l+1eK+2l

0 ϕl( f (0))

mod (2,N≥(2l−1)(2+ 1
eK

)+2l+1+2l+1
).

and

μ̃2l+1−1z2
l+1eK+2l

0 ϕl( f (0)) ≡ μ̃2l+1−1z(2
l+1−1)(2eK+1)

0 f (0)

mod (2,N≥2l+1(2+ 1
eK

)− 2
eK ).

Clearly (2l −1)(2+ 1
eK

)+2l+1 +2l +1 > 2l+1(2+ 1
eK

)− 2
eK

. Hence we get

μ̃2l z2
l+1eK

0 ξ2
l

0 ϕl( f (0)) ≡ μ̃2l+1−1z(2
l+1−1)(2eK+1)

0 f (0)

mod (2,N≥2l+1(2+ 1
eK

)− 2
eK ). (6.30)

Finally, by previous lemma, we have

μ̃2l z2
l+1eK

0 ( f (1))2
l ∈ (2,N≥2l+1+2l+1(1+ 1

4 )) ⊂ (2,N≥2l+1(2+ 1
eK

)− 2
eK ).

(6.31)

Combining (6.30) and (6.31), we conclude the inductive step. ��
Proposition 6.32 Suppose p > 2, eK > 1 or p = 2, eK > 3. Then for
n ≥ 0, l = vp(n), n′ = n

pl
, the refined algebraic Tate differential satisfies

d
pl+1−1
p−1 − 1

eK (zn) = n′ ¯̃μ pl−1
p−1 z

peK
pl−1
p−1 +n−1

0 dz, (6.33)

which is non-zero in Ẽ
pl+1−1
p−1

1,0, p
l+1−1
p−1 + n−1

eK

. Moreover, the exponents of z0 in the

targets of (6.33) are all different. Consequently, these are all the nontrivial
refined algebraic Tate differentials.

Proof First note that

ν(z
peK

pl−1
p−1 +n−1

0 (z0 − z1)) = pl+1 − 1

p − 1
+ n − 1

eK
.
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On the other hand, since z p
l

0 − z p
l

1 ≡ ϕl( f (0)) mod p in TP0(OK /

SW (k)[z0, z1]), by Lemmas 6.23 and 6.29, we get

ν(z p
l

0 − z p
l

1 − ¯̃μ pl−1
p−1 z

peK
pl−1
p−1 +pl−1

0 (z0 − z1)) >
pl+1 − 1

p − 1
+ pl − 1

eK
.

Hence

ν(z p
l

0 − z p
l

1 ) = ν( ¯̃μ pl−1
p−1 z

peK
pl−1
p−1 +pl−1

0 (z0 − z1)) = pl+1 − 1

p − 1
+ pl − 1

eK
.

Write

zn0 − zn1 = zn
′ pl

0 − zn
′ pl

1 = −
∑

0≤i≤n′−1

(−1)n
′−i

(
n′

i

)

zip
l

0 (z p
l

0 − z p
l

1 )n−i .

It is straightforward to see

pl+1 − 1

p − 1
+ n − 1

eK
= ν(z(n

′−1)pl

0 (z p
l

0 − z p
l

1 )) < ν(zip
l

0 (z p
l

0 − z p
l

1 )n−i )

for i ≤ n− 2. Note that pl+1−1
p−1 + n−1

eK
= (

pl+1−1
p−1 − 1

eK
)+ n

eK
. We thus deduce

that

d
pl+1−1
p−1 − 1

eK (zn) = n′z(n
′−1)pl

0 (z p
l

0 − z p
l

1 ) = n′ ¯̃μ pl−1
p−1 z

peK
pl−1
p−1 +n−1

0 dz.

It remains to show that the exponents of z0 in the targets of (6.33) are all
different; note that this will automatically imply that the right hand side of

(6.33) is non-zero. Put ñ = peK
pl−1
p−1 + n. Since vp(n) = l, we get l =

vp(ñ + peK
p−1). Consequently, n is uniquely determined by ñ. This yields the

desired result. ��
Nowwe treat the remaining cases. The strategy is to compare them with the

known cases.

Proposition 6.34 The result of Proposition 6.32 holds for all p and eK .

Proof Choose an integer m > 3 coprime to p, and let K ′ = K (�
1
m
K ); the

ramification index of K ′ is eK ′ = meK , and the corresponding Eisenstein
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polynomial for �
1
m
K is EK ′(z) = EK (zm). Now the commutative diagram

SW (k)[z] z 	→zm

z 	→�K

SW (k)[z]
z 	→�

1
m
K

OK OK ′

induces a map of cosimplicial cyclotomic spectra

Tm : TP(OK /SW (k)[z]⊗[−]; Fp) → TP(OK ′/SW (k)[z]⊗[−]; Fp).

Define the “less refined” Nygaard filtration on TP∗(OK ′/SW (k)[z]⊗[−]; Fp) to
be thefiltrationN≥rTP∗(OK ′/SW (k)[z]⊗[−]; Fp) for r ∈ 1

eK
Z≥0,which in turn

induces the “less refined” algebraic Tate spectral sequence Ẽ ′(TP(OK ′); Fp).
Clearly Tm is compatible with filtrations. Thus it induces a morphism of spec-
tral sequences

Tm : Ẽ(TP(OK ); Fp) → Ẽ ′(TP(OK ′); Fp).

By an argument similar to the proof of Proposition 6.2 and Lemma 6.12,

we first obtain that if eK > 1, then Ẽ ′
1
eK∗,0,∗(TP(OK ′); Fp) is isomorphic to

k[z]⊕k[z0]dz, where dz denotes tz0−z1 . If eK = 1, then Ẽ ′
1
eK
0,0,∗(TP(OK ′); Fp)

is the k-vector spacewith a basis {zn|m � n or p | n}, and Ẽ ′
1
eK
1,0,∗(TP(OK ′); Fp)

is the k-vector space with a basis given by the family of cycles {zn0dz|m �

n + 1 or p | n + 1}, where zn0dz denotes

zs0((z
m
0 )k−1tz0−z1 − (k − 1)mzm−1

0 (zm0 )k−2t [2]z0−z1),

0 ≤ s ≤ m − 1 and s + (k − 1)m = n,

which is formally equal to
zn+m
0 −zn+m

1

kmzm−1
0

; for j �= 0, 1, Ẽ ′
1
eK
j,0,∗(TP(OK ′); Fp) = 0.

Under our convention of notations, it is straightforward to verify

Tm(zn) = zmn, Tm(zn0dz) = mzmn+m−1
0 dz; (6.35)

note that right hand side of the second equality is just formally equal to zmn
0 dzm .

Combining with Lemma 6.12 and Corollary 6.17, we see that

Tm : Ẽ
1
eK∗,0,∗(TP(OK ); Fp) → Ẽ ′

1
eK∗,0,∗(TP(OK ′); Fp)
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is injective. To proceed, we need the following result.

Lemma 6.36 For n ≥ 0, l = vp(n), where l ≥ 1 if eK = 1, n′ = n
pl
, the

natural projection

φ : Ẽ ′
1
eK

1,0, p
l+1−1
p−1 + n−1

eK

(TP(OK ′); Fp) →
Ẽ ′

1
eK

1,0, p
l+1−1
p−1 + n−1

eK

(TP(OK ′); Fp)

⊕
i �=pmeK

pl−1
p−1 +mn−1

kzi0dz

∼= kz
pmeK

pl−1
p−1 +mn−1

0 dz

factors through Ẽ ′
pl+1−1
p−1

1,0, p
l+1−1
p−1 + n−1

eK

. Moreover,

d
pl+1−1
p−1 − 1

eK (zmn) ∈ Ẽ ′
pl+1−1
p−1

1,0, p
l+1−1
p−1 + n−1

eK

maps to n′ ¯̃μ pl−1
p−1 z

pmeK
pl−1
p−1 +mn−1

0 dz via this projection. In particular,

d
pl+1−1
p−1 − 1

eK (zmn) is non-zero.

Proof By first half of Proposition 6.32, if zt ∈ Ẽ ′
1
eK
0,0, t

eK

(TP(OK ′); Fp) has

non-trivial contribution to Ẽ ′
k−t
eK

1,0, k−1
eK

(TP(OK ′); Fp), then

pl
′+1 − 1

p − 1
+ t − 1

meK
= k − 1

eK
+ s

meK
for some 0 ≤ s ≤ m − 1, (6.37)

where l ′ = vp(t). By the second half of Proposition 6.32, t is uniquely deter-
mined by (k, s). In particular, if

k = eK
pl+1 − 1

p − 1
+ n, s = m − 1,

then t has to be equal to mn. Moreover, when (6.37) holds, we see from
the argument of Proposition 6.2 and Lemma 6.12 that the image of zt in

Ẽ ′
1
eK

1,0, k−1
eK

(TP(OK ′); Fp) is contained in the subspace generated by the cycles
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zm(k−1)+s′
0 dz, 0 ≤ s′ ≤ s. Putting these together, we deduce that

ker(Ẽ ′
1
eK

1,0, p
l+1−1
p−1 + n−1

eK

(TP(OK ′); Fp) → Ẽ ′
pl+1−1
p−1

1,0, p
l+1−1
p−1 + n−1

eK

(TP(OK ′); Fp)

is contained in the subspace generated by z
pmeK

pl−1
p−1 +mn−s

0 dz, 2 ≤ s ≤ m,
yelding the first half of the lemma. Using (6.33), we conclude the second half
of the lemma. ��

Now we prove the proposition. We first show that zn ∈ Ẽ
1
eK
0,0, n

eK

(TP(OK ); Fp)

survives to the Ẽ
pl+1−1
p−1 -term. We do this by induction. Suppose zn survives to

some Ẽr -term with 1
eK

≤ r <
pl+1−1
p−1 . That is,

d(zn) ∈ N≥r+ n−1
eK TP0(OK /SW (k)[z0, z1]; Fp).

Since Tm(zn) = zmn , which survives to the Ẽ ′
pl+1−1
p−1 -term by Lemma 6.36, we

have

Tm(d(zn)) = d(Tm(zn)) ∈ N≥r+ n
eK TP0(OK ′/SW (k)[z0, z1]; Fp).

Then the injectivity of Ẽ
1
eK

1,0,r+ n−1
eK

(TP(OK ); Fp) → Ẽ ′
1
eK

1,0,r+ n−1
eK

(TP(OK ′); Fp)

implies that d(zn) = d(α) for some α ∈ N r+ n−1
eK TP0(OK ; Fp), which is

N≥r+ n−1
eK TP0(OK ; Fp)/N≥r+ n

eK TP0(OK ; Fp).

Now

d(Tm(α)) = Tm(d(α)) = Tm(d(zn))

= 0 ∈ N r+ n−1
eK TP0(OK ′/SW (k)[z0, z1]; Fp),

we get Tm(α) ∈ Ẽ ′
1
eK

0,0,r+ n−1
eK

(TP(OK ′); Fp). By the explicit description of

Ẽ
1
eK
0,0,∗(TP(OK ); Fp) and Ẽ ′

1
eK
0,0,∗(TP(OK ′); Fp), we conclude α ∈
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Ẽ ′
1
eK

0,0,r+ n−1
eK

(TP(OK ); Fp). Thus

d(zn) = d(α) = 0 ∈ N r+ n−1
eK TP0(OK /SW (k)[z0, z1]; Fp),

yielding

d(zn) ∈ N≥r+ n
eK TP0(OK /SW (k)[z0, z1]; Fp).

Once we know zn survives to the Ẽ
pl+1−1
p−1 -term, since Ẽ

1
eK

1,0, p
l+1−1
p−1 + n−1

eK

(TP(OK ; Fp)) is generated by z
peK

pl−1
p−1 +n−1

0 dz, we may suppose

d
pl+1−1
p−1 − 1

eK (zn) = λz
peK

pl−1
p−1 +n−1

1 dz.

Applying the second half of Lemma 6.36, we get

λ = n′ ¯̃μ pl−1
p−1 .

The rest is the same as in the proof of Proposition 6.32. ��
Remark 6.38 In fact, employing the result of Proposition 6.34 in the argument
of Lemma6.36will enable us to prove the following fact: for r ∈ 1

eK
Z≥1∪{∞},

if Ẽ ′r
1,0, k−1

eK
+1(TP(OK ); Fp) is non-zero, that is z

k−1
0 dz is not in the image of

d
r− 1

eK , then the natural projection

Ẽ ′
1
eK

1,0, k−1
eK

+1
(TP(OK ′); Fp) →

Ẽ ′
1
eK

1,0, k−1
eK

+1
(TP(OK ′); Fp)

⊕i �=mk−1kzi0dz
∼= kzmk−1

0 dz

factors through Ẽ ′r
1,0, k−1

eK
+1(TP(OK ′); Fp). In particular, Tm(zk−1

1 dz) is non-

zero in Ẽ ′r
1,0, k−1

eK
+1(TP(OK ′); Fp).

Next we investigate the differentials on non-zero stems. To this end, put

ε = σ0σ
−1
1 , ε0 = ϕ(EK (z0))

ϕ(EK (z1))
;
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by Remark 3.15, the latter is well-defined. By the functoriality of Tate spectral
sequence, we have

ε ∈ 1 + N≥1.

Using Theorem 2.17(6), we get

ε

ϕ(ε)
= ϕ(σ−1

0 )σ0

ϕ(σ−1
1 )σ1

= ϕ(v0)ϕ(u0)

ϕ(v1)ϕ(u1)
= ε0. (6.39)

Let ε̄, ε̄0 be the images of ε, ε0 in TP0(OK /SW (k)[z0, z1]; Fp) respectively. It
follows that

ε̄0 = ε̄1−p ≡ 1 mod N≥1.

Then it is straightforward to see that for i ≥ 0,

ε̄
pi

0 ≡ 1 mod N≥pi , (6.40)

and

∞∏

i=0

ε̄
pi

0 = ε̄, (6.41)

where the LHS takes limit under the N -topology.

Lemma 6.42 For r ∈ 1
eK

N, j ∈ Z, k,m ∈ N such that

pk > j, min{pm, pk} > r,

we have

z(p
k− j)eK

pm+1−p
p−1 σ j ∈ Ẽ

1− 1
eK (TP(OK ); Fp)

survives to the Ẽr -term.

Proof We consider

α =
(

m∏

i=1

ϕi (EK (z)/μ)

)pk− j

σ j ∈ TP2 j (OK /SW (k)[z]).

123



Topological cyclic homology of local fields 907

Clearly α is a lift of z(p
k− j)eK

pm+1−p
p−1 σ j . We have

ηL(α) =
(

m∏

i=1

ϕi (EK (z0)/μ)

)pk− j

σ
j
0

and

ηR(α) =
(

m∏

i=1

ϕi (EK (z1)/μ)

)pk− j

σ
j
1 = ηL(α)ε− j

m−1∏

i=0

ϕi (ε0)
j−pk

= ηL(α)

(

ε−1
m−1∏

i=0

ϕi (ε0)

) j m−1∏

i=0

ϕi (ε0)
−pk .

By (6.40) and (6.41), we deduce that

ε̄−1
m−1∏

i=0

ϕi (ε̄0) ≡ 1 mod N≥pm

and

m∏

i=1

ϕi (ε̄0)
−pk ≡ 1 mod N≥pk .

It follows that

ηL(z(p
k− j)eK

pm+1−p
p−1 σ j )

−ηR(z(p
k− j)eK

pm+1−p
p−1 σ j ) ∈ N≥(pk− j) pm+1−p

p−1 +min{pm ,pk}
,

concluding the lemma. ��

Proposition 6.43 For n ≥ 0, j ∈ Z, l = vp(n − peK j
p−1 ), and n′ ≡ p−l(n −

peK j
p−1 ) mod p, we have

d
pl+1−1
p−1 − 1

eK (znσ j ) = n′ ¯̃μ pl−1
p−1 z

peK
pl−1
p−1 +n−1

0 σ j dz, (6.44)
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which is non-zero in Ẽ
pl+1−1
p−1

1, j, p
l+1−1
p−1 + n−1

eK

. Moreover, the exponents of z0 in the

targets of (6.44) are all different. Consequently, these are all the nontrivial
refined algebraic Tate differentials.

Proof Choose k,m ∈ N such that

pk > j, min{m, k} > l.

Thus

(pk − j)eK
pm+1 − p

p − 1
− n ≡ peK j

p − 1
− n mod pl+1.

It follows that (pk − j)eK
pm+1−p
p−1 = n + spl with s ≡ −n′ mod p. By

Lemma 6.42, z(p
k− j)eK

pm+1−p
p−1 σ j survives to the Ẽ

pl+1−1
p−1 -term. Hence

d
pl+1−1
p−1 − 1

eK (z(p
k− j)eK

pm+1−p
p−1 σ j ) = d

pl+1−1
p−1 − 1

eK (zn+splσ j ) = 0.

By Leibniz rule and Proposition 6.32, we deduce that

zsp
l

1 d
pl+1−1
p−1 − 1

eK (znσ j ) = −zn0σ
j d

pl+1−1
p−1 − 1

eK (zsp
l
)

= −s ¯̃μ pl−1
p−1 z

peK
pl−1
p−1 +spl−1+n

0 σ j dz.

Recall that both ηL and ηR define the refined Nygaard filtrations. It follows
that

d
pl+1−1
p−1 − 1

eK (znσ j ) = n′ ¯̃μ pl−1
p−1 z

peK
pl−1
p−1 +n−1

0 σ j dz.

The rest is similar to the proof of Proposition 6.32: put ñ = peK
pl−1
p−1 + n,

then

l = vp(ñ − peK ( j − 1)

p − 1
).

That is, n is uniquely determined by ñ. ��
Remark 6.45 There is a correspondence between refined algebraic Tate dif-
ferentials and Tate differentials in prior works. More precisely, z, zeK , σ and
dz correspond to �K , τKαK , τ

−1
K and τK�Kd log�K in [7, Theorem 5.5.1]
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respectively; for p = 2 and eK = 1, σ , z2σ and zσ 2dz correspond to t−1, te4
and e3 in [19, Theorem 8.14] respectively; for p odd and eK = 1, σ , z pσ p−1

and z p−1σ pdz correspond to t−1, t f and e in [21, Theorem 7.4] respectively.
Thus Proposition 6.43 not only recovers and extends (by including the case

p = 2 and eK > 1) the previous results in [7,19,21], but its proof is purely
algebraic and vastly simpler, and that it is this simplification that has made the
extension possible.

7 The E2-term of mod p descent spectral sequence I

In this section, we determine the E2-terms of the mod p descent spectral
sequences for TC−(OK ) and TP(OK ).

Proposition 7.1 For j ∈ Z, E2
0,2 j (TP(OK ); Fp) is non-zero if and only if

j ≥ 0 and p−1 divides eK j . If this condition holds, then E2
0,2 j (TP(OK ); Fp)

is a 1-dimensional k-vector space generated by a cycle with leading term

z
peK j
p−1 σ j . Moreover, the map

E2
0,∗(TC−(OK ); Fp) → E2

0,∗(TP(OK ); Fp).

induced by the canonical map is an isomorphism.

Proof By Proposition 6.43, we deduce that d pl+1−1
p−1 − 1

eK

(znσ j ) = 0 is equiva-

lent to

l < vp(n − peK j

p − 1
).

Thus znσ j has non-trivial contribution to Ẽ∞(TP(OK ); Fp) if and only if

n = peK j

p − 1
.

This concludes the first two assertions. For the last one, since

can : TC−∗ (OK /SW (k)[z]; Fp) → TP∗(OK /SW (k)[z]; Fp)

is injective, we have

can : E2
0,∗(TC−(OK ); Fp) → E2

0,∗(TP(OK ); Fp)

is injective as well. On the other hand, when E2
0,2 j (TP(OK ); Fp) is

non-zero, by Theorem 2.17, we have can(z
peK j
p−1 σ j ) = μ̄− j z

eK j
p−1 u j ∈
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E2
0,2 j (TC

−(OK ); Fp). Thus

can : E2
0,∗(TC−(OK ); Fp) → E2

0,∗(TP(OK ); Fp)

is also surjective. ��
Proposition 7.2 The k-vector space E2−1,2 j (TP(OK ); Fp) has a basis given
by a family of cocycles with leading terms

• z
peK ( j−1)+bpl

p−1 −1

0 σ j dz with l ≥ 1, b ∈ Z satisfying

−eK ( j − 1)

pl−1 < b < peK − eK j

pl−1 , p � b, b ≡ −eK ( j − 1) mod p − 1,

and

• z
peK ( j−1)

p−1 −1

0 σ j dz, if j > 1 and p − 1 | eK ( j − 1).

Proof We first treat the case of eK > 1. In this case, by Corollary 6.17, we see
that E2−1,2 j (TP(OK ); Fp) is generated over k by cycles which are detected by

{zn−1
0 σ j dz}n≥1. By Proposition 6.43, z

n−1
0 σ j dz is hit by zmσ j if and only if

peK
pl − 1

p − 1
+ m = n (7.3)

with l = vp(m − peK j
p−1 ) < ∞. In this case, it follows that

n ≡ m − peK
p − 1

mod pl+1,

yielding l = vp(m − peK j
p−1 ) = vp(n − peK ( j−1)

p−1 ). Hence m is uniquely deter-
mined by n, j .

Now put l = vp(n − peK ( j−1)
p−1 ). If l = ∞, then by previous argument

zn−1
0 σ j dz is not hit by any zmσ j ; in this case it follows that j > 1, p − 1 |
eK ( j − 1) and n = peK ( j−1)

p−1 .
If l < ∞, then we may write

n = peK ( j − 1) + bpl

p − 1

for some b ∈ Z satisfying

p � b, b ≡ −( j − 1)eK mod p − 1,
p( j − 1)eK + bpl

p − 1
≥ 1;
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the last one is equivalent to

bpl + peK j ≥ p − 1 + peK . (7.4)

On the other hand, by (7.3), zn−1
0 σ j dz is not hit by any refined algebraic Tate

differential if and only if

n − peK (pl − 1)

p − 1
< 0. (7.5)

Note that (7.5) implies that l ≥ 1. Conversely, if l ≥ 1, then (7.4) plus (7.5) is
equivalent to

−eK ( j − 1)

pl−1 < b < peK − eK j

pl−1 ,

concluding the desired result. Finally, note that all the resulting leading terms
zn−1
0 σ j satisfy p|n. Thus by Corollary 6.17, the above argument applies
equally to the case of eK = 1. ��
Proposition 7.6 For j ≥ 1, the k-vector space E2−1,2 j (TC

−(OK ); Fp) has a
basis given by a family of cocycles with leading terms

•

z
peK ( j−1)+bpl

p−1 −1

0 σ j dz

with l ≥ 0, b ∈ Z satisfying

−eK ( j − 1)

pl
< b < peK − eK j

pl
, p � b, b ≡ −eK ( j − 1) mod p − 1,

and

• z
peK ( j−1)

p−1 −1

0 σ j dz with j > 1 and p − 1 | eK ( j − 1).

Proof Recall that the refined algebraic homotopy fixed points spectral
sequence is a truncation of the refined algebraic Tate spectral sequence. More
precisely, for

znσ j ∈ Ẽ
1
eK (TP(OK ); Fp) (resp. zn−1

0 σ j dz ∈ Ẽ
1
eK (TP(OK ); Fp)),

it belongs to Ẽ
1
eK (TC−(OK ); Fp) is equivalent to jeK ≤ n (resp. ( j−1)eK ≤

n − 1).
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Therefore, using the argument of Proposition 7.2, we deduce that for

zn−1σ j dz ∈ Ẽ
1
eK (TC−(OK ); Fp),

it is not hit by any refined algebraic homotopy fixed points differential if and
only if

n = peK ( j − 1)

p − 1

or

n − peK
pl − 1

p − 1
< jeK (7.7)

for l = vp(n − peK ( j−1)
p−1 ).

In the first case, we have j > 1 and p − 1 | eK ( j − 1). Conversely,

under this condition, it is straightforward to verify that z
peK j
p−1 σ j dz belongs to

Ẽ
1
eK (TC−(OK ); Fp).

In the second case, we may write n = peK ( j−1)+bpl

p−1 with

p � b, b ≡ −eK ( j − 1) mod p − 1.

Moreover, the conditions n ≥ 1 plus (7.7) is equivalent to

−eK ( j − 1)

pl
< b < peK − eK j

pl
.

Finally, if b satisfies all these conditions, then it is straightforward to check

that z
peK ( j−1)+bpl

p−1 −1

0 σ j dz belongs to Ẽ
1
eK (TC−(OK ); Fp). ��

Lemma 7.8 For j ≥ 1, the kernel of the canonical map

can : E2−1,2 j (TC
−(OK ); Fp) → E2−1,2 j (TP(OK ); Fp)

is an eK j-dimensional k-vector space which has a basis given by a family of
cycles with leading terms

z
peK ( j−1)+bpl

p−1 −1

0 σ j dz
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with l ≥ 0, b ∈ Z satisfying

p � b, b ≡ −eK ( j − 1) mod p − 1, pl−1 ≤ eK j

peK − b
< pl . (7.9)

Proof By Propositions 7.2, 7.6, we obtain that the kernel of can is the k-
vector space with a basis given by a family of cycles which are detected by

z
peK ( j−1)+bpl

p−1 −1

0 σ j dz with l ≥ 0, b ∈ Z satisfying

−eK ( j − 1)

pl
< b < peK − eK j

pl
, p � b,

b ≡ −eK ( j − 1) mod p − 1, b /∈ (−eK ( j − 1)

pl−1 , peK − eK j

pl−1 ).

It is straightforward to see that the first condition plus the last conditions is
equivalent to

peK − eK j

pl−1 ≤ b < peK − eK j

pl
, (7.10)

which in turn is equivalent to the last condition of (7.9).
It remains to count the number of cycles. To this end, first note that (7.10)

implies that

peK (1 − j) ≤ b < peK .

Conversely, for any eK (1− j) ≤ m < eK , there is exactly one b ∈ [pm, pm+
p − 1] satisfying the first two conditions of (7.9). Moreover, for any b ∈
[peK (1− j), peK ), there is exactly one l satisfying (7.10). We thus conclude
that the number of such cycles is eK − eK (1 − j) = eK j . ��

8 The E2-term of mod p descent spectral sequence II

In this section, we determine the E2-term of the mod p descent spec-
tral sequence for TC(OK ). Firstly, we study the action of Frobenius on
E2(TC−(OK ); Fp).

Lemma 8.1 For n ≥ eK j , we have

ϕ(znσ j ) = μ̄−pj z p(n−eK j)σ j .
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Proof Using Theorem 2.17, we have

ϕ(znσ j ) = ϕ(zn−eK j )μ̄−pjϕ(EK (z)σ ) j = μ̄−pj z p(n−eK j)ϕ(u) j

= μ̄−pj z p(n−eK j)σ j .

��
Lemma 8.2 If eK > 1, then

ϕ(σ0(z0 − z1)) ≡ −z p−1
0 σ0(z0 − z1) mod N≥ p

eK
+1

.

Proof In TC−
2 (OK /SW (k)[z0, z1]), we have

ϕ(σ0(z0 − z1)) = ϕ(σ0EK (z0))
ϕ(z0 − z1)

ϕ(EK (z0))
= hϕ(u0) = hσ0.

Using (3.26) for l = 0 and the fact that f (1) ∈ N≥p, we get

h ≡ δ(z0 − z1)/δ(EK (z0)) mod N≥p.

By Lemma 6.19, we have

δ(z0 − z1) ≡ −z p−1
0 (z0 − z1) mod (p,N≥ p−2

eK
+2

).

On the other hand, a short computation shows that

δ(EK (z0)) ≡ 1 mod (p,N
p
eK ).

Putting these together, we conclude

h ≡ −z p−1
0 (z0 − z1) mod (p,N≥r0),

where

r0 = min(p,
2p − 1

eK
+ 1,

p − 2

eK
+ 2) ≥ p

eK
+ 1

as eK > 1. This yields the desired result by modulo p. ��
Lemma 8.3 If α ∈ N≥mTC−

2 j (OK /SW (k)[z0, z1]; Fp), then

ϕ(α) ∈ N≥p(m− j)TP2 j (OK /SW (k)[z0, z1]; Fp).
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Proof Write m = m0 + m1
eK

with m0 ≥ j , 0 ≤ m1 < eK . Then there exist

x ∈ N≥m0TC−
2 j (OK /SW (k)[z0, z1]; Fp),

y ∈ N≥m0+1TC−
2 j (OK /SW (k)[z0, z1]; Fp)

such that α = zm1
0 x + y. By a variant of the proof of Lemma 3.14, we get ϕ(x)

divisible by ϕ(EK (z0))m0− j , yielding

ϕ(x) ∈ N≥p(m0− j)TP2 j (OK /SW (k)[z0, z1]; Fp).

Similarly, we get ϕ(y) ∈ N≥p(m0+1− j)TP2 j (OK /SW (k)[z0, z1]; Fp). It fol-
lows that

ϕ(α) = z pm1
0 ϕ(x) + ϕ(y) ∈ N≥p(m− j)TP2 j (OK /SW (k)[z0, z1]; Fp).

��
Proposition 8.4 For j ≥ 1, if α ∈ E2−1,2 j (TC

−(OK ); Fp) is detected by

zn−1
0 σ j dz in the refined algebraic homotopy fixed points spectral sequence,
then ϕ(α) ∈ E2−1,2 j (TP(OK ); Fp) is detected by

−μ̄−p( j−1)z p(n−eK ( j−1))−1
0 σ j dz

in the refined algebraic Tate spectral sequence.

Before proving Proposition 8.4, note that the map

zn−1
0 σ j dz 	→ z p(n−eK ( j−1))−1

0 σ j dz

gives rise to a bijection between leading terms of the cycles given in Propo-
sitions 7.2 and Proposition 7.6 respectively. Therefore, granting Proposition
8.4, we obtain the following results.

Corollary 8.5 For j ≥ 1, ϕ : E2−1,2 j (TC
−(OK ); Fp) → E2−1,2 j (TP(OK );

Fp) is an isomorphism.

Corollary 8.6 Suppose α ∈ E2−1,2 j (TC
−(OK ); Fp) has refined Nygaard fil-

tration m.

(1) For j ≥ 1, the filtration of ϕ(α) is > m (resp. < m, = m) if and only if

m >
pj − 1

p − 1
− 1

eK
(resp. m <

pj − 1

p − 1
− 1

eK
, m = pj − 1

p − 1
− 1

eK
).
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(2) For j ≤ 0, the filtration of ϕ(α) is > m.

Proof For (1), by Proposition 8.4, ϕ(α) has filtration

m′ = p(eK (m − 1) + 1 − eK (a − 1)) − 1

eK
+ 1 = p(m − j) + p − 1

eK
+ 1.

A short computation shows the desired result. For (2), since dz has fil-
tration 1, we may assume m ≥ 1. Then we may write α = βv− j with
β ∈ N≥mE2−1,0(TC

−(OK ); Fp). It follows that ϕ(α) is divisible by ϕ(β),
which belongs to N≥pmE2−1,0(TP(OK ); Fp). Now the desired result follows
as pm > m. ��

Now we prove Proposition 8.4.

Proof Regard zn−1
0 σ

j
0 dz as an element of the cobar complex of TC−

2 j (OK /

SW (k)[z]; Fp).Note thatd(z0), d(σ0) ∈ N≥1TC−
2 j (OK /SW (k)[z0, z1, z2]; Fp).

By the Leibniz rule, we deduce that

d(zn−1
0 σ

j
0 dz) ∈ N≥ n−2

eK
+2

TC−
2 j (OK /SW (k)[z0, z1, z2]; Fp).

Using Lemma 6.12, we deduce that there exists β ∈ N≥ n−2
eK

+2
TC−

2 j (OK /

SW (k)[z0, z1]; Fp) such that d(β) = d(zn−2
0 σ

j
0 dz); hence d(zn−1

0 σ
j
0 dz−β) =

0. Therefore, by induction on n, we are reduced to treat the case

α ≡ zn−1
0 σ

j
0 (z0 − z1) mod N≥ n−2

eK
+2

.

By Lemma 8.3, we have

ϕ(α) ≡ ϕ(zn−1
0 σ

j−1
0 )ϕ(σ0(z0 − z1)) mod N≥p( n−2

eK
+2− j)

.

By Lemmas 8.2 and 8.1, we have

ϕ(zn−1
0 σ

j−1
0 )ϕ(σ0(z0 − z1)) ≡ −μ̄−p( j−1)z p(n−eK ( j−1))−1

0 σ
j
0 (z0 − z1)

mod N≥ p(n−eK ( j−1))
eK

+1
.

Note that if eK > 3, then

p(
n − 2

eK
+ 2 − j) ≥ p(n − eK ( j − 1))

eK
+ 1,

yielding the desired result for eK > 3.
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For the case of eK ≤ 3, let m, K ′, Tm and Ẽ ′(TP(OK ′); Fp) be as in
the proof of Proposition 6.34. Let Ẽ ′(TC−(OK ′); Fp) be the “less refined”
algebraic homotopy fixed point spectral sequence, which is a truncation of
Ẽ ′(TP(OK ′); Fp). First note that Remark 6.38 1 implies that

Tm : Ẽ∞
1,∗,∗(TP(OK ); Fp) → Ẽ

′∞
1,∗,∗(TP(OK ′); Fp)

is injective. Thus it restricts to an injective map Ẽ∞(TC−(OK ); Fp) →
Ẽ

′∞(TC−(OK ′); Fp). Since z
n−1
0 dz is non-zero in Ẽ∞(TC−(OK ); Fp), using

Remark 6.38, we may deduce that Tm(α) is detected by mzmn−1
0 σ j dz. Then

by the case of eK > 3, we get that

−mμ̄−p( j−1)z p(mn−meK ( j−1))−1
0 σ

j
0 dz

detects Tm(ϕ(α)) = ϕ(Tm(α)) in Ẽ∞(TP(OK ′); Fp). Now suppose ϕ(α) is
detected by λzl−1σ j dz. Then Tm(ϕ(α)) is detected by Tm(λzl−1σ j dz) =
λmzmj−1σ j dz. Comparing the two expressions, we get

l = p(n − meK ( j − 1)), λ = −μ̄−p( j−1)

by Remark 6.38 again. This completes the proof. ��
Lemma 8.7 The canonical map induces

• for j > 0, a surjection

E2−1,2 j (TC
−(OK ); Fp) → N≥ j E2−1,2 j (TP(OK ); Fp);

• for j ≤ 0, an isomorphism

E2−1,2 j (TC
−(OK ); Fp) → E2−1,2 j (TP(OK ); Fp);

• for m ≥ j , a surjection

N≥mE2−1,2 j (TC
−(OK ); Fp) → N≥mE2−1,2 j (TP(OK ); Fp).

Proof These statements follow from the corresponding result on

can : TC−
2 j (OK /SW (k)[z]⊗[−]) → TP2 j (OK /SW (k)[z]⊗[−]).

��
1 Using Proposition 6.43, the argument of Lemma 6.36 (hence Remark 6.38) adapts to
Ẽ ′

1, j,∗(TP(OK ′); Fp) for all j ∈ Z.
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Combining Corollary 8.6 and Lemma 8.7, we deduce the following results
immediately.

Corollary 8.8 For j ≥ 1 and m ≥ pj−1
p−1 , the map

can − ϕ : N≥mE2−1,2 j (TC
−(OK ); Fp) → N≥mE2−1,2 j (TP(OK ); Fp)

is surjective.

Corollary 8.9 For j ≤ 0, the map

can − ϕ : E2−1,2 j (TC
−(OK ); Fp) → E2−1,2 j (TP(OK ); Fp)

is an isomorphism.

Now we are ready to determine E2(TC(OK ); Fp). Let d be the minimal
number such that

p − 1 | eK d, Nk/Fp(μ̄)d = 1,

where Nk/Fp : k → Fp is the norm map.
The following lemma is a reformulation of Hilbert 90 for k/Fp.

Lemma 8.10 For b ∈ k×, the map

bϕ − id : k −→ k

is bijective if Nk/Fp(b) �= 1, otherwise both the kernel and cokernel are iso-
morphic to Fp.

Using Lemma 8.10, we may choose a (p − 1)-th root μ̄
pd
p−1 of μ̄pd in k.

Denote by β the element in Ẽ2
0,0,2d(TC(OK ); Fp) ⊆ E2

0,2d(TC
−(OK ); Fp)

detected by μ̄
pd
p−1 z

peK d
p−1 σ d .

Proposition 8.11 We have

Ẽ2
0,0,∗(TC(OK ); Fp) = Fp[β].

Proof By Proposition 7.1, we first have

E2
0,∗(TC−(OK ); Fp) = k[z

peK j
p−1 σ j ],

where j is the smallest positive integer such that p − 1 | eK j .
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On the other hand, by Lemma 8.1,

ϕ(z
peK j
p−1 σ j ) = μ̄−pj z

peK j
p−1 σ j .

Thus λz
peK j
p−1 σ j ∈ Ẽ2

0,0,∗(TC(OK ); Fp) if and only if μ̄pj = λ−1ϕ(λ) = λp−1

for some λ ∈ k. In this case, it follows that Nk/Fp(μ̄) j = 1. Hence d | j .

Conversely, if d | j , then such λ is of the form λ′μ̄
pd
p−1 with λ′ ∈ Fp. Now the

proposition follows. ��
It turns out that Ẽ2

i, j,∗(TC(OK ); Fp) is a freeFp[β]-module of finite rank for
all i, j . In the following, we will find out their generators over Fp[β]. Firstly,
combing the proof of Proposition 8.11, Lemmas 8.1 and 8.10, we obtain the
following result.

Proposition 8.12 The Fp[β]-module Ẽ2
0,1,∗(TC(OK ); Fp) is free of rank 1.

Lemma 8.13 There exists γ ∈ ker(can−ϕ) detected by μ̄
pd
p−1 z

peK d
p−1 −1

σ d+1dz.

Proof Let γ0 ∈ E2
−1,2(d+1)(TC

−(OK ); Fp) be detected by z
peK d
p−1 −1

σ d+1dz.

By Proposition 8.4, ϕ(γ0) is detected by μ̄−pd z
peK d
p−1 −1

σ d+1dz. It follows that

(can − ϕ)(μ̄
pd
p−1 γ0) ∈ N≥ pd

p−1+1E2
−1,2(d+1)(TP(OK ); Fp).

ByCorollary 8.8, can−ϕ is surjective onN≥ pd
p−1+1E2

−1,2(d+1)(TC
−(OK ); Fp).

Hence we may modify γ0 with higher terms to construct the desired element.
��

In the following, let γ be as in Lemma 8.13.

Proposition 8.14 The Fp[β]-module Ẽ2−1,1,∗(TC(OK ); Fp) is free of rank 1

generated by can(γ ) ∈ E2
−1,2(d+1)(TP(OK ); Fp).

Proof Let α ∈ E2−1,2 j (TC(OK ); Fp) represents a non-trivial class in the cok-
ernel of can − ϕ such that it has the highest leading term in that class. By
Corollaries 8.8 and 8.9, we see that j ≥ 1 and the leading degree of α lies in
[1, pj

p−1 − 1
p−1 − 1

eK
].

On the other hand, if the leading degree of α is less than pj
p−1 − 1

p−1 − 1
eK

, by
Corollaries 8.5 and 8.6, then we may find some α′ with higher leading degree
such that α = ϕ(α′). Note that can(α′) represents the same class as α, yielding
a contradiction.

123



920 R. Liu, G. Wang

Therefore α must have leading degree pj
p−1− 1

p−1− 1
eK

. That is,α is detected

by some λz
peK ( j−1)

p−1 −1

1 σ j dz. Using Lemmas 8.10 and 8.13, we conclude that

d | j − 1 and α ∈ Fpβ
j−1
d −1can(γ ). ��

Proposition 8.15 As an Fp[β]-module, Ẽ2−1,0,∗(TC(OK ); Fp) is free with a
basis given by γ and a family of cycles detected respectively by

cz
peK ( j−1)+bpl

p−1 −1
σ j dz ∈ E2−1,2 j (TC

−(OK ); Fp)

with l ≥ 0 and

0 < b < peK , p � b, b ≡ −eK ( j − 1) mod p − 1,

pl−1 ≤ eK j

peK − b
< pl , 1 ≤ j ≤ d, (8.16)

and c runs over a basis of k over Fp.

Proof By Corollary 8.9, ker(can − ϕ) is trivial for j ≤ 0. Now suppose
j ≥ 1, and let 0 �= α ∈ Ẽ2−1,0,∗(TC(OK ); Fp). By Corollary 8.6, ϕ lowers the

filtration if the filtration is less than pj
p−1 − 1

p−1 − 1
eK

. Thus the leading degree

of α is at least pj
p−1 − 1

p−1 − 1
eK

.

If the leading degree of α is pj
p−1 − 1

p−1 − 1
eK

, the by Lemma 8.10 and the
argument of Proposition 8.14, there exists some β ′ ∈ Fp[β]γ such that α −β ′
has leading degree higher than pj

p−1 − 1
p−1 − 1

eK
.

Now suppose α has leading degree higher than pj
p−1 − 1

p−1 − 1
eK

. First note

that for a cycle given in Propositions 7.2, 7.6, it lies inN>
pj
p−1− 1

p−1− 1
eK if and

only if b > 0. Then it is straightforward to see that

can : N>
pj
p−1− 1

p−1− 1
eK E2−1,2 j (TC

−(OK ); Fp)

→ N>
pj
p−1− 1

p−1− 1
eK E2−1,2 j (TP(OK ); Fp).

is surjective, and the cocyles given in the statement of the proposition
form an Fp-basis of ker(can). Let S be the k-vector space generated

by the remaining cycles in N>
pj
p−1− 1

p−1− 1
eK E2−1,2 j (TC

−(OK ); Fp). It fol-
lows that can induces a filtration preserving isomorphism between S and

N>
pj
p−1− 1

p−1− 1
eK E2−1,2 j (TP(OK ); Fp).
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Now we may write α = α1 + α2 with α1 ∈ ker(can), α2 ∈ S. It follows
that

(can − ϕ)(α2) = ϕ(α1).

Since ϕ raises the filtration, it follows that

α2 = (1 − can−1ϕ)−1(can−1ϕ(α1)) =
∑

i≥1

(can−1ϕ)i (α1).

Hence α2 is uniquely determined by α1 and has higher filtration than α1. Thus
the map α 	→ α1 induces an isomorphism between ker(can) and ker(can−ϕ)

preserving the leading term. This completes the proof. ��
Remark 8.17 The above argument can be summarized by the following pic-
ture. Put a = m− j . The cycles of E2−1,2 j (TC

−(OK ); Fp)with leading degree
m is represented by the point (a = m − j, j). Then we may divide the area
of cocyles into three regions, bounded by the lines j + a = 0, a = 0 and

j
p−1 − a− 1

p−1 − 1
eK

= 0. The blue line is the “critical line” for the Frobenius
action. In region I, the canonical map is an isomorphism, and the Frobenius
raises filtration; thus can − ϕ is an isomorphism (Corollary 8.9). In region II,
the Frobenius raises the filtration. One may produce an isomorphism between
ker(can) and ker(can−ϕ) preserving the leading term. In region III, the Frobe-
nius lowers the filtration; thus ker(can − ϕ) = 0. Along the critical line, the
Frobenius differs from the canonical map by a certain power of μ̄.

I II

III

j

Note that for 1 ≤ i ≤ eK and 1 ≤ j ≤ d, there is exactly one

b ∈ [(p − 1)i + 1, pi],
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922 R. Liu, G. Wang

and hence one pair (b, l), satisfying (8.16). Denote by α
( j)
i the cycle detected

by

z
peK ( j−1)+bpl

p−1 −1
σ j dz ∈ E2−1,2 j (TC

−(OK ); Fp).

given in Proposition 8.15. Using Proposition 8.12, let λ be an Fp-basis of
Ẽ2
0,1,0(TC(OK ); Fp). By Remark 6.1, E2(TC(OK ); Fp) is multiplicative.

Combining Propositions 8.11, 8.12, 8.15, 8.14, and Corollary 6.15, we con-
clude

Theorem 8.18 As Fp[β]-modules, we have

E2
0,∗(TC(OK ); Fp) = Fp[β],

E2−1,∗(TC(OK ); Fp) = Fp[β]{λ, γ } ⊕ Fp[β]
{α( j)

i,l |1 ≤ i ≤ eK , 1 ≤ j ≤ d, 1 ≤ l ≤ fK },
and

E2−2,∗(TC(OK ); Fp) = Fp[β]{λγ },

with |λ| = (−1, 0), |γ | = (−1, 2(d + 1)), |α( j)
i,l | = (−1, 2 j). Moreover, for

i �= 0, −1, −2,

E2
i,∗(TC(OK ); Fp) = 0.

By Theorem 8.18, both E2
0,∗(TC(OK ); Fp) and E2−2,∗(TC(OK ); Fp) are

concentrated in even degrees. This implies the following result.

Corollary 8.19 The descent spectral sequence converging to TC∗(OK ; Fp)

collapses at the E2-term.

By Remark 6.1, TC∗(OK ; Fp) is multiplicative for odd p. This implies that
in this case the collapsing E2(TC∗(OK ); Fp) has no hidden extensions.

Theorem 8.20 For p odd, as Fp[β]-modules,
TC∗(OK ; Fp) ∼= Fp[β]{1, λ, γ, λγ } ⊕ Fp[β]

{α( j)
i,l |1 ≤ i ≤ eK , 1 ≤ j ≤ d, 1 ≤ l ≤ fK }

with |β| = 2d, |λ| = −1, |γ | = 2d + 1, |α( j)
i,l | = 2 j − 1. In particular,

TC∗(OK ; Fp) is a free Fp[β]-module.
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The case p = 2 is more subtle as TC(OK ; F2) is no longer multiplicative.
First note that there is a Bott class in TC2(OK ; F2) lifting β; by abuse of
notation, we also denote it by β. Using the v41 self map on S/2, we obtain a
Z2[β4]-module structure on TC∗(OK ; F2).

Theorem 8.21 As a Z2[β4]-module, TC∗(OK ; F2) is isomorphic to

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Fp[β2]{1} ⊕ Z/4[β2]{β} ⊕ Fp[β]{λ, γ }
⊕Fp[β2]{βλγ } ⊕ F2[β]
{αi,l |1 ≤ i ≤ eK , 1 ≤ l ≤ fK }

if [K : Q2] is odd,

Fp[β]{1, λ, γ, λγ } ⊕ F2[β]
{αi,l |1 ≤ i ≤ eK , 1 ≤ l ≤ fK } if [K : Q2] is even,

with |β| = 2, |λ| = −1, |γ | = 3, |αi | = 2i − 1.

Proof It suffices to determine the 2-extensions of βk . First recall that for the
mod 2 reduction of an E∞-algebra in spectra, the 2-extension of a class x is
equal to the mod 2 reduction of ∂(x)

2 η, where ∂(−)
2 is the Bockstein homomor-

phism and η is the Hopf invariant one class in π1(S).
Back to our situation, by comparing with the algebraic K -theory of real

numbers, we first deduce that the Hurewicz image of η in K1(K ) ∼= K× is
−1, which is the unique order 2 element in K1(K ). It follows that under the
cyclotomic trace map, the η corresponds to ∂(β)

2 , as the latter has order 2 as
well.

Now suppose β̃ ∈ E1
0,2(TC

−(OK ); Z2) lifts β ∈ E2
0,2(TC(OK ); F2).

Then the Bockstein image ∂(β)
2 is detected by the class c = (a, b) ∈

E2−1,2(TC(OK ); Z2), where

a = ηR(β̃) − ηL(β̃)

2
, b = can(β̃) − ϕ(β̃)

2
.

By Leibniz rule, the 2-extension of βk is therefore equal to

kc̄2βk−1 ∈ E2−2,2k+2(TC(OK ); F2).

It follows that if k is even, then the 2-extension of βk is trivial. Otherwise the
2-extension of βk is trvial if and only if c̄2 = 0. A short computation shows
that c2 is represented by the cycle

(can(a)ηR(b) + ηL(b)ϕ(a), [a|a]).
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By Proposition 5.23, we may choose a′ ∈ TC−
4 (OK /SW (k)[z0, z1]; Z2) such

that d(a′) = [a|a]. Thus c2 is homologous to (b′, 0), where

b′ = (can(a) − ϕ(a))b + (can − ϕ)(a′) = (ηR − ηL)(b)b + (can − ϕ)(a′).

Note that we may take β̃ = EK (z)2σ = EK (z)u. It follows that a has
Nygaard filtration 2 and

b = EK (z)2σ − ϕ(EK (z)u)

2
= δ(EK (z))σ.

We may choose a′ with Nygaard filtration 4 (by the proof of Proposition
5.23). Using the argument of the proof of Lemma 8.1, we deduce that the
mod 2 reduction ϕ(a′) has Nygaard filtration at least 4. Thus (can − ϕ)(a′)
has Nygaard filtration at least 4. Note that δ(EK (z)) is a polynomial of z2. By
Proposition 6.43, we deduce that if eK is odd, then (ηR − ηL)(b) has leading
term μ2z2eK−1

1 σdz; otherwise the leading term of (ηR − ηL)(b) is of higher
degree.

Write the image of b̄′ in E2−1,4(TP(OK ); F2) as a k-linear combination
of cycles of distinct leading degrees given in Proposition 7.2. Moreover, by
the proof thereof, we deduce that if eK is even, then the leading degrees of
these cycles are all higher than 3eK − 1; if eK is odd, then the lowest leading
degree is 3eK − 1 (contributed by (ηR − ηL)(b)b). Therefore, by the proof of
Proposition 8.14, we conclude that if eK is even, then b̄′ is homologous to 0
in E2−2,4(TC(OK ); F2); if eK is odd, note that the leading term of the lowest

degree is μ̄2z2eK−1
1 σ 2dz, combining with Proposition 8.12, we deduce that b̄′

is non-trivial in E2−2,4(TC(OK ); F2) if and only if 1 ∈ k is not in the image
of id − ϕ. That is, if and only if x2 − x = 1 does not split over k, which is
equivalent to [k : Fp] being odd. Moreover, in this case, b̄′ is homologous to
λγ in E2−2,4(TC(OK ); F2). ��

Remark 8.22 The problem of 2-extensions may also be treated using the norm
residue isomorphism. Recall that the Hurewicz image of η in K1(K ) ∼= K×
is −1. It follows that the mod 2 reduction of η2 corresponds to the Hilbert
symbol {−1, −1}K , which in turn corresponds to the algebra of Hamilton’s
quaternions, under the norm residue isomorphism. Thus the 2-extension of β,
which is equal to the mod 2 reduction of η2 as noted in the proof of Theorem
8.21, is trivial if and only if the algebra of Hamilton’s quaternions splits over
K ; the latter is equivalent to [K : Q2] being even.

To complete the proof of Theorem 1.5, it remains to show d = [K (ζp) : K ].
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Proposition 8.23 The integer d is equal to [K (ζp) : K ].
Proof Put d ′ = [K (ζp) : K ]. Note that μ = p

NK/K0 (−�K )
. We first have

p − 1 = [K0(ζp) : K0] | [K (ζp) : K0] = d ′eK .

Secondly, we have

NK0/Qp(μ)d
′ = NK0/Qp(

p

NK/K0(−�K ))
)d

′ = p fK d ′

NK/Qp(−�K )d
′

= NK0(ζp)/Qp((1 − ζp)
d ′

)

NK (ζp)/Qp(−�K )

= NK0(ζp)/Qp(
(1 − ζp)

d ′

NK (ζp)/K0(ζp)(−�K )
).

This yields

Nk/Fp(μ̄)d
′ = NK0/Qp(μ)d

′ = NK0(ζp)/Qp(
(1 − ζp)d

′

NK (ζp)/K0(ζp)(−�K )
)

= Nk/Fp(
(1 − ζp)d

′

NK (ζp)/K0(ζp)(−�K )
)p−1 = 1.

Hence d|d ′.
It remains to show d ′|d. The strategy is to construct a suitable degree d

extension of K containing K (ζp) as a subfield. First note that if we replace K
by an intermediate extension K0 ⊂ K ′ ⊂ K and�K by−NK/K ′(−�K ), then
μ is unchanged. Thus wemay replace K with its tamely ramified subextension
over K0. Now K is of the form K0(π

1/eK ) for some uniformizerπ of K0. Let d1
be theminimal positive integer such that p−1 | eK d1, and write d = d1d2.We

may further reduce to the case p − 1 = eK d1 by replacing K with K0(π
d1
p−1 ).

Now replacing K with its degree d2 unramified extension, we reduce to the
case d = d1.

Note that Nk/Fp(μ̄)d1 = 1 implies that μ̄ ∈ (k×)eK . By Hensel’s lemma,
we have

μ = λeK

for some λ ∈ K0. Replacing �K by λ�K , we may further suppose μ = 1;
thus EK (z) becomes an Eisenstein polynomial

zeK + · · · + p.
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Now consider K ′ = K ( d1
√

�K ). Over K0(ζp), replacing z by (ζp − 1)z,
EK (zd1) = 0 reduces to

E(z) = z p−1 + · · · + p

(ζp − 1)p−1 = 0,

where all intermediate coefficients have positive p-adic valuations. Using the
minimal polynomial (1+x)p−1

x of ζp − 1, we get

p/(ζp − 1)p−1 ≡ −1, mod p.

By Hensel’s lemma again, we deduce that E(z), hence EK (zd1), splits over
K0(ζp), yielding K ′ ⊂ K0(ζp). Hence K ′ = K0(ζp) as the ramification index
of K ′ is

eK d1 = p − 1.

��
Remark 8.24 Recall that the Bott element in K2(OK ; Z/p) can be constructed
as theBockstein pre-image of the class inK1(OK ) represented by ζp. Using the
cyclotomic trace map, we therefore have another way of showing that d = 1
if and only if ζp ∈ K . Moreover, in this case, the Bott element correponds to
the class detected by β in the descent spectral sequence.

Remark 8.25 The proof of Proposition 8.23 depends crucially on the fact that
EK (0) ≡ p mod p2. We note that there is a unique normalization of the min-
imal polynomial EK (z) of �K over K0 that makes the identity uv = EK (z)
hold in Theorem 2.17(6). That this normalization agrees with the normaliza-
tion EK (0) = p is a non-trivial fact, which is equivalent to the statement of
Theorem 2.15(4). In fact, by investigating certain lifts of the class β in the
algebraic spectral sequences modulo pn for K = Q(ζpn ) and all n ≥ 1, we
may have another way of proving Theorem 2.15(4) by the existence of Bott
elements in K∗(Q(ζpn )) for all n ≥ 1.

9 Comparison with motivic cohomology

In this section we compare the descent spectral sequence converging to
TC∗(OK ; Fp) with the motivic spectral sequence converging to K∗(K ; Fp).
We take d = 2 for the illustration.

By Theorem 8.18, the E2-term of the spectral sequence converging to
TC(OK ; Fp) may be pictured as follows, in which a circle or box with an
arrow means a free Fp[β]-module with a basis given by the elements below

123



Topological cyclic homology of local fields 927

it. For our convenience, the horizontal axis denotes the total stem i + j and
the vertical axis denotes the index i .

1

λ α
(1)
i,l , 1 ≤ i ≤ eK

1 ≤ l ≤ fK
α

(2)
i,l , 1 ≤ i ≤ eK

1 ≤ l ≤ fK

γ

λγ

Let β be a generator of μd
p, which is isomorphic to Z/p as a Gal(K/K )-

module. Let α(1) be a generator of the OK /p-module

UK /U p
K ⊂ K×/(K×)p ∼= H1

ét(K , μp),

whereUK is the torsion free part ofO×
K . Let β

−1γ ∈ H1
ét(K , μp) be the class

represented by �K ∈ K×/(K×)p. Let λ be the element of

H1
ét(K , Z/p) = Hom(Gal(K/K ), Z/p) ∼= Hom(K×/(K×)p, Z/p)

corresponding to the unramified character sending Frobenius to 1. Let
β−1α(2) ∈ H1

ét(K , Z/p) be a generator of the OK /p-module Hom(UK /U p
K ,

Z/p). It follows that β−1λγ ∈ H2
ét(K , μp) corresponds to the division algebra

of invariant 1
p in the Brauer group.

The étale spectral sequence E2
i, j = H−i

ét (K , μ
⊗ j
p ) ⇒ LK (1)K2 j+i (K , Fp)

may be pictured as follows, where a circle (resp. box) with two arrows means
a free Fp[β, β−1]-module (resp. (OK /p)[β, β−1]-module) with a basis given
by the elements below it.

β−1λγ

λ α(1) α(2) γ

1

Using the Bloch–Kato conjecture proved by Voevodsky [22], the E2-term
of the motivic spectral sequence converging to K∗(K ; Fp) may be identified
with the part to the right of the red line of the étale spectral sequence:

123



928 R. Liu, G. Wang

1

βλα(1) α(2)β−1γ

λγ

One may show that λ generates the cokernel of the cyclotomic trace map

K(Zp; Fp) → TC(Zp; Fp).

We thus see the similarity between the descent spectral sequence and motivic
spectral sequence. We expect that, for certain algebraic varieties overOK , one
would be able to construct some analogue of the motivic spectral sequence
which determines the structure of the algebraic K -theory with Fp-coefficients
and is compatible with the descent spectral sequence via the cyclotomic trace
map.
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Appendix A: A variant of Hochschild–Kostant–Rosenberg

The goal of this appendix is to prove the following theorem.

Theorem A.1 Let R be a commutative ring over Zp, and let I be a locally
complete intersection ideal of R. Let A = R/I . Suppose that R is I -separated
and A is p-torsion free. Then as filtered rings, the periodic cyclic homology
HP0(A/R) is canonically isomorphic to the completion of DR(I ) with respect
to the Nygaard filtration. Moreover, the Tate spectral sequence for HP0(A/R)

collapses at the E2-term. Consequently, there is a canonical isomorphism of
graded rings

HH∗(A/R) ∼= �A(I/I 2).

In the following, all tensor products are taken in the derived category of R-
modules.

Proof We first assume I = (a) for a non-zero divisor a ∈ R. Let D =
R[x]/(x2) be the commutative DG-algebra over R with |x | = 1 and d(x) = a.
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Then D is a flat resolution of A over R. ThusHH(A/R) can be computed by the
normalized Hochschild complex (cf. [11, §1.1.4]) as follows. Let D̄ = D/R.
Set the double complex C∗(D) as

· · · → D ⊗ D̄⊗2 b−→ D ⊗ D̄
b−→ D.

The boundary map b : D ⊗ D̄⊗n → D ⊗ D̄⊗n−1 is given by the formula∑n
i=0(−1)i d̄i with di : D⊗n+1 → D⊗n , where

d0 = m ⊗ id ⊗ · · · ⊗ id,

d1 = id ⊗ m ⊗ · · · ⊗ id,

. . .

dn = (m ⊗ id ⊗ · · · ⊗ id) ◦ t ′;

here m : D ⊗ D → D is the multiplication and t ′ : D⊗n+1 → D⊗n+1 is the
cyclic permutation operator sending the last factor to the first.

A short computation shows that b(1⊗ x⊗n) = 1⊗ x⊗n−1 + (−1)n+n−11⊗
x⊗n−1 = 0. It follows that for n ≥ 0, HH2n+1(A/R) = 0 and HH2n(A/R) ∼=
A, where the latter is generated by the element represented by the cycle 1⊗x⊗n.
In particular, the graded ring HH∗(A/R) is p-torsion free as A is p-torsion
free.

Next we determine HP∗(A/R). By [11, §2.1.9], this may be computed by
the double complex

. . . . . .

b

. . .

b

. . .

b

. . . D ⊗ D̄⊗2B

b

D ⊗ D̄B

b

DB

. . . D ⊗ D̄B

b

DB

. . . DB

. . .

(A.2)

Here B : D ⊗ D̄⊗n → D ⊗ D̄⊗n+1 is given by the formular s ◦ N , where

N = 1 + t + · · · + tn
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with t = (−1)nt ′ and s = u ⊗ id : D⊗n+1 → D⊗n+2 with u : R → D
being the unit map. Note that the spectral sequence associated to the double
complex (A.2) is the Tate spectral sequence for HP(A/R), which collapses
at the E2-term because everything is concentrated in even degrees. It follows
that the associated graded algebra of HP0(A/R) with respect to the Nygaard
filtration is isomorphic to HH∗(A/R). This yields that HP0(A/R) is p-torsion
free.

We claim that the natural map R → HP0(A/R) extends uniquely to a map

DI (R) → HP0(A/R) (A.3)

as filtered rings. The uniqueness follows from the fact that HP0(A/R) is p-
torsion free. For the existence, first note that the image of an is represented
by the same element in the above double complex. Since d(an−1x) = an , b is
trivial, B(an−1x) = an−1 ⊗ x , we get that an is homologous to an−1 ⊗ x up
to a sign. By induction, we deduce that for 0 ≤ m ≤ n, an is homologous to
m!an−m ⊗ xm up to a sign. In particular, an is homologous to n! ⊗ x⊗n up to
a sign. This proves the claim.

To proceed, first note that R is p-torsion free by the assumption that it is
I -separated and A is p-torsion free. This implies that the associated graded
algebra of DI (R) is isomorphic to�A(I/I 2). Now taking the associated graded
of the natural map DI (R) → HP0(A/R), we get the map

�A(I/I 2) ∼= A〈ā〉 → HH∗(A/R). (A.4)

By what we have proved, one easily checks that ā[n] maps to the element
represented by the cycle 1 ⊗ x⊗n . This implies that (A.4) is an isomorphism
of graded rings. It follows that (A.3) becomes an isomorphism after taking
completion with respect to the Nygaard filtration on the source.

Now suppose that I is generated by a regular sequence a1, . . . , an . By
the fact that R is I -separated and A is p-torsion free, we first deduce that
Ai = R/(ai ) is p-torsion free for all i . Using the previous case and the natural
isomorphism A ∼= A1 ⊗ · · · ⊗ An , we get the isomorphism

HH∗(A/R) ∼= HH∗(A1/R) ⊗ · · · ⊗ HH∗(An/R) ∼= �A(I/I 2),

where the second isomorphism follows from

�A1((a1)/(a1)
2) ⊗ · · · ⊗ �An ((an)/(an)

2) ∼= �A(I/I 2).

This implies that HH∗(A/R) is p-torsion free and the Tate spectral sequence
forHP(A/R) collapses at the E2-term.We thus get thatHP0(A/R) is p-torsion
free. Moreover, using the natural map
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HP0(A1/R) ⊗ · · · ⊗ HP0(An/R) → HP0(A/R)

and the isomorphism

D(a1)(R) ⊗ · · · ⊗ D(an)(R) ∼= DI (R),

we obtain the map DI (R) → HP0(A/R), which uniquely extends the natural
map R → HP0(A/R). By the same argument as in the previous case, we
deduce that it becomes an isomorphism after taking completion on the source.

For general I , by Zariski descent and the previous case, we first have
that HH∗(A/R) is concentrated on even degrees. It follows that the Tate
spectral sequence for HP(A/R) collapses at the E2-term. Similarly, we get
that HP0(A/R) is p-torsion free and R → HP0(A/R) uniquely extends to
DI (R) → HP0(A/R). Moreover, by Zariski descent and the previous case,
the associated graded map �A(I/I 2) → HH∗(A/R) is an isomorphism. This
concludes the proof. ��
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