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Abstract Let G be the group (GLy x GU(1))/GL; over a totally real field
F, and let 2 be a Hida family for G. Revisiting a construction of Howard
and Fouquet, we construct an explicit section & of a sheaf of Selmer groups
over 2. We show, answering a question of Howard, that & is a universal
Heegner class, in the sense that it interpolates geometrically defined Heegner
classes at all the relevant classical points of .2". We also propose a ‘Bertolini—
Darmon’ conjecture for the leading term of &2 at classical points. We then
prove that the p-adic height of & is given by the cyclotomic derivative of a
p-adic L-function. This formula over 2~ (which is an identity of function-
als on some universal ordinary automorphic representations) specialises at
classical points to all the Gross—Zagier formulas for G that may be expected
from representation-theoretic considerations. Combined with a result of Fou-
quet, the formula implies the p-adic analogue of the Beilinson—Bloch—Kato
conjecture in analytic rank one, for the selfdual motives attached to Hilbert
modular forms and their twists by CM Hecke characters. It also implies one
half of the first example of a non-abelian Iwasawa main conjecture for deriva-
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tives, in 2[F : Q] variables. Other applications include two different generic
non-vanishing results for Heegner classes and p-adic heights.
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1 Introduction and statements of the main results

A beautiful construction of Heegner and Birch, based on the modularity of
elliptic curves and the theory of complex multiplication, attaches to an elliptic
curve A/Q and an imaginary quadratic field £ a point P € A(E). The work of
Gross—Zagier [45] related the height of P to the derivative of the L-function
L'(Ag, 1), with striking applications to the Birch and Swinnerton-Dyer con-
jecture. An analogous result in p-adic coefficients was proved by Perrin-Riou
[84] soon thereafter, if A has good ordinary reduction at the prime p.

The decade following those works saw a pair of similar results, by
Nekovar [78] and Zhang [109], relating Heegner cycles on Kuga—Sato varieties
to (p-adic) L-functions of higher-weight modular forms. We may single out
two major innovations in the approach to Heegner points and Gross—Zagier
formulas since then,! both answering the question of what ‘other’ Heegner
points there are and how they fit together.

The first one starts from the observation by Mazur [73] and Perrin-Riou [85]
that Heegner points should vary p-adically in anticyclotomic families, in the
same way that the L-function of the elliptic curve Afg does; this observation
inspired Howard [57] to prove a generalisation to such families of Perrin-
Riou’s formula. Howard later significantly expanded the scope of Mazur and
Perrin-Riou’s idea by proving that the Kummer classes of Heegner points also
vary in Hida families of modular forms [58]; the question of the relation of the
resulting ‘big’ classes to Heegner cycles was left open.

The second innovation was the observation by Gross [46] that Heegner
points can be viewed as elements of spaces of H'-invariant linear functionals
on an automorphic representation of (G x H)’ (these reductive groups will
be defined below),” so that the tools of representation theory may be brought
in to conceive and prove more general formulas: a programme whose main

! Two other recent ideas that our work does not touch upon are nevertheless too important to be
ignored: the conjecture of Darmon and Guitart—-Madseu—Sengiin that there should exist Heegner
points attached to any quadratic extension of number fields (see [27,48]), and the formulas for
the p-adic logarithms of Heegner points of [8,68].

2 N.B.: the notation G used in the informal abstract differs from the notation of the paper.
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achievement, in complex coefficients, is the work of Yuan—Zhang—Zhang [107]
on Heegner points on Shimura curves.

In this work, we combine those two approaches. We construct Heegner
classes for the Galois representation over a Hida family for (G x H)’, show
that they specialise to (cohomological) Heegner cycles at all classical points,
and prove a formula for their p-adic heights that is universal in the sense that
it specialises to all the p-adic formulas suggested by the framework of Gross.
(The analogous complex Gross—Zagier formulas are not currently known? for
motives of higher weight.) We obtain various applications to the arithmetic of
motives attached to Hilbert modular forms.

In the rest of this first section we state our main theorems, and complete the
discussion of their history.

We begin in Sect. 1.1 by presenting the results concerning the p-adic
Beilinson—Bloch—Kato conjecture (Theorem A); they are applications of the
general p-adic Gross—Zagier formula for a fixed representation, stated as The-
orem B in Sect. 1.2.

In Sect. 1.3 we outline the construction and properties of the universal family
of Heegner classes (Theorem C), referring to the “Bertolini-Darmon” conjec-
ture of Sect. 7.3 for a further study of its classical specialisations. In Sect. 1.4
we state the universal formula of the title (Theorem D); a complementary
‘Waldspurger’ analogue will be proved in Sect. 7.2 (Theorem H).

Finally, in Sect. 1.5 we discuss some further applications: the first non-
abelian example of an Iwasawa main conjecture for derivatives of p-adic L-
functions (Theorem E); and two results on the generic non-vanishing of p-
adic heights and Heegner cycles: one for CM motives (Theorem F), the other
for Hida families containing a rank-0 elliptic curve with split multiplicative
reduction (Theorem G). A further application, to a criterion for certain Bloch—
Kato Selmer groups to be of rank zero, will appear separately.

1.1 The p-adic Beilinson-Bloch—-Kato conjecture in analytic rank 1

The primary motivation for our work comes from the generalisations of the
Birch and Swinnerton-Dyer (BSD) conjecture and its p-adic analogue, as
proposed by Beilinson, Bloch—Kato, and Perrin-Riou [3,11,86]. Recall that
if A/Q is an elliptic curve, (BSD) is equivalent to the following statements.
Denote by ryy and L*(A, 1) the order of vanishing and leading term of L(A, s)
ats = 1. Then L*(A, 1) > 0 and for every prime p,

(a) the Selmer group Sel(V,A) := (l(ir_nn Seln (A)) ®z, Q) has dimension

equal to rap;
(b) the divisible part of III(A)[p°°] vanishes;

3 See however the very recent [87]. (Note added during revision.)
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(¢) the p-adic valuations of L*(A, 1)/ Q24 R4 and |[III(A)[p°]| Hv’(oo cy(A)
are equal.

1.1.1 Selmer groups according to Bloch—Kato and Nekovdr

If E is anumber field and V is a geometric p-adic representation of its Galois
group G g, Bloch and Kato [11] have proposed an analogue

H(E, V)

of the Selmer group of A; it is an L-vector-subspace (where L is the field of
scalars for V) of the first Galois cohomology group of V, consisting of those
classes satisfying certain local conditions. According to the resulting variant
of the conjecture of Beilinson [3], the dimension dim; H } (E, V) should equal

the order of vanishing of the L-function L(V*(1), s) ats = 0.*

Another definition of Selmer groups was proposed by Greenberg when V
satisfies an ordinariness condition at the places above a prime p; specialised to
the cases of interest to us, it recovers the Bloch—Kato Selmer groups. Nekovar
observed that a variation of Greenberg’s definition works well in p-adic fami-
lies, and developed this observation into the theory of Selmer complexes [81],
that provides the foundation for the present work (Sect. 5). For nice p-adic
families of G g-representations, the theory allows to define groups

H}(E, V)
for all i.

1.1.2 The p-adic Beilinson—Bloch—Kato conjecture for Hilbert modular
forms

Our main arithmetic results concern the p-adic analogue of the Beilinson—
Bloch—Kato conjecture for the Galois representations attached to Hilbert
modular forms and their twists by Hecke characters of CM fields.

Fix throughout the rest of this paper a rational prime p. Let F be a totally
real field, let £ be a CM quadratic extension of F', and let

Go := Resp/QGL2, H :=Resg,QGu.

4 Provided V contains no copies of the trivial representation. Of course in general the mero-
morphic continuation of L(V, s) is itself conjectural. Note that when V is self-dual, or E is a
CM field and V is conjugate-self-dual, we have L(V,s) = L(V*(1), s).
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Let L be a finite extension of Q, splitting F. A pair of cohomological weights
for Go and H is a pair of tuples w := (w; (W )o: Fes>1), L = (I; (s)o: FL),
each consisting of [F : Q] + 1 integers of the same parity, such that w, > 2
forallo: F — L. In this paper we will only consider cohomological weights
and therefore omit the adjective ‘cohomological’. By a “Hilbert modular form
over L of weight w” (respectively a “Hecke character of E over L of weight [”)
we mean a cuspidal automorphic representation of Gg(A) (respectively H(A))
over L of weight w (respectively weight /) as defined in Definition 2.4.1 below.

If m¢ is a Hilbert modular form and x a Hecke character over L, we denote
by Iy = mp ® x the associated representation of Gy x H. We denote by Vi,
and V, the corresponding 2- (respectively 1-) dimensional representations of
G F (respectively G ), normalised so that L(Vy,,s) = L(s + 1/2, 7p), and
we let

V= Vn, = Va6 ® Vy.

Let wy, be the central character of 7o and let w, = x| Fl: If wzywy, =1,
then V is conjugate-self-dual and pure of weight —1, and the epsilon factor
e(V) e {£1}. .

LetI'p := F{o/F* ﬁﬁ’ * (identified with the Galois group of the maximal
abelian extension of F' unramified outside p by class field theory), and let

&z/1 = Spec (Z,[T'r]L).

(We will also simply write &7 for &z,q,.) Suppose that 7y is ordinary in
the sense of Definition 2.4.3; equivalently, for all v|p the associated G f,-
representation Vy, , reduces nontrivially as

0— V;O’U = Vag, = Vg = 0,
and G, acts on Vj;gvv by the product of the cyclotomic character xcyc and a

character o) valued in p-adic units. We may attach to V' a meromorphic p-adic
L-function

Ly (Virg, ), 8) € X (E7/1)

where the variable s € &7,; may be thought of as a p-adic character of I'fr;
we use the synonym yx r ¢ when we want to emphasise such nature of s, and we
denote by “s = 0” the trivial character xr o = 1.°> More precisely, working in

5 Other authors consider p-adic L-functions of a variable s’ € Z p- In our language this
corresponds to restricting .2, (V, s) along the embedding Z, = SpecZ, [[ZpﬂQp Qp) —

&7/ Qp), D= XCS;C’F where xcyc, p =(1.8.1) is the cyclotomic character of F.
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terms of the multivariable function .2, (¥ %) of Theorem 1.4.1 below, we may
define £, (V(x,4)) as the restriction

Ly (Vizy)s 8) = Lp (P () (1.1.1)

where z; corresponds to the family of representations V|G, ® X XF.s|G-
Ife(V) = —1,then Z),(V(z, ), 0) = 0 and we denote by -2, (V(r, ), 0) =

d-Zy(Vizy 1)) (0) € Tobz = Tr®L its first derivative.

Theorem A Let g be a Hilbert modular form over L of weight w, and let x

be a Hecke character of E over L of weight . Let V := VG, ® Vy . Suppose
that:

(wWt) |ls] < wg forallo: F — L;
(sd) wrywy, =1 (which implies w +1 = 0);

(&) e(V)=—-1;
(ord) mg is ordinary;
(n-exc) V is not exceptional: for no place w|v|p of E is V| := ViowlGp, ®

Xw the trivial representation.

1. We have
L) (V). 0) # 0 = dim; H{(E, V) > 1,

and we can exhibit an explicit nonzero element ofﬁ1 (E, V)= H}(E, V),
whose p-adic height (cf. Proposition 5.3.3) is also non-zero.

2. Let T C V be a stable lattice. If.,i”]/,(V(n,X), 0) # 0 and moreover the
conditions of [41, Theorem B.(i)] are satisfied, then:
(a) we have

dim; H{(E, V) =1

(b) let Ry € ﬁLé)Zpr be the regulator of the height pairing (1.2.12) on
ﬁ}(E, T) x ﬁ}(E, T*(1)). Then

L (Vix)»0) =z, Ry - 1HF(E, T)iors|

in LT .
In the last formula we have used the following suggestive notation.

Notation For a domain A with fraction field K and two A-submodulesm |, m»
of a K-vector space M we write m| >4 m if m; C my; the notation is
extended to the case where some m; is an element of M, in which case we
interpret it as Am; .
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Part 1 will be an immediate consequence of Theorem B, the Jacquet—
Langlands correspondence, and the observation following (1.2.5) below. For
a list of previous results in the direction of part 1 we refer to the discussion
following Theorem B. Let us note, for now, that an analogue of this result in
complex coefficients is not known.

Part 2 follows from invoking the results of Fouquetin [41], that generalise the
bounds on Tate—Shafarevich groups of elliptic curves obtained by Kolyvagin
using the methods of Euler systems.

Remark 1.1.1 Condition (n-exc) guarantees that .2, (V(z, ), 5) has no excep-
tional zeros at s = 0, and it is equivalent to the identity ! (E V) =

H (E, V). We will also equivalently say that IT is not exceptlonal. For a
characterisation of this condition, see Lemma 6.4.6.

Remark 1.1.2 In the simplest case where F' = Q, g is a modular form with
rational Fourier coefficients of weight w, = 2, and y = 1, the representation
Vo = VpA is the rational p-adic Tate module of an elliptic curve A/Q. In this
caseH (E, V) =Sel(V,Ag),andletting T = T, Ag, the group HZ(E T)tors
equals [ 12 (1.36)] the quotient of ITI(Ag)[p°] by its divisible submodule
HI(AE) p-div-

The group II(A g) p-div, conjecturally 0, measures the failure of Sel(V, Ag)
to be generated by the classes of points in A(E). We do not address in this
paper the analogous conjecture from [11] that H }(E , V) should be generated
by the classes of algebraic cycles. Nevertheless our construction of a genera-
tor is sufficiently geometric to provide a good starting point to establish this
conjecture, cf. Remark 6.2.2.

1.1.3 A variant for selfdual Hilbert modular forms

Suppose that 77 is an ordinary Hilbert modular form, w,, = 1 (so that w = 0),
and &(Vz,) = —1. Assume that either [ F' : Q] is odd or there is a place v { poo
of F such that 7 , is not a principal series. Suppose that for no v|p is mg y
the Steinberg representation. Let L ,(Vy,, s) be the p-adic L-function of Vg,
constructed in [30]. If L;,(V,TO, 0) # 0, then the conclusions (1) and (2a) of
the previous theorem hold with (E, V') replaced by (F, Vy,). (This is proved
by a standard argument based on the choice of a suitable auxiliary E to reduce
to the previous theorem.) A similar remark (at least for part (1)) applies when
7o has CM by E, cf. the proof of Theorem F in Sect. 7.1.4

1.1.4 Addendum to the historical overview: higher-rank cases

The general overview sketched in our opening page ignored a third important
theme: Gross’s framework has been generalised in [42] to study special cycles
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attached to other pairs of groups (G, H). Several works have explored the
consequences towards the Beilinson—-Bloch—Kato conjecture of the possible
non-vanishing of those cycles, most notably [69]. On the other hand, non-
vanishing criteria in terms of L-functions have been obtained in a considerably
more limited set of cases, mostly related to triple-product L-functions [9, 10,
28,106,108].% The relation with cyclotomic p-adic L-functions has not been
studied beyond Heegner cycles.

1.2 The p-adic Gross—Zagier formula for arbitrary weight

Theorem A, like analogous previous results [31,32,35,78,84,96], is an appli-
cation of an explicit formula for the p-adic heights of a certain Selmer class
(here rather a collection of classes). When the weights are trivial, that is
w = (0;2,...,2))and [ = (0; (0, ...,0)), this is the class of a Heegner
0-cycle coming from CM points on quaternionic Shimura curves; this is the
case studied in [32,35], and earlier in complex coefficients by Yuan—Zhang—
Zhang [107]. In general, it is the class of a 0-cycle supported at CM points,
with coefficients in a local system corresponding to the weight of the repre-
sentation. The specific choice of the (tower of) Shimura curves is dictated by
the local root numbers of V, see the discussion preceding Definition 1.2.1.

1.2.1 Algebraic groups and Shimura varieties

Let B be a quaternion algebra over Fp (where A denotes the adeles of Q)
with ramification set ¥ U {v]|oo} satisfying |X| = [F : Q] — 1 (mod 2).
Then G(A) := B* is not the points of an algebraic group ‘G’ over Q, but
we will still find convenient to use this suggestive notation and refer to G
as an incoherent algebraic group over Q (see Sect. 2.1.1 for a more formal
treatment). Let H = Resg @G, as above, and let Z := Res /Gy, that admits
natural central embeddings in G and H.

The list of (coherent or incoherent) groups of interest in this paper, often
denoted collectively by G, is

G, H, GxH, (GxH):=(GxH)/Z, H :=H/Z, (1.2.1)

% In arelated context, see also the very recent breakthrough of Li-Liu [66]. (Note added during
revision.)
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where Z is embedded diagonally in the product group.” We suppose that for
every v € X, E,/F, is nonsplit. Then there is unique B*-conjugacy class
of Fa-embeddings Ex < B, of which we fix one. It induces an embedding
e: H— G.

To the above groups and suitable Shimura data (Sect. 2.3.1), we asso-
ciate corresponding towers of compactified Shimura varieties X, respectively
denoted

X/F, Y/E, X XF Y/E, Z/E, Y//E' (1.2.2)

They are curves except for Y, Y’ that have dimension 0. The embedding e
induces a diagonal embedding H' < (G x H)’, hence a morphism of Shimura
varieties

e Y — Z.
1.2.2  p-Adic automorphic representations

It is more natural to parametrise “cohomological automorphic representations
over a p-adic field L” of a group G, by irreducible algebraic representations
W of G,.%

Let G4 00 be G4(Q)) with the Zariski topology (and for later purposes let
G+, p := G4(Q)) with the p-adic topology, G := G ) X G« o0). We redefine
throughout this work

G:(A) := G*(AOO) X Gy, 00-

Let W be an (algebraic) representation of G o, over L, and let #  be the
corresponding étale local system on the tower X,. Then we define a (cuspidal,
cohomological) automorphic representation of G.(A) over L of weight W to
be a representation

N=I*QWw

7 In fact, the (incoherent) group that truly underlies our constructions is (G xz H) =
{(g,h)|vg(g) = vu(h)} (where vo: ? — Z arises from the reduced norm map of B (for
? = G) or from the norm of E/F (for ? = H). That is, the universal Heegner class and the
other associated objects described below descend to the ordinary eigenvariety for (G xz H)’
(a quotient of the one for (G x H)’). Nevertheless, for the sake of simplicity we will content
ourselves with working with (G x H)'.

8 See Definition 2.4.1: the W/L of interest to us are in bijection with (finite) G -orbits
of cohomological ‘numerical’ weights as defined above. From now on all numerical or
representation-theoretic weights will be tacitly understood to be cohomological.
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of G4 (A) occurring in H®(X « B #V)Y® W.? (Here and in the rest of the paper,
groups and Hecke algebras act on Shimura varieties and their homology on
the right, on cohomology and on automorphic forms on the left. Left and right
algebraic representations W are identified via w.g := g~ '.w.)

1.2.3 Automorphic and Galois representations

Let IT = 7 ® x be a cuspidal automorphic representation of (G x H)'(A) over
L of weight W = Wg ® Wy. Let V = Vp = Vy 6, ® V, be the associated
G g-representation.

For a smooth proper variety Z’ of dimension d over a characteristic-zero
field F’ and a p-adic local system #”, define

H(Z', W) = B2, 7 (@)

forall 0 < i < 2d.Foreachlevel K C (G x H)(A®),let Zg := Zg X Spec E
Spec E. We use the notation

Hi(Zx, W) :=H{(Zxk, W)@ W"

and similarly for the other Shimura varieties over F', E, E under consideration.
Thanks to work of Carayol we can construct an injection (an isomorphism
unless V is decomposable) of (G x H)'(A)-representations

IT<— li_n)lHom L[GE](Hl(iK’ W), Vn). (1.2.3)
K

1.2.4 Heegner cycles

Suppose that W satisfies (wt), then Whe =~ Wa, is 1-dimensional, and ¢’
induces a canonical system of maps

Ho(Yy,, L) = Ho(Zg, #)

forall V' c H'(A*°)N K. The image Ay £ € Ho(Zg, #) of the normalised
fundamental class

Yyl =1Y'(E)|™'- ) [yl elimHo(Yy, L)
yeY'(E) V'

is well-defined and (after a modification if W is trivial) belongs to the kernel
Ho(Zg, #)oofHo(Zg, #') — Ho(Zk, #'). The images of AC‘))Vafoo under the

9 This approach is inspired by the work of Emerton [37].
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Abel-Jacobi maps AJ: Hy(Zx, #)o — H'(E,H1(Zg, #')) are compatible
under pushforward along the tower Zk and invariant under the H'(A)-action,
hence they define an element

13 o : 1 2 H'(A)
Py = limAJ(A}, ) € 1%111 (E,H,(Zy, #)H' )

Via (1.2.3), Py defines an H'(A)-invariant functional
Pn: My, — H'(Gg, Vi), (1.2.4)

whose image should lie in H}(E, Vi) € HY(E, Vi) (see Remark 6.2.2 for a
stronger conjecture). We show in Proposition 6.4.7 that this is the case if B,
is split and IT is ordinary and not exceptional, which we define to mean that
B, is split and the Jacquet-Langlands transfer Iy of IT to Go x H (which is
thus the ‘identity’ at p) satisfies those properties.

Our formula will give a criterion for the nonvanishing of Pry.

1.2.5 Multiplicity one
Representation theory provides a necessary condition. The space
()" H &) = Hom gy (a) (T, L)

is known, by a theorem of Waldspurger, Tunnell, and Saito [90,102], to be
nonzero if and only if the following condition is satisfied for all v:

(¢y) Define €(B,) := +1 (respectively —1) if B, is split (respectively nonsplit).
Let 8(Vv) = l_[w|v S(Vll))9 XU(_I) = Hw|v Xll)(_l)a then

e (V) i= e(Vy) xo (= Diu(—De(By) = +1. (1.2.5)
If this is the case, (H)*’H/(A) is 1-dimensional and moreover the global root
number £(V) = —1. Conversely, if V is as in Theorem A and in particular sat-
isfies (V) = —1, there exists a unique incoherent totally definite quaternion

algebra B verifying (&y).

The conditions (&,) for a finite v generalise the classical “Heegner condi-
tion”. For v| p, if  is ordinary the condition (&,) is satisfied unless v is nonsplit
in E and 7 is exceptional at v (Lemma 6.4.6). The condition (£4,) is equivalent
to (wt).

Definition 1.2.1 We say that ITis locally distinguished by H', or simply locally
distinguished, if it satisfies conditions (&,) for all v.
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1.2.6 Local toric periods

Assume that IT is locally distinguished, and let ITY denote the contragredient
representation of I1. Then we know an explicit a generator of

H*,H’(A) ® (HV)*,H/(A) (1.2.6)

as a product of local pairings, which we now define. The pair P ® Prv will
be measured against this generator.

For v afinite place of F, let [T, be the local component of I'1, a representation
of B x ES)/F) D H), := E)/F);letdt, be a Haar measure on H,. For
v = 00, let [Ioo = W and let dt, be a formal symbol synonymous with a

constant vol(H/, dts) € L. In all cases, let Hﬁ’H” := Hom g (I1y, L) and
let (, ), be an invariant pairing on IT, ® IT,.

Let V, (respectively Vy ;) be the restriction to G g, 1= ]_[w|v GE.y (respec-
tively G r,) of the Galois representation associated with IT (respectively ) if
v is finite, and the Hodge structure associated with W (reps. Wg) if v = oc.
Let us also introduce the convenient notation

“Virow = (Ve ® Iz x0) © ad(Ve)(1)"

(to be thought of as referring to a ‘virtual motive’).
Let n: Fy /F* — {£1} be the character associated with E/F, and let

g(v(rr,x),v’ 0) := e L.

Crw(2)L(Vy, 0) 1 if v is finite
L(1,ny)L(ad(Vy ), 1) a FQ jfy =00

(1.2.7)
Then

Qv,(,)u,dtv(fl,v, f2,v) = g(v(n,x),v» 0)_1 / (Hv(t)fl,m fZ,v)v dtv
H;

is an explicit generator of Hi’H” QL (H:}/)*’Hlﬁ. Here for v 1 oo the integral is
absolutely convergent (after making any choice of L < C), and for v = o0
we understand
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/ Moo (N)dloo 1= VOI(H},, dloo) - prr : W — Wy = Wl
Hi

where py;_ is the natural projection.
Given f3 ,, fay € I, ® IT) such that (f3 .y, f4.4)y # 0O, the quantity

0 (fl,v ® fz,u> — Qv.0van (10, f20)
vedty f3,v ® f4,v ' (f3,va f4,v)v

(1.2.8)

is independent of the choice of (, ),; it equals vol(& E’v /0 ;’v, dt,) if all the
data are unramified.
Fix a choice of measures dt, such that for dr =[], dt,,

vol(H' (Q)\H'(A), dr) := vol(H'(Q)\H'(A*°), ]_[v)[oo dty)-vol(H/y, dts) = 1.

(1.2.9)
Then we define for fi € My, fo € Iy, f3 € II, f4 € IV such that

Hv(f3,v’ f4,U)U # 0:
neny f10® fru
¢ (f3 ® f4) o l:[ Qut <f3,v ® f4,v) '

1.2.7 Global pairings and p-adic heights

Let V' := Vppv. Fix a Galois-equivariant pairing

VeV — L(1). (1.2.10)
Poincaré duality provides a canonical Galois- and Hecke- equivariant pairing
Hi(Zx, ")QH(Zk, #") — L(1).Via(1.2.3) and (1.2.10), it induces dual

pairings (, )ﬁ : ¥ ®MY-X — L forall K. Letting L be the Hodge bundle
on Zg, the following pairing ((4.1.7) in the text) is well defined:

(. )n :=lim (dim W - deg(Lg) ™' - (, )px: @MY — L.

On the other hand, if 7 is ordinary the restriction V,, of V to Gg,,, w|p, is
reducible

0—> V5 —V,—>V, -0, (1.2.11)
and there is an analogous reduction for V* such that V,/ and VT are exact
orthogonal of each other under (1.2.10). These data allow to define a height

pairing
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hy: H{(E,V)® H{(E, V') > L&TF (1.2.12)

on Nekovéi’s Selmer groups as in Proposition 5.3.3. When W is trivial, the
representation V = V,Agp ® x is a factor of the Tate module of an abelian
variety, and (under (n-exc)) the pairing hy coincides with all other p-adic
height pairings on abelian varieties defined in the literature: see [32] for a
review.

1.2.8 The formula

We can now state the p-adic Gross—Zagier formula for V.

Theorem B Let [1 = 7w ® x be an ordinary, locally distinguished, non-
exceptional automorphic representation of (G x H)'(A) over L. Let V = V7.

The image of Py lies in H}(E, V), and for all fi € Ny, f2 € ny, ,
f3 € I, f4 € 1Y such that (f3, fa)rn # 0, we have

hy (Pri(f1), Pnv(f2))
(f3’ f4)I‘[

= epoo(Ver0) ™ 2y Vi, 0) - 0 (M) :

3® fa

where ep00(Vir,y)) € L™ is the p-interpolation factor for £,(Viz y),S)
defined in (1.4.6) below.

When G = GLy/q, V is crystalline at p, p splits in E, x is unramified and
the f; are newforms, a version of this result was proved by Perrin-Riou [84]
when W is trivial, and by Nekovar [78] and Shnidman [96] when W has even
weights. The general case with trivial W was proved in [32,35].

Remark 1.2.2 Establishing Gross—Zagier formulas in this generality has
proven useful for arithmetic applications, such as those in [14,15,100] and
Theorem F below.

Explicit versions of the formula can be obtained by evaluating the functional
Q at well-chosen f;. This is a local problem, solved in [18].

Remark 1.2.3 For avariant of Theorem B that is valid in the exceptional case as
well, see Theorem B °™. That variant is often trivially 0 = 0 in the exceptional
case, but not always, and indeed Remark 7.3.4 sketches a new proof of the
Greenberg—Stevens theorem [43] based on it. For a further discussion going
beyond any trivial or non-trivial vanishing, see Remark 1.3.3 and Sect. 7.3.

1.3 The universal Heegner classes

We explain the interpolation of the Heegner cycles Py as IT varies over a Hida
family for (G x H)'.
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Suppose from now on that B, is split and fix an isomorphism Gq, =
Resr,/q,GLa, giving amodel of G (hence (G x H)")overZ,). Welet Ng o :=

(1 ﬁ‘;’f’) C G(Qp) and Ny be the image of Ng in (G x H);,. Finally we
denote by U, the usual operator in the Iwahori—-Hecke algebra of (G x H)',
and by U its product with (7 ), 1) € (G x H)).

For a localisation M of a finite Z,-module M° on which the operator U

acts (on the left or the right), we denote by M°™ the image of M under Hida’s
ordinary projector

d . !
™" =1lim U .
1.3.1 Hida families for (G x H)’

Pick an arbitrary (G x H)'(Z,)-stable lattice W° C W, yieding a sub-local
system #° C # . Then we define, for any K = K” K, with K, D Ny,

My, x = (H' Zx, ")H)@W)N)™, Mwk =My, (®g, L. (1.3.1)

Let K? C (G x H)'(AP™) be an open compact subgroup. Consider the
ordinary completed homology of Zg»

Mgp = ( I(H_n Mlo(pr) ®Zp Qp»
Kp»DNo

where My =(1.3.1) with W the trivial representation, and the limit is over
K such that K, D Ny (“level Fll(poo)”). By the work of Hida, Mk»r is a
finite flat module over a certain weight algebra A = Agr >~ Q,[A] Rz,
Z,[T,..., T2[F:Q]+1+8p.,,]] where A is a finite group and 8, , is the Leopoldt
defect of F.

Let Ti?,},l:gj C End 5 (Mg»r) be the image of the algebra generated by the
spherical Hecke operators and the operators Uy, v|p. The ‘ordinary eigenva-
riety’

& = £ = Spec T?B:gﬁ
contains a dense subset £°™! (more precisely a reduced 0-dimensional ind-
subscheme) of regular points, in bijection with the set of G q,-orbits of those

ordinary automorphic representations IT of (G x H)" over Q,, such that k" £
0.
Let us fix an irreducible component

2 cex
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that is a Hida family for (G x H)'. We let ' := 2" n &ord-el,

Definition 1.3.1 A Hida family .2 for (G x H)’ is said to be locally distin-
guished (by H') if it satisfies the conditions

(e,) for every (equivalently,'® one) classical point z € 2~ (of weight satisfy-
ing (wt)), the Galois representation ¥; attached to the representation I,
satisfies (&)

for all v 1 poo.

1.3.2 Sheaves on X~

The Hida family 2 comes with a coherent sheaf .#k» corresponding to Mg »;
moreover in fact for each K?" C K? the module M s gives rise to a coherent
O 9--module

.///1(1?/

with & 4 -linear Hecke- and Galois actions. Fix an arbitrary K?' C K7, ‘suffi-
ciently large’ at the places in X.!! Let S be a finite set of primes, not containing
those above p, such that all data G, H, K”’ are unramified outside Sp. Let
G, sp be the Galois group of the maximal extension of E unramified outside
Sp. We prove in the text that the following statements are true up to replacing
Z by an open subset containing .2 °!:

— there exists a locally free sheaf 7" of rank 2 with a Gg sp-action, such
that for all z € 2", the representation ¥, is associated with IT; via the
Langlands correspondence;

— for each w|p there is an exact sequence of & 2°[G g, ]-modules

0— V.5 -V, — ¥, —0, (1.3.2)

where the ”f/wi are line bundles over .2, specialising to (1.2.11) at all
ze 2

— assume from now on that 2 is locally distinguished. There is a locally
free 0 9 -module

K?’ ord
HH/E

interpolating the spaces of (Ey / Fy)-coinvariants, K ”’-invariants of TT"
forz € 27

10 By [34, Corollary 5.3.3].

1 In the sense that for each z € 27!, v € %, the finite-dimensional constituent [T,y of T  is
fixed by K.
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— we have a map of Hecke modules over &' o

KP’ ord H!
HH/: "% _ Hom ﬁ,%[GE,Sp](j/KPE” Y (1.3.3)

whose specialisations over 2" are deduced by (1.2.3).
1.3.3 The universal Heegner class

We construct in the appendix (Proposition A.2.4) an operator y,‘;r,d, that is the
key to the interpolation of Heegner cycles. It is a limit of of Hecke operators

at poo, intertwining toric and ordinary parts:

ord
> Yy —
HiZgr, )T 5 Wy (Zgo, W) = MG,

HKP Vi K?ord

Consider the class
Py = Py kv vt € H (GE sp. My kr1).

It is invariant under H' (A”°°), hence:

— as K?/ varies, it defines an H'(A”°°)-invariant functional
P = Py oy o — HY(E, Vi) (1.3.4)

and in fact, as we shall prove, valued in H } (E, V).
— restricting (without loss of generality as we will see in a moment) to the
case where W is trivial, its localisation over 2~ defines a global section

:@Kp/ of HI(GE,SP, .//II{-II,/)

2

Using Nekovif’s theory of Selmer complexes we show that the universal

class Pgpr is a section of a sheaf of Selmer groups H } (E, # glf‘,), where
the subscript f signifies a local condition at p coming from (1.3.2), and for
Selmer groups we use E in place of G g, for short. Then by (1.3.3) the class
P defines a map of &2 -modules

p/, d ~
Pyrr: Ty " — HY(E. V).

When G = GL5/q, the value of Zk s on a family of newforms is the class
originally defined by Howard in [58]. (The statement that the fibre of Pk, at
all classical points lands in the Selmer group is in new even in the context of
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[58].) There, Howard asked whether his class interpolates Heegner cycles at
all classical points of 2. The first part of the following theorem summarises
the results described above. The second part, whose proof is simple and direct,
provides an affirmative answer to the generalisation of Howard’s question.'?

Theorem C Let 2" be a locally distinguished Hida family for (G x H)'. There
exist an open subset 2 C % containing 2" and a map

P n’éi’"’rd —~ HNGE.sp. V)

of sheaves over 2/, satisfying the following properties:

1. P is invariant under the action of the away-from-pX.-Hecke algebra
of H;
2. for all z € X corresponding to a representation T1, satisfying (wt),
K/ ord
denote by Pl‘_’[rz‘]}Kp, the restriction of (1.3.4) to (HZ)H[/; or - then

d
y[{l’/‘z = Pl(_)[I;,KP’

under the natural map H (G sp, V), = H' (G sp, Vi)

An answer to Howard’s question in its original context was earlier given by
Castella [22,23] by an indirect method, under the assumption that p splits in
E.

Remark 1.3.2 It follows from the results of [26] that, under mild conditions,
the class &2 is non-torsion over 2, cf. the discussion after [41, Theorem B].

Remark 1.3.3 Theorem C is far from being the last word on Z7: first, the class
& may vanish at some classical points; second, we can consider its specialisa-
tion in Nekovéi’s Selmer group H } (E, Vn1,), which equals H }(E , Vr1.) when
z is not exceptional but is larger otherwise. In Sect. 7.3, we address both prob-
lems by proposing a conjecture for the order of vanishing and leading term of
& at any classical point, generalising conjectures by Bertolini—-Darmon. The
same Conjecture Pf will also give a prediction for the leading terms of uni-
versal toric periods on distinguished Hida families for coherent quaternionic
groups, discussed in Sect. 7.2, and in that case we will describe some new
evidence in higher rank coming from the ‘plectic’ world via [39].

12 The question in [58] was phrased in terms of the Abel-Jacobi classes of Heegner cycles in a
suitable Chow group, defined in that case in [78]; these classes are identical to the Prj(f) from
(1.2.4): see [78, § 1.2].
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1.4 The universal formula

We first recall the p-adic L-function constructed in [36], then state our formula
for the p-adic height of Pk .

At times we refer to the main body of the paper for the precise definition of
some of the objects.

1.4.1 Dualities over Hida families

The space &° is endowed with an involution ¢ corresponding to IT, > .
Fix alocally distinguished Hida family .2"; then the constructions of Sect. 1.3
can be performed over Z". Denoting by (—)* the pullback under ¢ of an object
over 2, we have dualities

VRV — Ox(1) (1.4.1)

interpolating (1.2.10). These data, together with their deformation to a Hida
family 2% for G x H, allow to define a height pairing as in Proposition 5.3.4,

hype: HUE. V) ®p, HHE. V") — Ny s = O &Tp. (142)

As usual after possibly restricting to an open subset containing .2, we con-
struct:

— pairings

KP' ord KP' ord
((7 )) HH)/: o ®ﬁ% (HH)/: or )L — ﬁ%"

interpolating the poo-modification ( , )‘l’-[rd =@4.1.8)of ,);
— 0 ,-module maps

. K?’ ord K?' ord, K?' ord K? ord, i\ x,—1 .
2: (HH)’: ®5} HH/E )®ﬁ,’,} (HH/Z ®@} HH/E ) — Ky

interpolating the poo-modification Q%4 = (4.3.3) of Q. Here, #5- is the
sheaf of fractions of &' and the superscript ‘x, —1’ denotes the subgroup

of those f3 ® fi satisfying ((f3, f14)) # 0 and suggests the ‘denominator’
invariance of the pairing in the last two variables.

1.4.2 The p-adic L-function

Let cfoﬁ ord . _ éaGO(r)‘iH be the ordinary eigenvariety for Gy x H (see [50,51]);
for appropriate choices of tame levels, there is a map ¢ : é"ger — é”c‘}’(r)iH,
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which is a closed immersion onto a union of irreducible components. Let
%ﬁ = (2% c &9 Werecall the p-adic L-function on 2 constructed
in [36].

Let %ﬁ’CI = (2% ¢ ,%”Ot be the ind-scheme of classical points.
If (x,y) € %ﬁ’CI(C) is a geometric point corresponding to a closed point
(x0, Yo) € %ﬁ’CI together with an embedding ¢: Q, (xo, yo) < C, we denote

Tx = Ty, Xy = Xy, Which are complex automorphic representations of
Go(A) and H(A) respectively. We then denote V&O’yo) := Wiy 1y,) and let
g _ f
LV O =]]eLWVi )00

v

be the product (defined by analytic continuation) of all of the factors (1.2.7).

Recall that if W is a complex Weil-Deligne representation of the Weil
group of a local field F, and ¢,: F, — C* is a nontrivial character, the
inverse Deligne—Langlands y-factor is'3

y (W, y,) ™" = LW)/e(W, $,) L(W*(1)), (1.4.3)

and 1//E,w = t/lv o TrEu,/Fv~

If 7 = 7y, X = Xy, are as just above (with weights w = w, ., [ = [),
let ad(Vy,,)(1)™ := Hom (V,,, V). Let ¥ = [, ¥»: F\Ar — C* be
the standard additive character such that Yoo() = €2 TFo/R0); Jet Yy =
]_[w VEw = ¥ oTra,/a,. For a place v|p of F, let d, be a generator of the

different ideal of F),, and define

oo v OVDV i ® Viw)s WE W)™

y (WD(ad (V) (D) T, ¥r) 7!
LV g0 (1.4.4)

vV, z,) = Idy| 712

where WD is the functor from potentially semistable Galois representations
to complex Weil-Deligne representations of [38]. Finally, we define

eoo(v(n‘,x‘)) = l'(w+l)[F1Q]’

epoo (Vi) = oo (Vimt x1)) - Hev(v(rr‘,x‘))- (1.4.5)
vlp

13 The normalisations of L- and e-factors are as in [98].
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Atleastif w + [ = 0, these belong to tQ,(xo, yo), and we may define

epoo (Vi) =t epoc(Virt, x1)- (14.6)
The following is the main theorem of [36].

Theorem 1.4.1 There exists a meromorphic function
Lp(Vh) € H(XF)

whose polar locus 9 does not intersect ,%”OCI, uniquely characterised by the
following property.

Foreachz = (x,y) € %ﬂ’CI(C) — 9(C) corresponding to an automorphic
representation 7 ® Xy of Go(A) x H(A) of weight (w,, L) satisfying the
conditions

lyol <Wyo, |wy+Ily| <wio—Ilys|—2 forallo: F — C,
we have
Ly (X, ) = epoo(Vig, 1)+ L Vime ) 0)- (1.4.7)
1.4.3 Main theorem

Under the condition of local distinction of 2", the function .2, (¥ 1) vanishes
. . * _ 2 ~ S
identically on Zj. Let Ji/%/%n =I9/ J% ®ﬁ% 4 Oz, = 02, F be the

conormal sheaf and let

ELp () i=dy 2 lp(VF) € H (20T F = H (28T r

be the image of .Zp(”f/u).

Theorem D Let 2 be a locally distinguished Hida family for (G x H)'.
Abbreviate TIV := Hgf ’Ord’(‘), O =0y, X = Hy.
)
Then there is an open subset ' C % containing 2" such that all of the
above constructions can be made over X', and

hy 1y (P (f1), Z'(f2))
((f3, f9)

:dﬁfp(”//n)'o@<fl ®f2>’

3® fa

an equality of Ji/(f@zpl“p-valued O-linear functionals on (I1 Q¢ I1") ® gx
(M@ M)~
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The formula of the theorem in fact also holds at exceptional points z € 2!,
see Theorem B °r4.

1.5 Applications

We turn to some arithmetic applications of the main theorems (in addition to
Theorem A).

1.5.1 On the Iwasawa Main Conjecture for derivatives

We use the notation introduced after Theorem A.

Theorem E Ler 2" be a locally distinguished Hida family for (G x H)', sat-
isfying the further conditions of [41, Theorem B.(iii)]. Let 2" C 2 be the
open subset of Theorem D; up to shrinking 2’ we may assume it is a regular
scheme. Let Z# C O 2 ®QT F be the regulator of the height pairing (1.4.2) over
2. Then

& L,(V) 20, % - charg,, (H}HE. V)0, tors).

The proof, based on Theorem D and [41, Theorem B.(iii)], is virtually
identical to that of [32, Theorem D], based on Theorem C.4 ibid. and [41,
Theorem B.(i1)].

1.5.2 Generic non-vanishing of p-adic heights for self-dual CM motives

Itis conjectured that cyclotomic p-adic height pairings are non-vanishing (and
even non-degenerate). Results in this direction have been quite rare. The next
theorem generalises a variant of the main theorem of [14], to which we refer

for a discussion of the background.
Consider the set of locally algebraic Hecke characters

Xt EX\EQ — Qp()™.
satisfying the special self-duality condition
Xjpg =1 Xeye,F- (1.5.1)
This is precisely the set of classical points of the closed subspace

ord,sd ord .__ ord
syt ceft = |J &V
VPCH(AP)
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cut out by the condition (1.5.1) on continuous characters. The space é”l_(;rd’Sd
is a torsor for é"}‘;/rd; in particular it is smooth of dimension [F : Q]. Let

Y C gﬁrd’m be an irreducible component; then there is a sign € € {31} such
that for all x € !, g(1, Xx) = €; we then say that %! has type €.

Denote by h; = hg/hp the relative class number of E/F and by D the
absolute discriminant of F.

Theorem F Let % C éﬁrd’Sd be an irreducible component of type —1. Sup-
pose that all primes v|p of F split in E, the extension E/F is ramified, and
P )[ 2D th.

Then, there exists a non-empty open subset %' C % such that for all
y e ZNNY’ the Selmer group H}(E, Xy) is nonzero and the p-adic height
pairing

h: HE{(E, x,) ® Hi(E, x; ' (1)) > Q,(»)®T'r
is non-vanishing.

1.5.3 Non-vanishing of universal Heegner classes along some classical
Hida families

Part 3 of the following theorem is also a contribution to the non-vanishing
conjecture for p-adic heights. Parts 1 and 2 provide, to the best of the author’s
knowledge, the first piece of theoretical evidence towards conjectures of Green-
berg [44] and Howard [58].

Theorem G Let 2 be a Hida family for PGL;,q, and let %ﬁ be the Hida

family for GLy,q containing Zo. Denote by ¥, ”//0: the associated rank-2
representations of Gq.

Suppose that Zo contains a point corresponding to an elliptic curve A with
split multiplicative reduction at p, satisfying L(A, 1) # 0. Then:

L. a universal Heegner class &y is nonvanishing along Zo;
2. the Selmer group H )1, (Q, 0) has generic rank 1, generated by Py,

3. the p-adic height pairing h Yo/ 9" is non-vanishing.
0

1.6 Outline of the proofs

The basic strategy to prove the main results is very simple. When W is trivial,
Theorem B was proved in [32,35] under some technical assumptions. As the
set of points of trivial weight in 2" satisfying those assumptions is still
dense in 2, this suffices to deduce Theorem D once its terms are defined;
by a multiplicity-one argument and an explicit local computation, this in turn
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G

Fig. 1 An illustration of the proof of Theorems B and D. Each of the (infinitely many)
floors corresponds to a representation IT as in Theorem B, each apartment to a quadruple
f = (f1, f2, f3, fa), and the building to a Hida family. A light being on indicates that the
corresponding Gross—Zagier formula is proven. On ‘most’ floors corresponding to a IT of trivial
weight, all lights are on by [32,35]. In this paper, we construct the lift corresponding to the
formula of Theorem D, with doors (interpolation statements) onto special apartments in each
floor (the formulas of Theorem B ©'d in Sect. 7.1.1, equivalent to Theorem B for certain special
quadruples f). As soon as the lights in a dense set of floors in the building are on, the light in the
lift is on; this allows to turn on the light in all the special apartments. Finally, the multiplicity-one
principle allows to propagate the electricity among different apartments on the same floor

implies Theorem B for all W. Much of this work is therefore an exercise in
p-adic interpolation to construct the objects of Sects. 1.3—1.4; the table of
contents, and the internal references given so far, should suffice to guide the
reader through the paper.
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The proof of Theorem C is completed in Sect. 6.4.3 and the proof of Theo-
rems B, D is completed in Sect. 7.1, where we also prove Theorem F. Theorem
G is proved at the end of Sect. 7.3 using a known case of the conjecture
made there. Constructions and calculations of a local nature are gathered in
“Appendix A”.

We highlight some of the key tools we use (many have already been men-
tioned):

— Nekovai’s theory of Selmer complexes and p-adic heights ([81], see also
[103, Appendix C]), applied to Hida theory;

— the local Langlands correspondence in families as described in [34], that
is necessary for the interpolation of the terms Q,;

— Emerton’s point of view [37] on p-adic cohomological automorphic rep-
resentations as having a component at ‘infinity’ that is an algebraic
representation of the relevant group; in our context, this further allows
to properly consider ‘incoherent’ reductive groups;

— the multiplicity-one result for H'(A)-invariant functionals;

— the definition and study of semi-local operators at poo, as the key to tran-
sitioning between ordinary and anti-ordinary or toric parts of a module;

— the explicit evaluation of certain local toric periods in terms of gamma
factors.

We view the framework introduced in the appendix as the main technical
novelty contributed by the present work, and we hope that the underlying
approach will prove useful in many other contexts.'*

Further directions

We have not paid attention to the integral aspects; doing so may also remove
the need to restrict to open subsets of 2~ at various points, e.g. by restricting
to newforms or using the local Langlands correspondence in integral families
of Emerton, Helm, and Moss (see references in [34]). (However, this would
require imposing some residual irreducibility assumptions for the representa-
tion 7#,.) This may lead to non-vanishing results for higher-weight Heegner
cycles, automorphic toric periods, and L-values: an example we have in mind
is the anticyclotomic non-vanishing result of [25], based on a construction not
unlike that of Theorem H.

In a different direction, all of the constructions of this paper could be gener-
alised, with work, to the context of eigenvarieties; the Gross—Zagier formulas
should also extend to that context.

14 Cf. the work [67] discussed in Sect. 1.7 below.
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1.7 Related contemporary work

After a first version of this paper was made publicly available, the following
partly related works have appeared.

— In [63], the authors construct universal Heegner classes for Coleman fam-
ilies of elliptic modular forms (with classical restrictions); then they prove
that these classes interpolate the images of Heegner cycles, by a method
not dissimilar to that of the present work. Similar results are also indepen-
dently proved in [83] in the ordinary case, and (by a different method) in
[16] in the case where p splits in the field of complex multiplications.

— In [17], the authors use [16,63] and a strategy similar to the one of the
present paper to prove the p-adic Gross—Zagier formula for critical-slope
refinements of elliptic modular forms, conditionally on work in preparation
of Kobayashi on such formula for small-slope refinements. Their idea is
to deduce, from the latter, a p-adic Gross—Zagier formula in a Coleman
family, within which the objects considered by Kobayashi form a dense
subset; then specialise the formula to other classical points.

— In[67], Loeffler gives a method to construct p-adic families of cohomology
classes attached to inclusions of reductive groups H; C Hj such thatHy /H;
is a spherical variety. His local-at- p construction vastly generalises the one
of Proposition A.2.4. A difference is that in [67], the weight variation is not
addressed (accordingly, that construction does not use the ‘infinite’ place).

1.8 Notation

Throughout the paper we use the following notation unless otherwise noted.

— A is the ring of adeles of Q;

— the fields F and E are as in the introduction, n = ng/F: FAX/F>< — {1}
is the associated quadratic character, and we denote by E a fixed algebraic
closure of E;

— we denote by G g the absolute Galois group of a field E; if E is a number
field and S is a finite set of places, we denote by G g s the Galois group of
the maximal extension of £ unramified outside Soo;

— for a place w of a number field £, we denote by @, a fixed uniformiser at
w, and by g, the cardinality of the residue field;

— the class field theory isomorphism is normalised by sending uniformisers
to geometric Frobenii; for £ a number field (respectively a local field), we
will then identify characters of G g with characters of E S / E* (respectively
E*) without further comment;

—letu C Q; be the subgroup of roots of unity, and let (-),: QIX, — 1+
2pZ, C Q; be the unique continuous character such that x,, (x);1 has
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values in w. The p-adic cyclotomic character of Q is

chc,Q(x) = |x[ac <xp>p,

a character on A°*/Q*. If E is a number field, the p-adic cyclotomic
character of FE is the character

Xeye, E = Xcye,Q © NE/Q3 E;oo/EX — Q; (1.8.1)

2 Automorphic and Galois representations

In this section we define the basic set up regarding ordinary automorphic
representations for our groups, and the associated Galois representations.

2.1 Groups

We introduce our notation on groups and related objects.

2.1.1 Incoherent reductive groups

Let F be a global field. For the purposes of this discussion, a ‘coherent’ reduc-
tive group over F is just a reductive algebraic group in the usual sense. The
following notion is probably appropriate only in the context of orthogonal or
unitary groups, cf. [47]; we do not explicitly restrict to that case just for the
sake of brevity.

An F-incoherent reductive group G over F is a collection of reductive
groups G,/ F,, for v a place of F, such that for each place w of F there is
a coherent reductive group G(w)/F that is w-nearby to G in the following
sense: for each place v # w, G(w) x ¢ Fy, = Gy, and the groups G(w) x g Fy,
and G,, are non-isomorphic inner forms of each other.

Let F/Fp be a finite extension of global fields. An F-incoherent reduc-
tive group G over Fj is a collection of reductive groups Gy, / F,y,, indexed
by the places vy of Fp, satisfying the following. For each vg, we may write
Gy, = Res Fuy/Fo.ug Gru = ]_[v‘vo Resp,, Fo.ug G Fy for a collection of reduc-
tive groups G r / Fy that forms an F-incoherent algebraic group G over F.
In this situation, we write G = Res g, r G . We write just ‘incoherent’ when F
is unimportant or understood from context. We also write G(Fy,) := Gy, (Fy,)
for short.

By definition, for all but finitely many v, the group Gy, is unramified. In
particular, if S is a finite set of places of Fp, it makes sense to consider the
restricted tensor product G(AS) := ]_[;O ¢s G(Fy).

@ Springer



The universal p-adic Gross—Zagier formula 539

It will be convenient to consider a p-adic variant in the case where F = Q
and GF, « 1s anisotropic modulo its centre (so that all its admissible represen-
tations are finite-dimensional). In this case we redefine, for any finite set of
finite places S,

G(A%) := G(A’™) x G,

where G, := G,(Q)) with the Zariski topology.

The main example of interest to us is the following: F is our totally real
number field, Fp = Q, and G, = B.’. The conditions are satisfied since, for
each place w, there is a quaternion algebra B(w) over F such that B, = B(w),
if and only if w # v. Other examples are obtained as follows: if G is an
incoherent group and H is a coherent group, the product G x H (whose precise
definition is left to the reader) is an incoherent group.

2.1.2 Hecke algebras

Let G be a coherent or incoherent reductive group over Q, A a ring.
If S is a finite set of primes of Q different from p, let

i a = CX(GAP®), A), A = CX(G(ASP®), A)

be the Hecke algebras If U € G(A®™) is a compact open subgroup we let
HG.,u.A and %”G v.a be the respective subalgebras of functions that are bi-U -
invariant. If S is U-spherical in the sense that U, is maximal for all v ¢ S, we
say that %” G v 18 a spherical Hecke algebra.

If M is an A-module with a smooth A-module action by .77 = 775, c%”GS ,
HG.u, or %”GS’U, we let 77(M) C End 4 (M) by the image of 7. We define
the spherical Hecke algebra acting on M to be

A" = lim A (M) C End o(M)
S,U

if the limit, taken over pairs (S, U) such that S is U-spherical, stabilises. It is
equipped with an involution ¢ coming from the involution on G, (A).

2.1.3 Subgroups of Gy
We restrict, for the rest of this subsection, to the groups in (1.2.1), denoted
collectively by G,. Assuming that B, is split, we fix an identification G :=

G(Qp) = GLy(F)) for the rest of the paper, by which we obtain Z,-models
G, /Z, for all of the groups Gy, e
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Let Ng € G(Qp) = GL2(F)) be the subgroup of unipotent matrices. Let
Nu = {1} C H(Q)), and for ? = @ (respectively ? = '), let NGy =
Ng x {1} (respectively its image in (G x H)'(Q),)). Finally, let Ng, o :=
Ng, NGyyz,(Zp).

Let T, C G4(Q)) be the maximal torus consisting of diagonal matrices
when G, = G and compatible with this choice when G, is any other group. Let
1G,0 := 1, NGy« (Z)) the integral subgroup. Let T(}L* C Tg, be the normaliser

of Ng, 0 in Tg,, so that T := [L, T4, with

TG, ={("4) 1 v@) = v(e)}.

2.1.4 Involutions

1

We denote by ¢ the involutions on ji”gph induced by g — gT~!, and on H

induced by h — h~1.
We also denote by ¢ the involution of 7, deduced by the involutions

>t =), 2.1.1)

where v denotes the reduced norm if G, = G, the norm Ng,p if G = H. It
preserves the sub-semigroups T(J{* .

2.1.5 Congruence subgroups

Let G = GLy2(F)), H = E;, H = E;/FPX, (G x HY = (G x H)/FpX
where F If is identified with the centre of G x H.

For r € N, define the compact subgroups U (ww),)) C U11 (w)) C GLy(Fy)
by

Ul (@) =1
U@)]) = {(

(

a0) € GLy(Op,) a—1l=d—1=c=0 (mod o))},
E)YeGLy(Opy):a—1=d—1=b=c=0 (mod @))}.

For each place v|p of F, we fix €, € F such that E, = F,(,/€,); for
technical reasons it will be convenient to assume that v(e,) > 1.

Forr = (ry) € NP} we define the compact open subgroups Vg, . =
| +@,"OF, C F) and

Vor=[[Vor, cH=[]ES. Upr=]]Vvr, € G=]]CLa2(F)
vlp vlp vlp vlp
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as follows:

V. — VEvr, (1 + @ OF w) if v splits in E,
S Ve (1 + JE@ ™ Og 1) if v is nonsplit in E,

Uy, = Ul (@).
We also define VI/LE = VP,EFPX/FPX C H’, and
Ky, Ky,(p") C (G x H)

to be the images of Uy, , x V, », Up(p") x V, , respectively.
We also denote

TG*J = TG* N U*’p(pr).

If pOr,, = [], wy"OF,,, we associate to an integer r the tuple r :=
(eyr)y|p- Denoting by U, any of the symbols U, V, K, we then let U, p, , :=
U*,p,g, U*,p(pr) = U*,p(PL)-

2.2 Algebraic representations

We set up some notation for algebraic representations of a (coherent or inco-
herent) reductive group G over Q, then discuss in some more detail the
situation for the groups of interest to us. Let L be an extension of Q,, W
a finite-dimensional irreducible algebraic (left) representation of G over L.
Throughout the paper, we tacitly identify left and right algebraic representa-
tions of G via g.w = w.g ™\,

2.2.1 Highest-weight character

We suppose that G = G, is one of the groups of Sect. 2.1. Let Tg, C G
be the fixed torus and let Ng, C G be the fixed unipotent subgroup. If W is
an irreducible left (respectively right) representation of G, we denote by ow
the character by which Tg, acts on the line of highest-weight vectors WNG-

(respectively highest-weight covectors Wiy ).
The highest-weight character of W is related to that of its dual by

owv(t) = ow(t"), (2.2.1)
where ¢ is the involution (2.1.1).
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2.2.2 Quaternionic special case

Suppose that G(A®) is the group of units of a quaternion algebra B> over A®°.
Let L be an extension of Q) splitting F" and B),. A (cohomological) weight
for G over L is alist w = (w; (Wg)¢: Fesr) of [F : Q] 4+ 1 integers of the
same parity such that w, > 2 forall ¢: F < L. Denote by Std, = (L9?)*
(respectively, Nm, = L) the standard (respectively, reduced norm) represen-
tation of G(Q,) = B; factoring through (B, Q®F,.0 L)* = GLy(F), ®s L).
We associate to the weight w the algebraic representation

Wow:= @ Sym" *Std, ® Nm{¥ "2/ (2.2.2)
o€Hom (F,L)

of G/q,, whose dual is Wg ,,v with wY = (—w; (wy)).

Suppose for a moment that L /Q,, is Galois, then Gal(L /Q) acts on the set
of all weights w and, letting L(w) C L be the fixed field of the stabiliser of
w, the representation Wi ,, descends to a representation over L(w). It is then
convenient to use the following terminology: if W is an algebraic representation
of G over L and w is a cohomological weight over a finite extension L'/ L, we
say that W is of weight w (with respectto L < L") if W ® L' = Wg .

Explicitly, Wi, may be described as the space of tuples p = (ps)o: FesL
such that p, € L[xs, Y] is a homogeneous polynomial of degree w, — 2,
with action on each o -component by

g.po(x.y) = det(0) T - py((x. y)0g). (2.2.3)

The representation Wg ., admits a natural & -lattice, stable under the action
of a maximal order in G(Q)),

W&o € W (2.2.4)

consisting of tuples of polynomials with coefficients in &7 .
If W = Wg,w, we have o := ®,ow,v: Ty, — L™ with

wHwg —2 w—wg +2
owv: ("p) > [ o) T o) . 2.2.5)

o: Fy—L

By abuse of notation we still denote by o = Qo ,, the algebraic character
of F [f defined by

ow(x) == ow (1))
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2.2.3 Toric special case

Let L be a finite extension of Q,, splitting E. A cohomological weight for H
isalist! := (I, (s)o: Fe>1) of [F : Q] + 1 integers of the same parity. For
eacho: F — L, fix an arbitrary extension o’ of o to E (this choice will only
intervene in the numerical labelling of representations of H). We let

=y

._ s 2
Wiii= @@ o ®ooNm, . (2.2.6)
oeHom (F,L)

as a 1-dimensional vector space over L with action by H(Q,) = E;. After
choosing an identification of this space with L, it admits a lattice W ,, stable
under the action of &/ - IfW is an algebraic representation of H over L and

[ is a cohomological weight over a finite extension L’/L, we say that W is of
weight [ (with respect to L — L") if W @1 L' = Wy;.

2.3 Shimura varieties and local systems

We again write G, to denote any of the groups (1.2.1).
2.3.1 Shimura varieties

For 7 an infinite place of F, let G; = Resg;@QGF(7) be the T-nearby group as
in Sect. 2.1.1. Consider the Shimura datum (G¢, {hG }), where hg . : S :=
Resc/RG — Gr the Hodge cocharacter of [19, §0.1]. Let iy : S — Hg be
the unique cocharacter such thateg ohyy = hg. By products and projections we
deduce Hodge cocharacters hg, ¢, hence Shimura data (G, ¢, hg, ), for any of
the groups (1.2.1); from iy . we also obtain an extension of t to an embedding
7: E — C. Then we obtain towers of Shimura varieties X /7 Ex, where
the reflex field E, := E unless G, = G, in which case E, = F. These data
descend to E,: there are towers

X,/Es

such that Xy Xgpec £, Spec TEx = Xy ¢, see [107, § 3.1]. Throughout this
paper, we will also use the notation X, =X X Spec E, SPeC E,.

We will use also the specific names (1.2.2) for those varieties; an explicit
description of some of them is as follows:

Xu,(C) = B(r)*\h* x BX/U U {cusps}), Yv(E™) = E*\EX./V,
Zx = Xy x Yy /Ay.v,
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Apy = FX/FX - (UNFL)N (VN FL)) (2.3.1)
if K C (G x H)(A®) is the image of U x V.
2.3.2 Automorphic local systems

Let W be an irreducible cohomological right algebraic representation of G,
over L, let Uy C G,(A®) be a sufficiently small (in the sense of Lemma 2.3.1
below) compact open subgroup, let W° C W be a U, ,-stable 0 -lattice, and
let Uy, pn C Uy, p be a subgroup acting trivially on W°/p" W*°.

Lemma 2.3.1 If U/ is sufficiently small (a condition independent of n), then:

1. The quotient G, = Us,p/ U, p.n(Z,(Q) NUy) p acts freely on XU*pU* o
hence X, ry, o > X..v, is an étale cover with Galois group Gy .
2. The group Zg,(Q) N Uy acts trivially on W°.

Proof The first assertionis [19, Lemme 1.4.1.1] when G, = G (other cases are
similar or easier). For the second assertion, we may reduce to the case G, = G
or G, = H, withcentre Zg, = Resg, ,QG;,. Forany U, the group Zg, (Q)NU.
has has finite index in & g*, therefore for sufficiently small U/ it is contained

in the finite-index subgroup 6’;’1 ={z € 0F : Nrjo(x) =1} C ﬁg*. But

since W is of cohomological weight, the group & ;’1 acts trivially. m|

Assume first that X, is compact. Then, by the lemma,
X, vru,,, X W/Pp"W®) /Gin (2.3.2)
defines a locally constant étale 7/ p" & -module #"over X, y,. We let

W = (lim#™),

n

an Oy -local system on X, ¢, and consider
W =W°Q¢, L.

The L-local system % is compatible with pullback in the tower {X y,} and,
up to isomorphism, independent of the choice of lattice W°. When X, is the
compactification of a noncompact Shimura variety X/, (essentially only when
G = GLy/q), we perform the above construction on X, and then push the
resulting sheaf forward to X..
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2.4 Ordinary automorphic representations
Keep the assumption that G, is one of the groups in (1.2.1).
2.4.1 p-adic automorphic representations

Let L be an extension of Q,, W a finite-dimensional irreducible algebraic left
representation of G4 o0 = G4(Q)) over L.

Definition 2.4.1 A (regular algebraic cuspidal) automorphic representation
of G«(A) over L of weight W is an irreducible admissible locally algebraic
representation m of

G:(A) = G(AOO) X Gy 00
that can be factored as
T=nCQW

such that G, (A™) acts smoothly on 7°°, G,  acts algebraically, and = occurs
as a subrepresentation of

H' X, 7)) = lim H'Xu. 7)OW,
UCGy(A®)

where X, is the compactified Shimura variety attached to G, and #" is the
local system on X attached to W.

In the quaternionic or toric case, we say that 7 is of weight w (a cohomo-
logical weight for G over some finite extension L'/L) if W is of weight w as
defined after (2.2.2) (respectively (2.2.6)).1

We will use subscripts p, respectively oo, respectively poo, to denote an
element of G(A) in the copy of G(Q),) contained in G(A®), respectively in
the ‘algebraic copy’ G, respectively the diagonal copy in the product of the
previous two.

Remark 2.4.2 The previous definition follows the work of Emerton [37]. It
slightly departs from it in that in [37], one restricts to considering the action of
the product of G(A”°) and the diagonal copy of G(Q,). While this is indeed
the part that acts integrally, we do have use for the non-integral action of each
individual copy (cf. Sect. A.2). The corresponding local notions are introduced
in Definition A.1.1.

15 These notions depend of course on L — L’; nevertheless they will only be used to impose
conditions on the weights that are invariant under the Galois group of L.

@ Springer



546 D. Disegni

2.4.2 Quaternionic special case and ordinarity

Suppose that G, = G and B, is split, or that G, = Gy = Resr/QGL; for a
totally real field . An automorphic representation r over L of weight Wg,
is also said to be of weight w.

Definition 2.4.3 We say that an automorphic representation 7= of G, (A) over
L of classical weight W = Wg, 4 is ordinary at v with unit character o, if
there exists a smooth character «,, of T; such that i, is the unique irreducible
subrepresentation of Ind(ay - (| |, | [, 1)) and the locally algebraic character

oy = oyow,y: Ty > L™ 2.4.1)

takes values in 010

(It follows from the parity conditions on the weights that the indicated
subrepresentation is always infinite-dimensional; moreover if m, is ordinary
then the character o, of T, is uniquely determined by m,.) We say that 7 is
ordinary if it is ordinary at all v|p.

Let v|p be a prime of F and @, a uniformiser. For ¢ € T, orx € F* with
v(x) > 0, define the double coset operators

U; == (U} (@)t U (@]),],
Ux = U(x 1),
Uy :=Ug,, 2.4.2)

which act on the Np-fixed vectors of any locally algebraic representation of
GL,(Fy) (see also Sect. A.1 for further details). Then 7 is ordinary at v with
unit character «;, if and only if, for sufficiently large r, the space of U 11 (o))-
fixed vectors in the locally algebraic representation

T, QL W
of GL, (F,) contains a (necessarily unique) line of eigenvectors for the diagonal
action of the operators Uy, x € F*, with eigenvalue «®(x). Specifically, if
w, € m, is a Uy-eigenvector of eigenvalue o, (7, ), then such line is

nf}’rd = Lw, @ W,

where W™ is the line of highest-weight vectors of W.

16 This notion agrees with the notion of 7 being nearly ordinary as defined in the work of Hida
(e.g. [50]).
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If 7 is an automorphic representation that is ordinary at all v|p, extend o,

to a character of 7,7 by the formula (2.4.1), and let «® = [lypon: T+ =
[17,7 — L*; then we define
7o = 7 P® @ @, 7 (2.4.3)

as a smooth representation of G(AP°°) and a locally algebraic representation
of T" on which T acts by U, > a(1).

2.4.3 Toric special case

Suppose now that £ is a CM field and that G, = H := Resg;QGy,. Then a
p-adic automorphic representation of H of weight Wy ; is simply the space of
scalar multiples of a locally algebraic character x : E*\E o — L* whose
restriction to a sufficiently small open subgroup of E ; coincides with the
character of Wy ;.

2.4.4 Convention

We use the convention that all automorphic representations of H(A®) are
ordinary, and that a representation 7 ® x of G x H of cohomological weight
is cuspidal and ordinary if = and x are.

2.5 Galois representations

Let G be as in Sect. 2.4.2.

2.5.1 Galois representations attached to automorphic representations of
G(A)

The following notation is used throughout the paper: if V is a representation
of Gr and v is a prime of F, we denote by V, the restriction of V to a
decomposition group at v.

Theorem 2.5.1 (Ohta, Carayol, Saito). Let L be a finite extension of Q, let
W be an irreducible algebraic representation of G over L, and let w be an
automorphic representation of G(A®°) of weight W over L. Let S be a finite
set of non-archimedean places of F containing all the places at which m is
ramified and the places above p. There exists a 2-dimensional L-vector space
V. and an absolutely irreducible Galois representation

p=pr: Gps—> Aut(Vy)
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uniquely determined by the property that for every finite place v ¢ S of F,

Tr(p(Fry)) = q; ' 2r, (To), (2.5.1)

. . . h .
where Fry, is a geometric Frobenius, T, € t%”éiz (Fy) IS the element correspond-
v

ing to the double class Ko(1) (w” 1) Ko(1), and Ay, : jfg}i’z(n) — L is the
Ko(1)

character giving the action on m,
For a prime v of F, let p, be the restriction of p to a decomposition group
atv.

1. The representation p, is unramified for almost all v and potentially
semistable for v|p. For every finite place v, the Weil-Deligne represen-
tation ry attached to p, is associated with m, via the local Langlands
correspondence normalised “a la Hecke” [29, § 3.2]:

L(s,ry) = L(s+1/2, my).

2. For every finite place v, r, satisfies the weight-monodromy conjecture: its
monodromy filtration is pure of weight w — 1. The monodromy filtration is
trivial if and only if , is not a special representation.

3. For any archimedean place v, the representation p, is odd, that is if ¢, €
G F, is the complex conjugation, det p,(cy) = —1.

4. If W = Wgy with w = (w; (Ws),. p,7) then for each v|p and
o: F,— L,

— the o-Hodge-Tate weights'” of p, @1 L are

w4+ wy — 2 w— wy +2

I ,
2 2

— if w is ordinary at v in the sense of Definition 2.4.3, then there is a
unique exact sequence in the category of G f-representations

0= Vi = Vay— Vo =0, (2.5.2)

such that ijfv is 1-dimensional.

TIfvisa Hodge-Tate representation of G f, over Lando: F, — L, the o-Hodge-Tate
weights of V are the degrees in which the graded module

G
@nCy(m) &, , V)OF
is nonzero; heie Cy isﬁ a completion of F, and, in the tensor product, o is extended to an

isomorphism F, — L. In particular our convention is that the Hodge—Tate weight of the
cyclotomic character of Q, is —1.
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The Galois group G, acts on Vj;‘: o by the character
oy, Xeye,w': F— L™,
where oy ., is (2.4.1).

Proof The construction and statements 1 and 2 for v|p are the main results
of Carayol in [19]. Statements 1 and 2 for v|p were proved by Saito [91,
Theorems 2.2, 2.4]. For the last two statements, we refer to [101, Proposition
6.7] and references therein; note that in comparison with the notation of [101],
our p equals their p (1), and our (w; w) is their (w — 2, k). O

2.5.2 Realisation in the homology of Shimura varieties

Let G, be again one of the groups of (1.2.1). We introduce a new piece of
notation. Let

GF,E =Gr X Gg,

and similarly for a finite setof places S,Gr g s := Gr s XGE 5. If G, = GxH
or (G x HY', we redefine

GE* = GF,E~

(This is an abuse of notation, as we have not redefined E,.) This product of
Galois groups acts on the homology X : this is clear by the Kiinneth formula
in the case of G x H, and follows from that case and the Galois-invariance of
the quotient map for (G x H)'.

The following is the main result of [20] in the special case G, = G; the
general case may be deduced from the special case together with the case
G, = H (that is class field theory).

Proposition 2.5.2 (Carayol). Let U, C G4(A®) be a compact open subgroup,
W be an irreducible right algebraic representation of Gy over L, W the local
system on Xy, associated with W. Let L be a sufficiently large finite Galois
extension of L.

Then there is an isomorphism of G, v,.LIGE,. s]-modules

Ha(Xsu. 7 @1 L' = Pn" ® Ve, (2.5.3)

/g

equivariant for the action of Gal(L' /L), where 7t runs through all equivalence
classes of automorphic representations of G4(A) of weight W over L.
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3 Sheaves on Hida families

We construct the universal Hecke- and Galois- modules over Hida families for
(G x H) and prove a local-global compatibility result. We claim no originality
for the results of Sects. 3.1-3.2.1.

3.1 Hida theory

We let G, denote any of the groups G, H, (G x H), (G x H)’, and let r €

NP} We will use the notation from Sect. 2.1. For U/ C G(AP*®) we let
X.vur =X, uru,, be the corresponding Shimura variety.

When M is a Z,-module with action by T+, arising as limit of ordinary
parts of p-adic coadm1s31ble G4(Q)p) x Gy, oo—modules (see Definition A.1.2
and Sect. A.1.3), we denote this action by

r— Ut
and adopt the notation of (2.4.2).

3.1.1 Weight spaces

Let UY C G4(AP™) be a compact open subgroup, and define Zg,ur C
Zg(Q) by

Zg,ur :==2g(Q) NU'Tg0,
Zuvr =HQ)NVPTyo = ﬁg nve,
Z(GXH)’,KI’ := the image in T(G><H)’ of

ZoxHurxve = Zgur X Zy,yr if K? is the image of U? x V7.

In all cases, let TG* vr.o = Tc,0/Zg,u,, Where [ denotes the closure for the
p-adic topology, and let TG* vrr C TG u? o be the image of 75 ;» .. Let

Az} Up = Zp[[TG* Oﬂ
and for an irreducible algebraic representation W of G, consider the ideals
I, 7wy = (1= av—vl(z)),JG*.U,, DCAL p®0OL. (LD
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For each fixed W and varying r, the ideals I U W form a fundamental

system of neighbourhoods of zero in A° ur ® O, so that
Ag, ur = Ag yr ®o L=(UmAg, yry,) @ L (3.1.2)

r

with
o . o ~ 2l 2l
NG orwr =g, o/ le, vt wr = OulTe, vr o/ T, ur ) (3:1.3)

where the isomorphism is given by [7] o‘;,l (O[f]. When W = Q p» We omit
W from the notation. We also omit the subscript U} when it is unimportant or
understood from context.

Writing TG*,UI,O = AX de(G*) for a finite torsion group A, we have an
isomorphism Ag_» = Z,[A1® Z,[X1, ... Xa@,] for an integer d(Gy)
given by!®

dG) =dH) =[F:Q]+1+6, d(GxH))=2[F:Q]+1+34,
where § = §F p is the Leopoldt defect of F at p; see [41, § 2.2.3.3] for d(G).
Definition 3.1.1 The weight space is
We, yr == Spec Ag, yr ® Qp.

Let W be an irreducible cohomological algebraic representation of G,. The
zero-dimensional subscheme of classical points of weight W and level r is

cl, W —
20 P, = Spec A, vr rw-

The ind-subschemes of all classical points of weight W and of of all classical
points are respectively

cLW U cl, W cl o U cl, W
QUG*’ = OQUG*,Uf,r’ QUG*’ pi= _ QBG*’ P>
r=

where as usual the union runs through the algebraic representations of coho-
mological weight.

18 We would have d((G xz H)! = 2[F : Q] for the group of the footnote after (1.2.1), which
explains the way the number of variables of Theorem E is counted in the abstract.
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3.1.2 Ordinary completed homology

Let W be an irreducible right algebraic representation of G4(Q,) over L, and
fix a G(Z)-stable 0 -lattice W° C W. Let # be the local system attached
to W, and for U C G,(AP*), r > 0 consider the ordinary parts

St v oyord . v o o, d
Hzt(X*’UfU W )or ( (X*,UfU*’r’ V8 ) ®ﬁL[Tg*] (W V)N())Or s
Hgt(y*’U*pU*yrv W)Ord — Htéit(y*,ufU*.r’ WO)OI'(] ®[})L L

with respect to the action of T(?IL* by U; ® t, as defined in Sect. A.1.3. The
ordinary completed homology of X G..UP is

MO

1 ety oyord
G, Ul w "™ l(Lan (X*,U,.{)U*’pyr’ v ) ’

r

an O -module. It depends on the choice of lattice W° C W, whereas the
L-vector space

P (o]
Mg, .ur.w =Mg_yry ®o, L

does not. When % = Q,, is the trivial local system, we omit it from the
notation, thus

Mg, vr = Mg, uyr.q,

3.1.3 Independence of weight and Control Theorem

d _ o _
For a Z,-algebra A, let %ﬂé’: U pa = AlTg,] ®Z,,[TG+*,0] AG*,Uf‘ For ? =
S, ¥, sph, consider the AG*, Ul A —algebra
?,ord _ ord
ij*,U*, %” LUl A ® jf LU p AT (3.14)

For every irreducible algebraic representation W over L and & -algebra A,
o ord +
the space M Go.U”. ® A 1s a module over ij* UP A’ where [t] € A[TG*] acts
by the double coset operator Uy.
The base ring A will be omitted from the notation when it can be understood
from the context.

LetU,, = UfU*J,p be as in Sect. 2.1 and let X, , := X, v, ,.

Proposition 3.1.2 Let W be an irreducible right algebraic representation of
G/, over L, W the corresponding local system. Then:
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1. If Gy = G, H, then MG*,Uf,W

type. For all of the groups G, the A‘(’GxH)/ ® O -module M("GxH),’Kp’W
is of finite type, and MGxny kr,w is a projective AGxnHy ® L-module of
finite type.

2. We have natural f%ﬂG"rdU p-equivariant isomorphisms

*

is a projective AE* v ® O'1-module of finite

jW: MG*,Uf X ﬁL = MG*,Uf,W' (315)

3. Consider
Mg, vrwr = Mg, vr Ong, yr Do.ul wr (3.1.6)

There is a natural %;)rdU p-equivariant isomorphism
s Usxc

~ N d
MG*,U*,W,V = Hd(X*,r, W)Or .

Proof We first treat part 1 when W = Q,,. Then we will deal with part 2,
which implies that part 1 holds for any W.

If G, = G, the result is proved in [55, Thoerem 1.2, cf. also Remark 1.1].
If G, = H, U = VP, then the module under consideration is isomorphic to
Zp[E*\E g~/ V?], which is finite free over Ay y, = Zp[0f NVI\Oy ]

as Oy N Vp\ﬁ’g’p C E*\E /V? is a subgroup of finite index.

If G. = G x H, by the Kiinneth formula we have Mg,y ypryyr =
MG y» ®M§’ v»» Which by the previous results is a finite type projective mod-
ule over Ag, gy = A%@Aﬁ. Finally, if G, = (G x H)’ and K7 is the image
of U? x VP, by the description of Zg in (2.3.1) we have

ME)GXH)/,KP = (MéxH’UPxVI’)/(F:OO/FX : ((UP m F:I’OO) m (VP m F:POO)))
(3.1.7)

As MG,y uyrxye 18 @ projective Ag, y pyp-module of finite type, the
quotient M&Xﬂ’Uvap/F, P = MG, xH,UP NG ox VP QAL A‘(’GxH)/ is a pro-

jective AE’GxH)/ x »-module of finite type, and M E’GxH)/ x» 18its quotient by the

free action of the finite group Fyo/F* - F)X(UP N Fylpo0) N (VPN Fype)).
After inverting p, the quotient map admits a section, hence MGxny k» iS
projective over AGxHy -

We now turn to part 2. As above it suffices to prove the result when G, =
G, H. Let G, = G, and suppose that W = W(*}’w. Let W° C W be the lattice
of (2.2.4), r > 1. We have a A,-linear map

Jwors Hi(X, Z) p" 1) @p, WONO/p" — H\(X,, #°/p"#°) (3.1.8)
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induced by cap product'® via the isomorphism of A,-modules H*(X,, #°/
erO) o~ WO’NO/pr.

The maps (3.1.8) are compatible with variation in r, and taking limits we
obtain the map (3.1.5), which Hida [49, § 8], [55, Theorem 2.4] proved to
be an isomorphism; the asserted equivariance properties are clear from the
construction.

When G, = H the construction is similar but easier, as each W is 1-
dimensional and each of the analogous maps j , is an isomorphism.

Finally, we address part 3. As above we may reduce to the case W = Q,
and G, = H or G, = G. The former is clear, and the latter is, in view of part
2, equivalent to the statement

Ma.ur.w ®ngyp Ac.urr ZHa(Xp, #)°,
which is the control theorem of [55, Theorem 1.2 (3)]. O
3.1.4 Ordinary eigenvarieties

The space M ° uP
A° u? module) and for ? = ¢, sph and A a Z ,-algebra, we let

has the structure of an ¢ OrdU p-module (in particular of

sph,ord
To.vr.a

be the image of .77, Olr]d,, A in End A(Mé pr ® A), that is independent of the
particular spherlcal Hecke algebra chosen when ? = sph. When A = Z, we
omit it from the notation.

We may now define

ord sph,ord
@@G* = SpeCTG* UrQ,

When G, = H, we will omit the superscript ‘ord’.
Let

ord
é?G* ur = QHG*7U>{:.

Referring to Definition 3.1.1, the zero-dimensional (ind)-subscheme of clas-
sical points (respectively classical points of weight W, for an algebraic

19 Tam grateful to David Loeffler and Sarah Zerbes for explaining to me this point of view on
the Control Theorem.
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representation W of G, respectively classical points of weight W and level )
is

ord,cl,(W) 1,(W) ord
= X .
gG*,Uf,m G, UL (1) " B, vl o« 50*,Uf
We denote by
Mg, ur

ord 1
the sheaf on @FG*’U » corresponding to MG*,U*p'

Notation When G, = (G x H)’, we omit the subscripts, thus e.g. for K” C
(G x H)Y(AP*>®) we write

éaord . eord
KP -— ®(GxH),KP*

sph,ord . . sph,ord .
By (3.1.7), TKp isa quotient of T} 1/py» and correspondingly we
have a closed immersion

ord ord
ERp > EGxH.UPxVP- (3.1.9)
ogs . h,ord . . .
Proposition 3.1.3 The ring TX"" is finite flat over A° ,, hence semi-
G*,U* G*vU*
. . sph,ord . L . .
local. The maximal ideals of Tg_7;, are in bijection with Gy ,-orbits of
. msph,ord =

characters )\ TG*,U,{’ F,.

Proof The first statement is easy for the group H and it is proved in [55] for
the group G. Together they imply the statement for G x H and hence (G x H)'.

As Tg’:”grlfi is topologically finitely generated over Z, the residue fields of its
maximal ideals are finite extensions of F,; this implies the second statement.
]

Lemma 3.1.4 Let W be an irreducible algebraic representation of Gy. The

set fé’fkd’lji’w of classical points of weight W is Zariski-dense in fcordU e
’ %> Use

Proof By the previous proposition, the map kg, is finite hence closed. Then the
Zariski-density of fé’idiw = /ca*l (QHZ;‘; U f) reduces to the Zariski-density

of Qﬁg yr C QUG* y»» which follows from (3.1.2); cf. aso [97, Lemma 3.8].
#, U Pk O
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3.1.5 Abelian case
The structure of the eigenvariety for the abelian groups H := Resg,QG,, and

Z = Resg;QGy, is very simple, and we make it explicit for the group H: we
have

Myve := Hy(Yyr) = Z,[Yvr(E)] ® Q,,

theset Yy» (E) is aprincipal homogeneous space for ' yr := H(Q)\H(A*)/
VP = EX\E{«/V?, and

&n,vr = SpecZ,, [[FEypﬂQp.
(We omit the superscript ‘ord” which is meaningless here.) The classical
points é"l_cll vr C &n,vr(Q)) parametrise locally algebraic characters of I'g y».
Finally, the sheaf .#y v is a trivial line bundle, with actions by G given by
the universal character

Xuniv: GE = T vr — Z,[Te]™, (3.1.10)

and by H(A®®) given by the inverse Xﬁ,{lniv of the corresponding automorphic
character. We may formally write

AMHYP = X univ ® Xuniv (3.1.11)

as a tensor product of two trivial sheaves, the first one endowed with the
H(A)-action only, and the second one with the Galois action by xynjy only.

3.1.6 Fibres of the sheaves .M
Let

0P, hp): TN s 0(&6.00)
be the tautological character, and define

ol F; — O(&c.ur)™

x = Ap(Uy). (3.1.12)
Proposition 3.1.5 Let x € gg%ﬁl’w be a classical point of weight W and
level 1.
Then:
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1. Let U := UPUp ,, and let W be the local system on X associated with W.
We have an isomorphism of t%”é’rg P.Qp x)-modules

(AG,ur)x = H Xy 7 W6.)" @y  Qpx).

2. There exists a unique automorphic representation my of G(A) over Qp(x)
of spherical character \Y, weight W, and unit character ay. It satisfies the

property

n}?rd’Up = Hom Qp(X)[GF,s](('//GsU’))x’ Px) (3.1.13)

as left ,%”é”rg ® Qp(x)-modules.

Proof Part 1 follows from Proposition 3.1.2.3.

For part 2, fix an embedding Q, (x) — 61,. By strong multiplicity-one, a
representation 77 over Q p» With character A? is unique if it exists. By comparing
part 1 with (2.5.3), we find that 7 exists and that for such 7 property (3.1.13)
holds after base-change to 6 p- Let Vz be the Galois representation associated
with w by Theorem 2.5.1, then by looking at Frobenius traces, we see that
Vz has a model V; over Q,(x). It follows again from (2.5.3) that = :=
limg Hom (H\(Xy, #), Vi) is a model of 7 that satisfies (3.1.13). o

In the rest of the paper, we will use without further comment the notation

. for the representation of G(A) defined above, for x € éagr(li],c,l

Corollary 3.1.6 Letz € é";ér,?’d be a classical point, and write z = (x, y) via
(3.1.9) and L := Qp(z). Let wy be the central character of my, let xy,y be
the character of H(A™) obtained by specialising xu,univ.» and let x be the
corresponding locally algebraic character of Gg 5. Write L := Q,(z). Then
W7 = Xy|Fyoox @x = 1, and

~ ,V, -1,
Mr Z (@Y @ xy ") OL (Vaig,  ®LiGrs Xy)

as ,%” ; L L[GE s]-modules. Here, G E, 5 acts trivially on the first two tensor
factors and the natural action of %” S on the first two factors is extended

trivially to the whole tensor product, and it factors to an action of 5 Ks,

Proof Let 1” , and k§ 7 be the restrictions of the characters Ay, A, to

Z[F:spooqx/Kiﬂp], and let Ar be the restriction of Ap Ap, to A" =

FAXspoo,x /Kgp. As this groups acts trivially on Mg by (3.1.7), wehave Lp = 1.
On the other hand A equals the restriction of w, to A’. We deduce that
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w, factors through C = F o /F* Fospoo K sKF,, for some open compact
KFr,p, C F,'. By weak approximation, C = {1}, therefore w; = 1.

By Proposition 3.1.5, (3.1.11), and (3.1.7), the asserted result holds provided
we quotient the right-hand side by the action of F %, however this group acts
by w,, hence trivially. O

Proposition 3.1.7 The natural map « : éa;;rf — Wk is étale over a neigh-
bourhood of the classical points in QU%,,. In particular, the space & I‘(’r,‘,i is
regular at all 7 € 5§T’CI.

Proof As « is finite flat by Proposition 3.1.3, it suffices to check that the
fibre of x over any x € Qﬂ%p (Q),) is isomorphic to Q’Z for some m. By

3.1.2,3.1.6 and (2.5.3), this fibre is the spectrum of the image Ay of %I?,),h’ord
in @ZGK_1(X)(H5 ".0rdy®2  where the 1, form a list of distinct irreducible
representations of (G x H)'(AP*) over Q,,. By strong multiplicity-one, we
have A, = &,Q e This proves étaleness. As Wk is regular, we deuce that

so is é”,‘gr,? in a neighbourhood of classical points. 0

3.2 Galois representations in families

We recall the existence of a universal family of Galois representations over

Z.

3.2.1 Representations associated with irreducible pseudocharacters

Recall that an n-dimensional pseudocharacterof G over a scheme 2 is a
function 7: G — O(Z) that ‘looks like’ the trace of an n-dimensional
representation of G over ("), see [88] for the precise definition. A pseu-
docharacter T is said to be (absolutely) irreducible at a point x € 2" if, for any
(equivalently, all) geometric point X of 2" with image x, the pullback x*T is
not the sum of two pseudocharacters of dimensions k, n — k with 0 < k < n.
The irreducibility locus of T is the set of points of 2~ at which T is irreducible;
itis open [24, § 7.2.3].

We start by proving that, if T is irreducible, a representation with trace T
is essentially unique when it exists.

Lemma 3.2.1 Let 2" be an integral scheme and let V1, V5 be vector bundles of
rankn > 0 over 2 . Suppose that there is an isomorphism F : End ¢ ,- (1) —
End ¢, (#5). Then there is an invertible O 9 -module £ and an isomorphism

ENENRYL
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inducing F in the sense that F(T) ® idy = gTg™! for all sections T of
Proof By [65, Ch. IV], any automorphism of an Azumaya algebra (such as

End g, (7;)) is Zariski-locally inner. Therefore there exists an open cover {U; }
of 2" and isomorphisms g; : T'(U;, 1) — I'(U;, #,) such that

F(T)=gTg ' (3.2.1)

forall T € End ¢, (v;)(V1). Let Uj; := U; N U; and

cij =g 'gj, (3.2.2)

an automorphism of 7] over U;;. By (3.2.1), ¢;; commutes with every
T € Endyg, (Uij)(7/1), hence it is a scalar in &4 (U;;)™. One verifies eas-
ily that the ¢;; form a cocycle in H Y, 0%). Let £ denote the associated
invertible sheaf, which is trivialised by the cover {U;}. Then we may view
gi: Wi, ") — T'(U;, V» ® £). By (3.2.2), the g; glue to the desired iso-
morphism g: 71 £ % Q .Z. O
Lemma 3.2.2 Let 2 be an integral scheme and 7 : Gps — O(Z') an
irreducible pseudocharacter of dimension n. Let V1, V3 be representations of
G r,s withtrace . Then there exist a line bundle . with trivial Galois action
and a G g s-equivariant isomorphism

NENHRL.

Proof Write G = GF,s and let & := O [G]/Ker (7). By [88, Theorem
5.1], &7 is an Azumaya algebra of rank 4. By [92, Corollary 2.9], the two
natural injective maps o;: &/ — End ¢, (7;) are isomorphisms. Then we
conclude by the previous lemma. |

3.2.2 Galois representations in ordinary families

We prove the analogue in Hida families of Theorem 2.5.1.

- h = . .
Lemma 3.2.3 Let A: T?: L’/?,rd — F, be a character. Then there is a unique

semisimple representation p: Gp. s — GLZ(FP) such that Tr(p(Fry)) =
qU_IX(Tv)for allv ¢ S.

Proof The existence follows by lifting A to the character A, associated with
a classical point x (that is possible thanks to Lemma 3.1.4), then taking the
semisimplification of the reduction modulo p of a lattice in the representation
Px = px, of Theorem 2.5.1; the uniqueness is a consequence of the Brauer—
Nespbitt theorem. O
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. h,ord ~ hord
By Proposition 3.1.3 we may decompose Tg U(;,r =1l Tg l(]’f,m and con-

sequently the generic fibre of the associated schemes also decomposes as
Y = 6800 me (3.2.3)

We will say that a connected subset 2~ C é"é’r‘;] » has residual representation
0: Ggp — GL, (Fp) if 2" is contained in some éaG"“[j] ».m Such that the character

Am ®F ,(m) Fp associated with m is the character of p.

Proposition 3.2.4 Let Zg be an irreducible component of &g (that is, a Hida
family). Then there exist:

— an open subset 2, C Zg containing %51 = 2ZgN gélU,,;
— alocally free O %Gr—module VG of rank two over Z, such that

%G,x = V]Tx

forall x € %GCI;
— a filtration

0— 75, = Y60 = Y5, — 0, (3.2.4)

where the “//Gi’v are locally free ﬁ’(%—modules of rank 1, and GF, acts

on ”//G+v by the character associated, via local class field theory, with the
character

o O, (3.2.5)

deduced from (3.1.12).

The representation VG is uniquely determined up to automorphisms and
twisting by line bundles with trivial Galois action.

The result is due to Hida and Wiles ([41, § 3.2.3] and references therein),
except for the existence of (3.2.4) when the residual Galois representation of
2 is reducible.

Proof Let 7: G s — ﬁ (Z¢) be the pseudocharacter defined by .7 (Fr,) =
1)L(T) where A: TG ur —~> O (Zg) is the tautological character. Let
,%(‘;“ C % be the (open) irreducibility locus. By Theorem 2.5.1, 3&”(9]1 -

%é”. By Lemma 3.2.2, a representation ¥G is unique up to Galois-trivial
twists if it exists. We show existence.
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By [88, Theorem 5.1], &7 := ﬁ%érr [GF s]/Ker (.7) is an Azumaya algebra
of rank 4 over &g’ and the natural map

p: GF75—>%X

satisfies Tr o p = .7 (where Tr is the reduced trace of &7). Let ¢ € GFs
be a complex conjugation; we have an isomorphism & = & (p(c) — 1) &
o (p(c) + 1) =: Y41 & ¥_1. Each of the c-eigen-summands ¥4 is a locally
free 0 %»(i}n—module (since so is «7), whose rank is 2: indeed at any classical
geometric point x € %gl(c »), the specialisation p, is odd, hence we can
pick an isomorphism 27, = M>(C,) sending p, (c) to ( 1 4 ) from which it is
immediate that 74 , has rank 2; since classical points are dense, we conclude
that ¥4 also has rank 2.
Let 7G be either of 7] 4. By [92, Corollary 2.9 (a)], the natural map

o/ — End ﬁ%érr (7G)

is an isomorphism; we view it as an identification to obtain a representation
o’ with trace .7. As an irreducible 2-dimensional Galois representation over a
field is uniquely determined by its trace, the representation 7 , is isomorphic
to Vy,.

We now show the existence of the filtration up to further restricting the base.
Fix a place v|p of F, and letdet,: G, — O (%Gi”) * be the character giving
the action on det 75 ,. Let %*'v be the trivial sheaf ﬁ’%gr with G, -action
by the character (3.2.5), %0.» := 7G.v» 7/07_1} = (%ﬁ))_l(detv). Finally, for
7=+, —.0, let

?._ + a?
W, = Hom O (7/0,1;» Yo.0)-

Then for all x € 3&”51, by Theorem 2.5.1 we have exact sequences

0— #,1 =Qpx) > ¥ — ¥, (3.2.6)

v,X?
which we wish to extend to a neighbourhood of %Gd. From a consideration of

weights based on Theorem 2.5.1, we see that for all x € %GCI, HO(F,, 7/1}:() =
H2(F,, V/UTX) = 0. Then from (3.2.6) we deduce

H*(Fy, #y) =0 (3.2.7)
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forall x € %51, and from the Euler—Poincaré formula and (3.2.6) we deduce
that

dimq, ) H'(Fo, #, ) = 1+[F, : Qpl. H'(Fu, #,x) = 1+ 2[F, : Q)]
(3.2.8)

forall x € %GCI.
By Proposition 5.2.3.3 below, (3.2.7) and (3.2.8) imply that the natural map

HY(F,, ) ®0.

i Qo) = HO(Fy, #,) = Q)

-irr
G

is an isomorphism for all x € %él. Hence the sheaf £ := HO(F,, #;) is
locally free of rank one in a neighborhood 2¢; C 2™ of 2. Defining

+ . +
%G,v =2 ®ﬁ37é %,v’

+ . . . . . p—
the natural map 75", — 75, 27, 1s injective, and its cokernel 7., has rank

one ateach x € %Cfl. Up to further restricting 2, 7, is also locally free of
rank one. It follows immediately from the construction that the exact sequence

0— 7/va — VG —> ”//va — 0

has the asserted properties. O

Proposition 3.2.5 In the situation of Proposition 3.2.4, the natural injective
map

I: ﬁu@é — End ﬁ%’é[GF,S](/yG)

is an isomorphism over an open subset 2| C Zg containing X’ cl,

Proof By Theorem 2.5.1, p, is absolutely irreducible for all x € 3{51.
We deduce that for each x € %51, the map i, is an isomorphism. Then we
may take for .2 the open complement of the support of Coker(i). O

3.3 Universal ordinary representation and local-global compatibility

The idealised description of what is achieved in this subsection would be
to define a universal ordinary automorphic representation of G(A®) over an
irreducible component 2~ of é"G"rd; then show that it decomposes as the product
of the representations of the local groups B\, for v { p,20 associated to ¥ | g o

20 The action of B; has already been traded for an action of the torus, subsumed into the
&G-module structure.
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by a local Langlands correspondence in families. The definition should be an
elaboration of

“HG = 151’[9 Hom ﬁj}" [GF,E](%UP/’ VG)”_ (331)

For technical reasons, a few modifications are necessary:

— the local Langlands correspondence in families is not defined for the unit
groups of division algebras;?! therefore we “remove” the components at the
ramification primes X of B, in the following way: we consider a component
of & rather than &g, and we take Hy.-coinvariants in an analogue IT of
(3.3.1). For sufficiently large levels, this isolates a local factor of IT that is
generically free of rank one along locally distinguished Hida families;

— in the limit in (3.3.1), we fix an arbitrarily large finite set of primes ¥/,
disjoint from X and from S, and we let only the X’-component of U?”
shrink, so as to get a representation of BS,;

— we replace the abstractly constructed ¥ = g ® #41 (where i1 = Xuniv)
by a more geometric incarnation using the sheaf .# in ‘new’ level (with
respect to the chosen irreducible component).

We use the correspondence studied in [34], with the caveat that strictly
speaking the normalisation chosen there differs by the one fixed here in Theo-
rem 2.5.1.1 by a Tate twist. This is only a matter of book-keeping, and in order
to avoid excessive notational burden, we do not signal such Tate twists when
referring to the results of [34] in the rest of this paper.

3.3.1 Irreducible components

Let Zg C éagrdU » be anirreducible component. Fix a place v of F notin XUS,.
Recall that the v-level of a representation 7, of GL (Fy) is the smallest m such
that nl?l(w”) # 0, where Uy (w]") = {(‘33) € GL2(OFy) :c=d—-1=0

(mod @,"0F ,)}. Let m, , be the v-level of x € 2.
Lemma 3.3.1 The function x v+ my , is constant on 3&”51.

Proof By [20], my , equals the conductor of the G r, -representation #5; as all
those Galois representations are pure, we may conclude by [89, Theorem 3.4].
O

We may then define the v-level m, of Zg to be the common value of the
my ., for x € 2. By the following lemma, it is not restrictive to make the

21 There is an essential reason for this, namely the possible presence of Schur indices in rep-
resentations of those groups.
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following assumption: for all v ¢ ¥ U S, we have U, = U, (w’f"(ﬂfG)). (We

say that 2 is a v-new component of é”é’f‘(i]p.)

Lemma 3.3.2 Let' 2g C é?é’r?j » be an irreducible component, and suppose
that UP' = ]_[vjfp U,. Let m, be the level of 2 and let UP = HUTP Uy, with

Uy = Ui(@y™) D U, forallv ¢ £ US,, and U, = U]. There exists a

unique irreducible component Zg C cg"G"r‘gj » Whose image under the natural

embedding éaé’f?]p C é?GO’r?j o 18" 2G.

Proof Letx’ € ' 2! be any classical point. By [19], its level (that is, the level
of 7y ) is my if and only if 7, , already occurs in the cohomology of X at v-
level m,, equivalently if and only if (the system of Hecke- and U, -eigenvalues
associated with) 7, , occurs in a quotient of .Zy»; that is, if x" comes from a
point x of ég yr.Let Zg C éagr‘[i] » be the irreducible component containing x,
which is unique by Proposition 3.1.7. As éaGor?] » C éaGO“g] ,»» are equidimensional
of the same dimension, the image of 2 in &g,y is an irreducible component,
necessarily ' 2. ]

We now deal with the level at .

Lemma 3.3.3 Let v € X. There exists a compact open U, C U, such that for
. . U/ .
every classical point x' € Zg, we have T, = Ty v, Where 1y y is the local

component at v of Ty ® Gp.

Proof Fix a classical point x € Zg C éaé’r‘li]p, and let U] C U, be such

that n;{ v = 7y . (This will hold for sufficiently small U{} as 7y, is finite-
dimensional.) We show that U] satisfies the desired property at all classical
x' € Zg. Let X, /Q, be the Bernstein variety of GL,(F,), a scheme over Q,,
(see [34], to which we refer for more background). By [34, Theorem 3.2.1],
the representation ¥G of G, givesamap f: Zg — Xy/qQ,, compatibly with
the local Langlands correspondence in the sense that for all x € Zg, f(x)
is the point corresponding to the supercuspidal support of the representation
”)/c,v of GL,(F,) over Q,(x) attached to the representation 7 .. Note that for
classical points x, my , = JLv(n)’C’U ®Q, (x) Q_p), where JL, is the Jacquet—
Langlands correspondence.

After base-change to Gp, we may consider the finitely many maps
fit Zi = X, Q,’ where the Z; are the connected components of ‘%G,Gp'
The image of f; is contained in a connected component X; of X Q," These
components are in bijection with inertial classes of supercuspidal supports for
GL,(Fy), and for the class 0 = o; of X; there are three possibilities:

— o corresponds to the class of a supercuspidal representation o of GL2 (Fy)
over Q,,. In this case, there is an unramified character w: F,* — 0(X;)*
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such that every ¥ € X; corresponds to o9 ® w,/. Hence for every classical
x' € Z;, we have

Ty = JLy(00 @ @ (x1)) = JLy(00) @ W () = Txw @ @ (x).-

As w () 1s unramified, it follows that n}ff’”v =TTy y-

— o corresponds to the class of the supercuspidal support of St ® wg, where
St is the Steinberg representation and wg: F, — 6; is a character. Then
there exist a closed subset X} C X; and an unramified character w: F* —
O(%;)* such that every y’ € X/ corresponds to the supercuspidal support
of St ® wow,, and such that every y’ € X; — X} corresponds to the support
of an irreducible principal series representation. It follows that for every
classical x” € 2, the image f;(x") € X (since 7t ®6p is in the domain
of JLy), and that v , = JLy(St @ wowy,(x)) = wowf )y © Nm. We
conclude as above.

— no element of the inertial class o is the supercuspidal support of a special
or supercuspidal representation. This case is excluded as only those rep-
resentations are in the image of the Jacquet-Langlands correspondence.

O

3.3.2 Galois representation from geometry

Let UP C G(AP®), VP C H(AP*) be compact open subgroups. We will
consider various compact open subgroups U? C UY < G(AP>), and will
correspondingly denote by K ’ be the image of UP x VP in (G x H) (AP™®).
Let 2" be an irreducible component of é”;{’r,fi - éaGor?] » X &n,yr,andlet Zg C
fé’rg » be the irreducible component such that 2~ C Zgxn := Zc X éH,vr.

Suppose from now on that 2" is locally distinguished by H' (Definition
1.3.1). Let ¥ be the & gé/[G F.s]-module constructed in Proposition 3.2.4

and Proposition 3.2.5, and let 75 be the universal character yuny of Gg s
from (3.1.10). Let

2O =20 (2 x Eayr)
an open subset, and consider the G r g s-representation
V' = (Vg X “//H)lgg(())

We define another sheaf 7 with G g s-action, that will provide a more
convenient and concrete substitute for ¥ on (an open subset of) 2" O,
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Let

vy =u [T

vVEX

with U] as in Lemma 3.3.3. Let Ké’/ = (Uén’ X VP)F {0/ Fxpoc, and let

YV o= //ZH,X

k-
viewed a sheaf over 2.
Lemma 3.3.4 The sheaf ¥ is a direct summand of M KD

Proof The group Hy = [[,cx ES/F, acts on the locally free sheaf .#, Kl

through a quotient by an open subgroup. Since Hy. is compact, such a quotient
is finite; therefore the inclusion ¥ C .#/ Kl splits. ]

vEX

Proposition 3.3.5 Thereisan open subset 'V C 2 containing all classical
points such that ¥ is locally free of rank 2 along 2 V. For everyz = (x, y) €
2 we have

%gvx(@Xy

as a G f g s-representation.

Proof By Corollary 3.1.6, for z = (x, y) € 2! we have

\4

~ ,_V.p.U§ —1,p
%Kg,(x,y) = (my ®xy ) (Vx ® xy)

(where the first pair of factors is a representations of G x H(AP*°) and the
second one is a a representation of G ). By Lemma 3.3 .4, taking Hy-invariants
commutes with specialisation, and we find that

~ Ep U _ 1o
K2 @ e @ s @0 e (Ve (332)

The first factor is 1-dimensional by the theory of local newforms, and the
second factor is 1-dimensional by assumption (&,)’.

Since the fibre-rank of # is 2 in the dense set 2", there is an open neigh-
bourhood of this set over which 7" is locally free of rank 2. O

Corollary 3.3.6 There exist: an open subset Z® ¢ 2 OnN 2 W containing
2 such that

End e [GF,EA,S](/V) = ﬁ,%'@)’
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an invertible sheaf & over X ® with trivial Galois action, and a G g s-
equivariant isomorphism of sheaves on % ®

V2LV

Proof By Proposition 3.3.5 and the construction of #”, the representations ¥/,
"' have acommon trace .7 : G g s — O(Z (V). Since this is an irreducible
pseudocharacter, the assertions follow from Lemma 3.2.2 and (the argument
of) Proposition 3.2.5. O

3.3.3 The universal ordinary representation

In what follows, all sheaves .# kP will be considered as sheaves over 2~ (or

open subsets of 2). Note that, as the action of Hy, L. on . 4G, Ay commutes
with the Galois action, the sheaves .# K? retain an actlon of GrE.s.
We will use the following well- known fact.

Lemma 3.3.7 Let R be a ring and let T: M — N be a map of free R-
modules of the same rank. The set of those x € Spec R such that T ® R/py is
an isomorphism is open in Spec R.

Proof The locus is the complement of V (det T'). O

In what follows, similarly to Sect. 2.1.5, if *?’ is any decoration, U?p is a
subgroup of G(A”*°), and V? C H(AP®) is a fixed subgroup, we denote by
Kf C (G x H)'(AP*) the image of U?p x VP,

Proposition 3.3.8 Fix a finite set of primes X' disjoint from ¥ U S, such that
Uy is maximal for all v ¢ £ U X U S, and consider the set % of subgroups
UP' =11y, U, C UP with U} as in Lemma 3.3.3 forallv € ¥, and U}, = U,
forallv ¢ X" UX US,,. (In particular Uy € % .)

1. There exists a cofinal sequence (Ul.p Niso C %, and open subsets Z; C
2P c & containing 2 such that A C Zj fori < j, satisfying the
Sfollowing: there are integers r; and G g-equivariant maps

TV = (Mg 2 M

that are isomorphisms over Z;.
2. ForeachUP' € %, there is an open subset Zyp C X ? containing 2°!
such that the restriction to Zyp of

ngf’ o~ Hom ., 16, , (A5 V) (3.3.3)
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is a locally free 0 z;,,-module, and we have an isomorphism of locally
free sheaves with Hecke- and Galois- actions

/
H)::

KP’ ord
My = Ty, ).

p’ pr . . .
Moreover Hg/ ord — Hg/ ord ooy UP" C UP’ via the natural projections
x x

Hy, Hy,
%KP” e %Kl’"
3. The K" dule TIK" 014 ; ted by 150
. e GXH’Z/'mO uLe Hé IAY genel’a e y H/E

4. Foreachz = (x,y) € 2 we have

ord
over Zypr.

KP ordy ~ UP’ ord
(H )Z = (T[)( or

H&; )H)’: ®Xy,

with the notation of (2.4.3).
Proof 1t suffices to prove part 1 for a sequence of subgroups Ul.p "= ]_[vf » UI.CU
that are B -conjugate to a cofinal sequence (if U"" = g;U/'g- I'is cofinal
and (Uip ', T;) satisfies the desired condition, then (Ul.p " 8 Yo T;) also satisfies
the desired condition). We thus take any sequence with Ul./ , = Ui(@™iv) for
v¢ X'UXUS,, withm;, > m, and such that min, ey’ m; , — 00.

Letr; = ]_[v(l + m; , — my). By the local theory of oldforms of [21] and
the isomorphisms (3.3.2) and

V,Zp,U

Hy -1,= —1\H!
(Myp):™ = ( ®x Oy ®x, )" e W),

(3.3.4)

there are Hecke operators

H/
— M

Hj

. Py

Tv,jv- M K
1

K
such that the map 7; := [[,c5 @}, Ti.v.j, is an isomorphism after specialisa-
tion at any z in the dense set .2°°.. Hence T} is an isomorphism in an open
neighbourhood .2; of .2°°! (which we possibly shrink to make sure it is con-
tained in .2”?). Together with Lemma 3.3.7, this concludes the proof of part
1. Part 2 is a consequence of part 1 and the absolute irreducibility of 7/, in the
special case UP' = Ul.p ', with Zyp = Z;. The general case is deduced from
the special case: if UP" C Uip ', let Zyp = Z; and take on both sides the
locally free summands consisting of U?’-invariants (for the first assertion) or
coinvariants (for the second assertion). For part 3, we may again reduce to the
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special case UP’ = Ul.p ’; then the space v’ is generated by the images of
the transposes of various “oldforms” degeneracy maps 7; from part 1, that are
elements of the Hecke algebra %”GU? Finally, part 4 follows from (3.3.4). O

Definition 3.3.9 (Universal ordinary representation). Let 7 be as in Propo-
sition 3.3.8, and fix an arbitrary U’ € % . Let

2 = Ly

be as in Proposition 3.3.8, and let

KP ord . _ H/g
l'IH,2 = Homﬁ%(D[GFYE,S](//le/,”//)

as in (3.3.3). The universal ordinary representation

Sp Sp . pr
HK/ ,ord C ,HK/ ,ord — lim HK ,ord’
Hy, Hy, —
ur'ey

KP’ ord

is the 0 53 [(By, x Ey,)/Fy,]-submodule generated by IT H,

3.3.4 Local-global compatibility

Spr
The next theorem describes Hg,p rord

)
E**_in terms of the local Langlands correspondence in families of [34],
denoted by

, as a sheaf with an action by B;é, X

VG = 16,3 (7G).

This correspondence attaches, to any family %G of representations of
[l,esr GF, on a rank-2 locally free sheaf over a Noetherian scheme %/Q,
a family of representations of GL,(Fy/) on a torsion-free sheaf over %#'. The
latter representation is co-Whittaker in the sense of [34, Definition 4.2.2]; in
particular it admits a unique Whittaker model.

Theorem 3.3.10 (Local-global compatibility). Let

G,z (7G)

be the representation of GLy(Fyxy) over 2 ) associated with ¥G by the local

Langlands correspondence in families for GL, (Fx/) of [34]; let xH, univ,>’ be
the pullback to 23 of the sheaf xw.univ of (3.1.11), with the H(A™)-action
restricted to E ;,.
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Then there exist an open subset @ c 23 c X containing ', a

line bundle HZ w.Sord oor & @ and an isomorphism of 0 5 [GLa(Fyx/) X
)
E 2,] -modules

K5Pord ~ K Sp’,S,ord
HH/ = (76,3 (YG) ®ﬁ] 3) XH,univ, ) ® H .

Proof For x = (J,/, consider

*HKSP,ord)

x__/ L .
TGy = Hom 0, (3)[E§<](XH,umv,S, HY

a torsion-free sheaf over 2" with action by BX, = GLy(Fx). There is an
obvious isomorphism

HH): of *NG >/ b2 XH,univ,%’ - (3-3-5)

By Proposition 3.3.8.4 and the local freeness of each l'IK " near 2!, the
E

fibre of (/n/G’S)US atany z = (x, y) € 2 equals nG,S(”f/G,x) s by Propo-
sition 3.3.8.3 the same is true if one replaces (JréI E,)Ug’ by the submodule

(m§ E/)Ug. In conclusion, taking the limit over U?” € % we find that the

smooth, finitely generated, admissible & 5-3)[GL2 (Fx)]-module 716 5 satis-
fies ’

/ ~
TG, 3, (x,y) — 7TG,E/(ﬂf/G,x)-

for all (x, y) € 2°°. Then by [34, Theorem 4.4.3], there exist an open subset

2D c 23 containing 2! and a line bundle that we denote by IT K s, ord
E
such that
JTG s =716,y (76) ® HK .S, ord,
Substituting in (3.3.5) gives the desired result. 0O

4 Pairings
4.1 Global dualities
We construct Hecke- and/or Galois-equivariant duality pairings on the sheaves

constructed in the previous section. The results of this somewhat technical
subsection are summarised in Propositions 4.1.7, 4.1.8.
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4.1.1 Pairings, symmetries and involutions

If € € {1}, R is a ring or sheaf of rings, and M, J are R-modules, an R-
bilinear pairing (, ): M ® M — J is said to be e-symmetric if it satisfies
(m,m’) = € - (m’, m). If R is equipped with an involution ¢, denote by (-)*
both the functor ®g R and the maps m +— m ® 1; an (R, t)-sesquilinear
pairing (, ): M ® M' — J is said to be e-hermitian if it satisfies (m, n) =
€ - 1((n*, m“"). We will also use the prefix ‘skew-’ (respectively no prefix) if
€ = —1 (respectively +1).

4.1.2 Involutions

h sph,ord
We denote by the same name ¢ the involutions on jf P jfcjf or AG Ul

3 Ord deduced from those of Sect. 2.1.4. If M is a module over any of the above
rlngs (or sheaf of modules over any of the above spaces), we let M = * M.

Lemma 4.1.1 Let W be an irreducible algebraic representation of G, over L.

1. We have owv (t) = ow(t') forall t € Tg,.
2. If 1% is the ordinary part of an automorphic representation of G (A™)

over L of weight W, unramified of level U ; S outside of a finite set of primes S,
sph, ord \/,U*S,ord o~ (n_U,f,ord)L

L US -modules

then there is an isomorphism of jf
3. There is an identification

LWyt pcl, WY
(g, ) = ég,

ord __ V,ord
such that Ty = (Ty) .

Proof All results can be reduced to the case G, = H, which is trivial, or
Gx = G, that we address. Part 1 follows from the explicit description of oW
in (2.2.5) and W, (w (we)) = = WG, (—w: (wy)) (see (A.4.2) below for an explicit
duality).

For part 2, weuse 7¥ = 7 ® »~! where w is the central character of 7,
and verify the statement separately for the spherical Hecke algebra and for the
operators U;. For the former, it is well known that the spherical Hecke algebra
is generated by operators 7'(z) and T((*)) = T((',)) for z,x € F;

denoting by A, 2(-) the eigenvalue of T'(-) on (7 ?)US, we then have A, (z') =
Az =w(@) ™! = Arv(2), and
M (((F1)) =2 TN ) = 0@ A (Y1) = Aav (1))

as desired.
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For the operators Uy, we verify that if 7 is ordinary at v with unit character

a, = ava‘;l (as a character of Té“ ,)» then " is ordinary at v with unit

character
ot t o ().
This follows from observing

m) =Ind(a@ - (| o, | 1;1),

ad(t) = ag(ag(v) "' € OF.
Finally, part 3 follows from parts 1 and 2. O

4.1.3 Homological and cohomological dualities

We shall define various pairings (, )9 in the (ordinary, completed) homology
of Shimura varieties, starting from the Poincaré duality pairings. Then we will
use them to construct corresponding pairings ( )2 on spaces of representations,
as follows.

Construction 4.1.2 Let A be aring, G a group, and let M1, M>, Vi, V2, A(d)
be A[G]-modules, projective and of finite type over A; denote

vP := Hom (V, A(d)).

Let f; € w; := Hom (M;, V;) be A[G]-maps, suppose we have fixed an
identification VZD = Vi, let (, ) be a perfect pairing M| x M, — A(d),
inducing uy: MZD — M. Let fZD: Vy =V — M2D be the dual map, then
we define a pairing on w1 X 1w by

(fi. f2)0) = fiouy(f3) € End ai6)(V1). (4.1.1)
4.1.4 Homological dualities/1

Fix lattices W° and W"° on any right algebraic representation of G, over L,
and denoted by (, }W: W® WY — L the natural invariant pairing. This may
not preserve the lattices but it does so up to a bounded denominator which we
denote by p~IW1.22

22 With respect to the model in (A.4.2), we have |W| = ord), <((k—k2121) /2)) for the represen-
tation (A.2.2) of G.
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We may then consider the Poincaré duality pairings

(Dvew: HiX v, V)xHy(Xsv,, W) = Ho(Xsu,, VW) - L(d),

(4.1.2)
where the second map is induced by (, )" and summation over the connected
components of X, .- These pairings are integral up to a bounded denominator
p~ Wl and satisfy

T, v, w=(x,yTYvu,.w

forany T in ‘%ﬂ(“i v, » as well as the projection formula

(Pug/ U+ (), VIwu, = (X, Py ju, M) w,u (4.1.3)
for all pairs of levels U, C Us,; here puiju,: Xu, = Xu, is the projection.
4.1.5 Homological dualities/2

We start to promote and modify the Poincaré duality pairings. The following
lemma is clear.

Lemma 4.1.3 Let R be a ring, S a finite R-algebra, M a finite S-module.

1. Suppose that S is étale over R. Then there is a natural isomorphism
o: Hom g(M, R) — Hom (M, Hom g(S, R)) - Hom (M, S)

where the first map is . — (m +— (s — A(sm)). and the second one
comes from the isomorphism S = Hom g (S, R) induced by the relative
trace map.

2. Suppose that S = RI[T] for a finite abelian group T, then there is an
isomorphism : Hom gr(M, R) — Hom gir|(M, R[T]) given by A
(m = Y, Aem)[t~1)).

If S = R[T] is étale over R then we have a(X) = |T|~'B(1).

If § = R[T] for a finite abelian group 7', one verifies that the isomorphism
of the lemma is given by

GO (G () =) el

teT

We may apply case 2 of the lemma to

M = Myvyr,w® Muyvr,wv, R=L,
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S=Anvrr = Ayyr, ®c L= L[Tho/Th,]
(with the isomorphism of (3.1.3)). We obtain, from the pairings ( , )v, w,
pairings
(G Nvewr: Muve wr @y, My yewy, = Awvewr®L,
and thanks to an easily verified compatibility, a well-defined pairing

(o Nvew: Muvew ®ny My yp v —> AH®L =04 QL

' 4.14
X @y > im{{xr, yr))ve,w,r. @14

4.1.6 Automorphic inner products
Let
V(Uy) := vol(X4 v, (0)),

where ‘vol” denotes the volume with respect to the metric deduced from the
hyperbolic metric dxdy/2my?* (using the complex uniformisation (2.3.1)),
when G, = G, and the counting metric, when G,. = H. By [107, Lemma 3.1],
v(Uy) € Q* and, when d = dim X, = 1, it equals the degree of the Hodge
bundle Ly, defined as in loc.cit. We have

degpy;.u, = V(U /V(Us) = Z,(Q) N UN\U./ Uy, (4.1.5)

where the last equality can be easily seen e.g. from the complex uniformisation
(2.3.1). We set for any r > 1

V(Uf U*,O(pr)p)

Py ._
V(Ui) = pArTFQl

(4.1.6)

where Uy o(p")p C G4(Q)) is a maximal compact subgroup if G, = H, H', it
is the group of those matrices that are upper triangular modulo p” if G, = G,
and it is deduced from those by product and quotient if G, = G x H, (G x H)'.
The right hand side of (4.1.6) is independent of r > 1.

Let 7 be an automorphic representation of G,(A*°) of weight W* over
L, V the corresponding G g, -representation. Then we have an isomorphism
Vpv = V(1), hence we may use Construction 4.1.2 with A = L, G = Gg,,
My =H Xy, #), My = Hy( X0, W), Vi = Vg, Vo = Vv and the
pairings (4.1.2). Using (2.5.3), we obtain

Cnve =0 ) QOuw: g% xgVoUs 5 L.
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One verifies thanks to (4.1.3) and (4.1.5) that the pairing

(, g = I}Jm (dim W - V(U*))_l -, )ru, i X 7 — L. (4.1.7)

is well-defined.

When G, = H, denoting # = xy, we may alternatively apply Construction
4.1.2t0 A, My, M3, Vi, V, as above and the image of the pairings ({, ))vr ,w
under the map Ay ,w — L given by [t] — xu(¢), and denote the resulting
pairings on xu X X7 by (. ). yo, - ASITH0/THr|-V(VP) = V(VPV), )
by (4.1.5), we have

xq.VP.r

-1
GO =V TGO ) Wyvr s

and in particular the right-hand side is independent of V7.

Assume for the rest of this subsection that G, = G,G x H, (G x H)'.
Then we need a twist in order to isolate the toric action and to obtain the
t-equivariance of the pairings under the action of the U ,o-0perators.

Let 1 = 7% ® W be an ordinary representation of G,(A). Using the
transformation wo™ defined in Proposition A.2.1, we define a pairing

(fi, LI i=dim W - W fi, fo)r: 7% x 7V - L. (4.1.8)
See Lemma A.2.2 for its nondegeneracy.
4.1.7 Homological dualities/3
Analogously to the previous paragraph, we define a twisted Poincaré pairing

Hi(X, 2, ") @H(X, yr ., ) — L(1)
o e (4.1.9)
<x’ y)?]rg’w’r = ('x’ ywi(l)rd>UfU*’p’r’W7

of which we will especially consider the restriction to the ordinary parts of
homology.

Lemma 4.1.4 Let w be an ordinary representation of G4 (A), and identify
7 = Hom /g, (H, X,02 #)°4, V)

for sufficiently large r similarly to Proposition 3.1.5. Then Construction 4.1.2
provides a pairing (, )<’>(‘>}‘1;d on w9 x 7V it is related to (4.1.8) by

OFt =vWU) ™" () yom (4.1.10)

Ux,W,r
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Proof This follows by chasing the definitions. O
By applying case 2 of Lemma 4.1.3 as in (4.1.4), corrected by a factor
p'1F:Q1 23 we obtain from (4.1.9) pairings

(CNorw,: Hl(y*,yf,r, V) ®z, HI(Y*YU&,, W) — Ag, (D
x@y > pE Y T g (4.1.11)

tGTG*,O/TG*J

Lemma 4.1.5 The parings (4.1.11) satisfy ((x, T, yr))w,r = {((xr, ¥ TN yr w .,
forall T € jfé’ﬂd and all x, € Hd(y*,Uf,r’ W), yr € Hd(y*va,r, W).

For z € Mg, w, denote by z, its image in Mg, w r = Hd(Y* UP w)ord,
The pairing

(o Nawrw: Ma, u2w @ Mg e v = Dg, yp (@) ® L(41 1)
(D aorw = Mm G )y

is well-defined.

The above construction is a minor variation on the one of [41, § 2.2.4], to
which we refer for the proof of the lemma. As usual, when W = Q,, we shall
omit it from the notation.

Lemma 4.1.6 The diagram

L U
M, urn ®x5, Mg yp v = Bg,ur (@ ® L
jw®jWVT ;T
() g pr

L
Mg, .ur ®x5, M,

where the left vertical map comes from Proposition 3.1.2.2 and the right ver-
tical map is [t] — 0‘;,1 (1)[t], is commutative.

Proof For simplicity we write down the proof for the group G, = G and
we drop the subscripts U”. Poincaré duality and the pairings (, )" preserve
integral structures up to p~ /Wl Then by construction it suffices to show the
identity

ord __

Gwr 0, O = (6, 1) (mod p"~M16y)

23 This factor accounts for the ‘Ko(p")’ -part of the level.
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forall» > 1 and x, y in Hy(X,, 7).
By definition in (3.1.8), we have

jW,r(x) =X ® é‘ ® é-*’
where ¢, € WoNo/p" and L e W]‘\’,O /p" are elements pairing to 1; we denote
by ¢, ¢"* the analogous elements for Jwv r. Then we need to show that
(x®& ®Hw, y®EY ® ™) = (x,y).

ord
a

By the definition of wy™ in Proposition A.2.1, this reduces to the identity

(Grwo, &) - (¢Fwo, &) = (&, &) - (g0, 00" =1,

which can be immediately verified using an explicit model for the pairing such
as given in (A.4.2). O

4.1.8 Dualities over Hida families

Let 2 be an irreducible component of (g’;()rlgi By Proposition 3.1.7, the map
&2 — Spec Aq, is étale in a neighbourhood 27 of 2 °l_ hence we may
apply case 1 of Lemma 4.1.3 to deduce from (4.1.12) a pairing

(< , ))Kpord: %Kpord ®ﬁ%», %It(p/ — ﬁ%/(l) (4113)

We summarise the situation.

Proposition 4.1.7 (Duality). Let 2 > 2 be the intersection of the subset
2D of Theorem 3.3.10 with the locus where the map 2 — Spec Aq, is
étale. There exist

— a perfect, G g-equivariant, skew-hermtian pairing
s A 6,60 4.1.14
KP' ®ﬁ%-(5) Kp/ - %(5)( ) ( oL )

induced from (4.1.13);
— a perfect, G g-equivariant, skew-hermtian pairing

YV Qps V' — Oye(1).. (4.1.15)
— a perfect pairing

() = VP Oyt T ®0, (T = Oy,
(4.1.16)
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where (,)(())p: 18 deduced from (4.1.14), (4.1.15) and the isomorphism
of Proposition 3.3.8.2 via Construction 4.1.2.

Proof Observe that the natural map
H |« * x* \HY
(%Kl”) - ((%Kp/)Hé) = (%KP/) z

(where * denotes O ,-5)-dual) is an isomorphism; as (4.1.13) is equivariant for
the action of the full Hecke algebra, this implies that its restriction (4.1.14) is
perfect. It is skew-hermitian by Lemma 4.1.5 and the fact that the Poincaré
pairing (4.1.2), when W is trivial, is skew-symmetric.

We find the pairing (4.1.15) by specialising (4.1.14) to K?’ = K, and the
pairing (4.1.16) as described. O

4.1.9 Specialisations

We describe the specialisation of the pairing ((, )) just constructed.
For each algebraic representation W of (G x H), denote by

LW ._ cl, W
Z = %ﬂ(o@Kp’r,

the set of classical points of weight W (omitted from the notation when W =
Qp) and level r. Denote by a subscript ‘W, r’ the pullbacks of sheaves or

global sections from 2~ O to %CI’W (which is a finite étale scheme over Q).
We let

._ cl, W KP ord ,_ c,W K7 ord
VW,V L F(% ’ /yW,i’)7 HH/Z,W,V L F(Xr ’ HH/E )7

H. H. — ’
My, =Y ty) = Hi(Zgr, 9,

KP' W,r *

where the last equality is by Proposition 3.1.2.3. We denote

. -1 . K? ord KP' ord, LW
(CDwar = VKD GOy, Mgy X Ty " = O,

. K7’ ord
sections of TT o =
z

Proposition 4.1.8 Let fy, respectively f> be global**

H!. . KP’ ord
Hom 6, [GFA,E](%KIE:” V), respectively (HH’E ordy: 1o

H! H!
fl,W,r: MKI)”:’,W,F — VW,rv fZ,W,r: (MK;:/’WJ)L - V\é[/’r

24 The same statements hold with some extra notational burden if f1, f2 are only defined over
an open subset of 2" ).
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be ﬁ%cl,w [G F g]-linear maps.
Letx € %CLW, = (x) and let

fia: HiZgo W) — Vo, frx: Hi(Zgorp, W) — Vv

be Q,(x)[G F,gl-linear maps.
The following hold.

1. Suppose that fori = 1, 2, the map f; w., arises as the specialisation of f;.
Then

((f1s D] yaw = ((frwrs owDw,r in 625V,
2. Suppose that fori = 1, 2, the map f; . factors through the projection

p?: HI(ZKP’JH W(’) - H](Z[([)/J,, 7/9)%9 = H] (7K”/,ra W)OI‘CLH),:

/

MKP’ W,r’

where 7 = B ifi = 1,7 = VvV ifi = 2; and that f; , coincides with the
specialisation of f; w r at x. Then

((f1s PDwr ) = (fixs fo0)2 =dim W - W f1, £ in Qp(x).
(4.1.17)

Proof We simplify the notation by omitting the superscripts Hy. and subscripts
K P, moreover we ignore the normalisations v(K ?")~! that are present in all
of the pairings to be compared.

Part 1 follows from the definition (4.1.12) if W = Q,,, and similarly we
can also identify ((, ))w, , with the restriction to %CI’W of the pairing on
functions on Mw deduced from ({, ))w via Construction 4.1.2. By Lemma
4.1.6 this implies that the desired statement holds for all W.

For Part 2, let Hy , := O (%CI’W). First notice that, by the construction of
case 1 of Lemma 4.1.3, the diagram of Hy ,-modules

))Wr
Hom er(MWr7 HW r(l))Q — MWr

e

A
Hom(MWrA AWr(l))HMWr
1S commutative.
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On the other hand, let x € Q%”Cfvr and let o, be the associated character of
T*. By definition in (4.1.11), the pairing ({, })A.w specialises, on Mw rx ®

l
MW,r|x’ to

@y 3 e, Iw = Y e, e

teTo/T, teTo/T,
— pr[FCQ] |TO/TV| . <x’ y>([);§’W,r'
It follows that (), , specialises at x to p"[F:Q]lTo/T,rlu(’)/W , hence that

the specialisation of ((,))(x) = v(K?")~!(, M), (X) s

G
prlEQNT /T, |v(KP)
B pEQ (kP KL (p") p) ()
= pr[F:Q][V(KI’/Kll (P")p)/V(KP' Ko(p),)IV(KP' Ko(p")p)

_ ord
- (’ )7-[ ’

where we have used |To/T | = v(K?'Ko(p") ) /v(K?' K{(p)") (by (4.1.5))
and (4.1.10).

This establishes the first equality of (4.1.17); the second one is just a
reminder of (4.1.8). O

4.2 Local toric pairings

Let F be a non-archimedean local field, £ a quadratic étale algebra over F
with associated character n: F* — {£1}, B a quaternion algebra over F,
G =B*,H = E*,H = H/F*, and suppose given an embedding H — G

4.2.1 Definition of the pairing

Let = be a smooth irreducible representation of G over a finite extension L
of Q,, with a central character w: F* — L*.Let x: E* — L™ a character
such that y|px - @ = 1. We identify x with a representation Lx of E* on
L, and when more precision is needed we denote by e, the basis element
corresponding to the character x in Lx. Let I1 := m ® x, a representation of
(Gx H) = (G x H)/F* over L. We assume that 7 is essentially unitarisable,
that is that for any embedding ¢: L — C, a twist of t7r is isomorphic to the
space of smooth vectors of a unitary representations. (This holds automatically
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if 7 arises as the local component of a cuspidal automorphic representation
over L.) Let 7 be the smooth dual, [TV := 7V @ x !

Assume from now on that the modified local sign ¢(IT) =(1.2.5) equals
+1. Then, by the result of Tunnell and Saito mentioned in the introduction,
the space

" .= Hom »(11, L)

has dimension 1 over L. Moreover the choices of an invariant pairing (, ) on
[T ® 1Y and a Haar measure df on H' give a generator

0 =0 ya e g @)*#

defined by the absolutely convergent integral

Q) (fi, ) =LV, )7 07! / @) fi, 1) de; - (42.1)
EX/FX
forany ¢: L — C;here Z(V,,0) =(1.2.7).
Recall also from the introduction (1.2.8) that

(fl ®f2) _00).a(f1, f2)
Qar

— 4.2.2)
f3® fa (f3, f4)

is independent of (, ) whenever it is defined.
We study the pairing, or some of its variations, in a few different contexts.

4.2.2 Interpretation in the case E = F & F

In this case G = GLy(F), and the integral (4.2.1) has an interpretation as
product of zeta integrals. Let # (;r) and .# () be Kirillov models over L
as in [32, § 2.3]. By [32, Lemma 2.3.2], the L-line of invariant pairings on
() x # (") is generated by an element (, ) such that, foreach:: L < C,
we have

2
W f) = « )nv) /F f Y (nd™y, (4.23)

L, x

where the integral is absolutely convergent (as (7 is essentially unitarisable)
and d* y is any L-valued Haar measure. Identify E* with the diagonal torus in
GL,(F) and write x = ()1, x2) according to the decomposition £ = F & F’;
noting that y, = a)‘l)(l and7w =7V Q@ w1, we indentify Q) 4; with

1Q().ar(f ®ey, f¥®e,—1)=L(1/2,img @ 1x)""
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f O (@) foof DI dils=o
EX/Fx

X

— L1200 f Y Do Ol d* s

~L(1/2,m ®LX1)_1/ Y eIyl d* yls=o

X

= (L(1/2, 0 @ t1) " - TS, txa, 1/2))
(L2, m @) T, o, 1/2), (4.2.4)

where I (-, -, 1/2) is the zeta integral of [34, § 5.2] for GL>(F) x GL(F),
and = denotes an equality up to constants in L™ depending on the choices of
measures.

4.2.3 Special line in the unramified case

We study the first one in a short list of special cases in which there are ‘canon-
ical’ lines in IT, ITY, on which the value of the pairings Q can be explicitly
computed.

Lemma 4.2.1 [105, Lemme 14]. Suppose that B is split, E/ F is unramified,
and both w and x are unramified. Let K C (G x E*)/F* be a maximal
compact subgroup. Then

O, y.ar(v, w) =vol(O5 /O, dt) - (v, w)
for all v, respectively w, in the lines TIX, respectively (TTV)X.
4.2.4 Special line when B is nonsplit
Suppose now that B is nonsplit and that IT is an irreducible representation of
(G x E*)/F* as above. Note that IT is finite-dimensional and H' is compact,
so that [TV = IT* and the natural maps M7 — Ty (= H'-coinvariants) and

n=H — (m#'* are isomorphisms. Moreover the non-degenerate pairing (, )
restricts to a non-degenerate pairing on I1g ® HXI,. Then we may compare

the restrictions of the pairings Q( . of (, ) to the line I ‘mvH,

Lemma 4.2.2 [n the situation of the previous paragraph, we have
O( it =L Vig ) 0) - VOWEX/F*, dt) - (, )

as elements of (TTH)* @ (ITV-H')*,
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Proof This follows from the definition in (4.2.1), since in this case the inte-
gration over the compact set E*/F* converges. O
4.3 Ordinary toric pairings

We define a variant for ordinary forms of the pairing Q.

4.3.1 Definition of the ordinary paring
Let IT = 7 ® x be an ordinary automorphic representation of (G x H)'(A)
over L. When referring to local objects considered in the previous paragraphs

or products thereof, we append subscripts as appropriate.
For each v|p, let

wh Ef — L*

be the character by which E* (or equivalently ]_[w‘v Gfg’w) acts on V;, v @ Xus
and let j, € E, be the purely imaginary element fixed in (A.1.2). Define

WGy =[]l Go)-

v|p

For measures dt, = dt, ; on H), dty o on H;’ o (the latter a merely formal
notion as in the introduction), define

vol(O /O, dty)

o / e o /
vol°(H!, dt,) = RS ,vol° (H) oo, dty )
VOl(H] oo, dty c)
- 2[Fv:Qp] ’
VOI°(H) . dipeo) := [ [ vol°(H,. dty) - vOI°(H] . dty o). (43.1)
vlp

The denominators in the right-hand sides are the volumes of vol(& E,v / ﬁ;’v),

respectively C* /R, for the ratio of (rational normalisations of) selfdual mea-
sures, cf. [107, § 1.6.2] and the proof of Proposition A.3.4.

Definition 4.3.1 Let dt = dt”*°dt ., be a decomposition of the adelic mea-
sure dt specified in (1.2.9). Then we define:
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v,ord __ .
— for each fl,poo»f3,poo € H?;rgo’ f2,poo»f4,poo € 1_Ipo%r with f3,poo ®

S8 # 0.

O ('ﬂ’pm : fz,pw) = W VI (. diyec) - 11222 8 T2
b f3,poo®f4,poo f3,poo®f4,poo
4.3.2)

~ foreach fi, f3 € I, fo, fu € TV with (f3, f)° # 0,

Qord<f1®f2).: 0P flpoo‘g’fzpoo 'Qord (fl,poo@’flpOO)
A fa) TN ) T\ fpee ® fapeo)

(4.3.3)

The normalisation at poo is justified by the clean formula of Proposition
4.3.4 below.

Remark 4.3.2 Suppose that IT is locally distinguished, so that as explained in
the introduction the functional Q; is nonzero. Then the functional Q?ﬁd is
also nonzero.

4.3.2 Decomposition

Fix a decomposition dt = [ dtydt,e such that for all but finitely many

vtpoo
v,vol(0% /O ) = 1.Let X' be a finite set of finite places of F disjoint from
X and §), and containing the other places of ramification of I, and those such

that vol(0 /O ) # 1. Let KP C (G x H)'(AP*) be an open compact

subgroup that is maximal away from S := ¥ U ¥’ and such that Hf V=11,
forv e X.

Lemma 4.3.3 Forall fi, f € IX 9 £, f1 e np,f”"’fd with (f3, f)°rd

Hy,
0, we have
N1® fi0® f2,
Qord ( — 1_[ Qv,dtv v v
3 fa ) f3.0® fan
veX
T vol(ES /F L dt) 2 (Vir, .0, 0)—1M
vey f3,v ® f4,v
S s
'fll’00®f2poo _Qord (fl,poo@fz,poo)
fsspoo 2y f4SpOO poodipoo J3.p00 @ fa,poo
4.3.4)
Proof This follows from the definitions and the results of Sect. 4.2. O
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4.3.3 Relation to between the toric pairing and its ordinary variant

We gather the conclusion of the computations from the appendix.

Proposition 4.3.4 Let T1 = 7 ® x = [1°° ® W be an ordinary representation
of (G x H)Y(A). Let wgrd and yflr,d be the operators defined in Propositions
A2.1 and A2.4. Let e),(V(z, ) = (1.4.6) be the interpolation factor of the
p-adic L-function. For all fi, f3 € TI°Y, f, f4 € TIwith (f3, f4)°9 #0,
we have

ord ord
/ & Yy
o (FED VWY oo (ﬁ ® f2> |
W (f3) @ fa f3® fa
Proof There is a decomposition Q;rgo,dz,,w = Hv‘p ng?izv . l_[v|p nggO.dtv,oo’

whose terms are defined in Sects. A.3—A.4. The only point worth stressing is
that if ], respectively ,u;foo is the character defined in Sect. A.3.3,% respec-

tively Sect. A.4.3, then the decomposition ut = ptsm 22 of 4+ into a

prodilct of a smooth and an algebraic character is given by 5™ = l_[v| P w,
e — nv|p W oo
Then the result follows from Propositions A.3.4 and A.4.3. O

4.4 Interpolation of the toric pairings
We interpolate the pairings Q?lrtd along Hida families
4.4.1 Interpolation of the local pairings

We use the same notation F, E of Sect. 4.2.

Lemma 4.4.1 Let 2" be a scheme over Q and let r' = (r, N) be a Weil—
Deligne representation of Wg on a rank-2 locally free sheaf over 2. Suppose
that 2 contains a dense subset 2" such that r. is pure forall x € 2 I Let
ad(r’) be the rank-3 adjoint representation. Then there exist an open subset
2" C 2 containing X' and functions

LO, "Y', LA, ad) e 02"

such that for every x € 2 we have L(0,r)"'(x) = L(0, r)’c)_1 and
L, 7 ,ad)(x) = L(1, ad(rj/c)).

25 Note that despite the similar notation, the character 1, is defined using the Weil-Deligne
representations rather than the continuous Galois representations.
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Proof By [34, § 5.1], there exist an open set 2 C 2 containing 2!
and functions L(0, r")~!, respectively L(1,r’,ad)"!, in &¢(2"") interpo-
lating L(0, r.)~", respectively L(1,ad(r.))~!, for all x € 2. By purity,
L(1, r, ad)~! does not vanish on .2°°!, hence it is invertible in an open neigh-
bourhood 2™ of Z°in 2. |

Let 2" be an integral scheme, .7 * be a %, -module, then we define .7 * 1
to be the J#3--module such that for each open % C 4,

TNy =71 f e T W)
with %% -action givenby a - f~! = (a™! f)7!.
Proposition 4.4.2 Consider the situation of Lemma 4.4.1. Let
7 =n()

be the O 9 [GLy (F)]-module attached to r' by the local Langlands correspon-
dence in families of [34], let w: F* — O(Z)* be its central character,
and let x: E* — O(Z)* be a character such that - x|px = 1. Let
v i=n(p*) andletTl = @ x, IV =7V @ x L. Let (I By ImY)*

be the O, -submodule of those f3 ® f4 such that (f3, f3) # 0.
Then there exist: an open subset 2 C X containing X °'; letting 0 =
Oq1, X = Ky, an O*-submodule (T1 ®ﬁ% [1Y)* specialising at all

z € 2 to the space of f3.: ® fa; suchthat (f3z, fa;); # 0; and a map of
O-modules

2, MRy M) @ux (Mg V)1 » 7

satisfying the following properties:
1. Forallt;,tp € EX/F*, g € (GLy(F) x EX)/F,

2, (H(tl)f1®l'lv(t2)f2)> _ o, ( fi®f >
! M(g)fs ® fi ‘"NpemV(g )’

2. Forallx € 2°°,

where Q4; is the paring on 1y ® T1) of (4.2.2).
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Proof For each x € 2°°, 7, corresponds to a pure Weil-Deligne represen-
tation under local Langlands, hence it is essentially unitarisable (and in fact
tempered, see [99, Lemma 1.4 (3)]). Then by [34, Lemma 5.2.5] there is an
open neighbourhood .2 of 2! in 2" and an invariant pairing over 2"~

(,):m@n — Oy (4.4.1)

specialising to the pairing ( , ), defined by (4.2.3) at all x € 2°°L. It induces
an invariant pairing I[1 ® ITY — &'y still denoted by (, ).

By Lemma 4.4.1, up to possibly shrinking 2"/, we have regular functions
on 2" interpolating z > L(1/2, T E® x,)~' = L(0, ’”z|WjE ® x.)~ ! and
x+— L(1, 7y, ad) = L(1,r, ad).

If E/F is split, [34, Proposition 5.2.4] applied to (4.2.4) gives an element
D(y.dr: Npx QITY, Ex —> Oy interpolating Q) forx € 2, and we define

<f1®fz> 2,41 (f1, f2) 442)

3@ fa (f3, f4)
If E/F is nonsplit, by the previous discussion we can interpolate all terms
occurring in the definition (4.2.1) (note that the integral there is just a finite

sum), to obtain a pairing 2, ) over 2" interpolating 2, ), for x € 2. Then
we again define 2 by (4.4.2). O

4.4.2 Product of local pairings

We consider the global situation, resuming with the setup of Sects. 3.3—4.1.
Let IT := Hgf) o1 over 2°©). Recall that we have a decomposition
z

o~ KPS, ord
H = (nG,E/(/VG) ® XH,univ,E/) ®ﬁj{(5) HH%: or (443)

from Theorem 3.3.10.
Let (I1 ®1/x 1'[ y*cn ®//x 1" be the ﬁx (5)-submodule of sections

f3 ®ﬁx f4 such that f3® f1 # O and (f3.0, fa, v)v # 0 for each the pairings
( )U_(441) vex.

Theorem 4.4.3 Let T1 := Hgfﬂ’ord and X9 be as in Proposition 4.1.7,
z
and let (T1 ®,1/%(5) nH* c I ®,%/%(5) 1" be the submodule defined above.

Then there exist an open subset 2 © c 2O containing 2" and, letting
O =0 y©, X = Hywe, amap of O -modules

2: MRy Qpx I ®px NN = Ky
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satisfying:

1. Foranyty, 1y € Eg,/Fy, C (GLy(Fy/) x ES)/Fg,

. i any h € %”S,KZ, and
any section

(i’ L) (H® ) of TRy M) ®x (T« M),

we have

<H2/(t1)f1 ® H‘)jf(lz)fz) _ 9 ( [1® f ) ,
[(h) f3® fa ST \pBemfi)’

in the left-hand side, Iy, respectively T1%., denote the actions of the Hecke
algebras at S on 1, respectively TI'.
2. Forallx € 2%,

_ pord
th\x - Q ’

where Q°' is the restriction of the pairing on HX’Ord ® l‘[;ord of Definition
4.3.1.

Proof By (4.3.2), (4.3.3), (4.3.4), and (4.4.3), we need to interpolate:

— the terms £ (V(z, 4),o for v € X: this is Lemma 4.4.1;

— the characters u for v|p: this follows form the existence of the filtration
(3.2.4) over an open subset of Z".

— the term Qg 57 := [[ 5 Qur,v, According to the proof of [34, Theorem
4.4.1], the representation g, x/(7G) is the maximal torsion-free quotient
of ®yex'mG v (¥G). For sections f; s that are images of @5 f; p, With
fi.v sections of Gy (YG) @ XH,univ,v if i = 1, 3, 0rof 7G » (¥(;) ® XI;,{miV,v
ifi =2,4,let

2., (fl,E’ ® fz,zf) =[] 2 <f1,v ® fz,v) ’
[3,5 ® faz e o ® fap
where the factors in the right-hand side are provided by Proposition 4.4.2.

This is well-defined independently of the choices of f; , as %" is torsion-
free.

This completes the interpolation of (4.3.3) into a function 2, that satisfies
properties 1 and 2 by construction and the corresponding properties from
Proposition 4.4.2. O
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5 Selmer sheaves and p-adic heights

In this section we present the theory of Selmer complexes and p-adic heights
needed in the rest of the paper. The foundational material is taken from the
book of Nekovar [81].

5.1 Continuous cohomology

Let (R°, m) be a complete Noetherian local ring, let G be a topological group.

5.1.1 Continuous cochains for (ind-) admissible R[G]-modules

Let M be an R°[G]-module. We say that M is admissible of finite type ifitis of
finite type as an R°-module and the action G x M — M is continuous (when M
is given the m-adic topology). We say that M is ind-admissible if M = | J,, M«
where {M,} is the set of finite-type admissible R°[G]-submodules of M.
The complex of continuous cochains of M is denoted by C¢ (G, M);
it is defined in the usual way [81, (3.4.1)] when M is admissible of finite
type, and by Céont(G, M) = h_r)na CéOm(G , M) when we have a presentation
M =, My as above. The image of C¢ (G, M) in the derived category of

con

D(rMod) of R°-modules is denoted by
RI(G, M)
and its cohomology groups by
H'(G, M)

(we omit the subscript ‘cont’ as we will only be working with continuous
cohomology).

5.1.2 Localisation

Let
R = R°[S™!]

for some multiplicative subset S C R°, and let M be an R[G]-module. We
say that M is ind-admissible if it is ind-admissible as an R°[G]-module, and
that it is of finite type if it is of finite type as an R-module. Suppose that
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M := M° ®pg- R for an ind-admissible R°[G]-module M°. Then M is ind-
admissible as an R°[G]-module and there is a canonical isomorphism

CC.OHt(G’ M) = Cc.ont(G’ Mo) ®R° R (511)

([81, (3.7.4)]).

Remark 5.1.1 Let
C = Cro

be the category of schemes isomorphic to open subschemes of Spec R°, with
maps being open immersions. It follows from the previous paragraph that, for
any object X of &, the condition of ind-admissibility is defined for all qua-
sicoherent Ox[G]-modules, and the functors RI"(G, —) are well-defined on
ind-admissible &'x[G]-modules. Moreover, both the ind-admissibility condi-
tion and the functors RI'(G, —) are compatible with restriction along open
immersions in %

In the following, we will not further comment on the generalisation indicated
in the previous remark when referring to sources only considering R°[G]-
modules.

5.1.3 Completed product

Fori =1, 2, let R? be complete noetherian local rings, and let R° := R?@R;.
We have a functor

X: Cre X Cry — Cre (5.1.2)

defined on objects by Spec Rf[l/f1]>A<Spec R7[1/f2] := Spec Rf®R§[1/f1 ®
1,1/1® f>] and glueing.

5.1.4 Notation

Throughout the rest of this section, X will denote an object of Gro. If o7 =
Ox, Ox|[G], we denote by D(,Mod) the derived category of .o/ -moduels. We
use sub- or superscripts

ft, ind-adm, +, —, b, [a, b], perf,

to denote the full subcategory of objects quasi-isomorphic to complexes of .7 -
modules that are respectively termwise of finite type, termwise ind-admissible,
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bounded below, bounded above, bounded, concentrated in degrees [a, b],
bounded, perfect (= bounded and termwise projective and of finite type).

Proposition 5.1.2 [81, (3.5.6)]. The functor RI'(G, —) can be extended to
a functor on the category of bounded-below complexes of ind-admissible
Ox|Gl-modules, with values in bounded-below complexes of Ox-modules
[81, (3.4.1.3), (3.5.1.1)]. It descends to an exact functor

RI'(G, —): DT(G4HE™Mod) — D™ (5,Mod).
5.1.5 Base-change

Suppose that R — R’ = R/I is a surjective map of rings. Let j: R° — R =
R°[.~1] be the natural map and let /° := j~'(I). Then R® := R°/I° is
also complete local Noetherian, and we may write R’ = R°'[.']~! where
" is the image of . in R°’. Let M’ be an ind-admissible R’-module, then
Cooni(G, M) is the same whether we consider M’ as an R’-module or as an
R-module: in the special case R = R° this follows from the fact that the
maximal ideal of R® is the image of the maximal ideal of R°, so that the m-
adic and m’-adic topologies on finitely generated R°’-modules coincide; the
general case follows from the special case by localisation (5.1.1).

More generally, if ¥ C X is a closed subset, the functor RT'(G, —)
on Oy|[G]-modules coincides with the restriction of the functor on Ox[G]-
modules of the same name.

Proposition 5.1.3 Let M be an ind-admissible Ox| G)-module and let N be an
O'x-module of finite projective dimension. Then there is a natural isomorphism
in D®(5,Mod)

L L
RT(G, M) ®p, N ZRT(G, M ®¢, N).

Proof Let P* be a finite projective resolution of N. The natural map of com-
plexes of &x-modules

Ceont(G, M) ®py P* — Cioy (G, M ®py P°)
is an isomorphism by [81, (3.4.4)].26 The desired result follows from the

definition of derived tensor product. O

The proposition applies when N = Oy with Y C X a local complete
intersection, or when X is regular and N is any coherent &'x-module. We
highlight the following case.

26 n loc. cit., the ring denoted by R is our R°, but as our X is open in Spec R°, the Ox-modules
P"™ are also flat as R°-modules and the cited result applies.
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Corollary 5.1.4 Let M be an ind-admissible Ox|G]-module that is flat as an
Ox-module, and let x € X be a nonsingular point. Then there is an isomor-
phism in D®(,.(xyMod)

L
RI'N(G, M) ®py k(x) =RI(G, M Qg k(x))
hence a second-quadrant spectral sequence
Tor_,(HY(G, M), k(x)) = HT"P(G, M ®g¢y k(x)).

Proof After possibly localising at x, we may assume that X = Spec R is the
spectrum of a local ring, which by assumption will be regular. Then « (x) has
finite projective dimension over R, and the result follows from the previous
proposition. o

5.1.6 Continuous cohomology as derived functor

Fori = 0, 1, the functors M +— H'(G, M) on the category of ind-admissible
R-modules coincide with the i th derived functors of M — MY [81,(3.6.2)(v)].

5.2 Specialisations

From here on we further assume that R° has finite residue field of character-
istic p.

5.2.1 Finiteness conditions

Let G be a profinite group. We consider the condition

(F) H'(G, M) is finite for all finite discrete F plGl-modules and all i > 0
and define the p-cohomological dimension of G to be

cd,(G) :=sup {i : 3 a finite discrete F,[G]-module M with Hi(G, M) # 0}.
Lemma 5.2.1 If G satisfies (F) then the cohomology groups of ind-admissible
Ox[G)-modules of finite type are Ox-modules of finite type [81, (4.2.5),

(4.2.10)]. The cohomology of any ind-admissible Ox|G-module vanishes in
degrees > cd,(G) [81, (4.26)].

When E is a number field, S is a finite set of places of £ and G = Gg g,
condition (F) is satisfied and ¢d,(G) = 3. When E,, is a local field and
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G =Gg,, condition (F)is satisﬁed and cd,(G) = 2. In the latter case we use
the notation H'(E,,, M) for H' (G, M).

5.2.2 Projective limits, specialisations

We give two results on the compatibility of G-cohomology with other functors.

Lemma 5.2.2 Let G be a profinite group satisfying (F) and let M = l(lnn M,
be the limit of a countable projective system of admissible R°-modules of finite
type. Then for all i the natural map

H (G, M) — 1(131}1"((;, M,)

n
is an isomorphism.

Proof In the special case M, = M /m"* M, it is shown in [81, Corollary 4.1.3]
that the map under consideration is surjective with kernel im’ Hi=1(G, M,,);
this vanishes since by (F) those cohomology groups are finite, hence the projec-
tive system they form satisfies the Mittag-Leffler condition. The general case
follows from applying the special case to M and the M,, = 1(iLnr M, /m"M,.0

Proposition 5.2.3 Let G be a profinite group satisfying (F) and c¢d,(G) =
e < 00. Let M be an ind-admissible Ox|G]-module of finite type. Let x € X
be a nonsingular point, let ig > 0 and suppose that

H (G,M Qg k(x)) =0

foralli > iy+ 1.

1. Foralli > io+1, the support of the finitely generated R-module H' (G, M)
is a proper closed subset not containing x.
2. The natural map

H(G, M) ®¢y k(x) — H(G, M ®g K(x))
is an isomorphism.
3. Suppose further that ig = 1, and that for y in some dense open subset of X,
dim,(yy H'(G, M ® k (y)) = dimy ) H' (G, M @ k (x)). Then the natural
map

HY%G, M) ®g k(x) - H(G, M @y «(x))

is an isomorphism.
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Proof By Nakayama’s lemma and the vanishing assumption, the first statement
is equivalent to

H (G, M) ®g, k(x) = H (G, M ®gy k(x)). (5.2.1)

Therefore, for the proof of the first and second statements it is enough to prove
(5.2.1) for all i > iy, which we do by decreasing induction on i.

Fori > e 4+ 1 the result is automatic. In general, Corollary 5.1.4 gives a
second-quadrant spectral sequence

ESY = Tor”S (HY(G, M), k(x)) = HI" P (G, M @4y k(x)). (52.2)

By induction hypothesis, all terms on the diagonal ¢ — p = i vanish except
possibly the one with p = 0, and the differentials with source and target
such term are 0. It follows that H' (G, M ®g, k(x)) = E% — Eg” =
H' (G, M) gy k(x).

Finally, under the assumptions of part 3, the finitely generated R-module
H'(G, M) is locally free of constant rank in a neighbourhood of x. Hence in

the exact sequence

0 — H%(G, M) ® k(x) > H*(G, M @, k(x))
— Torlﬁx(Hl(G, M), k(x))

deduced from (5.2.2), the last term vanishes. |

5.3 Selmer complexes and height pairings

As in the preceding subsection, let R° be a Noetherian local ring with finite
residue field of characteristic p, X an object of €.

When E,, is a local field, we write RI'(Ey,, —) := RI'(Gg,, —) and sim-
ilarly for its cohomology groups. For number fields, we will only use the
analogous shortened notation for Selmer groups.

5.3.1 Greenberg data

Let E be a number field, Sp a finite set of finite places of E containing those
above p. Fix for every w|p an embedding E < E,, inducing an embedding
Gy = GEg, = Ggsp.If Mis an Ox[GE sp]-module, we denote by M, the
module M considered as an O'x[G,]-module.

Definition 5.3.1 A Greenberg datum (M, (M;})ye sp) (often abusively abbre-
viated by M in what follows) over X consists of
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— an ind-admissible Ox[G g, s,]-module M, finite and locally free as an O’y -
module;
— forevery w € Sp aGreenberg local condition, thatis a short exact sequence

i+
0—> M} % My — M; >0
of ind-admissible O’y [G,,]-modules, finite and locally free as &'x-modules.

In this paper, at places w { p we will only consider the strict Greenberg
conditions M, = 0.

5.3.2 Selmer complexes

Given a Greenberg datum M = (M, (M$ Jwesp), the Selmer complex
RT ((E, M)

is the image of the complex

Cone [ Con(GE.5p- M) ® @D Cooni(Ew. M)
weSp

Dyresy—iy . .
— """ P Coon(Ew, M) | [-1]

cont
weSp

in D(%X Mod). Its cohomology groups are denoted by H ;}(E , M)). We have an
exact triangle '

RT f(E, M) — RT(E, M) = ®uespRT(Ey, M;). (5.3.1)

Proposition 5.3.2 The Selmer complex R f(E, M) and all terms of (5.3.1)
belong to Dr[)g’ri]((;x Mod).

Proof As in [81, Proposition 9.7.2 (ii)]. O

From the triangle (5.3.1) we extract an exact sequence

0— H'GE.sp. M) > €D H(Ew. M,)) - H{(E, M)
weSp
— H{(E,M)— 0 (5.3.2)
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where the last term is the (Greenberg) Selmer group

H{(E, M) :=Ker | H(Ggsp, M) — @Hl(Ew,M;) . (5.3.3)
weSp

5.3.3 Height pairings

For? =0, let M’ = (M, (MZ;*’)) be a strict Greenberg datum for G s,
over X. Suppose given a perfect pairing of Ox[G g, sp]-modules

M ®p, M' — Ox(1) (5.3.4)

such that M} and M} are exact orthogonal of each other. Let I"  be a profinite
abelian group.
For every pair of Greenberg data M, M' as above, there is a height pairing

hy: H{(E, M) ®py H{(E, M) - Ox®Tp (5.3.5)

constructed in [81, §11.1]. The following is a special case of [103, Appendix
C, Lemma 0.16].

Proposition 5.3.3 Foreachregularpointx € X and Pi1Q P, € ﬁ}(E, M)®ey
ﬁ}(E, M"Y), we have

hmee) (Plx, P2x) = (hy(P1, P2))(x).

Venerucci has defined height pairings in an even more general context. Let
M be a strict Greenberg datum over X as above, let Y C X be alocal complete
intersection, and let M ;, be the restriction of M}?(. Let ,/VY*/ x be the conormal
sheaf of Y — X. Then there is a height pairing

hatyymy s HE(E, My) ®g, H}(E, My) > N7, (5.3.6)

constructed in [103, Appendix C, § 0.21].
We note its relation to (5.3.5) in a special case, and its symmetry properties
in a conjugate-self-dual case.

Proposition 5.3.4 The pairing (5.3.6) satisfies the following properties.

1. LetT'f be aprofinite abelian quotient of Gg sp, let X =Y X SpecQ,Spec Z
[CFlq, (where x =(5.1.2)), and assume that M}, = Mj, ®z, Z,[T'F]
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for? = 0,1, where if ? = ) (respectively ? = 1) then Gg sp acts on I'p
through the tautological character (respectively its inverse). Then

haty vy = haty = (5.3.5).

2. Suppose that there is an involution 1: X — X stabilising Y and such that
MYy = Mx Qpy., Ox, My, = M} ®py., Ox.
Let €, € {£l1}. Assume that the pairing (5.3.4) is e-hermitian
(Sect. 4.1.1), that dy,x1 = €'id on e/VY*/X and that there is an Oy -linear
isomorphism

c: H{(E. My) = H{(E, My)' — H[(E, My).
Then the pairing

Wity vy : HHE, My) @0, HE(E, My) — A7) 537
(z,2) = hmymy (2, c2') o

is €€’-symmetric.

In our main application in Theorem D, we have Y = 2" (or an open subset),
the Hida family for (GxH); X = 2 4, the Hida family for G x H containing X ;
and My = ¥, Mx = V%, the corresponding universal G g-representations.
In that case, the height pairing /¢ is simply 1/2 of the pairing hy of
Proposition 5.3.3.

Proof Part 1 follows from the construction. (We omit further details since,
by the remark preceding the present proof, we do not actually need it in this
paper). We prove the symmetry properties. Let / be the ideal sheaf of Y'; up
to restricting to some open subset of X we may assume that / is generated by
aregular sequence x = (xy, ..., x;). Then e/VY*/ x=1/1 2 is finite locally free
generated by ([x1], ..., [x:]). Let9; € N = (1/12)v be the map 9;([x;]) =
d;j. It suffices to show that h; := 0; o h is €€’-hermitian for all i. By [103,
Appendix C, Proposition 0.5], h; is identified with Ay, /My, > where X; =
Vx((x;)j«r) so that Y = Vy,(x;). Hence it suffices to prove the claim for
r=1.

We argue similarly to [103, Proof of Corollary 10.10]. Assume thus r = 1,
write x in place of x{, and let K be the fraction field of X. By [81] and [103,
Appendix A, § 0.7] we have an e-hermitian Cassels—Tate pairing

U: ﬁ%(E, MX)ﬁx—tors ®ﬁx ﬁ]%(Es M%)ﬁx—tors - K/ﬁx,
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and by [103, Appendix C, Proposition 0.17], we have a map
ix: Hf(E, My) — HF(E, Mx)|x]

such that &, /p, coincides with

H(E, My) ® H{(E, My) — H}(E, Mx)[x] ® H7(E, M)Ix]
2
s xlox/ox B 1R =

Since all the above maps are (-equivariant, we find that /17, /a1, is €-hermitian
as well. The desired assertion follows from this and the fact that ¢ acts by &’
on </VY*/ x- O

6 Universal Heegner class
6.1 Tate cycles and Abel-Jacobi maps

Let X/E be an algebraic variety over a number field, and let R be a finite
extension of Q,, or its ring of integers, or a finite quotient of its ring of
integers.

6.1.1 Tate cycles

If # is an étale local system of R[G g]-modules on X, the R-module of Tate
(0)-cycles is the space

KX, W) = @Ho(x, v,

xeX

where the sum runs over the closed points of X and, if x € X and X :=
X XSpec E Spec E, we define HO(x, #) := HO(x, #)CE. Elements of the
latter space are written 27 x'® &, where X’ runs through the points of X.
When # = R, the module Z3(X, R) is simply the usual R-module of O-cycles
with coefficients in R. Its quotient by the relation of rational equivalence is
denoted CHy(X, R).

When X has dimension 0, its fundamental class is the Tate cycle with trivial
coefficients

[X1:= ) F1®1eZ(X,Z)).
X'eZ(E
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Ifa =3 [X1®& € Zo(X,#) its support |a| C X is the support of the
divisor > _[x'], where the sum extends to those X" such that & # 0.

6.1.2 Abel-Jacobi map

A Tate cycle a € Zy(X, #') yields amap R — H0(|a|,_7/)GE and, if X has
dimension 1, the latter cohomology group maps to H@I (X, #/(1)). The image
of 1 € R under the compostion

R— H'(al, #) — HL (X, 7 (1)) > H* X, 7 (1))
is denoted by cl(a). Consider the exact sequence

0—> H' X, 7 (1)) > H'(X — |a|, # (1)) - H (X, # (1))
— H*(X, 7 (1)). (6.1.1)

Let e be a Galois-equivariant idempotent acting on the right on H* (X, #/ (1)),
such that cl(a)e = 0. Then we may apply the idempotent e to (6.1.1) and pull
back the resulting exact sequence via the map R — HI%I (X, # (1)) given by
a, obtaining an extension

0> H'X,#(1)e— E,—> R—0 (6.1.2)

in the category of G g-representations over R. The map sending a to the class
Al(a)e of this extension is called the e-Abel-Jacobi map,

Ale: Zo(X, #) — H' (Gg, H' (X, " (1))e) = H (G, H(X, # )e),

where the last equality is just a reminder of our notational conventions. When
e = id, it is omitted from the notation. When % = R and e acts via corre-
spondences, the map Ale factors through CHo (X, R)e.

6.2 Heegner cycles

We use the notation from Sect. 2.1 for compact subgroups Uy ,, C
Ui, p(p) C Gx(Qp) and let X, ,r,, — X, yr(p") be the associated

Shimura varieties; the level U}’ will be fixed and often omitted from the nota-
tion. If pOF ), = Hvlp " O'F,y we use r as a shorthand for r = (ey7)y|p.
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6.2.1 Embeddings of Shimura varieties

For any pair of subgroups V' € H'(A®), K C (G x H) (A*®) such that
K NH'(A*) D V, we define the diagonal embedding

e = e/V,’K: Yy — Zg

y = (), y)]

if § is any lift of y to Yy for some V C H(A™) such that V F, o C V'.

Let W = Wg ® Wg be an irreducible right algebraic representatlon of
(G x H) over L D Q,,. If W satisfies (wt), the space WH' is 1-dimensional
over L. Let # be the étale sheaf on the Shimura tower Z associated with W;
any & e WH "induces a map Q, — ¢*# of étale sheaves on the tower Y'; by
adjunction we obtain a canonical map Q, — ¢*# ® W}, where the second

factor is simply an L-line.
We let

ewr v 0¥y, Ly) — (Y. " W) Q Wy — L(Zk, W°) @ Wy,
eyt Z0(Y), Lp) = LY, "W )@ Wy — Zo(Z(p"), W) @ W,
- 2(Ze, W) @ Wy,

be the compositions of the maps described above and, respectively, e}, , or

/

Cr %

6.2.2 CM cycles

Let [Y ] e %(YV/, Z,) be the fundamental class. For any pair of levels K, V
such that ew,(k,v’) 1s defined, let

Aw kv = ey g vlYyle Z(Zg, W),
When W # Q,,, we consider the elements

o 1 .
Ay kv =Yoo @) “Aw.k.vy € ZL(Zk, W°)

When W = Q,,, we consider the modification

1

Y., ()| (A, vy — deg(Ak,v) - §Hodge) € CHo(Zk)qQ,»

6.2.1)

A?K,V,) =
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where Epodge 18 the Hodge class of [107, §3.1.3], whose introduction is moti-
vated by the following lemma.

Lemma 6.2.1 The image under pushforward of A“’)V’( Ky in 20 Zk, W)
(if W # Qp) or CHo(Zk)q, (if W = Q)) is independent of V", K" such that
V" c K" NH' (A®) and K' C K. We have

(A kv =0 in H*(Zg, 7 (1)).

Proof If W # Q,, the first assertion is clear; the second one is automatic as
H2(Zk, ? (1)) = 0(seethe argumentin [91, bottom of p. 1089]). If W = Q,,,
the assertions amount, respectively, to the compatibility of the Hodge classes
under pushforward and the fact that, by construction, the 0-cycle A(;(,v has
degree zero; both facts are explained in [107, §3.1.3]. O
6.2.3 Cycles, Selmer classes, and functionals
Let

Py kv = AJ(AY,  yn) € H (GEsp. H{(Zg, W), (62.2)

The classes Py g,y are also compatible under pushforward and yields ele-
ments

Py = lim P N elim HYGg s, HH(Z k. ).
VT kamaxyoy YD < (GE,sp, Hi(Zk, 7))

The space in the right-hand side has a right action by (G x H)'(A®°), and Py is
invariant under H'(A®°). Via (2.5.3) and the biduality WY = W, Py yields,
for each ordinary representation IT of weight W, a map

Pn: 1 — H'(GE.sp, V).

Using the map yl‘;r,d : T1°Y — T1 from Proposition A.2.4, we also obtain
a map

Py = Ppygd: I — HY(GE.sp, V). (6.2.3)
Remark 6.2.2 We conjecture that (i) there exist an algebraic variety Ny (x v)/E
of odd dimension 2dw + 1, a homologically trivial cycle 3w (kv €
CHyy, (Nw.(k,v"))0, and a map
i H*WH (N ik vy, Qp(d + 1) - Hi(Zg, #)
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such that Py kv = AM(AJ(3w,(v»)); (ii) the elements PW (k,v’) belong to
H! (E H\(Zk,#)), so that the maps Pry take values in H (E, V).

When G = GL;/q, one can prove (i) with Ny (x vy a Kuga—Sato variety for
Zk, generalising [78, Proposition 11.2.4]. The (probably not insurmountable)
difficulty in the general case is that, if /' # Q, the Shimura variety Z is not
of PEL-type. Part (ii) should essentially be a consequence of either (a) part
(i), via [79,82], or (b) granted a generalisation of the theory of locc. citt. to
nontrivial coefficients system, of the weaker assertion that, for a finite place w
of E, the image of Ay (kv in Hy(Zk g, , #') comes from a corresponding
class in the syntomic cohomology of Zk g, with coefficients in #".

6.3 Universal Heegner class

We use the local construction described in Sect. A.2.2 to turn the H'(A)-
invariant class Py into an H' (AP%)-invariant class &y with values in the
ordinary completed homology. Then we show that &y is independent of W
and it interpolates Ppy at all representations IT satisfying (ord), (n-exc).

6.3.1 Construction

Let d, := |Y/(E)| and let d° = d,[],,90"" € Z>1, which is the limit
of an eventually constant sequence Recall that for the tame level K”' C

(G x H)(AP™), we denote MK,,, = Lir_nr H(Zw.,, #°)°4.

Definition 6.3.1 The universal Heegner point of weight W is the element
Pw = Pwygt € d® ' H (G sp, My ), 6.3.1)

ord

where we still denote by y,;° the map induced by the map

Vf[r/d lim HI(ZKP/K A Mg w
Kp

of Proposition A.2.4. As usual, we simply write & := Zq,. When we want
to emphasise the choice of K?" we write Pk w instead of Py .

6.3.2 Independence of weight

The class Zy does not depend on W.
Proposition 6.3.2 Under the identification

jW,*
HY(E, My, ®z,0L) = H'(E, Mg, y) (6.3.2)
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induced from the isomorphism jw of Proposition 3.1.2.2, we have

Jws(P) = Py

Proof We show that the difference jw (&) — Pw is p-divisible. Since
H'(Gg. sps M K,,, w) 18 a finitely generated module over the ring A%, by
Lemma5.2.1, any p-divisible element is zero. We will use some of the notation
and results of the Appendlx in particular the matrices y defined in Sect. A.1,
the involution ¢ = (—)T>~! on GL,, and the operator yord of Proposition A.2.4.

We tacitly multiply both sides by d°, so that they belong to the lattices
(6.3.2). By the definitions of &y and jw, we need to show the following.
Denote by [—], the reduction modulo p”, and by ¢(W) the constant (A.2.3);
then we should have

[pr[F:Q]AQP,LVI’,pU;rVé,OO]r — [C(W)_lpr[F:Q]AW,[VV,]?U;"V(;’OO]V’
under the map
Jjw: HY(GE.sp, Hy (ZKI’KP(p’)’ Z/p"))

— H'(GE,sp. Hi(Zkr ko), Z/P") @z/pr (W[ pHNor
®ay/pr WY/ P Ny, ¢ Q4 L), (6.3.3)

where ¢, ® ¢, is the unique element pairing to 1.
As the local system #°/p"#/° is trivial on Zgrk ,(pr), we have

[pr[F:Q]AW,K]V = [pr[F:Q]AQp,L ®&E® év]r
in
HY(GE.sp, Hi (7Kp,Kp(Pr)’ Z/p") ®z/pr we/p' W)
R0,y (W\/,O/pr WY gy

where & ® £V is the unique element pairing to 1. Note first that the image of
[p’[F:Q]AW’K]r under yr,pU;’yé ~ belongs to the right-hand side of (6.3.3):
indeed it suffices to show that for any & € W°, the class [y, ], is fixed by
Ny, which follows from the congruence

yrn—y, =0 (mod per(Zp))
valid for any n € Ny ;.

It remains to see that if £ ®& ¥ pairs to 1, then so does ¢ (W)~ -£y;. , @&V Y6.00
in the limit r — oo. This is proved in Lemma A.4.2. O
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6.4 Local properties of the universal Heegner class

Recall that 2" is an irreducible component of &x» hence of the form Spec R
with R = R°[1/p]and R° = T?th;?;()i,’ kr.m/® for some maximal and minimal
idealsm C a C T(gxny,k»- Thering R° satisfies the assumptions of Sect. 5.3,
hence Greenberg data over open subsets of 2" give rise to sheaves of Selmer
complexes.

Let 27 C 2 C &kp be the open sets defined in Sect. 3. Proposition
3.2.4 provides a strict Greenberg datum (¥, (¥, )y, (O)wes) over 2. Via
Proposition 3.3.8.2 we obtain a strict Greenberg datum (//l s (/// I p, )w| P
(0)pes) over 2P with

%I?[:;/:i _ 7/:|: ® (HKP ord) .
We begin the study of the Selmer complexes attached to the above Greenberg

. . ~ H! .
data, with the goal to promote & to a section of H } (E, # X ) over a suitable
open subset of 2. ‘

6.4.1 Comparison of Bloch—Kato and Greenberg Selmer groups

Letze Z<%andlet V = #|;. We compare two notions of Selmer groups for
V.

Lemma 6.4.1 Let w { p be a place of E. Then, for all i,
H'(E,, V) =0.

Proof As observed in [80, Proposition 2.5], this is implied by the prediction
from the weight-monodromy conjecture that the monodromy filtration on 7
is pure of weight —1. Writing z = (x, y) € &% ¢ éoGord’Cl X é"grd’d, the
weight-mondromy conjecture for 7, follows from the corresponding statement
for 7Gx, that is Theorem 2.5.1.2. O

Let H } G (E, V) be the Greenberg Selmer group. Bloch and Kato [11] have

defined subspaces H}(Ew, V) c H'(E,, V) and a Selmer group

Hipg(E,V):={s € H'(E,V):Yw € Sp, locy(s) € H{(Ey, V)}.
Lemma 6.4.2 Suppose that I1, satisfies (wt). We have

H},BK(E’ V) = H},Gr(E’ V)7
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where the right-hand side is the Greenberg Selmer group as in (5.3.3).

Proof We need to show that for all w € Sp, H}(Ew, V) =Ker (H'(Ey, V)

— H}(Ew, VJ))- This is automatic for w 1 p by Lemma 6.4.1. For w|p this

is [81, (12.5.8)]: the context of loc. cit is more restricted but the proof still
applies, the key point being that (12.5.7)(1)(i) ibid. still holds for all w under
the weight condition (wt). |

Lemma643 Let w { p be a finite place of E. Then H'(E,,?) and

HY(E,, & " p,) are supported in a closed subset of 2 (respectively 2 3)
disjoint from 2.

Proof This follows from Proposition 5.2.3 and Lemma 6.4.1. O
6.4.2 Local Selmer properties of &

Let w  p be a place of E as above. As

%Kp, — /y ® (l—IKp ord)

over 2°®, the support of H'(E,,, # I? ) is in fact the intersection of .23
and of the support of H'(E,,, 7). We denote by

g Bw) 5 gl (6.4.1)

the open complement in 2" of the support of H'(E,,, ¥) .

Lemma 6.4.4 Let w|p be a place of E, with underlying place v of F. The
image loc, (Z) of & in

H;
H'(Ey, My} )

vanishes over .

Proof We lighten the notation by dropping form the notation the superscript
‘(3)” and all decorations from .#, .#,; . Let Z = Spec - O3 [([/z])zeAl,
where A is a (finite) set of topological generators for F*\A%™/(K?' N

Z(A’;OOX)). As Z — Zis faithfully flat, we may prove the statement after

a base-change to 2 we denote base-changed sheaves and sections thereof
with a tilde 0.
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Let x: E X\A‘]’EOX — G‘}}’ — O(Z)* be the universal character, and let
W = X px\A%Xs SO that det 762 (—1) = w. Let w'/2: FX\A‘fDQX A Ak
be a square root of w. We may write

A —1/2 v v/ =y ~1/2
YV =V Qw /)\GE®X/’ X/‘_X®w|GE’

where now x': Gg — Gal(Ex/E) is the projection for the abelian
extension E,/E such that Gal(Es/E) is the maximal pro-p quotient of
EXAT\AT> VP

Write Eoo = Un>0 E, as an increasing union of finite extensions, where
E(¢ = E and eventually E, |/ E, is totally ramified at each prime above p, and
let x,: Gg — Gal(E,/E) be the natural projection. Let & be the character
giving the G r,-action on 7/G+(— 1), so that

— oo 1/2 0—15/
Aj/w = ww“; ® Xw = ww/ O[Z) Xw’
/ ;o
where for a character w,, of GF,, we denote w), := Dy(Gp,, Let

- . 1/2 _o,—1z S KP' ord\v 7
7/11,11) =Wy Uy Xnwo %n,w = 7/11,11) ® (HH/E )’ C My .

Then the same argument as in [58, proof of Proposition 2.4.5, primes v|p]
shows that the image loc, (%) vanishes in H YE,, My ) = I1 H'

(E,, <///~ij) for each n; here w’ runs through the (eventually constant) set
of primes of E, above w. Since HY(E,, //Zuj) = 1<£nn HY(E,, //anw) by
Proposition 5.2.2, the lemma is proved. O

w'|w

Corollary 6.4.5 Let 2 G- .=, .o 27 > 27 where the sets 27 G
are as defined in (6.4.1). Then & defines a section

~ H/ H,
P e H}(E, ///sz/)(%(lf)) - H}(E, ///sz,)(c%(lf))_

Proof This follows from Lemmas 6.4.3 and 6.4.4. The displayed equality is a
consequence of (5.3.2). O

6.4.3 Proof of Theorem C

Via Proposition 3.3.8.2, we may view the class & = Pgp» = Pk» @, (Defi-

nition 6.3.1) as an jflf 2—equivariant functional
P T — HYE, ) (2 D), (6.4.2)
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_By the results of Sect. 6.4.2, & takes values in the Selmer group
H }(E V(G Tt satisfies the asserted interpolation properties by the
definitions of the classes &y in Sect. 6.3 and Proposition 6.3.2.

6.4.4 Exceptional locus of 2

Let w|v be places of E and F' above p, and let ui: E)y — O(Z)* be the
characters giving the Galois action on #*. Let 2%V C 2 be the closed
subset defined by p,, = 1 for some (hence automatically all) places w|v of
E. We let

qrexe . U %exc,v’ e%rcl,exc,(v) — 5{01 N gby-exc,(v)’
vlp
%cl,n—exc,(v) — %cl . %cl,exc,(v)‘ (6.4.3)

We say that an ordinary automorphic representation of IT = TII|; over a
p-adic field is exceptional at the place v|p if z € Z V.

We may characterise the exceptional representations, and seize the oppor-
tunity to collect some useful results; see also Lemma A.2.5.

Lemma 6.4.6 Let I1 = m ® x be an ordinary automorphic representation of
(G x H)'(A) over a p-adic field L, of numerical weights w, L.

1. Let v|p be a place of F. The following are equivalent:
(a) the representation Il is exceptional at v;
(b) ey(Viz, ) = (1.4.4)=0;
(c) the following conditions hold:
— the smooth representation 1, of G, is special of the form St @ oy,
— for some (equivalently all) places w|v of E, we have xy - oy o
N Ey/Fy = 1.
- wy =2andl, =0forallo: F < L inducing the place v.
2. Let S = Sf,xc’ ‘U S;;XC’ " be the set of places v|p (respectively those that
moreover are split, nonsplit in E) where Tl is exceptional.
(a) The kernel of the natural surjective map

H(E,Vn) — H}(E, Vi)
has dimension 2|S,e7xc’ | 4+ |S,e,xc’ .
(b) Assume that G is associated with a quaternion algebra B that is split

at all places v|p. Then

ed(V) = —1 <= vessem,
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Proof Consider part 1. We first prove the equivalence of the first two con-
ditions. The adjoint gamma factor in the denominator of each e, (V(r y)) is
always defined and nonzero, whereas the gamma factor in the numerator is
never zero and it has a pole if and only if, for some w|v, V,I is the cyclotomic
character of E;. This happens precisely when, for some w|v, V,; is the trivial
character — that is, when IT is exceptional at v.

Now let us prove the equivalence to (¢). Let V = Vp = Vy 6, ® V. By
the weight-monodromy conjecture (Theorem 2.5.1.2), the 1-dimensional rep-
resentations V;'fv are both of motivic weight —1, thus have no G g, -invariants
for any w|v, unless m, is a special representation. In the latter case Vufl .
(respectively V) is of weight —2 (respectively 0). This is compatible with the
ordinariness requirement only when the weight w is 2 at v as in the statement
of the lemma. The second condition in (¢) is immediate from the definition of
(a).

Consider now part 2. The first statement follows directly from (5.3.2). Let
us prove the second one. By the results recalled in Sect. 1.2.5 and [105, Lemme
10], the condition st (V1) = —lisequivalent to the vanishing of the functional

0 = Qn, =(4.2.1) and of the space Hj’HL/'. These conditions are never met
if v splits in E or m, is a principal series, and otherwise they are equivalent
to the nonvanishing of (I1,)*v, where 1), = 7/ ® x, and 7/ denotes the
Jacquet-Langlands transfer of 7, to the nonsplit quaternion algebra B,* over
Fy.

Assume that v is nonsplit in E. If m, is exceptional, then by part 1 we
have JT{} = Xy © Nm, where Nm is the reduced norm of Bl/), so that obviously
(1'[;)*'ng # 0. If 7, is not exceptional, then by the explicit computation of
Proposition A.3.4 we have On, # 0 (see also [35, Corollary A.2.3] for a
variant of the last argument). O

6.4.5 Heegner classes belong to the Bloch—Kato Selmer group
We can now prove the first assertion of Theorem B.

Proposition 6.4.7 If 1 is not exceptional or has trivial weight, the map Pr
of (1.2.4) takes values in H}(E, Vo) C Hl(GE?Sp, Vo).

Proof 1f TI has trivial weight this is clear. Assume that IT is not exceptional.
Letd: H'(E, V)/H}(E, V) — L be any linear map. Then we need to show
that the H'(A)-invariant map 9 Pry: IT — L is zero. By Corollary 6.4.5 and
Theorem C, whose proof we have just completed, the map Pl‘-’[rd takes values in
H } (E, V);equivalently, 0 Py ygr/d = 0. Since IT is not exceptional, by Lemma
A.2.5 this means that d Pr; = 0. O
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6.4.6 Enhanced ordinary Heegner classes for exceptional representations

For any z = (x,y) € 2 corresponding to a representation IT, define the
enhanced Heegner class

Py = 2. e H{(E, V). (6.4.4)

By the results established so far, ﬁl‘-’[rd has image Pl‘-}rd under the natural map
H}(E, Vi) — H}(E, Vm); as noted in Lemma 6.4.6, this map fails to be an
isomorphism precisely when I1 is exceptional.

7 The main theorems, and a conjecture

In this section, we prove our main theorems (Sect. 7.1, or Sect. 7.3.6 for
Theorem G), as well as a universal Waldspurger formula for families of ‘sign
+1’ (Sect. 7.2). Then, we discuss a conjecture on the leading terms of universal
Heegner points (and toric periods) at classical points (Sect. 7.3).

7.1 Proofs of the main theorems

Both of our central theorems (Theorems B and D) ultimately follow from
[32,35], where Theorem B is established when W is trivial, by an argument
combining interpolation and multiplicity-one principles.

7.1.1 p-adic Gross—Zagier formula for ordinary forms

We start by stating a variant of Theorem B, valid under the same assumptions.

Theorem B°Y. Let T1 = 7w @ x be an ordinary, locally distinguished auto-
morphic representation of (G x H)'(A) over L. Let V. = Vp, and let

ﬁﬁrd cH }(E , V1) be the enhanced Heegner class defined in (6.4.4).
Then for all f, € TI%Y, f, € n;,’:fd, f; € T £, e Vo ywith
(f3, f9)°" £ 0, we have

hy (P (f)), PSY(£y)
(f3s f4)(])'[rd

Remark 7.1.1 In contrast to Theorem B:

=L Vig 1, 0) - 0“1(&). 7.1.1
Vi, 0) - Q Iy’ ( )

— Theorem B °™ also holds for exceptional IT;

— we have only included the Gross—Zagier formula and omitted an ana-
logue to the first statement of Theorem B, that is that Pl‘-’fd takes values
in H } (E, V), as that has already been established.
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Lemma 7.1.2 Suppose that 1 is not exceptional. Theorem B°™

to Theorem B.

is equivalent

Proof Using freely the notation and results of “Appendix A”, we first show
that Theorem B for fi, f», f3, fa is equivalent to Theorem B for

d d
fi=va'helu,, fH=yg'fely .
f3/ — wz‘)rdf3 c Ha, f4/_ — f4 c Hv,ord;

let us call such (f], f,. f3, f1) a ‘special quadruple’.
Indeed, by the definitions (6.2.3), (4.1.8), the left hand side of (7.1.1) equals

hy (P (), PSS
dimW - (f5, fp

whereas by Proposition 4.3.4,

Qord (fl & fZ) _ ep(V(Tt,X))_l .0 (f{@ f2/>
@ fi) dim W o)

By the multiplicity-one principle, Theorem B for special quadruples implies
Theorem B in general, since under our assumptions the functional Q is non-
vanishing on special quadruples: this again follows from Proposition 4.3.4 and
Lemma 6.4.6.1.(a)—(b). O

7.1.2 Comparison of p-adic L-functions

We describe how, upon restricting .2, (¥ %) to the cyclotomic line through a
point of trivial weight, we recover the p-adic L-function of [32,35].

Lemma 7.1.3 Let z = (x,y) € gg(r)d’d X éﬁrd’d be a point corresponding

to a representation o x @ xy of weights (0; (2, ...,2)), (0;0,...,0). Let A
denote the modular abelian variety attached to my x, and let

ZLy(Via, ) € H(E7)
be the p-adic L-function of [35, Theorem A]. Consider the map

Jry: Gz — x} x &4 ¢ é"GO(r)d’Clxé"ﬁrd

XF'_)T[O,X®X)1'XFON X Xt
EA/FA
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Then
ZLpVizo,0) = j(ﬁc,y)gp(/j/ﬁ) =Z,(Via,0)- (7.1.2)

Proof This is immediate from the respective interpolation properties. (Note
that the first equality in (7.1.2) is just a reminder of (1.1.1).) O

7.1.3 Interpolation argument and proof of the main theorems

Let 2 C & be a locally distinguished Hida family for (G x H)', as in
Definition 1.3.1. Fix a level K?' C K”. Let

X' =X =2 ON 2D 5 g4

be the intersection of the open subsets of 2~ of Theorem 4.4.3 and Corollary
6.4.5.

Recall that we denote by .2 "W the set of classical points of weight W, and
by 2 ¢l -eX¢ the set of non-exceptional classical points. When W = Q p is the
trivial weight, we also define

r%fcl, p-crys, Qp,ram C r/gbrcl,p—crys, Q, C gby-cl,n—exc

by the following conditions on the classical point z = (x, y) (equivalently, on
the representation IT;):

(p-crys) forall v|p, the representation Vy G, is potentially crystalline (equiv-
alently, 7y , is a principal series; the second inclusion above follows

from Lemma 6.4.6);
(ram) xy , is sufficiently ramified in the following sense: let r, > 1 be
minimal such that 1 4+ @," OF, is contained in the kernel of w, ,,
and let Uy = [],,(1 + @, OF,); then x, , is is nontrivial on

—1 o X
NEp/Fp(UF,p) N ﬁE,,‘
Lemma 7.1.4 The subset 2\ Perys. Qp.ram — a7/ i dopse.

Proof Denote by pg: 2~ — &g the natural projection. If “?” is any relevant
decoration, let 3&8 = pg(ﬁff?); for x € %51, let ELV?H = pal(x) N2’

X,

cl, p-crys, cl, , ram . .
For each x € Z prerys. Qp , the set 2 HQ” contains contains all but

finitely many points in %”;ill’{Q” , which is dense in .2 g. Thus the closure of

g el peerys, Qp. ram ¢ hiaing all of 2 ¢l Perys. Qp

1, p-crys, 1,
Now we observe that 5&”5 penys: Q@ %G N ﬁc’”é D for the open subset

Y = 26 — (X |VG (= 1) = Y, for some v|p},
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which is non-empty as it contains ﬁ”éLWG for any representation Wg whose
partial weights are all > 3 (cf. the proof of Lemma 6.4.6.1 (c)). There-
fore 2 Perys. @ ig the intersection of the non-empty open pal(@(;)
with 2" @ which is dense in 2~ by Lemma 3.1.4. We conclude that
gk perys, Qp gand el perys, Qp. ram gre dense in 2. O

Proposition 7.1.5 The following are equivalent.

1. Theorem D holds over 2, ,, for all KP' C K.
2a. Theorem B°™ holds for all representations T1 corresponding to points of
2 satisfying (wt).
2b. Theorem B holds for all representations T1 corresponding to points of
%'cl, p-crys, Qp, ram_
3a. Theorem B holds for all representations Il corresponding to points of
b exe satisfying (wt).

3b. Theorem B holds for all representations Il corresponding to points of
<%/cl, p-crys, Qp, ram_

Proof For any point z € 2 °I"¢X¢ satisfying (wt), denote by I, the associated
automorphic representation, by V, the associated Galois representation . We
have proved the following specialisation-at-z properties of objects defined over
(open subsets of) 2"

,ord
H z
(respectively l'IZ ’H, ’Ord), by Proposition 3.3.8.4 (and the definition of the

R

involution ¢);

— the Galois representation ¥ (respectively #*) and its ordinary filtrations
specialise to V = Vpp (respectively Vpv) with its ordinary filtrations, by
construction (Propositign 3.2.4); ~

— there is a natural map Hl(E V)i, — Hl(E V);

" ord
)

— the € 9-module l'I “ord (respectively (Hgf specialises to [TX
x

’,ord
2, Hg

above map, by Theorem C whose proof is completed in Sect 6.4.3;

— the product of local terms 2 specialises to the restriction of Q° to the
spaces of Hy.-coinvariants, K”’-invariants in ngd, HZV’Ord, by Theorem
4.43.

— the class Pk p: specialises to the restriction of POrd to ¥ under the

Let us complete the proof that either side of Theorem D specialises to 1/2
times the corresponding side of Theorem B °d. Consider the diagram 2y —
%ﬁ — &7. It is not a product, even Zariski-locally; however the conormal
sheaf is trivial. (This is dual to the fact that G x H — (G x H)' is a Z-
torsor for the étale topology but not for the Zariski topology.) The immersion
X xE; — X givenby ‘(T1, xr) — I1® xr’ induces the map on conormal
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sheaves

that is multiplication by 1/2 under the canonical identifications. Hence:

— the p-adic height pairing hy = hyr 4 specialises to %hv =
5hY®rmivic o DY Sect. 5.3.3;

— the derivative dﬁfp (7)) specialises to %XIQ(V, 0) in Q, (z2)®T'F, by the
definition in (1.1.1).

We may now complete the proof. By the specialisation properties sum-
marised above, we have 1. = 2.a (= 2.b). By Lemma 7.1.2, we have
2.a = 3.a,2.b < 3.b. By Lemma 7.1.4 and the specialisation properties,
2b=1. |

Proof of Theorems B, D, and B °™ The first assertion of Theorem B was proved
in Proposition 6.4.7. For a representation IT of trivial weight satisfying the
conditions (p-crys), (ram), the formula of Theorem B is [35, Theorem B] (cf.
Lemma 7.1.3). By Proposition 7.1.5, this implies Theorem D and the general
case of Theorems B, B ", O

7.1.4 Applications to non-vanishing/1: self-dual CM families

We prove the generic non-vanishing result of Theorem F. Recall that % is a
component of the subvariety é"}grd’Sd C é”ﬁrd cut out by the condition x Fr =
N Xcyc, F» and such that (x, 1) = —1 generically along %'.

Proof of Theorem F Recall that a p-adic CM type of E over Gp is a choice
X of a place w|v of E for each place v|p of F (we identify primes above p
with embeddings into Q,,). For each of the p-adic CM types ¥ of E and each

connected component %* of é"é’rd, there is a Katz p-adic L-function
Ly € O(Z%).

It is characterised (see [52,64]) by its values at the subset %512 < .l
of those y such that the algebraic part of xy is t > [[,cx 0 ()Y (t/t€)ke
for integers w, ks such that either w > 1, or w < 1 and w + k, > 0 for all
o € X. The interpolation property relates Ly (y) to L(1, x,). Itis easy to see
that for a given y € é"l({)rd’Sd, there is a unique CM type X such that y belongs
to the interpolation subset of Ly . For such y and X, we denote by L, (xy, s) €
ﬁ(é"z/Qp(y)) the function s +— Ly (y(s)) where Xy(s) = X * XF,s © NE/F)-
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Consider now the setup of the theorem, and let % C éal‘{’rd be the component
containing % . By [13], under our assumptions the normal derivative d 'Ly €

J@‘ s is non-vanishing. Let %4, be the complement of its zero locus, and let

' =()%.
z

Lety e Z9N%’, and let x := Xy- It is easy to see that there is a unique X
such that y € #/&cL>,

We claim that there exists a a finite-order character yo € éal?[rd’d, such that
the character

o o _1
X' = xx6 %o
(that has the same algebraic part as x¢ := yx o ¢, and defines a point y' €

gﬁrd’Sd’Cl) satisfies the following properties:

- L(1, x") = L,(x',0) # 0, where = denotes equality up to a nonzero
constant;
- H}(E, x)=0.

Granted the claim, we have a decomposition of G g-representations
-1
XX0® XX ® x5 =x®x'

and a corresponding factorisation

gp(v( l),S)in(X,S)Lp(X/,S),

0, Xo

where o = 6 (x xo) (the thetalift), and 7o ® x,° ! descends to a representation
of (Gg x H)'(A). It follows that .,2”12(\/( 1y, 0) # 0. By Theorem A, we

have a class

705 X

1 1 1 1
ZeHp(E, Vi 1)@ Hp(E. Vi, )= (Hi(E, x) ® H(E, <)
® (H{(E, x) ® H(E, x°))

whose p-adic height is non-vanishing. Since H}(E, x) = H}(E, x')) =0,
the class Z is as desired.

It remains to prove the claim. Let %] C é"grd’Sd be a component over which
the anticyclotomic Main Conjecture is known—that is, one containing a finite-
order character satisfying the properties of [56]). By applying [14, Lemma 2.5]
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to any character corresponding to a point of ?,’/1°1, we find another component
% C éﬁrd’Sd, whose classical points correspond to characters x» with

e, x2) =1;

moreover from the proof in loc. cit. one sees that %5 may be taken to still
satisfy the assumptions of [56]. Then the function Ly | is non-vanishing by
[59]; hence, by the density of classical points with a given weight, we may
find y’ € %Cl corresponding to a character x’ satisfying the first among the
required conditions. By the anticylcotomic Main Conjecture for % proved in
[54,56], that is equivalent to the second condition. Finally, the ratio x’/x¢ is
an anticyclotomic character (that is, trivial on F AX ), hence [53, Lemma 5.3.1]

of the form xx, ! for some finite-order character X0- O

7.2 A universal Waldspurger formula

We describe the complementary picture over locally distinguished families
attached to coherent quaternion algebras over F. Unexplained notions and
notation will be entirely parallel to what defined in the introduction.

Let B be a totally definite quaternion algebra over F, let X be the set of
finite places where B is ramified, and let G, be the algebraic group with
G(R) = (B ® R)* for any Q-algebra R. Let E be a CM quadratic extension
of F, admitting an F-algebra embedding e: £ < B which we fix. We use
the same symbols as in the introduction for the towers of Shimura varieties
associated to the groups as in (1.2.1). Here, all those Shimura varieties are
0-dimensional.

Let L be a p-adic field and let IT be an automorphic representation of
(G xH)'(A) := (G x H)'(A®) x (G x H') /g, over L of weight W, by which
we mean one occurring in HY(Z, #V)® W. The normalised fundamental class
of Y gives rise to an element P € Hy(Z, V/)H,(A) and to an H'(A)-invariant
functional

Pn:I1 — L,

which may be nonzero only if IT is locally distinguished by H'. If IT is ordinary,

we again define pord .— Pyl‘;r,d.
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Let 2 be a locally distinguished Hida family for (G x H)’, which via a
Jacquet-Langlands map is isomorphic to a Hida family .2 for (Go x H)'.
For each compact open subgroup K? C (G x H)'(AP), there is a ‘universal
ordinary representation’ Hg,p’ord of (G x H)'(A) over 2. As in Theorem C,

z
there exists an H' (AP°°)-invariant, & 4 -linear functional

Py " — Oy (7.2.1)

interpolating (the restrictions of) Pl‘{d atall z € 27 satisfying (wt).

Starting from the natural pairings Ho(Zx, #) @ Ho(Zg, #'V) — L, we
may define pairings (, )7 on each representation IT over a field by the for-
mula (4.1.7) (using the counting measure for v(K)); then we obtain modified
pairings ( , )%}d on each 1% @ I1V-°"4_ and a pairing ((, )) on the universal
representations over .2, interpolating modified pairings ( , )‘l’-f‘}.

Finally, the functional 2, over an open .2~ C 2" containing 2", is also
constructed as in Sect. 4.4; in the argument using the local Langlands corre-

spondence, we use the rank-2 family of Galois representations pulled back
from 2.

Theorem H Let 2" be a locally distinguished Hida family for (G x H)'.
Abbreviate TIV := I"[Zf ’Ord’(t), O =0Cqg, X = Hy.
z
There is an open subset 2" C X containing 2", such that

P -2 _ f1®f2>
((f3, f4) ® fa)’

an equality of  -valued O-linear functionals on (I1 Q4 1) Q@ux (I1 V¢
HL)X’_I.

LV - ,@(

Similarly to Sect. 7.1, this universal formula follows from its specialisations
at all classical points satisfying (wt); those are known by modifying the main
result of [105] as in Theorem B ™.

The formula essentially reduces the study of .2, (7 Ii)| 2 to the study of the
universal Waldspurger periods &. This is particularly interesting in the case
of exceptional zeros, as we discuss next.

7.3 Bertolini-Darmon conjectures and exceptional zeros
We first formulate a conjecture on the behaviour of & at a point 7 € 2!

and gather some old and new evidence in its favour. In view of Sect. 6.4.6,
the conjecture is often particularly interesting when z is exceptional. Then we
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deduce from our constructions and a known exceptional case of the conjecture
a proof of Theorem G.
The conjecture requires some algebraic preliminaries.

7.3.1 Pfaffian regulators

Let L be a field of characteristic 0, and let M, T be a finite-dimensional L-
vector spaces. Let h: M ® M — T be a skew-symmetric pairing, and let
r = dimL M.

If r is even, we define the Pfaffian regulator

PfH (M, h) € (Sym’/*>T)/L*

to be the Pfaffian of the skew-symmetric matrix A (x;, x;);; for any L-basis x;
of M. It is well-defined modulo L*.
If r is odd, we define an enhanced Pfaffian regulator

Pf~ (M, h) € (M ® Sym"~V/2T)/L*

as follows. It suffices to define 9¢Pf~(h) for any basis 91, ..., d; of T and
all tuples e = (ei)?zl with Z?:l ej = (r — 1)/2; here 3¢ := ]_[?:1 aff. Let
I C {1,...,d} be the support of the tuple e. Let M; C M be the sum,
over i € I, of the radicals of the pairings d;A. If dim M; > 2, we define
0Pt~ (h) :== 0. If dim M; = 1 and x € M; is a generator, denote by h the
induced pairing on M := M/M; we define

P (M, h) = x @ 0°PfT (M, h).
Remark 7.3.1 In the even case, we have of course Pf* (M, h)> = R(M, h)
(Sym’T)/L*?, where R(M, h) is the discriminant of the pairing /. In the odd
case, assume further given a symmetric bilinear pairing 1*: M@M — T Let

W=h@®ht: MM — T': =T ®T*, andlet R(M, h') € Sym’ (T")/L*>>
be its discriminant. Then it is easy to verify that

W (PE~ (M, h), Pt~ (M, h)) € (T* @ Sym’ ~'T/)L**?

is the image of R(M, h') under the natural projection.

Remark 7.3.2 If L is the fraction field of a domain &’ and M is endowed with
an O-lattice, it is possible to lift the ambiguity in the definitions to an element
of 0*.
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7.3.2 A conjecture a la Bertolini-Darmon

Let G be either as in the introduction or as in Sect. 7.2. We define a sign
€ := —1 in the former case and € := +1 in the latter case. Let 2" be a locally
distinguished Hida family for (G x H)’, and let

ze 29

be a classical point. We denote by &2 the universal Heegner class (if e = —1)
or toric period (if € = +1), viewed as a family of functionals as in (6.4.2),
(7.2.1), parametrised by a subset 2~ C 2. Assume that 2" can be taken to
be a neighbourhood of z € 2.

Let T} 2 =m, /mg be the cotangent space to 2~ at z (where m; C Oy,
is the maximal ideal), and for any r € N let

@h:ml € Oy o — ml/m T = Sym' T} 2

be the natural projection. It is easy to see that the involution ¢ of Sect. 2.1.4

satisfies d”t = id (whereas dnt = —id).

Let V = 7, and let c: H! (E VhH — H (E, V) be the isomorphism
induced by the adjoint action, on GE.s,of alift of the complex conjugation in
Gal(E/F). Let

W =hl, H(E.V)® H{(E,V) > T} % (7.3.1)

be the Nekovar—Venerucci height pairing as in (5.3.7). Since the pairing of
Proposition 4.1.7 is skew-hermitian, by Proposition 5.3.4 the pairing i is
skew-symmetric. Define

ptl-E(v) = Pfi(ﬁ}(E, V), k.

Conjecture Pf Let 7 := dimy, ﬁ}(E, V). We have (—1)? = €, the universal
element & vanishes to order at least |7/2]| at z, and for any generator & €
(Hord)*’H/(pr) and all f € T1°, we have

@hl2 () =ptle(v) . p(f) (7.3.2)
in [H}(E, V)92 @, ) Sym 2 T2 271 /Q, ()%,

7.3.3 Relation to the original conjectures of Bertolini-Darmon

Define 27 := 2" N ({x} x &) (the anticyclotomic family), 2% := 2" N
(&g x {y}) (the weight family). In the classical case when E is imaginary
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quadratic, 7 is associated with an elliptic curve over Q, x = 1, and we restrict
to the anticyclotomic variable 22, Conjecture Pf is a variant of conjectures of
Bertolini—-Darmon, surveyed in [6] and (in a form slightly closer to the one of
the present work) in [33, § 4]. The Bertolini-Darmon conjectures were partly
generalised to higher-weight modular forms in [71].

Remark 7.3.3 By using natural G g s-stable lattices in V, or better lattices in
H! (E V) spanned by motivic elements, it is possible to define the Pfaffian
regulators up to an ambiguity that is a unit in the ring of integers of a local field
or of a number field (recall Remark 7.3.2). It should then possible to refine the
conjecture up to such ambiguity (by including the appropriate constants), as
in the original works of Bertolini-Darmon (see [33, Conjecture 4.2.1]).

In view of Remark 7.3.1, inserting Conjecture Pf into Theorem D would
yield a multivariable formula relating higher partial derivatives of p-adic
L-functions with suitable height regulators, in the spirit of the Birch and
Swinnerton-Dyer conjecture; the argument is the same as that of [33, Propo-
sition 5.1.1]. We plan to return to formulate such conjectural formulas in the
appropriate generality in future work.

7.3.4 Evidence for Conjecture Pfin low rank
The preliminary parity conjecture
(=D =e (7.3.3)

is known in many cases as a consequence of the work of Nekovér (see [81,
Theorem 12.2.3]. Indeed, the statement proved in loc. cit., in view of the
functional equation of .Z'(V(z ), 5), is that

(- " =¢ (7.3.4)

where r = dim H}(E, V) and ¢ = (V). Now if &€ = peX¢:S 4 pexc.ns
denotes the number of exceptional primes of F' above p (respectively, the
number of those that moreover are split or nonsplit in E), by Lemma 6.4.6.2
we have € = ¢ - (=17, and ¥ = r + 2SS 4 poX¢.18 Thyg (7.3.4) is
equivalent to (7.3.3).

Let us now review the conjectural vanishing and leading-term formula. Most
of the available evidence is concentrated in the case where V arises from the
classical context of Sect. 7.3.3, to which we restrict unless otherwise noted for
the rest of this discussion. (All the results mentioned below hold under various
additional assumptions, which we will not recall.)

If 2 isreplaced with 22 (the original Bertolini-Darmon case), the conjec-
ture isknownif £ (V(x, x)» §) vanishestoorderOor I ats = 0, see [33, Theorem
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4.2.5] and references therein, as well as [70]. Some of those results have been
generalised to higher weight [62,72] or to totally real fields [4,61,75].

When 2 isreplaced by 2™, pisinertin E, V is exceptional, and € = +1,
Bertolini—-Darmon [7] proved a formula for d! P| 9w, which implies the pro-
jection of (7.3.2) to T* 2™V when ordy—0.Z (V(z, ), s) = 1. The interpretation
of the formula of Bertolini—-Darmon in terms of height pairings was observed
by Venerucci (see [104, Theorem 2.1 and Theorem 4.2.2]), whose work was a
second important influence in the formulation of Conjecture Pf. The Bertolini—
Darmon formula was generalised to higher-weight modular forms by Seveso
[95] and to elliptic curves over totally real fields by Mok [74].

7.3.5 Evidence for Conjecture Pf in higher rank

Lower bounds for the order of vanishing of | 42 have been obtained in two
recent works for € = 1. In the context of elliptic curves over totally real fields,
[4, Theorem 5.5] gives a bound (that is coarser than predicted by Conjecture
Pf) in terms of the number of exceptional primes. In a classical context (and
if if p splits in E), Agboola—Castella [1, Corollary 6.5] prove a bound that is
finer than that of Conjecture Pf. (That refined bound is predicted by Bertolini—
Darmon; it is related to some trivial degeneracies of the anticyclotomic height
pairing, as touched upon also in the paragraphs preceding (7.3.7) below.)

Regarding the formula of Conjecture Pf, an interesting anticyclotomic case
can be deduced from the recent work [39], as we now explain.

The work of Fornea—Gehrmann Suppose that A is a modular elliptic curve
over the totally real field F, such that the set S* of places v|p where A has
multiplicative reduction consists of exactly r primes vy, ..., v, inertin E. Let
¢: Qi E) — Qi_; A(Ey;) be the product of Tate unifomisations, and let

¢3 be the induced map on p-adic completions.

One of the main constructions of [39] produces an explicit element Q 4 €
Ry Ey ®Q p» Which carries a precise conjectural relation to the arithmetic
of A. Partition S5%¢ = SyXT L S5 according to whether the multiplicative
reduction is, respectively, split or nonsplit, and let r* := |S,e,xc’+|. Denote
A(Ev) = A(Ev)®Qp and let A(EU)jE be its +--eigenspaces for the conjugation
cy € Gal(E,/Fy).
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Assume that Ag has rank r4 > r and let rX be the rank of A. According to
[40, Conjectures 1.3, 1.5], we have?’

ra>rorrf+rt#r = $(Qa) =0,
ra=randry +r¥ =r = $(Qu) = det((E, i=ij=r),  (73.5)

where (x1, ..., x,) is a basis of A(E)q, and for v € S,e,xc’jE we denote by X}

the eigen-projection of x € A(E) to A(E »)T. The symbol = denotes equality
up to a constant in Q*.

For V.= V,Ag, assuming the finiteness of III(Ag)[p°°] we have 7 :=
dim H (E, V) = r 4+ r4 (see Lemma 6.4.6.1(a) or (7.3.7) below), and the
parity con]ecture is known. Hence if r4 = r (mod 2), which we henceforth
assume, V corresponds to a point z of a locally distinguished Hida family .2~
of sign € = +1 (for a unique choice of the coherent quaternionic group G).
Let

Vi= By Fin O O8Qp = T7 2%, ¢ =8 Efu/E* - T*
w

be the natural projection, and let €3, o = Qi_; €3 Qi E;®Q, —

Sym"TI'?. Denoting by d? the component of d! along 22, Theorem A of [39]
(which relies on the aforementioned lower bound from [4]) proves

(dD)" Z(f°) = Lixe,0(Qa) (7.3.6)

for a suitable test vector f° € IT°,

Comparison with Conjecture Pf We show that granted (7.3.5) and the finite-
ness of III(Ag)[p™], the formula (7.3.6) is equivalent to the conjectured
(7.3.2). _ ~

Let h?: H}(E, V) ® H}(E, V) — T}2Z* = I'? be the projection of hl,
and let

PE&T(V) = PEF(H(E, V), h*) € Sym'T*.

2T In loce. citt., some restrictive assumptions are made (in particular that E is not CM), but
the conjectures make sense even without those and indeed closely related conjectures appear
in [39] without those assumptions. Moreover, our statement slightly differs from the ones of
[39], which instead of postulating that (x1, ..., x,-) is a basis, postulates that ¢(Q 4) # 0 under
the extra assumption that Resp/QA is simple (equivalently L(A, s) is primitive). Our slight
reformulation appears more uniform and still addresses [39, Remark 1.1] (cf. the comment
following [39, Conjecture 1.5]).
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Let H }(E , V)T be the eigenspaces for the complex conjugation ¢ €
Gal(E/F). Since h_; 9= enjoys the c-equivariance property /27 (cx, cx’) =
c.hyyoa(x,x")and cactsby —1 onI'* , by construction the pairing h* satisfies
h(cx, cx’) = —h(x, x'), so that each of Hf(E V)* is k- isotropic. In partic-
ular, Conjecture Pf agrees with (7.3.6) and (7.3.5) that, in the first case of the
latter, we have (d?)" &7 = 0.

Assume now we are in the second case of (7.3.5), so that each of H } (E,V)*
has dimension r and 4* need not be degenerate. For 1 <i <r,letq; = q,, €
EJ be a Tate parameter for A/E,. By [77, § 7.14] we explicitly have

HH(E.V) = H{(E. V) Qy - lgu]
i=1

ha(CIva Qv’) - 07 ha(x9 CIU) - logiyy('x’\v)v X e A(E)v v ;é U/’ (737)

where logf, - AE) ®Q, = Ef/q28Q, = 0§U®Qp U, 11, Note that
log , factors through x — 7.

Up to changing the basis x; of A(E)q and reordering the v;, we may assume
that the basis

Xptpls oo s Xry Ly oo os @ty X1sooos Xpts @rtals oo o G

of f{}(E V) is the concatenation of a basis of H (E, V)T and a basis

of H}(E V)™, respectively. Using this basis, (7.3.7), and the identity

pf(_Ml ) = 4 det M, we have?®

Pf&T (V) = det M = det M; det M>,

where the r x r matrix M is block—left—upper—triangular with anti-diagonal
blocks My = (log¥ y (xi)i,jer, for Iy = {r* + Lrh L ={1,...,rt}.

On the other hand, we note that under (7.3.5), we have Zexc (0Q4) =det N
where the r x r matrix N;; = logA "y (Xi,v) = h*(x;, q;) is block-diagonal

with blocks N1 = M», N» = M. Thus Eexc,®(QA) = Pf**(V), and (7.3.6)
is equivalent to (7.3.2).

28 All the equalities to follow ignore signs and in fact, by our coarse definitions, only make
sense at best up to Q.
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7.3.6 Applications to non-vanishing/2: exceptional families

We prove Theorem G.? Recall that 2 is a Hida family for PGL,q, that
contains a classical point xo € 2 (Q,) corresponding to an elliptic curve A
with split multiplicative reduction at p satisfying L(A, 1) = L(V,A,0) # 0.
Proof of Theorem G Let E be an imaginary quadratic field, with associated
quadratic character 5, satisfying the following: p is inertin A, all other primes
dividing the conductor of A splitin £, and the twisted L-value L(A, n, 1) # 0.
Then A has split multiplicative reduction over E with Tate parameter

_ X
q—qAEEp.

Let 24, € C* be the Néron period, and let let H := Resg /G-
By construction, &,(V,Ag) = 1 for all finite v { p, hence the Hida family

Z C éa((gszxH)' containing the image of 2y x {1} is locally distinguished.
Let 2% C éa(%ﬁt «q be the Hida family containing Z . Let I be the universal
ordinary representation over 2" and let f € IT be such that f|,, is a test vector

(that is, a vector not annihilated by any H'(A?)-invariant functional A : I}, —
Q,). Let Z g be the pullback of Z(f) to Zy, and let &y := %TrE/Q,@QE.
By Corollary 6.4.5,

Pok € H{(GEg. 7). P € H{(Gq. ).

By the main result of [5] (as reformulated in [6, Theorem 5.4, § 5.2]),30
there is a constant ¢ € Q; such that

L(Ag, 1)
Qap
® H{(Q, VyAr)

Po.£(x0) ® Py p(x0) = c - lgl®1[q] in H{(Q, V,Ap)

using the description H}(Q, V,Ar) = Q,-[g1® H}(Q. V,Ar) asin (7.3.7).
In particular, Z g(x9) = Po(x0) is a nonzero multiple of [¢], which is
Gal(E /Q)-invariant. Hence & g and & are non-vanishing. Then by [76],
H } (Q, %) has generic rank 1.
Moreover,

L(Ag, 1)

o ~h(lql, [q])

h%/%j(@o, Zy)(x0) = ¢ -

E

29 Aless interesting variant of it was sketched in [35].

30 In the works of Bertolini-Darmon, an explicit test vector f is chosen; cf. [33] for more
details on bridging the setups.
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L(Ag, 1)

zcﬂ(q) QA

€TQ®z, Q.  (13.8)

E

where £: Q; — TI'g is the universal logarithm (see again [77, § 7.14]

for the second equality). By [2], the right-hand side is nonzero, hence

h'I/ (P, Zy) # 0. O
0/7%

Remark 7.3.4 As noted in [33,35], the combination of Theorem D (or rather
Theorem B °™9) and a precise form of (7.3.8) gives a new proof ot the following
theorem of Greenberg-Stevens [43]: for A q, an elliptic curve of split multi-
plicative reduction at p and L ,(V,A) € Z,['g]q » its p-adic L-function,

tq) LA D
ord,(q) Qs

L'(V,A,0) =
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Appendix A. p-adic semilocal constructions
A.1 Preliminaries

Throughout this appendix, unless otherwise noted L denotes a field of char-
acteristic zero (admitting embeddings into C).

A.1.1 Admissible and coadmissible representations
Let G be a reductive group over Q,. We denote

G, =G(Q,), Goo:=GQ,), G=Gpx:=Gp,xGu,
Ga = AG(Q,)) C G, (A.L1)

where G, and G A have the p-adic topology, G has the Zariski topology,
and A is the (continuous) diagonal embedding. The difference between G,
G o, G a Will be in the category of modules we choose to consider. Namely,
we consider the categories of smooth admissible representations of G, over
L, of algebraic representations of G, over L, and the products of such for G;
we call the latter locally algebraic representations of G over L.
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Definition A.1.1 Suppose that L is a finite extension of Q. A p-adic locally
algebraic admissible representation IT of G over L is one such that for each
compact open subgroup K C G a, there exists a family of ¢ -lattices [TX-° ¢
X, for K C G a, with the property that TX-°NTTX = IX-° forall K’ C K.

The typical example of a p-adic locally algebraic admissible representation

. . l V2 .
is 1£>nK,,cG,, H'(Ykrk,, #') ® WY, where Y is the system of locally sym-

metric spaces attached to a model G of G over Q, and % is the automorphic
local system attached to the algebraic representation W of G .

There is a dual notion, introduced in [93, p. 152], see also [94]. Assume
that L is endowed with a discrete valuation (possibly trivial), giving it a norm
| - |. Let G’ be one of the groups (A.1.1) or an open subgroup. For K C G’
a compact open subgroup, let Z¢ x = He gk = C(K\G'/K, L) and
Do = 1(&11 Y.k be the Hecke algebras of distributions; they are endowed
with a natural topology as L-vector space, respectively as the inverse limit. A
coadmissible G'-representation M over (L, | - |) is a topological right -
module such that, for any compact subgroup G° C G’, the Ygo-module M
admits a presentation of the following form: there exists a system of topological
Yo k-modules Mk and isomorphisms Mg = Mg ®Fgo g1 Dok for K' C
K C G°, such that M = 1<ir_nK Mg.

Considering first a field L as endowed with a trivial valuation, we shall
consider coadmissible representations M of G, over L that are smooth in
the sense the Lie algebra g of G, acts trivially; coadmissible representations
W of G that are algebraic (those are just algebraic representations); and
the products of such as representations of G, which we call locally algebraic
coadmissible representations of G.

Definition A.1.2 Suppose that L is a finite extension of Q,; denote by | - | the
p-adic norm and by | - |¢iy the trivial norm on L. A p-adic locally algebraic
coadmissible representation M of G over L is one as above for (L, | - |giv),
whose restriction to G 4 is coadmissible for (L, | - |).

The typical example of a p-adic locally algebraic coadmissible representa-
tion is 1(&1 . H;(Ygr K, #) ® WV, where the notation is as after Definition
P

A.l.1.

A.1.2 Notation

Consider the groups (1.2.1). For a place v|p of F, we let

G,:=B), H,:=E), H),:=E)/F), (GxH),:=(Gyx Hy)/F)

as topological groups. We use the parallel notation G, oo for G, viewed as
the group of points of an algebraic group over F,.
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We assume from now on that B), is split and fix an isomorphism Gq, =
Resp,/Q,GLa, giving a model of G, over Z;,. We define involutions

g = gT’_1 on G(Q,), h':= he~! on H(Q)),

that induce involutions ¢ on all our groups. The embedding H' < (G x H)' is
compatible with the involutions.

Kpr
Fort € Tg, p,letU, := K, ,tK, , € f%”G:p for any r > 1, and
Ut,poo =U;® Io
Whenx € F px, we abuse notation by writing U, = U(x ) ve also write

Upoo 1= U(p 1>7POO

for short.

A.1.3 Ordinary parts of admissible or coadmissible G -modules

Let L be a finite extension of Q. Let IT = IT, ® W be a p-adic locally
algebraic admissible representation of G Let us write

oo .= oo @ wh,

where Ny, := K, . Choose O -lattices W° C W, H;’,’K C Hf , stable under
the Hecke action, and compatibly with the transition maps associated with
K’ C K. Then IToMN0 = ONO ® WV = lim I1, >Krr @ woN is stable
under the action of Uo. As shown by Hida, tl?ldempotent

ord n! 0,No o,No
e’ = hm Upo: 1 — I

is then well-defined and its image is denoted by I1>°. The space I1°°9 is
the maximal split &7 -submodule of [1°-No over which U poo acts invertibly.
We also write ¢ for ¢°d ® 1: TV = 1M @ L — TN, and we let
o4 = 1IN be its image. If T1,, and W are irreducible, then TT°¢ has
dimension either O or 1; in the latter case we say that I1 is ordinary. (This
notion is independent of the choice of lattices.)

LetM = M, ® W be a p-adic locally algebraic coadmissible right module
for G over L. By definition of coadmissibility, the system (M, x)k g, , 18
endowed with a compatible system G, z,,), k -stable lattices MY, ;. so that
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for some G4 (Z)-stable lattice |VASS MO = hm M° e . ® W ° is stable

under U . Then we can again define eord : Mﬁg Mgvg . Its image

(o),ord .__ (o) d
M or = MNO eOI‘

is called the ordinary part of Mﬁg
The ordinary parts 19, M° retain an action of the operators U, poo-

A.1.4 Special group elements, and further notation

The following notation will be in use throughout this appendix. Let v|p be
a place of F. We denote by e, be the ramiﬁcation degree of E,/Fy, and fix
a uniformiser @, € F, chosen so that Hvl » = p. Let Try, = Trg,/F,
and Nm, := Nmg,,f, be the trace and norm. le an isomorphism Of , =
OFy X OF,, if v is split. If v is nonsplit, let ¢ be the Galois conjugation of
E,/F,, and fix an element 0, € Of , such that O, = OF,[6,] (thus 6,
is a unit if v is inert and a uniformiser if v is ramified). We define a purely
imaginary j, € E to be

— Ly, lye) if E, = EX x EX.,
jy o= § Clwr ) " Fw (A.1.2)
05 — 0y if E, is a field.

We assume that £, embeds in B, and fix the embedding £, — B, to be

t=(tw,twc)|—><twt ) if E, = E, x E,,
wC

t=a+0b> (“ o bvae“) if E, is a field.
Forr > 0, let
1
Wy y 1= o ) € GLy(Fy),
( ) if v splits

= € (G x H),

Vv ( »"Nm, (6,) ) o ‘ v
if v is nonsplit
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and

we = [ Jwro € G@p). v =] [0 € G x HY(@Qp).

v|p vlp

A.2 Toric, ordinary, and anti-ordinary parts
Let L be a finite extension of Q,. We perform some twists.
A.2.1 Ordinary and anti-ordinary parts

Letw := ( _1 ! ) € Gy a and let 7% be the representation on the same space as
7 but with G-action given by 7% (g)v := n(w_lgw)v. Let N~ := w ! Nw,
and UpOO = Uurl p l)w’poo.

Letr = 7, ® W be a p-adic admissible locally algebraic representation of
G over L. The anti-ordinary part of m is the space

nazzn;@)WN_Cn

of ‘ordinary’ elements withrespectto N~ and U .. Because " is isomorphic

to 7, the spaces # and 7°™ have the same dimension.
Let M = M, ®W be a p-adic coadmissible locally algebraic representation
of G over L. The anti-ordinary part of M is the quotient

Ma = M; ® WNf
of M that s its ‘ordinary’ part with respect to N, and and U .

Proposition A.2.1 Let W be an algebraic representation of G .

1. Let w be a p-adic locally algebraic admissible representation of G. There
is an isomorphism

ord. _ord

wy' @ " — 7

. F: —
£ dim p i Qu, ywh UL,

s . Ul

where the sequence stabilises as soon as r > 1 is such that f, € w),' (p ).

2. Let M be a p-adic locally algebraic coadmissible representation of G.
There is a map

w;)rd: Mord - M2
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m=mp@moo > lim p T Vm(U,) " wyply- @ Imoowh oIy~

where before applying wy, we take arbitrary lifts from N,,-coinvariants to
the module M.

Proof That the maps are well-defined is a standard result left to the reader. At
least for admissible representations, the map is an isomorphism (equivalently,
nonzero) because of Lemma A.3.3 below. O

Let 79" (respectively 2) denote the preimage of 7% (respectively 7?) in
7y, and let W, be the G, oo-component of W. The following local components
of the above map are similarly well-defined:

ord., _ord a ord . Ny Ny
Wyapt Ty > Ty, Wy v,00 Wv - Wy
: r[Fy:Qpl —r L
Jo rlggop viQp wr,vUpyva, Jv.00 > wo’v,oofv,oo-

(A2.1)

Lemma A.2.2 Let 7w be an ordinary representation of G. If (, ): 1 ®m" — L
is a nondegenerate G-invariant pairing, then the pairing

( , )ord: nord ®7_[v,0rd - L

(fi, ) = ™ f1, f)

is a nondegenerate pairing.

Proof 1t suffices to see this for a specific pairing (, ): we may take the product
of the pairings (A.3.2) below, that are known to be nondegenerate, and any
nondegenerate pairing on W ® WV. Then the result follows from Lemmas
A.3.3 and A.4.1 below. O

A.2.2 Ordinary and toric parts

We construct a map from the ordinary part of a representation of (G x H)’
to its toric coinvariants, as well as a dual map in the opposite direction for
coadmissibe modules. These map are the key to the interpolation of toric
periods.

Suppose that W, (respectively W = ®v‘ » Wy is an algebraic representa-
tion of (G x H)(y),00 (respectively (G x H )go) over L such that, for a field
extension L'/ L splitting E, W) 0o @1 L' = Q). Fay—L W, with

w—kg +2 lg —w —lg

Wy = Wy iy = Symko2Std - det™ 2~ @0 7 (67 (A2.2)
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for some integers k, > 2, |l,| < ko, w of the same parity. (Here we have
chosen, for each o: F < L, an extension o : E < L.) Then we define a

constant
ke —2
w — —w—ks+2 . o
o) =4y (ks —2~15)/2
1 if v splits in E
gc(k=2=D/29*k=2+D/2 " if y does not split in E,
cWay) =[] ecWo). (A2.3)
o: Fpy—L
(Note thaltj;w_k"Jr2 = lif v splitsin E, as w + k, — 2 is even.)

Lemma A.2.3 Recall the congruence subgroupsV, ,, K, , definedin Sect.2.1.5.
For all r > 1, we have the identity of Hecke operators in the Hecke algebra
for (G x H)):

’ /
v,r+1 Z - Vr+1,vKU,r = v,r+1Vr,v . UZD'U Kv,r-
VIV

Proof This is a consequence of the following matrix identity.
Letv|p beaprimeof F.Forr € Z>y, j € Op,leth;, = (w {) In the

split case, let

1+ jo”
Lirv = kj,r,v = ( J 1) S EIT

In the nonsplit case, let

1+ jTry(0y)w, Try(6y) — jo,
tirw =1+ 6], kjr ‘( —iNu @)Y 1+ PN O] )
Then

tj,r,er—I—l,v = Vr,vbj,vkj,r,v
in GLy(F,). O

Proposition A.2.4 Let W be an algebraic representation of (G x H)L.
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1. Let T1 = I1, ® W be a p-adic locally algebraic admissible representation
of (G x H)'. There is a map

y,‘;r,d D) L y

£ tim H'p ey poUp L f1 (A24)

where H'[—]: T1 — Iy is the natural projection.
The sequence in the right hand side of (A.2.4) stabilises as soon as f), €
1Xpr where Ky, C(Gx H);, is defined at the end of Sect. 2.1.

2. Let M :=M,, @ WY be a p-adic locally algebraic coadmissible represen-
tation of (G x H)'. There is a map

yod: MA — merd

ordU—r

m — lim [p" 7 (W)™ mys pool Nore UL
r

where [—]Ny : M — My, is the natural projection.

The constant c(W) is justified by Lemma A.4.2 below.

Proof For part 1, let f € Hf””. Then it follows from Lemma A.2.3 that,
denoting by [ f]g the sequence in the right hand side of (A.2.4), we have

1
HIFQl Z @) fre1 = frs

!/ ’
tevﬁ,r/vp,rﬂ

hence [ f,+1 — fr1g’ = 0 and the sequence stabilises.
For part 2, Lemma A.2.3 similarly implies (the boundedness and) the con-

vergence of the sequence in lim M‘,’\fd . O
<7 0,r

Let ngd denote the preimage of 11°d in I1,, and let W, be the (G x H);’oo—
component of W. The following local components of the above maps are
similarly well-defined:

ord . yyord
)/H/’v. HU — HU,H{,

)/[(_)Ir/(’iv’ool Wliv — W”!Hé
fo > lim[p o Qrly, U £y,
Jo.oo = W)™ W5y oo frnco- (A2.5)
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A.2.3 Exceptional representations and vanishing of P°"

We show that y;’lr/d acts by zero precisely on those representations that are
exceptional.

Lemma A.2.5 Let I1 = w ® x be an ordinary, distinguished, irreducible
representation of (G x H)'. The following are equivalent:

1. T1 is exceptional;

2. ev(v(rr,x)) =0,

3. there exists P € TT*H' — {0} such that P°™ := Py%d = 0;
4. forall P € H*’H/, we have P°' = 0;

Proof The equivalence of 1. and 2. is a reminder from Lemma 6.4.6. The
equivalence of 3. and 4. is a consequence of multiplicity-one. Consider 3.
Let P € %', Identify ITY = TII* (the representation on the same space as
IT, with group action twisted by the involution ¢). Then the identity map on
spaces yields isomorphisms IT*#" 2 [TV-*H' apd [1ord* = [rv.ord* and jt
follows from the explicit description of 9/ that if PV denotes the image of
P, then the image of P is PV-°d. Hence, P°Y is zero if and only if so is
PV if and only if sois P ® PV o y;’lr,d ® y°rd. Now by the theory recalled
in Sect. 1.2.6 , P ® P is necessarily a multiple of the explicit functional
Qur,(,) defined there. Therefore it suffices to show that Qg; () vanishes on
the line y i1 ® y 241V if and only if ey(V(x,y)) = 0. This follows
from the explicit computations of Propositions A.3.4 and A.4.3 below, cf. also
Proposition 4.3.4. O

A.3 Pairings at p

The goal of this subsection is to relate the p-components of the toric terms Q
and their ordinary variants Qord, as defined in Sects. 4.2—4.3.
Let v|p be a place of F.

A.3.1 Integrals and gamma factors

If m (respectively x) is an irreducible representation of G, over L, we
denote by V;; (respectively V) the associated 2- (respectively 1-) dimensional
Frobenius-semisimple representation of WD, (respectively of WDg, =
[1,yjy WDE, ; we choose the “Hecke” normalisation, so that det Vy is the cyclo-
tomic character if 7 is self-dual. If IT = 7 ® yx is an irreducible representation
of (Gx H );, we denote by Vi = Vzwp £, @ Vy the associated 2-dimensional
representation of WDg . If E, is F or E, w|p is a prime of E and V is any
representation of WDE, | as above, we let Vy, := Viwp,, -
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If : F, — C* is a nontrivial character, we denote by dy y the selfdual
Haar measure on F, and d&j v :=dyy/lyl|. The level of v is the largest n such
that V| Oy = 1. We recall that if ¢ has level 0, then vol(OF ,, dyy) = 1.

Recall the Deligne-Langlands y-factor of (1.4.3).

Lemma A.3.1 [35, Lemma A.1.1]. Let pu: F,) — C* and y: F,, — C* be
characters, with vr, # 1. Let d*y be a Haar measure on F,*. Then
x._d¥y .
uMY(y)d=y = —— - u(=1 - yu, ).
FUX dwy

A.3.2 Local pairing

The following isolates those representations that can be components of an
ordinary representation.

Definition A.3.2 A refined representation (7, o) of G, over a field L consists
of a smooth irreducible infinite-dimensional representation 7 and a charac-
ter «: F, — L, such that 7 embeds into the un-normalised induction
Ind(| |er, | |~ 'war™1)) for some other character w: F) — L* 3! Sometimes we
abusively simply write 7 instead of (77, «). A refined representation I1 = 7 ® x
(G x H) is the product of a refined representation w = (7, «) of G and a
character x of H, such that w Xipx = 1.

If (7, @) is a refined representation of G, we let 794 < N0 be the unique
line on which the operator U; acts by «(¢). If I1 = 7 ® yx is a refined represen-
tation of (G x H)), we let 197 := 74 @ x. The associated Weil-Deligne
representation V. is reducible, and we have a unique filtration

0—->VI—=V, > V- =0

such that WD, acts on V! through the character «| - |.
Let 7r be a refined representation of G, over L,andlet (, );: 7 @Y — L
be a G-invariant pairing. Then we define

(’ )grd: nord ® (n\/)ord ~ L
fRf > wdf ),

where w?™ is the operator denoted wgfs in (A.2.1). If IT is a refined represen-
tation of (G x H),over Land (, ) = (, ) (, )y MR Y — L isa pairing,

we define (, ) := (, )o9(, ),, a pairing on [1° @ I1V-°",

31 Note that 7 admits a refinement if and only if it is neither supercuspidal nor 1-dimensional.
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Lemma A.3.3 Let (7, a) be a refined representation of G, over C, with cen-
tral character w as in Definition A.3.2. Let o = aw™'. Let

ad(Vy) ™ (1) = Hom (V,, V.")(1).

Fix a character  : F,, — C* of level 0, and Kirillov models of trr,, 7,/ with
respect to \ry, —Y,. Let

) =10, Ml s (y) € 7. (A3.1)

Suppose that (, ).y is, in the Kirillov models, the pairing

(8= [ O 0y, (A32)
Then

(f fH = wy(—=1) -y @d (V) TH (D), v) 7'

Proof We omit all remaining subscripts v and argue similarly to [60, Lemma
2.8]. The inner product (f, f V)gfd is the value at s = 0 of

al (@) " Z(s + 1/2,wy foa’| D), Z(s + 1/2,w, f,a"] ])

= /F w fMe [ IDIyIdy y.

By the functional equation for GL;, this equals

o(-1)- v+ 12T @l [ oo o [ () y
p~"O0Fp—{0}

=o(=1) ye.ea’| )7y LT ar ()T r (=),
using the fact that the domain of integration can be replaced with F*, the

additivity of gamma factors, and the relation @ = aw~!. Evaluating at s = 0
we find y (ad (V)T (1), )~ ! as desired. ]

A.3.3 Local toric period

We compute the value of the local toric periods on the lines of interest to us.
Let IT = 7 ® x be a refined representation of (G x H)/,. Let dt be a measure
on H,, and set as in (4.3.1)

vol(O /O, dt)
ey L(1, 771))_1

vol°(H,, dr) :=
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Then for all f1, f3 € TI°Y, £, fu € TTV-° with f3, f4 # 0, we define

Qord(f1®f2 f1®f2
RN -7 ® fa

where j, =(A.1.2)and u* = x, -a| - | o NEg,/F, is the character giving the
actionof EX on V' := VI ® x.

) = ut(jy) - vol°(H!, dt) - (A.3.3)

Proposition A.3.4 Let T1 = 7 ® x be a refined representation of (G x H)),
over L, with associated Weil-Deligne representation V.= Vz\wp,, ® x. Let
y;}r,d = )/I‘}r,d , be as defined in (A.2.5). Then

ord ord
Y J1® vy [ or &
Q. ( wor;f3 o 2) =ey(Vim, ) - thd <2 5 j:j) )

Here

es(Virg) =L Vig ), 0) 17! (|d|;”2y(ad(tv];*+)(1), Uy)

' l_[ y(L‘/R’_VDEw’ wEw)_l

wlv

is defined independently of any choice of an embedding 1: L — C and non-
trivial character . Fy — C*.

Proof 1dentify x*! with L and assume that f; = fix fi,x with f; , identified
with 1. Fix ¢: L — C (omitted from the notation) and 1 # ¢ : F, — C*.
Identify 7, 7" with Kirillov models with respect to ¥, —y. Let (, ) =
(, )z - ( )y be the invariant pairing on IT ® IT" such that (, ) = (4.2.3)
and (1 ,1), = 1. Assume, after a harmless extension of scalars, that dt =
|Dy|12dy;, z/d )y, which gives vol°(H', dt) = 1. Let fi = f3 = fr, f» =
fa= fY with £ asin (A.3.1).

In view of the definitions (4.2.2), (A.3.3) and of Lemma A.3.3, it suffices
to show that

(i frvip f¥) = /H Oy Loy fOxwar

= oD -u*G) - [Ty Vo, vE) ™"

wlv

We denote by « the refinement of 77, and we fix r > 1 to be larger than the
valuations of the conductors of 7 and of the norm of the conductor of .
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Split case. Suppose first that E,,/ F,, is split and identify E = F x F* as
usual. Then as in [32, Lemma 10.12] we find

G £ vt ) =T [ atal L)

wlv

'/X o Yue | |w"(yw")ww"(_yw”)dx}’w"

wC

= wo(=1) - 1T Go) -y (V)7L

where we have used Lemma A.3.1.
Nonsplit case. Now suppose that E, = E,, is a field and drop all subscripts v,
w. We abbreviate T := Tr(#), N := Nm(0).

We have

Qi fovi ) = /H | P@) ™ v e FDx @ dr.

(A34)
There is a decomposition

H =H{UH;,, H ={1+b0|becOr),
H,={aN+0 |a e N\ 0OF),

that is an isometry when H/, HZ/ are endowed with the measures dy b, dya.
Let ' := r + e — 1 and let us redefine, for the purposes of this proof,

Wy 1= (_N—lw—, ! ) Let ~, denote the relation in GL(2, F)) of equality up

to right multiplication by an element of U 11 (w"), and let 1?) := vty
Contribution from H{.Fort =1+ b0 € H{, we have

(o) _ (1T b\ (1+bT+ BN b ™"
~ -bNo” 1 ’ 1)

Hence the integral over H| equals

oo P(a) / f ¥ (byw el [(Nm(1 + b60)y)aw | |(v)
OF J Op—{0}
(L +b0)dy dyb

= f / X -] | o Nm((1 4 b9)y) - ¥ (by) d;;yd,/,b.
O Jo~"0F—{0}
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We show that the domain of integration in y can be harmlessly extended to
F*, i.e. that

|| (1 + b0) )Y (by) v db
OF Ju(y)<—r—1

vanishes. Consider first the contribution from v(b) > r. On this domain,
1F(1+b6) = 1 and integration in db yields [, , ¥ (by) db = 1515, (¥),
that vanishes on v(y) < —r — 1. Consider now the contribution from v(b) <
r—1

| W (14 b6) Wby df ydb. (A3S)
O0<v)=r-1 v(y)<—r—1

Let n be the conductor of ,u|+FX. Then (A.3.5) vanishes if n = 0; otherwise

only the annulus v(y) = —n — 1 contributes, and after a change of variable
y' = by we obtain

e [ W b))

r—n<v(b)<r—1

On our domain (1 +b0) = 1,and [ T (b)~! =0as ,u|+FX is ramified.
We conclude that the contribution from H 1’ is

/fu+((1+b9)y)¢(by)d;ydbf / wtey)
OF x Hl/ Fx
YE@ty/(6 —69) d)ydr.

Contribution from H}. Fort = aN + 60 € H}, we have
) aN+T o™ W 1 —aw ™"
—Nw” aN "\aN+T o™”

<1 +aT + a*N —awr>
~p Wy .

w_—r

Then the integral over H is
o P [ (r(((Sme e for g )
N_lw’ﬁp
-x(@N +0)dya
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= o la?| |2(w)’/ / w(@)™"
N_lwﬁp ﬁF—{O}
-y (—ay)a| |[(yo'Nm(1 4 ab))

V() Y () - x@N+0)d)fy dya
—af |<w>—’/ f ol [GNm(1 4 a8)) - 7V (W) £ ()
N-lwoF X

- x(aN + 0) d&fydwa
=al (@ 'N"Y.Zza2, 7w H Y al D

. / al [Nm(aN +0)) - x(aN + 0) dya,
Nflwﬁp

where we have observed that w, f ¥ vanishes outside ', and that ¥ (—ay) =
1 for y € OF. Applying first the same argument as in the proof of Lemma
A.3.3, then Lemma A.3.1, this equals

PVt (=0 [ alloNm-x@N+0)dya

=/ M+(y)w(y)d$y-/ u*(@N + 60)dya
FX Nflw'()’F

=/ f wEa)YEy/© —69)d)y.
Hy JFx
Conclusion. Summing up the two contributions to (A.3.4) yields

nre—0)- /H /F pr@YE@ d*u = o(=1) - uTG) -y v
as desired. |

A.4 Pairings at infinity
Fix a place v|p of F.

A.4.1 Models for algebraic representations and pairings

Suppose that W is the representation (A.2.2) of (G x H), ,, over L il
E. We identify W with the space of homogeneous polynomials p(x, y) of
degree k — 2 in L[x, y], where x and y are considered as the components of a

column (respectively row) vector if W is viewed as a right (respectively left)
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representation. In those two cases, the action is respectively:

—l—w

p(g, ) (x,y) =det(9)" T o) T o) T - p(g(x, 1))
(8. h).p(x.y) = det(9) 2o (h) 20 (h) T - p((x.)g). (A4l

In either case, we fix the invariant pairing

/ / k—2 -
(xk=2-aya ya' yk=2-d'y _ (—1)“( . ) Sa.a'- (A4.2)

Lemma A.4.1 Let W =(A.2.2), viewed as a left representation of G only.
Let wfl’rd: WN — Wy be the map denoted by w® _ of (A.2.1). Fix the

a,v,00
models and pairing described above. Then WV is spanned by x*=% and Wy
is spanned by the image of y*=2, and

(w;)rd(xk—Z), xk—2) — 1

A.4.2 The map yflr,d is unitary on algebraic representations

We start with a lemma completing the proof of Proposition 6.3.2.

Suppose that M, = M, o @ W), is a decomposition of a locally algebraic
coadmissible right (G x H );,-representation over L, into the product of a
smooth and an irreducible algebraic representation, respectively. Let W, be
the dual representation to W, viewed as a right representation of (G x H)_.
Assume that L is a p-adic field and that the (G x H)'-module M, ® W/ is
p-adic coadmissible. Then the operator yflr,d on it (whose definition of Propo-
sition A.2.4 extends verbatim to the case where M), is only locally algebraic)
decomposes as

d - F: - - -1

yl(ﬁ)lr/ = rlggo(p’[ Q. Vr,pUpr) & Vr,pUpr ® c(W) Vé,oo-
according to the decomposition M, ® W, =M, 0 Q@ W, @ W,
Lemma A.4.2 In relation to the situation just described, the operator

algy ord . — Jim vr.pU, ® cW) W oo wi @ wYVH - wh o wy

is unitary. That is, for any invariant pairing (, ) on W @ WY and € € WH B
£V € WY the images of € ® €Y and *¢y (& ® €V) under the pairings
induced by (, ) coincide.
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Proof We may fix a place v|p, and consider the factor representations
Wy ® W), of (G x H), x (G x H)), . After extension of scalars, we
may decompose W, = &), . F>0, W7 where each W is one of the rep-
resentations (A.2.2) for suitable integers w, k,[. Thus we are reduced to
proving the unitarity of the relevant component of 1 yg,r/d on the represen-
tation WJ ® W, . We omit all subscripts.

Split case. Suppose first that v splits in E. Then W "= Lx
and if

(kufl)/Zy(k72+l)/2

£ = x(k—2—l)/2y(k—2+l)/2

then

Sv — (_1)(k72+l)/2 k—2 x(k72+l)/2y(k—2—l)/2
' k—2-10)2

satisfies (£, &) = 1. We have

k=2

ord . —-r __
S rli)ngogyr,pUp =Yy ’

and

k=2
v ord (k=2+1)/2 1 (k=2+1)/2
d W X

(=x + y)(k—2—l)/2

~

projects into Wy < Lx*2to

v ord k=2 ~1 k—2 k2
Vi o = (-1} 2w Qk_2_0ﬂ>x |

Hence

ord v . ord —1 k—2 _
Evee &Y ) = (W) Qk_z_nﬂ)—

Nonsplit case. Suppose now that v does not split in E. Let z := x + 6y,
Z:=x+0y. Then W = Lz*=2-D/27(=24D/2 and if

£ = k=2-D/27(=2+D/2

o _ 1 6¢ . _ ’
k2072 (k=202 (1 . ) (—j)wH=2/2 ¢ wH
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then
£V = (—1)k-24D/2 k—2 k=202 k=212
k—2-1))2
16o° N (—w—k+2)/2 v, H'

satisfies (£, &) = 1. We have

-i:l’fzr/d,p = N—k+2)/2ge,(k=2=D/2(k=2+D/2 k=2,

and

gVyod o= (= 1y k=2=D/2 ()= @k=2)/2 7y~
. k=2 x(k—2+l)/2y(k—2_1)/2 1 N~ lge
k—2-0))2 1 N-19

projects into Wy, < Lx*=2 to

s\/yl(-)lr/d’oo — (_1)(k—2—l)/2(_j)—w—k-l—ZC(W)—l

. k=2 N(w+k—2)/2xk—2
k—2-10)/2 '

Then

ord . é_.\/ ord oo) — (_j)*w7k+29c,(kafl)/ZG(kfer[)/z

(SVH/ i YH'
( -2 )(Wr‘—1
Nk=2-0p)° -

A.4.3 Algebraic toric period

Let W = Wi ® Wy be an algebraic representation of (G x H); ., over L. For
any t: L — C, let (V (respectively (V) be the Hodge structure associated
with W (respectively W), and let*

n%ﬂQﬂLovx»)

LV, ,0) = !
( (WG, Wh) ) ¢ (L(ad(LVG),oo)a 1)

32 To compare with (1.2.7), we have g (2)/L(1, n¢/R) = 1.
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Let dr be a ‘measure’ on H/ by which we simply mean a value

v,00°
VO](Hé’OO, dt) similarly to Sect. 1.2.6, and set as in (4.3.1)
vol°(H)), dr) := 27 1FQvol(H] _, dr).

Let(, ) = (, )wg - ( )w, be a nondegenerate invariant pairing on W.® W".
Then for all f1, f3 € W, f2, f4 € WY with (f3, f4) # 0, we define

(pa (S, pa(f2))
(f3, f»)
(A.

’

fi®f - :
0, (f; 5 fi) =L Viwg. w00 -vol(H] . dt)

where py denotes the idempotent projector onto H, . -invariants.

4.3)

X
Let ow,: F — L* be the character giving the action of (FU 1) on

Wg ,let x: E)Y — L* be the algebraic character attached to Wy, and let

wt = x-ows o Ng,/F,

Let j, =(A.1.2). Then for all fi, f3 € WY := WY @ W, fo, fo € WV-N
with f3, fa # 0, we define

oy’ (fl ® f2> = 1" () - vol°(H,), di) - N®L - (aaa
® fa 3R fa
Proposition A.4.3 Let W be a representation of (G x H),, ., over L. Let

a,v,00

in (A.2.1). Then for all f1, f3 € WN, fo, fa € WY'N with f3, fs #0,

ord ord
Yol fi®@ vyt f . 0rd(f1®f2)
=dmW - .
2 ( wo f3 @ f4 ) 1m Qi f3® fa

)/;’Ir,d = )/;’Ir,d’v,oo be as defined in (A.2.5), and let wo™ = w™ _ be as defined

Proof After possibly extending scalars we may assume that L splits £ and
pick an extensions of each 0: F — L toao: E — L. We then have
W =@Q,. reo Wo with W, =(A.2.2) for suitable integers w, ky, [, and
analogously u™ (1) = [],. pe,, nd with

/"L:(t) — o—(t)(k0*2+la)/2o—(tc)(k(rfzfla)/z’ M;’Q) — (_1)(k(r*2*lrr)/2 .jﬁrf*z.

(A4.5)
If v splits in E, this simplifies to .} (j) = (—1)ke=2+0)/2,
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Moreover, £ (V,0) =[], £ (Vs, 0) with

ZL(V5,0) =

n—ch(ka;rla.)rC(%) 2 (k-2 _1
I'c(ks)TR(2) Tk —1 \fe=2tl

Fixao: F < L for the rest of this proof, work with W, only, and we drop
o from the notation. We may assume that f := fi, fV := f» both equal x¥—2
in the models (A.4.1), and that vol(H’, dt) = 1. By the definitions above and
Lemma A.4.1, we then need to prove that

k=1 (k-2
Qg Ly f7) = —— (k2+l) ~Pa (gt f).
2

k—1 .
pa (Vi ) = —— 1T ().
Recall in what follows that y;’lr/d contains the factor ¢(W) =(A.2.3).

Split case. Suppose first that v splitsin £. Then wH = Lxk=2=D/2k=24D)/2,
and c(W)_lyéf =c(W) 1(x — y)k_2 projects to

k—2

ord 0 _ (_1)y*=24D/2 . cpyy~] (k=2-1)/2 (k=2+1)/2 WH"
v f =D c(W) h—2-12)" y

It follows that

0o o py k=1 (k=2 )2-<—1>k22“- W)y Le(w¥)™!
Yar JVer T D) =57\~ 2412 ‘ ‘
k—1

— .t
= w Q).

Nonsplit case. Suppose now that v is nonsplit in E. Let z := x — 9%~ 1y,
7i=Xx— 0*1y, then WH = Lz k=2-D/27(k=24D/2 ypq

Véf — C(w)—lN(w+k—2)/2xk—2 — C(W)_IN(w+k_2)/2j2_k(9CZ _ ez)k—Z

projects to

(k=2 _
2
NHA=D/22-k e, (=1=2)/2 (+1=2)/2 (k=21 /27 (k=2+D)/2
_1fk—2 _
— C(W\/) 1 (k_z_l) (_1)(k 2+41)/2
2
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jCw—kH2)/2ge,(k—1=2) 2 (+1=2) /2

1 1 oy _
) (_96’_1 _9_1) x®&2-D/2 (=24D 2.

By the invariance of the pairing,

Q(yol;df’ yol’/de) — (_1)(k—2+1)/2C(W)—1C(WV)—1 (f_z_zl) (_J)Z—ka—Z

2
k—2\"!
=(—1>k—2<k_2_1) wt @)

2

so that again

Qs fydd Yy = dim W -t ().
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