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Abstract Let G be the group (GL2 × GU(1))/GL1 over a totally real field
F , and let X be a Hida family for G. Revisiting a construction of Howard
and Fouquet, we construct an explicit section P of a sheaf of Selmer groups
over X . We show, answering a question of Howard, that P is a universal
Heegner class, in the sense that it interpolates geometrically defined Heegner
classes at all the relevant classical points ofX . We also propose a ‘Bertolini–
Darmon’ conjecture for the leading term of P at classical points. We then
prove that the p-adic height of P is given by the cyclotomic derivative of a
p-adic L-function. This formula over X (which is an identity of function-
als on some universal ordinary automorphic representations) specialises at
classical points to all the Gross–Zagier formulas for G that may be expected
from representation-theoretic considerations. Combined with a result of Fou-
quet, the formula implies the p-adic analogue of the Beilinson–Bloch–Kato
conjecture in analytic rank one, for the selfdual motives attached to Hilbert
modular forms and their twists by CM Hecke characters. It also implies one
half of the first example of a non-abelian Iwasawa main conjecture for deriva-
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tives, in 2[F : Q] variables. Other applications include two different generic
non-vanishing results for Heegner classes and p-adic heights.
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1 Introduction and statements of the main results

A beautiful construction of Heegner and Birch, based on the modularity of
elliptic curves and the theory of complex multiplication, attaches to an elliptic
curve A/Q and an imaginary quadratic field E a point P ∈ A(E). The work of
Gross–Zagier [45] related the height of P to the derivative of the L-function
L ′(AE , 1), with striking applications to the Birch and Swinnerton-Dyer con-
jecture. An analogous result in p-adic coefficients was proved by Perrin-Riou
[84] soon thereafter, if A has good ordinary reduction at the prime p.

The decade following those works saw a pair of similar results, by
Nekovář [78] andZhang [109], relatingHeegner cycles onKuga–Sato varieties
to (p-adic) L-functions of higher-weight modular forms. We may single out
two major innovations in the approach to Heegner points and Gross–Zagier
formulas since then,1 both answering the question of what ‘other’ Heegner
points there are and how they fit together.

The first one starts from the observation byMazur [73] and Perrin-Riou [85]
that Heegner points should vary p-adically in anticyclotomic families, in the
same way that the L-function of the elliptic curve AE does; this observation
inspired Howard [57] to prove a generalisation to such families of Perrin-
Riou’s formula. Howard later significantly expanded the scope of Mazur and
Perrin-Riou’s idea by proving that the Kummer classes of Heegner points also
vary in Hida families of modular forms [58]; the question of the relation of the
resulting ‘big’ classes to Heegner cycles was left open.

The second innovation was the observation by Gross [46] that Heegner
points can be viewed as elements of spaces of H′-invariant linear functionals
on an automorphic representation of (G × H)′ (these reductive groups will
be defined below),2 so that the tools of representation theory may be brought
in to conceive and prove more general formulas: a programme whose main

1 Two other recent ideas that our work does not touch upon are nevertheless too important to be
ignored: the conjecture of Darmon andGuitart–Madseu–Şengün that there should exist Heegner
points attached to any quadratic extension of number fields (see [27,48]), and the formulas for
the p-adic logarithms of Heegner points of [8,68].
2 N.B.: the notation G used in the informal abstract differs from the notation of the paper.
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achievement, in complex coefficients, is thework ofYuan–Zhang–Zhang [107]
on Heegner points on Shimura curves.

In this work, we combine those two approaches. We construct Heegner
classes for the Galois representation over a Hida family for (G × H)′, show
that they specialise to (cohomological) Heegner cycles at all classical points,
and prove a formula for their p-adic heights that is universal in the sense that
it specialises to all the p-adic formulas suggested by the framework of Gross.
(The analogous complex Gross–Zagier formulas are not currently known3 for
motives of higher weight.) We obtain various applications to the arithmetic of
motives attached to Hilbert modular forms.

In the rest of this first section we state our main theorems, and complete the
discussion of their history.

We begin in Sect. 1.1 by presenting the results concerning the p-adic
Beı̆linson–Bloch–Kato conjecture (Theorem A); they are applications of the
general p-adic Gross–Zagier formula for a fixed representation, stated as The-
orem B in Sect. 1.2.

In Sect. 1.3we outline the construction and properties of the universal family
of Heegner classes (Theorem C), referring to the “Bertolini–Darmon” conjec-
ture of Sect. 7.3 for a further study of its classical specialisations. In Sect. 1.4
we state the universal formula of the title (Theorem D); a complementary
‘Waldspurger’ analogue will be proved in Sect. 7.2 (Theorem H).

Finally, in Sect. 1.5 we discuss some further applications: the first non-
abelian example of an Iwasawa main conjecture for derivatives of p-adic L-
functions (Theorem E); and two results on the generic non-vanishing of p-
adic heights and Heegner cycles: one for CM motives (Theorem F), the other
for Hida families containing a rank-0 elliptic curve with split multiplicative
reduction (Theorem G). A further application, to a criterion for certain Bloch–
Kato Selmer groups to be of rank zero, will appear separately.

1.1 The p-adic Beı̆linson–Bloch–Kato conjecture in analytic rank 1

The primary motivation for our work comes from the generalisations of the
Birch and Swinnerton-Dyer (BSD) conjecture and its p-adic analogue, as
proposed by Beı̆linson, Bloch–Kato, and Perrin-Riou [3,11,86]. Recall that
if A/Q is an elliptic curve, (BSD) is equivalent to the following statements.
Denote by ran and L∗(A, 1) the order of vanishing and leading term of L(A, s)
at s = 1. Then L∗(A, 1) > 0 and for every prime p,
(a) the Selmer group Sel(Vp A) := (lim←−n

Selpn (A)) ⊗Zp Qp has dimension
equal to ran;

(b) the divisible part of X(A)[p∞] vanishes;
3 See however the very recent [87]. (Note added during revision.)
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(c) the p-adic valuations of L∗(A, 1)/�A RA and |X(A)[p∞]|∏v�∞ cv(A)

are equal.

1.1.1 Selmer groups according to Bloch–Kato and Nekovář

If E is a number field and V is a geometric p-adic representation of its Galois
group G E , Bloch and Kato [11] have proposed an analogue

H1
f (E, V )

of the Selmer group of A; it is an L-vector-subspace (where L is the field of
scalars for V ) of the first Galois cohomology group of V , consisting of those
classes satisfying certain local conditions. According to the resulting variant
of the conjecture of Beı̆linson [3], the dimension dimL H1

f (E, V ) should equal

the order of vanishing of the L-function L(V ∗(1), s) at s = 0.4

Another definition of Selmer groups was proposed by Greenberg when V
satisfies an ordinariness condition at the places above a prime p; specialised to
the cases of interest to us, it recovers the Bloch–Kato Selmer groups. Nekovář
observed that a variation of Greenberg’s definition works well in p-adic fami-
lies, and developed this observation into the theory of Selmer complexes [81],
that provides the foundation for the present work (Sect. 5). For nice p-adic
families of G E -representations, the theory allows to define groups

H̃ i
f (E, V )

for all i .

1.1.2 The p-adic Beı̆linson–Bloch–Kato conjecture for Hilbert modular
forms

Our main arithmetic results concern the p-adic analogue of the Beı̆linson–
Bloch–Kato conjecture for the Galois representations attached to Hilbert
modular forms and their twists by Hecke characters of CM fields.

Fix throughout the rest of this paper a rational prime p. Let F be a totally
real field, let E be a CM quadratic extension of F , and let

G0 := ResF/QGL2, H := ResE/QGm .

4 Provided V contains no copies of the trivial representation. Of course in general the mero-
morphic continuation of L(V, s) is itself conjectural. Note that when V is self-dual, or E is a
CM field and V is conjugate-self-dual, we have L(V, s) = L(V ∗(1), s).
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Let L be a finite extension of Qp splitting F . A pair of cohomological weights
for G0 and H is a pair of tuples w := (w; (wσ )σ : F↪→L), l = (l; (lσ )σ : F↪→L),
each consisting of [F : Q] + 1 integers of the same parity, such that wσ ≥ 2
for all σ : F ↪→ L . In this paper we will only consider cohomological weights
and therefore omit the adjective ‘cohomological’. By a “Hilbert modular form
over L of weightw” (respectively a “Hecke character of E over L of weight l”)
we mean a cuspidal automorphic representation of G0(A) (respectively H(A))
over L of weightw (respectively weight l) as defined in Definition 2.4.1 below.

If π0 is a Hilbert modular form and χ a Hecke character over L , we denote
by �0 = π0 ⊗ χ the associated representation of G0 × H. We denote by Vπ0

and Vχ the corresponding 2- (respectively 1-) dimensional representations of
G F (respectively G E ), normalised so that L(Vπ0, s) = L(s + 1/2, π0), and
we let

V := V�0 := Vπ0|G E ⊗ Vχ .

Let ωπ0 be the central character of π0 and let ωχ := χ |F×A∞ . If ωπ0ωχ = 1,
then V is conjugate-self-dual and pure of weight −1, and the epsilon factor
ε(V ) ∈ {±1}.

Let �F := F×A∞/F×Ô p,×
F (identified with the Galois group of the maximal

abelian extension of F unramified outside p by class field theory), and let

EZ/L := Spec (Zp��F�L).

(We will also simply write EZ for EZ/Qp .) Suppose that π0 is ordinary in
the sense of Definition 2.4.3; equivalently, for all v|p the associated G Fv -
representation Vπ0,v reduces nontrivially as

0→ V+π0,v → Vπ0,v → V−π0,v → 0,

and G Fv acts on V+π0,v by the product of the cyclotomic character χcyc and a
character α◦v valued in p-adic units.Wemay attach to V ameromorphic p-adic
L-function

Lp(V(π0,χ), s) ∈ K (EZ/L)

where the variable s ∈ EZ/L may be thought of as a p-adic character of �F ;
we use the synonym χF,s when we want to emphasise such nature of s, and we
denote by “s = 0” the trivial character χF,0 = 1.5 More precisely, working in

5 Other authors consider p-adic L-functions of a variable s′ ∈ Zp . In our language this
corresponds to restricting Lp(V, s) along the embedding Zp = SpecZp�Zp�Qp (Qp) →
EZ/L (Qp), s′ �→ χ s′

cyc,F where χcyc,F = (1.8.1) is the cyclotomic character of F .
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terms of the multivariable functionLp(V
) of Theorem 1.4.1 below, we may

defineLp(V(π,χ)) as the restriction

Lp(V(π,χ), s) := Lp(V
)(zs) (1.1.1)

where zs corresponds to the family of representations Vπ |G E ⊗ χχF,s|G E .
If ε(V ) = −1, thenLp(V(π0,χ), 0) = 0 andwe denote byL ′

p(V(π0,χ), 0) =
dLp((V(π0,χ))(0) ∈ T0EZ/L = �F⊗̂L its first derivative.

Theorem A Let π0 be a Hilbert modular form over L of weight w, and let χ
be a Hecke character of E over L of weight l. Let V := Vπ0|G E ⊗Vχ . Suppose
that:

(wt) |lσ | < wσ for all σ : F ↪→ L;
(sd) ωπ0ωχ = 1 (which implies w + l = 0);
(ε) ε(V ) = −1;

(ord) π0 is ordinary;
(n-exc) V is not exceptional: for no place w|v|p of E is V−w := V−π0,v|G Ew

⊗
χw the trivial representation.

1. We have

L ′
p(V(π,χ), 0) = 0 �⇒ dimL H̃1

f (E, V ) ≥ 1,

and we can exhibit an explicit nonzero element of H̃1
f (E, V ) = H1

f (E, V ),
whose p-adic height (cf. Proposition 5.3.3) is also non-zero.

2. Let T ⊂ V be a stable lattice. If L ′
p(V(π,χ), 0) = 0 and moreover the

conditions of [41, Theorem B.(i)] are satisfied, then:
(a) we have

dimL H̃1
f (E, V ) = 1;

(b) let RT ∈ OL⊗̂Zp�F be the regulator of the height pairing (1.2.12) on
H̃1

f (E, T )× H̃1
f (E, T ∗(1)). Then

L ′
p(V(π,χ), 0) �Zp RT · |H̃2

f (E, T )tors|

in L⊗̂�F .

In the last formula we have used the following suggestive notation.

Notation For a domain Awith fraction field K and two A-submodulesm1,m2
of a K -vector space M we write m1 �A m2 if m1 ⊆ m2; the notation is
extended to the case where some mi is an element of M , in which case we
interpret it as Ami .
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Part 1 will be an immediate consequence of Theorem B, the Jacquet–
Langlands correspondence, and the observation following (1.2.5) below. For
a list of previous results in the direction of part 1 we refer to the discussion
following Theorem B. Let us note, for now, that an analogue of this result in
complex coefficients is not known.

Part 2 follows from invoking the results of Fouquet in [41], that generalise the
bounds on Tate–Shafarevich groups of elliptic curves obtained by Kolyvagin
using the methods of Euler systems.

Remark 1.1.1 Condition (n-exc) guarantees thatLp(V(π,χ), s) has no excep-
tional zeros at s = 0, and it is equivalent to the identity H̃1

f (E, V ) =
H1

f (E, V ). We will also equivalently say that � is not exceptional. For a
characterisation of this condition, see Lemma 6.4.6.

Remark 1.1.2 In the simplest case where F = Q, π0 is a modular form with
rational Fourier coefficients of weight wσ = 2, and χ = 1, the representation
Vπ0 = VpA is the rational p-adic Tate module of an elliptic curve A/Q. In this
case H1

f (E, V ) = Sel(Vp AE ), and letting T = Tp AE , the group H̃2
f (E, T )tors

equals [12, (1.36)] the quotient of X(AE )[p∞] by its divisible submodule
X(AE )p-div.

The groupX(AE )p-div, conjecturally 0, measures the failure of Sel(Vp AE )

to be generated by the classes of points in A(E). We do not address in this
paper the analogous conjecture from [11] that H1

f (E, V ) should be generated
by the classes of algebraic cycles. Nevertheless our construction of a genera-
tor is sufficiently geometric to provide a good starting point to establish this
conjecture, cf. Remark 6.2.2.

1.1.3 A variant for selfdual Hilbert modular forms

Suppose that π0 is an ordinary Hilbert modular form,ωπ0 = 1 (so thatw = 0),
and ε(Vπ0) = −1. Assume that either [F : Q] is odd or there is a place v � p∞
of F such that π0,v is not a principal series. Suppose that for no v|p is π0,v
the Steinberg representation. Let L p(Vπ0, s) be the p-adic L-function of Vπ0

constructed in [30]. If L ′p(Vπ0, 0) = 0, then the conclusions (1) and (2a) of
the previous theorem hold with (E, V ) replaced by (F, Vπ0). (This is proved
by a standard argument based on the choice of a suitable auxiliary E to reduce
to the previous theorem.) A similar remark (at least for part (1)) applies when
π0 has CM by E , cf. the proof of Theorem F in Sect. 7.1.4

1.1.4 Addendum to the historical overview: higher-rank cases

The general overview sketched in our opening page ignored a third important
theme: Gross’s framework has been generalised in [42] to study special cycles
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attached to other pairs of groups (G,H). Several works have explored the
consequences towards the Beı̆linson–Bloch–Kato conjecture of the possible
non-vanishing of those cycles, most notably [69]. On the other hand, non-
vanishing criteria in terms of L-functions have been obtained in a considerably
more limited set of cases, mostly related to triple-product L-functions [9,10,
28,106,108].6 The relation with cyclotomic p-adic L-functions has not been
studied beyond Heegner cycles.

1.2 The p-adic Gross–Zagier formula for arbitrary weight

Theorem A, like analogous previous results [31,32,35,78,84,96], is an appli-
cation of an explicit formula for the p-adic heights of a certain Selmer class
(here rather a collection of classes). When the weights are trivial, that is
w = (0; (2, . . . , 2)) and l = (0; (0, . . . , 0)), this is the class of a Heegner
0-cycle coming from CM points on quaternionic Shimura curves; this is the
case studied in [32,35], and earlier in complex coefficients by Yuan–Zhang–
Zhang [107]. In general, it is the class of a 0-cycle supported at CM points,
with coefficients in a local system corresponding to the weight of the repre-
sentation. The specific choice of the (tower of) Shimura curves is dictated by
the local root numbers of V , see the discussion preceding Definition 1.2.1.

1.2.1 Algebraic groups and Shimura varieties

Let B be a quaternion algebra over FA (where A denotes the adèles of Q)
with ramification set � � {v|∞} satisfying |�| ≡ [F : Q] − 1 (mod 2).
Then G(A) := B× is not the points of an algebraic group ‘G’ over Q, but
we will still find convenient to use this suggestive notation and refer to G
as an incoherent algebraic group over Q (see Sect. 2.1.1 for a more formal
treatment). Let H = ResE/QGm as above, and let Z := ResF/QGm , that admits
natural central embeddings in G and H.

The list of (coherent or incoherent) groups of interest in this paper, often
denoted collectively by G∗, is

G, H, G × H, (G × H)′ := (G × H)/Z, H′ := H/Z, (1.2.1)

6 In a related context, see also the very recent breakthrough of Li–Liu [66]. (Note added during
revision.)
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where Z is embedded diagonally in the product group.7 We suppose that for
every v ∈ �, Ev/Fv is nonsplit. Then there is unique B×-conjugacy class
of FA-embeddings EA ↪→ B, of which we fix one. It induces an embedding
e : H ↪→ G.

To the above groups and suitable Shimura data (Sect. 2.3.1), we asso-
ciate corresponding towers of compactified Shimura varieties X∗, respectively
denoted

X/F , Y/E , X ×F Y/E , Z/E , Y ′/E . (1.2.2)

They are curves except for Y , Y ′ that have dimension 0. The embedding e
induces a diagonal embedding H′ ↪→ (G×H)′, hence a morphism of Shimura
varieties

e′ : Y ′ → Z .

1.2.2 p-Adic automorphic representations

It is more natural to parametrise “cohomological automorphic representations
over a p-adic field L” of a group G∗ by irreducible algebraic representations
W of G∗.8

Let G∗,∞ be G∗(Qp) with the Zariski topology (and for later purposes let
G∗,p := G∗(Qp)with the p-adic topology, G∗ := G∗,p×G∗,∞). We redefine
throughout this work

G∗(A) := G∗(A∞)× G∗,∞.

Let W be an (algebraic) representation of G∗,∞ over L , and let W be the
corresponding étale local system on the tower X∗. Then we define a (cuspidal,
cohomological) automorphic representation of G∗(A) over L of weight W to
be a representation

� = �∞ ⊗W

7 In fact, the (incoherent) group that truly underlies our constructions is (G ×Z H)′ =
{(g, h) | νG(g) = νH(h)} (where ν? : ? → Z arises from the reduced norm map of B (for
? = G) or from the norm of E/F (for ? = H). That is, the universal Heegner class and the
other associated objects described below descend to the ordinary eigenvariety for (G ×Z H)′
(a quotient of the one for (G × H)′). Nevertheless, for the sake of simplicity we will content
ourselves with working with (G × H)′.
8 See Definition 2.4.1: the W/L of interest to us are in bijection with (finite) GL -orbits
of cohomological ‘numerical’ weights as defined above. From now on all numerical or
representation-theoretic weights will be tacitly understood to be cohomological.
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of G∗(A) occurring in H•(X∗,E ,W ∨)⊗W .9 (Here and in the rest of the paper,
groups and Hecke algebras act on Shimura varieties and their homology on
the right, on cohomology and on automorphic forms on the left. Left and right
algebraic representations W are identified via w.g := g−1.w.)

1.2.3 Automorphic and Galois representations

Let� = π⊗χ be a cuspidal automorphic representation of (G×H)′(A) over
L of weight W = WG ⊗ WH. Let V = V� = Vπ |G E ⊗ Vχ be the associated
G E -representation.

For a smooth proper variety Z ′ of dimension d over a characteristic-zero
field F ′ and a p-adic local system W ′, define

Hi (Z ′,W ′) := H2d−i
ét (Z ′,W ′(d))

for all 0 ≤ i ≤ 2d. For each level K ⊂ (G×H)′(A∞), let Z K := Z K ×Spec E

Spec E . We use the notation

Hi (Z K ,W ) := Hi (Z K ,W )⊗W∨

and similarly for the other Shimura varieties over F , E , E under consideration.
Thanks to work of Carayol we can construct an injection (an isomorphism
unless V is decomposable) of (G × H)′(A)-representations

� ↪→ lim−→
K

Hom L[G E ](H1(Z K ,W ), V�). (1.2.3)

1.2.4 Heegner cycles

Suppose that W satisfies (wt), then W H ′∞ ∼= WH ′∞ is 1-dimensional, and e′
induces a canonical system of maps

H0(Y
′
V ′, L)→ H0(ZK ,W )

for all V ′ ⊂ H′(A∞)∩K . The image�◦W, f∞ ∈ H0(ZK ,W ) of the normalised
fundamental class

[Y ′V ′ ] = |Y ′(E)|−1 ·
∑

y∈Y ′(E)

[y] ∈ lim←−
V ′

H0(Y
′
V , L)

is well-defined and (after a modification if W is trivial) belongs to the kernel
H0(ZK ,W )0 of H0(ZK ,W )→ H0(Z K ,W ). The images of�◦W, f∞ under the

9 This approach is inspired by the work of Emerton [37].
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Abel–Jacobi maps AJ : H0(ZK ,W )0 → H1(E,H1(Z K ,W )) are compatible
under pushforward along the tower Z K and invariant under the H′(A)-action,
hence they define an element

PW := lim AJ(�◦W,−) ∈ lim←−
K

H1(E,H1(Z K ,W )H ′(A))

Via (1.2.3), PW defines an H′(A)-invariant functional

P� : �H ′∞ → H1(G E , V�), (1.2.4)

whose image should lie in H1
f (E, V�) ⊂ H1(E, V�) (see Remark 6.2.2 for a

stronger conjecture). We show in Proposition 6.4.7 that this is the case if Bp
is split and � is ordinary and not exceptional, which we define to mean that
Bp is split and the Jacquet–Langlands transfer �0 of � to G0 × H (which is
thus the ‘identity’ at p) satisfies those properties.

Our formula will give a criterion for the nonvanishing of P�.

1.2.5 Multiplicity one

Representation theory provides a necessary condition. The space

(�)∗,H′(A) = Hom H′(A)(�, L)

is known, by a theorem of Waldspurger, Tunnell, and Saito [90,102], to be
nonzero if and only if the following condition is satisfied for all v:

(εv) Define ε(Bv) := +1 (respectively−1) if Bv is split (respectively nonsplit).
Let ε(Vv) :=∏w|v ε(Vw), χv(−1) :=∏w|v χw(−1); then

εGv (V ) := ε(Vv)χv(−1)ηv(−1)ε(Bv) = +1. (1.2.5)

If this is the case, (�)∗,H′(A) is 1-dimensional and moreover the global root
number ε(V ) = −1. Conversely, if V is as in Theorem A and in particular sat-
isfies ε(V ) = −1, there exists a unique incoherent totally definite quaternion
algebra B verifying (εv).

The conditions (εv) for a finite v generalise the classical “Heegner condi-
tion”. For v|p, ifπ is ordinary the condition (εv) is satisfied unless v is nonsplit
in E and π is exceptional at v (Lemma 6.4.6). The condition (ε∞) is equivalent
to (wt).

Definition 1.2.1 Wesay that� is locally distinguished byH′, or simply locally
distinguished, if it satisfies conditions (εv) for all v.
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1.2.6 Local toric periods

Assume that � is locally distinguished, and let �∨ denote the contragredient
representation of �. Then we know an explicit a generator of

�∗,H′(A) ⊗ (�∨)∗,H′(A) (1.2.6)

as a product of local pairings, which we now define. The pair P� ⊗ P�∨ will
be measured against this generator.

For v a finite place of F , let�v be the local component of�, a representation
of (B×v × E×v )/F×v ⊃ H ′v := E×v /F×v ; let dtv be a Haar measure on H ′v . For
v = ∞, let �∞ = W and let dt∞ be a formal symbol synonymous with a

constant vol(H ′∞, dt∞) ∈ L . In all cases, let �
∗,H ′v
v := Hom H ′v (�v, L) and

let ( , )v be an invariant pairing on �v ⊗�∨v .
Let Vv (respectively Vπ,v) be the restriction to G Ev :=

∏
w|v G E,w (respec-

tively G Fv ) of the Galois representation associated with � (respectively π ) if
v is finite, and the Hodge structure associated with W (reps. WG) if v = ∞.
Let us also introduce the convenient notation

“V(π,χ),v := (Vπ,v ⊗ IndEv

Fv
χv)� ad(Vπ)(1)

′′

(to be thought of as referring to a ‘virtual motive’).
Let η : F×A /F× → {±1} be the character associated with E/F , and let

L (V(π,χ),v, 0) := ζF,v(2)L(Vv, 0)

L(1, ηv)L(ad(Vπ,v), 1)
·
{
1 if v is finite

π−[F :Q] if v = ∞ ∈ L .

(1.2.7)
Then

Qv,(,)v,dtv ( f1,v, f2,v) := L (V(π,χ),v, 0)
−1
∫

H ′v
(�v(t) f1,v, f2,v)v dtv

is an explicit generator of �
∗,H ′v
v ⊗L (�∨v )∗,H

′
v . Here for v �∞ the integral is

absolutely convergent (after making any choice of L ↪→ C), and for v = ∞
we understand

123



524 D. Disegni

∫

H ′∞
�∞(t)dt∞ := vol(H ′∞, dt∞) · pH ′∞ : W → WH ′∞ = W H ′∞,

where pH ′∞ is the natural projection.
Given f3,v, f4,v ∈ �v ⊗�∨v such that ( f3,v, f4,v)v = 0, the quantity

Qv,dtv

(
f1,v ⊗ f2,v
f3,v ⊗ f4,v

)

:= Qv,(,)v,dtv ( f1,v, f2,v)

( f3,v, f4,v)v
(1.2.8)

is independent of the choice of ( , )v; it equals vol(O
×
E,v/O

×
F,v, dtv) if all the

data are unramified.
Fix a choice of measures dtv such that for dt =∏v dtv ,

vol(H′(Q)\H′(A), dt) := vol(H′(Q)\H′(A∞),
∏

v�∞ dtv)·vol(H ′∞, dt∞) = 1.
(1.2.9)

Then we define for f1 ∈ �H ′ , f2 ∈ �∨H ′ , f3 ∈ �, f4 ∈ �∨ such that
∏

v( f3,v, f4,v)v = 0:

Q

(
f1 ⊗ f2
f3 ⊗ f4

)

:=
∏

v

Qv,dtv

(
f1,v ⊗ f2,v
f3,v ⊗ f4,v

)

.

1.2.7 Global pairings and p-adic heights

Let V ι := V�∨ . Fix a Galois-equivariant pairing

V ⊗ V ι → L(1). (1.2.10)

Poincaré duality provides a canonical Galois- and Hecke- equivariant pairing
H1(Z K ,W )⊗H1(Z K ,W ∨)→ L(1). Via (1.2.3) and (1.2.10), it induces dual
pairings ( , )K

� : �K ⊗�∨,K → L for all K . Letting L K be the Hodge bundle
on ZK , the following pairing ((4.1.7) in the text) is well defined:

( , )� := lim
K

(dim W · deg(L K ))−1 · ( , )�K : �⊗�∨ → L .

On the other hand, if π is ordinary the restriction Vw of V to G Ew , w|p, is
reducible

0→ V+w → Vw → V−w → 0, (1.2.11)

and there is an analogous reduction for V ι such that V+w and V ι,+
w are exact

orthogonal of each other under (1.2.10). These data allow to define a height
pairing
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hV : H̃1
f (E, V )⊗ H̃1

f (E, V ι)→ L⊗̂�F (1.2.12)

on Nekovář’s Selmer groups as in Proposition 5.3.3. When W is trivial, the
representation V = VpAE ⊗ χ is a factor of the Tate module of an abelian
variety, and (under (n-exc)) the pairing hV coincides with all other p-adic
height pairings on abelian varieties defined in the literature: see [32] for a
review.

1.2.8 The formula

We can now state the p-adic Gross–Zagier formula for V .

Theorem B Let � = π ⊗ χ be an ordinary, locally distinguished, non-
exceptional automorphic representation of (G×H)′(A) over L. Let V = V�.

The image of P� lies in H1
f (E, V ), and for all f1 ∈ �H ′∞ , f2 ∈ �∨H ′∞ ,

f3 ∈ �, f4 ∈ �∨ such that ( f3, f4)� = 0, we have

hV (P�( f1), P�∨( f2))

( f3, f4)�
= ep∞(V(π,χ))

−1 ·L ′
p(V(π,χ), 0) · Q

(
f1 ⊗ f2
f3 ⊗ f4

)

,

where ep∞(V(π,χ)) ∈ L× is the p-interpolation factor for Lp(V(π,χ), s)
defined in (1.4.6) below.

When G = GL2/Q, V is crystalline at p, p splits in E , χ is unramified and
the fi are newforms, a version of this result was proved by Perrin-Riou [84]
when W is trivial, and by Nekovář [78] and Shnidman [96] when W has even
weights. The general case with trivial W was proved in [32,35].

Remark 1.2.2 Establishing Gross–Zagier formulas in this generality has
proven useful for arithmetic applications, such as those in [14,15,100] and
Theorem F below.

Explicit versions of the formula can be obtained by evaluating the functional
Q at well-chosen fi . This is a local problem, solved in [18].

Remark 1.2.3 For a variant of TheoremB that is valid in the exceptional case as
well, see Theorem Bord. That variant is often trivially 0 = 0 in the exceptional
case, but not always, and indeed Remark 7.3.4 sketches a new proof of the
Greenberg–Stevens theorem [43] based on it. For a further discussion going
beyond any trivial or non-trivial vanishing, see Remark 1.3.3 and Sect. 7.3.

1.3 The universal Heegner classes

We explain the interpolation of the Heegner cycles P� as� varies over a Hida
family for (G × H)′.
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Suppose from now on that Bp is split and fix an isomorphism GQp
∼=

ResFp/QpGL2, giving amodel of G (hence (G×H)′) overZ(p).We let NG,0 :=(
1 OF,p

1

)
⊂ G(Qp) and N0 be the image of NG,0 in (G × H)′p. Finally we

denote by Up the usual operator in the Iwahori–Hecke algebra of (G × H)′p,
and by Up∞ its product with (

( p
1

)
, 1) ∈ (G × H)′∞.

For a localisation M of a finite Zp-module M◦ on which the operator Up∞
acts (on the left or the right), we denote by Mord the image of M under Hida’s
ordinary projector

eord = lim Un!
p∞.

1.3.1 Hida families for (G × H)′

Pick an arbitrary (G × H)′(Zp)-stable lattice W ◦ ⊂ W , yieding a sub-local
system W ◦ ⊂ W . Then we define, for any K = K p K p with K p ⊃ N0,

M◦
W,K := (H1(Z K ,W ◦)⊗(W ◦,∨)N0)

ord, MW,K := M◦
W,K⊗OL L . (1.3.1)

Let K p ⊂ (G × H)′(Ap∞) be an open compact subgroup. Consider the
ordinary completed homology of Z K p

MK p := ( lim←−
K p⊃N0

M◦
K p K p

)⊗Zp Qp,

where M◦
K = (1.3.1) with W the trivial representation, and the limit is over

K such that K p ⊃ N0 (“level �1
1(p∞)”). By the work of Hida, MK p is a

finite flat module over a certain weight algebra � = �K p � Qp[�] ⊗Zp

Zp�T1, . . . , T2[F :Q]+1+δF,p�where� is a finite group and δF,p is the Leopoldt
defect of F .

Let Tsph,ord
K p,Qp

⊂ End �(MK p) be the image of the algebra generated by the
spherical Hecke operators and the operators Uv , v|p. The ‘ordinary eigenva-
riety’

E ord = E ord
K p := SpecTsph,ord

K p,Qp

contains a dense subset E ord,cl (more precisely a reduced 0-dimensional ind-
subscheme) of regular points, in bijection with the set of GQp -orbits of those
ordinary automorphic representations� of (G×H)′ overQp such that�K p =
0.

Let us fix an irreducible component

X ⊂ E ord
K p
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that is a Hida family for (G × H)′. We letX cl :=X ∩ E ord,cl.

Definition 1.3.1 A Hida family X for (G × H)′ is said to be locally distin-
guished (by H′) if it satisfies the conditions

(εv)
′ for every (equivalently,10 one) classical point z ∈ X (of weight satisfy-
ing (wt)), the Galois representation Vz attached to the representation �z
satisfies (εv)

for all v � p∞.

1.3.2 Sheaves on X

TheHida familyX comeswith a coherent sheafMK p corresponding to MK p ;
moreover in fact for each K p ′ ⊂ K p the module MK p ′ gives rise to a coherent
OX -module

MK p ′

withOX -linear Hecke- and Galois actions. Fix an arbitrary K p ′ ⊂ K p, ‘suffi-
ciently large’ at the places in�.11 Let S be a finite set of primes, not containing
those above p, such that all data G,H, K p ′ are unramified outside Sp. Let
G E,Sp be the Galois group of the maximal extension of E unramified outside
Sp. We prove in the text that the following statements are true up to replacing
X by an open subset containingX cl:

– there exists a locally free sheaf V of rank 2 with a G E,Sp-action, such
that for all z ∈ X cl, the representation V|z is associated with �z via the
Langlands correspondence;

– for each w|p there is an exact sequence of OX [G E,w]-modules

0→ V +w → Vw → V −w → 0, (1.3.2)

where the V ±w are line bundles over X , specialising to (1.2.11) at all
z ∈X cl;

– assume from now on that X is locally distinguished. There is a locally
free OX -module

�
K p ′,ord
H ′�

interpolating the spaces of (E×�/F×� )-coinvariants, K p ′-invariants of�ord
z

for z ∈X cl;

10 By [34, Corollary 5.3.3].
11 In the sense that for each z ∈X cl, v ∈ �, the finite-dimensional constituent �z,v of �z is
fixed by Kv .
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– we have a map of Hecke modules over OX

�
K p ′,ord
H ′�

→ Hom OX [G E,Sp](M
H ′�
K p ′,V ) (1.3.3)

whose specialisations overX cl are deduced by (1.2.3).

1.3.3 The universal Heegner class

We construct in the appendix (Proposition A.2.4) an operator γ ord
H ′ , that is the

key to the interpolation of Heegner cycles. It is a limit of of Hecke operators
at p∞, intertwining toric and ordinary parts:

H1(Z K p ,W )H ′ ·γ
ord
H ′−→ H1(Z K p ,W )ord = Mord

W,K p

�K p

H ′
γ ord

H ′ ·←− �K p,ord.

Consider the class

Pord
W,K p ′ := PW,K p ′ γ ord

H ′ ∈ H1(G E,Sp, MW,K p ′).

It is invariant under H′(Ap∞), hence:

– as K p ′ varies, it defines an H′(Ap∞)-invariant functional

Pord
� = PW ◦ γ ord

H ′ : �ord → H1(E, V�) (1.3.4)

and in fact, as we shall prove, valued in H1
f (E, V�).

– restricting (without loss of generality as we will see in a moment) to the
case where W is trivial, its localisation over X defines a global section

PK p ′ of H1(G E,Sp,M
H ′�
K p ′).

Using Nekovář’s theory of Selmer complexes we show that the universal

class PK p ′ is a section of a sheaf of Selmer groups H̃1
f (E,M

H ′�
K p ′), where

the subscript f signifies a local condition at p coming from (1.3.2), and for
Selmer groups we use E in place of G E,Sp for short. Then by (1.3.3) the class
PK p ′ defines a map of OX -modules

PK p ′ : �K p ′,ord
H ′�

→ H̃1
f (E,V ).

When G = GL2/Q, the value ofPK p ′ on a family of newforms is the class
originally defined by Howard in [58]. (The statement that the fibre ofPK p ′ at
all classical points lands in the Selmer group is in new even in the context of
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[58].) There, Howard asked whether his class interpolates Heegner cycles at
all classical points of X . The first part of the following theorem summarises
the results described above. The second part, whose proof is simple and direct,
provides an affirmative answer to the generalisation of Howard’s question.12

Theorem C LetX be a locally distinguished Hida family for (G×H)′. There
exist an open subset X ′ ⊂X containing X cl and a map

PK p ′ : �K p ′,ord
H ′�

→ H1
f (G E,Sp,V )

of sheaves over X ′, satisfying the following properties:

1. PK p ′ is invariant under the action of the away-from-p�-Hecke algebra
of H′;

2. for all z ∈ X cl corresponding to a representation �z satisfying (wt),

denote by Pord
�z,K p ′ the restriction of (1.3.4) to (�z)

K ′p,ord
H ′�

; then

PK p ′|z = Pord
�z,K p ′

under the natural map H1(G E,Sp,V )|z → H1(G E,Sp, V�z ).

An answer to Howard’s question in its original context was earlier given by
Castella [22,23] by an indirect method, under the assumption that p splits in
E .

Remark 1.3.2 It follows from the results of [26] that, under mild conditions,
the classP is non-torsion over X , cf. the discussion after [41, Theorem B].

Remark 1.3.3 Theorem C is far from being the last word onP: first, the class
P may vanish at some classical points; second, we can consider its specialisa-
tion in Nekovář’s Selmer group H̃1

f (E, V�z ), which equals H1
f (E, V�z )when

z is not exceptional but is larger otherwise. In Sect. 7.3, we address both prob-
lems by proposing a conjecture for the order of vanishing and leading term of
P at any classical point, generalising conjectures by Bertolini–Darmon. The
same Conjecture Pf will also give a prediction for the leading terms of uni-
versal toric periods on distinguished Hida families for coherent quaternionic
groups, discussed in Sect. 7.2, and in that case we will describe some new
evidence in higher rank coming from the ‘plectic’ world via [39].

12 The question in [58] was phrased in terms of the Abel–Jacobi classes of Heegner cycles in a
suitable Chow group, defined in that case in [78]; these classes are identical to the P�( f ) from
(1.2.4): see [78, § I.2].
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1.4 The universal formula

Wefirst recall the p-adic L-function constructed in [36], then state our formula
for the p-adic height of PK p ′ .

At times we refer to the main body of the paper for the precise definition of
some of the objects.

1.4.1 Dualities over Hida families

The space E ord is endowed with an involution ι corresponding to �z �→ �∨z .
Fix a locally distinguished Hida familyX ; then the constructions of Sect. 1.3
can be performed overX . Denoting by (−)ι the pullback under ι of an object
overX , we have dualities

V ⊗ V ι → OX (1) (1.4.1)

interpolating (1.2.10). These data, together with their deformation to a Hida
familyX  for G×H, allow to define a height pairing as in Proposition 5.3.4,

hV /V  : H̃1
f (E,V )⊗OX H̃1

f (E,V ι)→ N ∗
X /X 

∼= OX ⊗̂�F . (1.4.2)

As usual after possibly restricting to an open subset containingX cl, we con-
struct:

– pairings

(( , )) : �K p ′,ord
H ′�

⊗OX (�
K p ′,ord
H ′�

)ι → OX

interpolating the p∞-modification ( , )ord� := (4.1.8) of (, )�;
– O×X -module maps

Q : (�K p ′,ord
H ′�

⊗O×X �
K p ′,ord,ι
H ′�

)⊗O×X (�
K p ′,ord
H ′�

⊗O×X �
K p ′,ord,ι
H ′�

)×,−1 → KX

interpolating the p∞-modification Qord = (4.3.3) of Q. Here, KX is the
sheaf of fractions ofOX and the superscript ‘×,−1’ denotes the subgroup
of those f3 ⊗ f4 satisfying (( f3, f4)) = 0 and suggests the ‘denominator’
invariance of the pairing in the last two variables.

1.4.2 The p-adic L-function

Let E ,ord
0 := E ord

G0×H be the ordinary eigenvariety for G0 × H (see [50,51]);

for appropriate choices of tame levels, there is a map ιJL : E ord
G×H → E ord

G0×H,
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which is a closed immersion onto a union of irreducible components. Let
X 

0 := ιJL(X
) ⊂ E ,ord.We recall the p-adic L-function onX  constructed

in [36].
Let X ,cl

0 = ιJL(X
,cl) ⊂ X 

0 be the ind-scheme of classical points.

If (x, y) ∈ X ,cl
0 (C) is a geometric point corresponding to a closed point

(x0, y0) ∈X ,cl
0 together with an embedding ι : Qp(x0, y0) ↪→ C, we denote

πx = πι
x0, χy = χι

y0 , which are complex automorphic representations of

G0(A) and H(A) respectively. We then denote V 

(x0,y0)
:= V(πx0 ,χy0 )

and let

L (V 

(x,y), 0) =
∏

v

ιL (V 

(x,y),v, 0)

be the product (defined by analytic continuation) of all of the factors (1.2.7).
Recall that if W is a complex Weil–Deligne representation of the Weil

group of a local field Fv and ψv : Fv → C× is a nontrivial character, the
inverse Deligne–Langlands γ -factor is13

γ (W, ψv)
−1 = L(W )/ε(W, ψv)L(W ∗(1)), (1.4.3)

and ψE,w = ψv ◦ TrEw/Fv .
If π = πx0 , χ = χy0 are as just above (with weights w = wx0 , l = l y0),

let ad(Vπ,v)(1)++ := Hom (V−π,v, V+π,v). Let ψ =
∏

v ψv : F\AF → C× be
the standard additive character such that ψ∞(·) = e2π iTrF∞/R(·); let ψE =∏

w ψE,w = ψ ◦ TrAE/AF . For a place v|p of F , let dv be a generator of the
different ideal of Fv , and define

ev(V(πx ,χy)) = |dv|−1/2
∏

w|v γ (ιWD(V+π,v|G E,w
⊗ Vχ,w), ψE,w)

−1

γ (ιWD(ad(Vπ,v)(1))++, ψv)−1

·L (V(πι,χι),v)
−1, (1.4.4)

where ιWD is the functor from potentially semistable Galois representations
to complex Weil–Deligne representations of [38]. Finally, we define

e∞(V(πι,χι)) := i (w+l)[F :Q],

ep∞(V(πι,χι)) := e∞(V(πι,χι)) ·
∏

v|p
ev(V(πι,χι)).

(1.4.5)

13 The normalisations of L- and ε-factors are as in [98].

123



532 D. Disegni

At least if w + l = 0, these belong to ιQp(x0, y0), and we may define

ep∞(V(π,χ)) := ι−1ep∞(V(πι,χι)). (1.4.6)

The following is the main theorem of [36].

Theorem 1.4.1 There exists a meromorphic function

Lp(V
) ∈ K (X 

0 )

whose polar locus D does not intersect X cl
0 , uniquely characterised by the

following property.
For each z = (x, y) ∈X ,cl

0 (C)−D(C) corresponding to an automorphic
representation πx ⊗ χy of G0(A) × H(A) of weight (wx , l y) satisfying the
conditions

|ly,σ | < wx,σ , |wx + ly| ≤ wx,σ − |ly,σ | − 2 for all σ : F ↪→ C,

we have

Lp(V )(x, y) = ep∞(V(πx ,χy)
) ·L (V(πx ,χy), 0). (1.4.7)

1.4.3 Main theorem

Under the condition of local distinction ofX , the functionLp(V
) vanishes

identically onX0. LetN ∗
X0/X


0

= IX0/I
2
X0
⊗O

X

0

OX0
∼= OX0⊗̂�F be the

conormal sheaf and let

dLp(V ) := d
X0/X


0
Lp(V

) ∈ K (X0)⊗̂�F = K (X )⊗̂�F

be the image of Lp(V
).

Theorem D Let X be a locally distinguished Hida family for (G × H)′.
Abbreviate �(ι) := �

K p ′,ord,(ι)
H ′�

, O := OX , K := KX .

Then there is an open subset X ′ ⊂X containing X cl such that all of the
above constructions can be made over X ′, and

hV /V (P( f1),P ι( f2))

(( f3, f4))
= dLp(V

) ·Q
(

f1 ⊗ f2
f3 ⊗ f4

)

,

an equality of K ⊗̂Zp�F -valued O-linear functionals on (� ⊗O �ι) ⊗O×
(�⊗O �ι)×,−1.
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The formula of the theorem in fact also holds at exceptional points z ∈X cl,
see Theorem Bord.

1.5 Applications

We turn to some arithmetic applications of the main theorems (in addition to
Theorem A).

1.5.1 On the Iwasawa Main Conjecture for derivatives

We use the notation introduced after Theorem A.

Theorem E Let X be a locally distinguished Hida family for (G×H)′, sat-
isfying the further conditions of [41, Theorem B.(iii)]. Let X ′ ⊂ X be the
open subset of Theorem D; up to shrinking X ′ we may assume it is a regular
scheme. Let R ⊂ OX ′ ⊗̂�F be the regulator of the height pairing (1.4.2) over
X ′. Then

dLp(V ) �OX ′ R · charOX ′ (H̃2
f (E,V )OX ′ -tors).

The proof, based on Theorem D and [41, Theorem B.(iii)], is virtually
identical to that of [32, Theorem D], based on Theorem C.4 ibid. and [41,
Theorem B.(ii)].

1.5.2 Generic non-vanishing of p-adic heights for self-dual CM motives

It is conjectured that cyclotomic p-adic height pairings are non-vanishing (and
even non-degenerate). Results in this direction have been quite rare. The next
theorem generalises a variant of the main theorem of [14], to which we refer
for a discussion of the background.

Consider the set of locally algebraic Hecke characters

χ : E×\E×A → Qp(χ)×.

satisfying the special self-duality condition

χ|F×A = η · χcyc,F . (1.5.1)

This is precisely the set of classical points of the closed subspace

E ord,sd
H ⊂ E ord

H :=
⋃

V p⊂H(Ap)

E ord
H,V p
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cut out by the condition (1.5.1) on continuous characters. The space E ord,sd
H

is a torsor for E ord
H′ ; in particular it is smooth of dimension [F : Q]. Let

Y ⊂ E ord,sd
H be an irreducible component; then there is a sign ε ∈ {±1} such

that for all x ∈ Y cl, ε(1, χ) = ε; we then say that Y cl has type ε.
Denote by h−E = hE/hF the relative class number of E/F and by DF the

absolute discriminant of F .

Theorem F Let Y ⊂ E ord,sd
H be an irreducible component of type −1. Sup-

pose that all primes v|p of F split in E, the extension E/F is ramified, and
p � 2DF h−E .

Then, there exists a non-empty open subset Y ′ ⊂ Y such that for all
y ∈ Y cl ∩Y ′, the Selmer group H1

f (E, χy) is nonzero and the p-adic height
pairing

h : H1
f (E, χy)⊗ H1

f (E, χ−1y (1))→ Qp(y)⊗̂�F

is non-vanishing.

1.5.3 Non-vanishing of universal Heegner classes along some classical
Hida families

Part 3 of the following theorem is also a contribution to the non-vanishing
conjecture for p-adic heights. Parts 1 and 2 provide, to the best of the author’s
knowledge, thefirst piece of theoretical evidence towards conjectures ofGreen-
berg [44] and Howard [58].

Theorem G Let X0 be a Hida family for PGL2/Q, and let X 
0 be the Hida

family for GL2/Q containing X0. Denote by V0, V 
0 the associated rank-2

representations of GQ.
Suppose that X0 contains a point corresponding to an elliptic curve A with

split multiplicative reduction at p, satisfying L(A, 1) = 0. Then:

1. a universal Heegner class P0 is nonvanishing along X0;
2. the Selmer group H̃1

f (Q,V0) has generic rank 1, generated by P0;
3. the p-adic height pairing h

V0/V

0

is non-vanishing.

1.6 Outline of the proofs

The basic strategy to prove the main results is very simple. When W is trivial,
Theorem B was proved in [32,35] under some technical assumptions. As the
set of points of trivial weight in X cl satisfying those assumptions is still
dense in X , this suffices to deduce Theorem D once its terms are defined;
by a multiplicity-one argument and an explicit local computation, this in turn
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Fig. 1 An illustration of the proof of Theorems B and D. Each of the (infinitely many)
floors corresponds to a representation � as in Theorem B, each apartment to a quadruple
f = ( f1, f2, f3, f4), and the building to a Hida family. A light being on indicates that the
corresponding Gross–Zagier formula is proven. On ‘most’ floors corresponding to a� of trivial
weight, all lights are on by [32,35]. In this paper, we construct the lift corresponding to the
formula of Theorem D, with doors (interpolation statements) onto special apartments in each
floor (the formulas of Theorem Bord in Sect. 7.1.1, equivalent to Theorem B for certain special
quadruples f). As soon as the lights in a dense set of floors in the building are on, the light in the
lift is on; this allows to turn on the light in all the special apartments. Finally, themultiplicity-one
principle allows to propagate the electricity among different apartments on the same floor

implies Theorem B for all W . Much of this work is therefore an exercise in
p-adic interpolation to construct the objects of Sects. 1.3–1.4; the table of
contents, and the internal references given so far, should suffice to guide the
reader through the paper.
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The proof of Theorem C is completed in Sect. 6.4.3 and the proof of Theo-
rems B, D is completed in Sect. 7.1, where we also prove Theorem F. Theorem
G is proved at the end of Sect. 7.3 using a known case of the conjecture
made there. Constructions and calculations of a local nature are gathered in
“Appendix A”.

We highlight some of the key tools we use (many have already been men-
tioned):

– Nekovář’s theory of Selmer complexes and p-adic heights ([81], see also
[103, Appendix C]), applied to Hida theory;

– the local Langlands correspondence in families as described in [34], that
is necessary for the interpolation of the terms Qv;

– Emerton’s point of view [37] on p-adic cohomological automorphic rep-
resentations as having a component at ‘infinity’ that is an algebraic
representation of the relevant group; in our context, this further allows
to properly consider ‘incoherent’ reductive groups;

– the multiplicity-one result for H′(A)-invariant functionals;
– the definition and study of semi-local operators at p∞, as the key to tran-
sitioning between ordinary and anti-ordinary or toric parts of a module;

– the explicit evaluation of certain local toric periods in terms of gamma
factors.

We view the framework introduced in the appendix as the main technical
novelty contributed by the present work, and we hope that the underlying
approach will prove useful in many other contexts.14

Further directions

We have not paid attention to the integral aspects; doing so may also remove
the need to restrict to open subsets of X at various points, e.g. by restricting
to newforms or using the local Langlands correspondence in integral families
of Emerton, Helm, and Moss (see references in [34]). (However, this would
require imposing some residual irreducibility assumptions for the representa-
tion Vv .) This may lead to non-vanishing results for higher-weight Heegner
cycles, automorphic toric periods, and L-values: an example we have in mind
is the anticyclotomic non-vanishing result of [25], based on a construction not
unlike that of Theorem H.

In a different direction, all of the constructions of this paper could be gener-
alised, with work, to the context of eigenvarieties; the Gross–Zagier formulas
should also extend to that context.

14 Cf. the work [67] discussed in Sect. 1.7 below.
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1.7 Related contemporary work

After a first version of this paper was made publicly available, the following
partly related works have appeared.

– In [63], the authors construct universal Heegner classes for Coleman fam-
ilies of elliptic modular forms (with classical restrictions); then they prove
that these classes interpolate the images of Heegner cycles, by a method
not dissimilar to that of the present work. Similar results are also indepen-
dently proved in [83] in the ordinary case, and (by a different method) in
[16] in the case where p splits in the field of complex multiplications.

– In [17], the authors use [16,63] and a strategy similar to the one of the
present paper to prove the p-adic Gross–Zagier formula for critical-slope
refinements of ellipticmodular forms, conditionally onwork in preparation
of Kobayashi on such formula for small-slope refinements. Their idea is
to deduce, from the latter, a p-adic Gross–Zagier formula in a Coleman
family, within which the objects considered by Kobayashi form a dense
subset; then specialise the formula to other classical points.

– In [67], Loeffler gives amethod to construct p-adic families of cohomology
classes attached to inclusions of reductive groupsH1 ⊂ H2 such thatH2/H1
is a spherical variety. His local-at-p construction vastly generalises the one
of Proposition A.2.4. A difference is that in [67], the weight variation is not
addressed (accordingly, that construction does not use the ‘infinite’ place).

1.8 Notation

Throughout the paper we use the following notation unless otherwise noted.

– A is the ring of adèles of Q;
– the fields F and E are as in the introduction, η = ηE/F : F×A /F× → {±1}
is the associated quadratic character, and we denote by E a fixed algebraic
closure of E ;

– we denote by G E the absolute Galois group of a field E ; if E is a number
field and S is a finite set of places, we denote by G E,S the Galois group of
the maximal extension of E unramified outside S∞;

– for a place w of a number field E , we denote by�w a fixed uniformiser at
w, and by qw the cardinality of the residue field;

– the class field theory isomorphism is normalised by sending uniformisers
to geometric Frobenii; for E a number field (respectively a local field), we
will then identify characters ofG E with characters of E×A/E× (respectively
E×) without further comment;

– let μ ⊂ Q×p be the subgroup of roots of unity, and let 〈·〉p : Q×p → 1 +
2pZp ⊂ Q×p be the unique continuous character such that x p〈x〉−1p has
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values in μ. The p-adic cyclotomic character of Q is

χcyc,Q(x) := |x |A∞〈x p〉p,

a character on A∞,×/Q×. If E is a number field, the p-adic cyclotomic
character of E is the character

χcyc,E = χcyc,Q ◦ NE/Q : E×A∞/E× → Q×p . (1.8.1)

2 Automorphic and Galois representations

In this section we define the basic set up regarding ordinary automorphic
representations for our groups, and the associated Galois representations.

2.1 Groups

We introduce our notation on groups and related objects.

2.1.1 Incoherent reductive groups

Let F be a global field. For the purposes of this discussion, a ‘coherent’ reduc-
tive group over F is just a reductive algebraic group in the usual sense. The
following notion is probably appropriate only in the context of orthogonal or
unitary groups, cf. [47]; we do not explicitly restrict to that case just for the
sake of brevity.

An F-incoherent reductive group G over F is a collection of reductive
groups Gv/Fv , for v a place of F , such that for each place w of F there is
a coherent reductive group G(w)/F that is w-nearby to G in the following
sense: for each place v = w, G(w)×F Fv

∼= Gv , and the groups G(w)×F Fw

and Gw are non-isomorphic inner forms of each other.
Let F/F0 be a finite extension of global fields. An F-incoherent reduc-

tive group G over F0 is a collection of reductive groups Gv0/F0,v0 , indexed
by the places v0 of F0, satisfying the following. For each v0, we may write
Gv0 = ResFv0/F0,v0

GF,v0 :=
∏

v|v0 ResFv/F0,v0
G F,v for a collection of reduc-

tive groups G F,v/Fv that forms an F-incoherent algebraic group GF over F .
In this situation, wewrite G = ResF/F0GF . Wewrite just ‘incoherent’ when F
is unimportant or understood from context. We also write G(Fv0) := Gv0(Fv0)

for short.
By definition, for all but finitely many v0, the group Gv0 is unramified. In

particular, if S is a finite set of places of F0, it makes sense to consider the
restricted tensor product G(AS) :=∏′v0 /∈S G(Fv0).
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It will be convenient to consider a p-adic variant in the case where F = Q
and GF,∞ is anisotropic modulo its centre (so that all its admissible represen-
tations are finite-dimensional). In this case we redefine, for any finite set of
finite places S,

G(AS) := G(AS∞)× G∞,

where G∞ := Gp(Qp) with the Zariski topology.
The main example of interest to us is the following: F is our totally real

number field, F0 = Q, and GFv = B×v . The conditions are satisfied since, for
each placew, there is a quaternion algebra B(w) over F such thatBv

∼= B(w)v
if and only if w = v. Other examples are obtained as follows: if G is an
incoherent group and H is a coherent group, the product G×H (whose precise
definition is left to the reader) is an incoherent group.

2.1.2 Hecke algebras

Let G be a coherent or incoherent reductive group over Q, A a ring.
If S is a finite set of primes of Q different from p, let

HG,A := C∞c (G(Ap∞), A), H S
G := C∞c (G(ASp∞), A)

be the Hecke algebras. If U ⊂ G(A∞) is a compact open subgroup we let
HG,U,A andH S

G,U,A be the respective subalgebras of functions that are bi-U -
invariant. If S is U -spherical in the sense that Uv is maximal for all v /∈ S, we
say thatH S

G,U is a spherical Hecke algebra.

If M is an A-module with a smooth A-module action by H = HG, H S
G ,

HG,U , or H S
G,U , we let H (M) ⊂ End A(M) by the image of H . We define

the spherical Hecke algebra acting on M to be

H
sph
G := lim←−

S,U

H S
G,U (M) ⊂ End A(M)

if the limit, taken over pairs (S,U ) such that S is U -spherical, stabilises. It is
equipped with an involution ι coming from the involution on G∗(A).

2.1.3 Subgroups of G∗

We restrict, for the rest of this subsection, to the groups in (1.2.1), denoted
collectively by G∗. Assuming that Bp is split, we fix an identification G :=
G(Qp) ∼= GL2(Fp) for the rest of the paper, by which we obtain Zp-models
G∗/Zp for all of the groups G∗/Qp .
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Let NG ⊂ G(Qp) ∼= GL2(Fp) be the subgroup of unipotent matrices. Let
NH = {1} ⊂ H(Qp), and for ? = ∅ (respectively ? = ′), let N(G×H)? :=
NG × {1} (respectively its image in (G × H)′(Qp)). Finally, let NG∗,0 :=
NG∗ ∩ G∗/Zp(Zp).
Let TG∗ ⊂ G∗(Qp) be the maximal torus consisting of diagonal matrices

whenG∗ = G and compatible with this choicewhenG∗ is any other group. Let
TG,0 := TG∗ ∩G∗(Zp) the integral subgroup. Let T+G∗ ⊂ TG∗ be the normaliser

of NG∗,0 in TG∗ , so that T+G :=
∏

v|p T+G,v with

T+G,v := {
( t1

t2

) : v(t1) ≥ v(t2)}.

2.1.4 Involutions

We denote by ι the involutions on H
sph
G induced by g �→ gT,−1, and on H

induced by h �→ h−1.
We also denote by ι the involution of TG∗ deduced by the involutions

t �→ t ι := tν(t)−1, (2.1.1)

where ν denotes the reduced norm if G∗ = G, the norm NE/F if G = H. It
preserves the sub-semigroups T+G∗ .

2.1.5 Congruence subgroups

Let G = GL2(Fp), H = E×p , H ′ = E×p /F×p , (G × H)′ := (G × H)/F×p
where F×p is identified with the centre of G × H .

For r ∈ N, define the compact subgroups U (� r
v ) ⊂ U 1

1 (�
r
v ) ⊂ GL2(Fv)

by

U1
1 (�

r
v ) := {

(
a b
c d

) ∈ GL2(OF,v) : a − 1 ≡ d − 1 ≡ c ≡ 0 (mod � r
v )},

U (� r
v ) := {

(
a b
c d

) ∈ GL2(OF,v) : a − 1 ≡ d − 1 ≡ b ≡ c ≡ 0 (mod � r
v )}.

For each place v|p of F , we fix εv ∈ F×v such that Ev = Fv(
√
εv); for

technical reasons it will be convenient to assume that v(εv) ≥ 1.
For r = (rv) ∈ N{v|p}, we define the compact open subgroups VF,v,rv :=

1+�
rv
v OF,v ⊂ F×v and

Vp,r =
∏

v|p
Vv,rv ⊂ H =

∏

v|p
E×v , Up,r =

∏

v|p
Uv,rv ⊂ G =

∏

v|p
GL2(Fv)
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as follows:

Vv,rv :=
{

VF,v,rv (1+� rvOE,w) if v splits in E,

VF,v,rv (1+√εv�
rvOE,w) if v is nonsplit in E,

Uv,rv := U 1
1 (�

rv
v ).

We also define V ′p,r := Vp,r F×p /F×p ⊂ H ′, and

K p,r , K p(pr ) ⊂ (G × H)′

to be the images of Up,r × Vp,r , Up(pr )× Vp,r respectively.
We also denote

TG∗,r := TG∗ ∩U∗,p(pr ).

If pOF,p = ∏
v �

ev
v OF,v , we associate to an integer r the tuple r :=

(evr)v|p. Denoting by U∗ any of the symbols U, V, K , we then let U∗,p,r :=
U∗,p,r , U∗,p(pr ) := U∗,p(pr ).

2.2 Algebraic representations

We set up some notation for algebraic representations of a (coherent or inco-
herent) reductive group G over Q, then discuss in some more detail the
situation for the groups of interest to us. Let L be an extension of Qp, W
a finite-dimensional irreducible algebraic (left) representation of G over L .
Throughout the paper, we tacitly identify left and right algebraic representa-
tions of G via g.w = w.g−1.

2.2.1 Highest-weight character

We suppose that G = G∗ is one of the groups of Sect. 2.1. Let TG∗ ⊂ G∗
be the fixed torus and let NG∗ ⊂ G∗ be the fixed unipotent subgroup. If W is
an irreducible left (respectively right) representation of G∗, we denote by σW
the character by which TG∗ acts on the line of highest-weight vectors W NG∗
(respectively highest-weight covectors WNG∗ ).

The highest-weight character of W is related to that of its dual by

σW∨(t) = σW (t ι), (2.2.1)

where ι is the involution (2.1.1).
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2.2.2 Quaternionic special case

Suppose that G(A∞) is the group of units of a quaternion algebraB∞ overA∞.
Let L be an extension of Qp splitting F and Bp. A (cohomological) weight
for G over L is a list w = (w; (wσ )τ : F↪→L) of [F : Q] + 1 integers of the
same parity such that wσ ≥ 2 for all σ : F ↪→ L . Denote by Stdσ ∼= (L⊕2)∗
(respectively, Nmσ

∼= L) the standard (respectively, reduced norm) represen-
tation of G(Qp) = B×p factoring through (Bp ⊗Fp,σ L)× ∼= GL2(Fp ⊗σ L).
We associate to the weight w the algebraic representation

WG,w :=
⊗

σ∈Hom (F,L)

Symwσ−2Stdσ ⊗ Nm(w−wσ+2)/2
σ (2.2.2)

of G/Qp , whose dual is WG,w∨ with w∨ = (−w; (wσ )).
Suppose for a moment that L/Qp is Galois, then Gal(L/Qp) acts on the set

of all weights w and, letting L(w) ⊂ L be the fixed field of the stabiliser of
w, the representation WG,w descends to a representation over L(w). It is then
convenient to use the following terminology: ifW is an algebraic representation
of G over L andw is a cohomological weight over a finite extension L ′/L , we
say that W is of weight w (with respect to L ↪→ L ′) if W ⊗L L ′ ∼= WG,w.

Explicitly, WG,w may be described as the space of tuples p = (pσ )σ : F↪→L
such that pσ ∈ L[xσ , yσ ] is a homogeneous polynomial of degree wσ − 2,
with action on each σ -component by

g.pσ (x, y) = det(σg)
w−wσ+2

2 · pσ ((x, y)σg). (2.2.3)

The representation WG,w admits a natural OL -lattice, stable under the action
of a maximal order in G(Qp),

W ∗,◦
G,w ⊂ W ∗

G,w (2.2.4)

consisting of tuples of polynomials with coefficients in OL .
If W = WG,w, we have σW := ⊗vσW,v : Tv → L× with

σW,v :
( t1

t2

) �→
∏

σ : Fv↪→L

σ(t1)
w+wσ−2

2 σ(t2)
w−wσ+2

2 . (2.2.5)

By abuse of notation we still denote by σW = ⊗σW,v the algebraic character
of F×p defined by

σW,v(x) := σw,v

(( x
1
))

.
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2.2.3 Toric special case

Let L be a finite extension of Qp splitting E . A cohomological weight for H
is a list l := (l, (lσ )σ : F↪→L) of [F : Q] + 1 integers of the same parity. For
each σ : F ↪→ L , fix an arbitrary extension σ ′ of σ to E (this choice will only
intervene in the numerical labelling of representations of H). We let

WH,l :=
⊗

σ∈Hom (F,L)

σ ′lσ ⊗ σ ◦ Nm
l−lσ
2

E p/Fp
, (2.2.6)

as a 1-dimensional vector space over L with action by H(Qp) = E×p . After
choosing an identification of this space with L , it admits a lattice W ◦

H,l , stable

under the action of O×E,p. IfW is an algebraic representation of H over L and
l is a cohomological weight over a finite extension L ′/L , we say that W is of
weight l (with respect to L ↪→ L ′) if W ⊗L L ′ ∼= WH,l .

2.3 Shimura varieties and local systems

We again write G∗ to denote any of the groups (1.2.1).

2.3.1 Shimura varieties

For τ an infinite place of F , let Gτ = ResF/QGF (τ ) be the τ -nearby group as
in Sect. 2.1.1. Consider the Shimura datum (Gτ , {hG,τ }), where hG,τ : S :=
ResC/RGm → GR the Hodge cocharacter of [19, §0.1]. Let hH : S→ HR be
the unique cocharacter such that eR◦hH = hG. By products and projectionswe
deduceHodge cocharacters hG∗,τ , hence Shimura data (G∗,τ , hG∗,τ ), for any of
the groups (1.2.1); from hH,τ we also obtain an extension of τ to an embedding
τ : E ↪→ C. Then we obtain towers of Shimura varieties X∗,τ /τ E∗, where
the reflex field E∗ := E unless G∗ = G, in which case E∗ = F . These data
descend to E∗: there are towers

X∗/E∗

such that X∗ ×Spec E∗ Spec τ E∗ = X∗,τ , see [107, § 3.1]. Throughout this
paper, we will also use the notation X∗ := X ×Spec E∗ Spec E∗.

We will use also the specific names (1.2.2) for those varieties; an explicit
description of some of them is as follows:

XU,τ (C) ∼= B(τ )×\h± × B∞×/U ∪ {cusps}, YV (Eab) ∼= E×\E×A∞/V,

ZK
∼= XU × YV /�U,V ,
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�U,V := F×A∞/F× · ((U ∩ F×A∞) ∩ (V ∩ F×A∞)) (2.3.1)

if K ⊂ (G × H)′(A∞) is the image of U × V .

2.3.2 Automorphic local systems

Let W be an irreducible cohomological right algebraic representation of G∗
over L , let U∗ ⊂ G∗(A∞) be a sufficiently small (in the sense of Lemma 2.3.1
below) compact open subgroup, let W ◦ ⊂ W be a U∗,p-stable OL -lattice, and
let U∗,p,n ⊂ U∗,p be a subgroup acting trivially on W ◦/pnW ◦.

Lemma 2.3.1 If U p∗ is sufficiently small (a condition independent of n), then:

1. The quotient Gn := U∗,p/U∗,p,n(ZG∗(Q)∩U∗)p acts freely on XU p∗ U∗,p,n
,

hence X∗,U p∗ U∗,p,n
→ X∗,U∗ is an étale cover with Galois group G∗,n.

2. The group ZG∗(Q) ∩U∗ acts trivially on W ◦.

Proof The first assertion is [19, Lemme 1.4.1.1] whenG∗ = G (other cases are
similar or easier). For the second assertion, we may reduce to the case G∗ = G
orG∗ = H,with centre ZG∗ = ResE∗/QGm . For anyU∗, the groupZG∗(Q)∩U∗
has has finite index in O×E∗ , therefore for sufficiently small U p∗ it is contained

in the finite-index subgroup O×,1
F := {z ∈ O×F : NF/Q(z) = 1} ⊂ O×E∗ . But

since W is of cohomological weight, the group O×,1
F acts trivially. #�

Assume first that X∗ is compact. Then, by the lemma,

(X∗,U p∗ U∗,p,n
×W ◦/pnW ◦)/G∗,n (2.3.2)

defines a locally constant étale OL/pnOL -module W nover X∗,U∗ . We let

W ◦ := (lim←−
n

W n),

an OL -local system on X∗,U∗ , and consider

W := W ◦ ⊗OL L .

The L-local system W is compatible with pullback in the tower {X∗,U∗} and,
up to isomorphism, independent of the choice of lattice W ◦. When X∗ is the
compactification of a noncompact Shimura variety X ′∗ (essentially only when
G = GL2/Q), we perform the above construction on X ′∗ and then push the
resulting sheaf forward to X∗.
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2.4 Ordinary automorphic representations

Keep the assumption that G∗ is one of the groups in (1.2.1).

2.4.1 p-adic automorphic representations

Let L be an extension of Qp, W a finite-dimensional irreducible algebraic left
representation of G∗,∞ = G∗(Qp) over L .

Definition 2.4.1 A (regular algebraic cuspidal) automorphic representation
of G∗(A) over L of weight W is an irreducible admissible locally algebraic
representation π of

G∗(A) := G(A∞)× G∗,∞

that can be factored as

π = π∞ ⊗W

such that G∗(A∞) acts smoothly onπ∞, G∗,∞ acts algebraically, andπ occurs
as a subrepresentation of

H•(X∗,W ∨) = lim−→
U⊂G∗(A∞)

H•(X∗,U ,W ∨)⊗W,

where X∗ is the compactified Shimura variety attached to G∗, and W ∨ is the
local system on X attached to W∨.

In the quaternionic or toric case, we say that π is of weight w (a cohomo-
logical weight for G over some finite extension L ′/L) if W is of weight w as
defined after (2.2.2) (respectively (2.2.6)).15

We will use subscripts p, respectively ∞, respectively p∞, to denote an
element of G(A) in the copy of G(Qp) contained in G(A∞), respectively in
the ‘algebraic copy’ G∞, respectively the diagonal copy in the product of the
previous two.

Remark 2.4.2 The previous definition follows the work of Emerton [37]. It
slightly departs from it in that in [37], one restricts to considering the action of
the product of G(Ap∞) and the diagonal copy of G(Qp). While this is indeed
the part that acts integrally, we do have use for the non-integral action of each
individual copy (cf. Sect. A.2). The corresponding local notions are introduced
in Definition A.1.1.

15 These notions depend of course on L ↪→ L ′; nevertheless they will only be used to impose
conditions on the weights that are invariant under the Galois group of L .
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2.4.2 Quaternionic special case and ordinarity

Suppose that G∗ = G and Bp is split, or that G∗ = G0 = ResF/QGL2 for a
totally real field F . An automorphic representation π over L of weight WG∗,w
is also said to be of weight w.

Definition 2.4.3 We say that an automorphic representation π of G∗(A) over
L of classical weight W = WG∗,w is ordinary at v with unit character α◦v if
there exists a smooth character αv of Tv such that πv is the unique irreducible
subrepresentation of Ind(αv · (| |v, | |−1v )) and the locally algebraic character

α◦v := αvσW,v : Tv → L× (2.4.1)

takes values in O×L .16

(It follows from the parity conditions on the weights that the indicated
subrepresentation is always infinite-dimensional; moreover if πv is ordinary
then the character αv of Tv is uniquely determined by πv.) We say that π is
ordinary if it is ordinary at all v|p.

Let v|p be a prime of F and �v a uniformiser. For t ∈ T+v or x ∈ F×v with
v(x) ≥ 0, define the double coset operators

Ut := [U 1
1 (�

r
v ) t U 1

1 (�
r
v )v],

Ux := U( x
1
),

Uv := U�v, (2.4.2)

which act on the N0-fixed vectors of any locally algebraic representation of
GL2(Fv) (see also Sect. A.1 for further details). Then π is ordinary at v with
unit character α◦v if and only if, for sufficiently large r , the space of U 1

1 (�
r
v )-

fixed vectors in the locally algebraic representation

πv ⊗L W

ofGL2(Fv) contains a (necessarily unique) line of eigenvectors for the diagonal
action of the operators Ux , x ∈ F×v , with eigenvalue α◦(x). Specifically, if
wv ∈ πv is a Ux -eigenvector of eigenvalue αv(�v), then such line is

πord
v := Lwv ⊗W Nv ,

where W Nv is the line of highest-weight vectors of W .

16 This notion agrees with the notion of π being nearly ordinary as defined in the work of Hida
(e.g. [50]).
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If π is an automorphic representation that is ordinary at all v|p, extend α◦v
to a character of T+v by the formula (2.4.1), and let α◦ = ∏v|p α◦v : T+ =
∏

T+v → L×; then we define

πord := π p∞ ⊗⊗v|pπord
v (2.4.3)

as a smooth representation of G(Ap∞) and a locally algebraic representation
of T+ on which T+ acts by Ut �→ α◦v(t).

2.4.3 Toric special case

Suppose now that E is a CM field and that G∗ = H := ResE/QGm . Then a
p-adic automorphic representation of H of weight WH,l is simply the space of
scalar multiples of a locally algebraic character χ : E×\E×A∞ → L× whose
restriction to a sufficiently small open subgroup of E×p coincides with the
character of WH,l .

2.4.4 Convention

We use the convention that all automorphic representations of H(A∞) are
ordinary, and that a representation π ⊗ χ of G × H of cohomological weight
is cuspidal and ordinary if π and χ are.

2.5 Galois representations

Let G be as in Sect. 2.4.2.

2.5.1 Galois representations attached to automorphic representations of
G(A)

The following notation is used throughout the paper: if V is a representation
of G F and v is a prime of F , we denote by Vv the restriction of V to a
decomposition group at v.

Theorem 2.5.1 (Ohta, Carayol, Saito). Let L be a finite extension of Qp, let
W be an irreducible algebraic representation of G over L, and let π be an
automorphic representation of G(A∞) of weight W over L. Let S be a finite
set of non-archimedean places of F containing all the places at which π is
ramified and the places above p. There exists a 2-dimensional L-vector space
Vπ and an absolutely irreducible Galois representation

ρ = ρπ : G F,S → Aut(Vπ)
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uniquely determined by the property that for every finite place v /∈ S of F,

Tr(ρ(Frv)) = q−1v λπv (Tv), (2.5.1)

where Frv is a geometric Frobenius, Tv ∈H
sph
GL2(Fv)

is the element correspond-

ing to the double class K0(1)
(
�v

1

)
K0(1), and λπv : H sph

GL2(Fv)
→ L is the

character giving the action on π
K0(1)
v .

For a prime v of F, let ρv be the restriction of ρ to a decomposition group
at v.

1. The representation ρv is unramified for almost all v and potentially
semistable for v|p. For every finite place v, the Weil–Deligne represen-
tation rv attached to ρv is associated with πv via the local Langlands
correspondence normalised “à la Hecke” [29, § 3.2]:

L(s, rv) = L(s + 1/2, πv).

2. For every finite place v, rv satisfies the weight-monodromy conjecture: its
monodromy filtration is pure of weight w− 1. The monodromy filtration is
trivial if and only if πv is not a special representation.

3. For any archimedean place v, the representation ρv is odd, that is if cv ∈
G Fv is the complex conjugation, det ρv(cv) = −1.

4. If W = WG,w with w = (w; (wσ )σ : F↪→L), then for each v|p and
σ : Fv ↪→ L,
– the σ -Hodge–Tate weights17 of ρv ⊗L L are

−1− w + wσ − 2

2
, −w − wσ + 2

2
.

– if π is ordinary at v in the sense of Definition 2.4.3, then there is a
unique exact sequence in the category of G F,v-representations

0→ V+π,v → Vπ,v → V−π,v → 0, (2.5.2)

such that V±π,v is 1-dimensional.

17 If V is a Hodge–Tate representation of G Fv
over L and σ : Fv ↪→ L , the σ -Hodge–Tate

weights of V are the degrees in which the graded module

(⊕nCv(n)⊗Fv,σ
V )G Fv

is nonzero; here Cv is a completion of Fv and, in the tensor product, σ is extended to an
isomorphism Fv → L . In particular our convention is that the Hodge–Tate weight of the
cyclotomic character of Qp is −1.
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The Galois group G F,v acts on V+π,v by the character

α◦π,vχcyc,v : F×v → L×,

where α◦π,v is (2.4.1).

Proof The construction and statements 1 and 2 for v|p are the main results
of Carayol in [19]. Statements 1 and 2 for v|p were proved by Saito [91,
Theorems 2.2, 2.4]. For the last two statements, we refer to [101, Proposition
6.7] and references therein; note that in comparison with the notation of [101],
our ρ equals their ρ f (1), and our (w;w) is their (w − 2, k). #�

2.5.2 Realisation in the homology of Shimura varieties

Let G∗ be again one of the groups of (1.2.1). We introduce a new piece of
notation. Let

G F,E := G F × G E ,

and similarly for afinite set of places S,G F,E,S := G F,S×G E,S . IfG∗ = G×H
or (G × H)′, we redefine

G E∗ := G F,E .

(This is an abuse of notation, as we have not redefined E∗.) This product of
Galois groups acts on the homology X∗: this is clear by the Künneth formula
in the case of G×H, and follows from that case and the Galois-invariance of
the quotient map for (G × H)′.

The following is the main result of [20] in the special case G∗ = G; the
general case may be deduced from the special case together with the case
G∗ = H (that is class field theory).

Proposition 2.5.2 (Carayol). Let U∗ ⊂ G∗(A∞) be a compact open subgroup,
W be an irreducible right algebraic representation of G∗ over L, W the local
system on X∗,U∗ associated with W . Let L ′ be a sufficiently large finite Galois
extension of L.

Then there is an isomorphism of HG∗,U∗,L [G E∗,S]-modules

Hd(X∗,U∗,W )⊗L L ′ ∼=
⊕

π

π∨,U∗ ⊗ Vπ , (2.5.3)

equivariant for the action of Gal(L ′/L), where π runs through all equivalence
classes of automorphic representations of G∗(A) of weight W over L ′.
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3 Sheaves on Hida families

We construct the universal Hecke- and Galois- modules over Hida families for
(G×H)′ and prove a local-global compatibility result. We claim no originality
for the results of Sects. 3.1–3.2.1.

3.1 Hida theory

We let G∗ denote any of the groups G, H, (G × H), (G × H)′, and let r ∈
N{v|p}. We will use the notation from Sect. 2.1. For U p∗ ⊂ G(Ap∞) we let
X∗,U p∗ ,r := X∗,U p∗ U∗,r be the corresponding Shimura variety.

When M is a Zp-module with action by T+G∗ , arising as limit of ordinary
parts of p-adic coadmissible G∗(Qp)× G∗,∞-modules (see Definition A.1.2
and Sect. A.1.3), we denote this action by

t �→ Ut

and adopt the notation of (2.4.2).

3.1.1 Weight spaces

Let U p∗ ⊂ G∗(Ap∞) be a compact open subgroup, and define ZG∗,U p∗ ⊂
ZG(Q) by

ZG,U p := ZG(Q) ∩U pTG,0,

ZH,V p := H(Q) ∩ V pTH,0 = O×E ∩ V p,

Z(G×H)′,K p := the image in T(G×H)′ of

ZG×H,U p×V p := ZG,U p × ZH,V p if K p is the image of U p × V p.

In all cases, let TG∗,U p∗ ,0 := TG,0/ZG∗,U∗ , where� denotes the closure for the

p-adic topology, and let TG∗,U p∗ ,r ⊂ TG,U p∗ ,0 be the image of TG∗,U p∗ ,r . Let

�◦
G∗,U p∗

:= Zp�TG∗,0�,

and for an irreducible algebraic representation W of G∗ consider the ideals

IG∗,U p∗ ,W,r,L := ([t] − σ−1W (t))t∈T
G∗,U p∗ ,r

) ⊂ �◦
G∗,U p∗

⊗ OL . (3.1.1)
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For each fixed W and varying r , the ideals IG∗,U p∗ ,W,r form a fundamental
system of neighbourhoods of zero in �◦

G∗,U p∗
⊗ OL , so that

�G∗,U p∗ := �◦
G∗,U p∗

⊗OL L = (lim←−
r

�G∗,U p∗ ,W,r )⊗OL L (3.1.2)

with

�◦
G∗,U p∗ ,W,r

:= �◦
G∗,U p∗

/IG∗,U p∗ ,W,r
∼= OL [TG∗,U p∗ ,0/TG∗,U p∗ ,r ], (3.1.3)

where the isomorphism is given by [t] �→ σ−1W (t)[t]. When W = Qp, we omit
W from the notation. We also omit the subscript U p∗ when it is unimportant or
understood from context.

Writing TG∗,U p∗ ,0
∼= � × Zd(G∗)

p for a finite torsion group �, we have an
isomorphism �G∗,U p∗

∼= Zp[�] ⊗ Zp�X1, . . . Xd(G∗)� for an integer d(G∗)
given by18

d(G) = d(H) = [F : Q] + 1+ δ, d((G × H)′) = 2[F : Q] + 1+ δ,

where δ = δF,p is the Leopoldt defect of F at p; see [41, § 2.2.3.3] for d(G).

Definition 3.1.1 The weight space is

WG∗,U p∗ := Spec�G∗,U p∗ ⊗Qp.

Let W be an irreducible cohomological algebraic representation of G∗. The
zero-dimensional subscheme of classical points of weight W and level r is

Wcl,W
G∗,U p∗ ,r

:= Spec�G∗,U p∗ ,r,W .

The ind-subschemes of all classical points of weight W and of of all classical
points are respectively

Wcl,W
G∗,U p∗

:=
⋃

r≥0
Wcl,W

G∗,U p∗ ,r
, Wcl

G∗,U p∗
:=
⋃

W

Wcl,W
G∗,U p∗

,

where as usual the union runs through the algebraic representations of coho-
mological weight.

18 We would have d((G ×Z H)′ = 2[F : Q] for the group of the footnote after (1.2.1), which
explains the way the number of variables of Theorem E is counted in the abstract.
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3.1.2 Ordinary completed homology

Let W be an irreducible right algebraic representation of G∗(Qp) over L , and
fix a G(Zp)-stable OL -lattice W ◦ ⊂ W . Let W be the local system attached
to W , and for U p∗ ⊂ G∗(Ap∞), r ≥ 0 consider the ordinary parts

Hét
d (X∗,U p∗ U∗,r ,W

◦)ord := (H ét
d (X∗,U p∗ U∗,r ,W

◦)⊗OL [T+G∗ ] (W
◦,∨)N0)

ord,

Hét
d (X∗,U p∗ U∗,r ,W )ord = Hét

d (X∗,U p∗ U∗,r ,W
◦)ord ⊗OL L

with respect to the action of T+G∗ by Ut ⊗ t , as defined in Sect. A.1.3. The
ordinary completed homology of XG∗,U p∗ is

M◦
G∗,U p∗ ,W

:= lim←−
r

Hét
d (X∗,U p∗ U∗,p,r

,W ◦)ord,

an OL -module. It depends on the choice of lattice W ◦ ⊂ W , whereas the
L-vector space

MG∗,U p∗ ,W := M◦
G∗,U p∗ ,W

⊗OL L

does not. When W = Qp is the trivial local system, we omit it from the
notation, thus

MG∗,U p∗ = MG∗,U p∗ ,Qp
.

3.1.3 Independence of weight and Control Theorem

For a Zp-algebra A, let H ord
G∗,U p∗ ,p,A

:= A[TG∗] ⊗Zp[T+G∗,0] �
◦
G∗,U p∗

. For ? =
S,∅, sph, consider the �G∗,U p∗ ,A-algebra

H ?,ord
G∗,U p∗ ,A

:=H ?
G∗,U p∗ ,A

⊗A H ord
G∗,U p∗ ,p,A

. (3.1.4)

For every irreducible algebraic representation W over L and OL -algebra A,
the space M◦

G∗,U p∗ ,W
⊗ A is a module overH ord

G∗,U p∗ ,A
, where [t] ∈ A[T+G∗] acts

by the double coset operator Ut .
The base ring A will be omitted from the notation when it can be understood

from the context.
Let U∗,r = U p∗ U∗,r,p be as in Sect. 2.1 and let X∗,r := X∗,U∗,r .

Proposition 3.1.2 Let W be an irreducible right algebraic representation of
G∗/Qp over L, W the corresponding local system. Then:
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1. If G∗ = G, H, then M◦
G∗,U p∗ ,W

is a projective �◦
G∗,U p∗

⊗OL-module of finite

type. For all of the groups G∗, the �◦
(G×H)′ ⊗ OL-module M◦

(G×H)′,K p,W
is of finite type, and M(G×H)′,K p,W is a projective �(G×H)′ ⊗ L-module of
finite type.

2. We have natural H ord
G∗,U p∗

-equivariant isomorphisms

jW : MG∗,U p∗ ⊗ OL
∼= MG∗,U p∗ ,W . (3.1.5)

3. Consider

MG∗,U p∗ ,W,r := MG∗,U p∗ ⊗�
G∗,U p∗

�G∗,U p∗ ,W,r . (3.1.6)

There is a natural H ord
G∗,U p∗

-equivariant isomorphism

MG∗,U∗,W,r
∼= Hd(X∗,r ,W )ord.

Proof We first treat part 1 when W = Qp. Then we will deal with part 2,
which implies that part 1 holds for any W .

If G∗ = G, the result is proved in [55, Thoerem 1.2, cf. also Remark 1.1].
If G∗ = H, U p∗ = V p, then the module under consideration is isomorphic to

Zp�E×\E×A∞/V p�, which is finite free over �◦H,V p = Zp�O
×
E ∩ V p\O×E,p�

as O×E ∩ V p\O×E,p ⊂ E×\E×A∞/V p is a subgroup of finite index.
If G∗ = G × H, by the Künneth formula we have M◦

G×H,U p×V p =
M◦

G,U p⊗̂M◦
H,V p , which by the previous results is a finite type projective mod-

ule over �◦G×H = �◦G⊗̂�◦H. Finally, if G∗ = (G × H)′ and K p is the image
of U p × V p, by the description of Z K in (2.3.1) we have

M◦
(G×H)′,K p = (M◦

G×H,U p×V p)/(F×A∞/F× · ((U p ∩ F×Ap∞) ∩ (V p ∩ F×Ap∞)))

(3.1.7)

As M◦
G×H,U p×V p is a projective �◦G×H,U p×V p -module of finite type, the

quotient M◦
G,×H,U p×V p/F, p× = MG,×H,U p NG,0×V p⊗�◦G×H �◦

(G×H)′ is a pro-
jective�◦

(G×H)′,K p -module of finite type, and M◦
(G×H)′,K p is its quotient by the

free action of the finite group F×A∞/F× · F×p ((U p ∩ F×Ap∞)∩ (V p ∩ F×Ap∞))).

After inverting p, the quotient map admits a section, hence M(G×H)′,K p is
projective over �(G×H)′ .

We now turn to part 2. As above it suffices to prove the result when G∗ =
G,H. Let G∗ = G, and suppose that W = W ∗

G,w. Let W ◦ ⊂ W be the lattice
of (2.2.4), r ≥ 1. We have a �r -linear map

jW,r : H1(Xr ,Z/pr Z)ord ⊗�r W ◦,N0/pr → H1(Xr ,W
◦/prW ◦) (3.1.8)
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induced by cap product19 via the isomorphism of �r -modules H0(Xr ,W
◦/

prW ◦) ∼= W ◦,N0/pr .
The maps (3.1.8) are compatible with variation in r , and taking limits we

obtain the map (3.1.5), which Hida [49, § 8], [55, Theorem 2.4] proved to
be an isomorphism; the asserted equivariance properties are clear from the
construction.

When G∗ = H the construction is similar but easier, as each W is 1-
dimensional and each of the analogous maps jW,r is an isomorphism.

Finally, we address part 3. As above we may reduce to the case W = Qp
and G∗ = H or G∗ = G. The former is clear, and the latter is, in view of part
2, equivalent to the statement

MG,U p,W ⊗�G,U p �G,U p,r
∼= Hd(Xr ,W )◦,

which is the control theorem of [55, Theorem 1.2 (3)]. #�

3.1.4 Ordinary eigenvarieties

The space M◦
G∗,U p∗

has the structure of an H ord
G∗,U p∗

-module (in particular of

�◦
G∗,U p∗

-module), and for ? = ∅, sph and A a Zp-algebra, we let

Tsph,ord
G∗,U p∗ ,A

be the image of H ?,ord
G∗,U p∗ ,A

in End A(M◦
G∗,U p∗

⊗ A), that is independent of the

particular spherical Hecke algebra chosen when ? = sph. When A = Zp we
omit it from the notation.

We may now define

E ord
G∗,U p∗

:= SpecTsph,ord
G∗,U p∗ ,Qp

.

When G∗ = H, we will omit the superscript ‘ord’.
Let

κG∗ : E ord
G∗,U p∗

→WG∗,U p∗ .

Referring to Definition 3.1.1, the zero-dimensional (ind)-subscheme of clas-
sical points (respectively classical points of weight W , for an algebraic

19 I am grateful to David Loeffler and Sarah Zerbes for explaining to me this point of view on
the Control Theorem.
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representation W of G∗, respectively classical points of weight W and level r )
is

E ord,cl,(W )

G∗,U p∗ ,(r)
:=W

cl,(W )

G∗,U p∗ ,(r)
×W

G∗,U p∗ ,κ
E ord
G∗,U p∗

.

We denote by

MG∗,U p∗

the sheaf on E ord
G∗,U p∗

corresponding to MG∗,U p∗ .

Notation When G∗ = (G × H)′, we omit the subscripts, thus e.g. for K p ⊂
(G × H)′(Ap∞) we write

E ord
K p := E ord

(G×H)′,K p .

By (3.1.7), Tsph,ord
K p is a quotient of Tsph,ord

G×H,U p×V p and correspondingly we
have a closed immersion

E ord
K p ↪→ E ord

G×H,U p×V p . (3.1.9)

Proposition 3.1.3 The ring Tsph,ord
G∗,U p∗

is finite flat over �◦
G∗,U p∗

, hence semi-

local. The maximal ideals of Tsph,ord
G∗,U p are in bijection with GFp -orbits of

characters λ : Tsph,ord
G∗,U p∗

→ Fp.

Proof The first statement is easy for the group H and it is proved in [55] for
the group G. Together they imply the statement for G×H and hence (G×H)′.
As Tsph,ord

G∗,U p is topologically finitely generated over Zp, the residue fields of its
maximal ideals are finite extensions of Fp; this implies the second statement.

#�
Lemma 3.1.4 Let W be an irreducible algebraic representation of G∗. The
set E ord,cl,W

G∗,U∗ of classical points of weight W is Zariski-dense in E ord
G∗,U p∗

.

Proof By the previous proposition, themap κG∗ is finite hence closed. Then the
Zariski-density of E ord,cl,W

G∗,U∗ = κ−1G∗ (W
W
G∗,U p∗

) reduces to the Zariski-density

of WW
G∗,U p∗

⊂WG∗,U p∗ , which follows from (3.1.2); cf. aso [97, Lemma 3.8].
#�
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3.1.5 Abelian case

The structure of the eigenvariety for the abelian groups H := ResE/QGm and
Z = ResF/QGm is very simple, and we make it explicit for the group H: we
have

MH,V p := Ĥ0(Y V p) = Zp�YV p(E)�⊗Qp,

the setYV p(E) is a principal homogeneous space for�E,V p := H(Q)\H(A∞)/

V p = E×\E×A∞/V p, and

EH,V p = SpecZp��E,V p�Qp .

(We omit the superscript ‘ord’ which is meaningless here.) The classical
points E cl

H,V p ⊂ EH,V p(Qp) parametrise locally algebraic characters of�E,V p .
Finally, the sheafMH,V p is a trivial line bundle, with actions by G E given by
the universal character

χuniv : G E → �E,V p → Zp��E�×, (3.1.10)

and by H(A∞) given by the inverse χ−1H,univ of the corresponding automorphic
character. We may formally write

MH,V p = χ−1H,univ ⊗ χuniv (3.1.11)

as a tensor product of two trivial sheaves, the first one endowed with the
H(A)-action only, and the second one with the Galois action by χuniv only.

3.1.6 Fibres of the sheaves M

Let

(λp, λp) : Tsph,ord
G,U p → O(EG,U p)

be the tautological character, and define

α◦ : F×p → O(EG,U p)×

x �→ λp(Ux ). (3.1.12)

Proposition 3.1.5 Let x ∈ E ord,cl,W
G,U p be a classical point of weight W and

level r .
Then:
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1. Let U := U pUp,r , and let W be the local system on X associated with W .
We have an isomorphism of H ord

G,U p,Qp(x)
-modules

(MG,U p)x
∼= H1(XU,F ,WG,w)

ord ⊗
H

sph
G,U p ,λx

Qp(x).

2. There exists a unique automorphic representation πx of G(A) over Qp(x)
of spherical character λp

x , weight W , and unit character α◦x . It satisfies the
property

πord,U p

x
∼= Hom Qp(x)[G F,S]((MG,U p)x , ρx ) (3.1.13)

as left H ord
G,U ⊗Qp(x)-modules.

Proof Part 1 follows from Proposition 3.1.2.3.
For part 2, fix an embedding Qp(x) ↪→ Qp. By strong multiplicity-one, a

representationπ overQp with character λ
p
x is unique if it exists. By comparing

part 1 with (2.5.3), we find that π exists and that for such π property (3.1.13)
holds after base-change to Qp. Let Vπ be the Galois representation associated
with π by Theorem 2.5.1, then by looking at Frobenius traces, we see that
Vπ has a model Vπ over Qp(x). It follows again from (2.5.3) that π :=
limU ′ Hom (H1(XU ,W ), Vπ) is a model of π that satisfies (3.1.13). #�

In the rest of the paper, we will use without further comment the notation
πx for the representation of G(A) defined above, for x ∈ E ord,cl

G,U p .

Corollary 3.1.6 Let z ∈ E ord,cl
K p be a classical point, and write z = (x, y) via

(3.1.9) and L := Qp(z). Let ωx be the central character of πx , let χH,y be
the character of H(A∞) obtained by specialising χH,univ, and let χy be the
corresponding locally algebraic character of G E,S. Write L := Qp(z). Then
ωz := χy|FA∞,×ωx = 1, and

MK p,z
∼= ((π

p,∨,
x )U p ⊗L χ

−1,p
H,y )⊗L (Vx |G E,S

⊗L[G E,S] χy)

asH KS
S,L ⊗L L[G E,S]-modules. Here, G E,S acts trivially on the first two tensor

factors, and the natural action of H US×VS
G×H on the first two factors is extended

trivially to the whole tensor product, and it factors to an action of H KS
S .

Proof Let λ
p
x,F and λ

p
y,F be the restrictions of the characters λx , λy to

Z[F×ASp∞,×/K Sp
F ], and let λF be the restriction of λF,xλF,y to �′ =

F×ASp∞,×/K Sp
F . As this groups acts trivially on MK p by (3.1.7),we haveλF = 1.

On the other hand λF equals the restriction of ωz to �′. We deduce that
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ωz factors through C = F×A∞/F×FASp∞K F,S K F,p for some open compact
K F,p ⊂ F×p . By weak approximation, C = {1}, therefore ωz = 1.
By Proposition 3.1.5, (3.1.11), and (3.1.7), the asserted result holds provided

we quotient the right-hand side by the action of F×A∞ , however this group acts
by ωz , hence trivially. #�
Proposition 3.1.7 The natural map κ : E ord

K p → WK p is étale over a neigh-
bourhood of the classical points in Wcl

K p . In particular, the space E ord
K p is

regular at all z ∈ E ord,cl
K p .

Proof As κ is finite flat by Proposition 3.1.3, it suffices to check that the
fibre of κ over any x ∈ Wcl

K p(Qp) is isomorphic to Q
m
p for some m. By

3.1.2, 3.1.6 and (2.5.3), this fibre is the spectrum of the image Ax ofH sph,ord
K p

in
⊕

z∈κ−1(x)(�
K p,ord
z )⊕2, where the �z form a list of distinct irreducible

representations of (G × H)′(Ap∞) over Qp. By strong multiplicity-one, we
have Ax

∼= ⊕zQp. This proves étaleness. As WK p is regular, we deuce that
so is E ord

K p in a neighbourhood of classical points. #�

3.2 Galois representations in families

We recall the existence of a universal family of Galois representations over
X .

3.2.1 Representations associated with irreducible pseudocharacters

Recall that an n-dimensional pseudocharacterof G over a scheme X is a
function T : G → O(X ) that ‘looks like’ the trace of an n-dimensional
representation of G over O(X ), see [88] for the precise definition. A pseu-
docharacter T is said to be (absolutely) irreducible at a point x ∈X if, for any
(equivalently, all) geometric point x of X with image x , the pullback x∗T is
not the sum of two pseudocharacters of dimensions k, n − k with 0 < k < n.
The irreducibility locus of T is the set of points ofX at which T is irreducible;
it is open [24, § 7.2.3].

We start by proving that, if T is irreducible, a representation with trace T
is essentially unique when it exists.

Lemma 3.2.1 LetX be an integral scheme and letV1,V2 be vector bundles of
rank n > 0 overX . Suppose that there is an isomorphism F : End OX (V1)→
End OX (V2). Then there is an invertible OX -module L and an isomorphism

g : V1 ∼= V2 ⊗L
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inducing F in the sense that F(T ) ⊗ idL = gT g−1 for all sections T of
End OX (V1).

Proof By [65, Ch. IV], any automorphism of an Azumaya algebra (such as
End OX (Vi )) is Zariski-locally inner. Therefore there exists an open cover {Ui}
of X and isomorphisms gi : �(Ui ,V1)→ �(Ui ,V2) such that

F(T ) = gi T g−1i (3.2.1)

for all T ∈ End OX (Ui )(V1). Let Ui j := Ui ∩U j and

ci j := g−1i g j , (3.2.2)

an automorphism of V1 over Ui j . By (3.2.1), ci j commutes with every
T ∈ End OX (Ui j )(V1), hence it is a scalar in OX (Ui j )

×. One verifies eas-
ily that the ci j form a cocycle in H1(X ,O×X ). Let L denote the associated
invertible sheaf, which is trivialised by the cover {Ui }. Then we may view
gi : �(Ui ,V1) → �(Ui ,V2 ⊗L ). By (3.2.2), the gi glue to the desired iso-
morphism g : V1 ∼= V2 ⊗L . #�
Lemma 3.2.2 Let X be an integral scheme and T : G F,S → O(X ) an
irreducible pseudocharacter of dimension n. Let V1, V2 be representations of
G F,S with trace T . Then there exist a line bundle L with trivial Galois action
and a G F,S-equivariant isomorphism

V1 ∼= V2 ⊗L .

Proof Write G = G F,S and let A := OX [G]/Ker (T ). By [88, Theorem
5.1], A is an Azumaya algebra of rank 4. By [92, Corollary 2.9], the two
natural injective maps αi : A → End OX (Vi ) are isomorphisms. Then we
conclude by the previous lemma. #�
3.2.2 Galois representations in ordinary families

We prove the analogue in Hida families of Theorem 2.5.1.

Lemma 3.2.3 Let λ : Tsph,ord
G,U p → Fp be a character. Then there is a unique

semisimple representation ρ : G F,S → GL2(Fp) such that Tr(ρ(Frv)) =
q−1v λ(Tv) for all v /∈ S.

Proof The existence follows by lifting λ to the character λx associated with
a classical point x (that is possible thanks to Lemma 3.1.4), then taking the
semisimplification of the reduction modulo p of a lattice in the representation
ρx := ρπx of Theorem 2.5.1; the uniqueness is a consequence of the Brauer–
Nesbitt theorem. #�
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By Proposition 3.1.3 we may decompose Tsph,ord
G,U p

∼=∏m Tsphord
G,U p,m and con-

sequently the generic fibre of the associated schemes also decomposes as

E ord
G,U p

∼=
∐

E ord
G,U p,m. (3.2.3)

We will say that a connected subset X ⊂ E ord
G,U p has residual representation

ρ : G F → GL2(Fp) ifX is contained in some E ord
G,U p,m such that the character

λm ⊗Fp(m) Fp associated with m is the character of ρ.

Proposition 3.2.4 Let XG be an irreducible component of EG (that is, a Hida
family). Then there exist:

– an open subset X ′
G ⊂XG containing X cl

G :=XG ∩ E cl
G,U p ;

– a locally free OX ′
G

-module VG of rank two over X ′
G, such that

VG,x
∼= Vπx

for all x ∈X cl
G ;

– a filtration

0→ V +G,v → VG,v → V −G,v → 0, (3.2.4)

where the V ±G,v are locally free OX ′
G

-modules of rank 1, and G Fv acts

on V +G,v by the character associated, via local class field theory, with the
character

α◦|F×v 〈 〉Fv (3.2.5)

deduced from (3.1.12).

The representation VG is uniquely determined up to automorphisms and
twisting by line bundles with trivial Galois action.

The result is due to Hida and Wiles ([41, § 3.2.3] and references therein),
except for the existence of (3.2.4) when the residual Galois representation of
XG is reducible.

Proof LetT : G F,S → O(XG) be the pseudocharacter defined byT (Frv) =
q−1v λ(Tv), where λ : Tsph

G,U p → O(XG) is the tautological character. Let

X irr
G ⊂ XG be the (open) irreducibility locus. By Theorem 2.5.1, X cl

G ⊂
X irr

G . By Lemma 3.2.2, a representation VG is unique up to Galois-trivial
twists if it exists. We show existence.
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By [88, Theorem 5.1],A := OX irr
G
[G F,S]/Ker (T ) is an Azumaya algebra

of rank 4 over EG′ and the natural map

ρ : G F,S → A ×

satisfies Tr ◦ ρ = T (where Tr is the reduced trace of A ). Let c ∈ G F,S
be a complex conjugation; we have an isomorphism A = A (ρ(c) − 1) ⊕
A (ρ(c)+ 1) =: V+1 ⊕ V−1. Each of the c-eigen-summands V±1 is a locally
free OX irr

G
-module (since so is A ), whose rank is 2: indeed at any classical

geometric point x ∈ X cl
G (Cp), the specialisation ρx is odd, hence we can

pick an isomorphismAx
∼= M2(Cp) sending ρx (c) to

(
1 −1

)
from which it is

immediate that V±1,x has rank 2; since classical points are dense, we conclude
that V±1 also has rank 2.

Let VG be either of V1,±. By [92, Corollary 2.9 (a)], the natural map

A → End O
X irr

G
(VG)

is an isomorphism; we view it as an identification to obtain a representation
ρ′ with traceT . As an irreducible 2-dimensional Galois representation over a
field is uniquely determined by its trace, the representation VG,x is isomorphic
to Vπx .

We now show the existence of the filtration up to further restricting the base.
Fix a place v|p of F , and let detv : G Fv → O(X irr

G )× be the character giving
the action on det VG,v . Let V

+
0,v be the trivial sheaf OX irr

G
with G Fv -action

by the character (3.2.5), V0,v := VG,v , V
−
0,v := (V +0,v)−1(detv). Finally, for

? = +,−.∅, let

W ?
v := Hom OX ′

G
(V +0,v,V

?
0,v).

Then for all x ∈X cl
G , by Theorem 2.5.1 we have exact sequences

0→ W +
v,x = Qp(x)→ Wx → W −

v,x , (3.2.6)

which we wish to extend to a neighbourhood ofX cl
G . From a consideration of

weights based on Theorem 2.5.1, we see that for all x ∈X cl
G , H0(Fv,W

−
v,x ) =

H2(Fv,W
−
v,x ) = 0. Then from (3.2.6) we deduce

H2(Fv,Wv,x ) = 0 (3.2.7)
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for all x ∈X cl
G , and from the Euler–Poincaré formula and (3.2.6) we deduce

that

dimQp(x) H1(Fv,W
−
v,x ) = 1+ [Fv : Qp], H1(Fv,Wv,x ) = 1+ 2[Fv : Qp]

(3.2.8)
for all x ∈X cl

G .

By Proposition 5.2.3.3 below, (3.2.7) and (3.2.8) imply that the natural map

H0(Fv,W )⊗O
X irr

G
Qp(x)→ H0(Fv,Wv,x ) ∼= Qp(x)

is an isomorphism for all x ∈ X cl
G . Hence the sheaf L := H0(Fv,Wv) is

locally free of rank one in a neighborhoodX ′
G ⊂X irr

G of X cl
G . Defining

V +G,v := L ⊗OX ′
G
V +0,v,

the natural map V +G,v → VG,v|X ′
G
is injective, and its cokernel V −G,v has rank

one at each x ∈X cl
G . Up to further restrictingX ′

G, V
−
G,v is also locally free of

rank one. It follows immediately from the construction that the exact sequence

0→ V +G,v → VG,v → V −G,v → 0

has the asserted properties. #�
Proposition 3.2.5 In the situation of Proposition 3.2.4, the natural injective
map

i : OX ′
G
→ End OX ′

G
[G F,S](VG)

is an isomorphism over an open subset X ′′
G ⊂XG containing X cl.

Proof By Theorem 2.5.1, ρx is absolutely irreducible for all x ∈X cl
G .

We deduce that for each x ∈X cl
G , the map ix is an isomorphism. Then we

may take for X ′′
G the open complement of the support of Coker(i). #�

3.3 Universal ordinary representation and local-global compatibility

The idealised description of what is achieved in this subsection would be
to define a universal ordinary automorphic representation of G(A∞) over an
irreducible componentX of E ord

G ; then show that it decomposes as the product
of the representations of the local groups B×v , for v � p,20 associated to V |G F,v

20 The action of B×p has already been traded for an action of the torus, subsumed into the
EG-module structure.
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by a local Langlands correspondence in families. The definition should be an
elaboration of

“�G := lim
U p ′ Hom OX [G F,E ](MU p ′,VG)”. (3.3.1)

For technical reasons, a few modifications are necessary:

– the local Langlands correspondence in families is not defined for the unit
groups of division algebras;21 thereforewe “remove” the components at the
ramification primes� ofB, in the followingway: we consider a component
of E rather than EG, and we take H ′�-coinvariants in an analogue � of
(3.3.1). For sufficiently large levels, this isolates a local factor of � that is
generically free of rank one along locally distinguished Hida families;

– in the limit in (3.3.1), we fix an arbitrarily large finite set of primes �′,
disjoint from � and from Sp, and we let only the �′-component of U p ′
shrink, so as to get a representation of B×

�′ ;
– we replace the abstractly constructed V = VG ⊗ VH (where VH = χuniv)
by a more geometric incarnation using the sheaf M in ‘new’ level (with
respect to the chosen irreducible component).

We use the correspondence studied in [34], with the caveat that strictly
speaking the normalisation chosen there differs by the one fixed here in Theo-
rem 2.5.1.1 by a Tate twist. This is only a matter of book-keeping, and in order
to avoid excessive notational burden, we do not signal such Tate twists when
referring to the results of [34] in the rest of this paper.

3.3.1 Irreducible components

LetXG ⊂ E ord
G,U p be an irreducible component. Fix a place v of F not in�∪Sp.

Recall that the v-level of a representationπv of GL2(Fv) is the smallestm such

that π
U1(�

m
v )

v = 0, where U1(�
m
v ) = {( a b

c d

) ∈ GL2(OF,v) : c ≡ d − 1 ≡ 0
(mod �m

v OF,v)}. Let mx,v be the v-level of x ∈X cl.

Lemma 3.3.1 The function x �→ mx,v is constant on X cl
G .

Proof By [20], mx,v equals the conductor of the G Fv -representation Vx ; as all
those Galois representations are pure, we may conclude by [89, Theorem 3.4].

#�
We may then define the v-level mv of XG to be the common value of the

mx,v for x ∈ X cl. By the following lemma, it is not restrictive to make the

21 There is an essential reason for this, namely the possible presence of Schur indices in rep-
resentations of those groups.
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following assumption: for all v /∈ � ∪ Sp, we have Uv = U1(�
mv(XG)
v ). (We

say thatXG is a v-new component of E ord
G,U p .)

Lemma 3.3.2 Let ′XG ⊂ E ord
G,U p ′ be an irreducible component, and suppose

that U p ′ = ∏v�p U ′v . Let mv be the level of XG and let U p = ∏v�p Uv , with

Uv = U1(�
mv
v ) ⊃ U ′v for all v /∈ � ∪ Sp, and Uv = U ′v . There exists a

unique irreducible component XG ⊂ E ord
G,U p whose image under the natural

embedding E ord
G,U p ⊂ E ord

G,U p ′ is ′XG.

Proof Let x ′ ∈ ′X cl
G be any classical point. By [19], its level (that is, the level

of πx,v) is mv if and only if πx,v already occurs in the cohomology of X F at v-
level mv , equivalently if and only if (the system of Hecke- and Uv-eigenvalues
associated with) πx,v occurs in a quotient ofMU p ; that is, if x ′ comes from a
point x of EG,U p . LetXG ⊂ E ord

G,U p be the irreducible component containing x ,

which is unique by Proposition 3.1.7. As E ord
G,U p ⊂ E ord

G,U p ′ are equidimensional
of the same dimension, the image ofXG inEG,U p ′ is an irreducible component,
necessarily ′XG. #�

We now deal with the level at �.

Lemma 3.3.3 Let v ∈ �. There exists a compact open U ′v ⊂ Uv such that for

every classical point x ′ ∈ XG, we have π
U ′v
x ′,v = πx ′,v , where πx,v is the local

component at v of πx ⊗Qp.

Proof Fix a classical point x ∈ XG ⊂ E ord
G,U p , and let U ′v ⊂ Uv be such

that π
U ′v
x,v = πx,v. (This will hold for sufficiently small U ′v as πx,v is finite-

dimensional.) We show that U ′v satisfies the desired property at all classical
x ′ ∈ XG. Let Xv/Qp be the Bernstein variety of GL2(Fv), a scheme over Qp
(see [34], to which we refer for more background). By [34, Theorem 3.2.1],
the representation VG of G Fv gives a map f : XG → Xv/Qp , compatibly with
the local Langlands correspondence in the sense that for all x ∈ XG, f (x)
is the point corresponding to the supercuspidal support of the representation
π ′x,v of GL2(Fv) over Qp(x) attached to the representation VG,x . Note that for
classical points x , πx,v = JLv(π

′
x,v ⊗Qp(x) Qp), where JLv is the Jacquet–

Langlands correspondence.
After base-change to Qp, we may consider the finitely many maps

fi : Xi → Xv/Qp
, where the Xi are the connected components of XG,Qp

.
The image of fi is contained in a connected component Xi of Xv/Qp

. These
components are in bijection with inertial classes of supercuspidal supports for
GL2(Fv), and for the class σ = σi of Xi there are three possibilities:

– σ corresponds to the class of a supercuspidal representation σ0 of GL2(Fv)

over Qp. In this case, there is an unramified character ω : F×v → O(Xi )
×
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such that every y′ ∈ Xi corresponds to σ0⊗ωy′ . Hence for every classical
x ′ ∈Xi , we have

πx ′,v ∼= JLv(σ0 ⊗ ω fi (x ′)) = JLv(σ0)⊗ ω fi (x ′)
∼= πx,v ⊗ ω fi (x ′).

As ω f (x ′) is unramified, it follows that πUv

x ′,v = πx ′,v .
– σ corresponds to the class of the supercuspidal support of St ⊗ ω0, where
St is the Steinberg representation and ω0 : F×v → Q

×
p is a character. Then

there exist a closed subsetX′i ⊂ Xi and an unramified character ω : F×v →
O(Xi )

× such that every y′ ∈ X′i corresponds to the supercuspidal support
of St⊗ω0ωy′ , and such that every y′ ∈ Xi −X′i corresponds to the support
of an irreducible principal series representation. It follows that for every
classical x ′ ∈Xi , the image fi (x ′) ∈ X′i (since π ′x,v⊗Qp is in the domain
of JLv), and that πx ′,v = JLv(St ⊗ ω0ω fi (x ′)) = ω0ω fi (x ′) ◦ Nm. We
conclude as above.

– no element of the inertial class σ is the supercuspidal support of a special
or supercuspidal representation. This case is excluded as only those rep-
resentations are in the image of the Jacquet–Langlands correspondence.

#�

3.3.2 Galois representation from geometry

Let U p ⊂ G(Ap∞), V p ⊂ H(Ap∞) be compact open subgroups. We will
consider various compact open subgroups U p ⊂ U p∗ ⊂ G(Ap∞), and will
correspondingly denote by K p∗ be the image of U p∗ × V p in (G×H)′(Ap∞).
LetX be an irreducible component of E ord

K p ⊂ E ord
G,U p × EH,V p , and letXG ⊂

E ord
G,U p be the irreducible component such thatX ⊂XG×H :=XG × EH,V p .
Suppose from now on that X is locally distinguished by H′ (Definition

1.3.1). Let VG be the OX ′′
G
[G F,S]-module constructed in Proposition 3.2.4

and Proposition 3.2.5, and let VH be the universal character χuniv of G E,S
from (3.1.10). Let

X (0) :=X ∩ (X ′′
G × EH,V p)

an open subset, and consider the G F,E,S-representation

V ′ := (VG � VH)|X (0)

We define another sheaf V with G F,E,S-action, that will provide a more
convenient and concrete substitute for V ′ on (an open subset of) X (0).
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Let

U p
0
′ = U�p

∏

v∈�
U ′v,

with U ′v as in Lemma 3.3.3. Let K p
0
′ = (U p

0
′ × V p)F×Ap∞/F×Ap∞ , and let

V :=M
H ′�
K p
0
′,

viewed a sheaf overX .

Lemma 3.3.4 The sheaf V is a direct summand of MK p
0
′ .

Proof The group H ′� =
∏

v∈� E×v /F×v acts on the locally free sheaf MK p
0
′

through a quotient by an open subgroup. Since H ′� is compact, such a quotient
is finite; therefore the inclusion V ⊂MK p

0
′ splits. #�

Proposition 3.3.5 There is an open subsetX (1) ⊂X containing all classical
points such that V is locally free of rank 2 along X (1). For every z = (x, y) ∈
X cl we have

Vz
∼= Vx ⊗ χy

as a G F,E,S-representation.

Proof By Corollary 3.1.6, for z = (x, y) ∈X cl we have

MK p
0 ,(x,y)

∼= (π
∨,p,U p

0
x ⊗ χ

−1,p
y )⊗ (Vx ⊗ χy)

(where the first pair of factors is a representations of G × H(Ap∞) and the
second one is a a representation ofG E ). ByLemma3.3.4, taking H ′�-invariants
commutes with specialisation, and we find that

Vz
∼= (π

∨,�p,U�p
0

x ⊗ χ
−1,�p
y )⊗ (π∨x,� ⊗ χ−1y,�)H ′� ⊗ (Vx ⊗ χy). (3.3.2)

The first factor is 1-dimensional by the theory of local newforms, and the
second factor is 1-dimensional by assumption (εv)

′.
Since the fibre-rank of V is 2 in the dense setX cl, there is an open neigh-

bourhood of this set over which V is locally free of rank 2. #�
Corollary 3.3.6 There exist: an open subsetX (2) ⊂X (0)∩X (1) containing
X cl such that

End OX (2) [G F,E,S](V ) = OX (2) ,
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an invertible sheaf L over X (2) with trivial Galois action, and a G F,E,S-
equivariant isomorphism of sheaves on X (2)

V ∼= L ⊗ V ′.

Proof By Proposition 3.3.5 and the construction of V ′, the representations V ,
V ′ have a common traceT : G F,E,S → O(X (1)). Since this is an irreducible
pseudocharacter, the assertions follow from Lemma 3.2.2 and (the argument
of) Proposition 3.2.5. #�
3.3.3 The universal ordinary representation

In what follows, all sheaves MK p∗ will be considered as sheaves over X (or
open subsets of X ). Note that, as the action of H ′� on MG, MH commutes
with the Galois action, the sheavesMK p∗ retain an action of G F,E,S .

We will use the following well-known fact.

Lemma 3.3.7 Let R be a ring and let T : M → N be a map of free R-
modules of the same rank. The set of those x ∈ Spec R such that T ⊗ R/px is
an isomorphism is open in Spec R.

Proof The locus is the complement of V (det T ). #�
In what follows, similarly to Sect. 2.1.5, if ‘?’ is any decoration, U p

? is a
subgroup of G(Ap∞), and V p ⊂ H(Ap∞) is a fixed subgroup, we denote by
K p
? ⊂ (G × H)′(Ap∞) the image of U p

? × V p.

Proposition 3.3.8 Fix a finite set of primes �′ disjoint from � ∪ Sp, such that
Uv is maximal for all v /∈ �′ ∪� ∪ Sp, and consider the set U of subgroups
U p ′ =∏v�p U ′v ⊂ U p with U ′v as in Lemma 3.3.3 for all v ∈ �, and U ′v = Uv

for all v /∈ �′ ∪� ∪ Sp. (In particular U ′0 ∈ U .)

1. There exists a cofinal sequence (U p
i
′)i≥0 ⊂ U , and open subsets Xi ⊂

X (2) ⊂ X containing X cl such that X j ⊂ Xi for i ≤ j , satisfying the
following: there are integers ri and G F,E -equivariant maps

Ti : V ⊕ri = (M
H ′�
K p
0
′)
⊕ri →M

H ′�
K p

i
′

that are isomorphisms over Xi .
2. For each U p ′ ∈ U , there is an open subset XU p ′ ⊂X (2) containing X cl

such that the restriction to XU p ′ of

�
K p ′,ord
H ′�

:= Hom OX [G F,E,S](M
H ′�
K p ′,V ) (3.3.3)
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is a locally free OXU p ′ -module, and we have an isomorphism of locally
free sheaves with Hecke- and Galois- actions

M
H ′�
K p ′ ∼= (�

K p ′,ord
H ′�

)∨ ⊗ V .

Moreover �K p ′,ord
H ′�

⊂ �
K p ′′,ord
H ′�

for U p ′′ ⊂ U p ′ via the natural projections

M
H ′�
K p ′′ →M

H ′�
K p ′ .

3. The H K p ′
G×H,�′-module �

K p ′,ord
H ′�

is generated by �
K p
0
′,ord

H ′�
over XU p ′ .

4. For each z = (x, y) ∈X cl, we have

(�
K p ′,ord
H ′�

)z
∼= (πU p ′,ord

x )H ′� ⊗ χy,

with the notation of (2.4.3).

Proof It suffices to prove part 1 for a sequence of subgroups U p
i
′ =∏v�p U ′i,v

that are B×S -conjugate to a cofinal sequence (if U p
i
′′ = giU

p
i
′g−1i is cofinal

and (U p
i
′, Ti ) satisfies the desired condition, then (U p

i
′′, g−1i ◦Ti ) also satisfies

the desired condition). We thus take any sequence with U ′i,v = U1(�
mi,v ) for

v /∈ �′ ∪� ∪ Sp, with mi,v ≥ mv and such that minv∈�′ mi,v →∞.
Let ri = ∏v(1 + mi,v − mv). By the local theory of oldforms of [21] and

the isomorphisms (3.3.2) and

(MK p
i
′)

H ′�
z
∼= (π

∨,�p,U�p
i
′

x ⊗ χ
−1,�p
y )⊗ (π∨x,� ⊗ χ−1y,�)H ′� ⊗ (Vx ⊗ χy),

(3.3.4)

there are Hecke operators

Tv, jv : M H ′�
K p
0
′ →M

H ′�
K p

i
′

such that the map Ti := ∏v∈S ⊕ jv Ti,v, jv is an isomorphism after specialisa-
tion at any z in the dense set X cl. Hence Ti is an isomorphism in an open
neighbourhood Xi of X cl (which we possibly shrink to make sure it is con-
tained inX (2)). Together with Lemma 3.3.7, this concludes the proof of part
1. Part 2 is a consequence of part 1 and the absolute irreducibility of V , in the
special case U p ′ = U p

i
′, withXU p ′ =Xi . The general case is deduced from

the special case: if U p ′ ⊂ U p
i
′, let XU p ′ := Xi and take on both sides the

locally free summands consisting of U p ′-invariants (for the first assertion) or
coinvariants (for the second assertion). For part 3, we may again reduce to the
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special case U p ′ = U p
i
′; then the space �U p

i
′
is generated by the images of

the transposes of various “oldforms” degeneracy maps Ti from part 1, that are
elements of the Hecke algebraH U p ′

G,S . Finally, part 4 follows from (3.3.4). #�
Definition 3.3.9 (Universal ordinary representation). Let U be as in Propo-
sition 3.3.8, and fix an arbitrary U ′ ∈ U . Let

X (3) :=XU p ′

be as in Proposition 3.3.8, and let

�
K p ′,ord
H ′�

:= Hom OX (3) [G F,E,S](M
H ′�
K p ′,V )

as in (3.3.3). The universal ordinary representation

�
K Sp,ord
H ′�

⊂ ′�K Sp,ord
H ′�

:= lim−→
U p ′′∈U

�K p ′′,ord,

is the OX (3)[(B×�′ × E×
�′)/F×

�′ ]-submodule generated by �
K p ′,ord
H ′�

.

3.3.4 Local-global compatibility

The next theorem describes �
K Sp ′,ord
H ′�

, as a sheaf with an action by B×
�′ ×

E�∞,×, in terms of the local Langlands correspondence in families of [34],
denoted by

VG �→ πG,�′(VG).

This correspondence attaches, to any family VG of representations of∏
v∈�′ G Fv on a rank-2 locally free sheaf over a Noetherian scheme Y /Q,

a family of representations of GL2(F�′) on a torsion-free sheaf over Y . The
latter representation is co-Whittaker in the sense of [34, Definition 4.2.2]; in
particular it admits a unique Whittaker model.

Theorem 3.3.10 (Local-global compatibility). Let

πG,�′(VG)

be the representation of GL2(F�′) over X (3) associated with VG by the local
Langlands correspondence in families for GL2(F�′) of [34]; let χH,univ,�′ be
the pullback to X (3) of the sheaf χH,univ of (3.1.11), with the H(A∞)-action
restricted to E×

�′ .
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Then there exist an open subset X (4) ⊂ X (3) ⊂ X containing X cl, a

line bundle �
K Sp ′,S,ord
H ′�

over X (4), and an isomorphism of OX (4)[GL2(F�′)×
E×
�′ ]-modules

�
K Sp ′,ord
H ′�

∼= (πG,�′(VG)⊗OX (3) χH,univ,�′)⊗�
K Sp ′,S,ord
H ′�

.

Proof For ∗ = ∅,′, consider
∗π ′G,�′ := Hom OX (3) [E×S ](χH,univ,S,

∗�K Sp,ord
H ′�

),

a torsion-free sheaf over X (3) with action by B×
�′ = GL2(F�′). There is an

obvious isomorphism

∗�K Sp,ord
H ′�

∼= ∗π ′G,�′ ⊗ χH,univ,�′ . (3.3.5)

By Proposition 3.3.8.4 and the local freeness of each ′�K p ′′
H ′�

near X cl, the

fibre of (′π ′G,S)
U ′S at any z = (x, y) ∈ X cl equals πG,S(VG,x )

U ′′S ; by Propo-

sition 3.3.8.3 the same is true if one replaces (π ′G,�′)
U ′′

�′ by the submodule

(π ′G,�′)
U ′′S . In conclusion, taking the limit over U p ′′ ∈ U we find that the

smooth, finitely generated, admissible OX (3)[GL2(F�′)]-module π ′G,�′ satis-
fies

π ′G,�′,(x,y)
∼= πG,�′(VG,x ).

for all (x, y) ∈X cl. Then by [34, Theorem 4.4.3], there exist an open subset

X (4) ⊂X (3) containingX cl and a line bundle that we denote by�
K Sp,S,ord
H ′�

,

such that

π ′G,�′
∼= πG,�′(VG)⊗�

K Sp,S,ord
H ′�

.

Substituting in (3.3.5) gives the desired result. #�

4 Pairings

4.1 Global dualities

We construct Hecke- and/or Galois-equivariant duality pairings on the sheaves
constructed in the previous section. The results of this somewhat technical
subsection are summarised in Propositions 4.1.7, 4.1.8.
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4.1.1 Pairings, symmetries and involutions

If ε ∈ {±1}, R is a ring or sheaf of rings, and M , J are R-modules, an R-
bilinear pairing ( , ) : M ⊗ M → J is said to be ε-symmetric if it satisfies
(m,m′) = ε · (m′,m). If R is equipped with an involution ι, denote by (·)ι
both the functor ⊗R,ιR and the maps m �→ m ⊗ 1; an (R, ι)-sesquilinear
pairing ( , ) : M ⊗ M ι → J is said to be ε-hermitian if it satisfies (m, n) =
ε · ι((nι,mι)ι). We will also use the prefix ‘skew-’ (respectively no prefix) if
ε = −1 (respectively +1).

4.1.2 Involutions

We denote by the same name ι the involutions on H
sph
G∗ , H sph,ord

G∗ �G∗,U p∗ ,

E ord
G∗ deduced from those of Sect. 2.1.4. If M is a module over any of the above

rings (or sheaf of modules over any of the above spaces), we let M ι = ι∗M .

Lemma 4.1.1 Let W be an irreducible algebraic representation of G∗ over L.

1. We have σW∨(t) = σW (t ι) for all t ∈ TG∗ .
2. If πord is the ordinary part of an automorphic representation of G∗(A∞)

over L of weight W , unramified of level U S∗ outside of a finite set of primes S,

then there is an isomorphism ofH sph,ord
G∗,U S -modules π∨,U S∗ ,ord ∼= (πU S∗ ,ord)ι.

3. There is an identification

(E cl,W
G∗ )ι = E cl,W∨

G∗

such that πord
ι(x) = (πx )

∨,ord.

Proof All results can be reduced to the case G∗ = H, which is trivial, or
G∗ = G, that we address. Part 1 follows from the explicit description of σW
in (2.2.5) and W∨

G,(w;(wσ ))
∼= WG,(−w;(wσ )) (see (A.4.2) below for an explicit

duality).
For part 2, we use π∨ = π ⊗ ω−1 where ω is the central character of π ,

and verify the statement separately for the spherical Hecke algebra and for the
operators Ut . For the former, it is well known that the spherical Hecke algebra
is generated by operators T (z) and T (

( x
1
)
) = T (

(
1

x

)
) for z, x ∈ F×S ;

denoting by λπ?(·) the eigenvalue of T (·) on (π?)U S
, we then have λπ(zι) =

λπ(z−1) = ω(z)−1 = λπ∨(z), and

λπ((
( x

1
)ι
) = λπ(x

−1(
(
1

x

)
) = ω(x)−1λπ(

( x
1
)
) = λπ∨(

( x
1
)
)

as desired.
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For the operators Ut , we verify that if π is ordinary at v with unit character
α◦v = αvσ

−1
W (as a character of T+G,v), then π∨ is ordinary at v with unit

character

α◦,ιv : t �→ α◦v(t ι).

This follows from observing

π∨v ∼= Ind(αι
v · (| |v, | |−1v )),

α◦v(t ι) = α◦v(t)α◦v(ν(t))−1 ∈ O×F .

Finally, part 3 follows from parts 1 and 2. #�

4.1.3 Homological and cohomological dualities

We shall define various pairings 〈 , 〉? in the (ordinary, completed) homology
of Shimura varieties, starting from the Poincaré duality pairings. Then we will
use them to construct corresponding pairings ( )? on spaces of representations,
as follows.

Construction 4.1.2 Let A be a ring, G a group, and let M1, M2, V1, V2, A(d)
be A[G]-modules, projective and of finite type over A; denote

V D := Hom (V, A(d)).

Let fi ∈ πi := Hom (Mi , Vi ) be A[G]-maps, suppose we have fixed an
identification V D

2
∼= V1; let 〈 , 〉 be a perfect pairing M1 × M2 → A(d),

inducing u〈,〉 : M D
2 → M1. Let f D

2 : V D
2
∼= V1 → M D

2 be the dual map, then
we define a pairing on π1 × π2 by

( f1, f2)〈,〉 = f1 ◦ u〈,〉( f D
2 ) ∈ End A[G](V1). (4.1.1)

4.1.4 Homological dualities/1

Fix lattices W ◦ and W∨,◦ on any right algebraic representation of G∗ over L ,
and denoted by 〈 , 〉W : W ⊗W∨ → L the natural invariant pairing. This may
not preserve the lattices but it does so up to a bounded denominator which we
denote by p−|W |.22

22 With respect to the model in (A.4.2), we have |W | = ordp

(( k−2
(k−2+l)/2

))
for the represen-

tation (A.2.2) of G.
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We may then consider the Poincaré duality pairings

〈, 〉U∗,W : Hd(X∗,U∗,W )×Hd(X∗,U∗,W ∨)→ H0(X∗,U∗,W ⊗W ∨)→ L(d),
(4.1.2)

where the second map is induced by 〈, 〉W and summation over the connected
components of X∗,U∗ . These pairings are integral up to a bounded denominator
p−|W | and satisfy

〈xT, y〉U∗,W = 〈x, yT ι〉U∗,W
for any T inH

p
G∗,U∗ , as well as the projection formula

〈pU ′∗/U∗,∗(x), y〉W,U∗ = 〈x, p∗U ′∗/U∗(y)〉W,U ′∗ (4.1.3)

for all pairs of levels U ′∗ ⊂ U∗; here pU ′∗/U∗ : XU ′∗ → XU∗ is the projection.

4.1.5 Homological dualities/2

We start to promote and modify the Poincaré duality pairings. The following
lemma is clear.

Lemma 4.1.3 Let R be a ring, S a finite R-algebra, M a finite S-module.

1. Suppose that S is étale over R. Then there is a natural isomorphism

α : Hom R(M, R)→ Hom S(M,Hom R(S, R))→ Hom S(M, S)

where the first map is λ �→ (m �→ (s �→ λ(sm)). and the second one
comes from the isomorphism S ∼= Hom R(S, R) induced by the relative
trace map.

2. Suppose that S = R[T ] for a finite abelian group T , then there is an
isomorphism β : Hom R(M, R) → Hom R[T ](M, R[T ]) given by λ �→
(m �→∑

t λ(tm)[t−1]).
If S = R[T ] is étale over R then we have α(λ) = |T |−1β(λ).

If S = R[T ] for a finite abelian group T , one verifies that the isomorphism
of the lemma is given by

〈 , 〉 �→ 〈〈 , 〉〉, 〈〈x, y〉〉 :=
∑

t∈T

〈x, t y〉[t−1].

We may apply case 2 of the lemma to

M = MH,V p,r,W ⊗ MH,V p,r,W∨, R = L ,
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S = �H,V p,r := �◦H,V p,r ⊗OL L ∼= L[TH,0/TH,r ]
(with the isomorphism of (3.1.3)). We obtain, from the pairings 〈 , 〉Vr ,W ,
pairings

〈〈 , 〉〉V p,W,r : MH,V p,W,r ⊗�H,W,r M ι
H,V p,W∨,r → �H,V p,W,r ⊗ L ,

and thanks to an easily verified compatibility, a well-defined pairing

〈〈 , 〉〉V p,W : MH,V p,W ⊗�H M ι
H,V p,W∨ → �H ⊗ L = OEH ⊗ L

x ⊗ y �→ lim
r
〈〈xr , yr 〉〉V p,W,r .

(4.1.4)

4.1.6 Automorphic inner products

Let

v(U∗) := vol(X∗,U∗(C)),

where ‘vol’ denotes the volume with respect to the metric deduced from the
hyperbolic metric dxdy/2πy2 (using the complex uniformisation (2.3.1)),
when G∗ = G, and the counting metric, when G∗ = H. By [107, Lemma 3.1],
v(U∗) ∈ Q× and, when d = dim X∗ = 1, it equals the degree of the Hodge
bundle LU∗ defined as in loc.cit. We have

deg pU ′∗,U∗ = v(U ′∗)/v(U∗) = ZG∗(Q) ∩U∗\U∗/U ′∗, (4.1.5)

where the last equality can be easily seen e.g. from the complex uniformisation
(2.3.1). We set for any r ≥ 1

v(U p∗ ) := v(U p∗ U∗,0(pr )p)

pdr [F :Q] , (4.1.6)

whereU∗,0(pr )p ⊂ G∗(Qp) is a maximal compact subgroup if G∗ = H,H′, it
is the group of those matrices that are upper triangular modulo pr if G∗ = G,
and it is deduced from those by product and quotient if G∗ = G×H, (G×H)′.
The right hand side of (4.1.6) is independent of r ≥ 1.

Let π be an automorphic representation of G∗(A∞) of weight W ∗ over
L , Vπ the corresponding G E∗-representation. Then we have an isomorphism
Vπ∨ ∼= V ∗π (1), hence we may use Construction 4.1.2 with A = L , G = G E∗ ,
M1 = Hd(X∗,U∗,W ), M2 = Hd(X∗,U∗,W ∨), V1 = Vπ , V2 = Vπ∨ and the
pairings (4.1.2). Using (2.5.3), we obtain

( , )π,U∗ := ( , )〈,〉U∗,W : πU∗ × π∨,U∗ → L .
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One verifies thanks to (4.1.3) and (4.1.5) that the pairing

( , )π := lim
U∗

(dim W · v(U∗))−1 · ( , )π,U∗ : π × π∨ → L . (4.1.7)

is well-defined.
When G∗ = H, denoting π = χH, we may alternatively apply Construction

4.1.2 to A, M1, M2, V1, V2 as above and the image of the pairings 〈〈 , 〉〉V p,r W
under the map �H,r,W → L given by [t] �→ χH(t), and denote the resulting
pairings on χH×χ−1H by ( , )〈〈,〉〉χH,V p ,r

. As |TH,0/TH,r | ·v(V p) = v(V pVp,r )

by (4.1.5), we have

( , )χH = v(V p)−1( , )〈〈,〉〉χH,V p ,r
,

and in particular the right-hand side is independent of V p.
Assume for the rest of this subsection that G∗ = G,G × H, (G × H)′.

Then we need a twist in order to isolate the toric action and to obtain the
ι-equivariance of the pairings under the action of the Up∞-operators.

Let π = π∞ ⊗ W be an ordinary representation of G∗(A). Using the
transformation word

a defined in Proposition A.2.1, we define a pairing

( f1, f2)
ord
π := dim W · (word

a f1, f2)π : πord × π∨,ord → L . (4.1.8)

See Lemma A.2.2 for its nondegeneracy.

4.1.7 Homological dualities/3

Analogously to the previous paragraph, we define a twisted Poincaré pairing

H1(X∗,U p∗ ,r ,W )ord ⊗ H1(X∗,U p∗ ,r ,W
∨)ord → L(1)

〈x, y〉ord
U p∗ ,W,r

:= 〈x, yword
a 〉U p∗ U∗,p,r ,W

,
(4.1.9)

of which we will especially consider the restriction to the ordinary parts of
homology.

Lemma 4.1.4 Let π be an ordinary representation of G∗(A), and identify

πord = Hom L[G E∗ ](H1(X∗,U p∗ ,r ,W )ord, Vπ)

for sufficiently large r similarly to Proposition 3.1.5. Then Construction 4.1.2
provides a pairing (, )〈,〉ordW,r

on πord × π∨,ord; it is related to (4.1.8) by

(, )ordπ = v(U∗)−1 · (, )〈,〉ordU∗,W,r
. (4.1.10)
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Proof This follows by chasing the definitions. #�
By applying case 2 of Lemma 4.1.3 as in (4.1.4), corrected by a factor

pr [F :Q],23 we obtain from (4.1.9) pairings

〈〈, 〉〉U p∗ ,W,r : H1(X∗,U p∗ ,r ,W )⊗Zp H1(X∗,U p∗ ,r ,W
∨)→ �G∗,U p∗ ,r (1)

x ⊗ y �→ pr [F :Q] ∑

t∈TG∗,0/TG∗,r

〈x, y〉ord
U p∗ ,W,r

(4.1.11)

Lemma 4.1.5 The parings (4.1.11) satisfy 〈〈xr T, yr 〉〉W,r = 〈〈xr , yr T ι〉〉U p∗ ,W,r

for all T ∈H ord
G,r and all xr ∈ Hd(X∗,U p∗ ,r ,W ), yr ∈ Hd(X∗,U p∗ ,r ,W

∨).
For z ∈ MG∗,W , denote by zr its image in MG∗,W ,r := Hd(X∗,U p∗ ,r ,W )ord.

The pairing

〈〈 , 〉〉�,U p∗ ,W : MG∗,U p∗ ,W ⊗H ord
G

M ι

G∗,U p∗ ,W ∨ → �G∗,U p∗ (d)⊗ L

〈〈x, yι〉〉�,U p∗ ,W := lim
r
〈〈xr , yι

r 〉〉U p∗ ,W,r
(4.1.12)

is well-defined.

The above construction is a minor variation on the one of [41, § 2.2.4], to
which we refer for the proof of the lemma. As usual, when W = Qp we shall
omit it from the notation.

Lemma 4.1.6 The diagram

MG∗,U p∗ ,W ⊗H ◦
G∗ M ι

G∗,U p∗ ,W ∨
〈〈 , 〉〉

�,U
p∗ ,W

�G∗,U p∗ (d)⊗ L

MG∗,U p∗ ⊗H ◦
G∗ M ι

G∗,U p∗

〈〈 , 〉〉
�,U

p∗

jW⊗ jW∨

�G∗,U p∗ (d)⊗ L ,

∼=

where the left vertical map comes from Proposition 3.1.2.2 and the right ver-
tical map is [t] �→ σ−1W (t)[t], is commutative.

Proof For simplicity we write down the proof for the group G∗ = G and
we drop the subscripts U p. Poincaré duality and the pairings 〈 , 〉W preserve
integral structures up to p−|W |. Then by construction it suffices to show the
identity

〈 jW,r (x), jW∨,r (y)〉ordW ≡ 〈x, y〉ord (mod pr−|W |OL)

23 This factor accounts for the ‘K0(pr )’-part of the level.
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for all r ≥ 1 and x , y in Hd(Xr ,Zp).
By definition in (3.1.8), we have

jW,r (x) = x ⊗ ζ ⊗ ζ ∗,

where ζr ∈ W ◦,N0/pr and ζ ∗r ∈ W ◦
N0

/pr are elements pairing to 1; we denote

by ζ∨r , ζ∨,∗r the analogous elements for jW∨,r . Then we need to show that

〈(x ⊗ ζr ⊗ ζ ∗r )word
a , y ⊗ ζ∨r ⊗ ζ∨∗r 〉 = 〈x, y〉.

By the definition of word
a in Proposition A.2.1, this reduces to the identity

〈ζrw0, ζ
∨
r 〉 · 〈ζ ∗r w0, ζ

∨,∗
r 〉 = 〈ζr , ζ

∗
r 〉 · 〈ζ∨r , ζ∨,∗r 〉 = 1,

which can be immediately verified using an explicit model for the pairing such
as given in (A.4.2). #�
4.1.8 Dualities over Hida families

Let X be an irreducible component of E ord
K p . By Proposition 3.1.7, the map

E ord
K p → Spec�Qp is étale in a neighbourhood X ′ of X cl, hence we may

apply case 1 of Lemma 4.1.3 to deduce from (4.1.12) a pairing

〈〈 , 〉〉K pord : MK pord ⊗OX ′ M
ι
K p ′ → OX ′(1). (4.1.13)

We summarise the situation.

Proposition 4.1.7 (Duality). LetX (5) ⊃X cl be the intersection of the subset
X (4) of Theorem 3.3.10 with the locus where the map X → Spec�Qp is
étale. There exist

– a perfect, G E -equivariant, skew-hermtian pairing

M
H ′�
K p ′ ⊗OX (5) M

H ′�,ι

K p ′ → OX (5) (1). (4.1.14)

induced from (4.1.13);
– a perfect, G E -equivariant, skew-hermtian pairing

V ⊗X (5) V ι → OX (5) (1).. (4.1.15)

– a perfect pairing

(( , )) := v(K p ′)−1 · ( , )〈〈,〉〉K p ′ : �K p ′
H ′�
⊗OX (5) (�

K p ′
H ′�

)ι → OX (5) ,

(4.1.16)
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where ( , )〈〈,〉〉K p ′ is deduced from (4.1.14), (4.1.15) and the isomorphism
of Proposition 3.3.8.2 via Construction 4.1.2.

Proof Observe that the natural map

(M
H ′�
K p ′)∗ → ((MK p ′)H ′�)

∗ = (M ∗
K p ′)H ′�

(where ∗ denotesOX (5)-dual) is an isomorphism; as (4.1.13) is equivariant for
the action of the full Hecke algebra, this implies that its restriction (4.1.14) is
perfect. It is skew-hermitian by Lemma 4.1.5 and the fact that the Poincaré
pairing (4.1.2), when W is trivial, is skew-symmetric.

We find the pairing (4.1.15) by specialising (4.1.14) to K p ′ = K p, and the
pairing (4.1.16) as described. #�
4.1.9 Specialisations

We describe the specialisation of the pairing ((, )) just constructed.
For each algebraic representation W of (G × H), denote by

X cl,W
r :=X ∩ E cl,W

K p,r ,

the set of classical points of weight W (omitted from the notation when W =
Qp) and level r . Denote by a subscript ‘W, r ’ the pullbacks of sheaves or
global sections fromX (5) toX cl,W

r (which is a finite étale scheme over Qp).
We let

VW,r := �(X cl,W
r ,VW,r ), �

K p ′,ord
H ′�,W,r := �(X cl,W

r ,�
K p ′,ord
H ′�

),

M
H ′�
K p ′,W,r := �(X cl,W

r ,M
H ′�
K p ′) = H1(Z K p ′,r ,W )ord,H

′
� ,

where the last equality is by Proposition 3.1.2.3. We denote

(( , ))W,r := v(K p ′)−1 · ( , )〈〈,〉〉K p ′,W,r
: �K p ′,ord

H ′�,W,r ×�
K p ′,ord,ι
H ′�,W,r → O(X cl,W

r ).

Proposition 4.1.8 Let f1, respectively f2 be global24 sections of �K p ′,ord
H ′�

=
Hom OX (5) [G F,E ](M

H ′�
K p ′,V ), respectively (�

K p ′,ord
H ′�

)ι. Let

f1,W,r : M
H ′�
K p ′,W,r → VW,r , f2,W,r : (M

H ′�
K p ′,W,r )

ι → V ι
W,r

24 The same statements hold with some extra notational burden if f1, f2 are only defined over
an open subset of X (5).
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be O
X cl,W

r
[G F,E ]-linear maps.

Let x ∈X cl,W
r , π := π(x) and let

f1,x : H1(Z K p ′,r ,W )→ Vπ , f2,x : H1(Z K p ′,r ,W
∨)→ Vπ∨

be Qp(x)[G F,E ]-linear maps.
The following hold.

1. Suppose that for i = 1, 2, the map fi,W,r arises as the specialisation of fi .
Then

(( f1, f2))|X cl,W
r

= (( f1,W,r , f2,W,r ))W,r in O(X cl,W
r ).

2. Suppose that for i = 1, 2, the map fi,x factors through the projection

p? : H1(Z K p ′,r ,W
?)→ H1(Z K p ′,r ,W

?)ordH ′�
∼= H1(Z K p ′,r ,W )ord,H

′
�

= M
H ′�
K p ′,W,r ,

where ? = ∅ if i = 1, ? = ∨ if i = 2; and that fi,x coincides with the
specialisation of fi,W,r at x. Then

(( f1, f2))W,r (x) = ( f1,x , f2,x )
ord
π = dim W · (word

a f1, f2)π in Qp(x).
(4.1.17)

Proof We simplify the notation by omitting the superscripts H ′� and subscripts
K p ′; moreover we ignore the normalisations v(K p ′)−1 that are present in all
of the pairings to be compared.

Part 1 follows from the definition (4.1.12) if W = Qp, and similarly we
can also identify (( , ))W,r with the restriction to X cl,W

r of the pairing on
functions on MW deduced from 〈〈 , 〉〉W via Construction 4.1.2. By Lemma
4.1.6 this implies that the desired statement holds for all W .

For Part 2, let HW,r := O(X cl,W
r ). First notice that, by the construction of

case 1 of Lemma 4.1.3, the diagram of HW,r -modules

Hom HW,r (M ι
W,r , HW,r (1))Qp

u〈〈,〉〉W,r
MW,r

Hom (M ι
W,r,�W,r

,�W,r (1))
u〈〈,〉〉�,W,r

MW,r

is commutative.
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On the other hand, let x ∈ X W,r
cl and let αx be the associated character of

T+. By definition in (4.1.11), the pairing 〈〈, 〉〉�,W specialises, on MW,r |x ⊗
M ι

W,r |x , to

(x, y) �→
∑

t∈T 0/T r

〈x, t y〉ord
U p∗ ,W,r

[t−1](x) =
∑

t∈T 0/T r

αx (t)〈x, y〉ord
U p∗ ,W,r

α−1x (t)

= pr [F :Q]|T 0/T r | · 〈x, y〉ord
U p∗ ,W,r

.

It follows that u〈〈,〉〉W,r specialises at x to p−r [F :Q]|T 0/T r |−1u〈,〉′W,r
, hence that

the specialisation of ((, ))(x) = v(K p ′)−1(, )〈〈,〉〉W,r (x) is

(, )〈,〉ordW,r

pr [F :Q]|T 0/T r |v(K p ′)

= pr [F :Q] · v(K p ′K 1
1 (pr )p)(, )

ord
π

pr [F :Q][v(K p ′K 1
1 (pr )p)/v(K p ′K0(p)r

p)]v(K p ′K0(pr )p)

= (, )ordπ ,

where we have used |T 0/T r | = v(K p ′K0(pr )p)/v(K p ′K 1
1 (p)r

p) (by (4.1.5))
and (4.1.10).

This establishes the first equality of (4.1.17); the second one is just a
reminder of (4.1.8). #�

4.2 Local toric pairings

Let F be a non-archimedean local field, E a quadratic étale algebra over F
with associated character η : F× → {±1}, B a quaternion algebra over F ,
G = B×, H = E×, H ′ = H/F×, and suppose given an embedding H ↪→ G

4.2.1 Definition of the pairing

Let π be a smooth irreducible representation of G over a finite extension L
of Qp, with a central character ω : F× → L×. Let χ : E× → L× a character
such that χ |F× · ω = 1. We identify χ with a representation Lχ of E× on
L , and when more precision is needed we denote by eχ the basis element
corresponding to the character χ in Lχ . Let � := π ⊗ χ , a representation of
(G×H)′ = (G×H)/F× over L .We assume thatπ is essentially unitarisable,
that is that for any embedding ι : L ↪→ C, a twist of ιπ is isomorphic to the
space of smooth vectors of a unitary representations. (This holds automatically
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if π arises as the local component of a cuspidal automorphic representation
over L .) Let π∨ be the smooth dual, �∨ := π∨ ⊗ χ−1

Assume from now on that the modified local sign ε(�) = (1.2.5) equals
+1. Then, by the result of Tunnell and Saito mentioned in the introduction,
the space

�∗,H ′ := Hom H ′(�, L)

has dimension 1 over L . Moreover the choices of an invariant pairing ( , ) on
�⊗�∨ and a Haar measure dt on H′ give a generator

Q = Q( , ),dt ∈ �∗,H ′ ⊗L (�∨)∗,H ′

defined by the absolutely convergent integral

Q(,)( f1, f2) := L (Vv, 0)
−1 · ι−1

∫

E×/F×
(ι�(t) f1, ι f2) dt; (4.2.1)

for any ι : L ↪→ C; here L (Vv, 0) = (1.2.7).
Recall also from the introduction (1.2.8) that

Qdt

(
f1 ⊗ f2
f3 ⊗ f4

)

:= Q(,),dt ( f1, f2)

( f3, f4)
(4.2.2)

is independent of ( , ) whenever it is defined.
We study the pairing, or some of its variations, in a few different contexts.

4.2.2 Interpretation in the case E = F ⊕ F

In this case G = GL2(F), and the integral (4.2.1) has an interpretation as
product of zeta integrals. Let K (π) and K (π∨) be Kirillov models over L
as in [32, § 2.3]. By [32, Lemma 2.3.2], the L-line of invariant pairings on
K (π)×K (π∨) is generated by an element ( , ) such that, for each ι : L ↪→ C,
we have

ι( f, f ∨) = ζ(2)

L(1, π × π∨)
·
∫

F×
ι f (y)ι f ∨(y)d×y, (4.2.3)

where the integral is absolutely convergent (as ιπ is essentially unitarisable)
and d×y is any L-valued Haar measure. Identify E× with the diagonal torus in
GL2(F) and write χ = (χ1, χ2) according to the decomposition E = F ⊕ F ;
noting that χ2 = ω−1χ1 and π = π∨ ⊗ ω−1, we indentify Q(,),dt with

ιQ(,),dt ( f ⊗ eχ , f ∨ ⊗ eχ−1)
.= L(1/2, ιπE ⊗ ιχ)−1
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∫

E×/F×
ιχ(t)(ιπ(t) f, ι f ∨)|t |s dt |s=0

= L(1/2, ιπ ⊗ ιχ1)
−1
∫

F×
ι f ∨(t)ιχ1(t)|t |sd×t |s=0

· L(1/2, ιπ ⊗ ιχ1)
−1
∫

F×
ι f ∨(y)ιχ1(y)|y|sd×y|s=0

= (L(1/2, ιπ ⊗ ιχ1)
−1 · I (ι f, ιχ1, 1/2))

· (L(1/2, π ⊗ ιχ1)
−1 · I (ι f ∨, ιχ1, 1/2)), (4.2.4)

where I (·, ·, 1/2) is the zeta integral of [34, § 5.2] for GL2(F) × GL1(F),
and

.= denotes an equality up to constants in L× depending on the choices of
measures.

4.2.3 Special line in the unramified case

We study the first one in a short list of special cases in which there are ‘canon-
ical’ lines in �, �∨, on which the value of the pairings Q can be explicitly
computed.

Lemma 4.2.1 [105, Lemme 14]. Suppose that B is split, E/F is unramified,
and both π and χ are unramified. Let K ⊂ (G × E×)/F× be a maximal
compact subgroup. Then

Q( , ),dt (v,w) = vol(O×E /O×F , dt) · (v,w)

for all v, respectively w, in the lines �K , respectively (�∨)K .

4.2.4 Special line when B is nonsplit

Suppose now that B is nonsplit and that � is an irreducible representation of
(G× E×)/F× as above. Note that� is finite-dimensional and H ′ is compact,
so that �∨ = �∗ and the natural maps �H ′ → �H ′ (= H ′-coinvariants) and
�∗,H ′ → (�H ′)∗ are isomorphisms.Moreover the non-degenerate pairing ( , )
restricts to a non-degenerate pairing on �H ′ ⊗ �∨H ′ . Then we may compare

the restrictions of the pairings Q( , ) of ( , ) to the line �H ′ ⊗�∨,H ′ .

Lemma 4.2.2 In the situation of the previous paragraph, we have

Q( , ),dt = L (V(π,χ),v, 0)
−1 · vol(E×/F×, dt) · ( , )

as elements of (�H ′)∗ ⊗ (�∨,H ′)∗.
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Proof This follows from the definition in (4.2.1), since in this case the inte-
gration over the compact set E×/F× converges. #�

4.3 Ordinary toric pairings

We define a variant for ordinary forms of the pairing Q.

4.3.1 Definition of the ordinary paring

Let � = π ⊗ χ be an ordinary automorphic representation of (G × H)′(A)

over L . When referring to local objects considered in the previous paragraphs
or products thereof, we append subscripts as appropriate.

For each v|p, let

μ+v : E×v → L×

be the character by which E×v (or equivalently
∏

w|v Gab
Ew

) acts on V+π,v ⊗ χv ,
and let jv ∈ Ev be the purely imaginary element fixed in (A.1.2). Define

μ+(j) :=
∏

v|p
μ+v (jv).

For measures dtv = dtv,p on H ′v , dtv,∞ on H ′v,∞ (the latter a merely formal
notion as in the introduction), define

vol◦(H ′v, dtv) :=
vol(O×E,v/O

×
F,v, dtv)

evL(1, ηv)−1
, vol◦(H ′v,∞, dtv,∞)

:= vol(H ′v,∞, dtv,∞)

2[Fv :Qp] ,

vol◦(H ′p∞, dtp∞) :=
∏

v|p
vol◦(H ′v, dtv) · vol◦(H ′v,∞, dtv,∞). (4.3.1)

The denominators in the right-hand sides are the volumes of vol(O×E,v/O
×
F,v),

respectivelyC×/R×, for the ratio of (rational normalisations of) selfdual mea-
sures, cf. [107, § 1.6.2] and the proof of Proposition A.3.4.

Definition 4.3.1 Let dt = dt p∞dtp∞ be a decomposition of the adèlic mea-
sure dt specified in (1.2.9). Then we define:
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– for each f1,p∞, f3,p∞ ∈ �ord
p∞, f2,p∞, f4,p∞ ∈ �

∨,ord
p∞ with f3,p∞ ⊗

f ord4,p∞ = 0,

Qord
dtp∞

(
f1,p∞ ⊗ f2,p∞
f3,p∞ ⊗ f4,p∞

)

:= μ+(j)vol◦(H ′p∞, dtp∞) · f1,p∞ ⊗ f2,p∞
f3,p∞ ⊗ f4,p∞

.

(4.3.2)
– for each f1, f3 ∈ �ord, f2, f4 ∈ �∨,ord with ( f3, f4)ord = 0,

Qord
(

f1 ⊗ f2
f3 ⊗ f4

)

:= Q p∞
dt p∞

(
f p∞
1 ⊗ f p∞

2

f p∞
3 ⊗ f p∞

4

)

·Qord
dtp∞

(
f1,p∞ ⊗ f2,p∞
f3,p∞ ⊗ f4,p∞

)

.

(4.3.3)

The normalisation at p∞ is justified by the clean formula of Proposition
4.3.4 below.

Remark 4.3.2 Suppose that � is locally distinguished, so that as explained in
the introduction the functional Qdt is nonzero. Then the functional Qord

dt is
also nonzero.

4.3.2 Decomposition

Fix a decomposition dt = ∏v�p∞ dtvdtp∞ such that for all but finitely many

v, vol(O×E,v/O
×
F,v) = 1. Let�′ be a finite set of finite places of F disjoint from

� and Sp and containing the other places of ramification of�, and those such
that vol(O×E,v/O

×
F,v) = 1. Let K p ⊂ (G × H)′(Ap∞) be an open compact

subgroup that is maximal away from S := � ∪ �′ and such that �Kv
v = �v

for v ∈ �.

Lemma 4.3.3 For all f1, f3 ∈ �
K p,ord
H ′�

, f2, f4 ∈ �
∨,K p,ord
H ′�

with ( f3, f4)ord =
0, we have

Qord
(

f1 ⊗ f2
f3 ⊗ f4

)

=
∏

v∈�′
Qv,dtv

(
f1,v ⊗ f2,v
f3,v ⊗ f4,v

)

·
∏

v∈�
vol(E×v /F×v , dt)L (V(π,χ),v, 0)

−1 f1,v ⊗ f2,v
f3,v ⊗ f4,v

· f Sp∞
1 ⊗ f Sp∞

2

f Sp∞
3 ⊗ f Sp∞

4

· Qord
p∞,dtp∞

(
f1,p∞ ⊗ f2,p∞
f3,p∞ ⊗ f4,p∞

)

.

(4.3.4)

Proof This follows from the definitions and the results of Sect. 4.2. #�
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4.3.3 Relation to between the toric pairing and its ordinary variant

We gather the conclusion of the computations from the appendix.

Proposition 4.3.4 Let � = π⊗χ = �∞⊗W be an ordinary representation
of (G × H)′(A). Let word

a and γ ord
H ′ be the operators defined in Propositions

A.2.1 and A.2.4. Let ep(V(π,χ)) = (1.4.6) be the interpolation factor of the
p-adic L-function. For all f1, f3 ∈ �ord, f2, f4 ∈ �ord with ( f3, f4)ord = 0,
we have

Q

(
γ ord

H ′ ( f1)⊗ γ ord
H ′ ( f2)

word
a ( f3)⊗ f4

)

= ep(V(π,χ)) · dim W · Qord
(

f1 ⊗ f2
f3 ⊗ f4

)

.

Proof There is a decomposition Qord
p∞,dtp∞ =

∏
v|p Qord

v,dtv
·∏v|p Qord

v,∞,dtv,∞ ,
whose terms are defined in Sects. A.3–A.4. The only point worth stressing is
that if μ+v , respectively μ+v,∞ is the character defined in Sect. A.3.3,25 respec-
tively Sect. A.4.3, then the decomposition μ+ = μ+,smμ+,alg of μ+ into a
product of a smooth and an algebraic character is given by μ+,sm =∏v|p μ+v ,
μ+,alg =∏v|p μ+v,∞.

Then the result follows from Propositions A.3.4 and A.4.3. #�

4.4 Interpolation of the toric pairings

We interpolate the pairings Qord
dt along Hida families

4.4.1 Interpolation of the local pairings

We use the same notation F, E of Sect. 4.2.

Lemma 4.4.1 Let X be a scheme over Q and let r ′ = (r, N ) be a Weil–
Deligne representation of WF on a rank-2 locally free sheaf over X . Suppose
that X contains a dense subset X cl such that r ′x is pure for all x ∈X cl. Let
ad(r ′) be the rank-3 adjoint representation. Then there exist an open subset
X ′′ ⊂X containing X cl and functions

L(0, r ′)−1, L(1, r ′, ad) ∈ O(X ′′)

such that for every x ∈ X ′ we have L(0, r ′)−1(x) = L(0, r ′x )−1 and
L(1, r ′, ad)(x) = L(1, ad(r ′x )).

25 Note that despite the similar notation, the character μv is defined using the Weil–Deligne
representations rather than the continuous Galois representations.
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Proof By [34, § 5.1], there exist an open set X ′′′ ⊂ X containing X cl

and functions L(0, r ′)−1, respectively L(1, r ′, ad)−1, in O(X ′′′) interpo-
lating L(0, r ′x )−1, respectively L(1, ad(r ′x ))−1, for all x ∈ X ′. By purity,
L(1, r, ad)−1 does not vanish onX cl, hence it is invertible in an open neigh-
bourhoodX ′′ of X cl in X ′′′. #�

LetX be an integral scheme,F× be aK ×
X -module, thenwe defineF×,−1

to be the KX -module such that for each open U ⊂X ,

F×,−1(U ) := { f −1 | f ∈ F×(U )}

withK ×
X -action given by a · f −1 = (a−1 f )−1.

Proposition 4.4.2 Consider the situation of Lemma 4.4.1. Let

π = π(r ′)

be the OX [GL2(F)]-module attached to r ′ by the local Langlands correspon-
dence in families of [34], let ω : F× → O(X )× be its central character,
and let χ : E× → O(X )× be a character such that ω · χ |F× = 1. Let
π∨ := π(ρ∗(1)) and let � = π ⊗ χ , �∨ = π∨ ⊗ χ−1. Let (�⊗O×X

�∨)×

be the O×X -submodule of those f3 ⊗ f4 such that ( f3, f4) = 0.
Then there exist: an open subset X ′ ⊂ X containing X cl; letting O :=

OX ′ , K := KX ′ , an O×-submodule (� ⊗O×X
�∨)× specialising at all

z ∈X cl to the space of f3,z ⊗ f4,z such that ( f3,z, f4,z)z = 0; and a map of
O-modules

Qdt : (�⊗O �∨)⊗O× (�⊗O× �∨)×,−1 → K

satisfying the following properties:

1. For all t1, t2 ∈ E×/F×, g ∈ (GL2(F)× E×)/F ,

Qdt

(
�(t1) f1 ⊗�∨(t2) f2)

�(g) f3 ⊗ f4

)

= Qdt

(
f1 ⊗ f2

f3 ⊗�∨(g−1) f4

)

;

2. For all x ∈X cl,

Qdt |x = Qdt ,

where Qdt is the paring on �x ⊗�∨x of (4.2.2).
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Proof For each x ∈ X cl, πx corresponds to a pure Weil–Deligne represen-
tation under local Langlands, hence it is essentially unitarisable (and in fact
tempered, see [99, Lemma 1.4 (3)]). Then by [34, Lemma 5.2.5] there is an
open neighbourhood X ′ of X cl in X and an invariant pairing overX ′

( , ) : π ⊗ π∨ → OX ′ (4.4.1)

specialising to the pairing ( , )x defined by (4.2.3) at all x ∈ X cl. It induces
an invariant pairing �⊗�∨ → OX ′ still denoted by ( , ).

By Lemma 4.4.1, up to possibly shrinking X ′, we have regular functions
on X ′ interpolating z �→ L(1/2, πz,E ⊗ χz)

−1 = L(0, rz|W ′
E
⊗ χz)

−1 and
x �→ L(1, πx , ad) = L(1, r ′x , ad).

If E/F is split, [34, Proposition 5.2.4] applied to (4.2.4) gives an element
Q(,),dt : �E× ⊗�∨E× → OX ′ interpolating Q(,)x for x ∈X cl, and we define

Qdt

(
f1 ⊗ f2
f3 ⊗ f4

)

:= Q(,),dt ( f1, f2)

( f3, f4)
(4.4.2)

If E/F is nonsplit, by the previous discussion we can interpolate all terms
occurring in the definition (4.2.1) (note that the integral there is just a finite
sum), to obtain a pairingQ(,) overX ′ interpolatingQ(,)x for x ∈X cl. Then
we again defineQ by (4.4.2). #�
4.4.2 Product of local pairings

We consider the global situation, resuming with the setup of Sects. 3.3–4.1.
Let � := �

K p ′,ord
H ′�

overX (5). Recall that we have a decomposition

� ∼= (πG,�′(VG)⊗ χH,univ,�′)⊗OX (5) �
K p ′,S,ord
H ′�

(4.4.3)

from Theorem 3.3.10.
Let (�⊗K ×

X (5)
�ι)× ⊂ �⊗K ×

X (5)
�ι be the O×

X (5)-submodule of sections

f3⊗O×
X (5)

f4 such that f3⊗ f4 = 0 and ( f3,v, f4,v)v = 0 for each the pairings

(, )v = (4.4.1), v ∈ �′.

Theorem 4.4.3 Let � := �
K p ′,ord
H ′�

and X (5) be as in Proposition 4.1.7,

and let (� ⊗KX (5) �ι)× ⊂ � ⊗KX (5) �ι be the submodule defined above.

Then there exist an open subset X (6) ⊂ X (5) containing X cl and, letting
O = OX (6) , K := KX (6) , a map of O×-modules

Q : (�⊗O �ι)⊗O× (�⊗O× �ι)×,−1 → KX
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satisfying:

1. For any t1, t2 ∈ E×
�′/F×

�′ ⊂ (GL2(F�′)× E×
�′)/F×

�′ , any h ∈HS,K�′ and
any section

( f1 ⊗ f2)⊗ ( f3 ⊗ f4)
−1 of (�⊗K �ι)⊗K × (�⊗K × �ι)×,−1,

we have

Q

(
��′(t1) f1 ⊗�ι

�′(t2) f2
�(h) f3 ⊗ f4

)

= Q

(
f1 ⊗ f2

f3 ⊗�ι(h) f4

)

;

in the left-hand side, ��′ , respectively �ι
�′ denote the actions of the Hecke

algebras at S on �, respectively �ι.
2. For all x ∈X cl,

Qdt |x = Qord,

where Qord is the restriction of the pairing on �
∨,ord
x ⊗�

∨,ord
x of Definition

4.3.1.

Proof By (4.3.2), (4.3.3), (4.3.4), and (4.4.3), we need to interpolate:

– the terms L (V(π,χ),v for v ∈ �: this is Lemma 4.4.1;
– the characters μ+v for v|p: this follows form the existence of the filtration
(3.2.4) over an open subset ofX .

– the term Qdt,�′ := ∏v∈�′ Qdt,v , According to the proof of [34, Theorem
4.4.1], the representation πG,�′(VG) is the maximal torsion-free quotient
of ⊗v∈�′πG,v(VG). For sections fi,�′ that are images of ⊗v∈�′ fi,v , with
fi,v sections of πG,v(VG)⊗χH,univ,v if i = 1, 3, or of πG,v(V

ι
G)⊗χ−1H,univ,v

if i = 2, 4, let

Q�′

(
f1,�′ ⊗ f2,�′

f3,�′ ⊗ f4,�′

)

:=
∏

v∈�′
Qv

(
f1,v ⊗ f2,v
f3,v ⊗ f4,v

)

,

where the factors in the right-hand side are provided by Proposition 4.4.2.
This is well-defined independently of the choices of fi,v as K is torsion-
free.

This completes the interpolation of (4.3.3) into a function Q, that satisfies
properties 1 and 2 by construction and the corresponding properties from
Proposition 4.4.2. #�
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5 Selmer sheaves and p-adic heights

In this section we present the theory of Selmer complexes and p-adic heights
needed in the rest of the paper. The foundational material is taken from the
book of Nekovář [81].

5.1 Continuous cohomology

Let (R◦,m) be a complete Noetherian local ring, let G be a topological group.

5.1.1 Continuous cochains for (ind-) admissible R[G]-modules

Let M be an R◦[G]-module.We say that M is admissible of finite type if it is of
finite type as an R◦-module and the actionG×M → M is continuous (when M
is given them-adic topology).We say that M is ind-admissible if M =⋃α Mα

where {Mα} is the set of finite-type admissible R◦[G]-submodules of M .
The complex of continuous cochains of M is denoted by C•cont(G, M);

it is defined in the usual way [81, (3.4.1)] when M is admissible of finite
type, and by Ci

cont(G, M) := lim−→α
Ci
cont(G, Mα)when we have a presentation

M = ⋃α Mα as above. The image of C•cont(G, M) in the derived category of
D(RMod) of R◦-modules is denoted by

R�(G, M)

and its cohomology groups by

Hi (G, M)

(we omit the subscript ‘cont’ as we will only be working with continuous
cohomology).

5.1.2 Localisation

Let

R = R◦[S−1]

for some multiplicative subset S ⊂ R◦, and let M be an R[G]-module. We
say that M is ind-admissible if it is ind-admissible as an R◦[G]-module, and
that it is of finite type if it is of finite type as an R-module. Suppose that
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M := M◦ ⊗R◦ R for an ind-admissible R◦[G]-module M◦. Then M is ind-
admissible as an R◦[G]-module and there is a canonical isomorphism

C•cont(G, M) ∼= C•cont(G, M◦)⊗R◦ R (5.1.1)

([81, (3.7.4)]).

Remark 5.1.1 Let

C = CR◦

be the category of schemes isomorphic to open subschemes of Spec R◦, with
maps being open immersions. It follows from the previous paragraph that, for
any object X of C , the condition of ind-admissibility is defined for all qua-
sicoherent OX [G]-modules, and the functors R�(G,−) are well-defined on
ind-admissible OX [G]-modules. Moreover, both the ind-admissibility condi-
tion and the functors R�(G,−) are compatible with restriction along open
immersions in C .

In the following,wewill not further comment on the generalisation indicated
in the previous remark when referring to sources only considering R◦[G]-
modules.

5.1.3 Completed product

For i = 1, 2, let R◦i be complete noetherian local rings, and let R◦ := R◦1⊗̂R◦2.
We have a functor

×̂ : CR◦1 × CR◦2 → CR◦ (5.1.2)

defined on objects by Spec R◦1[1/ f1]×̂Spec R◦1[1/ f2] := Spec R◦1⊗̂R◦2[1/ f1⊗
1, 1/1⊗ f2] and glueing.

5.1.4 Notation

Throughout the rest of this section, X will denote an object of CR◦ . If A =
OX ,OX [G], we denote by D(AMod) the derived category ofA -moduels. We
use sub- or superscripts

ft, ind-adm,+,−, b, [a, b], perf,

to denote the full subcategory of objects quasi-isomorphic to complexes ofA -
modules that are respectively termwise of finite type, termwise ind-admissible,
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bounded below, bounded above, bounded, concentrated in degrees [a, b],
bounded, perfect (= bounded and termwise projective and of finite type).

Proposition 5.1.2 [81, (3.5.6)]. The functor R�(G,−) can be extended to
a functor on the category of bounded-below complexes of ind-admissible
OX [G]-modules, with values in bounded-below complexes of OX -modules
[81, (3.4.1.3), (3.5.1.1)]. It descends to an exact functor

R�(G,−) : D+(ind-admOX [G] Mod)→ D+(OXMod).

5.1.5 Base-change

Suppose that R � R′ = R/I is a surjective map of rings. Let j : R◦ → R =
R◦[S −1] be the natural map and let I ◦ := j−1(I ). Then R◦′ := R◦/I ◦ is
also complete local Noetherian, and we may write R′ = R◦′[S ′]−1 where
S ′ is the image of S in R◦′. Let M ′ be an ind-admissible R′-module, then
C•cont(G, M ′) is the same whether we consider M ′ as an R′-module or as an
R-module: in the special case R = R◦ this follows from the fact that the
maximal ideal of R◦′ is the image of the maximal ideal of R◦, so that the m-
adic and m′-adic topologies on finitely generated R◦′-modules coincide; the
general case follows from the special case by localisation (5.1.1).

More generally, if Y ⊂ X is a closed subset, the functor R�(G,−)

on OY [G]-modules coincides with the restriction of the functor on OX [G]-
modules of the same name.

Proposition 5.1.3 Let M be an ind-admissibleOX [G]-module and let N be an
OX -module of finite projective dimension. Then there is a natural isomorphism
in Db(OXMod)

R�(G, M)
L⊗OX N ∼= R�(G, M

L⊗OX N ).

Proof Let P• be a finite projective resolution of N . The natural map of com-
plexes of OX -modules

C•cont(G, M)⊗OX P• → C•cont(G, M ⊗OX P•)

is an isomorphism by [81, (3.4.4)].26 The desired result follows from the
definition of derived tensor product. #�

The proposition applies when N = OY with Y ⊂ X a local complete
intersection, or when X is regular and N is any coherent OX -module. We
highlight the following case.

26 In loc. cit., the ring denoted by R is our R◦, but as our X is open in Spec R◦, theOX -modules
Pn are also flat as R◦-modules and the cited result applies.
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Corollary 5.1.4 Let M be an ind-admissible OX [G]-module that is flat as an
OX -module, and let x ∈ X be a nonsingular point. Then there is an isomor-
phism in Db(κ(x)Mod)

R�(G, M)
L⊗OX κ(x) ∼= R�(G, M ⊗OX κ(x))

hence a second-quadrant spectral sequence

Tor−p(Hq(G, M), κ(x))⇒ Hq−p(G, M ⊗OX κ(x)).

Proof After possibly localising at x , we may assume that X = Spec R is the
spectrum of a local ring, which by assumption will be regular. Then κ(x) has
finite projective dimension over R, and the result follows from the previous
proposition. #�

5.1.6 Continuous cohomology as derived functor

For i = 0, 1, the functors M �→ Hi (G, M) on the category of ind-admissible
R-modules coincidewith the i th derived functors of M �→ MG [81, (3.6.2)(v)].

5.2 Specialisations

From here on we further assume that R◦ has finite residue field of character-
istic p.

5.2.1 Finiteness conditions

Let G be a profinite group. We consider the condition

(F) Hi (G, M) is finite for all finite discrete Fp[G]-modules and all i ≥ 0

and define the p-cohomological dimension of G to be

cdp(G) := sup {i : ∃ a finite discrete Fp[G]-module M with Hi (G, M) = 0}.

Lemma 5.2.1 If G satisfies (F) then the cohomology groups of ind-admissible
OX [G]-modules of finite type are OX -modules of finite type [81, (4.2.5),
(4.2.10)]. The cohomology of any ind-admissible OX [G]-module vanishes in
degrees > cdp(G) [81, (4.26)].

When E is a number field, S is a finite set of places of E and G = G E,S ,
condition (F) is satisfied and cdp(G) = 3. When Ew is a local field and

123



The universal p-adic Gross–Zagier formula 593

G = G Ew , condition (F) is satisfied and cdp(G) = 2. In the latter case we use
the notation Hi (Ew, M) for Hi (G, M).

5.2.2 Projective limits, specialisations

Wegive two results on the compatibility ofG-cohomologywith other functors.

Lemma 5.2.2 Let G be a profinite group satisfying (F) and let M = lim←−n
Mn

be the limit of a countable projective system of admissible R◦-modules of finite
type. Then for all i the natural map

Hi (G, M)→ lim←−
n

Hi (G, Mn)

is an isomorphism.

Proof In the special case Mn = M/mn M , it is shown in [81, Corollary 4.1.3]
that themap under consideration is surjectivewith kernel lim(1)

n Hi−1(G, Mn);
this vanishes since by (F) those cohomology groups are finite, hence the projec-
tive system they form satisfies the Mittag-Leffler condition. The general case
follows from applying the special case to M and the Mn = lim←−r

Mn/m
r Mn . #�

Proposition 5.2.3 Let G be a profinite group satisfying (F) and cdp(G) =
e <∞. Let M be an ind-admissible OX [G]-module of finite type. Let x ∈ X
be a nonsingular point, let i0 ≥ 0 and suppose that

Hi (G, M ⊗R κ(x)) = 0

for all i ≥ i0 + 1.

1. For all i ≥ i0+1, the support of the finitely generated R-module Hi (G, M)

is a proper closed subset not containing x.
2. The natural map

Hi0(G, M)⊗OX κ(x)→ Hi0(G, M ⊗R κ(x))

is an isomorphism.
3. Suppose further that i0 = 1, and that for y in some dense open subset of X,

dimκ(y) H1(G, M⊗κ(y)) = dimκ(x) H1(G, M⊗κ(x)). Then the natural
map

H0(G, M)⊗R κ(x)→ H0(G, M ⊗OX κ(x))

is an isomorphism.
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Proof ByNakayama’s lemmaand the vanishing assumption, thefirst statement
is equivalent to

Hi (G, M)⊗OX κ(x) ∼= Hi (G, M ⊗OX κ(x)). (5.2.1)

Therefore, for the proof of the first and second statements it is enough to prove
(5.2.1) for all i ≥ i0, which we do by decreasing induction on i .

For i ≥ e + 1 the result is automatic. In general, Corollary 5.1.4 gives a
second-quadrant spectral sequence

E p,q
2 = TorOX−p(Hq(G, M), κ(x))⇒ Hq−p(G, M ⊗OX κ(x)). (5.2.2)

By induction hypothesis, all terms on the diagonal q − p = i vanish except
possibly the one with p = 0, and the differentials with source and target
such term are 0. It follows that Hi (G, M ⊗OX κ(x)) = E0,i∞ = E0,i

2 =
Hi (G, M)⊗OX κ(x).
Finally, under the assumptions of part 3, the finitely generated R-module

H1(G, M) is locally free of constant rank in a neighbourhood of x . Hence in
the exact sequence

0→ H0(G, M)⊗R κ(x)→ H0(G, M ⊗OX κ(x))

→ TorOX
1 (H1(G, M), κ(x))

deduced from (5.2.2), the last term vanishes. #�

5.3 Selmer complexes and height pairings

As in the preceding subsection, let R◦ be a Noetherian local ring with finite
residue field of characteristic p, X an object of CR .

When Ew is a local field, we write R�(Ew,−) := R�(G Ew,−) and sim-
ilarly for its cohomology groups. For number fields, we will only use the
analogous shortened notation for Selmer groups.

5.3.1 Greenberg data

Let E be a number field, Sp a finite set of finite places of E containing those
above p. Fix for every w|p an embedding E ↪→ Ew inducing an embedding
Gw := G Ew ↪→ G E,Sp. If M is anOX [G E,Sp]-module, we denote by Mw the
module M considered as an OX [Gw]-module.

Definition 5.3.1 AGreenberg datum (M, (M+
w )w∈Sp) (often abusively abbre-

viated by M in what follows) over X consists of
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– an ind-admissibleOX [G E,Sp]-module M , finite and locally free as anOX -
module;

– for everyw ∈ Sp aGreenberg local condition, that is a short exact sequence

0→ M+
w

i+w→ Mw → M−
w → 0

of ind-admissibleOX [Gw]-modules, finite and locally free asOX -modules.

In this paper, at places w � p we will only consider the strict Greenberg
conditions M+

w = 0.

5.3.2 Selmer complexes

Given a Greenberg datum M = (M, (M+
w )w∈Sp), the Selmer complex

R̃� f (E, M)

is the image of the complex

Cone

⎛

⎝C•cont(G E,Sp, M)⊕
⊕

w∈Sp

C•cont(Ew, M+
w )

⊕wresw−i+w,∗−→
⊕

w∈Sp

C•cont(Ew, Mw)

⎞

⎠ [−1]

in D(ftOX
Mod). Its cohomology groups are denoted by H̃ i

f (E, M). We have an
exact triangle

R̃� f (E, M)→ R�(E, M)→⊕w∈SpR�(Ew, M−
w ). (5.3.1)

Proposition 5.3.2 The Selmer complex R̃� f (E, M) and all terms of (5.3.1)
belong to D[0,3]perf (OXMod).

Proof As in [81, Proposition 9.7.2 (ii)]. #�
From the triangle (5.3.1) we extract an exact sequence

0→ H0(G E,Sp, M)→
⊕

w∈Sp

H0(Ew, M−
w )→ H̃1

f (E, M)

→ H1
f (E, M)→ 0 (5.3.2)
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where the last term is the (Greenberg) Selmer group

H1
f (E, M) := Ker

⎛

⎝H1(G E,Sp, M)→
⊕

w∈Sp

H1(Ew, M−
w )

⎞

⎠ . (5.3.3)

5.3.3 Height pairings

For ? = ∅, ι, let M? = (M?, (M?,+
w )) be a strict Greenberg datum for G E,Sp

over X . Suppose given a perfect pairing of OX [G E,Sp]-modules

M ⊗OX M ι → OX (1) (5.3.4)

such that M+
w and M+,ι

w are exact orthogonal of each other. Let�F be a profinite
abelian group.

For every pair of Greenberg data M , M ι as above, there is a height pairing

hM : H̃1
f (E, M)⊗OX H̃1

f (E, M ι)→ OX ⊗̂�F (5.3.5)

constructed in [81, §11.1]. The following is a special case of [103, Appendix
C, Lemma 0.16].

Proposition 5.3.3 For each regular point x ∈ X and P1⊗P2 ∈ H̃1
f (E, M)⊗OX

H̃1
f (E, M ι), we have

hM⊗κ(x)(P1,x , P2,x ) = (hM(P1, P2))(x).

Venerucci has defined height pairings in an even more general context. Let
MX be a strictGreenberg datumover X as above, letY ⊂ X be a local complete
intersection, and let M?

Y be the restriction of M?
X . Let N

∗
Y/X be the conormal

sheaf of Y → X . Then there is a height pairing

hMY /MX : H̃1
f (E, MY )⊗OY H̃1

f (E, M ι
Y )→ N ∗

Y/X , (5.3.6)

constructed in [103, Appendix C, § 0.21].
We note its relation to (5.3.5) in a special case, and its symmetry properties

in a conjugate-self-dual case.

Proposition 5.3.4 The pairing (5.3.6) satisfies the following properties.

1. Let�F be a profinite abelian quotient of G E,Sp, let X = Y ×̂SpecQpSpecZp

��F�Qp (where ×̂ = (5.1.2)), and assume that M?
X = M?

Y ⊗Zp Zp��F�
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for ? = ∅, ι, where if ? = ∅ (respectively ? = ι) then G E,Sp acts on �F
through the tautological character (respectively its inverse). Then

hMY /MX = hMY = (5.3.5).

2. Suppose that there is an involution ι : X → X stabilising Y and such that
M ι

X = MX ⊗OX ,ι OX , M+,ι
X,w = M+

X,w ⊗OX ,ι OX .
Let ε, ε′ ∈ {±1}. Assume that the pairing (5.3.4) is ε-hermitian
(Sect. 4.1.1), that dY/X ι = ε′id on N ∗

Y/X , and that there is an OY -linear
isomorphism

c : H̃1
f (E, M ι

Y ) = H̃1
f (E, MY )

ι → H̃1
f (E, MY ).

Then the pairing

h�
MY /MX

: H̃1
f (E, MY )⊗OY H̃1

f (E, MY )→ N ∗
Y/X

(z, z′) �→ hMY /MX (z, cz′)
(5.3.7)

is εε′-symmetric.

In our main application in TheoremD, we have Y =X (or an open subset),
theHida family for (G×H)′; X =X , theHida family forG×Hcontaining X ;
and MY = V , MX = V , the corresponding universal G E -representations.
In that case, the height pairing hV /V  is simply 1/2 of the pairing hV of
Proposition 5.3.3.

Proof Part 1 follows from the construction. (We omit further details since,
by the remark preceding the present proof, we do not actually need it in this
paper). We prove the symmetry properties. Let I be the ideal sheaf of Y ; up
to restricting to some open subset of X we may assume that I is generated by
a regular sequence x = (x1, . . . , xr ). ThenN ∗

Y/X = I/I 2 is finite locally free

generated by ([x1], . . . , [xr ]). Let ∂i ∈ N = (I/I 2)∨ be the map ∂i ([x j ]) =
δi j . It suffices to show that hi := ∂i ◦ h is εε′-hermitian for all i . By [103,
Appendix C, Proposition 0.5], hi is identified with hMY /MXi

, where Xi =
VX ((x j ) j =I ) so that Y = VXi (xi ). Hence it suffices to prove the claim for
r = 1.

We argue similarly to [103, Proof of Corollary 10.10]. Assume thus r = 1,
write x in place of x1, and let K be the fraction field of X . By [81] and [103,
Appendix A, § 0.7] we have an ε-hermitian Cassels–Tate pairing

∪: H̃2
f (E, MX )OX−tors ⊗OX H̃2

f (E, M ι
X )OX−tors → K/OX ,
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and by [103, Appendix C, Proposition 0.17], we have a map

ix : H̃1
f (E, MY )→ H̃2

f (E, MX )[x]

such that hMY /MX coincides with

H̃1
f (E, MY )⊗ H̃1

f (E, M ι
Y )

ix⊗i ιx−→ H̃2
f (E, MX )[x] ⊗ H̃2

f (E, M ι
X )[x]

∪−→ x−1OX/OX
[·x2]−→ I/I 2 = N ∗

Y/X .

Since all the above maps are ι-equivariant, we find that hMY /MX is ε-hermitian
as well. The desired assertion follows from this and the fact that ι acts by ε′
on N ∗

Y/X . #�

6 Universal Heegner class

6.1 Tate cycles and Abel–Jacobi maps

Let X/E be an algebraic variety over a number field, and let R be a finite
extension of Qp, or its ring of integers, or a finite quotient of its ring of
integers.

6.1.1 Tate cycles

If W is an étale local system of R[G E ]-modules on X , the R-module of Tate
(0)-cycles is the space

Z0(X,W ) :=
⊕

x∈X

H0(x,W ),

where the sum runs over the closed points of X and, if x ∈ X and x :=
x ×Spec E Spec E , we define H0(x,W ) := H0(x,W )G E . Elements of the
latter space are written

∑
x ′ [x ′] ⊗ ξx ′ , where x ′ runs through the points of x .

WhenW = R, themoduleZ0(X, R) is simply the usual R-module of 0-cycles
with coefficients in R. Its quotient by the relation of rational equivalence is
denoted CH0(X, R).

When X has dimension 0, its fundamental class is the Tate cycle with trivial
coefficients

[X ] :=
∑

x ′∈Z(E

[x ′] ⊗ 1 ∈ Z0(X,Zp).
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If a = ∑x ′ [x ′] ⊗ ξx ′ ∈ Z0(X,W ) its support |a| ⊂ X is the support of the
divisor

∑[x ′], where the sum extends to those x ′ such that ξx ′ = 0.

6.1.2 Abel–Jacobi map

A Tate cycle a ∈ Z0(X,W ) yields a map R → H0(|a|,W )G E and, if X has
dimension 1, the latter cohomology group maps to H2|a|(X ,W (1)). The image
of 1 ∈ R under the compostion

R → H0(|a|,W )→ H2|a|(X ,W (1))→ H2(X ,W (1))

is denoted by cl(a). Consider the exact sequence

0→ H1(X ,W (1))→ H1(X − |a|,W (1))→ H2|a|(X ,W (1))

→ H2(X ,W (1)). (6.1.1)

Let e be a Galois-equivariant idempotent acting on the right on H∗(X ,W (1)),
such that cl(a)e = 0. Then we may apply the idempotent e to (6.1.1) and pull
back the resulting exact sequence via the map R → H2|a|(X ,W (1)) given by
a, obtaining an extension

0→ H1(X ,W (1))e → Ea → R → 0 (6.1.2)

in the category of G E -representations over R. The map sending a to the class
AJ(a)e of this extension is called the e-Abel–Jacobi map,

AJe : Z0(X,W )→ H1(G E , H1(X ,W (1))e) = H1(G E , H1(X ,W )e),

where the last equality is just a reminder of our notational conventions. When
e = id, it is omitted from the notation. When W = R and e acts via corre-
spondences, the map AJe factors through CH0(X, R)e.

6.2 Heegner cycles

We use the notation from Sect. 2.1 for compact subgroups U∗,p,r ⊂
U∗,p(pr ) ⊂ G∗(Qp) and let X∗,U p∗ ′,r → X∗,U p ′(pr ) be the associated

Shimura varieties; the level U p∗ ′ will be fixed and often omitted from the nota-
tion. If pOF,p =∏v|p �

ev
v OF,v we use r as a shorthand for r = (evr)v|p.
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6.2.1 Embeddings of Shimura varieties

For any pair of subgroups V ′ ⊂ H′(A∞), K ⊂ (G × H)′(A∞) such that
K ∩ H′(A∞) ⊃ V , we define the diagonal embedding

e′ = e′V ′,K : Y ′V ′ → Z K

y �→ [(e(ỹ), ỹ)]

if ỹ is any lift of y to YV for some V ⊂ H(A∞) such that V F×A∞ ⊂ V ′.
Let W = WG ⊗ WH be an irreducible right algebraic representation of

(G × H)′ over L ⊃ Qp. If W satisfies (wt), the space W H ′ is 1-dimensional
over L . Let W be the étale sheaf on the Shimura tower Z associated with W ;
any ξ ∈ W H ′ induces a map Qp → e′∗W of étale sheaves on the tower Y ′; by
adjunction we obtain a canonical map Qp → e′∗W ⊗W∨

H ′ where the second
factor is simply an L-line.

We let

e′W,K ,V ′,∗ : Z0(Y
′
V ′ ,Zp)→ Z0(Y

′
V ′ , e

′∗W ◦)⊗W∨
H ′ → Z0(Z K ,W ◦)⊗W∨

H ′

e′W,r ,∗ : Z0(Y
′
r ,Zp)→ Z0(Y

′
r , e

′∗W ◦)⊗W∨
H ′ → Z0(Z(pr ),W ◦)⊗W∨

H ′

→ Z0(Zr ,W
◦)⊗W∨

H ′

be the compositions of the maps described above and, respectively, e′W,∗ or
e′r ,∗.

6.2.2 CM cycles

Let [Y ′V ′ ] ∈ Z0(Y ′V ′,Zp) be the fundamental class. For any pair of levels K , V
such that eW,(K ,V ′) is defined, let

�W,(K ,V ′) := e′W,K ,V,∗[Y ′V ′ ] ∈ Z0(ZK ,W ◦),

When W = Qp, we consider the elements

�◦W,(K ,V ′) :=
1

|Y ′V ′(E)| ·�W,(K ,V ′) ∈ Z0(ZK ,W ◦)

When W = Qp, we consider the modification

�◦(K ,V ′) :=
1

|Y ′V ′(E)| · (�(K ,V ′) − deg(�(K ,V ′)) · ξHodge) ∈ CH0(ZK )Qp ,

(6.2.1)

123



The universal p-adic Gross–Zagier formula 601

where ξHodge is the Hodge class of [107, §3.1.3], whose introduction is moti-
vated by the following lemma.

Lemma 6.2.1 The image under pushforward of �◦W,(K ′′,V ′′) in Z0(ZK ,W )

(if W = Qp) or CH0(ZK )Qp (if W = Qp) is independent of V ′′, K ′′ such that
V ′′ ⊂ K ′′ ∩ H′(A∞) and K ′ ⊂ K . We have

cl(�◦W,(K ,V ′)) = 0 in H2(Z K ,W (1)).

Proof If W = Qp, the first assertion is clear; the second one is automatic as
H2(Z K ,W (1)) = 0 (see the argument in [91, bottomof p. 1089]). IfW = Qp,
the assertions amount, respectively, to the compatibility of the Hodge classes
under pushforward and the fact that, by construction, the 0-cycle �◦K ,V has
degree zero; both facts are explained in [107, §3.1.3]. #�

6.2.3 Cycles, Selmer classes, and functionals

Let

PW,(K ,V ′) := AJ(�◦W,(K ,V ′)) ∈ H1(G E,Sp, H1(Z K ,W )). (6.2.2)

The classes PW,(K ,V ′) are also compatible under pushforward and yields ele-
ments

PW := lim
K∩H′(A∞)⊃V ′

PW,(K ,V ′) ∈ lim←−
K

H1(G E,Sp, H1(Z K ,W )).

The space in the right-hand side has a right action by (G×H)′(A∞), and PW is
invariant under H′(A∞). Via (2.5.3) and the biduality W∨∨ = W , PW yields,
for each ordinary representation � of weight W , a map

P� : �→ H1(G E,Sp, V�).

Using the map γ ord
H ′ : �ord → �H ′ from Proposition A.2.4, we also obtain

a map

Pord
� := P�γ ord

H ′ : �ord → H1(G E,Sp, V�). (6.2.3)

Remark 6.2.2 Weconjecture that (i) there exist an algebraic variety NW,(K ,V ′)/E
of odd dimension 2dW + 1, a homologically trivial cycle ZW,(K ,V ′) ∈
CHdW (NW,(K ,V ′))0, and a map

λ : H2dW+1(N W,(K ,V ′),Qp(d + 1))→ H1(Z K ,W )
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such that PW,(K ,V ′) = λ(AJ(ZW,(,V ′))); (ii) the elements PW,(K ,V ′) belong to
H1

f (E, H1(Z K ,W )), so that the maps P� take values in H1
f (E, V�).

WhenG = GL2/Q, one can prove (i)with NW,(K ,V ′) aKuga–Sato variety for
ZK , generalising [78, Proposition II.2.4]. The (probably not insurmountable)
difficulty in the general case is that, if F = Q, the Shimura variety Z is not
of PEL-type. Part (ii) should essentially be a consequence of either (a) part
(i), via [79,82], or (b) granted a generalisation of the theory of locc. citt. to
nontrivial coefficients system, of the weaker assertion that, for a finite placew
of E , the image of �W,(K ,V ′) in H0(ZK ,Ew,W ) comes from a corresponding
class in the syntomic cohomology of Z K ,Ew with coefficients in W .

6.3 Universal Heegner class

We use the local construction described in Sect. A.2.2 to turn the H′(A)-
invariant class PW into an H′(Ap∞)-invariant class PW with values in the
ordinary completed homology. Then we show that PW is independent of W
and it interpolates P◦� at all representations � satisfying (ord), (n-exc).

6.3.1 Construction

Let dr := |Y ′r (E)| and let d◦ = dr
∏

v|p q−rv
v ∈ Z≥1, which is the limit

of an eventually constant sequence. Recall that for the tame level K p ′ ⊂
(G × H)′(Ap∞), we denote M◦

K p ′,W := lim←−r
H1(Z W,r ,W

◦)ord.
Definition 6.3.1 The universal Heegner point of weight W is the element

PW := PWγ ord
H ′ ∈ d◦,−1H1(G E,Sp, M◦

K p,W ), (6.3.1)

where we still denote by γ ord
H ′ the map induced by the map

γ ord
H ′ : lim←−

K p

H1(Z K p ′K p ,W )H
′(A) → MK p ′,W

of Proposition A.2.4. As usual, we simply write P :=PQp . When we want
to emphasise the choice of K p ′ we writePK p ′,W instead ofPW .

6.3.2 Independence of weight

The classPW does not depend on W .

Proposition 6.3.2 Under the identification

H1(E, M◦
K p ′ ⊗Zp OL)

jW,∗∼= H1(E, M◦
K p ′,W ) (6.3.2)
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induced from the isomorphism jW of Proposition 3.1.2.2, we have

jW,∗(P) =PW .

Proof We show that the difference jW,∗(P) − PW is p-divisible. Since
H1(G E,Sp, M◦

K p ′,W ) is a finitely generated module over the ring �◦K p ′ by
Lemma 5.2.1, any p-divisible element is zero.Wewill use some of the notation
and results of the Appendix, in particular the matrices γ defined in Sect. A.1,
the involution ι = (−)T,−1 onGL2, and the operator γ ord

H ′ of PropositionA.2.4.
We tacitly multiply both sides by d◦, so that they belong to the lattices

(6.3.2). By the definitions of PW and jW , we need to show the following.
Denote by [−]r the reduction modulo pr , and by c(W ) the constant (A.2.3);
then we should have

[pr [F :Q]�Qp,rγr,pU
−r
p γ ι

0,∞]r �→ [c(W )−1 pr [F :Q]�W,rγr,pU
−r
p γ ι

0,∞]r ,
under the map

j ′W : H1(G E,Sp, H1(Z K p K p(pr ),Z/pr ))

→ H1(G E,Sp, H1(Z K p,K p(pr ),Z/pr )⊗Z/pr (W ◦/pr )N0,r

⊗OL/pr (W∨,◦/pr )N0,r c �→ c ⊗ ζr ⊗ ζ∨r , (6.3.3)

where ζr ⊗ ζ∨r is the unique element pairing to 1.
As the local system W ◦/prW ◦ is trivial on Z K p K p(pr ), we have

[pr [F :Q]�W,r ]r = [pr [F :Q]�Qp,r ⊗ ξ ⊗ ξ∨]r
in

H1(G E,Sp, H1(Z K p,K p(pr ),Z/pr ))⊗Z/pr (W ◦/pr W ◦)H ′

⊗OL/pr (W∨,◦/pr W∨,◦)H ′,

where ξ ⊗ ξ∨ is the unique element pairing to 1. Note first that the image of
[pr [F :Q]�W,r ]r under γr,pU−r

p γ ι
0,∞ belongs to the right-hand side of (6.3.3):

indeed it suffices to show that for any ξ ∈ W ◦, the class [ξγr ]r is fixed by
N0,r , which follows from the congruence

γr n − γr ≡ 0 (mod pr M2(Zp))

valid for any n ∈ N0,r .
It remains to see that if ξ⊗ξ∨ pairs to 1, then so does c(W )−1·ξγr,p⊗ξ∨γ ι

0,∞
in the limit r →∞. This is proved in Lemma A.4.2. #�
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6.4 Local properties of the universal Heegner class

Recall that X is an irreducible component of EK p hence of the form Spec R
with R = R◦[1/p] and R◦ = Tsph,ord

(G×H)′,K p,m/a for some maximal and minimal
idealsm ⊂ a ⊂ T(G×H)′,K p . The ring R◦ satisfies the assumptions of Sect. 5.3,
hence Greenberg data over open subsets of X give rise to sheaves of Selmer
complexes.

Let X (i) ⊂ X ⊂ EK p ′ be the open sets defined in Sect. 3. Proposition
3.2.4 provides a strict Greenberg datum (V , (V +w )w|p, (0)w∈S) over X . Via

Proposition 3.3.8.2 we obtain a strict Greenberg datum (M
H ′�
K p ′, (M

H ′�,+
K p ′,w)w|p,

(0)w∈S) overX (3) with

M
H ′�,±
K p ′,w = V ±w ⊗ (�

K p ′,ord
H ′�

)∨.

Webegin the study of the Selmer complexes attached to the aboveGreenberg

data, with the goal to promoteP to a section of H̃1
f (E,M

H ′�
K p ′) over a suitable

open subset of X .

6.4.1 Comparison of Bloch–Kato and Greenberg Selmer groups

Let z ∈ X cl and let V = V|z . We compare two notions of Selmer groups for
V .

Lemma 6.4.1 Let w � p be a place of E. Then, for all i ,

Hi (Ew, V ) = 0.

Proof As observed in [80, Proposition 2.5], this is implied by the prediction
from the weight-monodromy conjecture that the monodromy filtration on Vz

is pure of weight −1. Writing z = (x, y) ∈ E ord,cl ⊂ E ord,cl
G × E ord,cl

H , the
weight-mondromy conjecture forVz follows from the corresponding statement
for VG,x , that is Theorem 2.5.1.2. #�

Let H1
f,Gr(E, V ) be the Greenberg Selmer group. Bloch and Kato [11] have

defined subspaces H1
f (Ew, V ) ⊂ H1(Ew, V ) and a Selmer group

H1
f,BK(E, V ) := {s ∈ H1(E, V ) : ∀w ∈ Sp, locw(s) ∈ H1

f (Ew, V )}.

Lemma 6.4.2 Suppose that �z satisfies (wt). We have

H1
f,BK(E, V ) = H1

f,Gr(E, V ),
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where the right-hand side is the Greenberg Selmer group as in (5.3.3).

Proof We need to show that for all w ∈ Sp, H1
f (Ew, V ) = Ker

(
H1(Ew, V )

→ H1
f (Ew, V−w )

)
. This is automatic for w � p by Lemma 6.4.1. For w|p this

is [81, (12.5.8)]: the context of loc. cit is more restricted but the proof still
applies, the key point being that (12.5.7)(1)(i) ibid. still holds for all w under
the weight condition (wt). #�
Lemma 6.4.3 Let w � p be a finite place of E. Then H1(Ew,V ) and

H1(Ew,M
H ′�
K p ′) are supported in a closed subset of X (respectively X (3))

disjoint from X cl.

Proof This follows from Proposition 5.2.3 and Lemma 6.4.1. #�

6.4.2 Local Selmer properties of P

Let w � p be a place of E as above. As

M
H ′�
K p ′ = V ⊗ (�

K p ′,ord
H ′�

)∨

over X (3), the support of H1(Ew,M
H ′�
K p ′) is in fact the intersection of X (3)

and of the support of H1(Ew,V ). We denote by

X (3,w) ⊃X cl (6.4.1)

the open complement in X (3) of the support of H1(Ew,V ) .

Lemma 6.4.4 Let w|p be a place of E, with underlying place v of F. The
image loc−w(P) of P in

H1(Ew,M
H ′�,−
K p ′,w)

vanishes over X (3).

Proof We lighten the notation by dropping form the notation the superscript
‘(3)’ and all decorations from M , M−

w . Let X̃ := SpecX OX [([√z])z∈A],
where A is a (finite) set of topological generators for F×\A∞×F /(K p ′ ∩
Z(Ap∞×

F )). As X̃ → X is faithfully flat, we may prove the statement after
a base-change to X̃ ; we denote base-changed sheaves and sections thereof
with a tilde �̃.

123



606 D. Disegni

Let χ : E×\A∞×E → Gab
E → O(X )× be the universal character, and let

ω = χ|F×\A∞×F
, so that det VG|X (−1) = ω. Let ω1/2 : F×\A∞×F → O(X̃ )×

be a square root of ω. We may write

Ṽ = (ṼG ⊗ ω−1/2)|G E ⊗ χ̃ ′, χ̃ ′ := χ̃ ⊗ ω
−1/2
|G E

,

where now χ̃ ′ : G E → Gal(E∞/E) is the projection for the abelian
extension E∞/E such that Gal(E∞/E) is the maximal pro-p quotient of
E×A∞×F \A∞×E /V p ′.
Write E∞ = ⋃n≥0 En as an increasing union of finite extensions, where

E0 = E and eventually En+1/En is totally ramified at each prime above p, and
let χ̃ ′n : G E → Gal(En/E) be the natural projection. Let α◦v be the character
giving the G Fv -action on V +G (−1), so that

Ṽ −w = ωwα
◦,−1
w ⊗ χ̃w = ω1/2

w α◦,−1w χ̃ ′w,

where for a character ω′v of G Fv , we denote ω′w := ω′v|GEw
. Let

Ṽ −n,w := ω1/2
w α◦,−1w χ̃ ′n,w, M̃−

n,w := Ṽ −n,w ⊗ (�
K p ′,ord
H ′�

)∨ ⊂ M̃w.

Then the same argument as in [58, proof of Proposition 2.4.5, primes v|p]
shows that the image loc−w(P̃) vanishes in H1(Ew,M

−
n,w) =

∏
w′|w H1

(En, M̃
−
0,w) for each n; here w′ runs through the (eventually constant) set

of primes of En above w. Since H1(Ew, M̃
−
w ) = lim←−n

H1(Ew, M̃
−
n,w) by

Proposition 5.2.2, the lemma is proved. #�
Corollary 6.4.5 LetX (3, f ) :=⋂w∈S X

(3,w) ⊃X cl, where the setsX (3,w)

are as defined in (6.4.1). Then P defines a section

P ∈ H̃1
f (E,M

H ′�
K p ′)(X (3, f )) = H1

f (E,M
H ′�
K p ′)(X (3, f )).

Proof This follows from Lemmas 6.4.3 and 6.4.4. The displayed equality is a
consequence of (5.3.2). #�

6.4.3 Proof of Theorem C

Via Proposition 3.3.8.2, we may view the classP =PK p =PK p,Qp (Defi-

nition 6.3.1) as an H
p�

K -equivariant functional

PK p ′ : �K p ′,ord
H�′ → H1(E,V )(X (3, f )). (6.4.2)
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By the results of Sect. 6.4.2, P takes values in the Selmer group
H̃1

f (E,V )(X (3, f )). It satisfies the asserted interpolation properties by the
definitions of the classesPW in Sect. 6.3 and Proposition 6.3.2.

6.4.4 Exceptional locus of X

Let w|v be places of E and F above p, and let μ±w : E×w → O(X )× be the
characters giving the Galois action on V ±. Let X exc,v ⊂ X be the closed
subset defined by μ−w = 1 for some (hence automatically all) places w|v of
E . We let

X exc :=
⋃

v|p
X exc,v, X cl,exc,(v) :=X cl ∩X exc,(v),

X cl,n-exc,(v) :=X cl −X cl,exc,(v). (6.4.3)

We say that an ordinary automorphic representation of � = �|z over a
p-adic field is exceptional at the place v|p if z ∈X exc,v .
We may characterise the exceptional representations, and seize the oppor-

tunity to collect some useful results; see also Lemma A.2.5.

Lemma 6.4.6 Let � = π ⊗ χ be an ordinary automorphic representation of
(G × H)′(A) over a p-adic field L, of numerical weights w, l.

1. Let v|p be a place of F. The following are equivalent:
(a) the representation � is exceptional at v;
(b) ev(V(π,χ)) = (1.4.4)= 0;
(c) the following conditions hold:

– the smooth representation πv of Gv is special of the form St⊗ αv;
– for some (equivalently all) places w|v of E, we have χw · αv ◦

NEw/Fv = 1.
– wσ = 2 and lσ = 0 for all σ : F ↪→ L inducing the place v.

2. Let Sexc
p = Sexc, s

p ∪ Sexc, ns
p be the set of places v|p (respectively those that

moreover are split, nonsplit in E) where � is exceptional.
(a) The kernel of the natural surjective map

H̃1
f (E, V�)→ H1

f (E, V�)

has dimension 2|Sexc, s
p | + |Sexc, ns

p |.
(b) Assume that G is associated with a quaternion algebra B that is split

at all places v|p. Then

εGv (V�) = −1 ⇐⇒ v ∈ Sexc, ns
p .
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Proof Consider part 1. We first prove the equivalence of the first two con-
ditions. The adjoint gamma factor in the denominator of each ev(V(π,χ)) is
always defined and nonzero, whereas the gamma factor in the numerator is
never zero and it has a pole if and only if, for some w|v, V+w is the cyclotomic
character of E×w . This happens precisely when, for somew|v, V−w is the trivial
character – that is, when � is exceptional at v.

Now let us prove the equivalence to (c). Let V = V� = Vπ |G E ⊗ Vχ . By
the weight-monodromy conjecture (Theorem 2.5.1.2), the 1-dimensional rep-
resentations V±π,v are both of motivic weight−1, thus have no G Ew -invariants
for any w|v, unless πv is a special representation. In the latter case V+w|z
(respectively V−w ) is of weight−2 (respectively 0). This is compatible with the
ordinariness requirement only when the weight w is 2 at v as in the statement
of the lemma. The second condition in (c) is immediate from the definition of
(a).

Consider now part 2. The first statement follows directly from (5.3.2). Let
us prove the second one. By the results recalled in Sect. 1.2.5 and [105, Lemme
10], the condition εGv (V�) = −1 is equivalent to the vanishing of the functional
Q = Q�v = (4.2.1) and of the space �

∗,H ′v
v . These conditions are never met

if v splits in E or πv is a principal series, and otherwise they are equivalent
to the nonvanishing of (�′v)∗,H

′
v , where �′v = π ′v ⊗ χv and π ′v denotes the

Jacquet–Langlands transfer of πv to the nonsplit quaternion algebra B ′×v over
Fv .
Assume that v is nonsplit in E . If πv is exceptional, then by part 1 we

have π ′v = χv ◦ Nm, where Nm is the reduced norm of B ′v , so that obviously
(�′v)∗,H

′
v = 0. If πv is not exceptional, then by the explicit computation of

Proposition A.3.4 we have Q�′v = 0 (see also [35, Corollary A.2.3] for a
variant of the last argument). #�

6.4.5 Heegner classes belong to the Bloch–Kato Selmer group

We can now prove the first assertion of Theorem B.

Proposition 6.4.7 If � is not exceptional or has trivial weight, the map P�

of (1.2.4) takes values in H1
f (E, V�) ⊂ H1(G E,Sp, V�).

Proof If � has trivial weight this is clear. Assume that � is not exceptional.
Let ∂ : H1(E, V )/H1

f (E, V )→ L be any linear map. Then we need to show
that the H′(A)-invariant map ∂P� : � → L is zero. By Corollary 6.4.5 and
Theorem C, whose proof we have just completed, the map Pord

� takes values in
H1

f (E, V ); equivalently, ∂P�γ ord
H ′ = 0. Since� is not exceptional, by Lemma

A.2.5 this means that ∂P� = 0. #�
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The universal p-adic Gross–Zagier formula 609

6.4.6 Enhanced ordinary Heegner classes for exceptional representations

For any z = (x, y) ∈ X cl corresponding to a representation �, define the
enhanced Heegner class

P̃ord
� :=P|z ∈ H̃1

f (E, V�). (6.4.4)

By the results established so far, P̃ord
� has image Pord

� under the natural map
H̃1

f (E, V�)→ H1
f (E, V�); as noted in Lemma 6.4.6, this map fails to be an

isomorphism precisely when � is exceptional.

7 The main theorems, and a conjecture

In this section, we prove our main theorems (Sect. 7.1, or Sect. 7.3.6 for
Theorem G), as well as a universal Waldspurger formula for families of ‘sign
+1’ (Sect. 7.2). Then, we discuss a conjecture on the leading terms of universal
Heegner points (and toric periods) at classical points (Sect. 7.3).

7.1 Proofs of the main theorems

Both of our central theorems (Theorems B and D) ultimately follow from
[32,35], where Theorem B is established when W is trivial, by an argument
combining interpolation and multiplicity-one principles.

7.1.1 p-adic Gross–Zagier formula for ordinary forms

We start by stating a variant of Theorem B, valid under the same assumptions.

Theorem B ord. Let � = π ⊗ χ be an ordinary, locally distinguished auto-
morphic representation of (G × H)′(A) over L. Let V = V�, and let
P̃ord
� ∈ H̃1

f (E, V�) be the enhanced Heegner class defined in (6.4.4).

Then for all f1 ∈ �ord
H ′∞

, f2 ∈ �
∨,ord
H ′∞

, f3 ∈ �ord, f4 ∈ �∨,ord with

( f3, f4)ord = 0, we have

hV (P̃ord
� ( f1), P̃ord

�∨ ( f2))

( f3, f4)
ord
�

= L ′
p(V(π,χ), 0) · Qord

(
f1 ⊗ f2
f3 ⊗ f4

)

. (7.1.1)

Remark 7.1.1 In contrast to Theorem B:

– Theorem Bord also holds for exceptional �;
– we have only included the Gross–Zagier formula and omitted an ana-
logue to the first statement of Theorem B, that is that P̃ord

� takes values
in H̃1

f (E, V ), as that has already been established.
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Lemma 7.1.2 Suppose that � is not exceptional. Theorem B ord is equivalent
to Theorem B.

Proof Using freely the notation and results of “Appendix A”, we first show
that Theorem Bord for f1, f2, f3, f4 is equivalent to Theorem B for

f ′1 = γ ord
H ′ f1 ∈ �H ′p∞, f ′2 = γ ord

H ′ f2 ∈ �∨H ′p∞,

f ′3 = word
a f3 ∈ �a, f ′4 = f4 ∈ �∨,ord;

let us call such ( f ′1, f ′2, f ′3, f ′4) a ‘special quadruple’.
Indeed, by the definitions (6.2.3), (4.1.8), the left hand side of (7.1.1) equals

hV (P�( f ′1), Pord
�∨ ( f ′2))

dim W · ( f ′3, f ′4)
;

whereas by Proposition 4.3.4,

Qord
(

f1 ⊗ f2
f3 ⊗ f4

)

. = ep(V(π,χ))
−1

dim W
· Q

(
f ′1 ⊗ f ′2
f ′3 ⊗ f ′4

)

.

By themultiplicity-one principle, TheoremB for special quadruples implies
Theorem B in general, since under our assumptions the functional Q is non-
vanishing on special quadruples: this again follows from Proposition 4.3.4 and
Lemma 6.4.6.1.(a)–(b). #�

7.1.2 Comparison of p-adic L-functions

We describe how, upon restricting Lp(V
) to the cyclotomic line through a

point of trivial weight, we recover the p-adic L-function of [32,35].

Lemma 7.1.3 Let z = (x, y) ∈ E ord,cl
G0

× E ord,cl
H be a point corresponding

to a representation π0,x ⊗ χy of weights (0; (2, . . . , 2)), (0; 0, . . . , 0). Let A
denote the modular abelian variety attached to π0,x , and let

Lp(V(A,χ)) ∈ K (EZ)

be the p-adic L-function of [35, Theorem A]. Consider the map

jx,y : EZ → {x} × E ord
H ⊂ E ord,cl

G0
×E ord

H

χF �→ π0,x ⊗ χy · χF◦N
E×A /F×A

.
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Then

Lp(V(π0,χ)) := j∗(x,y)Lp(V
) = Lp(V(A,χ)). (7.1.2)

Proof This is immediate from the respective interpolation properties. (Note
that the first equality in (7.1.2) is just a reminder of (1.1.1).) #�
7.1.3 Interpolation argument and proof of the main theorems

Let X ⊂ E ord
K p be a locally distinguished Hida family for (G × H)′, as in

Definition 1.3.1. Fix a level K p ′ ⊂ K p. Let

X ′ =X ′
K p ′ :=X (6) ∩X (3, f ) ⊃X cl

be the intersection of the open subsets of X of Theorem 4.4.3 and Corollary
6.4.5.

Recall that we denote byX cl,W the set of classical points of weight W , and
byX cl, n-exc the set of non-exceptional classical points. When W = Qp is the
trivial weight, we also define

X cl, p-crys, Qp,ram ⊂X cl,p-crys,Qp ⊂X cl,n-exc

by the following conditions on the classical point z = (x, y) (equivalently, on
the representation �z):

(p-crys) for all v|p, the representation Vx |G Fv
is potentially crystalline (equiv-

alently, πx,v is a principal series; the second inclusion above follows
from Lemma 6.4.6);

(ram) χy,p is sufficiently ramified in the following sense: let rv ≥ 1 be
minimal such that 1 + �

rv
v OFv is contained in the kernel of ωx,v,

and let U ◦F,p =
∏

v|p(1 + �
rv
v OFv ); then χy,p is is nontrivial on

N−1E p/Fp
(U ◦F,p) ∩ O×E p

.

Lemma 7.1.4 The subset X cl, p-crys, Qp,ram ⊂X ′ is dense.

Proof Denote by pG : X ′ → EG the natural projection. If ‘?’ is any relevant
decoration, letX ?

G := pG(X ?); for x ∈X cl
G , let X ?

x,H := p−1G (x) ∩X ?.

For each x ∈ X
cl, p-crys, Qp
G , the set X

cl, Qp, ram
x,H contains contains all but

finitely many points in X
cl,Qp

x,H , which is dense in Xx,H. Thus the closure of
X cl, p-crys, Qp, ram contains all of X cl, p-crys, Qp .

Now we observe thatX
cl, p-crys, Qp
G = YG ∩X

cl, Qp
G for the open subset

YG :=XG − {x |V +G,v|x (−1) ∼= V −G,v|x for some v|p},
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which is non-empty as it contains X cl,WG
G for any representation WG whose

partial weights are all ≥ 3 (cf. the proof of Lemma 6.4.6.1 (c)). There-
fore X cl, p-crys, Qp is the intersection of the non-empty open p−1G (YG)

with X cl,Qp , which is dense in X ′ by Lemma 3.1.4. We conclude that
X cl, p-crys, Qp and X cl, p-crys, Qp, ram are dense inX ′. #�
Proposition 7.1.5 The following are equivalent.

1. Theorem D holds over X ′
K p ′ for all K p ′ ⊂ K p.

2a. Theorem B ord holds for all representations � corresponding to points of
X cl satisfying (wt).

2b. Theorem B ord holds for all representations � corresponding to points of
X cl, p-crys, Qp, ram.

3a. Theorem B holds for all representations � corresponding to points of
X cl, n-exc satisfying (wt).

3b. Theorem B holds for all representations � corresponding to points of
X cl, p-crys, Qp, ram.

Proof For any point z ∈X cl,n-exc satisfying (wt), denote by�z the associated
automorphic representation, by Vz the associated Galois representation . We
have proved the following specialisation-at-z properties of objects defined over
(open subsets of) X :

– theOX ′-module�K p ′,ord
H ′�

(respectively (�
K p ′,ord
H ′�

)ι specialises to�
K p ′,ord
z,H ′�

(respectively �
∨,K p ′,ord
z,H ′�

), by Proposition 3.3.8.4 (and the definition of the

involution ι);
– the Galois representation V (respectively V ι) and its ordinary filtrations
specialise to V = V� (respectively V�∨) with its ordinary filtrations, by
construction (Proposition 3.2.4);

– there is a natural map H̃1
f (E,V )|z → H̃1

f (E, V );

– the class PK p ′ specialises to the restriction of Pord
�z

to �
K p ′,ord
z,H ′�

under the

above map, by Theorem C whose proof is completed in Sect. 6.4.3;
– the product of local terms Q specialises to the restriction of Qord to the
spaces of H ′�-coinvariants, K p ′-invariants in �ord

z , �∨,ordz , by Theorem
4.4.3.

Let us complete the proof that either side of Theorem D specialises to 1/2
times the corresponding side of Theorem Bord. Consider the diagram X0 →
X 

0 → EZ. It is not a product, even Zariski-locally; however the conormal
sheaf is trivial. (This is dual to the fact that G × H → (G × H)′ is a Z-
torsor for the étale topology but not for the Zariski topology.) The immersion
X ×̂EZ →X  given by ‘(�, χF ) �→ �⊗χF ’ induces the map on conormal
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sheaves

N ∗
X /X  = OX ⊗̂�F → N ∗

X /X ×EZ = OX ⊗̂�F

that is multiplication by 1/2 under the canonical identifications. Hence:

– the p-adic height pairing hV = hV |X specialises to 1
2hV =

1
2hV⊗χF,univ|G E |z , by Sect. 5.3.3;

– the derivative dLp(V ) specialises to 1
2L

′
p(V, 0) in Qp(z)⊗̂�F , by the

definition in (1.1.1).

We may now complete the proof. By the specialisation properties sum-
marised above, we have 1. ⇒ 2.a (⇒ 2.b). By Lemma 7.1.2, we have
2.a ⇒ 3.a, 2.b ⇔ 3.b. By Lemma 7.1.4 and the specialisation properties,
2.b ⇒ 1. #�
Proof of TheoremsB,D, and Bord The first assertion of TheoremBwas proved
in Proposition 6.4.7. For a representation � of trivial weight satisfying the
conditions (p-crys), (ram), the formula of Theorem B is [35, Theorem B] (cf.
Lemma 7.1.3). By Proposition 7.1.5, this implies Theorem D and the general
case of Theorems B, Bord. #�

7.1.4 Applications to non-vanishing/1: self-dual CM families

We prove the generic non-vanishing result of Theorem F. Recall that Y is a
component of the subvariety E ord,sd

H ⊂ E ord
H cut out by the condition χF×A

=
ηχcyc,F , and such that ε(χy, 1) = −1 generically along Y .

Proof of Theorem F Recall that a p-adic CM type of E over Qp is a choice
� of a place w|v of E for each place v|p of F (we identify primes above p
with embeddings into Qp). For each of the p-adic CM types � of E and each
connected component Y  of E ord

H , there is a Katz p-adic L-function

L� ∈ O(Y ).

It is characterised (see [52,64]) by its values at the subset Y ,cl.� ⊂ Y ,cl

of those y such that the algebraic part of χy is t �→ ∏
σ∈� σ(t)wσ(t/tc)kσ

for integers w, kσ such that either w ≥ 1, or w < 1 and w + kσ > 0 for all
σ ∈ �. The interpolation property relates L�(y) to L(1, χy). It is easy to see
that for a given y ∈ E ord,sd

H , there is a unique CM type � such that y belongs
to the interpolation subset of L� . For such y and�, we denote by L p(χy, s) ∈
O(EZ/Qp(y)) the function s �→ L�(y(s)) where χy(s) = χ · χF,s ◦ NE/F ).
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Consider now the setup of the theorem, and letY  ⊂ E ord
H be the component

containing Y . By [13], under our assumptions the normal derivative dL� ∈
N ∗

Y /Y  is non-vanishing. Let Y
′
� be the complement of its zero locus, and let

Y ′ :=
⋂

�

Y ′
�.

Let y ∈ Y cl ∩ Y ′, and let χ := χy . It is easy to see that there is a unique �

such that y ∈ Y ,cl,� .
We claim that there exists a a finite-order character χ0 ∈ E ord,cl

H , such that
the character

χ ′ = χcχc
0χ
−1
0

(that has the same algebraic part as χc := χ ◦ c, and defines a point y′ ∈
E ord,sd,cl
H ) satisfies the following properties:

– L(1, χ ′) .= L p(χ
′, 0) = 0, where

.= denotes equality up to a nonzero
constant;

– H1
f (E, χ ′) = 0.

Granted the claim, we have a decomposition of G E -representations

(χχ0 ⊕ χcχc
0 )⊗ χ−10 = χ ⊕ χ ′

and a corresponding factorisation

Lp(V(π0,χ
−1
0 )

, s)
.= L p(χ, s)L p(χ

′, s),

where π0 = θ(χχ0) (the theta lift), and π0⊗χ−10 descends to a representation
of (G0 × H)′(A). It follows that L ′

p(V(π0,χ
−1
0 )

, 0) = 0. By Theorem A, we
have a class

Z ∈ H1
f (E, V

(π0,χ
−1
0 )

)⊗ H1
f (E, V

(π0,χ
−1
0 )

) = (H1
f (E, χ)⊗ H1

f (E, χc))

⊕ (H1
f (E, χ ′)⊗ H1

f (E, χ ′c))

whose p-adic height is non-vanishing. Since H1
f (E, χ ′) = H1

f (E, χ ′c)) = 0,
the class Z is as desired.

It remains to prove the claim. Let Y1 ⊂ E ord,sd
H be a component over which

the anticyclotomicMain Conjecture is known—that is, one containing a finite-
order character satisfying the properties of [56]). By applying [14, Lemma 2.5]
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to any character corresponding to a point of Y cl
1 , we find another component

Y2 ⊂ E ord,sd
H , whose classical points correspond to characters χ2 with

ε(1, χ2) = 1;

moreover from the proof in loc. cit. one sees that Y2 may be taken to still
satisfy the assumptions of [56]. Then the function L�c|Y2 is non-vanishing by
[59]; hence, by the density of classical points with a given weight, we may
find y′ ∈ Y cl

2 corresponding to a character χ ′ satisfying the first among the
required conditions. By the anticylcotomic Main Conjecture for Y2 proved in
[54,56], that is equivalent to the second condition. Finally, the ratio χ ′/χc is
an anticyclotomic character (that is, trivial on F×A ), hence [53, Lemma 5.3.1]
of the form χc

0χ
−1
0 for some finite-order character χ0. #�

7.2 A universal Waldspurger formula

We describe the complementary picture over locally distinguished families
attached to coherent quaternion algebras over F . Unexplained notions and
notation will be entirely parallel to what defined in the introduction.

Let B be a totally definite quaternion algebra over F , let � be the set of
finite places where B is ramified, and let G/Q be the algebraic group with
G(R) = (B ⊗ R)× for any Q-algebra R. Let E be a CM quadratic extension
of F , admitting an F-algebra embedding e : E ↪→ B which we fix. We use
the same symbols as in the introduction for the towers of Shimura varieties
associated to the groups as in (1.2.1). Here, all those Shimura varieties are
0-dimensional.

Let L be a p-adic field and let � be an automorphic representation of
(G×H)′(A) := (G×H)′(A∞)× (G×H′)/Qp over L of weight W , by which
wemean one occurring inH0(Z ,W ∨)⊗W . The normalised fundamental class
of Y gives rise to an element P ∈ H0(Z ,W )H

′(A) and to an H′(A)-invariant
functional

P� : �→ L ,

whichmay be nonzero only if� is locally distinguished byH′. If� is ordinary,
we again define Pord := Pγ ord

H ′ .
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Let X be a locally distinguished Hida family for (G × H)′, which via a
Jacquet–Langlands map is isomorphic to a Hida family X0 for (G0 × H)′.
For each compact open subgroup K p ⊂ (G × H)′(Ap), there is a ‘universal
ordinary representation’ �K p,ord

H ′�
of (G × H)′(A) over X . As in Theorem C,

there exists an H′(Ap∞)-invariant, OX -linear functional

P : �K p,ord
H ′�

→ OX (7.2.1)

interpolating (the restrictions of) Pord
�z

at all z ∈X cl satisfying (wt).

Starting from the natural pairings H0(Z K ,W ) ⊗ H0(Z K ,W ∨) → L , we
may define pairings ( , )� on each representation � over a field by the for-
mula (4.1.7) (using the counting measure for v(K )); then we obtain modified
pairings ( , )ord� on each �ord ⊗�∨,ord, and a pairing (( , )) on the universal
representations overX , interpolating modified pairings ( , )ord�z

.

Finally, the functional Q, over an open X ′ ⊂ X containing X cl, is also
constructed as in Sect. 4.4; in the argument using the local Langlands corre-
spondence, we use the rank-2 family of Galois representations pulled back
from X0.

Theorem H Let X be a locally distinguished Hida family for (G × H)′.
Abbreviate �(ι) := �

K p ′,ord,(ι)
H ′�

, O := OX , K := KX .

There is an open subset X ′ ⊂X containing X cl, such that

P( f1) ·P ι( f2)

(( f3, f4))
= Lp(V

)|X ·Q
(

f1 ⊗ f2
f3 ⊗ f4

)

,

an equality of K -valued O-linear functionals on (� ⊗O �ι) ⊗O× (� ⊗O

�ι)×,−1.

Similarly to Sect. 7.1, this universal formula follows from its specialisations
at all classical points satisfying (wt); those are known by modifying the main
result of [105] as in Theorem Bord.

The formula essentially reduces the study ofLp(V
)|X to the study of the

universal Waldspurger periods P . This is particularly interesting in the case
of exceptional zeros, as we discuss next.

7.3 Bertolini–Darmon conjectures and exceptional zeros

We first formulate a conjecture on the behaviour of P at a point z ∈ X cl

and gather some old and new evidence in its favour. In view of Sect. 6.4.6,
the conjecture is often particularly interesting when z is exceptional. Then we
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deduce from our constructions and a known exceptional case of the conjecture
a proof of Theorem G.

The conjecture requires some algebraic preliminaries.

7.3.1 Pfaffian regulators

Let L be a field of characteristic 0, and let M , T be a finite-dimensional L-
vector spaces. Let h : M ⊗ M → T be a skew-symmetric pairing, and let
r = dimL M .

If r is even, we define the Pfaffian regulator

Pf+(M, h) ∈ (Symr/2T )/L×

to be the Pfaffian of the skew-symmetric matrix h(xi , x j )i j for any L-basis xi
of M . It is well-defined modulo L×.

If r is odd, we define an enhanced Pfaffian regulator

Pf−(M, h) ∈ (M ⊗ Sym(r−1)/2T )/L×

as follows. It suffices to define ∂ePf−(h) for any basis ∂1, . . . , ∂d of T∨ and
all tuples e = (ei )

d
i=1 with

∑d
i=1 ei = (r − 1)/2; here ∂e := ∏d

i=1 ∂
ei
i . Let

I ⊂ {1, . . . , d} be the support of the tuple e. Let MI ⊂ M be the sum,
over i ∈ I , of the radicals of the pairings ∂i h. If dim MI ≥ 2, we define
∂ePf−(h) := 0. If dim MI = 1 and x ∈ Mi is a generator, denote by h the
induced pairing on M := M/MI ; we define

∂ePf−(M, h) = x ⊗ ∂ePf+(M, h).

Remark 7.3.1 In the even case, we have of course Pf+(M, h)2 = R(M, h) ∈
(Symr T )/L×,2, where R(M, h) is the discriminant of the pairing h. In the odd
case, assume further given a symmetric bilinear pairing h : M⊗M → T . Let
h′ = h ⊕ h : M ⊗ M → T ′ : −T ⊕ T , and let R(M, h′) ∈ Symr (T ′)/L×,2

be its discriminant. Then it is easy to verify that

h(Pf−(M, h),Pf−(M, h)) ∈ (T  ⊗ Symr−1T/)L×,2

is the image of R(M, h′) under the natural projection.

Remark 7.3.2 If L is the fraction field of a domain O and M is endowed with
an O-lattice, it is possible to lift the ambiguity in the definitions to an element
of O×.
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7.3.2 A conjecture à la Bertolini–Darmon

Let G be either as in the introduction or as in Sect. 7.2. We define a sign
ε := −1 in the former case and ε := +1 in the latter case. LetX be a locally
distinguished Hida family for (G × H)′, and let

z ∈X cl

be a classical point. We denote byP the universal Heegner class (if ε = −1)
or toric period (if ε = +1), viewed as a family of functionals as in (6.4.2),
(7.2.1), parametrised by a subset X ′ ⊂ X . Assume that X ′ can be taken to
be a neighbourhood of z ∈X .

Let T ∗z X = mz/m
2
z be the cotangent space to X at z (where mz ⊂ OX ,z

is the maximal ideal), and for any r ∈ N let

(d‖z )r : mr
z ⊂ OX ,z → mr

z/m
r+1
z = Symr T ∗z X

be the natural projection. It is easy to see that the involution ι of Sect. 2.1.4
satisfies d‖z ι = id (whereas dz ι = −id).

Let V = V|z , and let c : H̃1
f (E, V ι) → H̃1

f (E, V ) be the isomorphism
induced by the adjoint action, on G E,S , of a lift of the complex conjugation in
Gal(E/F). Let

h‖ := h�
z/X : H̃1

f (E, V )⊗ H̃1
f (E, V )→ T ∗z X (7.3.1)

be the Nekovář–Venerucci height pairing as in (5.3.7). Since the pairing of
Proposition 4.1.7 is skew-hermitian, by Proposition 5.3.4 the pairing h‖ is
skew-symmetric. Define

Pf ‖,±(V ) := Pf±(H̃1
f (E, V ), h‖).

Conjecture Pf Let r̃ := dimL H̃1
f (E, V ). We have (−1)̃r = ε, the universal

element P vanishes to order at least *̃r/2, at z, and for any generator ℘ ∈
(�ord)∗,H′(Ap∞)

and all f ∈ �ord, we have

(d‖z )*̃r/2,P( f ) = Pf ‖,ε(V ) · ℘( f ) (7.3.2)

in [H̃1
f (E, V )(1+ε)/2 ⊗Qp(z) Sym

*̃r/2,
Qp(z)

T ∗z X ] /Qp(z)×.

7.3.3 Relation to the original conjectures of Bertolini–Darmon

Define X a := X ∩ ({x} × EH′) (the anticyclotomic family), X wt := X ∩
(EG × {y}) (the weight family). In the classical case when E is imaginary
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quadratic, π is associated with an elliptic curve over Q, χ = 1, and we restrict
to the anticyclotomic variableX a, Conjecture Pf is a variant of conjectures of
Bertolini–Darmon, surveyed in [6] and (in a form slightly closer to the one of
the present work) in [33, § 4]. The Bertolini–Darmon conjectures were partly
generalised to higher-weight modular forms in [71].

Remark 7.3.3 By using natural G E,S-stable lattices in V , or better lattices in
H̃1

f (E, V ) spanned by motivic elements, it is possible to define the Pfaffian
regulators up to an ambiguity that is a unit in the ring of integers of a local field
or of a number field (recall Remark 7.3.2). It should then possible to refine the
conjecture up to such ambiguity (by including the appropriate constants), as
in the original works of Bertolini–Darmon (see [33, Conjecture 4.2.1]).

In view of Remark 7.3.1, inserting Conjecture Pf into Theorem D would
yield a multivariable formula relating higher partial derivatives of p-adic
L-functions with suitable height regulators, in the spirit of the Birch and
Swinnerton-Dyer conjecture; the argument is the same as that of [33, Propo-
sition 5.1.1]. We plan to return to formulate such conjectural formulas in the
appropriate generality in future work.

7.3.4 Evidence for Conjecture Pf in low rank

The preliminary parity conjecture

(−1)r̃ = ε (7.3.3)

is known in many cases as a consequence of the work of Nekovář (see [81,
Theorem 12.2.3]. Indeed, the statement proved in loc. cit., in view of the
functional equation of L (V(π,χ), s), is that

(−1)r = ε (7.3.4)

where r = dim H1
f (E, V ) and ε = ε(V ). Now if r exc = r exc, s + r exc, ns

denotes the number of exceptional primes of F above p (respectively, the
number of those that moreover are split or nonsplit in E), by Lemma 6.4.6.2
we have ε = ε · (−1)rexc, ns , and r̃ = r + 2r exc, s + r exc, ns. Thus (7.3.4) is
equivalent to (7.3.3).

Let us now review the conjectural vanishing and leading-term formula.Most
of the available evidence is concentrated in the case where V arises from the
classical context of Sect. 7.3.3, to which we restrict unless otherwise noted for
the rest of this discussion. (All the results mentioned below hold under various
additional assumptions, which we will not recall.)

IfX is replacedwithX a (the original Bertolini–Darmon case), the conjec-
ture is known ifL (V(π,χ), s)vanishes to order 0 or 1 at s = 0, see [33,Theorem
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4.2.5] and references therein, as well as [70]. Some of those results have been
generalised to higher weight [62,72] or to totally real fields [4,61,75].

WhenX is replaced byX wt, p is inert in E , V is exceptional, and ε = +1,
Bertolini–Darmon [7] proved a formula for d‖zP|X wt , which implies the pro-
jection of (7.3.2) to T ∗z X wt when ords=0L (V(π,χ), s) = 1. The interpretation
of the formula of Bertolini–Darmon in terms of height pairings was observed
by Venerucci (see [104, Theorem 2.1 and Theorem 4.2.2]), whose work was a
second important influence in the formulation of Conjecture Pf. The Bertolini–
Darmon formula was generalised to higher-weight modular forms by Seveso
[95] and to elliptic curves over totally real fields by Mok [74].

7.3.5 Evidence for Conjecture Pf in higher rank

Lower bounds for the order of vanishing of P|X a have been obtained in two
recent works for ε = 1. In the context of elliptic curves over totally real fields,
[4, Theorem 5.5] gives a bound (that is coarser than predicted by Conjecture
Pf) in terms of the number of exceptional primes. In a classical context (and
if if p splits in E), Agboola–Castella [1, Corollary 6.5] prove a bound that is
finer than that of Conjecture Pf. (That refined bound is predicted by Bertolini–
Darmon; it is related to some trivial degeneracies of the anticyclotomic height
pairing, as touched upon also in the paragraphs preceding (7.3.7) below.)

Regarding the formula of Conjecture Pf, an interesting anticyclotomic case
can be deduced from the recent work [39], as we now explain.

The work of Fornea–Gehrmann Suppose that A is a modular elliptic curve
over the totally real field F , such that the set Sexc

p of places v|p where A has
multiplicative reduction consists of exactly r primes v1, . . . , vr inert in E . Let
φ : ⊗r

i= E×vi
→⊗r

i=1 A(Evi ) be the product of Tate unifomisations, and let

φ̂ be the induced map on p-adic completions.
One of the main constructions of [39] produces an explicit element Q A ∈⊗r
i=1 E×vi

⊗̂Qp, which carries a precise conjectural relation to the arithmetic

of A. Partition Sexc
p = Sexc,+

p � Sexc,−
p according to whether the multiplicative

reduction is, respectively, split or nonsplit, and let r+ := |Sexc,+
p |. Denote

Â(Ev) = A(Ev)⊗̂Qp and let Â(Ev)
± be its±-eigenspaces for the conjugation

cv ∈ Gal(Ev/Fv).
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Assume that AE has rank rA ≥ r and let r+A be the rank of A. According to
[40, Conjectures 1.3, 1.5], we have27

rA > r or r+A + r+ = r �⇒ φ̂(Q A) = 0,

rA = r and r+A + r+ = r �⇒ φ̂(Q A)
.= det((x̂ai,v j

)1≤i, j≤r ), (7.3.5)

where (x1, . . . , xr ) is a basis of A(E)Q, and for v ∈ Sexc,±
p we denote by x̂av

the eigen-projection of x ∈ A(E) to Â(Ev)
∓. The symbol

.= denotes equality
up to a constant in Q×.

For V = Vp AE , assuming the finiteness of X(AE )[p∞] we have r̃ :=
dim H̃1

f (E, V ) = r + rA (see Lemma 6.4.6.1(a) or (7.3.7) below), and the
parity conjecture is known. Hence if rA ≡ r (mod 2), which we henceforth
assume, V corresponds to a point z of a locally distinguished Hida familyX
of sign ε = +1 (for a unique choice of the coherent quaternionic group G).
Let

�a := (E×A∞/F×A∞Ô
p,×
E )⊗̂Qp

∼= T ∗z X a, #a =
∏

w

#aw : E×A∞/E× → �a

be the natural projection, and let #aexc,⊗ :=
⊗r

i=1 #avi
: ⊗r

i=1 E×vi
⊗̂Qp →

Symr�a. Denoting by daz the component of d‖z alongX a, Theorem A of [39]
(which relies on the aforementioned lower bound from [4]) proves

(daz )
rP( f ◦) .= #aexc,⊗(Q A) (7.3.6)

for a suitable test vector f ◦ ∈ �ord.

Comparison with Conjecture Pf We show that granted (7.3.5) and the finite-
ness of X(AE )[p∞], the formula (7.3.6) is equivalent to the conjectured
(7.3.2).

Let ha : H̃1
f (E, V ) ⊗ H̃1

f (E, V ) → T ∗z X a = �a be the projection of h‖,
and let

Pf a,+(V ) = Pf+(H̃1
f (E, V ), ha) ∈ Symr�a.

27 In locc. citt., some restrictive assumptions are made (in particular that E is not CM), but
the conjectures make sense even without those and indeed closely related conjectures appear
in [39] without those assumptions. Moreover, our statement slightly differs from the ones of
[39], which instead of postulating that (x1, . . . , xr ) is a basis, postulates that φ̂(Q A) = 0 under
the extra assumption that ResF/Q A is simple (equivalently L(A, s) is primitive). Our slight
reformulation appears more uniform and still addresses [39, Remark 1.1] (cf. the comment
following [39, Conjecture 1.5]).
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Let H̃1
f (E, V )± be the eigenspaces for the complex conjugation c ∈

Gal(E/F). Since hz/X a enjoys the c-equivariance property hz/X a(cx, cx ′) =
c.hz/X a(x, x ′) and c acts by−1 on �a, by construction the pairing ha satisfies
h(cx, cx ′) = −h(x, x ′), so that each of H̃1

f (E, V )± is ha-isotropic. In partic-
ular, Conjecture Pf agrees with (7.3.6) and (7.3.5) that, in the first case of the
latter, we have (daz )

rP = 0.
Assume nowwe are in the second case of (7.3.5), so that each of H̃1

f (E, V )±
has dimension r and ha need not be degenerate. For 1 ≤ i ≤ r , let qi = qvi ∈
E×vi

be a Tate parameter for A/Ev . By [77, § 7.14] we explicitly have

H̃1
f (E, V ) = H1

f (E, V )⊕
r⊕

i=1
Qp · [qvi ]

ha(qv, qv′) = 0, ha(x, qv) = logaA,v(x̂v), x ∈ A(E), v = v′, (7.3.7)

where logaA,v : Â(Ev) ⊗ Qp
∼= E×v /qZ

v ⊗̂Qp
∼= O×Ev

⊗̂Qp
#av−→ �a. Note that

logaA,v factors through x �→ x̂av .
Up to changing the basis xi of A(E)Q and reordering the vi , wemay assume

that the basis

xr++1, . . . , xr , q1, . . . , qr+, x1, . . . , xr+, qr++1, . . . , qr

of H̃1
f (E, V ) is the concatenation of a basis of H̃1

f (E, V )+ and a basis

of H̃1
f (E, V )−, respectively. Using this basis, (7.3.7), and the identity

pf
(

M
−M t

)
= ± det M , we have28

Pf a,+(V ) = det M = det M1 det M2,

where the r × r matrix M is block-left-upper-triangular with anti-diagonal
blocks Mk = (logaA,v j

(xi ))i, j∈Ik for I1 = {r+ + 1, . . . , r}, I2 = {1, . . . , r+}.
On the other hand, we note that under (7.3.5), we have #aexc,⊗(Q A) = det N

where the r × r matrix Ni j = logaA,v j
(x̂i,v) = ha(xi , q j ) is block-diagonal

with blocks N1 = M2, N2 = M1. Thus #aexc,⊗(Q A) = Pf a,+(V ), and (7.3.6)
is equivalent to (7.3.2).

28 All the equalities to follow ignore signs and in fact, by our coarse definitions, only make
sense at best up to Q×.
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7.3.6 Applications to non-vanishing/2: exceptional families

We prove Theorem G.29 Recall that X0 is a Hida family for PGL2/Q, that
contains a classical point x0 ∈ X (Qp) corresponding to an elliptic curve A
with split multiplicative reduction at p satisfying L(A, 1) = L(Vp A, 0) = 0.

Proof of Theorem G Let E be an imaginary quadratic field, with associated
quadratic character η, satisfying the following: p is inert in A, all other primes
dividing the conductor of A split in E , and the twisted L-value L(A, η, 1) = 0.
Then A has split multiplicative reduction over E with Tate parameter

q = qA ∈ E×p .

Let �AE ∈ C× be the Néron period, and let let H := ResE/QGm .
By construction, εv(Vp AE ) = 1 for all finite v � p, hence the Hida family

X ⊂ E ord
(GL2×H)′ containing the image of X0 × {1} is locally distinguished.

LetX  ⊂ E ord
(GL2×H) be the Hida family containingX . Let� be the universal

ordinary representation overX and let f ∈ � be such that f|x0 is a test vector
(that is, a vector not annihilated by anyH′(Ap)-invariant functionalλ : �|x0 →
Qp). LetP0,E be the pullback ofP( f ) toX0, and letP0 := 1

2TrE/QP0,E .
By Corollary 6.4.5,

P0,E ∈ H̃1
f (G E ,V0), P0 ∈ H̃1

f (GQ,V0).

By the main result of [5] (as reformulated in [6, Theorem 5.4, § 5.2]),30

there is a constant c ∈ Q×p such that

P0,E (x0)⊗P ι
0,E (x0) = c · L(AE , 1)

�AE

· [q] ⊗ [q] in H̃1
f (Q, Vp AE )

⊗ H̃1
f (Q, Vp AE )

using the description H̃1
f (Q, Vp AE ) = Qp · [q]⊕H1

f (Q, Vp AE ) as in (7.3.7).
In particular, P0,E (x0) = P0(x0) is a nonzero multiple of [q], which is

Gal(E/Q)-invariant. Hence P0,E and P0 are non-vanishing. Then by [76],
H̃1

f (Q,V0) has generic rank 1.
Moreover,

h
V0/V


0
(P0,P

ι
0)(x0) = c · L(AE , 1)

�AE

· h([q], [q])

29 A less interesting variant of it was sketched in [35].
30 In the works of Bertolini–Darmon, an explicit test vector f is chosen; cf. [33] for more
details on bridging the setups.
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= c · #(q) · L(AE , 1)

�AE

∈ �Q ⊗Zp Qp, (7.3.8)

where # : Q×p → �Q is the universal logarithm (see again [77, § 7.14]
for the second equality). By [2], the right-hand side is nonzero, hence
h
V0/V


0
(P0,P

ι
0) = 0. #�

Remark 7.3.4 As noted in [33,35], the combination of Theorem D (or rather
TheoremBord) and a precise form of (7.3.8) gives a new proof ot the following
theorem of Greenberg–Stevens [43]: for A/Qp an elliptic curve of split multi-
plicative reduction at p and L p(Vp A) ∈ Zp��Q�Qp its p-adic L-function,

L ′p(Vp A, 0) = #(q)

ordp(q)
· L(A, 1)

�A
.
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Appendix A. p-adic semilocal constructions

A.1 Preliminaries

Throughout this appendix, unless otherwise noted L denotes a field of char-
acteristic zero (admitting embeddings into C).

A.1.1 Admissible and coadmissible representations

Let G be a reductive group over Qp. We denote

G p := G(Qp), G∞ := G(Qp), G = G p∞ := G p × G∞,

G� := �(G(Qp)) ⊂ G, (A.1.1)

where G p and G� have the p-adic topology, G∞ has the Zariski topology,
and � is the (continuous) diagonal embedding. The difference between G p,
G∞, G� will be in the category of modules we choose to consider. Namely,
we consider the categories of smooth admissible representations of G p over
L , of algebraic representations of G∞ over L , and the products of such for G;
we call the latter locally algebraic representations of G over L .
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The universal p-adic Gross–Zagier formula 625

Definition A.1.1 Suppose that L is a finite extension of Qp. A p-adic locally
algebraic admissible representation � of G over L is one such that for each
compact open subgroup K ⊂ G�, there exists a family ofOL -lattices�K ,◦ ⊂
�K , for K ⊂ G�, with the property that�K ′,◦ ∩�K = �K ,◦ for all K ′ ⊂ K .

The typical example of a p-adic locally algebraic admissible representation
is lim−→K p⊂G p

Hi (YK p K p ,W ) ⊗ W∨, where YK is the system of locally sym-

metric spaces attached to a model GQ of G over Q, andW is the automorphic
local system attached to the algebraic representation W of G∞.

There is a dual notion, introduced in [93, p. 152], see also [94]. Assume
that L is endowed with a discrete valuation (possibly trivial), giving it a norm
| · |. Let G ′ be one of the groups (A.1.1) or an open subgroup. For K ⊂ G ′
a compact open subgroup, let DG ′,K = HG ′,K := C∞c (K\G ′/K , L) and
DG ′ = lim←−DG ′,K be the Hecke algebras of distributions; they are endowed
with a natural topology as L-vector space, respectively as the inverse limit. A
coadmissible G ′-representation M over (L , | · |) is a topological right DG ′-
module such that, for any compact subgroup G◦ ⊂ G ′, the DG◦-module M
admits a presentation of the following form: there exists a systemof topological
DG◦,K -modules MK and isomorphisms MK

∼= MK ′ ⊗DG◦,K ′ DG◦,K for K ′ ⊂
K ⊂ G◦, such that M ∼= lim←−K

MK .
Considering first a field L as endowed with a trivial valuation, we shall

consider coadmissible representations M of G p over L that are smooth in
the sense the Lie algebra g of G p acts trivially; coadmissible representations
W of G∞ that are algebraic (those are just algebraic representations); and
the products of such as representations of G, which we call locally algebraic
coadmissible representations of G.

Definition A.1.2 Suppose that L is a finite extension of Qp; denote by | · | the
p-adic norm and by | · |triv the trivial norm on L . A p-adic locally algebraic
coadmissible representation M of G over L is one as above for (L , | · |triv),
whose restriction to G� is coadmissible for (L , | · |).

The typical example of a p-adic locally algebraic coadmissible representa-
tion is lim←−K p

Hi (YK p K p ,W )⊗ W∨, where the notation is as after Definition

A.1.1.

A.1.2 Notation

Consider the groups (1.2.1). For a place v|p of F , we let

Gv := B×v , Hv := E×v , H ′v := E×v /F×v , (G × H)′v := (Gv × Hv)/F×v

as topological groups. We use the parallel notation G∗,v,∞ for G∗,v viewed as
the group of points of an algebraic group over Fv .
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We assume from now on that Bp is split and fix an isomorphism GQp
∼=

ResFp/QpGL2, giving a model of G∗ over Zp. We define involutions

gι := gT,−1 on G(Qp), hι := hc,−1 on H(Qp),

that induce involutions ι on all our groups. The embedding H′ ↪→ (G×H)′ is
compatible with the involutions.

For t ∈ TG∗,p, let Ut := K p,r t K p,r ∈H
K p,r

G∗,p
for any r ≥ 1, and

Ut,p∞ := Ut ⊗ t∞.

When x ∈ F×p , we abuse notation by writing Ux = U( x
1
); we also write

Up∞ := U( p
1

)
,p∞

for short.

A.1.3 Ordinary parts of admissible or coadmissible G∗-modules

Let L be a finite extension of Qp. Let � = �p ⊗ W be a p-adic locally
algebraic admissible representation of G∗ Let us write

�N0,(r) := �N0,(r) ⊗W N ,

where N0,r := K p,r . ChooseOL -lattices W ◦ ⊂ W ,�◦,Kp ⊂ �K
p , stable under

the Hecke action, and compatibly with the transition maps associated with

K ′ ⊂ K . Then �◦,N0 := �
◦,N0
p ⊗ W ◦,N = lim−→r

�
◦,K p,r
p ⊗ W ◦,N is stable

under the action of Up∞. As shown by Hida, the idempotent

eord := lim
n

Un!
p∞: �◦,N0 → �◦,N0

is then well-defined and its image is denoted by �◦,ord. The space �◦,ord is
the maximal split OL -submodule of �◦,N0 over which Up∞ acts invertibly.
We also write eord for eord ⊗ 1 : �N0 = �◦,N0 ⊗ L → �N0 , and we let
�ord = eord�N0 be its image. If �p and W are irreducible, then �ord has
dimension either 0 or 1; in the latter case we say that � is ordinary. (This
notion is independent of the choice of lattices.)

LetM = Mp⊗W∨ be a p-adic locally algebraic coadmissible right module
for G∗ over L . By definition of coadmissibility, the system (Mp,K )K⊂G∗,p is
endowed with a compatible system HG∗(Zp),K -stable lattices M◦p,K , so that
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The universal p-adic Gross–Zagier formula 627

for some G∗(Zp)-stable lattice W∨,◦, M◦N0
:= lim←−M◦p,K p,r

⊗ W∨,◦
N0

is stable

under Up∞. Then we can again define eord : M(◦)
N0
→ M(◦)

N0
. Its image

M(◦),ord := M(◦)
N0

eord

is called the ordinary part of M(◦)
N0
.

The ordinary parts �ord, Mord retain an action of the operators Ut,p∞.

A.1.4 Special group elements, and further notation

The following notation will be in use throughout this appendix. Let v|p be
a place of F . We denote by ev be the ramification degree of Ev/Fv , and fix
a uniformiser �v ∈ Fv chosen so that

∏
v|p �

ev
v = p. Let Trv = TrEv/Fv

and Nmv := NmEv/Fv be the trace and norm. Fix an isomorphism OE,v =
OF,v × OF,v if v is split. If v is nonsplit, let c be the Galois conjugation of
Ev/Fv , and fix an element θv ∈ OE,v such that OE,v = OF,v[θv] (thus θv
is a unit if v is inert and a uniformiser if v is ramified). We define a purely
imaginary jv ∈ E×v to be

jv :=
{
(−1w, 1wc) if Ev = E×w × E×wc ,

θc
v − θv if Ev is a field.

(A.1.2)

We assume that Ev embeds in Bv and fix the embedding Ev → Bv to be

t = (tw, twc) �→
(

tw
twc

)

if Ev = E×w × E×wc ,

t = a + θb �→
(

a + bTrvθv bNmvθv
−b a

)

if Ev is a field.

For r ≥ 0, let

wr,v :=
(

1
−pr

)

∈ GL2(Fv),

γr,v :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
pr 1

1

)

if v splits
(

prNmv(θv)

1

)

if v is nonsplit

∈ (G × H)′v
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and

wr :=
∏

v|p
wr,v ∈ G(Qp), γr :=

∏

v|p
γr,v ∈ (G × H)′(Qp).

A.2 Toric, ordinary, and anti-ordinary parts

Let L be a finite extension of Qp. We perform some twists.

A.2.1 Ordinary and anti-ordinary parts

Letw := ( 1−1
) ∈ G∗,� and letπw be the representation on the same space as

π but with G-action given by πw(g)v := π(w−1gw)v. Let N− := w−1Nw,
and U−p∞ := U

w−1
(

p
1

)
w,p∞.

Let π = πp⊗W be a p-adic admissible locally algebraic representation of
G over L . The anti-ordinary part of π is the space

πa := πa
p ⊗W N− ⊂ π

of ‘ordinary’ elementswith respect to N− andU−p∞. Becauseπw is isomorphic
to π , the spaces πa and πord have the same dimension.

Let M = Mp⊗W be a p-adic coadmissible locally algebraic representation
of G over L . The anti-ordinary part of M is the quotient

Ma := Ma
p ⊗WN−

of M that is its ‘ordinary’ part with respect to N−0 and and U−p∞.

Proposition A.2.1 Let W be an algebraic representation of G∞.

1. Let π be a p-adic locally algebraic admissible representation of G. There
is an isomorphism

word
a : πord → πa

f �→ lim
r→∞ pr [F :Q]wr,pw

ι
0,∞U−r

p f,

where the sequence stabilises as soon as r ≥ 1 is such that f p ∈ π
U1
1 (pr )

p .
2. Let M be a p-adic locally algebraic coadmissible representation of G.

There is a map

word
a : Mord → Ma
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m = m p ⊗ m∞ �→ lim
r→∞ pr [F :Q][m(Up)

−rwr,p]N−0 ⊗ [m∞wι
0,∞]N−,

where before applying w∗, we take arbitrary lifts from N0-coinvariants to
the module M.

Proof That the maps are well-defined is a standard result left to the reader. At
least for admissible representations, the map is an isomorphism (equivalently,
nonzero) because of Lemma A.3.3 below. #�

Let πord
v (respectively πa

v ) denote the preimage of πord (respectively πa) in
πv , and let Wv be the Gv,∞-component of W . The following local components
of the above map are similarly well-defined:

word
a,v : πord

v → πa
v , word

a,v,∞: W Nv
v → W

N−v
v

fv �→ lim
r→∞ pr [Fv :Qp]wr,vU

−r
p,v fv, fv,∞ �→ wι

0,v,∞ fv,∞.

(A.2.1)

Lemma A.2.2 Letπ be an ordinary representation of G. If ( , ) : π⊗π∨ → L
is a nondegenerate G-invariant pairing, then the pairing

( , )ord : πord ⊗ π∨,ord → L

( f1, f2)
ord := (word

a f1, f2)

is a nondegenerate pairing.

Proof It suffices to see this for a specific pairing ( , ): we may take the product
of the pairings (A.3.2) below, that are known to be nondegenerate, and any
nondegenerate pairing on W ⊗ W∨. Then the result follows from Lemmas
A.3.3 and A.4.1 below. #�

A.2.2 Ordinary and toric parts

We construct a map from the ordinary part of a representation of (G × H)′
to its toric coinvariants, as well as a dual map in the opposite direction for
coadmissibe modules. These map are the key to the interpolation of toric
periods.

Suppose that W(v) (respectively W =⊗v|p Wv is an algebraic representa-
tion of (G × H)(v),∞ (respectively (G × H)′∞) over L such that, for a field
extension L ′/L splitting E , W(v),∞ ⊗L L ′ =⊗σ : F(v)↪→L Wσ with

Wσ = Wσ,w,k,l := Symkσ−2Std · det w−kσ+2
2 ⊗ σ

lσ−w
2 (σ c)

−lσ−w
2 (A.2.2)
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for some integers kσ ≥ 2, |lσ | < kσ , w of the same parity. (Here we have
chosen, for each σ : F ↪→ L , an extension σ : E ↪→ L .) Then we define a
constant

c(Wσ ) := j−w−kσ+2
v ·

(
kσ − 2

(kσ − 2− lσ )/2

)

·
{
1 if v splits in E

θc,(k−2−l)/2θ(k−2+l)/2 if v does not split in E,

c(W(v)) :=
∏

σ : F(v)↪→L

c(Wσ ). (A.2.3)

(Note that j−w−kσ+2
v = 1 if v splits in E , as w + kσ − 2 is even.)

Lemma A.2.3 Recall the congruence subgroups V ′v,r , Kv,r defined in Sect.2.1.5.
For all r ≥ 1, we have the identity of Hecke operators in the Hecke algebra
for (G × H)′v:

V ′v,r+1

⎛

⎜
⎝

∑

t∈V ′v,r/V ′v,r+1

t

⎞

⎟
⎠ · γr+1,vKv,r = V ′v,r+1γr,v · U�v Kv,r .

Proof This is a consequence of the following matrix identity.

Let v|p be a prime of F . For r ∈ Z≥1, j ∈ OF,v let b j,v :=
(
� j

1

)

. In the

split case, let

t j,r,v = k j,r,v :=
(
1+ j� r

1

)

∈ E×v

In the nonsplit case, let

t j,r,v = 1+ θv�
r
v , k j,r,v =

(
1+ jTrv(θv)� r

v Trv(θv)− j� r
v

− jNv(θv)�
2r
v 1+ j2Nv(θv)�

r
v

)

.

Then

t j,r,vγr+1,v = γr,vb j,vk j,r,v

in GL2(Fv). #�
Proposition A.2.4 Let W be an algebraic representation of (G × H)′∞.
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1. Let � = �p⊗W be a p-adic locally algebraic admissible representation
of (G × H)′. There is a map

γ ord
H ′ : �ord→�H ′

f �→ lim
r

H ′[pr [F :Q] · c(W )−1 · γr,p∞U−r
p∞ f ], (A.2.4)

where H ′[−] : �→ �H ′ is the natural projection.
The sequence in the right hand side of (A.2.4) stabilises as soon as f p ∈
�K p,r , where K p,r ⊂ (G × H)′p is defined at the end of Sect. 2.1.

2. Let M := Mp ⊗W∨ be a p-adic locally algebraic coadmissible represen-
tation of (G × H)′. There is a map

γ ord
H ′ : MH ′ → Mord

m �→ lim
r
[pr [F :Q] · c(W )−1 · mγr,p∞]N0,r eordU−r

p∞,

where [−]N0,r : M→ MN0 is the natural projection.

The constant c(W ) is justified by Lemma A.4.2 below.

Proof For part 1, let f ∈ �
K p,r
p . Then it follows from Lemma A.2.3 that,

denoting by [ fr ]H ′ the sequence in the right hand side of (A.2.4), we have

1

p[F :Q]
∑

t∈V ′p,r /V ′p,r+1

�(t) fr+1 = fr ,

hence [ fr+1 − fr ]H ′ = 0 and the sequence stabilises.
For part 2, Lemma A.2.3 similarly implies (the boundedness and) the con-

vergence of the sequence in lim←−r
Mord

N0,r
. #�

Let�ord
v denote the preimage of�ord in�v , and let Wv be the (G×H)′v,∞-

component of W . The following local components of the above maps are
similarly well-defined:

γ ord
H ′,v : �ord

v → �v,H ′v
γ ord

H ′,v,∞: W N
v → Wv,H ′v
fv �→ lim[pr [Fv :Qp]γr,vU

−r
�v

fv]H ′v ,
fv,∞ �→ c(Wv)

−1 · γ ι
0,v,∞ fv,∞. (A.2.5)
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A.2.3 Exceptional representations and vanishing of Pord

We show that γ ord
H ′ acts by zero precisely on those representations that are

exceptional.

Lemma A.2.5 Let � = π ⊗ χ be an ordinary, distinguished, irreducible
representation of (G × H)′. The following are equivalent:

1. � is exceptional;
2. ev(V(π,χ)) = 0;
3. there exists P ∈ �∗,H ′ − {0} such that Pord := Pγ ord

H ′ = 0;

4. for all P ∈ �∗,H ′ , we have Pord = 0;

Proof The equivalence of 1. and 2. is a reminder from Lemma 6.4.6. The
equivalence of 3. and 4. is a consequence of multiplicity-one. Consider 3.
Let P ∈ �∗,H ′ . Identify �∨ = �ι (the representation on the same space as
�, with group action twisted by the involution ι). Then the identity map on
spaces yields isomorphisms �∗,H ′ ∼= �∨,∗,H ′ and �ord,∗ ∼= �∨,ord,∗, and it
follows from the explicit description of γ ord

H ′ that if P∨ denotes the image of
P , then the image of P∨ is P∨,ord. Hence, Pord is zero if and only if so is
P∨,ord, if and only if so is P ⊗ P∨ ◦ γ ord

H ′ ⊗ γ ord
H ′ . Now by the theory recalled

in Sect. 1.2.6 , P ⊗ P∨ is necessarily a multiple of the explicit functional
Qdt,(,) defined there. Therefore it suffices to show that Qdt,(,) vanishes on
the line γ ord

H ′ �
ord ⊗ γ ord

H ′ �
∨,ord if and only if ev(V(π,χ)) = 0. This follows

from the explicit computations of Propositions A.3.4 and A.4.3 below, cf. also
Proposition 4.3.4. #�

A.3 Pairings at p

The goal of this subsection is to relate the p-components of the toric terms Q
and their ordinary variants Qord, as defined in Sects. 4.2–4.3.

Let v|p be a place of F .

A.3.1 Integrals and gamma factors

If π (respectively χ ) is an irreducible representation of Gv over L , we
denote by Vπ (respectively Vχ) the associated 2- (respectively 1-) dimensional
Frobenius-semisimple representation of WDFv (respectively of WDEv :=∏

w|v WDEw ; we choose the “Hecke” normalisation, so that det Vπ is the cyclo-
tomic character if π is self-dual. If� = π⊗χ is an irreducible representation
of (G×H)′v , we denote by V� = Vπ |WDEv

⊗Vχ the associated 2-dimensional
representation of WDEv . If E∗ is F or E , w|p is a prime of E∗ and V is any
representation of WDE∗,v as above, we let Vw := V|WDE∗,w .
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If ψ : Fv → C× is a nontrivial character, we denote by dψ y the selfdual
Haar measure on Fv and d×ψ y := dψ y/|y|. The level of ψ is the largest n such
that ψ|�−nOF,v

= 1. We recall that if ψ has level 0, then vol(OF,v, dψ y) = 1.
Recall the Deligne–Langlands γ -factor of (1.4.3).

Lemma A.3.1 [35, Lemma A.1.1]. Let μ : F×v → C× and ψ : Fv → C× be
characters, with ψv = 1. Let d×y be a Haar measure on F×v . Then

∫

F×v
μ(y)ψ(y)d×y = d×y

d×ψ y
· μ(−1) · γ (μ,ψ)−1.

A.3.2 Local pairing

The following isolates those representations that can be components of an
ordinary representation.

Definition A.3.2 A refined representation (π, α) of Gv over a field L consists
of a smooth irreducible infinite-dimensional representation π and a charac-
ter α : Fv → L×, such that π embeds into the un-normalised induction
Ind(| |α, | |−1ωα−1)) for someother characterω : F×v → L×.31 Sometimeswe
abusively simplywriteπ instead of (π, α). A refined representation� = π⊗χ

(G × H)′v is the product of a refined representation π = (π, α) of G and a
character χ of H , such that ωχ|F×v = 1.

If (π, α) is a refined representation of Gv , we let πord ⊂ π N0 be the unique
line on which the operator Ut acts by α(t). If� = π⊗χ is a refined represen-
tation of (G × H)′v , we let �ord := πord ⊗ χ . The associated Weil–Deligne
representation Vπ is reducible, and we have a unique filtration

0→ V+π → Vπ → V−π → 0

such that WDFv acts on V+π through the character α| · |.
Let π be a refined representation of Gv over L , and let ( , )π : π⊗π∨ → L

be a G-invariant pairing. Then we define

( , )ordπ : πord ⊗ (π∨)ord → L

f ⊗ f ∨ �→ (word
a f, f ∨),

where word
a is the operator denoted word

a,v in (A.2.1). If� is a refined represen-
tation of (G×H)′v over L and ( , ) = ( , )π ( , )χ : �⊗�∨ → L is a pairing,
we define ( , )ord := ( , )ordπ ( , )χ , a pairing on �ord ⊗�∨,ord.

31 Note that π admits a refinement if and only if it is neither supercuspidal nor 1-dimensional.
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Lemma A.3.3 Let (π, α) be a refined representation of G p over C, with cen-
tral character ω as in Definition A.3.2. Let α∨ = αω−1. Let

ad(Vπ)
++(1) = Hom (V−π , V+π )(1).

Fix a character ψ : Fv → C× of level 0, and Kirillov models of ιπv , π∨v with
respect to ψv , −ψv . Let

f (∨)
v (y) := 1OF,v

(y)α(∨)
v | |v(y) ∈ πord

v . (A.3.1)

Suppose that ( , )π,v is, in the Kirillov models, the pairing

( f, f ∨)π :=
∫

F×
f (y) f ∨(y)d×ψ y. (A.3.2)

Then

( f, f ∨)ordπ,v = ωv(−1) · γ (ad(Vπ)
++(1), ψ)−1.

Proof We omit all remaining subscripts v and argue similarly to [60, Lemma
2.8]. The inner product ( f, f ∨)ordπ is the value at s = 0 of

α| |(�)−r Z(s + 1/2, wr f, α∨| |), Z(s + 1/2, wr f, α∨| |)
:=
∫

F×
wr f (y)α∨| |(y)|y|sd×ψ y.

By the functional equation for GL2, this equals

ω(−1) · γ (s + 1/2, π ⊗ α∨| |, ψ)−1 ·
∫

p−rOF−{0}
αα∨,−1ω−1| |−s(y)d×ψ y

= ω(−1) · γ (s, αα∨| |2, ψ)−1 · γ (s, | |, ψ)−1 · ζF (1)
−1ζF (−s),

using the fact that the domain of integration can be replaced with F×, the
additivity of gamma factors, and the relation α∨ = αω−1. Evaluating at s = 0
we find γ (ad(Vπ)

++(1), ψ)−1 as desired. #�
A.3.3 Local toric period

We compute the value of the local toric periods on the lines of interest to us.
Let� = π ⊗ χ be a refined representation of (G × H)′v . Let dt be a measure
on H ′v , and set as in (4.3.1)

vol◦(H ′v, dt) := vol(O×E,v/O
×
F,v, dt)

evL(1, ηv)−1
.
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Then for all f1, f3 ∈ �ord, f2, f4 ∈ �∨,ord with f3, f4 = 0, we define

Qord
dt

(
f1 ⊗ f2
f3 ⊗ f4

)

:= μ+(jv) · vol◦(H ′v, dt) · f1 ⊗ f2
f3 ⊗ f4

, (A.3.3)

where jv = (A.1.2) and μ+ = χv · α| · | ◦ NEv/Fv is the character giving the
action of E×v on V+ := V+π ⊗ χ .

Proposition A.3.4 Let � = π ⊗ χ be a refined representation of (G × H)′v
over L, with associated Weil–Deligne representation V = Vπ |WDEv

⊗ χ . Let
γ ord

H ′ = γ ord
H ′ ,v

be as defined in (A.2.5). Then

Qdt

(
γ ord

H ′ f1 ⊗ γ ord
H ′ f2

word
a f3 ⊗ f4

)

= ev(V(π,χ)) · Qord
dt

(
f1 ⊗ f2
f3 ⊗ f4

)

.

Here

ev(V(π,χ)) = L (V(π,χ), 0)
−1 · ι−1

(

|d|−1/2v γ (ad(ιV++π )(1), ψv)

·
∏

w|v
γ (ιV+|WDEw

, ψEw)
−1
⎞

⎠

is defined independently of any choice of an embedding ι : L ↪→ C and non-
trivial character ψ : Fv → C×.

Proof Identify χ±1 with L and assume that fi = fi,π fi,χ with fi,χ identified
with 1. Fix ι : L ↪→ C (omitted from the notation) and 1 = ψ : Fv → C×.
Identify π , π∨ with Kirillov models with respect to ψ , −ψ . Let ( , ) =
( , )π · ( )χ be the invariant pairing on � ⊗ �∨ such that ( , )π = (4.2.3)
and (1 , 1 )χ = 1. Assume, after a harmless extension of scalars, that dt =
|Dv|−1/2d×ψE

z/d×ψ y, which gives vol◦(H ′, dt) = 1. Let f1 = f3 = fπ , f2 =
f4 = f ∨π with f (∨)

π as in (A.3.1).
In view of the definitions (4.2.2), (A.3.3) and of Lemma A.3.3, it suffices

to show that

Q(γ ord
H ′ f, γ ord

H ′ f ∨) :=
∫

H ′v
(π(t)γ ord

H ′ f, γ ord
H ′ f ∨)χ(t) dt

= ω(−1) · μ+(jv) ·
∏

w|v
γ (V+|WDEw

, ψEw)
−1.

We denote by α the refinement of π , and we fix r ≥ 1 to be larger than the
valuations of the conductors of π and of the norm of the conductor of χ .
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Split case. Suppose first that Ev/Fv is split and identify E×v = F×v × F×v as
usual. Then as in [32, Lemma 10.12] we find

Q(γ ord
H ′ f, γ ord

H ′ f ∨) =
∏

w|v

∫

E×w
αχw| |w(yw)ψw(yw)d

×yw

·
∫

E×
wc

αχwc | |wc(ywc)ψwc(−ywc)d×ywc

= ωv(−1) · μ+(jv) · γ (V+v , ψv)
−1,

where we have used Lemma A.3.1.
Nonsplit case. Now suppose that Ev = Ew is a field and drop all subscripts v,
w. We abbreviate T := Tr(θ), N := Nm(θ).

We have

Q(γ ord
H ′ f, γ ord

H ′ f ∨) =
∫

H ′
αα∨| |2(�)−r · (π(γ−1r tγr ) fπ , f ∨π )χ(t) dt.

(A.3.4)
There is a decomposition

H ′ = H ′1 � H ′2, H ′1 = {1+ bθ | b ∈ OF },
H ′2 = {aN + θ | a ∈ N−1�OF },

that is an isometry when H ′1, H ′2 are endowed with the measures dψb, dψa.
Let r ′ := r + e − 1 and let us redefine, for the purposes of this proof,

wr ′ :=
(

1
−N−1�−r

)
. Let ∼r ′ denote the relation in GL(2, F) of equality up

to right multiplication by an element of U 1
1 (�

r ′), and let t (r) := γ−1r tγr .
Contribution from H ′1. For t = 1+ bθ ∈ H ′1, we have

t (r) =
(

1+ bT b�−r

−bN� r 1

)

∼r ′
(
1+ bT + b2N b�−r

1

)

.

Hence the integral over H ′1 equals

ω−1α2| |2(�)−r
∫

OF

∫

OF−{0}
ψ(by�−r )α| |(Nm(1+ bθ)y)αω−1| |(y)

· χ(1+ bθ) d×ψ y dψb

=
∫

OF

∫

�−rOF−{0}
χ · α| | ◦ Nm((1+ bθ)y) · ψ(by) d×ψ y dψb.
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We show that the domain of integration in y can be harmlessly extended to
F×, i.e. that

∫

OF

∫

v(y)≤−r−1
μ+((1+ bθ)y)ψ(by) d×ψ y db

vanishes. Consider first the contribution from v(b) ≥ r . On this domain,
μ+(1+ bθ) = 1 and integration in db yields

∫
� rOF

ψ(by) db = 1�−rOF (y),
that vanishes on v(y) ≤ −r − 1. Consider now the contribution from v(b) ≤
r − 1

∫

0≤v(b)≤r−1
μ+(1+ bθ)

∫

v(y)≤−r−1
μ+(y)ψ(by) d×ψ ydb. (A.3.5)

Let n be the conductor of μ+|F× . Then (A.3.5) vanishes if n = 0; otherwise
only the annulus v(y) = −n − 1 contributes, and after a change of variable
y′ = by we obtain

ε(μ+|F×, ψ)−1 ·
∫

r−n≤v(b)≤r−1
μ+(1+ bθ)μ+(b)−1db.

On our domain μ+(1+ bθ) = 1, and
∫
μ+(b)−1 = 0 as μ+|F× is ramified.

We conclude that the contribution from H ′1 is
∫

OF

∫

F×
μ+((1+ bθ)y)ψ(by) d×ψ y db

∫

H ′1

∫

F×
μ+(t y)

· ψE (t y/(θ − θc)) d×ψ y dt.

Contribution from H ′2. For t = aN + θ ∈ H ′2, we have

t (r) =
(

aN + T �−r

−N� r aN

)

= w′r
(

1 −a�−r

aN + T �−r

)

∼r wr ′
(
1+ aT + a2N −a�−r

�−r

)

.

Then the integral over H ′2 is

ω−1α2| |2(�)−r
∫

N−1�OF

(
π(
((

Nm(1+aθ) −a�−r

�−r

))
f, π∨(w−1r ′ f ∨

)

· χ(aN + θ) dψa
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= ω−1α2| |2(�)−r
∫

N−1�OF

∫

OF−{0}
ω(�)−r

· ψ(−ay)α| |(y� rNm(1+ aθ))

· π∨(w−1r ′ ) f ∨(y) · χ(aN + θ) d×ψ y dψa

= α| |(�)−r
∫

N−1�OF

∫

F×
α| |(yNm(1+ aθ)) · π∨(w−1r ′ ) f ∨(y)

· χ(aN + θ) d×ψ y dψa

= α| |(�−rN−1) · Z(1/2, π∨(w−1r ′ ) f ∨, α| |)
·
∫

N−1�OF

α| |(Nm(aN + θ)) · χ(aN + θ) dψa,

where we have observed thatwr ′ f ∨ vanishes outsideOF , and thatψ(−ay) =
1 for y ∈ OF . Applying first the same argument as in the proof of Lemma
A.3.3, then Lemma A.3.1, this equals

γ (ad(Vπ)
++(1),−ψ)−1 ·

∫

N−1�OF

α| | ◦ Nm · χ(aN + θ)dψa

=
∫

F×
μ+(y)ψ(y) d×ψ y ·

∫

N−1�OF

μ+(aN + θ)dψa

=
∫

H ′2

∫

F×
μ+(t y)ψE (t y/(θ − θc)) d×ψ y.

Conclusion. Summing up the two contributions to (A.3.4) yields

μ+(θc − θ) ·
∫

H ′

∫

F×
μ+(u)ψE (u) d×u = ω(−1) · μ+(j) · γ (μ+, ψE )

−1,

as desired. #�

A.4 Pairings at infinity

Fix a place v|p of F .

A.4.1 Models for algebraic representations and pairings

Suppose that W is the representation (A.2.2) of (G × H)′v,∞ over L
σ←↩

E . We identify W with the space of homogeneous polynomials p(x, y) of
degree k − 2 in L[x, y], where x and y are considered as the components of a
column (respectively row) vector if W is viewed as a right (respectively left)
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representation. In those two cases, the action is respectively:

p.(g, h)(x, y) = det(g)
w−k+2

2 σ(h)
l−w
2 σ c(h)

−l−w
2 · p(g(x, y)T)

(g, h).p(x, y) = det(g)
w−k+2

2 σ(h)
l−w
2 σ c(h)

−l−w
2 · p((x, y)g). (A.4.1)

In either case, we fix the invariant pairing

(xk−2−a ya, xa′ yk−2−a′) = (−1)a
(

k − 2

a

)−1
δa,a′ . (A.4.2)

Lemma A.4.1 Let W = (A.2.2), viewed as a left representation of Gv,∞ only.
Let word

a : W N → WN be the map denoted by word
a,v,∞ of (A.2.1). Fix the

models and pairing described above. Then W N is spanned by xk−2 and WN
is spanned by the image of yk−2, and

(word
a (xk−2), xk−2) = 1.

A.4.2 The map γ ord
H ′ is unitary on algebraic representations

We start with a lemma completing the proof of Proposition 6.3.2.
Suppose that Mp = Mp,0 ⊗ Wp is a decomposition of a locally algebraic

coadmissible right (G × H)′p-representation over L , into the product of a
smooth and an irreducible algebraic representation, respectively. Let W∨∞ be
the dual representation to Wp, viewed as a right representation of (G × H)′∞.
Assume that L is a p-adic field and that the (G × H)′-module Mp ⊗ W∨∞ is
p-adic coadmissible. Then the operator γ ord

H ′ on it (whose definition of Propo-
sition A.2.4 extends verbatim to the case where Mp is only locally algebraic)
decomposes as

γ ord
H ′ = lim

r→∞(pr [F :Q] · γr,pU
−r
p )⊗ γr,pU

−r
p ⊗ c(W )−1γ ι

0,∞.

according to the decomposition Mp ⊗W∨∞ = Mp,0 ⊗Wp ⊗W∨∞

Lemma A.4.2 In relation to the situation just described, the operator

algγ ord
H ′ := lim

r→∞ γr,pU
−r
p ⊗ c(W )−1γ ι

0,∞: W H ′ ⊗W∨,H ′ → W N ⊗WN

is unitary. That is, for any invariant pairing ( , ) on W ⊗ W∨ and ξ ∈ W H ′ ,
ξ∨ ∈ W∨,H ′ , the images of ξ ⊗ ξ∨ and algγ ord

H ′ (ξ ⊗ ξ∨) under the pairings
induced by ( , ) coincide.
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Proof We may fix a place v|p, and consider the factor representations
Wv ⊗ W∨

v,∞ of (G × H)′v × (G × H)′v,∞. After extension of scalars, we
may decompose Wv = ⊗

σ : F→Q p
W σ

v where each W σ
v is one of the rep-

resentations (A.2.2) for suitable integers w, k, l. Thus we are reduced to
proving the unitarity of the relevant component of algγ ord

H ′ on the represen-
tation W σ

v ⊗W∨,σ
v,∞. We omit all subscripts.

Split case.Suppose first that v splits in E . ThenW H ′ = Lx (k−2−l)/2y(k−2+l)/2,
and if

ξ := x (k−2−l)/2y(k−2+l)/2

then

ξ∨ := (−1)(k−2+l)/2
(

k − 2

(k − 2− l)/2

)

x (k−2+l)/2y(k−2−l)/2

satisfies (ξ, ξ∨) = 1. We have

ξγ ord
H ′ ,p := lim

r→∞ ξγr,pU
−r
p = yk−2,

and

ξ∨γ ord
H ′ ,∞ = (−1)(k−2+l)/2c(W )−1

(
k − 2

(k − 2− l)/2

)

x (k−2+l)/2

· (−x + y)(k−2−l)/2

projects into W∨
N

∼=← Lxk−2 to

ξ∨γ ord
H ′ ,∞ = (−1)k−2c(W )−1

(
k − 2

(k − 2− l)/2

)

xk−2.

Hence

(ξγ ord
H ′ ,p, ξ

∨γ ord
H ′ ,∞) = c(W )−1

(
k − 2

(k − 2− l)/2

)

= 1.

Nonsplit case. Suppose now that v does not split in E . Let z := x + θc y,
z := x + θy. Then W H ′ = Lz(k−2−l)/2z(k−2+l)/2, and if

ξ := z(k−2−l)/2z(k−2+l)/2

= x (k−2−l)/2y(k−2+l)/2 ·
(
1 θc

1 θ

)

(−j)(w+k−2)/2 ∈ W H ′
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then

ξ∨ := (−1)(k−2+l)/2
(

k − 2

(k − 2− l)/2

)

x (k−2+l)/2y(k−2−l)/2

·
(
1 θc

1 θ

)

(−j)(−w−k+2)/2 ∈ W∨,H ′

satisfies (ξ, ξ∨) = 1. We have

ξγ ord
H ′ ,p = N(w−k+2)/2θc,(k−2−l)/2θ(k−2+l)/2yk−2,

and

ξ∨γ ord
H ′ ,∞ = (−1)(k−2−l)/2(−j)−(w+k−2)/2c(W )−1

·
(

k − 2

(k − 2− l)/2

)

x (k−2+l)/2y(k−2−l)/2
(
1 N−1θc

1 N−1θ

)

projects into W∨
N

∼=← Lxk−2 to

ξ∨γ ord
H ′ ,∞ = (−1)(k−2−l)/2(−j)−w−k+2c(W )−1

·
(

k − 2

(k − 2− l)/2

)

N(w+k−2)/2xk−2.

Then

(ξγ ord
H ′ ,p, ξ

∨γ ord
H ′ ,∞) = (−j)−w−k+2θc,(k−2−l)/2θ(k−2+l)/2

·
(

k − 2

(k − 2− l)/2

)

c(W )−1 = 1.

#�
A.4.3 Algebraic toric period

Let W = WG⊗WH be an algebraic representation of (G×H)′v,∞ over L . For
any ι : L ↪→ C, let ιV (respectively ιVG) be the Hodge structure associated
with W (respectively WG), and let32

L (V(WG ,WH ), 0) := ι−1
(
π−[Fv :Qp]L(ιV, 0)

L(ad(ιVG),∞), 1)

)

.

32 To compare with (1.2.7), we have ζR(2)/L(1, ηC/R) = 1.
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Let dt be a ‘measure’ on H ′v,∞, by which we simply mean a value
vol(H ′v,∞, dt) similarly to Sect. 1.2.6, and set as in (4.3.1)

vol◦(H ′v, dt) := 2−[Fv :Q]vol(H ′v,∞, dt).

Let ( , ) = ( , )WG · ( )WH be a nondegenerate invariant pairing on W.⊗W∨.
Then for all f1, f3 ∈ W , f2, f4 ∈ W∨ with ( f3, f4) = 0, we define

Qdt

(
f1 ⊗ f2
f3 ⊗ f4

)

:= L (V(WG ,WH ), 0)
−1 ·vol(H ′v,∞, dt) · (pH ′( f1), pH ′( f2))

( f3, f4)
,

(A.4.3)
where pH ′ denotes the idempotent projector onto H ′v,∞-invariants.

Let σWG : F×v → L× be the character giving the action of

(
F×v

1

)

on

W N
G , let χ : E×v → L× be the algebraic character attached to WH , and let

μ+ = χ · σWG ◦ NEv/Fv .

Let jv = (A.1.2). Then for all f1, f3 ∈ W N := W N
G ⊗ WH , f2, f4 ∈ W∨,N

with f3, f4 = 0, we define

Qord
dt

(
f1 ⊗ f2
f3 ⊗ f4

)

:= μ+(jv) · vol◦(H ′v, dt) · f1 ⊗ f2
f3 ⊗ f4

. (A.4.4)

Proposition A.4.3 Let W be a representation of (G × H)′v,∞ over L. Let
γ ord

H ′ = γ ord
H ′ ,v,∞ be as defined in (A.2.5), and let word

a = word
a,v,∞ be as defined

in (A.2.1). Then for all f1, f3 ∈ W N , f2, f4 ∈ W∨,N with f3, f4 = 0,

Qdt

(
γ ord

H ′ f1 ⊗ γ ord
H ′ f2

word
a f3 ⊗ f4

)

= dim W · Qord
dt

(
f1 ⊗ f2
f3 ⊗ f4

)

.

Proof After possibly extending scalars we may assume that L splits E and
pick an extensions of each σ : F ↪→ L to a σ : E ↪→ L . We then have
W = ⊗σ : F↪→L Wσ with Wσ = (A.2.2) for suitable integers w, kσ , lσ , and
analogously μ+(t) =∏σ : F↪→L μ+σ with

μ+σ (t) = σ(t)(kσ−2+lσ )/2σ(tc)(kσ−2−lσ )/2, μ+σ (j) = (−1)(kσ−2−lσ )/2 · jkσ−2v .

(A.4.5)
If v splits in E , this simplifies to μ+σ (j) = (−1)(kσ−2+lσ )/2.
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Moreover,L (V, 0) =∏σ L (Vσ , 0) with

L (Vσ , 0) = π−1�C(
kσ+lσ

2 )�C(
kσ−lσ

2 )

�C(kσ )�R(2)
= 2

kσ − 1
·
(

kσ − 2
kσ−2+lσ

2

)−1
.

Fix a σ : F ↪→ L for the rest of this proof, work with Wσ only, and we drop
σ from the notation. We may assume that f := f1, f ∨ := f2 both equal xk−2
in the models (A.4.1), and that vol(H ′, dt) = 1. By the definitions above and
Lemma A.4.1, we then need to prove that

Q(γ ord
H ′ f,γ

ord
H ′ f ∨) := k − 1

2
·
(

k − 2
k−2+l

2

)

· (pH ′(γ
ord
H ′ f1),

pH ′(γ
ord
H ′ f2)) = k − 1

2
· μ+(j).

Recall in what follows that γ ord
H ′ contains the factor c(W ) = (A.2.3).

Split case.Suppose first that v splits in E . ThenW H ′ = Lx (k−2−l)/2y(k−2+l)/2,
and c(W )−1γ ι

0 f = c(W )−1(x − y)k−2 projects to

γ ord
H ′ f = (−1)(k−2+l)/2c(W )−1

(
k − 2

(k − 2− l)/2

)

x (k−2−l)/2y(k−2+l)/2 ∈ W H ′ .

It follows that

Q(γ ord
H ′ f,γ

ord
H ′ f ∨) = k − 1

2
·
(

k − 2

(k − 2+ l)/2

)2

· (−1) k−2+l
2 · c(W )−1c(W∨)−1

= k − 1

2
· μ+(j).

Nonsplit case. Suppose now that v is nonsplit in E . Let z := x − θc,−1y,
z := x − θ−1y, then W H ′ = Lz(k−2−l)/2z(k−2+l)/2 and

γ ι
0 f = c(W )−1N(w+k−2)/2xk−2 = c(W )−1N(w+k−2)/2j2−k(θcz − θ z)k−2

projects to

γ ord
H ′ f = c(W∨)−1

(
k − 2
k−2−l

2

)

(−1)(k−2+l)/2

· N(w+k−2)/2j2−kθc,(k−l−2)/2θ(k+l−2)/2 · z(k−2−l)/2z(k−2+l)/2

= c(W∨)−1
(

k − 2
k−2−l

2

)

(−1)(k−2+l)/2

123



644 D. Disegni

· j(−w−k+2)/2θc,(k−l−2)/2θ(k+l−2)/2

·
(

1 1
−θc,−1 −θ−1

)

· x (k−2−l)/2y(k−2+l)/2.

By the invariance of the pairing,

Q(γ ord
H ′ f, γ ord

H ′ f ∨) = (−1)(k−2+l)/2c(W )−1c(W∨)−1
(

k − 2
k−2−l

2

)

(−j)2−kNk−2

= (−1)k−2
(

k − 2
k−2−l

2

)−1
μ+(j)

so that again

Q(γ ord
H ′ f,γ

ord
H ′ f ∨) = dim W · μ+(j).

#�
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