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Abstract Let G be asplitreal connected Lie group with finite center. In the first
part of the paper we define and study formal elementary spherical functions.
They are formal power series analogues of elementary spherical functions
on G in which the role of the quasi-simple admissible G-representations is
replaced by Verma modules. For generic highest weight we express the formal
elementary spherical functions in terms of Harish-Chandra series and integrate
them to spherical functions on the regular part of G. We show that they produce
eigenstates for spin versions of quantum hyperbolic Calogero—Moser systems.
In the second part of the paper we define and study special subclasses of global
and formal elementary spherical functions, which we call global and formal
N -point spherical functions. Formal N -point spherical functions arise as limits
of correlation functions for boundary Wess—Zumino—Witten conformal field
theory on the cylinder when the position variables tend to infinity. We construct
global N-point spherical functions in terms of compositions of equivariant
differential intertwiners associated with principal series representations, and
express them in terms of Eisenstein integrals. We show that the eigenstates
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of the quantum spin Calogero—Moser system associated to N -point spherical
functions are also common eigenfunctions of a commuting family of first-
order differential operators, which we call asymptotic boundary Knizhnik—
Zamolodchikov—Bernard operators. These operators are explicitly given in
terms of folded classical dynamical r-matrices and associated dynamical k-
matrices.

1 Introduction

Results of this paper lie at the interface of representation theory and quan-
tum integrable systems. The motivation comes from the theory of spherical
functions in harmonic analysis on real reductive groups, from the theory of
quantum integrable systems of Calogero—Moser type and from conformal field
theory with conformal boundary conditions.

We show that vector-valued elementary spherical functions provide joint
eigenfunctions of the commuting quantum Hamiltonians of quantum spin!
Calogero—Moser type systems. We introduce a special class of vector-valued
elementary spherical functions, which we call N-point spherical functions.
We show that the associated joint eigenfunctions of the quantum Hamiltonians
are also joint eigenfunctions of a commuting family of first order differential
Knizhnik—Zamolodchikov—Bernard (KZB) type operators, which originate in
conformal field theory with conformal boundary conditions.

We also develop the theory of formal elementary spherical functions and
formal N-point spherical functions. We show that formal spherical functions
provide a representation theoretic interpretation of the Harish-Chandra series,
and we use formal N-point spherical functions to establish the consistency of
the differential KZB type equations.

In the next four sections of the introduction we describe the main results in
more detail.

1.1 N-point spherical functions

Let G be a split real connected semisimple Lie group with finite center, and
K be a maximal compact subgroup of G. For two finite dimensional complex
K -representations (o, V) and (o, V;), write o := oy @ o, for the resulting
K x K-representation on V; @ V. >~ Hom(V,, V;).

! Throughout this paper we use “spin” in the sense how this term is used in physics as the
description of internal degrees of freedom of one-dimensional quantum particles.
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N-point spherical functions and asymptotic... 3

The space C3°(G) of o-spherical functions on G consists of the smooth
functions f : G — V; ® V' satisfying

flkegky ) = o ke k) f(@) ke ke € K, g € G). (1.1)

We say that a o-spherical function f € C°(G) is elementary if it is of the
form

I (g) = gy om(g) o ¢y

for some quasi-simple admissible G-representation (77, H) and K -intertwiners
¢¢ € Homg (H, Vy) and ¢, € Homg (V,, H).

For special choices of o the theory of o-spherical functions leads to rep-
resentation theoretic constructions of integrable quantum one-dimensional
many body systems and their eigenstates (see, e.g., [14,33,52,54,55]). The
commuting Hamiltonians arise from the action of the G-biinvariant differen-
tial operators on C, (G), while elementary o -spherical functions produce the
eigenstates. We extend these results to an arbitrary K x K-representation o.
The corresponding quantum integrable system is called the quantum o -spin
Calogero—Moser system. We will describe this integrable system in more detail
in Sect. 1.3 of the introduction.

In this paper we also study elementary spherical functions when the K x K -
representation is the state space V; @ U® V* of a quantum spin chain of length
N € Z=( with reflecting boundaries. The bulk part

U=U® --QUy (1.2)

of the state space V; ® U ® V' is the tensor product of N finite dimensional
G-modules (7;, U;), and V, ® U ® V' is regarded as K x K-module with
the subgroup K x 1 acting diagonally on the first N 4 1 tensor factors and
1 x K acting on the last tensor factor. We denote its representation map by
o ™) We define N -point o ‘N -spherical functions, or simply N-point spherical
functions, as the special subclass” of elementary o™ -spherical functions of
the form

2 In our follow-up paper [58], we consider the space C° . o (G*N+D) of vV, @ U® V*-valued

0¢,T,0r

functions f on G*(N+D satisfying the transformation behaviour

FkegohT higihy ' ..., hnenk D) = (or(ke) @ T (h1) ® -+ @ v (k) ® 67 (k:)) F (g0, - - - gN)
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4 J. V. Stokman, N. Reshetikhin

FEPP(9) = (9 ® id)D 0 734 (2) © B (1.3)

where

(1) H := (Ho, ..., Hy) is an (N + 1)-tuple of quasi-simple admissible G-
representations,
(2) D:HY — HF® ® Uis a G-intertwiner given as the composition

D = (D1 ®idy,g..quy) - - (Dn-1 ®idyy) Dy,

of G-intertwiners D; : H° — H°, ® U;, where H° C 'H; is the space
of smooth vectors,
(3) ¢¢ € Homg (Hy, Vy) and ¢, € Homg (V,., Hy) are K-intertwiners.

Note that indeed fZZ’D’d” is an elementary o ™) -spherical function because
(¢¢ ® idy)D extends by continuity to a K -intertwiner Hy — V; ® U and

f¢é,D B _ (e ®idy)D, ¢r
Hn

Moreover, elementary o-spherical functions may be viewed as the 0-point
spherical functions.

Let G = KAN4 be an Iwasawa decomposition of G, and denote by b the
complexified Lie algebra of A. Because G is split, b is a Cartan subalgebra
of the complexified Lie algebra g of G. A linear functional 1 € h* defines
a multiplicative character 1, of AN, which acts trivially on Ny. For A €
h* let (), H,) be the quasi-simple admissible G-representation obtained by
normalized induction from 7,. The representation (7, , H;) is a finite direct
sum of principal series representations. In Sect. 6.3 we provide a nontrivial
family of N-point spherical functions f;;, 90:D-0r \yith the (N +1)-tuple of quasi-
simple admissible representations given by

Hy = Higs -+ - Hay)

Footnote 2 continued

for (kg,h1.....hn,kr) € K x G*N x K. This space is preserved by the action of the
commutative algebra of biinvariant differential operators on GX(N +Dand N-point o V)-
spherical functions f produce simultaneous eigenfunctions f e C OOT o, (G*N+D) of the

biinvariant differential operators on G* (N+1) via the formula

F(go,-vgn) = (idy, @ T1(ggH @ 1a(g 'ggH @ - ® v gy’ - 81 ' gp ) ®idys) fgo - gn)-

In this paper we do not use to full extent the G -action on U. This will be done in the followup
paper [58], where we will focus on superintegrability.
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N-point spherical functions and asymptotic... 5

where A; € h* are such that A; — X;_1 are weight of U;, and D; H°°
Hoo , ® U; are G-intertwiners constructed as G-equivariant dlfferentlal oper—
ators They admit an integral representation

¢, D, () idy)D, ¢,
FP (@) = E7 (@ T @R (14)

where TA(W@IdU)D"P’ € V,®V* ~ Hom(V,, V;) is an explicit rank one operator
depending on the two K -intertwiners (¢; ® idy)D and ¢,, and E{ (g) (A € b*)
is the Eisenstein integral (3.3).3

One can naturally speculate that affine analogues of N-point spherical
functions should give N-point correlation functions for boundary Wess—
Zumino—Witten—Novikov (WZWN) conformal field theory on an elliptic curve
with conformally invariant boundary conditions. From this perspective the G-
intertwiners D; are asymptotic remnants of affine vertex operators, and the
K -intertwiners ¢, and ¢, are limits of boundary vertex operators.

This perspective predicts that the restrictions of N-point spherical functions
to A C G provide joint eigenfunctions of a commuting family of N first-
order differential operators, obtained as “topological limit” of trigonometric
KZB operators. The pertinent trigonometric KZB operators are first order
differential operators in variables describing points on an infinite cylinder with
reflecting conformal boundary conditions and in dynamical variables, which
can be identified with the subgroup A C G (see [62, §2.3]). In the topological
limit the dependence on the points disappears.

In Sect. 6 we directly construct N first-order differential operators on A,
called asymptotic boundary KZB operators, and we show that the restrictions

of the N-point spherical functions ffti DA cG provide joint eigenfunc-
tions of the Hamiltonians of the quantum o V)-spin Calogero-Moser system
as well as of the asymptotic boundary KZB operators (see Theorem 6.17)*. We

describe the asymptotic boundary KZB operators in more detail in Sect. 1.4
of the introduction.

1.2 Formal N-point spherical functions

In this paper we also develop the theory of formal elementary o -spherical
functions and formal N-point o™ -spherical functions. A formal elementary

3 For more background on Eisenstein integrals and their role in harmonic analysis see, e.g.,
[28-30,63].

4 From the perspective of footnote 2, the eigenvalue equations with respect to the asymptotic
boundary KZB operators arise from the action of the biinvariant differential operator €2; — €2; |
on f, where Q2 is the quadratic Casimir of G and €2; is its interpretation as biinvariant differential
operator acting on the ith-coordinate of GX(N+D),
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6 J. V. Stokman, N. Reshetikhin

o -spherical function is a formal power series analogue of the restriction of the
elementary o -spherical function f;, 909 10 the positive Weyl chamber Ay in
A, constructed as follows.

The complexified Lie algebra b of AN, is a Borel subalgebra containing
the Cartan subalgebra ). Let R be the associated root system of g, Rt be the
set of positive roots, and M, the Verma module of highest weight 1 € h*. We
denote by M, [un] the weight space of M, of weight u € h*.

Let n_ be the nilpotent subalgebra of g opposite to b, and M; be the
n_-completion of M,. Fix E-intertwiners ¢ € Homg(M,, V) and ¢, €
Homg(V,, M), where £ is the complexified Lie algebra of K. We denote
by ¢, € Homc (M, [1], Ve) and ¢ € Home (V;, M [11]) the weight compo-
nents of ¢, and ¢, of weight u.

The formal elementary o-spherical function associated with M,,, ¢¢ and
¢, is the formal series

Foo =3 (g1 0 8195, (15)

H=A

where < is the dominance order on h* and &,, is the multiplicative character
§u(a) == e10g(@) on A,

Let U(g) and U (£) be the universal enveloping algebra of g and £ respec-
tively, and denote by Z(g) the center of U(g). Harish-Chandra’s radial
component H(z) of z € U(g) is the U (£)®2-valued differential operator on
the regular part Areg of A such that

T2 (f14rg) = (@) ) Areg

for all spherical functions f, where r*(z) denotes the left G-invariant dif-
ferential operator on G associated to z. The radial components I1(z) of the
G-biinvariant differential operators r*(z) (z € Z(g)) pairwise commute.

We show in Theorem 5.8a that F, ¢‘ o , as formal power series, is a simul-

taneous eigenfunction of the d1fferent1a1 operators H(z) (z € Z(g)) with
eigenvalues given by the central character ), of M;. As a consequence, we
are able to relate the formal elementary o -spherical function F% 9 to the o-
Harish-Chandra series, when X is in an appropriate subset of generic highest
weights.

The o-Harish-Chandra series is defined as follows. Let 2 € Z(g) be the
quadratic Casimir element. For generic A € h* the o-Harish-Chandra series
®9 is the unique End(V; ® V;)-valued formal eigenfunction of IT(2) with

5 See (3.16) for details.

@ Springer



N-point spherical functions and asymptotic... 7

eigenvalue ¢, () of the form®

7= T Mg (T = idyevy).
M=A

The o-Harish-Chandra series converges on A, and thus defines an analytic
End(V,®V/*)-valued analytic function on A ;.. The o -Harish-Chandra function
plays an important role in the asymptotic analysis of o-spherical functions
through the explicit expansion of the Eisenstein integral in Harish-Chandra
series, see, e.g., [27,29,30,63]. Another interesting recent application of o -
Harish-Chandra series is its appearance in the description of four-point spin
conformal blocks in Euclidean conformal field theories within the conformal
bootstrap program (see [38,39,59] and references therein).
We show in Theorem 5.8¢ that for generic A € h*,

Fii? = o5 ()@} o ¢). (1.6)

In this case the formal o -spherical function F XZ’ ¥ isa Ve ® V*-valued analytic
function on A which extends to a smooth V; ® V*-valued function on the
dense open subset Greg := KA, K of regular elements in G satisfying the
equivariance poperty (1.1), where M is the centraliser of A in K. Conversely,
(1.6) provides a representation theoretic interpretation of the expansion coef-
ficients '] _ u()‘) of the Harish-Chandra series in terms of matrix coefficients
of Verma modules.

For g = sl (C) the weight components of ¢-intertwiners ¢y and ¢, are
Meixner—Pollaczek polynomials. On the other hand, the o -Harish-Chandra
series can be expressed in terms of Gauss’ hypergeometric series ; 1. Formula
(1.6) then provides a representation theoretic proof of the formula [11,47,56]
expressing the Poisson kernel of Meixner—Pollaczek polynomials as a o Fi.
This is detailed in Sect. 5.5.

We define formal N-point o ™)-spherical functions to be the special sub-
class of formal elementary o ¥)-spherical functions of the form

¢, V.0 . 1 (Pe®idy) WV, ¢,
FMA = FMAN

6 Note here the remarkable fact, well known to specialists in harmonic analysis, that for generic
z € Z(g) and 1 € bh* the requirement that the formal End(V, ® V,*)-valued power series
=X =i Sar—p&u is an eigenfunction of the radial component of z with eigenvalue ¢, (z)
will uniquely define the coefficients f,, € End(V, ® V) in terms of fj € End(V, ® V/*). This
in particular holds true for z = Q. The quadratic Casimir €2 is a natural choice since its radial
component is an explicit second-order differential operator that produces the Hamiltonian of the
o-spin quantum Calogero—Moser system, solvable by asymptotic Bethe ansatz, see Sect. 1.3.
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8 J. V. Stokman, N. Reshetikhin

where

(1) My, = (M, ..., My,)isan (N + 1)-tupe of Verma modules with highest
weights A; such that A; — A;_1 is a weight of U; foreachi =1,..., N,
(2) ¥ : M,;, - M,,®Uis a g-intertwiner given as the composition

¥ = (¥ ®idy,e-.guy) - (YNn-1 @ idyy) Yy

of g-intertwiners ¥; : M, — M;, , ® U;,
(3) ¢¢ € Home(M,;,,, V¢) and ¢, € Home(V,, M, ) are g-intertwiners.

For generic Ay € h* formula (1.6) provides an explicit expression of the

V.o,

formal N-point spherical function FI%’ in terms of the o™)-Harish-

Chandra series (DK,(VN) and the highest weight components of the ¢-intertwiners
(¢p¢ ®idy) VY and ¢, . It is the analogue of formula (1.4) expressing the N -point

spherical function f;ﬁi’D"z” as Fisenstein integral.
We show that formal elementary N-point spherical functions F%’w’@ give

rise to joint eigenfunctions of the quantum Hamiltonians of the o ™)-spin
Calogero—Moser system and, in addition, are joint eigenfunctions of asymp-
totic boundary KZB operators (Theorem 6.20 and Corollary 6.25). Using a
boundary version of the fusion operator for g-intertwiners from [12,16], we
obtain a topologically complete set of joint formal eigenfunctions consisting
of formal N-point spherical functions. This result implies that the boundary
asymptotic KZB operators commute (Theorem 6.27). It also suggests that
the quantum o Y)-spin Calogero-Moser system is super-integrable, which we
prove in our follow-up paper [58].

1.3 The quantum spin Calogero—Moser systems

The commuting quantum spin Calogero-Moser Hamiltonians corresponding
to the spherical functions on G are the U (£)®2_-valued differential operators

H, =380ll(z) 08" (z€ Z(9))

on Apeg, where § := §, ]—[aeR+(1 — 5_20[)% and p is the half sum of the
positive roots. The End(V; ® V,*)-valued differential operators HY := o (H,)
(z € Z(g)) are the Hamiltonians for the o -spin Calogero—Moser system.

The quadratic Hamiltonian Hg admits the following explicit expression.
Denote by (-, -)4, the Killing form of the Lie algebra go of G. It restricts to a
scalar product on the Lie algebra oy of A, giving A = exp(fo) the structure
of a Riemannian manifold. Denote by go  the root subspace in g¢ associated
to @ € R, and by 6 € Aut(g) the complex linear extension of the Cartan
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N-point spherical functions and asymptotic... 9

involution of gg relative to the Iwasawa decomposition G = K AN... Choose
ey € 90.o (¢ € R)suchthatf(ey) = —e_q and [eq, e_o] = 14, Where t, € b
is the unique element such that (74, )4, = a(h) for all h € bo. Then

with yy 1= eq4 — e—o (0 € R).
The quadratic Hamiltonian H := —%(HQ + |lplI?) of the spin Calogero—
Moser model is given by

1
H=—-A+V
> +

with A the Laplace—Beltrami operator on A, and V the U (¢)®2-valued poten-
tial

L (lel?
V=Y eyt 1 0e® 1 +eati o)

a€R ee{x1}

see Proposition 3.10. The extension of this result to arbitrary real semisimple
Lie group G is given in [58].

Special cases of the representation theoretic construction of quantum o -spin
Calogero—Moser systems and their eigenstates are known. For example, the
case when oy and o, are the trivial representation was studied in [54,55], and
the case when g = sp,.(C) and oy = o, is one-dimensional was analysed in
[33, Chpt. 5]. Other natural special cases will be discussed in Sect. 3.6.

The theory developed in this paper can also be applied to compact sym-
metric spaces. In this case it yields a trigonometric version of quantum spin
Calogero—Moser systems, with eigenstates described by vector-valued multi-
variable orthogonal polynomials. For certain compact symmetric spaces and
special choices of o, this relates to the theory of Etingof et al. [14,15] on
generalised weighted trace functions and Oblomkov’s [52] version for Grass-
mannians. In these two cases the eigenfunctions can be expressed in terms of
scalar-valued Jack polynomials and B C-type Heckman—Opdam polynomials,
respectively.

The classical integrable systems underlying the quantum o-spin trigono-
metric Calogero—Moser systems were considered in [18-20,57].
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10 J. V. Stokman, N. Reshetikhin

1.4 Asymptotic boundary KZB operators

For N-point o ™)-spherical functions on G the related quantum o ™)-spin
Calogero—Moser system turns out to be a super-integrable quantum Calogero—
Moser spin chain with associated spin space V; ® U ® V,*. In its universal
form the quantum Hamiltonians are obtained by a coordinate radial component
map from Z(g)®N+D to U (£) @ U (g)®N ® U (¥)-valued differential operators
on Apeg, cf. footnote 2. The quantum Hamiltonians described in the previous
subsection arise as the coordinate radial components of 1%V ® z (z € Z(g))
and are given by

HM =50 (AN @id)(fi2) 086~ (z € Z(g))

with AN - U ) — U®PN*D the N-fold iterated comultiplication of the
universal enveloping algebra U (£). In particular, these quantum Hamiltonians
are U (£)®N+2)_valued. The asymptotic KZB operators are part of the algebra
of quantum Hamiltonians of the quantum Calogero—Moser spin chain, see
footnote 4. The super-integrable perspective is discussed in detail in our follow-
up paper [58]. In this paper we obtain the asymptotic KZB operators by deriving
the asymptotic KZB equations for N-point spherical functions using quantum
field theoretic methods.

Let {x; };’:1 be an orthonormal basis of gy and dy, the associated first order
differential operator on A. Write E for the U (g)-valued first order differential
operator

n
E = Z Oy, @ X
s=1

on A. Consider the g ® g-valued functions

= Ya ® ey
aeR 1 _E—Za

— eq te_o)Qe
_ZXQ®X_3+Z(O[1 %‘a)z -
- S—2a

(1.7)

o€R

and the U (¥) ® U(g) ® U (£)-valued function

1
_Zya®ea +1®Kcore®l+zm’
_5 20 ga_é—a

a€ER a€ER
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N-point spherical functions and asymptotic... 11

with its core x“°™ the U (g)-valued function
| — 2
ccore . x2 + o ]
2 Z s Z 1 — %-_20{
s=1 oaeR

The asymptotic boundary KZB operators are the first-order U () ® U (g)®" ®
U (¥)-valued differential operators

i—1 N
'D,‘ = E,~ — Zr; — K — Z rl.; (18)
j=1 Jj=i+1

on Areg fori =1, ..., N. Here the indices i, j on the right hand side of (1.8)
indicate in which tensor components of U (g)®N the U (g)-components of F,
r* and « are placed. Note that the only nontrivial contributions to the left and
right U (€)-tensor components of U (8) ® U (g)®N ® U (¢) arise from «; — k™.

4
The local terms of the asymptotic KZB operators are folded and contracted

versions of Felder’s [21], [15, §2] classical trigonometric dynamical r-matrix

1 & e Qe
— o
2;5 § 21—5—20[

aeR
since
rE=tr+ (@01, k% =m((1®0)r), (1.9)
with m the multiplication map of U (g). More generally, for a € Apeg,
k@) =rt (@) ®1+18k“(a)®1+1® (Ad,1 ® id)ry; (a)).
An algebraic analysis of folding and contraction of classical dynamical r-
matrices is in the follow-up paper [62].

By the results as explained in Sect. 1.3, the V; ® U ® V*-valued analytic
functions

.D.¢, :D.¢r
(0" @ =s@ i@ @eAy
satisfy

D, ¢, .D,¢;
HM (P9 = g o2 P" (e z()).
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12 J. V. Stokman, N. Reshetikhin

see Theorem 6.17. In this paper we will present two different proofs for the
fact that they also satisfy the first order differential equations

00D, by (Ais A1) (Ai=1, Ai—1)\ gD, ¢r .
Di(f) P %) = (T - SR =1,
(1.10)

The starting point of the proofs is rewriting the right hand side of (1.10) in
terms of the action of the Casimir 2 on Hi? and Hf_l on both sides of the

ith intertwiner D; in ff[’D’d)’.

For the first proof we use an explicit Cartan-type factorisation of the Casimir
$2in U(g), see (3.6). This factorisation is the algebraic reflection of the explicit
formula for the differential operator T1(£2) on Areg. Pushing the factors from

this factorisation through the intertwiners D in f f D% 4 the far left and i ght

is creating the r* contributions to the asymptotic boundary KZB equations.
The remaining factors are then absorbed by the K-intertwiners ¢¢ and ¢,
producing the contribution k; — «;° to D;. In this proof the core «°* of k;
is already part of the initial factorisation of the Casimir element, and stays put
at its initial spot throughout this procedure. In this proof the terms r; (j <i)
and rl.; (j > i) appear as the expressions (1.7), not as folded and contracted
versions of Felder’s classical dynamical r-matrix.

In the second proof we substitute the factorisation’

" 1 l+a 2 e_gly
Q:Zx,§+52 (m)ta+zzm (1.11)
k=1 aeR
of the quadratic Casimir element €2 for regular a € Ayeg, push the left and
right root vectors through the intertwiners D; to the far left and right, reflect
against the K-intertwiners ¢y and ¢,, and push the reflected factors back to
their original position, where they merge and create the core «;°™ of k;. When
we initially move components of €2 to the boundaries the terms rj; or r;; are
created. On the way back they are producing similar terms, but now involving
the 6-twisted r-matrix (1 ® 6)r1. This proof naturally leads to the folded and
contracted expressions (1.9) for 7* and ™ in terms of Felder’s r-matrix.
A separate proof is needed to show that formal N-point o ‘M) -spherical func-
tions are joint eigenfunctions of the asymptotic KZB operators (Theorem 6.20).
It leads to the proof of the commutativity of the asymptotic boundary KZB

7 This factorisation can be used to derive the asymptotic KZB equations for Etingof’s and Schiff-
mann’s [15] generalised weighted trace functions in a manner similar to the one as described
above for N-point spherical functions, see [62] (weighted traces are naturally associated to the
symmetric space G x G /diag(G), with diag(G) the group G diagonally embedded into G x G).
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N-point spherical functions and asymptotic... 13

operators (Theorem 6.27). This in turn implies that the »* satisfy three coupled
classical dynamical Yang—Baxter equations, and that ¥ solves an associated
classical dynamical reflection equation (Theorem 6.32). An algebraic proof of
this fact is given in the follow-up paper [62].

1.5 Outlook

Harish-Chandra’s theory of harmonic analysis on G has been developed for
arbitrary real connected semisimple Lie groups G with finite center (more gen-
erally, for reductive G in Harish-Chandra’s class). We expect that the theory
of global and formal N -point spherical functions extends to this more general
setup as well. The role of the Cartan subalgebra hy will be taken over by a
maximal abelian subalgebra ag of the (—1)-eigenspace of the Cartan invo-
lution 6g, and the role of the root system R by the associated restricted root
system in ag. In our follow-up paper [58] we derive the asymptotic boundary
KZB equations in this more general context. The compatibility condition for
asymptotical boundary KZB equations in the non-split cases also give rise
to consistency conditions on their building blocks, but these conditions no
longer imply separate dynamical Yang—Baxter and reflection equations, see
[58, §6.2].

Boundary KZB equations with spectral parameters will be discussed in a
separate paper (for affine sl; Kolb has already derived the associated KZB-heat
equation in [44]). A short discussion of the boundary KZB equations and their
degeneration to asymptotic boundary KZB equations and type C (asymptotic)
Gaudin Hamiltonians can be found in [62, §2.3].

It is natural to generalise the theory to quantum groups using the Letzter—
Kolb [45,51] theory of quantum (affine) symmetric pairs. We expect that the
role of k with trivialised right boundary component will be taken over by a
dynamical universal K -matrix C, whose action on the parametrising spaces of
quantum boundary vertex operators describes the action of the Balagovic-Kolb
[1] universal K-matrix [1] on the spin spaces of the quantum boundary vertex
operators. This should be compared with the way that dynamical R-matrices
appear in Etingof’s and Varchenko’s [17] theory of generalised trace functions
and quantum KZB equations. This direction has many promising connections
to integrable models in statistical mechanics and quantum field theory with
integrable boundary conditions, see, e.g., [8,25,40] and references therein.

1.6 Contents of the paper

In Sect. 2 we recall basic facts on irreducible split Riemannian pairs and
establish the relevant notations. In Sect. 3 we recall, following [5,63], Harish-
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14 J. V. Stokman, N. Reshetikhin

Chandra’s radial component map and the explicit expression of the radial
component of the quadratic Casimir element. We furthermore establish the
link to quantum spin hyperbolic Calogero—Moser systems (Sect. 3.6) and
highlight various important special cases. We recall the construction of the
Harish-Chandra series in Sect. 3.7, and discuss how they give rise to eigen-
states for the quantum spin hyperbolic Calogero—Moser systems. In the first
two subsections of Sect. 4 we recall fundamental results of Harish-Chandra
[28-30] on the principal series representations of G and its associated matrix
coefficients. In Sect. 4.3 we discuss the algebraic principal series representa-
tions, and the description of the associated spaces of £-intertwiners. Sect. 5
first discusses how the algebraic principal series representations can be iden-
tified with €-finite parts of weight completions of Verma modules, which
leads to a detailed description of the €-intertwining spaces Homg (M, Vy) and
Homg(V;, M;). In the second half of the section we introduce formal elemen-
tary o -spherical functions and prove their key properties (differential equations
and relation to o-Harish-Chandra series). In Sect. 6 we first derive asymptotic
operator KZB equations for g-intertwiners and relate them to factorisations of
the quadratic Casimir element €2. In Sects. 6.2 and 6.3 we describe the spaces of
G-equivariant differential operators H3® — H;” ® U for a finite dimensional
G-representation U, and derive the asymptotic boundary KZB equations for
the associated N-point spherical functions. In Sect. 6.4 we derive the asymp-
totic boundary KZB equations for the formal N-point spherical functions.
Section 6.5 and Sect. 6.6 introduce the boundary fusion operator and estab-
lishes the integrability of the asymptotic boundary KZB operators. Finally, in
Sect. 6.7 we establish the resulting coupled classical dynamical Yang—Baxter
equations and the associated dynamical reflection equations for the building
blocks ¥ and « of the asymptotic boundary KZB operators.

Notations and conventions. We write ad; : L — gl(L) for the adjoint
representation of a Lie algebra L, and (-, -); for its Killing form. Real Lie
algebras will be denoted with a subscript zero. The complexification of a real
Lie algebra go with be denoted by g := go ®r C. The tensor product ® r of F'-
vector spaces is denoted by ® in case F' = C. For complex vector spaces U and
V we write Hom(U, V') for the vector space of complex linear maps U — V.
Representations of Lie groups are complex, strongly continuous Hilbert space
representations. If U and V are the representation spaces of two representations
of a Lie group G, then Homg (U, V) denotes the space of bounded linear G-
intertwiners U — V. If U and V are two g-modules for a complex Lie
algebra g, then Homg (U, V') denotes the space of g-intertwiners U — V. The
representation map of the infinitesimal g-representation associated to a smooth
G-representation (7, U) will be denoted by t again, if no confusion can arise.
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N-point spherical functions and asymptotic... 15

2 Split real semisimple Lie algebras

This short section is to fix the basic notations for split real semisimple Lie
algebras and Lie groups. For further reading consult, e.g., [43].

2.1 Root space and Cartan decomposition

Let go be a split real semisimple Lie algebra with Cartan involution 6y €
Aut(go) and corresponding Cartan decomposition

go = £o @ po.

The +1-eigenspace £y C go is a Lie subalgebra of go, and the —1-eigenspace
po is an ady, (¢p)-submodule of go. The complex linear extension of 6 will be
denoted by 6 € Aut(g) (it is a Chevalley involution of g). Then g = € ® p is
the decomposition of g in +1 and —1-eigenspaces of 6.

The bilinear form (x, y) = —(x, 6p(y))g, On go is positive definite. Fix a
Cartan subalgebra b of go which is contained in pg (this is possible since gg is
split), then the restriction of (-, -)4, to b is positive definite. We will write (-, -)
for the resulting inner product on fg, and || - || for the norm. We use the same
notations for the induced scalar product and norm on hj. The complexification
b of ho is a Cartan subalgebra of g. We also write (-, -) for the complex bilinear
extensions of (-, -) to bilinear forms on b and h*.

Let

s=hoPo. 2.1)

aE€R

be the root space decomposition of g, with root system R = R(g, h) C h* and
associated root spaces

go :=1{x €g|adg(h)x =a(h)x Vh e b}

Fix a set {a1, ..., a,} of simple roots of R. Write R™ for the associated set of
positive roots. Let £, € b be the unique element satisfying

(h.t))g=A(h) Vheb.

Then [x, y] = (x, y)4ty for root vectors x € gy and y € g4, see [37, Prop.
8.3].
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16 J. V. Stokman, N. Reshetikhin

The root space decomposition (2.1) refines to

g0 = ho ® P 90.« (2.2)

a€ER

with go.« := g0 N g a one-dimensional real vector space for all « € R. In
particular, all roots @ € R are real-valued on hg, and 7, € ho (@ € R).
We fix ey € go.o (@ € R) such that

leq, e—a]l = o, Oo(eq) = —e_y (2.3)

for all @ € R (the fact that this is possible follows from, e.g., [37, §25.2]).
Then (ey, e_¢)g, = 1 for o € R. Set

Vo = €q — €e—qg € ¥, o € R,

then y_, = —yy (@ € R) and

E0 = @ Ryou

a€RT

po=ho® P Riex +ea).

a€RT

Let G be a connected real Lie group with Lie algebra go and finite center.
Denote by K C G the connected Lie subgroup with Lie algebra €y, which is
maximal compact in G. The Cartan involution 6 integrates to a global Cartan
involution ®¢ € Aut(G), and K is the subgroup of elements g € G fixed by
®p (i.e., (G, K) is a Riemannian symmetric pair). The map

K xpy— G, (k, x) — kexp(x)

is a diffeomorphism, called the global Cartan decomposition of G.

2.2 One-dimensional £y-representations

Let ch(€y) be the space of one-dimensional real representations of . If g is
simple but not of type C,, (n > 1) then £y is semisimple (see, for instance, [61,
§3.1]), hence ch(¥g) = {xo} with yo the trivial representation. If go >~ sp(n; R)
(n > 1) then &y =~ gl,,(R), hence ch(ty) = Ry is one-dimensional. Write in
this case Ry and Ry for the set of short and long roots in R with respect to the
norm | - || (by convention, Ry = ¥and R; = R forn = 1). Set R := R;NR™
and R := R, N RT.
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N-point spherical functions and asymptotic... 17

Lemma 2.1 Let g9 = sp(n; R) (n > 1). Denote by xsp € ¥ the linear
functional satisfying xsp(ye) = 0 for a € R} and Xsp (Vo) = 1 fora € RZ‘.
Then

ch(to) = Rxsp

Proof See [61, Lemma 4.3]. |

2.3 The Iwasawa decomposition

Let A C G be the connected Lie subgroup with Lie algebra fg. It is a closed

commutative Lie subgroup of G, isomorphic to hg through the restriction of

the exponential map exp : g — G to ho. We writelog : A — 0§ for its inverse.
Consider the nilpotent Lie subalgebra

no,+ == @ 90,

aeRt

of go. The vector space decomposition

g0 = £ @ ho @ no,+

is the Iwasawa decomposition of gg. Let N C G be the connected Lie sub-
group with Lie algebra ng . Then N, is simply connected and closed in G,
and the exponential map exp : ng + — N is a diffeomorphism. The multi-
plication map

K xA XNy — G, (k,a,n) — kan (2.4)
is a diffeomorphism onto G (the global Iwasawa decomposition). We write

g =k(g)a(g)n(g)

for the Iwasawa decomposition of g € G, with k(g) € K, a(g) € A and
n(g) € Ny.

Since G is split with finite center, the centralizer M := Zg (ho) of ho in
K is a finite group. The minimal parabolic subgroup P = M AN, of G is a
closed Lie subgroup of G with Lie algebra by := by @ ng,+. Note that the
complexification b of by is the Borel subalgebra of g containing b.
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18 J. V. Stokman, N. Reshetikhin

3 Radial components of invariant differential operators

Throughout this section we fix a triple (go, ho, 6o) with gg a split real semisim-
ple Lie algebra, hg a split Cartan subalgebra and 6y a Cartan involution such
that 6ply, = —idp,. We write h; C b* for the real span of the roots, G for
a connected Lie group with Lie algebra g and finite center, K C G for the
connected Lie subgroup with Lie algebra £y, and A C G for the connected Lie
subgroup with Lie algebra f.

3.1 The radial component map

The radial component map describes the factorisation of elements x € U (g)
along algebraic counterparts of the Cartan decomposition G = K AK. We first
introduce some preliminary notations.

For A € bh* the map

§:A—>C" awr a* = Hlog(@)

defines a complex-valued multiplicative character of A, which is real-valued
for A € b§. It satisfies £,&,, = &4, (A, € h*) and & = 1.

The adjoint representation Ad : G — Aut(gg) extends naturally to an action
of G on the universal enveloping algebra U (g) of g by complex linear algebra
automorphisms. We write Ad, (x) for the adjoint actionof g € Gonx € U(g).
Note that fora € A,

Ady(eq) =a%ey Ya €R

and Ad, fixes b pointwise.

Each g € G admits a decomposition g = kak’ with k, k' € K and a € A.
The double cosets KaK and Ka’'K (a,a’ € A) coincide iff @' € Wa with
W := Nk (ho)/M the analytic Weyl group of G, acting on A by conjugation.
Note that W is isomorphic to the Weyl group of R since G is split. Set

Arg :=fa€ A|a”#1 Ya € R}.

Then exp : ho reg AN Areg, With o reg ;= {h € ho | a(h) #0 Ya € R} the
set of regular elements in by. The Weyl group W acts freely on Ape,.

Infinitesimal analogues of the Cartan decomposition of G are realized
through the vector space decompositions

go=hoDAd, 1% D ¥ (3.1)
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N-point spherical functions and asymptotic... 19

of go for a € Ayeg. The decomposition (3.1) follows from the identity

o — a “(Ad,-1ya) — Ya
“ a2 —1

, (3.2)

which shows that {Ad -1y, Y} is a linear basis of go,¢ ® g0, -« fOra € Areg.
Set

V=Ub) U QUC®).
By the Poincaré-Birkhoff—Witt-Theorem, for each a € Ay, the linear map
Iy :V—=>U@., Tuah®x®y):=Ad,-1(x)hy
is a linear isomorphism.

Extending the scalars of the complex vector space V to the ring C*°(Ayeg) of
complex valued smooth functions on Ae, allows one to give the factorisation
r a_l (x) for x € U(g) uniformly in a € Ape,. It suffices to extend the scalars
to the unital subring R of C*°(Ag) generated by £_, and (1 — 5_205)_1 for

:}Vll o€ RT.Fora e Apreg the extension of I', is then the complex linear map
I'y:R®V — U(g) defined by

T(f®2Z):=f@Ta(Z), feR, Ze).

Theorem 3.1 [S5] For x € U(g) there exists a unique I1(x) € R ® V such
that

'l::a(l'[(x)) =X Va € Agg.
For example, by (3.2),
Mew) = g — &) ' ®1@ye @1 — (g — D' @11 ® ys.

The resulting linear map IT : U(g) — R ® V is called the radial component
map.

3.2 o-Spherical functions
The radial component map plays an important role in the study of spherical

functions. Fix a finite dimensional representation o : K x K — GL(V,).
Denote by C*°(G; V,,) the space of smooth V,-valued functions on G.
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20 J. V. Stokman, N. Reshetikhin

Definition 3.2 We say that f € C*°(G; V,) is a o-spherical function on G if
flkigky) = o ki ko) f(g) Vg€ G. Vhkikr€K.

We denote by C2°(G) the subspace of C*°(G; V,) consisting of o-spherical

functions on G.

Let Vé"[ be the subspace of M-invariant elements in V,, with M acting diag-
onally on V,;. Examples of o-spherical functions on G are

EZ()v e CP(G), wveV,

where EY : G — End(V,;) for A € h* is the Eisenstein integral
Ef(@) = [ dx e plals ot ks o) (33)

Here p := % Y wer+ @ € b* and dx is the normalised Haar measure on K.
The representation theoretic construction of o -spherical functions (see, e.g.,
[5, §8]) will be discussed in Sect. 4.

The function space C*°(A; Vé"’ ) is a W-module with w = kM € W for
k € Nk (ho) acting by

(w - f)(a) := ok, k) f(k ak), aeA, feC®A;vh,.

We write C®°(A; VM)W for the subspace of W-invariant VM -valued smooth
functions on A. By the Cartan decomposition of G, we have the following well
known result.

Corollary 3.3 The map C*®°(G; V,) — C®(A;V,), f +— fla restricts to
an injective linear map from C3°(G) into C*°(A; V(f’[ YW. Similarly, restriction
to Areg defines an injective linear map C;°(G) — C*(Areg; V!’)W.

The action of left G-invariant differential operators on CJ°(G), pushed
through the restriction map |4,.,. gives rise to differential operators on Areg
that can be described explicitly in terms of the radial component map IT. We
describe them in the next subsection.

3.3 Invariant differential operators

Denote by ¢ and r the left-regular and right-regular representations of G on
C°(G) respectively,

W) NE) = fg e, @)= g9,
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N-point spherical functions and asymptotic... 21

with g, ¢’ € Gand f € C*(G). Let D(G) be the ring of differential operators
on G, and D(G)¢ < D(G) its subalgebra of left G-invariant differential
operators. Differentiating r gives an isomorphism

re  U(g) — D(G)C
of algebras.

LetU (g)M C U (g) be the subalgebra of Ad(M)-invariant elements in U (g).
Embed D(G) into D(G) ® End(V,) by D — D ® idy, (D € D(G)). With
respect to the resulting action . of U (g) on C*°(G; V), the subspace C3°(G)
of o-spherical functions is a U (g)K -invariant subspace of C*°(G; V).

LetD(A) be the ring of differential operators on A and ID(A)# the subalgebra

of A-invariant differential operators. Let 4 be the right-regular action of A
on C*°(A). Its differential gives rise to an algebra isomorphism

rA U (h) — D(A)A. (3.4)

We will write 9y, := rf (h) € D(A)A for h € ho, which are the derivations

d
(0 f)(a) = o flaexpy(th))
! t=0

for f € C*°(A)anda € A. We also consider D(A)4 as the subring of D(Areg)
consisting of constant coefficient differential operators and write

Dr C D(Areg)

for the algebra of differential operators

D= 3" Cmpm,0p -+ 00" € D(Areg)

with coefficients ¢, . .m, € R, where {xi, ..., x,} is an orthonormal basis
of ho with respect to (-, -). The algebra isomorphism (3.4) now extends to a
complex linear isomorphism

FAR@UM) — Dr, f®h > frih)
for f € Rand h € U(h). Finally, Dr ® U (£)®2 will denote the algebra

of differential operators D = Y, Cmy...m,0x, - 0x," ON Areg With
coefficients ¢y, ,...m, N R QU (E)®2. It acts naturally on C*°(Aeg; Vo).

@ Springer



22 J. V. Stokman, N. Reshetikhin

By the proof of [5, Thm. 3.1] we have for f € C°(G), h € U(h) and
x,y e U(®),

(re(Ad,—1(ORY) f) (@) = 0 (x @ SO (re(h) f) (@)  Va € Ageg,

with S the antipode of U (£), defined as the anti-algebra homomorphism of
U () such that S(x) = —x for all x € £. Combined with Theorem 3.1 this
leads to the following result.

Theorem 3.4 With the above conventions, define the linear map
M:U( — Dr@U®™
by T := (F2 @ idy @ ® S)T, and set
% := (idp, ® o)1 : U(g) — Dr ® End(V,).
a. Forz € U(yg),
(re@ Flage = 7@ (flage) ¥ f € CXG).

b. The restrictions of T and T1° 10 Z(g) are algebra homomorphisms.

Proof a. This is a well-known result of Harish-Chandra, see, e.g., [5, Thm.
3.1].

b. It is well-known that the differential operators ﬁ(z) (z € Z(g)) pairwise
commute when acting on C°°(Areg; V(f” ), see [5, Thm. 3.3]. The theory of
formal spherical functions which we develop in Sect. 5, implies that they also
commute as U (£)®2-valued differential operators. The key point is that all
formal spherical functions are formal power series eigenfunctions of IT(z)
(z € Z(g)) by Theorem 5.8 a, which forces the differential operators I1(z)
(z € Z(g)) to commute as U (©)®2_-valued differential operators by the results
in Sect. 6.6 for the special case N = 0. O

Remark 3.5 By [5, Prop. 2.5] we have ﬁ(z) eDr@UE®HY for 7 €
U(g)M, where U (£ & )M is the space of M-invariance in U (¢ @ €) ~ U (£)®>
with respect to the diagonal adjoint action of M on U (¢ @ ¢). In particular,
e (z) € D ® Endy(Vy) for z € U(g)M, with M acting diagonally on V.

3.4 The radial component of the Casimir element

In this subsection we recall the computation of the radial component of the
Casimir element. As before, let e, € go.o (¢ € R) such that [ey, e_o] = 1,
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and 6y(ey) = —e_oy (@ € R), and {x1, ..., x,} an orthonormal basis of b
with respect to (-, -). The Casimir element 2 € Z(g) is given by

Q= Zx + Zeae_a

aEeR

_Zx +2t, +2 Z e_q€y.

a€Rt

(3.5)

By (3.2), the second line of (3.5), and by
[Vo, Ad,-1yq] = (@a™% —a®)ty, VaeA,

we obtain the following Cartan factorisation of 2,

+Z< 1 (02) = (@® +a"*)Ad, —1(ya)ya+ya> (3.6)

_ ,—a)2
a€ER (Cl a )

for arbitrary a € Apeg. It follows that
+
Q) = Zl@x QI+ Z(é"‘_s >®za®1®1

+Z{(€a— a)2®1®(y§®1+1®y§) (3.7)

a€ER
()
(Sa - ";:—oz)z
This gives the following result, cf., e.g., [63, Prop. 9.1.2.11].
Corollary 3.6 The differential operator ﬁ(SZ) eDr Q U()®2 is given by

Q) =A+ - Z(g‘ﬁg )m

aeR

+Z(§a_g )2 l_[ (Vo @1+ 8ca(1®yy))  (3.8)

aER ee{x1}

®1®ya®ya}.

with A := Z?:l 8%/, the Laplace—Beltrami operator on A.
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Remark 3.7 Note that the infinitesimal Cartan factorisations (3.6) of Q are
parametrised by elements a € Areg. In the context of boundary Knizhnik—
Zamolodchikov equations (see Sect. 6) these will provide the dynamical
parameters.

There are various ways to factorise €2, of which (3.5) and the infinitesimal
Cartan decomposition (3.6) are two natural ones. Another factorisation is

o=y in X (Tim)e s 09

aER

for a € Areg, which is a dynamical version of (3.5). This formula can be
easily proved by moving in (3.9) positive root vectors e, (@ € R™) to the
left and using [e,, e—q] = ty, which causes the “dynamical” dependence to
drop out and reduces (3.9) to the second formula of (3.5). The decomposition
(3.9) is the natural factorisation of €2 in the context of Etingof’s and Schiff-
mann’s [15] generalised weighted trace functions and associated asymptotic
KZB equations, see [62].

3.5 x-invariant vectors

Let V be a go-module and fix x € ch(fy). We say that a vector v € V is
x -invariant if xv = x (x)v for all x € ). We write VX for the subspace of
X -invariant vectors in V,

VX={weV|ev—e_qv=xa)v Yae R}

In case of the trivial one-dimensional representation g = 0, we write VX0 =
V%, which is the space of €y-fixed vectors in V. From the computation of the
radial component of the Casimir €2 in the previous subsection, we obtain the
following corollary.

Corollary 3.8 Let V be a go-module such that Q|y = cidy for some c € R.
Fix x € ch(ty) and v € VX. Then

o

<2x Z(%%

Y (a_a_ iy [] Adei0w = x0an Jo = ev

aeR ec{xl}

foralla € Areg.
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If V is hp-diagonalisable then Corollary 3.8 reduces to explicit recursion rela-
tions for the weight components of v € VX,

Remark 3.9 In the setup of the corollary, a vector u € V is a Whittaker vector
of weight a € Ay if equ = a%u forall a € R™. Recursion relations for the
weight components of Whittaker vectors are used in [9, §3.2] to derive a path
model for Whittaker vectors [9, Thm. 3.7], as well as for the associated Whit-
taker functions [9, Thm. 3.9]. It would be interesting to see what this approach
entails for o-spherical functions with o a one-dimensional representation of
K x K, when the role of the Whittaker vectors is taken over by y-invariant
vectors.

3.6 Quantum o -spin hyperbolic Calogero—-Moser systems

We gauge the commuting differential operators ﬁ(z) (z € Z(g)) to give
them the interpretation as quantum Hamiltonians for spin generalisations (in
the physical sense) of the quantum hyperbolic Calogero—-Moser system. This
extends results from [24,31,54] and [33, Part I, Chpt. 5], which deal with the

“spinless” cases.
Write

Ay :={acA|a*>1 YaeR")

for the positive chamber of Aeg. Note that R is contained in the ring C*(A )
of analytic functions on A .
Let § be the analytic function on A given by

s =a’ [] — a5, (3.10)

a€RT

Conjugation by § defines an outer automorphism of Dx. For z € U(g) we
denote by

H.:=80T(z) 08 ' € Dr ® U(t)®? (3.11)

the corresponding gauged differential operator. We furthermore write

1 -
Hi=—260 (TL() + lIpl1?) 0871 (3.12)
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Proposition 3.10 The assignment 7 — H defines an algebra map Z(g) —
Dr @ Ut ® ©)M. Furthermore,

H= 1A —-Z — (4 T oo 1+ 6wt @)

§-a)? ec{+1}
(3.13)

Proof The first statement is immediate from Theorem 3.4. The proof of (3.13)
follows from the well known fact that

80<A+ Z<§Z+§_a>a’“) Pl +Z”2 (Sa—l 5

see, e.g., the proof of [33, Part [, Thm. 2.1.1]. O

For o : U(£)®% — End(V,) a finite dimensional representation we write
H? := (idp, ® 0)H, € Dr ® End(V,)  (z € U(g)).

Then H? (z € Z(g)) are commuting End(V,)-valued differential operators
on A which, by Proposition 3.10, serve as quantum Hamiltonians for the o-
spin generalisation of the quantum hyperbolic Calogero—Moser system with
Schrodinger operator

H? := (idp, ® o) (H).

We now list a couple of interesting special cases of the quantum o -spin hyper-
bolic Calogero—Moser systems.

The spinless case: Take xt, x" € ch(). Their extension to complex linear
algebra morphisms U (£) — C are again denoted by x* and x”. Define x" €
C?(A) (@ € R) by

X @) = x'Oa) +a%% (o), a €Ay (3.14)

Note that Xf’or,(a) = —(Xe(ya) 4+ a *x"(yy)) for « € R. The Schrodinger
operator HX ‘®X" then becomes

2
e _ 1,1 I lal®> ‘)

2 2Z<sa—s_a)2< 2 e KXee)

@ER
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The special case

2
HX0®x0 — _lA _ l E o 1
2 2 2 by —§-0)?

a€eR
with xo € ch(®p) the trivial representation is the quantum Hamiltonian of the
quantum hyperbolic Calogero—Moser system associated to the Riemannian
symmetric space G /K . If g is simple and of type C, (n > 1) then x* = ¢, Xsp
and x" = ¢, xsp for some cg,c, € C, see Lemma 2.1. Using the explicit
description of ysp from Lemma 2.1, we then obtain

Hrox — _lA_l Z ﬂ
2 2 (G — £-0)?

aeR?

1 MBI+ (ce—en)? 1 SIBIP + (ce + ¢)?
+7 2 -1 2

e Gt Epp)? (&2 — &-p12)*

BeRS
hence we recover a two-parameter subfamily of the BC,, quantum hyperbolic
Calogero—Moser system. This extends [33, Part I, Thm. 5.1.7], which deals
with the special case that x¢ = —x” with x¢ € ch(¥) integrating to a multi-
plicative character of K.

The one-sided spin case: Let x € ch(¥g) and o, : U(€) — End(V;) a finite
dimensional representation. Then

2
H@@XZ_EA_%Z@ _15 S(M5E+ T @0 + seax )
aeR ¢ e

2 ce{£1)

In the special case that x = xo € ch(fp) is the trivial representation the
Schrodinger operator reduces to

Ho¢®x0 —

1 1 1 <||a||2

A -+ 0i09))-

D
27 24 (G -6
Finally, if g is simple and of type C,, (n > 1) and x = cxsp With ¢ € C, then

LRSS lel® + 20¢(y3)
2 Z(XER+ (Ea _g—a)z

TIBIP + (oe(yp) + ©)?
(G —E-p)?

€R,

1 FIBIP + (oe(yp) —0)* 1
+ —_ N
4 ﬁ% (&2 +6-pp)? 4 5
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Remark 3.11 Fehér and Pusztai [19,20] obtained the classical analog of the
one-sided quantum spin Calogero—Moser system by Hamiltonian reduction.
This is extended to double-sided spin Calogero—Moser systems in [57].

The matrix case: The following special case is relevant for the theory of
matrix-valued spherical functions [26], [32, §7]. Let t : € — gl(V;) be a finite
dimensional representation. Consider End(V;) as left U (¥) ®2_module by

or(x @WT :=1(x)TT(S(Y)) (3.15)

for x,y € U(®) and T € End(V;). Note that End(V;) >~ V. ® V} as
U (£)®2-modules. The associated Schrodinger operator H°* acts on T €
Coo(Areg; End(V;)) by

1
(Har T)(a) =— E(AT)(Q)

1 3 B2 7 (@) + 10T @) = @ + a0 T @1 Ga) + T@7(02)
2

a® — qg—)2
a€ER ( )

fora € Areg.

3.7 o-Harish-Chandra series

In this subsection we recall the construction of the Harish-Chandra series
following [63, Chpt. 9]. They were defined by Harish-Chandra to analyse the
asymptotic behaviour of matrix coefficients of admissible G-representations
and of the associated spherical functions (see, e.g., [2,5,33] and references
therein).

Consider the ring C[[£§_y,, ..., &—q, ]] of formal power series at infinity in
Ay . Weexpresselements f € C[[_q,,...,5¢,]las f = ZyeQ, cy &, with
¢y € Cand

0_ = @Zsoaj C Q:=1ZR.

j=l1

We consider R as subring of C[[§_, , . . . , £—¢, ]] using power series expansion
atinfinity in A4 (e.g., (1 —&_24) 71 = 3% (& oo for o € RT). Similarly,
we view &_,8 as element in C[[§_q,, ..., §_q,]] through its power series
expansion at infinity, where ¢ is given by (3.10).

For B a complex associative algebra we write B[[§_q,., ..., &_4,1]15 for
the C[[£_q,, ..., &_q,]]-module of formal series g = ZVEQ_ dy &, with
coefficients d, € B.If B =U ()2 or B = End(V,) for some ¢ @ ¢-module
Vo then B[[é_q,, ..., &4, 116, becomes a D ® U(E)®2—module.
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Set

bic = €b™ | CL+p) +y. ) #0 Vy e 0_\{0}}. (3.16)

The Harish-Chandra series associated to the triple (go, o, fo) is the following
formal U () ®2_vyalued eigenfunction of the U (£)®?-valued differential opera-
tor TT(£2).

Proposition 3.12 Let A € byj.. There exists a unique U (&)®2-valued formal
series

Oi= Y Ty(Way € UOP (g, ... 60 ]len (.17

yeQ_
with coefficients I', (1) € U ©®2 and To(L) = 1, satisfying
Q)P = (b, A +2p)D;. (3.18)

In fact, if A € by then the eigenvalue equation (3.18) for a formal series of
the form (3.17) gives recursion relations for its coefficients I'y (y) (y € Q)
which, together with the condition I'g(A) = 1, determine the coefficients
I’y (1) uniquely. We call the I'), () € U (£)®2 (y € Q-) the Harish-Chandra
coefficients.

Let n be the complexified Lie algebra of N. The sum U (h) +6(n4)U(g)
in U (g) is an internal direct sum containing Z(g). Denoteby pr : Z(g) — U(h)
the restriction to Z(g) of the projection U (h) & 6(ny)U(g) — U(h) on the
first direct summand. Then pr is an algebra homomorphism (see, e.g., [5, §1]).
The central character at A € h* is the algebra homomorphism

G0 Z(@ —> C, 2 Apr(2)
with A(pr(z)) the evaluation of pr(z) € U(h) =~ S(h) at 1. By the second
expression of the Casimir element €2 in (3.5) we have £, (2) = (&, A + 2p).

Furthermore, by [10, Prop. 7.4.7], {x—p = £u—p for A, u € h* if and only if
re W

Proposition 3.13 Let A € byy. Then
M@0, = 6P Yze Z(g)

in U®®[[E_ays - ., E—a,Er
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Proof Write x" := x{'---x;" € S(h) and 3" := 8, --- 9" € Dg forn €
Z - The leading symbol of D = Znez’éo (ZVEQ_ CnyEy)d" € DrRAU (B)®?
is defined to be

S0o(D) = Y cyox" € S(h) ® U®®2.

Fix z € Z(g). Let el (£)®2 be the evaluation of the leading _symbol
500 (H (z)) at L. Note that the &, -component of the formal power series m (2) D,
is zA Furthermore H(z)dDA € U(E)‘X’2 [[5—qs .-, &—q,]]% is an eigenfunc-
tion of H(Q) with eigenvalue (A, A + 2p) by Theorem 3.4 b.

For any y € U (£)®2, the formal power series

Oy = Y (TyMyéity

yeQ_

is the unique eigenfunction of H(Q) of the form ZyeQ r ()\)SML), (F A) €

U (£)®2) with eigenvalue (A, A 4+ 2p) and leading coefficient Fo (A) equaltoy
(cf. Proposition 3.12). It thus follows that

ﬁ(Z)‘D)L = CI))\ZEO.
By [5, Prop. 2.6(ii)] we have
5o (T1(2)) = 500 (TI(Pr(2))),

hence z7° = A(pr(z)) 1y @2 = §1(2) 1y 2. This concludes the proof of the
proposition. m|

Remark 3.14 By Remark 3.5 and by an argument similar to the proof of Propo-
sition 3.13, it follows that ", (1) € U (¢ & OM for 1 bijcandy € O_.

Fix a finite dimensional representation o : U (©)®2 — End(V,). For A €
biic set

) = Y o(Ty(Méyy € End(Vo)llE-a;, - -» 60,116 (3.19)

yeQ_

We call ®7 the o-Harish-Chandra series, and
F;(A) =0y, (1)) € End(Vy), yeQ_

the associated Harish-Chandra coefficients.
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Remark 3.15 Suppose that V, integrates to a K x K-representation. Let
Endy;(V,) be the space of M-intertwiners V, — V, with respect to the
diagonal action of M on V. Then F)‘Z()L) € Endy(Vy) forall y € Q_ by
Remark 3.14.

Note that ®9 is the unique formal power series ZyeQ, F)‘Z(A)SHV with
F)‘Z (A) € End(V,) and F}‘f (A) = idy, satisfying ﬁ(Q)dD" = (A, A +2p)07.
The o-Harish-Chandra series in addition satisfies the eigenvalue equations
[M(z2)®] = 5. (2) @Y forall z € Z(g).

Endow End(V,) with the norm topology. The recursion relations arising
from the eigenvalue equation ﬁ(Q) ®F = £,(2)®] imply growth estimates
for the Harish-Chandra coefficients F)‘j (1). It leads to the following result (cf.
[63] and references therein).

Proposition 3.16 Let A € by Then

(@)= Y TIWa™, aeAy
ve0-

defines an End(V,)-valued analytic function on A .

Remark 3.17 Set Greg := KA+ K C G, which is an open dense subset of G.
For 1 € b} and v € VM the function

Hf(klak;) =0k, k)P (a)v  (a € Ay, ki, ky € K)
is a well defined smooth V,;-valued function on Gy, satisfying
H(kigky ) = o (ki ko) HY(8) Vg € Greg, Yhi.ka € K.

It in general does not extend to a o-spherical function on G.

The Harish-Chandra series immediately provide “asymptotically free” com-
mon eigenfunctions for the quantum Hamiltonians H? (z € Z(g)) of the
quantum o -spin hyperbolic Calogero—Moser system.

Theorem 3.18 Fix A € bjjc + p. The End(Vy)-valued analytic function
5 (a) :=8(@)P]_,(a), ae€A; (3.20)

has a series expansion of the form

7 = Z 7 (ME+y € End(Vo)llé—q,, - -, -0, l1E
yeQ_
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with F]‘f (M) € End(V,) and I'§ (A) = idy,. It satisfies the Schréodinger equa-
tion

as well as the eigenvalue equations
HI ®F = 5-p(2) @] Vze Z(g)
as End(Vy)-analytic functions on Ax.

Proof This is an immediate consequence of Proposition 3.13 and the defini-
tions of the differential operators H” and H? (z € Z(g)). O

4 Principal series representations

We keep the conventions of the previous section. In particular, (go, bo, fo) is a
triple with go a split real semisimple Lie algebra, ho a split Cartan subalgebra
and 0 a Cartan involution such that 6|y, = —idp,,and (G, K) is the associated
non-compact split symmetric pair. We fix throughout this section two finite
dimensional K -representations oy : K — GL(Vy) and o, : K — GL(V,). We
write (-, -)y, and (-, -)y, for scalar products on V; and V, turning oy and o, into
unitary representations of K. We view Hom(V,., V) as finite dimensional K x
K -representation with representation map o : K x K — GLHom(V;, V¢))
given by

o (ke k)T = oy (ke) Top (k") (4.1)

for k¢, k, € K and T € Hom(V,, Vy). It is isomorphic to the tensor product
representation V; ® V,*. For details on the first two subsections, see [42, Chpt.
8].

4.1 Admissible representations and associated spherical functions

Let K" be the equivalence classes of the irreducible unitary representations
of K. Recall that a representation w : G — GL(H) of G on a Hilbert space
‘H is called admissible if the restriction | of w to K is unitary and if the
T-isotypical component H(t) of 7|k is finite dimensional for all T € K”.
Let r : G — GL(H) be an admissible representation. Recall that a vector
v € 'H is called smooth if g — m(g)v defines a smooth map G — H. The
subspace H*® C 'H of smooth vectors is G-stable and dense. Differentiating
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the G-action on H® turns H into a left U (g)-module. We write x > xpyo
for the corresponding action of x € U (g).
The algebraic direct sum

HE = P H( S H

tek”

is the dense subspace of K -finite vectors in H. It is contained in H* since
is admissible, and it inherits a (g, K)-module structure from H°. The (g, K)-
module HX—fin ig called the Harish-Chandra module of H.

For ¢, € Homg (H, V¢) and ¢, € Homg (V,-, H) we now obtain o -spherical
functions

7 e €6
by

(@) =¢ron(g)ogr, g€G.

The o-spherical functions fff’(ﬁ’ are actually Hom(V,, V;)-valued real ana-

lytic functions on G, see, e.g., [42, Thm. 8.7]. Furthermore, fzz’¢’| A takes

values in Homy, (V,, Vy).
Since V; and V, are finite dimensional, we have canonical isomorphisms

Homg (H, Vi) =~ Home(H™, V;) ~ Home(HX " V),

Kt “4.2)
Homg (V,, H) ~ Homg(V,, H*) >~ Homg(V,, H* ™).

The o -spherical function fff’@ can be expressed in terms of matrix coef-

ficients of 7 as follows. Let {v;}; and {w;}; be linear bases of V; and V,,
respectively. Expand ¢, € Homg (H, Vy) and ¢, € Homg (V;., H) as

be = (. fidnvie  dr= (.wpv,h;

i J

with f;, h; € HE=An where (-, -)4 is the scalar product of . The fact that ¢
and ¢, are K -intertwiners implies that ) _; f; ®@v; and ) jwj®h;jare K -fixed

inH® Ve and V, @ H, respectively. The o -spherical function f;ff e >(G)
is then given by

fzé"/”(g) = Z(n(g)hj, VOLTCRUIAYE (4.3)

i,j

@ Springer



34 J. V. Stokman, N. Reshetikhin

Clearly, for an admissible representation (7r, H), the subspace of o -spherical

functions spanned by fﬁ"q&’ (¢ € Homg (H, V), ¢ € Homg (V,, H)), is
finite dimensional.

4.2 Principal series representations and K -intertwiners

Recall that M := Zg (ho) € K is a finite group, since g is split. Furthermore,
if G has a complexification then M is abelian (see [43, Thm. 7.53]). We fix a
finite dimensional irreducible representation § : M — GL(Lg). Write (-, -)¢

for the scalar product on L¢ turning it into a unitary representation. Fix a linear

functional A € h* and extend it to a representation nf) : P — GL(Lg) of the

minimal parabolic subgroup P = M AN, of G by
nf)(man) =a*&(m) (meM,acA,ne Ny).

Consider the pre-Hilbert space U ;S) consisting of continuous, compactly sup-
ported functions f : G — Lg satisfying

fep) =n,(pHfe) (g€G.peP)

with scalar product

o ) © = /K i), redx  (fi. fr € U,

Consider the action of G on U by (% (g)f)(g) = f(g~'g) for
g.g € Gand f € U)Eg). Its extension to an admissible representation

rrf) G — GL(H;\S)), with Hf) the Hilbert space completion of U @), is

called the principal series representation of G. The representation nk(s) is

unitary if 7" is unitary, i.e., if A(ho) C iR.

Analogously, let n, : ANy — C* be the one-dimensional representation
defined by 1, (an) := a” fora € A and n € N, and consider the pre-Hilbert
space U, consisting of continuous, compactly supported functions f : G — C
satisfying

f(gh) = mip(b™Nf(g) (g€G,beANy)

with scalar product
(f1, f2)a i=/Kf1(x)f2(x)dx (f1, f2 € Up).
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Turning U;, into a G-representation by (15, (g) £)(g') := f(g~'g’) forg, g’ €
G and completing, gives an admissible representation m; : G — GL(H,;).
Note that | : K — GL(H;) is isomorphic to the left regular representation
of K on L?(K). In particular, dim(H, (r)) = deg(t)? for all t € K", where

deg(7) is the degree of . Furthermore, H; ~ @éeMA (Hf))gadeg(é).
Define for ¢y € Homg (H;., Vi) the adjoint map ¢; : V¢ — H; by

(@), Vv, = (fidy () Y feH, YveV.

Since H, is unitary as K-representation for all A € b*, the assignment
¢y — d)z defines a conjugate linear isomorphism from Homg (H;, V) onto
HOII]K(V(, H)L)

The o -spherical functions ffli %" obtained from the G-representation H,
using the K -intertwiners ¢y € Homg (H;, Ve) and ¢, € Homg (V;, H;) now
admit the following explicit description in terms of the Eisenstein integral.

Proposition 4.1 Fix A € bh*.
a. The map j; vy, : Homg (V,, H;) — VJ,

1wy, @)W) = ¢, )(1)  (veV,),

is a linear isomorphism.
b. For ¢y € Homg (H;,, Vi) let iy, v, (¢d¢) € Vi be the unique vector such that

(v, v (90))y, = dr (1) Vv eV,

The resulting map 1, y, : Homg (Hy, Vo) — Vy is a linear isomorphism.

¢. The assignment ¢y QP +— be"’qb’ = 0., (P0) 1. v, (¢r) defines a linear
isomorphism

Homg (Hy., V) ® Homg (V,, Hy) —> Vo ® V,* ~ Hom(V,, Vp).
Furthermore,
(@) = ST (g€ G) (4.4)

for ¢¢ € Homg (H;,, Vi) and ¢, € Homg (V,-, Hy), with ES (g) the Eisen-
stein integral (3.3).

Proof Our choice of parametrisation of the o-spherical functions associated
to ., which deviates from the standard choice (see, e.g., [42, §8.2]), plays an
important in Sect. 6 when discussing the applications to asymptotic boundary
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KZB equations. We provide here a proof directly in terms of our present
conventions.

We will assume without loss of generality that oy, 0, € K.

a. Since dim(Homg (V;, H;)) = deg(o;) it suffices to show that j, v, is
injective. Fix an orthonormal basis {v;}; of V,. Let ¢, € Homg (V;-, H,) and
consider its expansion ¢, = Y j(-, vj)v,hj withh; € H}If ~fin Then

5y, @) =Y k(D)) (4.5)
J

Furthermore, for each index j we have

hj(x) =Y hi()(j, o, (vi)y, VxeKk (4.6)

since ¢, is a K -intertwiner.

Suppose now that j, v (¢,) = 0. Then (1) = O for all j by (4.5). By (4.6)
we conclude that /2 (kan) = a_k_phj (k) =0fork € K,ae Aandn € Ny,
so ¢, = 0.

b. This immediately follows from part a and the fact that

W, v (P v, =3, v, (@) (V)
forv € Vy and ¢y € Homg (H;, Vo).

c. The first statement immediately follows from a and b. Let {v;}; be an
orthonormal basis of V; and {w;}; an orthonormal basis of V,. For ¢y =
2. fidavi € Homg (Hy, Vi) and ¢ = 37, wj)v, hj € Homg (Vy, H;)
with fi, h; € Hf —fin 3 direct computation gives

FL7 @) = ES (T
with be 9 Hom(V;, V) given by

0wy =3 () i w, wvy (W e V).
inJ

By (4.5) this can be rewritten as

T w) = v, @) Y i we v,
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hence it suffices to show that

RACHEDIFAOIS (4.7)

Define v, € Hf_ﬁ“ by
X.v, (kan) := deg(op)a™* Py, (k) (ke K,a € A,neNy),
with yy, the character of Vy. Fix v € Vy. Since ¢ (v) € H;.(0¢), its restriction

¢; (V)| to K lies in the o-isotypical component of L?(K) with respect to the
left-regular K-action. By the Schur orthogonality relations we then have

oy ()(1) = deg(ff@)/de by (V) () xv, (X) = (B7 (V). Xa, v )

= (U, (bf(%)u,Vg))Vg-

This show that

PRACHIERNCTRAE
Now substitute ¢, = > (-, fi)av; and use that f; € H, (o)) with o the

irreducible K -representation dual to oy, we get (4.7) by another application of
the Schur’s orthogonality relations,

v @) = o) = Y deg(on ([ dx v 0T = 3 Do

O
Remark 4.2 a.Fora € A and m € M one has
o(m,m)E] (a) = EY (a).

In particular, EY (a) maps Hom(V;, V;) into Homy, (V;, Vi).
b. For & € M” and intertwiners ¢, € Homg (Hf), Ve) and ¢, €
Homg (V,, Hf)), write

Go= (v b=y Cowpyh;
J

1
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with fi, hj € HK 7™ Then

1@ = EL @ (5 6) (4.8)
A

with Tk@)’m’(p’ € Homy; (V,, Vy) the M-intertwiner

TP ) =Y (hy (1), fO)P W, v (w e V).
iJ

4.3 Algebraic principal series representations

We first introduce some general facts and notations regarding g-modules, fol-
lowing [10].

Let V be a g-module with representation map t : g — gl(V). The repre-
sentation map of V, viewed as U (g)-module, will also be denoted by 7. The
dual of V is defined by

T X)) Hv) = —fF(T(X)v), xeg, feV, veV.

Fix a reductive Lie subalgebra [ C g (in this paper [ will either be the fix-
point Lie subalgebra £ of the Chevalley involution 6, or the Cartan subalgebra
h). Let [ be the isomorphism classes of the finite dimensional irreducible
[-modules. For t € [* we write deg(t) for the degree of t and V () for the 7-
isotypical component of V. A g-module V is called a Harish-Chandra module
with respect to [ if V = ZTE[A V() (it is automatically a direct sum). The
isotypical component V (7) then decomposes in a direct sum of copies of 7.
The number of copies, denoted by mtp(z, V), is called the multiplicity of 7 in
V. The Harish-Chandra module V is called admissible if mtp(z, V) < oo for
allt e 1"

For a g-module V let V=" be the subspace of [-finite vectors,

vEin— v e vV | dim(U()v) < oo}

Then V!-fin C Visag-submodule. In fact, y!=fin ig a Harish-Chandra module
with respect to [ satisfying vi=finegy = V() forall T € I (see [10, 1.7.9]).
For [-modules U, V with U or V finite dimensional we identify

U® V*>~Hom(V,U) 4.9)
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as vector spaces by u ® f +— f(-)u. With the U (I) ® U ([)-module structure
on Hom(V, U) defined by

((x ® 2) H(w) := xf(S(2)u)
forx,z e U(l), u € U and f € Hom(V, U), it is an isomorphism of U ([) ®
U (I)-modules.

Differentiating the multiplicative character i, : ANy — C* of the previous
subsection gives a one-dimensional b-module, whose representation map we
also denote by 1,. Then 1, : b — C is concretely given by

nn(h +u) := A(h), heh, ueng.
We write C,, for the associated one-dimensional U (b)-module.
Definition 4.3 Let 1 € h*. Write
Y;. := Homy v) (U (9), Co4)

for the space of linear functionals f : U(g) — C satisfying f(xz) =
Nat+p(x) f(2) forx € U(b) and z € U(g). We view Y, as g-module by

0@ = f(zy), yeg z€U(g).

By [10, Chpt. 9], the Harish-Chandra module Y;_ﬁn is admissible with

mtp(z, Yffﬁn) = deg(t) forall t € £*. Consider K" as subset of £**. Note that
the inclusion K" < £ is strict unless K is simply connected and semisimple.

Proposition 4.4 For A € h* we have an injective morphism of g-modules
HE e, i s f (4.10)
with
F@) = (r(S@) )()

for f € Hffﬁn and z € U(g). For T € K" the embedding restricts to an
isomorphism

Hi (1) —> Ys.(7) (4.11)

of t-modules.
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Proof Let f € HX™M Then f : G — Cisanalytic and satisfies r,(S(x)) f =
Ni+p(x) f forallx € U(b). Hence (4.10) is a well defined injective linear map.
A direct computation shows that (4.10) intertwines the gp-action. This proves
the first part of the proposition.

For t € K™ we have dim(HA(t)) = deg(‘t)2 = dim(YA(r)), hence (4.11)
follows from the first part of the proposition. O

Remark 4.5 The embedding (4.10) is an isomorphism if K is simply connected
and semisimple. In general, the algebraic description of the (go, K)-modules
Hf ~in and Hf)’K—ﬁn within Yf_ﬁn amounts to taking the direct sum of iso-
typical components Y; (t) for T running over suitable subsets of K" (see [10,

§9.3]).

Let ¢ € Homg (Hy, Vi), ¢ € Homg (V,, 'H,). The associated o -spherical
function fﬁi’d” € C°(G) is an elementary o-spherical function, and it is a
common eigenfunction of the biinvariant differential operators on G. Indeed,
by Proposition 4.4 it suffices to note that ¥, admits a central character. This

follows from [10, Thm. 9.3.3],

f=0-p@f (@eZ(@, fel). (4.12)

This also follows from the observation that Y} is isomorphic to M*, o (see

Lemma 5.2) and the fact that {,,_, = {yp—p forw € W.

As a consequence, the restriction ffx\"p’ | Areg OF fftﬁ’@ € CX(G) t0 Areg

are common eigenfunctions of ° (z) (z € Z(g)),

7@ (" ) = Gmp DS e Y2 € Z(@  (413)

(it is sometimes more natural to write the eigenvalue as £y, 5.+p) (z) with wo €
W the longest Weyl group element). By Proposition 4.1 it follows that the
restriction EY | Areg of the Eisenstein integral to Ayeg 18 an End(Hom(V;, Vy))-
valued smooth function on Ay satisfying the differential equations

N7 () (EY | 4g) = Gmp(DES Ay V2 € Z(g). (4.14)

Corollary 4.6 The normalised smooth End(Hom(V,., Vy))-valued function on
A defined by

E] (a) :=8(a)EF (d)) = 3(0/)/ dx &_5_p(a@ ' x))o (x, k(@ 'x))
K

for a’ € Ay is a common End(Hom(V,, Vy))-valued eigenfunction for the
quantum Hamiltonians of the quantum o-spin hyperbolic Calogero—Moser
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system,

o A A) o
H (E7) = — —E;

and
HY(E)) = G- p(QE]  (z € Z(g)).

Remark 4.7 For sufficiently generic A € h*, the o-Harish-Chandra series
7, 0 (w € W) exist and satisfy the same differential equations (4.14) on
Ay as EY |4, . Harish-Chandra’s [28] proved for generic A € b*,

EJ@T =) ¢ (w; )Py, ,@T (4.15)
weW

fora € Ay and T € Homy,(V,, V), with leading coefficients ¢ (w; A) €
End(Homy,(V,, V;)) called c-functions (see [28, Thm. 5]). The c-function
expansion (4.15) plays an important role in the harmonic analysis on G.

For the left hand side of (4.15), Remark 4.2b provides a representation
theoretic interpretation in terms of the principal series representation of G. In
the next section we obtain a similar representation theoretic interpretation for

the o -Harish-Chandra series @9, 0 in terms of Verma modules.

5 Formal elementary o -spherical functions
We fix in this section two finite dimensional representations o, : € — gl(Vy)

and o, : £ — gl(V,). We write o for the £ @ ¢-representation map oy ® o,* of
the £ @ £-module V, ® V/*.

5.1 Verma modules

In this subsection we relate the algebraic principal series representations to
Verma modules. Let V be a g-module V. Write

Vil i={veV |hv=puh)v Yhebh}

for the weight space of V of weight i« € h*. Then

V=[] viul

neb*
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inherits from V' the structure of a g-module as follows. Letv = (v[u]) yep € vV
and z4 € go (@ € RU{0}), where go := . Then zov = ((zov)[11]) pep* With

(zaV)[u] := zgvlp — a].

Clearly V C V as g-submodule. Note that Vh_ﬁn = V for h-semisimple
g-modules V.
For 11 € h* write

projy, : V = Viul, v v[ul (5.1)

for the canonical projection, and incl"ﬁ : V[u] < V for the inclusion map. We
omit the sublabel V from the notations proj’{b, and incl’{b, if the representation
V is clear from the context.

Definition 5.1 The Verma module M, with highest weight . € bh* is the
induced g-module

M; = U(g) Qu) Cs.

The Verma module M, and its irreducible quotient L, are highest weight
modules of highest weight A. In particular, they are h-diagonalizable with
finite dimensional weight spaces. The weight decompositions are M; =
EBMSA M;[u] and L) = ®usk L;[u] with < the dominance order on h*
with respect to R™ and with one-dimensional highest weight spaces M; 1]
and L,[A]. We fix once and for all a highest weight vector 0 # m; € M, [A],
and write 0 # ¢, € L, [A] for its projection onto L,. Note that M, and L
admit the central character ¢;.

The set b of highest weights A for which M, is irreducible is given by

i ={2€b™ | O+p,a")¢Zp VaeRT),

with &V := 2a/||er|* the co-root of . Note that biic € bl

For a g-module V write ?V for V endowed with the -twisted g-module
structure

xxv:=60x)v, xeg, veV.

Lemma 5.2 Let A € bh*.

a. We have
MY 5,
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as g-modules, with the isomorphism f +> fgiven by f(x) = f(S(x)m,)
for f e M and x € U (g).
b. If . € b, then

irr’
A, ~ 0
M; ~ ),)\,p

as g-modules. In particular, M, ~°Y E;E';) as g-modules.

Proof a. This is immediate (it is a special case of [10, Prop. 5.5.4]).
b. The Shapovalov form is the nondegenerate symmetric bilinear form on
L, satisfying

By (xu,v) = —B; (u, 6(x)v)

for x € gand u,v € L, and normalised by B, (¢,, ¢,) = 1. It induces an
isomorphism of g-modules

9L, — L} (5.2)

mapping (v[p]) uep* € L;, to the linear functional u Zueh* By (v[u], u)
on L;.If A € b then M, = Lj and the result follows part a of the lemma. O
Remark 5.3 a. The dual MY of a module M in category O is defined by
MY =9 pb=fin The final conclusion of part b of the lemma corresponds to
the well known fact that L) =~ L,.

b. Combining Proposition 4.4 and Lemma 5.2 a, we have A € h* an embed-
ding of g-modules

K-fi d
H}» n — Mi)t_pa f = f’

with fv(xm_x_p) = (r«(x) £)(1) for all x € U(g). It restricts to an isomor-
phism H;,(t) N Mfk_p(t) foreach T € K”.

5.2 Spaces of t-intertwiners

In Sect. 4.2 we have constructed linear isomorphisms ¢; v, : Homg (H;,, Vi)
AN Ve and j, v, Homg (V;, Hy) AN V¥, with H, the principal series
representation. For Verma modules we have the following analogous result.
Write mI for the linear functional on M that vanishes on [ | M, [it] and
maps m;, to 1.

<A

Proposition 5.4 Fix 1 € bh*.
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a. The map ev;_y, : Home(M;, Vy) — Vi,

eV, v, (Pe) = ¢e(m;.),

is a linear isomorphism. o
b. The linear map hw; v, : Home(V,, M) — V7, defined by

hwi v, (9,) (V) :=m}($,(v)) (v e V),
is a linear isomorphism when . € b .

Proof We assume without loss of generality that oy, o, € €.
a. By Lemma 5.2a we have

Homg (M), V) ~ Home(V/", Y_;_,)

as vector spaces. The latter space is of dimension deg(o¢). Hence it suffices
to show that ev; v, is injective. This follows from M, = U (£)m,, which is an
immediate consequence of the Iwasawa decomposition go = £y @ ho @ no, +
of go-

b. Since A € h¥_we have Home(V,, M;) ~ Homg(V,, Y_;_,) as vector
spaces by Lemma 5.2, and the latter space is of dimension deg(o;). It thus
suffices to show that hw;_y, is injective. Let ¢ € Homg(V, M) be anonzero

intertwiner and consider the nonempty set
P:={uech*| proj“MA(¢r(v)) # 0 forsome v € V,}.

Take a maximal element v € P with respect to the dominance order < on
b*. Fix v € V, with projy, (¢-(v)) # 0. Suppose that ey (¢ (v)[v]) # 0 in
M, for some « € RT. Then proj”Mt“ (¢r(yov)) # 0, but this contradicts the
fact that v + o ¢ P. It follows that proj"MA (¢, (v)) is a highest weight vector
in M, of highest weight v. This forces v = X since M, is irreducible, hence
hwy v, (¢)(v) # 0. It follows that hw, y, is injective, which completes the
proof. O

Definition 5.5 Let A € bh*.

a. We call ev) y(¢¢) the expectation value of the intertwiner ¢, €
Home¢(M,;,, V). We write ¢}v,” ,, € Homg(M,,, Vi) for the t-intertwiner with
expectation value v € Vj.

b. We call hw; v, (¢,) the highest weight component of the intertwiner ¢, €
Home(V,, M;). If A € bi. then we write ¢r]; € Homg(V,, M;) for the
intertwiner with highest weight component f € V.
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The exact relation with the intertwiners from Proposition 4.1 is as follows.
Consider for o, : K — GL(Vy) a finite dimensional K -representation the
chain of linear isomorphisms

Homg (V, H__,) —> Hom(V/}, M) — Home(My, V) —> Vi.

The first isomorphism is the pushforward of the map defined in Remark 5.3,
the second map is transposition and the third map is ev; y,. Their composition

is the linear isomorphism j_; _ pVE HomK(VZ*, H_—p) SN Ve defined
in Proposition 4.1. Similarly, for A € b and o, : K — GL(V,) a finite
dimensional K -representation we have the chain of linear isomorphisms

Homg (Vy, H-5—,) — Homg(V,, M3) — Homg(V,, M;) — V.

In this case the first isomorphism is the pushforward of the map defined in
Remark 5.3, the second isomorphism is the pushforward of the g-intertwiner

M; —> M, realized by the Shapovalov form (see Lemma 5.2b and its
proof), and the third map is hw;_y,. Their composition is the linear isomor-
phist_x_pyf s Homg (Vi, Hoy—p) AN V* defined in Proposition 4.1.

The following corollary is the analogue of Proposition 4.1 ¢ for Verma mod-
ules.

Corollary 5.6 Let V; and V, be finite dimensional €-modules. The linear map
Homg(M;,, V) ® Home(V,, M;) — V; ® V¥ >~ Hom(V,, V;)

defined by ¢y Q@ ¢ +— Sfe’d)’ = evy, v, (¢¢) ®hw;, v, (¢y), is a linear isomor-
phism when A € b .

In Sect. 5.4 we will give a representation interpretation of the analytic
Hom(V;, Vy)-valued function a — &7 (a)S?"? for ¢y € Home(M;, Vp),
¢ € Home(V,, M,)anda € A4, with o the representation map of the € @ &-
module V; ® V* >~ Hom(V,, V;).

5.3 The construction of the formal elementary spherical functions

We first introduce (b, £)-finite and (¥, b)-finite matrix coefficients of Verma
modules. Let A, i € h* with © < A. Recall the projection and inclusion maps
incl’lf,lx and proj/;,h. They are h-intertwiners

inClle,h € Homy (M, [u], M5.), proj% € Homy (M, M [1]).
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Let A, u € b* with 4 < A, and fix E-intertwiners ¢, € Hom¢(M;, Vy) and
¢, € Homg(V,, M;). We write

¢} = ¢ oincly, € Hom(M,[ul, Vo), ¢} :=projy, o ¢, € Hom(V,, My [u])

i

for the weight- components of ¢, and ¢, respectively. The map ¢ff encodes
(€, h)-finite matrix coefficients of M of type (o¢, i), and ¢} the (b, £)-finite
matrix coefficients of M, of type (u, o). Formal elementary spherical func-
tions are now defined to be the generating series of the compositions d)é‘ o gl
of the weight compositions of the €-intertwiners ¢, and ¢, :

Definition 5.7 Let A € bh*. For ¢y € Hom¢(M,, V;) and ¢, € Homg(V,, M)
let

FXZ,% e (Vi ® Vr*)[[é‘,al, ey E*(Xn]]%-)\,

be the formal V;, ® U ® V,*-valued power series

Fi? =30 @ = Y (@) o by,

M=A HU=A

We call FJ% % the formal elementary o -spherical function associated to Mj,
¢¢ and ;.

Note that under the natural identification Hom(V,, V;) ~ V, ® V* we have

b} o ¢t = evi v, (¢0) @ hwy v, (¢,) = ST,

hence F%’d” has leading coefficient Sf‘“d”. By Corollary 5.6, if A € b} and

. . oy ,¢',f .
v eV, f e VF, the formal elementary o-spherical function F Mi”\ * is the

unique formal elementary o -spherical function associated to M, with leading
coefficient v ® f. We will denote it by F' 111)/1 Af .

5.4 Relation to o-Harish-Chandra series

Recall the Harish-Chandra coefficients I'{ (1) € Vy ® V,* in the power series
expansion of the o -Harish-Chandra series ¢, see Proposition 3.12. We have

the following main result of Sect. 5.

Theorem 5.8 Let A € h*, ¢y € Homg(M;, V) and ¢, € Homg(V,, M}).
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a. Forz € Z(g),
7@ F" = o F)" (5.3)

as identity in (Ve ® VY [E-as - - -+ & NIEr-
b. For A € hjj- and v < X we have

peo gl =9 o gl =TS (54

c. For ) € bfje, v e Vyand f € V) we have
v,f _ &0
Fyl =97 ® /). (5.5)

In particular, F 151’{ is a Vi ® V*-valued analytic function on A.

Proof Since bjj- C bi., part b and ¢ of the theorem directly follow from part
a, Proposition 3.12, Proposition 3.16 and the fact that the leading coefficient
of F;‘),[%f is v ® f. It thus suffices to prove (5.3).

Consider the Q-grading U (g) = @VEQ Uly] with U[y] C U(g) the sub-
space consisting of elements x € U (g) satisfying Ad,(x) = a”x foralla € A.
Set

A={pueb | n<i}, Ap:={nelA| Ar—pnp’)<m

for m € Z>, where p¥ = % Y wer+ @’ Then (A — u, pV) is the height of
A— U E Z?:l Z=opa; with respect to the basis {«q, ..., a,} of R. We will
prove that

N7 @FE" =3 ¢exgfE,  (x € ULO) (5.6)
HEA

in Hom(V,, Vp)[[—q,, - .., E—q,115.. This implies (5.3), since Z(g) < U|[0]
and M, admits the central character ;.

Fix x € U[0] and write I1(x) = }_,.; fj ® h; ® y; ® z; with f; € R,
hj € U(b)and y;, z; € U(¢). By Theorem 3.1 we get the infinitesimal Cartan
decomposition

x=Ady(x) = fi(@yjhjAda(zj) (a € Ay) (5.7)
jeJ

of x € U[0]. We will now substitute this decomposition in the truncated
version ) _, A, P (xol )&, of the right hand side of (5.6).
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Note that Y ,cx ¢r(xdf)g, € Hom(Ve, Vo)lEay. ... .6 q, )6 is a
trigonometric quasi-polynomial, hence it can be evaluated ata € A . Substi-
tuting (5.7) and using that ¢, is a €-intertwiner we obtain the formula

D pexpat =Y D" fi@oe(y)pehjAda(z )¢l at  (5.8)

reAy, jeJ nelhy,

inHom(V;, V). Now expand z; = Zyelj z;j[y]along the Q-grading of U (g)
with z;[y] € U[y] (but no longer in U (¥)). Here I; C Q denotes the finite
set of weights for which z;[y] # 0. Then (5.8) implies

D pexgat =N > (A v)hpoe(y)ee(zily 1ol fi@at T

HEN, Je€J yel; nehy

foralla € Ay.Letn > A suchthat A+y < nforally € I :=Ujc;I;. Then
we conclude that

Dt gE =YY Y (A oGz VI8 fiury (5.9)

HEN, JE€J velj nehy

in Hom(V;, Vo)[[§—q,, ..., &-q,]16, (here the f; € R are represented by
their convergent power series f; = ZﬂeQ, cjpépon Ay (cjp € C)). We
now claim that (5.9) is valid with the truncated sum over A,, replaced by the
sum over A,

D bedNE =YY > (A I hor(y)e iy 1) fiEury (5.10)

HEA jeJ yelj neh

in Hom(V,., Vo)[lé—qy. - . - . -, 116y

Fix v € h* with v < . It suffices to show that the &,-component of the left
(resp. right) hand side of (5.10) is the same as the &,-component of the left
(resp. right) hand side of (5.9) when m € Zx satisfies (n — v, p¥) < m.

Choose m € Zxq with (n — v, p¥) < m. The &,-component of the left hand
side of (5.10) is zero if v ¢ A and ¢;(x¢,) otherwise. Since (A — v, pV) <
(n — v, p¥) < m, this coincides with the &,-component of the left hand side
of (5.9). The &,-component of the right hand side of (5.10) is

Z (1 +y)(hj)ejpoe(yjde(zilyi)) € Ve ® V! (5.1
(.80
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with the sum over the finite set of four tuples (j, 8, ¥, u) € J x Q_ x I x A
satisfying y € I and u + y + B = v. For such a four tuple we have

A=, p)=0+y—v+B,p")<m—v,p’) <m,

from which it follows that (5.11) is also the &,-component of the right hand
side of (5.9). This concludes the proof of (5.10).
Since ¢, is a t-intertwiner, we have for fixed v € bh*,

D It =)o)
(,u.,y)eAij:
nty=v
in Hom(V,., M, [v]) (in particular, it is zero when v ¢ A). Hence (5.10) sim-
plifies to

D bexdNE =D D (oryNBe(@)o) (2))) fiv(hEy

HEA jeJ veA (5.12)
— ﬁa (x)ijll;:qu
in Hom(V,, Vo)llé—q,, - - - » é—q,11&5, as desired. O

Recall the normalisation factor §, defined by (3.10). We will also view § as
formal series in C[[£_q,, ..., §_q, 11§, through its power series expansion at
infinity within A.

Definition 5.9 Let A € h* and fix E-intertwiners ¢, € Homg(M,—,, V) and
¢» € Home(V,, M;_,). We call

F% = 8Fy € (Ve® V)lk-ars s E-a 11En

the normalised formal elementary o -spherical function of weight A. We fur-
thermore write for A € b +pandv e V,, f € V[,

v, f . VR f
F)L = 8FMx—p’

which is the normalised formal elementary o -spherical function of weight A
with leading coefficient v ® f.

By Theorem 5.8 ¢ we have for A € f)]”flc +p,veVeand f € VF,
F/ = 87()v® /).
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In particular, Fz’f is an V; ® V*-valued analytic function on A} when A €
hi]c + p.

Theorem 3.18 now immediately gives the interpretation of Fi’“b’ as formal
eigenstates for the o-spin quantum hyperbolic Calogero—Moser system for all
weights A € bh*.

Theorem 5.10 Let . € h*, ¢y € Homg(M,, Vi) and ¢, € Home(V,, M)).
The normalised formal elementary o -spherical function Ffmb’ of weight A
satisfies the Schrodinger equation

sPr ()\" )\') sPr
HU(FfE é ) — 5 Ffﬁ ®
as well as the eigenvalue equations
HT (F7) = 6y QFY, 2 € Z(g) (5.13)

in (Ve ® VOlE—ays -+ s b-ay 16

Proof This follows from the differential equations (5.3) for the formal ele-
mentary o -spherical functions, and the results in Sect. 3.6. O

Remark 5.11 a. Let A € hl*{c and fix Vp,V, finite dimensional K-
representations. Let o be the resulting tensor product representation of K x K
on Vy := V, ® V =~ Hom(V,, V). For T € Homy(V,, V;) write HAT for
the V,;-valued smooth function on G e, constructed from the Harish-Chandra
series ®f by

HI (kjaky!) = o k1, k)@ (@T  (a € Ay, ki, ks € K),

see Remark 3.17. Then (5.5) gives an interpretation of H. [ as formal ele-
mentary o-spherical function associated with M} . This should be compared
with (4.8), which gives an interpretation of the Eisenstein integral as spherical
function associated to the principal series representation of G.

b.In[44, "l:llm,.\4.4] Kolb Qroved an affine rank one analogue of Theorem 5.8
for the pair (slz, 6), where 6 the Chevalley involution on the affine Lie algebra
sl associated to s(;. The generalisation of Theorem 5.8 to arbitrary split affine
symmetric pairs will be discussed in a follow-up paper.

5.5 The rank one example

In this subsection we consider go = s[(2; R) with linear basis

10 01 00
m=(o5) £= (o) 7= ()
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and we take hp = RH as split Cartan subalgebra. Then 6y (x) = —x’ with x'
the transpose of x € gg. Note that 2—% € bo has norm one with respect to the

Killing form. Let o be the unique positive root, satisfying «(H) = 2. Then

ty = %, and we can take ¢, = % and e_, = g With this choice we have

to=Rywithy ==y, = £ - L.

We identify h* =cC by the map A — A(H). The positive root e € h* then
corresponds to 2. The bilinear form on h* becomes (A, ) = %A ufori, u e C.

Furthermore, b = bfjc becomes C \ Z>(. We also identify A = R.g
by exps(sH) — €' (s € R). With these identifications, the multiplicative
character &, on A (A € h*) becomes &) (a) = a* fora € R-gand A € C.

For v € C let x, € ¢" be the one-dimensional representation mapping y
to v. We write C,, for C regarded as £-module by x,. For A € C\ Z>¢ and

. . , @ Xvy . .
ve, v € C, the scalar-valued Harish-Chandra series @f”‘ X is the unique
analytic function on A4 admitting a power series of the form

Xvp @ Xy Xvp @ Xvy _
" (@) =a" Y TR aH (@ e Ay) (5.14)
k>0
. XV€®XW . . . .
with 'y (1) = 1 that satisfies the differential equation

Xvg ® Xy )"()" + 2) CDXV[ ® Xy

Qo] === . (5.15)

(see Proposition 3.12). By Corollary 3.6,

i = 1, d\2 1 (a>+a?\ d
(5 ® 0, ® o)1) = £ (a-) 4 5 (—) i

da 4\a?2—a? da
i 2(ve + azvr)(vﬁ + a_zvr)
(a2 _ 072)2

1 ( d)2+ a+a‘1+a—a_l d
=—|(a— a—
8 da a—al' a+4+al) da

e A Vr)z)

(@a—aH2 (a+a1)?

The equation (5.15) is the second-order differential equation that is solved

by the associated Jacobi function (cf., e.g., [48, §4.2]), and dJi(v‘@X”’ is the

corresponding asymptotically free solution.
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XIZ®XW‘

An explicit expression for @} can be now derived as follows. Rewrite

(5.15) as a second order differential equation for hCI>X”Z®X”’ with

h(a) := (a +a ") =0 (q — g~ 1y=iWetvn),

One then recognizes the resulting differential equation as the second-order
differential equation [48, (2.10)] satisfied by the Jacobi function (which is the
Gauss’ hypergeometric differential equation after an appropriate change of
coordinates). Its solutions can be expressed in terms of the Gauss’ hypergeo-
metric series

= b

k=0

(5.16)

where (a)x ;= a(a+1)--- (a +k — 1) is the Pochhammer symbol (the series

(5.16) converges for |s| < 1). Then <I>X“Z Hor corresponds to the solution [48,
(2.15)] of the second-order dlfferentlal equation [48, (2.10)]. Performing the
straightforward computations gives the following result.

Proposition 5.12 For A € C\ Zxo we have

® a—! i(vetvr)
" (@) = (@ +a ) (—)
+a

F< k—l—' A+' A 4 )
X ——=+ivy, —— +iv,; — _
211 2 Z 2 r (a+a_1)2

fora > 1.

If x_v,, x—v, € K" (ie., if vy, v, € iZ), the restriction of the elementary

spherical function fij o to A is an associated Jacobi function. It can also
be expressed in terms of a single 5 F (see [48, §4.2] and references therein for
details).

We compute now an alternative expression for &} using its real-
isation as generating function for compositions of welght components of
E-intertwiners (see Theorem 5.8).

The Verma module M, with highest weight A € C is explicitly realised as

Xvp ® Xvy

o0
M, = @Cuk
k=0
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with uy = %kax and g-action Huy = (A —2k)uy, Euy = (A —k + Dug—q
and Fuy = (k 4+ 1)ugy1, where we have set u_; := 0. We will identify

Hom(C,, M;) — M}, ¢ v (1),

with Mf” the space of y,-invariant vectors in M, (cf. Sect. 3.5). Note further-
more that

Homg(M;, C,) ~ M, *~".

To apply Theorem 5.8 to @f”‘@(”’ , we thus need to describe the weight com-

ponents of the nonzero vectors in the one-dimensional subspaces M : Y7 and
Mf“” for A € C\ Z>o (here we use that C,, >~ C%, as £-modules). For this
we need some facts about Meizner-Pollaczek polynomials, which we recall

from [46, §9.7].
Meixner—Pollaczek polynomials are orthogonal polynomials depending on
two parameters (A, ¢), of which we only need the special case ¢ = 5. The

monic Meixner—Pollaczek polynomials { p,ﬁk) (s) | k € Z>o} with ¢ = 5 are
given by

ik
p(s) = @i(3) 2Fi(—k 2+ is:20.12).

They satisfy the three-term recursion relation

k(k+2x—1)

; P (s) =0, (5.17)

P () = sp (s) +

where p(_kl) (s) :=0.

The following result should be compared with [4,49], where mixed matrix
coefficients of discrete series representations of SL(2; R) with respect to hyper-
bolic and elliptic one-parameter subgroups of SL(2, R) are expressed in terms
of Meixner—Pollaczek polynomials.

Lemma 5.13 Fix A € C\ Z=op and v € C.
a. We have

M;f_v = (Cvk;v
with the (A — 2k)-weight coefficient of v,., given by

(—=2)kpiH2 (<)
(—=M)k

Uio[A — 2k] = Uk, k € Z>y.
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b. We have
M)T’Xiv = Cw)»;v

with ., satisfying
2k (_)“/2)(_1))

Voo (ur) = kT k € Z=>o.

Proof a. The requirement yv = —vv for an element v € M, with weight
components of the form
(=2
(—=Mk

is equivalent to the condition that the coefficients ¢y € C (k > 0) satisty the
three-term recursion relation

v[A —2k] =

Uk

k(k—x—1
Ck+1 + ver + %Ck,1 =0, k € Z>o,
where c_ := 0. By (5.17), the solution of this three-term recursion relation

satisfying co = 1 is given by ¢x = p,i_k/z)(—v) (k € Z>p).
b. The proof is similar to the proof of part a. O

Let vg, v, € Cand A € C\ Z>o. We obtain from Lemma 5.13 and The-
Xvg ® Xy

orem 5.8 the following expression for the Harish-Chandra series @)

Corollary 5.14 Fix . € C\ Zs>o and vy, v, € C. We have fora € R~ 1,

A2 —\/2

XUZ®XW a* 4kp](¢ / )( % )p / )( V) N

@, Z (—a™5)"
(—A)kk!

Proof Note that v;.,[A] = m; and eV).C,, (Y¥r:v) = Ya.v(m;y) = 1, hence

'/f)\;uz sUnsvpe

s, =1

(we identify Hom(C,, , C,,) = C by T +— T(1)). By Theorem 5.8b we
then get

ng ® Xvy

(@) = Zw o (U, A — 2k]a*

k=0
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for a € R~ 1. The result now follows from Lemma 5.13. O

Combined with Proposition 5.12, we reobtain the following special case of the
Poisson kernel identity [11, §2.5.2 (12)] for Meixner—Pollaczek polynomials.

Corollary 5.15 We have fora € R.1,

o i4kp]((_A/2)(_VE)P/E_)L/z)(_Vr) (_a_z)k
2 (k!
L (a —a_l i(vetvy)
=+ ((5e)
A Ao 4
X 2F1(—5 + ivg, ) +ive —A | m)

Remark 5.16 For a different representation theoretic interpretation of the Pois-
son kernel identity for Meixner—Pollaczek polynomials, see [47, Prop. 2.1].

6 N-point spherical functions
6.1 Factorisations of the Casimir element

Let M, M’', U be g-modules. We will call g-intertwiners M — M' @ U
vertex operators. This terminology is stretching the standard representation
theoretic notion of vertex operators as commonly used in the context of Wess—
Zumino—Witten conformal field theory. In that case (see, e.g., [41]), it refers
to intertwiners M — M’ ® U (z) for affine Lie algebra representations M, M’
and U (z) with M and M’ highest weight representations (playing the role of
auxiliary spaces), and U (z) an evaluation representation (playing the role of
state space).

The space Hom(M, M’ ® U) of all linear maps M — M’ ® U admits the
following left and right U (g)®>-action,

((x @ )W) (m) == (x ® y)W¥(m),
(U (x®y)m) = (1Q Skx)¥(ym)
forx,y € U(g), ¥V € Hom(M, M’ ® U) and m € M, with S the antipode of

U (g). Here we suppress the representation maps if no confusion can arise. We
sometimes also write xj; for the action of x € U(g) on the g-module M.

Definition 6.1 We say that a triple (z¢, ", d) with t*, 7" € g@ gand d €
U (g) is a factorisation of the Casimir element 2 € Z(g) if for all g-modules
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M, M', U and for all vertex operators ¥ € Homg(M, M’ ® U) we have
1
5((9®1)\p—\m) =t Ukt + (1Y (6.1)

in Hom(M, M’ @ U).

Suppose that (z¢, 7", d) is a factorisation of Q. If Qy = Cmid and Qpp =
Cyridyy for some constants ¢y, ¢y € C then we arrive at the asymptotic oper-
ator Knizhnik—Zamolodchikov—Bernard (KZB) equation for vertex operators
¥ € Homg(M, M’ ® U),

%(w — ¥ =tV Uk (1@d)V (6.2)

(compare with the operator KZ equation from [23, Thm. 2.1]).

Consider now vertex operators ¥; € Homg(M;, M; 1 ® U;) for i =
L,..., N.DenoteU := U;®U,®- - -QUy and write ¥ € Homg(My, Mo®U)
for the composition

V= (V) ®idy,g-.euy) - (WN-1 ®idy,) Wy (6.3)

of the vertex operators W;. Assume that €2, = ¢p,idy; for some constants
¢{m;, € C(0 < i < N). The asymptotic operator KZB equation (6.2) now
extends to the following system of equations for W.

Corollary 6.2 Let (t%, ", d) be a factorisation of Q with expansions t* =
Dk oz,f ® ,BIf andt" =), a, ® B ing® g. Under the above assumptions
and conventions we have

1 i—1 N
E(gMi—l - CMl)\II = (Z Tlt}jUi - Z T[G,‘Uj + dUi)lIJ
j=1 j=itl (6.4)

+ Y @O BOUY + Y (@h) v Y (B my

k m
fori=1,..., N.

Proof Write Wy, := V¥; ® idy,,,@..@uy- Then

1
E(é‘Miil - {M,)q”
1

= EIDMl Wy (QMi—llpMi - \IIMiQMi)lDMi+1 Wy (6.5)
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Now (6.1) gives
1
5 (@i Wty — Wiy, Q) = Y @Ou (BOu, Y,
k

+ @), Yar, By, + du, Y,
m

Substitute this equation in (6.5) and push the action of a,f on M;_1 (resp. the
action of B;, on M;) through the product Wy, - - - Wy, | (resp. Way,,, - - Wary)
of vertex operators using the fact that

xRNHY —Vx =—(1Qx)V

for x € gand W € Homy(M, M " ® U). This immediately results in (6.4). O

The asymptotic operator KZB equations (6.4) for an appropriate factori-
sation of €2 give rise to boundary KZB type equations that are solved by
asymptotical N-point correlation functions for boundary WZW conformal
field theory on a cylinder. Here asymptotical means that the “positions” of the
local observables in the correlation functions escape to infinity. We will define
the asymptotical N-point correlation functions directly in Sects. 6.3 and 6.4,
and call them (formal) N-point spherical functions. The discussion how they
arise as limits of correlation functions is postponed to a followup paper.

We give now first two families of examples of factorisations of 2. The first
family is related to the expression (3.9) of Q. It leads to asymptotic KZB
equations for generalised weighted trace functions (see [15]). As we shall see
later, this family also gives rise to the asymptotic boundary KZB equations
for the (formal) N-point spherical functions using a reflection argument. The
second family is related to the Cartan decomposition (3.6) of €2, and leads
directly to the asymptotic boundary KZB equations. This second derivation
of the asymptotic boundary KZB equations is expected to be crucial for the
generalisation to quantum groups.

Felder’s [21], [15, §2] trigonometric dynamical r-matrix r € 'R ® g®2 is
given by

1 n e_o(®ea
ro= _EZ)(]@XJ—Zm (66)
j=1 o€ER
Set
1 n eq e
o1 . 1 - -
r’l = O ®idg)r = E;xj®xj+zm'

oER
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. 0
Fors =),5;®t € g®gwewrite s31 := ) _; ; ®s; and 53] := (1 ® 0)s21.
Note that r?! is a symmetric tensor,

) o1
Iy =Tr

We will write below r2 | for the occurrences of the 0-twisted r-matrices in the
asymptotic boundary KZB equations, since this is natural when viewing the
asymptotic boundary KZB equations as formal limit of integrable boundary
gKZB equations (this will be discussed in future work).

Define folded r-matrices by

=4y —I—r%

Note thatr* e R@Et®gandr~ € R® p ® g. The folded r-matrices r* are
explicitly given by

r+_ Yo ® €y
aeRl_g_za (67)
e +e_q)®e )
ij®xj+z(a @) o«
aeR I—=§2

Proposition 6.3 Fix a € Ao The following triples (z%, 1", d) give factori-
sations of the Casimir Q € Z(g).

a—2a
at'=1t"=r@),d= -3 ZaeR*(i—i_a—Za)t
b. ¢ =rt(a), v = —r(a), d = b(a) with

| — 1 1+&, 2

TGy L (et Yo cREVE.

2 4 2 1 —& o 1 =& 2q
Jj=1 aeRT aEeR

(6.8)

Proof The factorisations are obtained from the explicit expressions (3.9) and
(3.6) of Q by moving Lie algebra elements in the resulting expression of
(2 ® W — wQ) through the vertex operator W following a particular
(case-dependent) strategy. The elementary formulas we need are

xR DHY —V¥x=—-(1Qx)V,

(6.9)
xy@ DY —Wxy=—-(1Qx)¥y — (x @ y)¥
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forx,y € gand ¥ € Homg(M, M’ ® U). Note that the second formula gives
an expression of (xy ® 1)¥ — Wxy with x no longer acting on M and y no
longer acting on M’. For case b we also need formulas such that both x and y
are not acting on M’ (resp. on M),

Gy H¥ —Wxy=—(1Q0x)¥Vy — (1 Q y)¥x + (1 ® yx)V¥, 6.10)
xXy@DHY —Vxy=—-(x V¥ -V — (1R xy)¥ '

forx,y € gand ¥ € Homg(M, M’ ® U). These equations are easily obtained
by combining the two formulas of (6.9).

a. Substitute (3.9) into %((SZ R D)W —WwQ) and apply (6.9) to the terms. The
resulting identity can be written as ‘W — W % 1" + (1 @ d)W with (z¢, ", d)
as stated.

b. Use that

1 1
z((Q ® DY —vQ) = 5((Ada(sz) ® DV — WAd,(Q))

and substitute (3.6) in the right hand side of this equation. For the quadratic
terms xy (x,y € g) in the resulting formula we use the second formula of
(6.9) when x € tand y € Ad,(¥), the first formula of (6.10) when both
x,y € Ad,(®) or both x, y € b, and the second formula of (6.10) when both
x, y € £ It results in the formula (6.1) with (<t 1", d) given by

e _ 1 Zya ® ((@” +a %)Adg(yo) — 2ya)

T E (a% _afa)Z ’
aeR
(a® +a O‘) —2Ad;(yy)
ij Qxj+ 5 Z Yo Ep— Yo ® Adg(ya),
oceR
l+a 1 (Ada(y2) = ¥a)
2 a\Jy o
szj - 5 Z <1 _afZa)tO’ + ) Z (a® —a—2)2 ~
j=l1 a€RT aeR

By the elementary identities

2Ady(Yo) — (@ +a ") yg = (@ —a *)(ex + e—a),
Ady(y2) — 2 = @ = e + (a > = 2,

the above expressions for ¢, r” and d simplify to the expressions (6.7) and
(6.8) for rt(a), —r(a) and b(a). |
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Remark 6.4 The limit *°r := lim,_, o r(a) (meaning a* — oo for all @ €
R™) gives the classical r-matrix

1 n
oor:—EX;xﬂX)Xj— Z e Qe €0(b)®b.
=

a€RT
The corresponding limit for the folded r-matrices r*(a) gives

ot = £ 4 Oorgf.
As a consequence of Proposition 6.3 we then obtain the following two (non-
dynamical) factorisations of the Casimir €2,

a. (o, 1,d) = (®r,%r, =2t,).
b. (0, 1,d) = (*°rt, =®r=, ®b) with

1 n
oo, ::EZXJZ-—tp—i— > e eU(y). (6.11)
j=1

ae€RT

6.2 Differential vertex operators

In Sect. 6.3 we apply the results of the previous subsection to M; = Hilf’
with A; € h* (i =0, ..., N) and to finite dimensional G-representations U
(j = 1,..., N). Before doing so, we first describe the appropriate class of
vertex operators in this context, which consists of G-equivariant differential
operators. We use the notion of vector-valued G-equivariant differential oper-
ators between spaces of global sections of complex vector bundles, see [36,
Chpt. II] as well as [50, §1].

Identify the G-space H}° with the space of global smooth sections of the
complex line bundle £, := (G xC)/ ~; over G/AN, =~ K, with equivalence
relation ~, given by

(&b, mrp(b™)e) ~i (8,0),  (§€G,be ANy, ceC). (6.12)

For A, u € h* and U a finite dimensional G-representation let D(H7?, H7? ®
U) be the space of differential G-intertwiners H° — H;’f ® U (note that
H/‘io ® U is the space of smooth section of the vector bundle (G x U)/ ~;, with
~;. given by the same formula (6.12) with ¢ € U). We call D € D(H5°, HiY ®
U) a differential vertex operator.

Let D;,(£;) be the g-module consisting of distributions on £;, supported at
1 € K. Note that IDj;(£;,) is contained in the continuous linear dual of 5.
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A straightforward adjustment of the proof of [7, Lem. 2.4] yields a linear
isomorphism

D(H5, Hy® ® U) ~ Homg(Dy(L,), Dy(Ly) @ U)
via dualisation. Furthermore,
M_;_, ~Dy(L)

as g-modules by Schwartz’ theorem, with the distribution @ associated to
xm_j;_, (x € U(g)) defined by

w(@) = (re()P)(1) (¢ € HY)
(see again the proof of [7, Lem. 2.4]). We thus reach the following conclusion.

Proposition 6.5 For A, v € h* and U a finite dimensional G-representation
we have

D(H®, H ® U) 2 Homg(M—y—p, M—j—p ® U). (6.13)

Remark 6.6 The inverse of the isomorphism (6.13) can be described explicitly
as follows. Fix a vertex operator ¥ € Homg(M_;,_,, M), ® U). Let {u; };
be a linear basis of U and write {u]}; for its dual basis. Let ¥; € U (£) be the
unique elements such that

W(m )= _Yim 5, @uj.
i

cf. the proof of Proposition 5.4a. Under the isomorphism (6.13), the inter-
twiner W is mapped to the differential vertex operator Dy = ) ; L; ® u; €
D(HF®, H;® ® U) with the scalar differential operators L; : H® — HJF
explicitly given by

(Lig)(©) =Y uf@u)(r(Y))p)(8) (p € HZ, g €G).
j
For¥y € Homg(M_,—p, M_;_,®V)and ¥y € HomgM_,_p, M, ,®
U) set

Yy =Wy ®idy)¥y € Homg(M_v_p, M_, , 9V ® U),

. 6.14
Dy.y := (Dy, ®idy)Dy, € D(H", HX®U @ V). (19
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These two composition rules are compatible with the isomorphism from Propo-
sition 6.5:

Proposition 6.7 Let Pyy : U @ V. — V ® U be the G-linear isomorphism
flipping the two tensor components. Then

Dy, , = (idyx ® Pyv)Dy,v

in D(HP, H® @ V & U).

Proof This follows by a straightforward but lengthy computation using
Remark 6.6. o

Next we consider the parametrisation of the spaces of vertex operators. Write
m), € M, for the linear functional satisfying m), (m,) = 1 and m};(v) = 0
forv e P M, [v].

v<pL

Definition 6.8 Let U be a finite dimensional g-module, A, 4 € h*, and ¥ €
Homgy(M;, M,, ® U). Then

(W) := (m), ® idy)¥(m;) € Ulr — u]

is called the expectation value of the vertex operator W.

The expectation value of the associated differential vertex operators read as
follows.

Lemma 6.9 For ¥ € Homg(M_,,_,, M_;_, ® U) we have
(DyTL)(1) = (W)
in UM — i), where Iy, € Hio is the function
L, (kan) :==a*? (ke K,aec A,neN).

Proof Using the notations from Remark 6.6, we have
(W) =) e(Ypu;
i

with € the counit of U (£). On the other hand,

(Do) () =Y (L)W =Y (re(¥L) (Dui = > e(Yiuy,

1 l

hence the result. O
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By [12, Lem. 3.3] we have the following result.

Lemma 6.10 Let U be a finite dimensional g-module, . € h* and jn € b .
The expectation value map (-) defines a linear isomorphism

() : Homg(M;, M,, @ U) —> U[x — pl.

The weights of a finite dimensional g-module U lie in the integral weight
lattice

P:={uebh*| (na’)eZ YacR).
Hence for 1 € h;’;r, the space Homgy (M, M, @ U) of vertex operators is trivial
unless A € u+ P. Atalater stage (see Sect. 6.5), we want to restrict to highest
weights Ag € hi*rr such that for any vertex operator ¥ € Homg (M3, , M;,®U),
given as a product of vertex operators W; € Homg(M;,, M;, , ® U;) (i =
1,..., N), has the property that A; 1 € b} fori =1,..., N (ie., all vertex
operators are determined by their expectation values). In that case we will
restrict to highest weights from the dense open subset

Dreg =(veD | (@) ¢Z VaeR)

of h. The (differential) vertex operators are then denoted as follows.
Definition 6.11 Let A € by,

a. If U is a finite dimensional g-module and u € U[A — u] is a weight vector
of weight A — 11, then we write W}’ € Homg(M}, M;, ® U) for the unique
vertex operator with expectation value (W) = u.

b. If U is a finite dimensional G-representation and u € U[A — u] is a weight
vector of weight A — u, then we write D} € ID(HS, 'HZO ® U) for the
unique differential vertex operator with (DYI;)(1) = u.

The expectation value of products of vertex operators gives rise to the fusion
operator. We recall its definition in Sect. 6.5, where we also discuss boundary
versions of fusion operators.

6.3 N-point spherical functions and asymptotic boundary KZB

equations
Fix finite dimensional G-representations Uy, ..., Uy with representation
maps 7y, , . . . , Tuy» and differential vertex operators D; € ]D)(HO?, Hi?_l ®U;)

fori =1,..., N.Write A = (Ag, A1, ..., Any)andU = U ®---® Uy. Write
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D e ID)(H%’V, H3: ® U) for the product of the N differential vertex operators
D (1 =i = N),

D = (D) ®idy,g..guy) - - (Dn-1 ®idyy) Dy,

which we call a differential vertex operator of weight A.

Fix two finite dimensional K -representations V; and V,., with representation
maps oy and o, respectively. Let O'Z(N) be the representation map of the tensor
product K -representation V, ®@ U. We consider (V,®@U)®V,* >~ Hom(V,, V;®
U) as K x K-representation, with representation map o™ := o*e(N) ® o).
Note that if ¢y € Homg (H;,,, Vi) then

(¢¢ ® idy)D € Homg (H, Ve ® U)
by (4.2).

Definition 6.12 Let ¢, € Homg (H;,. Vi), ¢, € Homg (V,, H,,) and D a
differential vertex operator of weight . We call the elementary o ‘™) -spherical
function

PP (9) = (@ idD(m (d)  (8€G)  (6.19)

a N-point 0 ™)-spherical function associated with the (N + 1)-tuple of prin-
cipal series representations H,, := (Hy,, ..., Hay)-

To keep the notations manageable we write from now on the action of U (g)
and G on H$° without specifying the representation map if no confusion can
arise. For instance, forx € U(g), g € G and v € Hi"jv we write gxv € Hf‘;
for the smooth vector 7; (8)((X)H§jv v), and the N-point spherical function

will be written as
FP (9) = (9 ®idy)D(gdr) (g € G).

Remark 6.13 In Sect. 6.4 we define formal N-point spherical functions, which
are asymptotical N-point correlation functions for boundary Wess—Zumino—
Witten conformal field theory on the cylinder when the positions escape to
infinity. The N-point spherical functions in Definition 6.12 are their analogues
in the context of principal series.
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D, ¢,

By Proposition 4.1 ¢ the N-point spherical function fﬁi admits the

Eisenstein type integral representation

AL ) = f dx &y —p(a(g™ o) (o) ® 7y (1) @ -+
\ X (6.16)

_ [ dy)D, ¢,
@ Tuy () ® 0 k(g™ x)) ) TP
with the vector ng‘@dum’q&’ € V, @ U® V* given by

idy)D, ¢, .
TP EDI — ;| vieu(@e @ idy)D) ® 15y v, (81).
Theorem 3.4 a gives the family of differential equations

ﬁU(N) (f(b[ .D,¢, f¢é D¢r|Areg’ Z € Z(g) (617)

IAreg) = é_)LN—,O(Z)
for the restriction of f;, 0D Areg. We will now show that f; ¢e.D.¢r |A
satisfies N additional ﬁrst order asymptotic boundary KZB type dlfferential

equatlons Recall the factorisation (r*(a), —r~(a), b(a)) of Q fora € Areg,
with * the folded r-matrices (6.7) and b given by (6.8).

reg

Proposition 6.14 The N -point o ™) -spherical function in,D,@ satisfies

=1, 2i—1)  (Mishi) Dy
( - +Z<x,->y,.ax,)f“’f " L

2
(6.18)
- > D¢r
:(VgU +ZrUU + by, + Z rU,-U,-JFr;,-V,*)f | Areg

j=i+1

fori =1,..., N, with right boundary term
AR S TACP U3 (6.19)

aeR %-oe _g—a

satisfying 7T (a) = (Ad,—1 ® DS (a) for a € Areg.

We derive the asymptotic boundary KZB type equations (6.18) in two different
ways. The first proof uses Proposition 6.3 b involving the folded versions of
Felder’s dynamical r-matrix, the second proof uses Proposition 6.3a with a
reflection argument. The second argument is of interest from the conformal
field theoretic point of view, and provides some extra insights in the term b
(6.8) appearing in the asymptotic boundary KZB equations.
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Proof 1 (using the factorisation of €2 in terms of folded r-matrices).
Leta € Apeg. By Corollary 6.2 applied to the factorisation (rt(a), —r—(a),
b(a)) of 2, we have

1
E(g"*‘_P(Q) - Qi—p(ﬂ))fﬂin@ (a)
i1 N

= (Z I"l—]i_le, ((,l) + bUi (Cl) + Z r(;,'Uj (a)>f7?li,]),¢, (Cl)

j=i+1

j=1
+ (@ ® idu) (e ) (B)u,Diagy))
k

= (¢ ® idy) (v, DB agr))
k
where we have written r*(a) = Yk ozki ® ,B;E. Now using T (a) € £® g and

(1®Ad,-)r (@)=Y x;®x; +7t(a)
j:]

with 7t (a) € g ® € given by (6.19), the asymptotic boundary KZB type
equation (6.18) follows from the fact that ¢, and ¢, are K-intertwiners and
Gnii1—p(82) — &y —p(€2) = (Aj—1, Ai—1) — (Ai, Ad).

Proof 2 (using a reflection argument).

Leta € Ayeg. Recall that the unfolded factorisation of 2is (r (a), r(a), d(a))
with

o

0= (i)

aER

Then it follows from a direct computation that
b(a) = d(a) +m% (a)). (6.20)
Furthermore,
— @D =D xr"(a) =1 @m@? (a))D (6.21)

for a differential vertex operator D. This follows from the fact that rf1(a) is a
symmetric tensor in g ® g and

—x®@X)D—D*x(x®x)=(1®x>)D
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for x € g. The proof of the asymptotic boundary KZB equation (6.18) using
a reflection argument now proceeds as follows. Corollary 6.2 gives

(()\i—l»)\i—l) (Aiy A ))
2

A )
i—1

N
= (X rou@= Y rou@+dy@) H: @

j=1 j=i+1

+ (¢¢ ® idy) (ngEU,- (@)D(ad,)) + Z(d)z ® idy) () v, D(Brasr))
k
with 7(a) = ) ; ax ® Br. We now apply the identity
(¢ ® idU)i’HgooU,- (a) = ’"\ZU,- (@)(¢¢ ® idy) — (¢ ® idU)ritlif)Ui (a)
in Hom(Hi(‘)’ ® U, V; ® U) to the left boundary term and the identity

Z(awU,D(ﬁkaasr)— Z(x,)un(aqu»)

j=1

+ ) O@)uD(Brag,) + 7, (@D(ag,)
k

in U ® V7 to the right boundary term. The latter equality follows from the
easily verified identities

—([d®0Ad,1)(r(@) = =Y x; ®xj + (id ® Ad,-1) (" (a)),
j=1
—(Ad,-1 ®id)(r5; (@) = (id ® Ad,-1)(r(a)) + (id ® 0Ad,-1)(r(a)).

We thus arrive at the formula

Ai—1,Ai—1) (A, Ad) - ¢0.D,r
(Feiet +;(x_,>uiaxj)f7{i (@)

i—1

N
— (r\—ZUi(a)+ZrUjUi(a)+dUi(a)_ > o @

j=1 Jj=i+1
7 @) S (@ = (90 @1d0) (e, (@Dag)

+ ) (¢¢ ® idu) (O (@) v, D(Bragy)).
k

(6.22)
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Now pushing r%oo v, (@) through the differential vertex operators D (1 < j <
Ap L

i) and pushing the action of g through D; (i < j < N) using (6.9) and using
the fact that 7% (@) is a symmetric tensor in g ® g, the last line becomes

—(¢¢ ® idy) (r%ligU; (@)D(ad,)) + Z(¢z ® idy) (6 () v, D(Bragr))
k
i—1 N

B (ZrlQ}jU,-(a) + > rf}iU (a)>f¢e Dér ()

j=1 Jj=i+l1

+ (¢¢ ® idy) (DH%; v Dy (D ® idUi+1®---®UN)DH,‘{f+1
Dy (a¢r)>
with DH;"} = D; ®idy;,,@-euy and
5[ = 0 (a)D; — D; * P& (a).
Applying now (6.21) we arrive at

— (¢ ® idy) (r}! MRy, (@)D(ad,)) + Z(¢e ® idu ) ((6 () v; D(Bragy))
K

i—1 N
D.g,
= (Xl @+ (me™ @)y, + Y iy, @) 2 @.
j=1 Jj=i+l
Combined with (6.22) and (6.20), we obtain (6.18). |
Write k€°™ € R ® U(g) for the element
| — 2 e2
core .__ o
KO = ij +> i (6.23)
j=1 a€R

and definexk e RQ U®) ® U(g) ® U (k) by

1
_Zya@)e;z +1®Kcore®l+zw, (6.24)
— o a  S—«

a€R aER

Furthermore, write

n
E:=) 0, ®x; eDr®U(g). (6.25)
j=1
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The asymptotic boundary KZB operators are now defined as follows.
Definition 6.15 The first-order differential operators

i—1 N

D; :=E; — Zr; — K — Z ri; (6.26)

j=1 j=itl
inDrUE® QU@®N QU®) (i €{l,..., N}) are called the asymptotic
boundary KZB operators. Here the subindices indicate in which tensor factor
of U(g)®V the U (g)-components of E, k and r* are placed.
Remark 6.16 Note that °™ is the part of « that survives when the U (£)-

components act according to the trivial representation of €. Note furthermore
that

D, eDrU® @ (U®E' PV Uu@®V ™) e U®.

Consider the family H") € Dg ® U®)®N+2 (7 € Z(g)) of commuting
differential operator

HZ(N) = (A(N) ®idU(g))Hz

with AN = U@®) - U®®N+D the Nth iterate comultiplication map of
U (k) and H, given by (3.11). Then H™) := —%(HS(ZN) +lpl1?) is the quantum
double spin Calogero-Moser Hamiltonian

HM — _ LA Ly
5 :

yw 1 1 floe? A 1 O+
— EZW(T_i_ 1_[ ( ()’a)@ +E€Ol( ®y0¢)))
aeR ¢ « ee{£l}

by Proposition 3.10.

Theorem 6.17 Let A € h*, ¢, € Homg (Hy,. Vi), ¢ € Homg (V,, H;,)
and D a differential vertex operator of weight .. = (Ao, ..., Ay). Consider the
smooth V¢ @ U ® V*-valued function

D¢ . D, ¢,
BP0 = S
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on A, called the normalised N -point o ™)-spherical function of weight X,
which admits the explicit integral representation

fsz,d’r (@) =68@d) /K dx S—AN—,O(a(a/—IX))(G((x) QT () ® -
@ Ty (X) ® 0’*(k(al_lx)))Tx(,f@idU)D’qbr-

It satisfies the systems of differential equations

Ajy Aj A1, Aj—
Di(fZK’D’d)’) _ (( i Ai) i A 1))f)(?g,D,¢r G=1.....N).

2 2 &
6.27
()\'N’ )\‘N)f(»bl,Dad)r ( )
A

HM (fz’l,Dafbr) 5

on A . Furthermore, HZ(N) (ffK’D"p’) = QN_p(z)ffl’D’qb’ on Ay forz € Z(g).

Proof The integral representation follows from (6.16). The second line of
(6.27) follows from (6.17). By Proposition 6.14 we have

Ay Aj Mi1s hie
,Dmezi),:((l l)_(l 1, Ai 1)) ¢¢,D, 0y i=1,...,N)

2 2 -
(6.28)
Wlthﬁl:El—le_:llr;_%l Zjv l+1 ij ;; and
N N 1 1 _
K=r"@1+10b@1+1Q7" =« — = Z( L za)ta
2a6R+ 1—%_—205

To prove the first set of equations of (6.27) it thus suffices to show that

SEG™) = —= Z GJ—FE iz) (6.29)

cxeR

in R ® §. This follows from the following computation,

n

SEG) ==Y [y - 3 THOEY

=1 R+ 1_%_—20[
Z é 2ala _ ! 2(14‘5 20{)
ozeR‘*l_52 aeRT =62
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6.4 Formal N-point spherical functions

In this subsection we introduce the analogue of N-point spherical functions in
the context of Verma modules. They give rise to asymptotically free solutions
of the asymptotic boundary KZB operators.

Fix finite dimensional g-representations 7; : g — gl(U;) (1 <i < N).
Let A = (Mo,...,An) with A; € b* and choose vertex operators ¥; €
Homgy(M;,;, M, , ® U;) fori =1,..., N. Set

V=V ®idy,g..euy) - (¥N-1 @ idy,) ¥y, (6.30)

which is a g-intertwiner M, , — M,, ® U. Let (o¢, V¢), (o, V;) be two finite
dimensional €-modules. Write OZ(N) for the representation map of the £-module

Vi @U,and o) = UE(N) ® o, for the representation map of the associated
£ @ t-module (V, @ U) ® V*.

Definition 6.18 For ¢, € Homg(M,,,, Vi), ¢, € Home(V,, M, v) and vertex
operator W given by (6.30). Then (¢, ® idy)W € Homg(M,;, V, ® U) and the
associated formal elementary o M)-spherical function

G0, V. 0y . (e ®idy) ¥, ¢
FML '_FMAN

= 3 (e ® i) € (Ve ®U®B VIIE a -, &gy O

H=AN
is called a formal N-point o V) -spherical function associated with the (N +1)-
tuple of Verma modules (M, ..., M;,).
By Theorem 5.8, the formal N-point o¥)-spherical function F]%’\p’d)’ is
analytic on Ay for Ay € bjjc. -
Recall the normalisation factor é defined by (3.10) (which we will view as
formal power series in C[[£_q,, ..., &, 115)).

Definition 6.19 Let V; € Homyg(M;,_,, M), ,—, ® U;) (1 <i < N) and
write

U e Homg(MAN_p, M)Lo—p ® U)
for the resulting vertex operator (6.30). We call

B0 = st e (Vi @U@ V)lle—as -+ E-ay 1oy

anormalised N-point o ‘™) -spherical function of weight A.— p := (A\g—p, A1 —
1077)\'N_p)
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For weight A with Ay € bjj-+p the normalised formal N-point & (N)_spherical
function Ff"\p’(p’ isan V, ® U® V*-valued analytic function on A .. In terms
of the normalised formal elementary oW )-spherical functions, we have

Foov s peitove, (6.32)

and hence

H) (FP09r) = _ (AN, AN) oV
oy 2 & (6.33)
HM(FP ) = 6, @F Y 2 e Z(g)

by Theorem 5.10. We now show by a suitable adjustment of the algebraic
arguments from Sect. 6.1 that the normalised formal N-point o™ -spherical
functions are eigenfunctions of the asymptotic boundary KZB operators.

Theorem 6.20 Let ¢ € Home(M,, Vi), ¢ € Homg(V,, MAN) and let ¥V be
a product of N vertex operators as given in Definition 6.19. The normalised
formal N-point o ™N)-spherical function Ff‘]’\p’d)’ satisfies the system of differ-
ential equations B

Jii ki) Ot hie
Di(Fif"”’“’"):((‘ ) Gicn i 1))Fif""*"’r (i=1.....N)

2 2
(6.34)

in(Ve @ U VIIE—q,, .. 5 a,lléry. For An € bijc + p the differential
equations (6.34) are valid as analytic V; @ U ® V*-valued analytic functions
on Ax.

Proof As in the proof of Theorem 6.17, the differential equations (6.34) are
equivalent to

~ 1
Bi(Fip ) = 5@@ = G QFRYT =100 N)
(6.35)

. g i—-1  + ~ N —
with D; = E; — ijl i —Ki— Zj:i—H ri and

- 1 1 — ~
K:i=K— — Z(ﬂ)ta=r+®l+l®b®l+l®r+
aeRT I—S—Z(x

(here b is given by (6.8)).
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Write A = {n € b* | u < Anyand Ay :={n e A | Ay —p, p¥) < m}
(m € Z=g). Consider the V; ® U ® V*-valued quasi-polynomial

Fyon? = 3" (¢ @ idu) W),
HEAM

form € Z>¢. Fix a € A;. Then we have

(@3 (D=0, QN (@)
= ) (¢ ®idp) (Wi, - Wag, Gy, - Uiy, $F)a”

HEAM

with \IJM;L =¥ ® 1dUz+l® -®Uy and \IJ = QMA 1\IJM;L \IJM;L QM;L
By the asymptotlc operator KZB equation (6.4) apphed to the factorisation
(r*(a), —r~(a), b(a)) of Q (see Proposition 6.3b), we get

0, (Q)_ 5,(Q) - S v,
(( : 12 B *2 +Eu — ngjUi — v, ~bu = Z;rlrUij)F%;(p )(a)
Jj=i
o T e .
==X X (o e 2)[)] (e ® idu) (¥ (ea)ur,,, B )a".
HEA,, ®€ER
This being valid for all @ € A4, hence we get
1 N "
(501 @6, @) + Eu, - er T VD DN Lo
j=itl (6.36)
==Y D (wtewy, (¢e®1du)<\v<ea)m,v¢,“>7)
weAy, aeR (1 =& 2
viewed as identity in (V,QU® V)[[E_qo,, ..., E—a, 11E1y (5O (1 — 5_20,)_1 =

YR oER ifae RYand (1 —&_20) ' = =302, £2 if « € R, and anal-
ogous expansions for the coefficients of 7* and k). We claim that the identity
(6.36) is also valid when the summation over A,, is replaced by summation
over A:

i—1 N

1
(50 @0, @)+ By = Yo =i = b= 2 i JF
/= j=itl (6.37)
==Y > (ea+ea)u(pe ®idy)(W(ea)ns;, T
HEN aeR 5 Za)
in(Vi@U® VH[é—q,, ... &, 115, Take n € A and let m € N such that

(Any —1, p¥) < m. Then the &y-coefficient of the left hand side of (6.37) is the
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same as the &, -coefficient of the left hand side of (6.36) since the coefficients
of r* and ¥ are in Cllé-q;, - - - » §—a,1]. Exactly the same argument applies to
the &,,-coefficients of the right hand sides of (6.37) and (6.36), from which the
claim follows. Now rewrite the right hand side of (6.37) as

=D (ea+ea)u (@ ®1du>(w(ea)MAN¢“)§—
P (1 — £ 2)
=Y e+ e (B © i)W (profly, (ea)in,, br) —
— (Ex —E-a)
and use that
Z(ea+e—a)®ea _ eq @ Y
aER §u — 6o a€R §u — b
to obtain
=YD (ea+e—o)u; (e ® idu) (¥ (ea)u; ¢“>5—
WEA aeR (I =824
&
- O; %(eaw, (¢¢ ® idu) W (projyy, (Vo) , @)m
U, v F¢z v, ¢r,

where we used that ¢, is a -intertwiner, as well as the explicit formula (6.19)
for 7. Substituting this identity in (6.37), we obtain (6.35). O

6.5 Boundary fusion operators

In Sect. 6.2 we introduced the expectation value of (differential) vertex
operators. Recall the parametrisation of the vertex operators introduced in
Definition 6.11. The expectation value of products (6.30) of vertex operators
gives rise to the fusion operator:

Definition 6.21 [12, Prop. 3.7]. Let 1 € by,. The fusion operator Ju (%) is the
b-linear automorphism of U defined by

W ® - @uy > (mf, ®idv) (V)| @ iduye-puy) - (Wi~ @ idyy )WY (m;)

AN-1

foru; € U;[pn;] (u; € P),whereA; ;= A—pj41---—unfori =0,..., N—1
and Ay = A.
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We suppress the dependence on U and denote Jy(A) by J() if no confusion is
possible (in fact, a universal fusion operator exists, in the sense that its action
on U reproduces Jy (1) for all finite dimensional g®~ -modules, see, e.g., [12,
Prop. 3.19] and references therein).

Lemma 6.10 shows that for u := u; ® --- @ uy with u; € U[u;] and
A € by, we have

A . .
WO = (0 @ idyye-puy) - (WY @idy )WY (6.38)
in Homy(M;,, M), ® U).
Fix from now on a finite dimensional £-module V,. Recall the parametrisa-
tion of £-intertwiners ¢>Z ,, € Homg(M;,, Vy) by their expectation value v € Vj
as introduced in Definition 5.5 a.

Lemma 6.22 Let ) € b, The linear operator Jeu(2) € End(V; ® U),
defined by

JeuW @) = (¢, _, ®idu)¥; " (my)
forv € Vyandu € U[u] (u € P), is a linear automorphism.

Proof For v € V; and u € U[it] we have

i) € miy @ JGu + € My @ Ul

V>0

and consequently we get

JouW@w e e v JWu+ P Ve @ U,

V>

Choose an ordered tensor product basis of Vy, ® U in which the U-components
consist of weight vectors. Order the tensor product basis in such a way that
is compatible with the dominance order on the weights of the U-components
of the basis elements. With respect to such a basis, J, u(1)(idy, ® J )~ h
is represented by a triangular operator with ones on the diagonal, hence it is
invertible. O

We call Jy y(A) the (left) boundary fusion operator on Vy; ® U (we denote
Je.u(d) by Je(A) if no confusion is possible). A right version J, (1) of the left
boundary fusion operator J, (1) can be constructed in an analogous manner.
We leave the straightforward details to the reader.
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LetA € h;f‘eg. By Proposition 5.4 a and Lemma 6.22, the map

Ve ® U - Hom¢(M,;, V, @ U), VU ¢Jz(k)(v®u)

is a linear isomorphism. The E-intertwiner ¢J[(k)(v®“)

alternative description.

admits the following

Corollary 6.23 Let A € bfeg, we Pandv e Vy. Foru € U] we have

¢Jz(>~)(v®u) @, ® idU)‘ng(A)u- (6.39)

Foru=u1® - --Quy withu; € Ui[ui] (1 <i < N) we furhermore have

¢ = (9F,, ®idy) (V! @ iduye.suy) - (W @ idy, ) Wi
(6.40)

withhi = =A — it —un (@ =0,...,N—1), and Ay := A.

Proof The result follows immediately from Proposition 5.4a, Lemma 6.22
and (6.38). a

Definition 6.24 Let Vy, V., be finite dimensional £-modules. Let A =
(Ao, ..., Ay)withAy € h;“eg andwith u; :=X; —A;_1 € Pfori =1,...,N.
LetveVy,, feViandu=u; ® - - Quy withu; € U;[u;]. We write

v,u, f J (A )W f
Fap? = Fpf ™

for the formal N-point spherical function with leading coefficient J;(An)(v ®
u) ® f,and

Fv U, f — SF;‘)/IH f F-)]LZ()\N_P)(U®U)®f
A—p A

for its normalised version.

Note that

J()»N)ll
FUm f F¢z X0’ AN
MA

o]

rAN
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by Lemma 6.23. Written out as formal power series we thus have the following

. v,u,
three expressions for F; ! ,
oy

Je(n p
it = Y gl ool 8], )6
KEAN

= Y @5, ®idw) W projly, ¢7, )

H=AN

= 2 @l @AY @ idueguy) - (VLN @iduy) WL (rofly, ¢, D&
K=AN

The main results of the previous subsection for A € by, can now be reworded
as follows.

Corollary 6.25 Let ) € h;keg- Let A = (Ag,...,AN) With Ay € hfeg and
with i == Aj —Aji—1 € Pfori = 1,...,N. Letv € Vy, f € VF and
u=u ® --Quy withu; € Ui[u;] ¢ = 1,..., N). Then we have for
i=1,...,N,

Dy (1)

<()»i,)»i) ()»i—l,)»i—l))Fu,u,f
_ Sl
2 2 £
H(N)(FK,u,f) _ _()LN,z)»N)F;)L,u,f

(6.41)

and H(N)(FU o f) = Oy— p(z)F . fforz € Z(g). This holds true as Vy; ®
U ® V/-valued analytic functions on A, when Ly € bjjc N hreg

6.6 Commutativity of the asymptotic boundary KZB operators

In this subsection we show that the asymptotic boundary KZB operators D;
(1 <i < N)pairwise commute in Dr ® U (£) @ U (g)®" ® U (£), and that they
also commute with the quantum Hamiltonians HZ(N) e D @ U®)PW2) for
z € Z(g) (and hence also with HN)). We begin with the following lemma.

Lemma 6.26 Let V be a finite dimensional U (8) ® U (g)®N ® U (8)-module
and suppose that ) € bfeg. Then the asymptotic boundary KZB operators
D; (1 <i < N) and the quantum Hamiltonians HZ(N) (z € Z(g)) pairwise
commute as linear operators on V[[§_qy,, ..., E_q, 11&x.

Proof 1t suffices to prove the lemma for V. = V, ® U ® V* with V,, V,

finite dimensional &-modulesand U = U; ® - - - ® Uy with Uy, ..., Uy finite
dimensional g-modules.

Define an ultrametric d on (V, @ U ® V*)[[E—_¢,, ..., E—o,11E1 by the
formula d(f,g) = 277U with, for 3, _;e.6, € (Vi @ U®
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VO [E=ay. - - - -, )1 nONZETO,

w(z euby) = min{(A — , p¥) | L < A ey # O},
H=A

and @ (0) = oo. Consider (V;, @ U ® VH)|[é_y,,-..,E q,l1l& as topo-
logical space with respect to the resulting metric topology. Note that D;
(1 < i < N) and HZ(N) (z € Z(g)) are continuous linear operators

on (Vi ® U® VHI[_q,,...,E q,]l&: since their scalar components lie
in the subring R < Cl[[§_qy,,....&—q,]]. It thus suffices to show that
Ve @ U® VHIlé—as---.E—qa,11& has a topological linear basis consist-

ing of common eigenfunctions for the differential operators D; (1 <i < N)
and Y (z € Z(g)).

Fix linear basis {v;}ics, {bj}jes and { fi}ses of V¢, U and V* respectively.
Take the basis elements b; of the formb; = u; ; ® --- ® uy,j with uy ; a
weight vector in Uy of weight i (b;) (1 < k < N).Forq € Y )_, Z=ook
write

Abj)—qg: =0 —qg—wui(bj) —---—punj),..., A=q—punbj),r—q).

We then have

Fliy) = (B0 = @ ®b) ® f)eig + Y eijuia (Wi

H<i—q

for certain vectors e; j ., (1) € Ve ® U® V,*. Lemma 6.22 then implies that

,
ibi,fs .o
{Fiw)ty | (o) eI xJ xS, ge) Lol
k=1

is a topological linear basis of (V, @ U ® V)[[E_q,. ..., &, 1% Finally

Corollary 6.25 shows that the basis elements in(i)bj_’;‘_f; are simultaneous eigen-
functions of Dy (1 <k < N)and H™ (z € Z(g)). O
We can now show the universal integrability of the asymptotic boundary KZB

operators, as well as their compatibility with the quantum Hamiltonians HZ(N)
(z € Z(g)).
Theorem 6.27 In D ® U(t) @ U(g)®N ® U(¢) we have

0. Dj]=0. [DnHM =0, [HNM HM =0
fori,j=1,...,Nandz,7 € Z(g).
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Proof By the previous lemma, it suffices to show that if the differential oper-
ator

LeDrU® @U@ Ut

acts as zero on V[[§_y,,...,&—q,]l& for all finite dimensional U(¢) ®
U(g)®" ® U(¢)-modules V and all 1 € b}, then L = 0.

We identify the algebra D(A)4 of constant coefficient differential operators
on A with the algebra S(h*) of complex polynomials on h*, by associating dy,
(h € bp) with the linear polynomial A — A(h). For p € S(h*) we write p(0)
for the corresponding constant coefficient differential operator on A.

Write

L=y fiLi

with { f;}; C R linear independentand L; € DAAQU (B ® U(g)®N QU (B).
Expand

Li =Y aijpijd)

J

with p;; € S(h*) and {g;;}; CU®) ® U(g)®N ® U (¥) linear independent for
all i. Then

0= L&) = Z(Z pij(Maij(v)) fi&:

i
in V[[§_¢;, ..., 6-q,11& forv € V and A € h;"eg, where V is an arbitrary

finite dimensional U (¢) ® U (g)®N ® U (¥)-module. Since the { f;}; are linear
independent, we get

Z pij(Maij(v) =0
J

in V for all i, for all A € h;"eg and all v € V, with V any finite dimensional
U ® U(g)®Y ® U(t)-module. Then [10, Thm. 2.5.7] implies that

> pij(aij =0
J
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mU® QU (g)®N QU (®) foralli andall X € hfeg. By the linear independence
of {a;;j};, we get p;j(A) = Oforalli, jand all A € f);‘eg, hence p;; = 0 for all
i, j. This completes the proof of the theorem. O

6.7 Folded dynamical trigonometric r-and k-matrices

We end this section by discussing the reformulation of the commutator rela-
tions

[Di,Dj]1=0

nbDr UE) ® U(g)®N QU ®) for 1 <i,j < N in terms of explicit con-
sistency conditions for the constituents 7+ and « of the asymptotic boundary
KZB operators D; (see (6.26)).

Before doing so, we first discuss as a warm-up the situation for the usual
asymptotic KZB equations (see [15] and references therein), which we will
construct from an appropriate “universal” version of the operators that are no
longer integrable. Recall that AN=D = U(g) — U(g)®V is the (N — 1)th
iterated comultiplication of U (g).

Proposition 6.28 Fix7 € R ® U (g)®? satisfying the invariance property
[Ah), 7T]=0 Vheh. (6.42)

For N >2and 1 <i < N write,

i—1 N
Dl.(N) =E — ) Tsi+ ZﬂsEDRQ@U(Q)@N
s=1 s=i+1

with E =Y} _, Oy, ® X, see (6.25). The following two statements are equiv-
alent.

a. For N >2and1 <i # j <N,

,
DV . D1 =30, GHAY D) (6.43)
k=1

inDr ® U(g)®V.
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b. 7 is a solution of the classical dynamical Yang—Baxter equation,

n

Z((xk)?)axk (F12)— (xX1)20x, (113) + (x%)10x, (723))

P (6.44)

+ [F12, 7131 + [112, 7231 + [113, 7231 = 0

inRQ U(g)®.

Proof By direct computations,

D, DY) = EJMOAW)

k=1

inDr ® U(g)®? and

3) A6
(DY, DY) Z 0y, 1) AP (x0) + [Fi2. T13] + [Fi2. P23l + [Fi3. 2]
k=1

+ ) ()30, (F12) — ()20, F13) + (10)19x, (P23))

k=1

in Dr ® U(g)®3. Hence a implies b.

It is a straightforward but tedious computation to show that classical dynam-
ical Yang-Baxter equation (6.44) implies (6.43) for all N > 2 and all
l<i#j=N. O

For instance, 7(h) := r(h/2) (h € bh) with r Felder’s r-matrix (6.6) satisfies
the classical dynamical Yang—Baxter equation (6.44) as well as the invariance
condition (6.42). The same holds true for 7 = 2r.

Corollary 6.29 (KZB operators) Let N > 2. Let Uy, . .., Uy be finite dimen-
sional g-modules and write U := U ®- - -QUy as before. LetT € RQU (g)®?
be a solution of the classical dynamical Yang—Baxter equation (6.44) sat-
isfying the invariance property (6.42). Define differential operators D

Dg ® End(U[0]) fori =1,...,N by

S SN
DY := DM |ypo)-

Then [DY, DV] = 0 in Dr ® End(U[0]) fori, j=1,....N.

Remark 6.30 Let A € hfeg. Letu=u; ® - --Quy € U[0] with u; € U;[u;]
ande.v:l;Lj =0,andwrite A; == A —pjp1 —---—uy@=1,...,N—=1)
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and Ay := A. By [12,15], the weighted trace of the product \Dg(k)“ of the N
vertex operators lIJ;’l’ € Homgy(M,,;, M;,_, ® U;) are common eigenfunctions
of the asymptotic KZB operators 5}J (1 <i < N)with7(h) =r(h/2) and r
Felder’s r-matrix (6.6).

Now we prove the analogous result for asymptotic boundary KZB type
operators. This time the universal versions of the asymptotic boundary KZB
operators themselves will already be integrable. This is because we are con-
sidering asymptotic boundary KZB operators associated to split Riemannian
symmetric pairs G/K (note that the representation theoretic context from
Remark 6.30 relates the asymptotic KZB operators to the group G viewed as
the symmetric space G x G/diag(G), with diag(G) the group G diagonally
embedding into G x G).

Proposition 6.31 (general asymptotic boundary KZB operators). Let Ag and
A, be two complex unital associative algebras. Let T+ € R ® U(g)®? and
KeER®A QU(g) ® A, and suppose that

1,7 1=[1®h7"] VYheh. (6.45)
Write for N > 2and 1 <i < N,

i—1 N
DM = Ei=) i -FKi— ) T eDr@AOU@ © A,

s=1 s=i+1

with E given by (6.25) and with the indices indicating in which tensor compo-
nents of U(g)®N the U (g)-components of 7+ and ¥ are placed. The following
statements are equivalent.

a. Forall N >2andall1 <i,j <N,
BY, 5 =0

inDr ® A¢ @ U(@®N ® A,.
b. 7T and 7~ are solutions of the following three coupled classical dynamical
Yang—Baxter equations,

D (@018, Frz) — ()20, (713) = (713, Fib] + 75, Tz + 73, Pz s

k=1

D (@195 (55) = (305, () = [P 31+ 71, T ] + (773, T3 (6.46)
k=1

2 (0020 ) — @30y, (75) = 1715, T3]+ 1715, P51 + 173, 75
k=1
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in R Q U(g)®3, and ¥ is a solution of the associated classical dynamical
reflection equation

n

Z((xk)laxk Ko +77) — ()20, K1 + 7)) = [K1 +7 . %2 + 7]

k=1
(6.47)
nR®A QU@ Q A,
Proof By direct computations, [5%2),552)] = 0 is equivalent to the

dynamical reflection equation (6.47) and [2553),55-3)] = 0 for (i, j) =
(1,2), (1,3), (2, 3) is equivalent to the three coupled classical dynamical
Yang—Baxter equations. Hence a implies b. Conversely, a direct but tedious
computation shows that the three coupled classical dynamical Yang—Baxter
equations and the associated classical dynamical reflection equation imply
(DM, DM =0for N > 2and 1 <i,j < N. O

Applied to the asymptotic boundary KZB operators D; (1 <i < N) given by
(6.26), we obtain from Theorem 6.27 with A, = U(£) = A, the following
main result of this subsection.

Theorem 6.32 The folded dynamical r-matrices rfeR® g®2 (see (6.7))
and the dynamical k-matrix k € R @ ¢ ® U(g) Q t (see (6.24)) satisfy the
coupled classical dynamical Yang—Baxter equations (6.46) in RQ U (g)®> and
the associated classical dynamical reflection equation (6.47)in R @ U(£) ®
U@®* @ U(b).

A direct algebraic proof of Theorem 6.32, which does not resorting to the
commutativity of the asymptotic boundary KZB operators, is given in [62].
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