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Abstract LetG be a split real connectedLie groupwithfinite center. In thefirst
part of the paper we define and study formal elementary spherical functions.
They are formal power series analogues of elementary spherical functions
on G in which the role of the quasi-simple admissible G-representations is
replaced by Verma modules. For generic highest weight we express the formal
elementary spherical functions in terms of Harish-Chandra series and integrate
them to spherical functions on the regular part ofG.We show that they produce
eigenstates for spin versions of quantum hyperbolic Calogero–Moser systems.
In the second part of the paper we define and study special subclasses of global
and formal elementary spherical functions, which we call global and formal
N -point spherical functions. Formal N -point spherical functions arise as limits
of correlation functions for boundary Wess–Zumino–Witten conformal field
theory on the cylinderwhen the position variables tend to infinity.We construct
global N -point spherical functions in terms of compositions of equivariant
differential intertwiners associated with principal series representations, and
express them in terms of Eisenstein integrals. We show that the eigenstates
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2 J. V. Stokman, N. Reshetikhin

of the quantum spin Calogero–Moser system associated to N -point spherical
functions are also common eigenfunctions of a commuting family of first-
order differential operators, which we call asymptotic boundary Knizhnik–
Zamolodchikov–Bernard operators. These operators are explicitly given in
terms of folded classical dynamical r -matrices and associated dynamical k-
matrices.

1 Introduction

Results of this paper lie at the interface of representation theory and quan-
tum integrable systems. The motivation comes from the theory of spherical
functions in harmonic analysis on real reductive groups, from the theory of
quantum integrable systems of Calogero–Moser type and from conformal field
theory with conformal boundary conditions.

We show that vector-valued elementary spherical functions provide joint
eigenfunctions of the commuting quantum Hamiltonians of quantum spin1

Calogero–Moser type systems. We introduce a special class of vector-valued
elementary spherical functions, which we call N -point spherical functions.
We show that the associated joint eigenfunctions of the quantumHamiltonians
are also joint eigenfunctions of a commuting family of first order differential
Knizhnik–Zamolodchikov–Bernard (KZB) type operators, which originate in
conformal field theory with conformal boundary conditions.

We also develop the theory of formal elementary spherical functions and
formal N -point spherical functions. We show that formal spherical functions
provide a representation theoretic interpretation of the Harish-Chandra series,
and we use formal N -point spherical functions to establish the consistency of
the differential KZB type equations.

In the next four sections of the introduction we describe the main results in
more detail.

1.1 N-point spherical functions

Let G be a split real connected semisimple Lie group with finite center, and
K be a maximal compact subgroup of G. For two finite dimensional complex
K -representations (σ�, V�) and (σr , Vr ), write σ := σ� ⊗ σ ∗

r for the resulting
K × K -representation on V� ⊗ V ∗

r � Hom(Vr , V�).

1 Throughout this paper we use “spin” in the sense how this term is used in physics as the
description of internal degrees of freedom of one-dimensional quantum particles.
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N -point spherical functions and asymptotic... 3

The space C∞
σ (G) of σ -spherical functions on G consists of the smooth

functions f : G → V� ⊗ V ∗
r satisfying

f (k�gk−1
r ) = σ(k�, kr ) f (g) (k�, kr ∈ K , g ∈ G). (1.1)

We say that a σ -spherical function f ∈ C∞
σ (G) is elementary if it is of the

form

f φ�,φr
H (g) := φ� ◦ π(g) ◦ φr

for some quasi-simple admissibleG-representation (π,H) and K -intertwiners
φ� ∈ HomK (H, V�) and φr ∈ HomK (Vr ,H).

For special choices of σ the theory of σ -spherical functions leads to rep-
resentation theoretic constructions of integrable quantum one-dimensional
many body systems and their eigenstates (see, e.g., [14,33,52,54,55]). The
commuting Hamiltonians arise from the action of the G-biinvariant differen-
tial operators on Cσ (G), while elementary σ -spherical functions produce the
eigenstates. We extend these results to an arbitrary K × K -representation σ .
The corresponding quantum integrable system is called the quantum σ -spin
Calogero–Moser system.Wewill describe this integrable system inmore detail
in Sect. 1.3 of the introduction.

In this paper we also study elementary spherical functions when the K × K -
representation is the state space V�⊗U⊗V ∗

r of a quantum spin chain of length
N ∈ Z≥0 with reflecting boundaries. The bulk part

U := U1 ⊗ · · · ⊗ UN (1.2)

of the state space V� ⊗ U ⊗ V ∗
r is the tensor product of N finite dimensional

G-modules (τi ,Ui ), and V� ⊗ U ⊗ V ∗
r is regarded as K × K -module with

the subgroup K × 1 acting diagonally on the first N + 1 tensor factors and
1 × K acting on the last tensor factor. We denote its representation map by
σ (N ).Wedefine N-pointσ (N )-spherical functions, or simply N -point spherical
functions, as the special subclass2 of elementary σ (N )-spherical functions of
the form

2 In our follow-up paper [58], we consider the spaceC∞
σ�,τ ,σr

(G×(N+1)) of V�⊗U⊗V ∗
r -valued

functions ˜f on G×(N+1) satisfying the transformation behaviour

˜f (k�g0h−1
1 , h1g1h−1

2 , . . . , hN gN k−1
r ) = (σ�(k�)⊗ τ1(h1)⊗ · · · ⊗ τN (hN )⊗ σ ∗

r (kr ))˜f (g0, . . . , gN )
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4 J. V. Stokman, N. Reshetikhin

f φ�,D,φr
H (g) := (φ� ⊗ idU)D ◦ πHN (g) ◦ φr , (1.3)

where

(1) H := (H0, . . . ,HN ) is an (N + 1)-tuple of quasi-simple admissible G-
representations,

(2) D : H∞
N → H∞

0 ⊗ U is a G-intertwiner given as the composition

D = (D1 ⊗ idU2⊗···⊗UN ) · · · (DN−1 ⊗ idUN )DN ,

of G-intertwiners Di : H∞
i → H∞

i−1 ⊗ Ui , whereH∞
i ⊆ Hi is the space

of smooth vectors,
(3) φ� ∈ HomK (H0, V�) and φr ∈ HomK (Vr ,HN ) are K -intertwiners.

Note that indeed f φ�,D,φr
H is an elementary σ (N )-spherical function because

(φ� ⊗ idU)D extends by continuity to a K -intertwinerHN → V� ⊗ U and

f φ�,D,φr
H = f (φ�⊗idU)D,φr

HN
.

Moreover, elementary σ -spherical functions may be viewed as the 0-point
spherical functions.

Let G = K AN+ be an Iwasawa decomposition of G, and denote by h the
complexified Lie algebra of A. Because G is split, h is a Cartan subalgebra
of the complexified Lie algebra g of G. A linear functional λ ∈ h∗ defines
a multiplicative character ηλ of AN+ which acts trivially on N+. For λ ∈
h∗ let (πλ,Hλ) be the quasi-simple admissible G-representation obtained by
normalized induction from ηλ. The representation (πλ,Hλ) is a finite direct
sum of principal series representations. In Sect. 6.3 we provide a nontrivial
family of N -point spherical functions f φ�,D,φr

Hλ with the (N +1)-tuple of quasi-
simple admissible representations given by

Hλ = (Hλ0, . . . ,HλN )

Footnote 2 continued
for (k�, h1, . . . , hN , kr ) ∈ K × G×N × K . This space is preserved by the action of the
commutative algebra of biinvariant differential operators on G×(N+1), and N -point σ (N )-
spherical functions f produce simultaneous eigenfunctions ˜f ∈ C∞

σ,τ ,σr
(G×(N+1)) of the

biinvariant differential operators on G×(N+1) via the formula

˜f (g0, . . . , gN ) := (

idV� ⊗ τ1(g−1
0 )⊗ τ2(g−1

1 g−1
0 )⊗ · · · ⊗ τN (g

−1
N−1 · · · g−1

1 g−1
0 )⊗ idV ∗

r

)

f (g0 · · · gN ).

In this paper we do not use to full extent the G×N -action onU. This will be done in the followup
paper [58], where we will focus on superintegrability.
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N -point spherical functions and asymptotic... 5

where λi ∈ h∗ are such that λi − λi−1 are weight of Ui , and Di : H∞
λi

→
H∞
λi−1

⊗ Ui are G-intertwiners constructed as G-equivariant differential oper-
ators. They admit an integral representation

f φ�,D,φr
Hλ (g) = Eσ

(N )

λN
(g)T (φ�⊗idU)D,φr

λN
(1.4)

whereT (φ�⊗idU)D,φr
λ ∈ V�⊗V ∗

r � Hom(Vr , V�) is an explicit rankoneoperator
depending on the two K -intertwiners (φ�⊗ idU)D and φr , and Eσλ (g) (λ ∈ h∗)
is the Eisenstein integral (3.3).3

One can naturally speculate that affine analogues of N -point spherical
functions should give N -point correlation functions for boundary Wess–
Zumino–Witten–Novikov (WZWN) conformal field theory on an elliptic curve
with conformally invariant boundary conditions. From this perspective the G-
intertwiners Di are asymptotic remnants of affine vertex operators, and the
K -intertwiners φ� and φr are limits of boundary vertex operators.
This perspective predicts that the restrictions of N -point spherical functions

to A ⊂ G provide joint eigenfunctions of a commuting family of N first-
order differential operators, obtained as “topological limit” of trigonometric
KZB operators. The pertinent trigonometric KZB operators are first order
differential operators in variables describing points on an infinite cylinder with
reflecting conformal boundary conditions and in dynamical variables, which
can be identified with the subgroup A ⊂ G (see [62, §2.3]). In the topological
limit the dependence on the points disappears.

In Sect. 6 we directly construct N first-order differential operators on A,
called asymptotic boundary KZB operators, and we show that the restrictions
of the N -point spherical functions f φ�,D,φr

Hλ to A ⊂ G provide joint eigenfunc-

tions of the Hamiltonians of the quantum σ (N )-spin Calogero–Moser system
as well as of the asymptotic boundary KZB operators (see Theorem 6.17)4.We
describe the asymptotic boundary KZB operators in more detail in Sect. 1.4
of the introduction.

1.2 Formal N-point spherical functions

In this paper we also develop the theory of formal elementary σ -spherical
functions and formal N -point σ (N )-spherical functions. A formal elementary

3 For more background on Eisenstein integrals and their role in harmonic analysis see, e.g.,
[28–30,63].
4 From the perspective of footnote 2, the eigenvalue equations with respect to the asymptotic
boundary KZB operators arise from the action of the biinvariant differential operator	i −	i−1
on ˜f , where	 is the quadratic Casimir of G and	i is its interpretation as biinvariant differential
operator acting on the i th-coordinate of G×(N+1).
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6 J. V. Stokman, N. Reshetikhin

σ -spherical function is a formal power series analogue of the restriction of the
elementary σ -spherical function f φ�,φr

Hλ to the positive Weyl chamber A+ in
A, constructed as follows.
The complexified Lie algebra b of AN+ is a Borel subalgebra containing

the Cartan subalgebra h. Let R be the associated root system of g, R+ be the
set of positive roots, and Mλ the Verma module of highest weight λ ∈ h∗. We
denote by Mλ[μ] the weight space of Mλ of weight μ ∈ h∗.

Let n− be the nilpotent subalgebra of g opposite to b, and Mλ be the
n−-completion of Mλ. Fix k-intertwiners φ� ∈ Homk(Mλ, V�) and φr ∈
Homk(Vr ,Mλ), where k is the complexified Lie algebra of K . We denote
by φμ� ∈ HomC(Mλ[μ], V�) and φ

μ
r ∈ HomC(Vr ,Mλ[μ]) the weight compo-

nents of φ� and φr of weight μ.
The formal elementary σ -spherical function associated with Mλ, φ� and

φr is the formal series

Fφ�,φr
Mλ

:=
∑

μ≤λ

(

φ
μ
� ◦ φμr )ξμ (1.5)

where ≤ is the dominance order on h∗ and ξμ is the multiplicative character
ξμ(a) := eμ(log(a)) on A.

Let U (g) and U (k) be the universal enveloping algebra of g and k respec-
tively, and denote by Z(g) the center of U (g). Harish-Chandra’s radial
component ̂�(z) of z ∈ U (g) is the U (k)⊗2-valued differential operator on
the regular part Areg of A such that

̂�(z)( f |Areg) = (r∗(z) f )|Areg

for all spherical functions f , where r∗(z) denotes the left G-invariant dif-
ferential operator on G associated to z. The radial components ̂�(z) of the
G-biinvariant differential operators r∗(z) (z ∈ Z(g)) pairwise commute.

We show in Theorem 5.8a that Fφ�,φr
Mλ

, as formal power series, is a simul-
taneous eigenfunction of the differential operators ̂�(z) (z ∈ Z(g)) with
eigenvalues given by the central character ζλ of Mλ. As a consequence, we
are able to relate the formal elementary σ -spherical function Fφ�,φr

Mλ
to the σ -

Harish-Chandra series, when λ is in an appropriate subset of generic highest
weights.5

The σ -Harish-Chandra series is defined as follows. Let 	 ∈ Z(g) be the
quadratic Casimir element. For generic λ ∈ h∗ the σ -Harish-Chandra series
σλ is the unique End(V� ⊗ V ∗

r )-valued formal eigenfunction of ̂�(	) with

5 See (3.16) for details.
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N -point spherical functions and asymptotic... 7

eigenvalue ζλ(	) of the form6

σλ =
∑

μ≤λ
�σλ−μ(λ)ξμ (�σ0 (λ) = idV�⊗V ∗

r
).

The σ -Harish-Chandra series converges on A+, and thus defines an analytic
End(V�⊗V ∗

r )-valued analytic functionon A+. Theσ -Harish-Chandra function
plays an important role in the asymptotic analysis of σ -spherical functions
through the explicit expansion of the Eisenstein integral in Harish-Chandra
series, see, e.g., [27,29,30,63]. Another interesting recent application of σ -
Harish-Chandra series is its appearance in the description of four-point spin
conformal blocks in Euclidean conformal field theories within the conformal
bootstrap program (see [38,39,59] and references therein).

We show in Theorem 5.8c that for generic λ ∈ h∗,

Fφ�,φr
Mλ

= σλ (·)(φλ� ◦ φλr ). (1.6)

In this case the formal σ -spherical function Fφ�,φr
Mλ

is a V�⊗V ∗
r -valued analytic

function on A+ which extends to a smooth V� ⊗ V ∗
r -valued function on the

dense open subset Greg := K A+K of regular elements in G satisfying the
equivariance poperty (1.1), where M is the centraliser of A in K . Conversely,
(1.6) provides a representation theoretic interpretation of the expansion coef-
ficients �σλ−μ(λ) of the Harish-Chandra series in terms of matrix coefficients
of Verma modules.

For g = sl2(C) the weight components of k-intertwiners φ� and φr are
Meixner–Pollaczek polynomials. On the other hand, the σ -Harish-Chandra
series can be expressed in terms of Gauss’ hypergeometric series 2F1. Formula
(1.6) then provides a representation theoretic proof of the formula [11,47,56]
expressing the Poisson kernel of Meixner–Pollaczek polynomials as a 2F1.
This is detailed in Sect. 5.5.

We define formal N-point σ (N )-spherical functions to be the special sub-
class of formal elementary σ (N )-spherical functions of the form

Fφ�,�,φr
Mλ

:= F (φ�⊗idU)�,φr
MλN

6 Note here the remarkable fact, well known to specialists in harmonic analysis, that for generic
z ∈ Z(g) and λ ∈ h∗ the requirement that the formal End(V� ⊗ V ∗

r )-valued power series
f = ∑

μ≤λ fλ−μξμ is an eigenfunction of the radial component of z with eigenvalue ζλ(z)
will uniquely define the coefficients fγ ∈ End(V�⊗ V ∗

r ) in terms of f0 ∈ End(V�⊗ V ∗
r ). This

in particular holds true for z = 	. The quadratic Casimir 	 is a natural choice since its radial
component is an explicit second-order differential operator that produces the Hamiltonian of the
σ -spin quantum Calogero–Moser system, solvable by asymptotic Bethe ansatz, see Sect. 1.3.
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8 J. V. Stokman, N. Reshetikhin

where

(1) Mλ = (Mλ0, . . . ,MλN ) is an (N +1)-tupe of Vermamodules with highest
weights λi such that λi − λi−1 is a weight of Ui for each i = 1, . . . , N ,

(2) � : MλN → Mλ0 ⊗ U is a g-intertwiner given as the composition

� = (�1 ⊗ idU2⊗···⊗UN ) · · · (�N−1 ⊗ idUN )�N

of g-intertwiners �i : Mλi → Mλi−1 ⊗ Ui ,
(3) φ� ∈ Homk(Mλ0, V�) and φr ∈ Homk(Vr ,MλN ) are k-intertwiners.

For generic λN ∈ h∗ formula (1.6) provides an explicit expression of the
formal N -point spherical function Fφ�,�,φr

Mλ
in terms of the σ (N )-Harish-

Chandra seriesσ
(N )

λN
and the highest weight components of the k-intertwiners

(φ�⊗ idU)� and φr . It is the analogue of formula (1.4) expressing the N -point
spherical function f φ�,D,φr

Hλ as Eisenstein integral.

We show that formal elementary N -point spherical functions Fφ�,�,φr
Mλ

give

rise to joint eigenfunctions of the quantum Hamiltonians of the σ (N )-spin
Calogero–Moser system and, in addition, are joint eigenfunctions of asymp-
totic boundary KZB operators (Theorem 6.20 and Corollary 6.25). Using a
boundary version of the fusion operator for g-intertwiners from [12,16], we
obtain a topologically complete set of joint formal eigenfunctions consisting
of formal N -point spherical functions. This result implies that the boundary
asymptotic KZB operators commute (Theorem 6.27). It also suggests that
the quantum σ (N )-spin Calogero–Moser system is super-integrable, which we
prove in our follow-up paper [58].

1.3 The quantum spin Calogero–Moser systems

The commuting quantum spin Calogero–Moser Hamiltonians corresponding
to the spherical functions on G are the U (k)⊗2-valued differential operators

Hz := δ ◦ ̂�(z) ◦ δ−1 (z ∈ Z(g))

on Areg, where δ := ξρ
∏

α∈R+(1 − ξ−2α)
1
2 and ρ is the half sum of the

positive roots. The End(V�⊗ V ∗
r )-valued differential operators Hσ

z := σ(Hz)

(z ∈ Z(g)) are the Hamiltonians for the σ -spin Calogero–Moser system.
The quadratic Hamiltonian H	 admits the following explicit expression.

Denote by 〈·, ·〉g0 the Killing form of the Lie algebra g0 of G. It restricts to a
scalar product on the Lie algebra h0 of A, giving A = exp(h0) the structure
of a Riemannian manifold. Denote by g0,α the root subspace in g0 associated
to α ∈ R, and by θ ∈ Aut(g) the complex linear extension of the Cartan
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N -point spherical functions and asymptotic... 9

involution of g0 relative to the Iwasawa decomposition G = K AN+. Choose
eα ∈ g0,α (α ∈ R) such that θ(eα) = −e−α and [eα, e−α] = tα , where tα ∈ h0
is the unique element such that 〈tα, h〉g0 = α(h) for all h ∈ h0. Then

k =
⊕

α∈R+
Cyα

with yα := eα − e−α (α ∈ R).
The quadratic Hamiltonian H := −1

2 (H	 + ‖ρ‖2) of the spin Calogero–
Moser model is given by

H = −1

2
�+ V

with� the Laplace–Beltrami operator on A, and V the U (k)⊗2-valued poten-
tial

V = −1

2

∑

α∈R

1

(ξα − ξ−α)2
(‖α‖2

2
+

∏

ε∈{±1}
(yα ⊗ 1 + ξεα(1 ⊗ yα)

)

,

see Proposition 3.10. The extension of this result to arbitrary real semisimple
Lie group G is given in [58].

Special cases of the representation theoretic construction of quantum σ -spin
Calogero–Moser systems and their eigenstates are known. For example, the
case when σ� and σr are the trivial representation was studied in [54,55], and
the case when g = spr (C) and σ� = σr is one-dimensional was analysed in
[33, Chpt. 5]. Other natural special cases will be discussed in Sect. 3.6.

The theory developed in this paper can also be applied to compact sym-
metric spaces. In this case it yields a trigonometric version of quantum spin
Calogero–Moser systems, with eigenstates described by vector-valued multi-
variable orthogonal polynomials. For certain compact symmetric spaces and
special choices of σ , this relates to the theory of Etingof et al. [14,15] on
generalised weighted trace functions and Oblomkov’s [52] version for Grass-
mannians. In these two cases the eigenfunctions can be expressed in terms of
scalar-valued Jack polynomials and BC-type Heckman–Opdam polynomials,
respectively.

The classical integrable systems underlying the quantum σ -spin trigono-
metric Calogero–Moser systems were considered in [18–20,57].
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10 J. V. Stokman, N. Reshetikhin

1.4 Asymptotic boundary KZB operators

For N -point σ (N )-spherical functions on G the related quantum σ (N )-spin
Calogero–Moser system turns out to be a super-integrable quantumCalogero–
Moser spin chain with associated spin space V� ⊗ U ⊗ V ∗

r . In its universal
form the quantumHamiltonians are obtained by a coordinate radial component
map from Z(g)⊗(N+1) toU (k)⊗U (g)⊗N ⊗U (k)-valued differential operators
on Areg, cf. footnote 2. The quantum Hamiltonians described in the previous
subsection arise as the coordinate radial components of 1⊗N ⊗ z (z ∈ Z(g))
and are given by

H (N )
z := δ ◦ (�(N ) ⊗ id)(̂�(z)) ◦ δ−1 (z ∈ Z(g))

with �(N ) : U (k) → U (k)⊗(N+1) the N -fold iterated comultiplication of the
universal enveloping algebra U (k). In particular, these quantum Hamiltonians
are U (k)⊗(N+2)-valued. The asymptotic KZB operators are part of the algebra
of quantum Hamiltonians of the quantum Calogero–Moser spin chain, see
footnote 4. The super-integrable perspective is discussed in detail in our follow-
uppaper [58]. In this paperweobtain the asymptoticKZBoperators byderiving
the asymptotic KZB equations for N -point spherical functions using quantum
field theoretic methods.

Let {xs}n
s=1 be an orthonormal basis of h0 and ∂xs the associated first order

differential operator on A. Write E for the U (g)-valued first order differential
operator

E :=
n

∑

s=1

∂xs ⊗ xs

on A. Consider the g ⊗ g-valued functions

r+ =
∑

α∈R

yα ⊗ eα
1 − ξ−2α

,

r− =
n

∑

s=1

xs ⊗ xs +
∑

α∈R

(eα + e−α)⊗ eα
1 − ξ−2α

(1.7)

and the U (k)⊗ U (g)⊗ U (k)-valued function

κ :=
∑

α∈R

yα ⊗ eα ⊗ 1

1 − ξ−2α
+ 1 ⊗ κcore ⊗ 1 +

∑

α∈R

1 ⊗ eα ⊗ yα
ξα − ξ−α ,
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N -point spherical functions and asymptotic... 11

with its core κcore the U (g)-valued function

κcore := 1

2

n
∑

s=1

x2s +
∑

α∈R

e2α
1 − ξ−2α

.

The asymptotic boundary KZB operators are the first-orderU (k)⊗U (g)⊗N ⊗
U (k)-valued differential operators

Di := Ei −
i−1
∑

j=1

r+
j i − κi −

N
∑

j=i+1

r−
i j (1.8)

on Areg for i = 1, . . . , N . Here the indices i, j on the right hand side of (1.8)
indicate in which tensor components of U (g)⊗N the U (g)-components of E ,
r± and κ are placed. Note that the only nontrivial contributions to the left and
rightU (k)-tensor components ofU (k)⊗U (g)⊗N ⊗U (k) arise from κi −κcorei .

The local terms of the asymptotic KZB operators are folded and contracted
versions of Felder’s [21], [15, §2] classical trigonometric dynamical r -matrix

r := −1

2

n
∑

s=1

xs ⊗ xs −
∑

α∈R

e−α ⊗ eα
1 − ξ−2α

since

r± = ±r + (1 ⊗ θ)r21, κcore = m((1 ⊗ θ)r21), (1.9)

with m the multiplication map of U (g). More generally, for a ∈ Areg,

κ(a) = r+(a)⊗ 1 + 1 ⊗ κcore(a)⊗ 1 + 1 ⊗ ((Ada−1 ⊗ id)r+
21(a)).

An algebraic analysis of folding and contraction of classical dynamical r -
matrices is in the follow-up paper [62].

By the results as explained in Sect. 1.3, the V� ⊗ U ⊗ V ∗
r -valued analytic

functions

fφ�,D,φr
λ (a) := δ(a) f φ�,D,φr

Hλ (a) (a ∈ A+)

satisfy

H (N )
z

(

fφ�,D,φr
λ

) = ζλN −ρ(z)fφ�,D,φr
λ (z ∈ Z(g)),
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12 J. V. Stokman, N. Reshetikhin

see Theorem 6.17. In this paper we will present two different proofs for the
fact that they also satisfy the first order differential equations

Di
(

fφ�,D,φr
λ

) =
((λi , λi )

2
− (λi−1, λi−1)

2

)

fφ�,D,φr
λ , i = 1, . . . , N .

(1.10)

The starting point of the proofs is rewriting the right hand side of (1.10) in
terms of the action of the Casimir 	 on H∞

λi
and H∞

λi−1
on both sides of the

i th intertwiner Di in fφ�,D,φr
λ .

For the first proof we use an explicit Cartan-type factorisation of the Casimir
	 inU (g), see (3.6). This factorisation is the algebraic reflection of the explicit
formula for the differential operator ̂�(	) on Areg. Pushing the factors from

this factorisation through the intertwiners D j in fφ�,D,φr
λ to the far left and right

is creating the r± contributions to the asymptotic boundary KZB equations.
The remaining factors are then absorbed by the K -intertwiners φ� and φr ,
producing the contribution κi − κcorei to Di . In this proof the core κcorei of κi
is already part of the initial factorisation of the Casimir element, and stays put
at its initial spot throughout this procedure. In this proof the terms r+

j i ( j < i)

and r−
i j ( j > i) appear as the expressions (1.7), not as folded and contracted

versions of Felder’s classical dynamical r -matrix.
In the second proof we substitute the factorisation7

	 =
n

∑

k=1

x2k + 1

2

∑

α∈R

(

1 + a−2α

1 − a−2α

)

tα + 2
∑

α∈R

e−αeα
1 − a−2α (1.11)

of the quadratic Casimir element 	 for regular a ∈ Areg, push the left and
right root vectors through the intertwiners D j to the far left and right, reflect
against the K -intertwiners φ� and φr , and push the reflected factors back to
their original position, where they merge and create the core κcorei of κi . When
we initially move components of 	 to the boundaries the terms r ji or ri j are
created. On the way back they are producing similar terms, but now involving
the θ -twisted r -matrix (1⊗ θ)r21. This proof naturally leads to the folded and
contracted expressions (1.9) for r± and κcore in terms of Felder’s r -matrix.

A separate proof is needed to show that formal N -point σ (N )-spherical func-
tions are joint eigenfunctions of the asymptoticKZBoperators (Theorem6.20).
It leads to the proof of the commutativity of the asymptotic boundary KZB

7 This factorisation can be used to derive the asymptoticKZBequations forEtingof’s andSchiff-
mann’s [15] generalised weighted trace functions in a manner similar to the one as described
above for N -point spherical functions, see [62] (weighted traces are naturally associated to the
symmetric space G ×G/diag(G), with diag(G) the group G diagonally embedded into G ×G).
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N -point spherical functions and asymptotic... 13

operators (Theorem 6.27). This in turn implies that the r± satisfy three coupled
classical dynamical Yang–Baxter equations, and that κ solves an associated
classical dynamical reflection equation (Theorem 6.32). An algebraic proof of
this fact is given in the follow-up paper [62].

1.5 Outlook

Harish-Chandra’s theory of harmonic analysis on G has been developed for
arbitrary real connected semisimple Lie groups G with finite center (more gen-
erally, for reductive G in Harish-Chandra’s class). We expect that the theory
of global and formal N -point spherical functions extends to this more general
setup as well. The role of the Cartan subalgebra h0 will be taken over by a
maximal abelian subalgebra a0 of the (−1)-eigenspace of the Cartan invo-
lution θ0, and the role of the root system R by the associated restricted root
system in a∗

0. In our follow-up paper [58] we derive the asymptotic boundary
KZB equations in this more general context. The compatibility condition for
asymptotical boundary KZB equations in the non-split cases also give rise
to consistency conditions on their building blocks, but these conditions no
longer imply separate dynamical Yang–Baxter and reflection equations, see
[58, §6.2].

Boundary KZB equations with spectral parameters will be discussed in a
separate paper (for affine sl2 Kolb has already derived the associatedKZB-heat
equation in [44]). A short discussion of the boundary KZB equations and their
degeneration to asymptotic boundary KZB equations and type C (asymptotic)
Gaudin Hamiltonians can be found in [62, §2.3].

It is natural to generalise the theory to quantum groups using the Letzter–
Kolb [45,51] theory of quantum (affine) symmetric pairs. We expect that the
role of κ with trivialised right boundary component will be taken over by a
dynamical universal K -matrixK, whose action on the parametrising spaces of
quantum boundary vertex operators describes the action of the Balagovic-Kolb
[1] universal K -matrix [1] on the spin spaces of the quantum boundary vertex
operators. This should be compared with the way that dynamical R-matrices
appear in Etingof’s and Varchenko’s [17] theory of generalised trace functions
and quantum KZB equations. This direction has many promising connections
to integrable models in statistical mechanics and quantum field theory with
integrable boundary conditions, see, e.g., [8,25,40] and references therein.

1.6 Contents of the paper

In Sect. 2 we recall basic facts on irreducible split Riemannian pairs and
establish the relevant notations. In Sect. 3 we recall, following [5,63], Harish-

123



14 J. V. Stokman, N. Reshetikhin

Chandra’s radial component map and the explicit expression of the radial
component of the quadratic Casimir element. We furthermore establish the
link to quantum spin hyperbolic Calogero–Moser systems (Sect. 3.6) and
highlight various important special cases. We recall the construction of the
Harish-Chandra series in Sect. 3.7, and discuss how they give rise to eigen-
states for the quantum spin hyperbolic Calogero–Moser systems. In the first
two subsections of Sect. 4 we recall fundamental results of Harish-Chandra
[28–30] on the principal series representations of G and its associated matrix
coefficients. In Sect. 4.3 we discuss the algebraic principal series representa-
tions, and the description of the associated spaces of k-intertwiners. Sect. 5
first discusses how the algebraic principal series representations can be iden-
tified with k-finite parts of weight completions of Verma modules, which
leads to a detailed description of the k-intertwining spaces Homk(Mλ, V�) and
Homk(Vr ,Mλ). In the second half of the section we introduce formal elemen-
taryσ -spherical functions and prove their key properties (differential equations
and relation to σ -Harish-Chandra series). In Sect. 6 we first derive asymptotic
operator KZB equations for g-intertwiners and relate them to factorisations of
the quadraticCasimir element	. In Sects. 6.2 and 6.3we describe the spaces of
G-equivariant differential operatorsH∞

λ → H∞
μ ⊗ U for a finite dimensional

G-representation U , and derive the asymptotic boundary KZB equations for
the associated N -point spherical functions. In Sect. 6.4 we derive the asymp-
totic boundary KZB equations for the formal N -point spherical functions.
Section 6.5 and Sect. 6.6 introduce the boundary fusion operator and estab-
lishes the integrability of the asymptotic boundary KZB operators. Finally, in
Sect. 6.7 we establish the resulting coupled classical dynamical Yang–Baxter
equations and the associated dynamical reflection equations for the building
blocks r± and κ of the asymptotic boundary KZB operators.

Notations and conventions. We write adL : L → gl(L) for the adjoint
representation of a Lie algebra L , and 〈·, ·〉L for its Killing form. Real Lie
algebras will be denoted with a subscript zero. The complexification of a real
Lie algebra g0 with be denoted by g := g0⊗RC. The tensor product⊗F of F-
vector spaces is denoted by⊗ in case F = C. For complex vector spacesU and
V we write Hom(U, V ) for the vector space of complex linear maps U → V .
Representations of Lie groups are complex, strongly continuous Hilbert space
representations. IfU andV are the representation spaces of two representations
of a Lie group G, then HomG(U, V ) denotes the space of bounded linear G-
intertwiners U → V . If U and V are two g-modules for a complex Lie
algebra g, then Homg(U, V ) denotes the space of g-intertwiners U → V . The
representationmap of the infinitesimal g-representation associated to a smooth
G-representation (τ,U ) will be denoted by τ again, if no confusion can arise.
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N -point spherical functions and asymptotic... 15

2 Split real semisimple Lie algebras

This short section is to fix the basic notations for split real semisimple Lie
algebras and Lie groups. For further reading consult, e.g., [43].

2.1 Root space and Cartan decomposition

Let g0 be a split real semisimple Lie algebra with Cartan involution θ0 ∈
Aut(g0) and corresponding Cartan decomposition

g0 = k0 ⊕ p0.

The +1-eigenspace k0 ⊂ g0 is a Lie subalgebra of g0, and the −1-eigenspace
p0 is an adg0(k0)-submodule of g0. The complex linear extension of θ0 will be
denoted by θ ∈ Aut(g) (it is a Chevalley involution of g). Then g = k ⊕ p is
the decomposition of g in +1 and −1-eigenspaces of θ .

The bilinear form (x, y) �→ −〈x, θ0(y)〉g0 on g0 is positive definite. Fix a
Cartan subalgebra h0 of g0 which is contained in p0 (this is possible since g0 is
split), then the restriction of 〈·, ·〉g0 to h0 is positive definite.Wewill write (·, ·)
for the resulting inner product on h0, and ‖ · ‖ for the norm. We use the same
notations for the induced scalar product and norm on h∗

0. The complexification
h of h0 is a Cartan subalgebra of g. We also write (·, ·) for the complex bilinear
extensions of (·, ·) to bilinear forms on h and h∗.

Let

g = h ⊕
⊕

α∈R

gα (2.1)

be the root space decomposition of g, with root system R = R(g, h) ⊂ h∗ and
associated root spaces

gα := {x ∈ g | adg(h)x = α(h)x ∀ h ∈ h}.

Fix a set {α1, . . . , αn} of simple roots of R. Write R+ for the associated set of
positive roots. Let tλ ∈ h be the unique element satisfying

〈h, tλ〉g = λ(h) ∀h ∈ h.

Then [x, y] = 〈x, y〉gtα for root vectors x ∈ gα and y ∈ g−α , see [37, Prop.
8.3].
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16 J. V. Stokman, N. Reshetikhin

The root space decomposition (2.1) refines to

g0 = h0 ⊕
⊕

α∈R

g0,α (2.2)

with g0,α := g0 ∩ gα a one-dimensional real vector space for all α ∈ R. In
particular, all roots α ∈ R are real-valued on h0, and tα ∈ h0 (α ∈ R).

We fix eα ∈ g0,α (α ∈ R) such that

[eα, e−α] = tα, θ0(eα) = −e−α (2.3)

for all α ∈ R (the fact that this is possible follows from, e.g., [37, §25.2]).
Then 〈eα, e−α〉g0 = 1 for α ∈ R. Set

yα := eα − e−α ∈ k0, α ∈ R,

then y−α = −yα (α ∈ R) and

k0 =
⊕

α∈R+
Ryα,

p0 = h0 ⊕
⊕

α∈R+
R(eα + e−α).

Let G be a connected real Lie group with Lie algebra g0 and finite center.
Denote by K ⊂ G the connected Lie subgroup with Lie algebra k0, which is
maximal compact in G. The Cartan involution θ0 integrates to a global Cartan
involution �0 ∈ Aut(G), and K is the subgroup of elements g ∈ G fixed by
�0 (i.e., (G, K ) is a Riemannian symmetric pair). The map

K × p0 → G, (k, x) �→ k exp(x)

is a diffeomorphism, called the global Cartan decomposition of G.

2.2 One-dimensional k0-representations

Let ch(k0) be the space of one-dimensional real representations of k0. If g is
simple but not of type Cn (n ≥ 1) then k0 is semisimple (see, for instance, [61,
§3.1]), hence ch(k0) = {χ0}withχ0 the trivial representation. If g0 � sp(n;R)
(n ≥ 1) then k0 � gln(R), hence ch(k0) = Rχ is one-dimensional. Write in
this case Rs and R� for the set of short and long roots in R with respect to the
norm ‖·‖ (by convention, Rs = ∅ and R� = R for n = 1). Set R+

s := Rs ∩ R+
and R+

l := Rl ∩ R+.
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N -point spherical functions and asymptotic... 17

Lemma 2.1 Let g0 = sp(n;R) (n ≥ 1). Denote by χsp ∈ k∗0 the linear
functional satisfying χsp(yα) = 0 for α ∈ R+

s and χsp(yα) = 1 for α ∈ R+
� .

Then

ch(k0) = Rχsp

Proof See [61, Lemma 4.3]. ��

2.3 The Iwasawa decomposition

Let A ⊂ G be the connected Lie subgroup with Lie algebra h0. It is a closed
commutative Lie subgroup of G, isomorphic to h0 through the restriction of
the exponential map exp : g → G to h0.Wewrite log : A → h0 for its inverse.

Consider the nilpotent Lie subalgebra

n0,+ :=
⊕

α∈R+
g0,α

of g0. The vector space decomposition

g0 = k0 ⊕ h0 ⊕ n0,+

is the Iwasawa decomposition of g0. Let N+ ⊂ G be the connected Lie sub-
group with Lie algebra n0,+. Then N+ is simply connected and closed in G,
and the exponential map exp : n0,+ → N+ is a diffeomorphism. The multi-
plication map

K × A × N+ → G, (k, a, n) �→ kan (2.4)

is a diffeomorphism onto G (the global Iwasawa decomposition). We write

g = k(g)a(g)n(g)

for the Iwasawa decomposition of g ∈ G, with k(g) ∈ K , a(g) ∈ A and
n(g) ∈ N+.

Since G is split with finite center, the centralizer M := Z K (h0) of h0 in
K is a finite group. The minimal parabolic subgroup P = M AN+ of G is a
closed Lie subgroup of G with Lie algebra b0 := h0 ⊕ n0,+. Note that the
complexification b of b0 is the Borel subalgebra of g containing h.
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18 J. V. Stokman, N. Reshetikhin

3 Radial components of invariant differential operators

Throughout this section we fix a triple (g0, h0, θ0)with g0 a split real semisim-
ple Lie algebra, h0 a split Cartan subalgebra and θ0 a Cartan involution such
that θ0|h0 = −idh0 . We write h∗

0 ⊂ h∗ for the real span of the roots, G for
a connected Lie group with Lie algebra g0 and finite center, K ⊂ G for the
connected Lie subgroup with Lie algebra k0, and A ⊂ G for the connected Lie
subgroup with Lie algebra h0.

3.1 The radial component map

The radial component map describes the factorisation of elements x ∈ U (g)
along algebraic counterparts of the Cartan decomposition G = K AK . We first
introduce some preliminary notations.

For λ ∈ h∗ the map

ξλ : A → C
∗, a �→ aλ := eλ(log(a))

defines a complex-valued multiplicative character of A, which is real-valued
for λ ∈ h∗

0. It satisfies ξλξμ = ξλ+μ (λ,μ ∈ h∗) and ξ0 ≡ 1.
The adjoint representationAd : G → Aut(g0) extends naturally to an action

of G on the universal enveloping algebra U (g) of g by complex linear algebra
automorphisms.Wewrite Adg(x) for the adjoint action of g ∈ G on x ∈ U (g).
Note that for a ∈ A,

Ada(eα) = aαeα ∀α ∈ R

and Ada fixes h pointwise.
Each g ∈ G admits a decomposition g = kak′ with k, k′ ∈ K and a ∈ A.

The double cosets K aK and K a′K (a, a′ ∈ A) coincide iff a′ ∈ Wa with
W := NK (h0)/M the analytic Weyl group of G, acting on A by conjugation.
Note that W is isomorphic to the Weyl group of R since G is split. Set

Areg := {a ∈ A | aα �= 1 ∀α ∈ R}.

Then exp : h0,reg ∼−→ Areg, with h0,reg := {h ∈ h0 | α(h) �= 0 ∀α ∈ R} the
set of regular elements in h0. The Weyl group W acts freely on Areg.

Infinitesimal analogues of the Cartan decomposition of G are realized
through the vector space decompositions

g0 = h0 ⊕ Ada−1k0 ⊕ k0 (3.1)
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N -point spherical functions and asymptotic... 19

of g0 for a ∈ Areg. The decomposition (3.1) follows from the identity

eα = a−α(Ada−1 yα)− yα
a−2α − 1

, (3.2)

which shows that {Ada−1 yα, yα} is a linear basis of g0,α ⊕ g0,−α for a ∈ Areg.
Set

V := U (h)⊗ U (k)⊗ U (k).

By the Poincaré–Birkhoff–Witt-Theorem, for each a ∈ Areg the linear map

�a : V → U (g), �a(h ⊗ x ⊗ y) := Ada−1(x)hy

is a linear isomorphism.
Extending the scalars of the complex vector spaceV to the ringC∞(Areg) of

complex valued smooth functions on Areg allows one to give the factorisation
�−1

a (x) for x ∈ U (g) uniformly in a ∈ Areg. It suffices to extend the scalars
to the unital subring R of C∞(Areg) generated by ξ−α and (1 − ξ−2α)

−1 for
all α ∈ R+. For a ∈ Areg the extension of �a is then the complex linear map
˜�a : R ⊗ V → U (g) defined by

˜�a( f ⊗ Z) := f (a)�a(Z), f ∈ R, Z ∈ V.

Theorem 3.1 [5] For x ∈ U (g) there exists a unique �(x) ∈ R ⊗ V such
that

˜�a
(

�(x)
) = x ∀ a ∈ Areg.

For example, by (3.2),

�(eα) = (ξ−α − ξα)−1 ⊗ 1 ⊗ yα ⊗ 1 − (ξ−2α − 1)−1 ⊗ 1 ⊗ 1 ⊗ yα.

The resulting linear map � : U (g) → R ⊗ V is called the radial component
map.

3.2 σ -Spherical functions

The radial component map plays an important role in the study of spherical
functions. Fix a finite dimensional representation σ : K × K → GL(Vσ ).
Denote by C∞(G; Vσ ) the space of smooth Vσ -valued functions on G.
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20 J. V. Stokman, N. Reshetikhin

Definition 3.2 We say that f ∈ C∞(G; Vσ ) is a σ -spherical function on G if

f (k1gk−1
2 ) = σ(k1, k2) f (g) ∀ g ∈ G, ∀k1, k2 ∈ K .

We denote by C∞
σ (G) the subspace of C∞(G; Vσ ) consisting of σ -spherical

functions on G.

Let V M
σ be the subspace of M-invariant elements in Vσ , with M acting diag-

onally on Vσ . Examples of σ -spherical functions on G are

Eσλ (·)v ∈ C∞
σ (G), v ∈ Vσ

where Eσλ : G → End(Vσ ) for λ ∈ h∗ is the Eisenstein integral

Eσλ (g) :=
∫

K
dx ξ−λ−ρ(a(g−1x))σ (x, k(g−1x)). (3.3)

Here ρ := 1
2

∑

α∈R+ α ∈ h∗ and dx is the normalised Haar measure on K .
The representation theoretic construction of σ -spherical functions (see, e.g.,
[5, §8]) will be discussed in Sect. 4.

The function space C∞(A; V M
σ ) is a W -module with w = k M ∈ W for

k ∈ NK (h0) acting by

(w · f )(a) := σ(k, k) f (k−1ak), a ∈ A, f ∈ C∞(A; V M
σ ).

We write C∞(A; V M
σ )

W for the subspace of W -invariant V M
σ -valued smooth

functions on A. By the Cartan decomposition of G, we have the following well
known result.

Corollary 3.3 The map C∞(G; Vσ ) → C∞(A; Vσ ), f �→ f |A restricts to
an injective linear map from C∞

σ (G) into C∞(A; V M
σ )

W . Similarly, restriction
to Areg defines an injective linear map C∞

σ (G) ↪→ C∞(Areg; V M
σ )

W .

The action of left G-invariant differential operators on C∞
σ (G), pushed

through the restriction map |Areg , gives rise to differential operators on Areg
that can be described explicitly in terms of the radial component map �. We
describe them in the next subsection.

3.3 Invariant differential operators

Denote by � and r the left-regular and right-regular representations of G on
C∞(G) respectively,

(�(g) f )(g′) := f (g−1g′), (r(g) f )(g′) := f (g′g),
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N -point spherical functions and asymptotic... 21

with g, g′ ∈ G and f ∈ C∞(G). LetD(G) be the ring of differential operators
on G, and D(G)G ⊆ D(G) its subalgebra of left G-invariant differential
operators. Differentiating r gives an isomorphism

r∗ : U (g)
∼−→ D(G)G

of algebras.
LetU (g)M ⊆ U (g) be the subalgebra ofAd(M)-invariant elements inU (g).

Embed D(G) into D(G) ⊗ End(Vσ ) by D �→ D ⊗ idVσ (D ∈ D(G)). With
respect to the resulting action r∗ ofU (g) onC∞(G; Vσ ), the subspaceC∞

σ (G)
of σ -spherical functions is a U (g)K -invariant subspace of C∞(G; Vσ ).

LetD(A)be the ring of differential operators on A andD(A)A the subalgebra
of A-invariant differential operators. Let r A be the right-regular action of A
on C∞(A). Its differential gives rise to an algebra isomorphism

r A∗ : U (h)
∼−→ D(A)A. (3.4)

We will write ∂h := r A∗ (h) ∈ D(A)A for h ∈ h0, which are the derivations

(

∂h f
)

(a) = d

dt

∣

∣

∣

∣

t=0
f
(

a expA(th)
)

for f ∈ C∞(A) and a ∈ A. We also considerD(A)A as the subring ofD(Areg)

consisting of constant coefficient differential operators and write

DR ⊂ D(Areg)

for the algebra of differential operators

D =
∑

m1,...,mn

cm1,...,mn∂
m1
x1 · · · ∂mn

xn
∈ D(Areg)

with coefficients cm1,...,mn ∈ R, where {x1, . . . , xn} is an orthonormal basis
of h0 with respect to (·, ·). The algebra isomorphism (3.4) now extends to a
complex linear isomorphism

r̃ A∗ : R ⊗ U (h)
∼−→ DR, f ⊗ h �→ f r A∗ (h)

for f ∈ R and h ∈ U (h). Finally, DR ⊗ U (k)⊗2 will denote the algebra
of differential operators D = ∑

m1,...,mn
cm1,...,mn∂

m1
x1 · · · ∂mn

xn on Areg with
coefficients cm1,...,mn in R ⊗ U (k)⊗2. It acts naturally on C∞(Areg; Vσ ).
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22 J. V. Stokman, N. Reshetikhin

By the proof of [5, Thm. 3.1] we have for f ∈ C∞
σ (G), h ∈ U (h) and

x, y ∈ U (k),

(

r∗
(

Ada−1(x)hy
)

f
)

(a) = σ(x ⊗ S(y))
(

r∗(h) f
)

(a) ∀ a ∈ Areg,

with S the antipode of U (k), defined as the anti-algebra homomorphism of
U (k) such that S(x) = −x for all x ∈ k. Combined with Theorem 3.1 this
leads to the following result.

Theorem 3.4 With the above conventions, define the linear map

̂� : U (g)→ DR ⊗ U (k)⊗2

by ̂� := (̃r A∗ ⊗ idU (k) ⊗ S)�, and set

̂�σ := (idDR ⊗ σ)̂� : U (g)→ DR ⊗ End(Vσ ).

a. For z ∈ U (g),

(

r∗(z) f
)|Areg = ̂�σ(z)

(

f |Areg

) ∀ f ∈ C∞
σ (G).

b. The restrictions of ̂� and ̂�σ to Z(g) are algebra homomorphisms.

Proof a. This is a well-known result of Harish-Chandra, see, e.g., [5, Thm.
3.1].

b. It is well-known that the differential operators ̂�(z) (z ∈ Z(g)) pairwise
commute when acting on C∞(Areg; V M

σ ), see [5, Thm. 3.3]. The theory of
formal spherical functions which we develop in Sect. 5, implies that they also
commute as U (k)⊗2-valued differential operators. The key point is that all
formal spherical functions are formal power series eigenfunctions of ̂�(z)
(z ∈ Z(g)) by Theorem 5.8a, which forces the differential operators ̂�(z)
(z ∈ Z(g)) to commute as U (k)⊗2-valued differential operators by the results
in Sect. 6.6 for the special case N = 0. ��
Remark 3.5 By [5, Prop. 2.5] we have ̂�(z) ∈ DR ⊗ U (k ⊕ k)M for z ∈
U (g)M , where U (k⊕ k)M is the space of M-invariance in U (k⊕ k) � U (k)⊗2

with respect to the diagonal adjoint action of M on U (k ⊕ k). In particular,
̂�σ(z) ∈ DR ⊗ EndM(Vσ ) for z ∈ U (g)M , with M acting diagonally on Vσ .

3.4 The radial component of the Casimir element

In this subsection we recall the computation of the radial component of the
Casimir element. As before, let eα ∈ g0,α (α ∈ R) such that [eα, e−α] = tα
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and θ0(eα) = −e−α (α ∈ R), and {x1, . . . , xn} an orthonormal basis of h0
with respect to (·, ·). The Casimir element 	 ∈ Z(g) is given by

	 =
n

∑

j=1

x2j +
∑

α∈R

eαe−α

=
n

∑

j=1

x2j + 2tρ + 2
∑

α∈R+
e−αeα.

(3.5)

By (3.2), the second line of (3.5), and by

[yα,Ada−1 yα] = (a−α − aα)tα ∀ a ∈ A,

we obtain the following Cartan factorisation of 	,

	 =
n

∑

j=1

x2j + 1

2

∑

α∈R

(

aα + a−α

aα − a−α

)

tα

+
∑

α∈R

(

Ada−1(y2α)− (aα + a−α)Ada−1(yα)yα + y2α
(aα − a−α)2

)

(3.6)

for arbitrary a ∈ Areg. It follows that

�(	) =
n

∑

j=1

1 ⊗ x2j ⊗ 1 ⊗ 1 + 1

2

∑

α∈R

(

ξα + ξ−α
ξα − ξ−α

)

⊗ tα ⊗ 1 ⊗ 1

+
∑

α∈R

{

1

(ξα − ξ−α)2 ⊗ 1 ⊗ (y2α ⊗ 1 + 1 ⊗ y2α)

− (ξα + ξ−α)
(ξα − ξ−α)2 ⊗ 1 ⊗ yα ⊗ yα

}

.

(3.7)

This gives the following result, cf., e.g., [63, Prop. 9.1.2.11].

Corollary 3.6 The differential operator ̂�(	) ∈ DR ⊗ U (k)⊗2 is given by

̂�(	) = �+ 1

2

∑

α∈R

(

ξα + ξ−α
ξα − ξ−α

)

∂tα

+
∑

α∈R

1

(ξα − ξ−α)2
∏

ε∈{±1}
(yα ⊗ 1 + ξεα(1 ⊗ yα)) (3.8)

with � := ∑n
j=1 ∂

2
x j

the Laplace–Beltrami operator on A.
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Remark 3.7 Note that the infinitesimal Cartan factorisations (3.6) of 	 are
parametrised by elements a ∈ Areg. In the context of boundary Knizhnik–
Zamolodchikov equations (see Sect. 6) these will provide the dynamical
parameters.

There are various ways to factorise 	, of which (3.5) and the infinitesimal
Cartan decomposition (3.6) are two natural ones. Another factorisation is

	 =
n

∑

j=1

x2j + 1

2

∑

α∈R

(

1 + a−2α

1 − a−2α

)

tα + 2
∑

α∈R

e−αeα
1 − a−2α (3.9)

for a ∈ Areg, which is a dynamical version of (3.5). This formula can be
easily proved by moving in (3.9) positive root vectors eα (α ∈ R+) to the
left and using [eα, e−α] = tα , which causes the “dynamical” dependence to
drop out and reduces (3.9) to the second formula of (3.5). The decomposition
(3.9) is the natural factorisation of 	 in the context of Etingof’s and Schiff-
mann’s [15] generalised weighted trace functions and associated asymptotic
KZB equations, see [62].

3.5 χ -invariant vectors

Let V be a g0-module and fix χ ∈ ch(k0). We say that a vector v ∈ V is
χ -invariant if xv = χ(x)v for all x ∈ k0. We write V χ for the subspace of
χ -invariant vectors in V ,

V χ = {v ∈ V | eαv − e−αv = χ(yα)v ∀α ∈ R+}.

In case of the trivial one-dimensional representation χ0 ≡ 0, we write V χ0 =
V k0 , which is the space of k0-fixed vectors in V . From the computation of the
radial component of the Casimir 	 in the previous subsection, we obtain the
following corollary.

Corollary 3.8 Let V be a g0-module such that 	|V = c idV for some c ∈ R.
Fix χ ∈ ch(k0) and v ∈ V χ . Then

(
n

∑

j=1

x2j + 1

2

∑

α∈R

(1 + a−2α

1 − a−2α

)

tα

+
∑

α∈R

1

(a−α − aα)2
∏

ε∈{±1}
(Ada−1(yα)− a−εαχ(yα))

)

v = cv

for all a ∈ Areg.
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If V is h0-diagonalisable then Corollary 3.8 reduces to explicit recursion rela-
tions for the weight components of v ∈ V χ .

Remark 3.9 In the setup of the corollary, a vector u ∈ V is a Whittaker vector
of weight a ∈ Areg if eαu = aαu for all α ∈ R+. Recursion relations for the
weight components of Whittaker vectors are used in [9, §3.2] to derive a path
model for Whittaker vectors [9, Thm. 3.7], as well as for the associated Whit-
taker functions [9, Thm. 3.9]. It would be interesting to see what this approach
entails for σ -spherical functions with σ a one-dimensional representation of
K × K , when the role of the Whittaker vectors is taken over by χ -invariant
vectors.

3.6 Quantum σ -spin hyperbolic Calogero–Moser systems

We gauge the commuting differential operators ̂�(z) (z ∈ Z(g)) to give
them the interpretation as quantum Hamiltonians for spin generalisations (in
the physical sense) of the quantum hyperbolic Calogero–Moser system. This
extends results from [24,31,54] and [33, Part I, Chpt. 5], which deal with the
“spinless” cases.

Write

A+ := {a ∈ A | aα > 1 ∀α ∈ R+}

for the positive chamber of Areg. Note thatR is contained in the ring Cω(A+)
of analytic functions on A+.

Let δ be the analytic function on A+ given by

δ(a) := aρ
∏

α∈R+
(1 − a−2α)

1
2 . (3.10)

Conjugation by δ defines an outer automorphism of DR. For z ∈ U (g) we
denote by

Hz := δ ◦ ̂�(z) ◦ δ−1 ∈ DR ⊗ U (k)⊗2 (3.11)

the corresponding gauged differential operator. We furthermore write

H := −1

2
δ ◦ (

̂�(	)+ ‖ρ‖2) ◦ δ−1. (3.12)
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Proposition 3.10 The assignment z �→ Hz defines an algebra map Z(g) →
DR ⊗ U (k ⊕ k)M . Furthermore,

H = −1

2
�− 1

2

∑

α∈R

1

(ξα − ξ−α)2
(‖α‖2

2
+

∏

ε∈{±1}
(yα ⊗ 1 + ξεα(1 ⊗ yα))

)

.

(3.13)

Proof The first statement is immediate from Theorem 3.4. The proof of (3.13)
follows from the well known fact that

δ ◦
(

�+ 1

2

∑

α∈R

(ξα + ξ−α
ξα − ξ−α

)

∂tα

)

◦ δ−1 = �− ‖ρ‖2 +
∑

α∈R

‖α‖2
2

1

(ξα − ξ−α)2 ,

see, e.g., the proof of [33, Part I, Thm. 2.1.1]. ��
For σ : U (k)⊗2 → End(Vσ ) a finite dimensional representation we write

Hσ
z := (

idDR ⊗ σ )

Hz ∈ DR ⊗ End(Vσ ) (z ∈ U (g)).

Then Hσ
z (z ∈ Z(g)) are commuting End(Vσ )-valued differential operators

on A which, by Proposition 3.10, serve as quantum Hamiltonians for the σ -
spin generalisation of the quantum hyperbolic Calogero–Moser system with
Schrödinger operator

Hσ := (

idDR ⊗ σ )

(H).

We now list a couple of interesting special cases of the quantum σ -spin hyper-
bolic Calogero–Moser systems.
The spinless case: Take χ�, χr ∈ ch(k0). Their extension to complex linear
algebra morphisms U (k)→ C are again denoted by χ� and χr . Define χ�,rα ∈
Cω(A) (α ∈ R) by

χ�,rα (a) := χ�(yα)+ aαχr (yα), a ∈ A+. (3.14)

Note that χ�,r−α(a) = −(χ�(yα) + a−αχr (yα)) for α ∈ R. The Schrödinger

operator Hχ
�⊗χr

then becomes

Hχ
�⊗χr = −1

2
�− 1

2

∑

α∈R

1

(ξα − ξ−α)2
(‖α‖2

2
− χ�,rα χ�,r−α

)

.
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The special case

Hχ0⊗χ0 = −1

2
�− 1

2

∑

α∈R

‖α‖2
2

1

(ξα − ξ−α)2

with χ0 ∈ ch(k0) the trivial representation is the quantum Hamiltonian of the
quantum hyperbolic Calogero–Moser system associated to the Riemannian
symmetric space G/K . If g is simple and of type Cn (n ≥ 1) then χ� = c�χsp
and χr = crχsp for some c�, cr ∈ C, see Lemma 2.1. Using the explicit
description of χsp from Lemma 2.1, we then obtain

Hχ
�⊗χr = −1

2
�− 1

2

∑

α∈R+
s

‖α‖2
(ξα − ξ−α)2

+1

4

∑

β∈R+
�

1
2‖β‖2 + (c� − cr )

2

(ξβ/2 + ξ−β/2)2 − 1

4

∑

β∈R+
�

1
2‖β‖2 + (c� + cr )

2

(ξβ/2 − ξ−β/2)2 ,

hence we recover a two-parameter subfamily of the BCn quantum hyperbolic
Calogero–Moser system. This extends [33, Part I, Thm. 5.1.7], which deals
with the special case that χ� = −χr with χ� ∈ ch(k0) integrating to a multi-
plicative character of K .
The one-sided spin case: Let χ ∈ ch(k0) and σ� : U (k) → End(V�) a finite
dimensional representation. Then

Hσ�⊗χ = −1

2
�− 1

2

∑

α∈R

1

(ξα − ξ−α)2
(‖α‖2

2
+

∏

ε∈{±1}
(σ�(yα)+ ξεαχ(yα))

)

.

In the special case that χ = χ0 ∈ ch(k0) is the trivial representation the
Schrödinger operator reduces to

Hσ�⊗χ0 = −1

2
�− 1

2

∑

α∈R

1

(ξα − ξ−α)2
(‖α‖2

2
+ σ�(y2α)

)

.

Finally, if g is simple and of type Cn (n ≥ 1) and χ = cχsp with c ∈ C, then

Hσ�⊗χ = −1

2
�− 1

2

∑

α∈R+
s

‖α‖2 + 2σ�(y2α)

(ξα − ξ−α)2

+ 1

4

∑

β∈R+
�

1
2‖β‖2 + (σ�(yβ)− c)2

(ξβ/2 + ξ−β/2)2 − 1

4

∑

β∈R+
�

1
2‖β‖2 + (σ�(yβ)+ c)2

(ξβ/2 − ξ−β/2)2 .
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Remark 3.11 Fehér and Pusztai [19,20] obtained the classical analog of the
one-sided quantum spin Calogero–Moser system by Hamiltonian reduction.
This is extended to double-sided spin Calogero–Moser systems in [57].

The matrix case: The following special case is relevant for the theory of
matrix-valued spherical functions [26], [32, §7]. Let τ : k → gl(Vτ ) be a finite
dimensional representation. Consider End(Vτ ) as left U (k)⊗2-module by

στ (x ⊗ y)T := τ(x)T τ(S(y)) (3.15)

for x, y ∈ U (k) and T ∈ End(Vτ ). Note that End(Vτ ) � Vτ ⊗ V ∗
τ as

U (k)⊗2-modules. The associated Schrödinger operator Hστ acts on T ∈
C∞(Areg;End(Vτ )) by

(

Hστ T
)

(a) = − 1

2
(�T )(a)

− 1

2

∑

α∈R

‖α‖2
2 T (a)+ τ(y2α)T (a)− (aα + a−α)τ (yα)T (a)τ (yα)+ T (a)τ (y2α)

(aα − a−α)2

for a ∈ Areg.

3.7 σ -Harish-Chandra series

In this subsection we recall the construction of the Harish-Chandra series
following [63, Chpt. 9]. They were defined by Harish-Chandra to analyse the
asymptotic behaviour of matrix coefficients of admissible G-representations
and of the associated spherical functions (see, e.g., [2,5,33] and references
therein).

Consider the ring C[[ξ−α1, . . . , ξ−αn ]] of formal power series at infinity in
A+. We express elements f ∈ C[[ξ−α1, . . . , ξ−αn ]] as f = ∑

γ∈Q− cγ ξγ with
cγ ∈ C and

Q− :=
n

⊕

j=1

Z≤0 α j ⊆ Q := ZR.

WeconsiderR as subring ofC[[ξ−α1, . . . , ξ−αn ]] using power series expansion
at infinity in A+ (e.g., (1 − ξ−2α)

−1 = ∑∞
m=0 ξ−2mα for α ∈ R+). Similarly,

we view ξ−ρδ as element in C[[ξ−α1, . . . , ξ−αn ]] through its power series
expansion at infinity, where δ is given by (3.10).

For B a complex associative algebra we write B[[ξ−α1, . . . , ξ−αn ]]ξλ for
the C[[ξ−α1, . . . , ξ−αn ]]-module of formal series g = ∑

γ∈Q− dγ ξλ+γ with

coefficients dγ ∈ B. If B = U (k)⊗2 or B = End(Vσ ) for some k ⊕ k-module
Vσ then B[[ξ−α1, . . . , ξ−αn ]]ξλ becomes a DR ⊗ U (k)⊗2-module.
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Set

h∗
HC := {λ ∈ h∗ | (2(λ+ ρ)+ γ, γ ) �= 0 ∀ γ ∈ Q− \ {0}}. (3.16)

The Harish-Chandra series associated to the triple (g0, h0, θ0) is the following
formal U (k)⊗2-valued eigenfunction of the U (k)⊗2-valued differential opera-
tor ̂�(	).

Proposition 3.12 Let λ ∈ h∗
HC. There exists a unique U (k)⊗2-valued formal

series

λ :=
∑

γ∈Q−
�γ (λ)ξλ+γ ∈ U (k)⊗2[[ξ−α1, . . . , ξ−αn ]]ξλ (3.17)

with coefficients �γ (λ) ∈ U (k)⊗2 and �0(λ) = 1, satisfying

̂�(	)λ = (λ, λ+ 2ρ)λ. (3.18)

In fact, if λ ∈ h∗
HC then the eigenvalue equation (3.18) for a formal series of

the form (3.17) gives recursion relations for its coefficients �λ(γ ) (γ ∈ Q−)
which, together with the condition �0(λ) = 1, determine the coefficients
�γ (λ) uniquely. We call the �γ (λ) ∈ U (k)⊗2 (γ ∈ Q−) the Harish-Chandra
coefficients.

Let n+ be the complexified Lie algebra of N+. The sum U (h)+θ(n+)U (g)
inU (g) is an internal direct sumcontaining Z(g).Denote bypr : Z(g)→ U (h)
the restriction to Z(g) of the projection U (h) ⊕ θ(n+)U (g) → U (h) on the
first direct summand. Then pr is an algebra homomorphism (see, e.g., [5, §1]).
The central character at λ ∈ h∗ is the algebra homomorphism

ζλ : Z(g)→ C, z �→ λ(pr(z))

with λ(pr(z)) the evaluation of pr(z) ∈ U (h) � S(h) at λ. By the second
expression of the Casimir element 	 in (3.5) we have ζλ(	) = (λ, λ + 2ρ).
Furthermore, by [10, Prop. 7.4.7], ζλ−ρ = ζμ−ρ for λ,μ ∈ h∗ if and only if
λ ∈ Wμ.

Proposition 3.13 Let λ ∈ h∗
HC. Then

̂�(z)λ = ζλ(z)λ ∀ z ∈ Z(g)

in U (k)⊗2[[ξ−α1, . . . , ξ−αn ]]ξλ.

123



30 J. V. Stokman, N. Reshetikhin

Proof Write xη := xη11 · · · xηn
n ∈ S(h) and ∂η := ∂

η1
x1 · · · ∂ηn

xn ∈ DR for η ∈
Z

n≥0. The leading symbol of D = ∑

η∈Zn≥0

(∑

γ∈Q− cη,γ ξγ
)

∂η ∈ DR⊗U (k)⊗2

is defined to be

s∞(D) :=
∑

η∈Zn≥0

cη,0xη ∈ S(h)⊗ U (k)⊗2.

Fix z ∈ Z(g). Let z∞
λ ∈ U (k)⊗2 be the evaluation of the leading symbol

s∞(̂�(z)) at λ. Note that the ξλ-component of the formal power series ̂�(z)λ
is z∞

λ . Furthermore, ̂�(z)λ ∈ U (k)⊗2[[ξ−α1, . . . , ξ−αn ]]ξλ is an eigenfunc-
tion of ̂�(	) with eigenvalue (λ, λ+ 2ρ) by Theorem 3.4 b.

For any y ∈ U (k)⊗2, the formal power series

λy :=
∑

γ∈Q−
(�γ (λ)y)ξλ+γ

is the unique eigenfunction of ̂�(	) of the form
∑

γ∈Q−
˜�γ (λ)ξλ+γ (˜�γ (λ) ∈

U (k)⊗2) with eigenvalue (λ, λ+ 2ρ) and leading coefficient˜�0(λ) equal to y
(cf. Proposition 3.12). It thus follows that

̂�(z)λ = λz∞
λ .

By [5, Prop. 2.6(ii)] we have

s∞
(

̂�(z)
) = s∞

(

̂�(pr(z))
)

,

hence z∞
λ = λ(pr(z))1U (k)⊗2 = ζλ(z)1U (k)⊗2 . This concludes the proof of the

proposition. ��
Remark 3.14 ByRemark 3.5 and by an argument similar to the proof of Propo-
sition 3.13, it follows that �γ (λ) ∈ U (k ⊕ k)M for λ ∈ h∗

HC and γ ∈ Q−.

Fix a finite dimensional representation σ : U (k)⊗2 → End(Vσ ). For λ ∈
h∗
HC set

σλ :=
∑

γ∈Q−
σ(�γ (λ))ξλ+γ ∈ End(Vσ )[[ξ−α1, . . . , ξ−αn ]]ξλ. (3.19)

We call σλ the σ -Harish-Chandra series, and

�σγ (λ) := σ(�γ (λ)) ∈ End(Vσ ), γ ∈ Q−

the associated Harish-Chandra coefficients.
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Remark 3.15 Suppose that Vσ integrates to a K × K -representation. Let
EndM(Vσ ) be the space of M-intertwiners Vσ → Vσ with respect to the
diagonal action of M on Vσ . Then �σγ (λ) ∈ EndM(Vσ ) for all γ ∈ Q− by
Remark 3.14.

Note that σλ is the unique formal power series
∑

γ∈Q− �
σ
γ (λ)ξλ+γ with

�σγ (λ) ∈ End(Vσ ) and �σγ (λ) = idVσ satisfying ̂�(	)σλ = (λ, λ + 2ρ)σλ .
The σ -Harish-Chandra series in addition satisfies the eigenvalue equations
̂�(z)σλ = ζλ(z)σλ for all z ∈ Z(g).
Endow End(Vσ ) with the norm topology. The recursion relations arising

from the eigenvalue equation ̂�(	)σλ = ζλ(	)
σ
λ imply growth estimates

for the Harish-Chandra coefficients �σγ (λ). It leads to the following result (cf.
[63] and references therein).

Proposition 3.16 Let λ ∈ h∗
HC. Then

σλ (a) :=
∑

γ∈Q−
�σγ (λ)a

λ+γ , a ∈ A+

defines an End(Vσ )-valued analytic function on A+.

Remark 3.17 Set Greg := K A+K ⊂ G, which is an open dense subset of G.
For λ ∈ h∗

HC and v ∈ V M
σ the function

Hv
λ (k1ak−1

2 ) := σ(k1, k2)σλ (a)v (a ∈ A+, k1, k2 ∈ K )

is a well defined smooth Vσ -valued function on Greg satisfying

Hv
λ (k1gk−1

2 ) = σ(k1, k2)Hv
λ (g) ∀ g ∈ Greg, ∀ k1, k2 ∈ K .

It in general does not extend to a σ -spherical function on G.

TheHarish-Chandra series immediately provide “asymptotically free” com-
mon eigenfunctions for the quantum Hamiltonians Hσ

z (z ∈ Z(g)) of the
quantum σ -spin hyperbolic Calogero–Moser system.

Theorem 3.18 Fix λ ∈ h∗
HC + ρ. The End(Vσ )-valued analytic function

�σλ (a) := δ(a)σλ−ρ(a), a ∈ A+ (3.20)

has a series expansion of the form

�σλ =
∑

γ∈Q−
�σγ (λ)ξλ+γ ∈ End(Vσ )[[ξ−α1, . . . , ξ−αn ]]ξλ
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with �σγ (λ) ∈ End(Vσ ) and �σ0 (λ) = idVσ . It satisfies the Schrödinger equa-
tion

Hσ
(

�σλ
) = −(λ, λ)

2
�σλ

as well as the eigenvalue equations

Hσ
z �σλ = ζλ−ρ(z)�σλ ∀ z ∈ Z(g)

as End(Vσ )-analytic functions on A+.

Proof This is an immediate consequence of Proposition 3.13 and the defini-
tions of the differential operators Hσ and Hσ

z (z ∈ Z(g)). ��

4 Principal series representations

We keep the conventions of the previous section. In particular, (g0, h0, θ0) is a
triple with g0 a split real semisimple Lie algebra, h0 a split Cartan subalgebra
and θ0 aCartan involution such that θ0|h0 = −idh0 , and (G, K ) is the associated
non-compact split symmetric pair. We fix throughout this section two finite
dimensional K -representations σ� : K → GL(V�) and σr : K → GL(Vr ).We
write (·, ·)V� and (·, ·)Vr for scalar products on V� and Vr turning σ� and σr into
unitary representations of K . We viewHom(Vr , V�) as finite dimensional K ×
K -representation with representation map σ : K × K → GL(Hom(Vr , V�))
given by

σ(k�, kr )T := σ�(k�)Tσr (k
−1
r ) (4.1)

for k�, kr ∈ K and T ∈ Hom(Vr , V�). It is isomorphic to the tensor product
representation V�⊗ V ∗

r . For details on the first two subsections, see [42, Chpt.
8].

4.1 Admissible representations and associated spherical functions

Let K ∧ be the equivalence classes of the irreducible unitary representations
of K . Recall that a representation π : G → GL(H) of G on a Hilbert space
H is called admissible if the restriction π |K of π to K is unitary and if the
τ -isotypical componentH(τ ) of π |K is finite dimensional for all τ ∈ K ∧.

Let π : G → GL(H) be an admissible representation. Recall that a vector
v ∈ H is called smooth if g �→ π(g)v defines a smooth map G → H. The
subspace H∞ ⊆ H of smooth vectors is G-stable and dense. Differentiating
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the G-action on H∞ turns H∞ into a left U (g)-module. We write x �→ xH∞
for the corresponding action of x ∈ U (g).

The algebraic direct sum

HK−fin :=
⊕

τ∈K ∧
H(τ ) ⊆ H

is the dense subspace of K -finite vectors in H. It is contained in H∞ since π
is admissible, and it inherits a (g, K )-module structure fromH∞. The (g, K )-
moduleHK−fin is called the Harish-Chandra module of H.

Forφ� ∈ HomK (H, V�) andφr ∈ HomK (Vr ,H)wenowobtainσ -spherical
functions

f φ�,φr
H ∈ C∞

σ (G)

by

f φ�,φr
H (g) := φ� ◦ π(g) ◦ φr , g ∈ G.

The σ -spherical functions f φ�,φr
H are actually Hom(Vr , V�)-valued real ana-

lytic functions on G, see, e.g., [42, Thm. 8.7]. Furthermore, f φ�,φr
H |A takes

values in HomM(Vr , V�).
Since V� and Vr are finite dimensional, we have canonical isomorphisms

HomK (H, V�) � Homk(H∞, V�) � Homk(HK−fin, V�),

HomK (Vr ,H) � Homk(Vr ,H∞) � Homk(Vr ,HK−fin).
(4.2)

The σ -spherical function f φ�,φr
H can be expressed in terms of matrix coef-

ficients of π as follows. Let {vi }i and {w j } j be linear bases of V� and Vr ,
respectively. Expand φ� ∈ HomK (H, V�) and φr ∈ HomK (Vr ,H) as

φ� =
∑

i

〈·, fi 〉Hvi , φr =
∑

j

(·, w j )Vr h j

with fi , h j ∈ HK−fin, where 〈·, ·〉H is the scalar product ofH. The fact that φ�
and φr are K -intertwiners implies that

∑

i fi ⊗vi and
∑

j w j ⊗h j are K -fixed

inH⊗V� and Vr ⊗H, respectively. The σ -spherical function f φ�,φr
H ∈ C∞

σ (G)
is then given by

f φ�,φr
H (g) =

∑

i, j

〈π(g)h j , fi 〉H(·, w j )Vr vi . (4.3)
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Clearly, for an admissible representation (π,H), the subspace of σ -spherical
functions spanned by f φ�,φr

H (φ� ∈ HomK (H, V�), φr ∈ HomK (Vr ,H)), is
finite dimensional.

4.2 Principal series representations and K -intertwiners

Recall that M := ZK (h0) ⊆ K is a finite group, since g0 is split. Furthermore,
if G has a complexification then M is abelian (see [43, Thm. 7.53]). We fix a
finite dimensional irreducible representation ξ : M → GL(Lξ ). Write 〈·, ·〉ξ
for the scalar product on Lξ turning it into a unitary representation. Fix a linear

functional λ ∈ h∗ and extend it to a representation η(ξ)λ : P → GL(Lξ ) of the
minimal parabolic subgroup P = M AN+ of G by

η
(ξ)
λ (man) := aλξ(m) (m ∈ M, a ∈ A, n ∈ N+).

Consider the pre-Hilbert space U (ξ)
λ consisting of continuous, compactly sup-

ported functions f : G → Lξ satisfying

f (gp) = η(ξ)λ+ρ(p−1) f (g) (g ∈ G, p ∈ P)

with scalar product

〈 f1, f2〉(ξ)λ :=
∫

K
〈 f1(x), f2(x)〉ξdx ( f1, f2 ∈ U (ξ)

λ ).

Consider the action of G on U (ξ)
λ by (π(ξ)λ (g) f )(g′) := f (g−1g′) for

g, g′ ∈ G and f ∈ U (ξ)
λ . Its extension to an admissible representation

π
(ξ)
λ : G → GL(H(ξ)λ ), with H(ξ)λ the Hilbert space completion of U (ξ)

λ , is

called the principal series representation of G. The representation π(ξ)λ is

unitary if η(ξ)λ is unitary, i.e., if λ(h0) ⊂ iR.
Analogously, let ηλ : AN+ → C

∗ be the one-dimensional representation
defined by ηλ(an) := aλ for a ∈ A and n ∈ N+, and consider the pre-Hilbert
spaceUλ consisting of continuous, compactly supported functions f : G → C

satisfying

f (gb) = ηλ+ρ(b−1) f (g) (g ∈ G, b ∈ AN+)

with scalar product

〈 f1, f2〉λ :=
∫

K
f1(x) f2(x) dx ( f1, f2 ∈ Uλ).
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Turning Uλ into a G-representation by (πλ(g) f )(g′) := f (g−1g′) for g, g′ ∈
G and completing, gives an admissible representation πλ : G → GL(Hλ).
Note thatπλ|K : K → GL(Hλ) is isomorphic to the left regular representation
of K on L2(K ). In particular, dim(Hλ(τ )) = deg(τ )2 for all τ ∈ K ∧, where
deg(τ ) is the degree of τ . Furthermore, Hλ � ⊕

ξ∈M∧
(H(ξ)λ

)⊕deg(ξ).
Define for φ� ∈ HomK (Hλ, V�) the adjoint map φ∗

� : V� → Hλ by

(φ�( f ), v)V� = 〈 f, φ∗
� (v)〉λ ∀ f ∈ Hλ, ∀v ∈ V�.

Since Hλ is unitary as K -representation for all λ ∈ h∗, the assignment
φ� �→ φ∗

� defines a conjugate linear isomorphism from HomK (Hλ, V�) onto
HomK (V�,Hλ).

The σ -spherical functions f φ�,φr
Hλ obtained from the G-representation Hλ

using the K -intertwiners φ� ∈ HomK (Hλ, V�) and φr ∈ HomK (Vr ,Hλ) now
admit the following explicit description in terms of the Eisenstein integral.

Proposition 4.1 Fix λ ∈ h∗.

a. The map jλ,Vr : HomK (Vr ,Hλ)→ V ∗
r ,

jλ,Vr (φr )(v) := φr (v)(1) (v ∈ Vr ),

is a linear isomorphism.
b. For φ� ∈ HomK (Hλ, V�) let ιλ,V�(φ�) ∈ V� be the unique vector such that

(

v, ιλ,V�(φ�)
)

V�
= φ∗

� (v)(1) ∀ v ∈ V�.

The resulting map ιλ,V� : HomK (Hλ, V�)→ V� is a linear isomorphism.

c. The assignment φ�⊗φr �→ T φ�,φr
λ := ιλ,V�(φ�)⊗ jλ,Vr (φr ) defines a linear

isomorphism

HomK (Hλ, V�)⊗ HomK (Vr ,Hλ) ∼−→ V� ⊗ V ∗
r � Hom(Vr , V�).

Furthermore,

f φ�,φr
Hλ (g) = Eσλ (g)T

φ�,φr
λ (g ∈ G) (4.4)

for φ� ∈ HomK (Hλ, V�) and φr ∈ HomK (Vr ,Hλ), with Eσλ (g) the Eisen-
stein integral (3.3).

Proof Our choice of parametrisation of the σ -spherical functions associated
to πλ, which deviates from the standard choice (see, e.g., [42, §8.2]), plays an
important in Sect. 6 when discussing the applications to asymptotic boundary
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KZB equations. We provide here a proof directly in terms of our present
conventions.

We will assume without loss of generality that σ�, σr ∈ K ∧.
a. Since dim(HomK (Vr ,Hλ)) = deg(σr ) it suffices to show that jλ,Vr is

injective. Fix an orthonormal basis {vi }i of Vr . Let φr ∈ HomK (Vr ,Hλ) and
consider its expansion φr = ∑

j (·, v j )Vr h j with h j ∈ HK−fin
λ . Then

jλ,Vr (φr ) =
∑

j

h j (1)(·, v j )Vr . (4.5)

Furthermore, for each index j we have

h j (x) =
∑

i

hi (1)(v j , σr (x)vi )Vr ∀ x ∈ K (4.6)

since φr is a K -intertwiner.
Suppose now that jλ,Vr (φr ) = 0. Then h j (1) = 0 for all j by (4.5). By (4.6)

we conclude that h j (kan) = a−λ−ρh j (k) = 0 for k ∈ K , a ∈ A and n ∈ N+,
so φr = 0.

b. This immediately follows from part a and the fact that

(v, ιλ,V�(φ�))V� = jλ,V�(φ
∗
� )(v)

for v ∈ V� and φ� ∈ HomK (Hλ, V�).
c. The first statement immediately follows from a and b. Let {vi }i be an

orthonormal basis of V� and {w j } j an orthonormal basis of Vr . For φ� =
∑

i 〈·, fi 〉λvi ∈ HomK (Hλ, V�) and φr = ∑

j (·, w j )Vr h j ∈ HomK (Vr ,Hλ)
with fi , h j ∈ HK−fin

λ a direct computation gives

f φ�,φr
Hλ (g) = Eσλ (g)˜T

φ�,φr
λ

with ˜T φ�,φr
λ ∈ Hom(Vr , V�) given by

˜T φ�,φr
λ (w) =

∑

i, j

h j (1) fi (1)(w,w j )Vr vi (w ∈ Vr ).

By (4.5) this can be rewritten as

˜T φ�,φr
λ (w) = jλ,Vr (φr )(w)

∑

i

fi (1)vi w ∈ Vr ,
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hence it suffices to show that

ιλ,V�(φ�) =
∑

i

fi (1)vi . (4.7)

Define χ̃λ,V� ∈ HK−fin
λ by

χ̃λ,V�(kan) := deg(σ�)a
−λ−ρχV�(k) (k ∈ K , a ∈ A, n ∈ N+),

with χV� the character of V�. Fix v ∈ V�. Since φ∗
� (v) ∈ Hλ(σ�), its restriction

φ∗
� (v)|K to K lies in the σ�-isotypical component of L2(K )with respect to the

left-regular K -action. By the Schur orthogonality relations we then have

φ∗
� (v)(1) = deg(σ�)

∫

K
dx φ∗

� (v)(x)χV�(x) = 〈φ∗
� (v), χ̃λ,V�〉λ

= (v, φ�(χ̃λ,V�))V� .

This show that

ιλ,V�(φ�) = φ�(χ̃λ,V�).

Now substitute φ� = ∑

i 〈·, fi 〉λvi and use that fi ∈ Hλ(σ ∗
� ) with σ

∗
� the

irreducible K -representation dual to σ�, we get (4.7) by another application of
the Schur’s orthogonality relations,

ιμ,V�(φ�) = φ�(χ̃λ,V�) =
∑

i

deg(σ�)
(

∫

K
dx χV�(x) fi (x)

)

vi =
∑

i

fi (1)vi .

��
Remark 4.2 a. For a ∈ A and m ∈ M one has

σ(m,m)Eσλ (a) = Eσλ (a).

In particular, Eσλ (a) maps Hom(Vr , V�) into HomM(Vr , V�).

b. For ξ ∈ M∧ and intertwiners φ� ∈ HomK (H(ξ)λ , V�) and φr ∈
HomK (Vr ,H(ξ)λ ), write

φ� =
∑

i

〈·, fi 〉(ξ)λ vi , φr =
∑

j

(·, w j )Vr h j
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with fi , h j ∈ H(ξ),K−fin
λ . Then

f φ�,φr

H(ξ)λ
(g) = Eσλ (g)T

(ξ),φ�,φr
λ (g ∈ G) (4.8)

with T (ξ),φ�,φr
λ ∈ HomM(Vr , V�) the M-intertwiner

T (ξ),φ�,φr
λ (w) :=

∑

i, j

〈h j (1), fi (1)〉(ξ)λ (w,w j )Vr vi (w ∈ Vr ).

4.3 Algebraic principal series representations

We first introduce some general facts and notations regarding g-modules, fol-
lowing [10].

Let V be a g-module with representation map τ : g → gl(V ). The repre-
sentation map of V , viewed as U (g)-module, will also be denoted by τ . The
dual of V is defined by

(τ ∗(x) f )(v) = − f (τ (X)v), x ∈ g, f ∈ V ∗, v ∈ V .

Fix a reductive Lie subalgebra l ⊆ g (in this paper l will either be the fix-
point Lie subalgebra k of the Chevalley involution θ , or the Cartan subalgebra
h). Let l∧ be the isomorphism classes of the finite dimensional irreducible
l-modules. For τ ∈ l∧ we write deg(τ ) for the degree of τ and V (τ ) for the τ -
isotypical component of V . A g-module V is called a Harish-Chandra module
with respect to l if V = ∑

τ∈l∧ V (τ ) (it is automatically a direct sum). The
isotypical component V (τ ) then decomposes in a direct sum of copies of τ .
The number of copies, denoted by mtp(τ, V ), is called the multiplicity of τ in
V . The Harish-Chandra module V is called admissible if mtp(τ, V ) <∞ for
all τ ∈ l∧.

For a g-module V let V l−fin be the subspace of l-finite vectors,

V l−fin := {v ∈ V | dim
(

U (l)v
)

<∞ }.

Then V l−fin ⊆ V is a g-submodule. In fact, V l−fin is a Harish-Chandra module
with respect to l satisfying V l−fin(τ ) = V (τ ) for all τ ∈ l∧ (see [10, 1.7.9]).

For l-modules U, V with U or V finite dimensional we identify

U ⊗ V ∗ � Hom(V,U ) (4.9)
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as vector spaces by u ⊗ f �→ f (·)u. With the U (l)⊗ U (l)-module structure
on Hom(V,U ) defined by

((x ⊗ z) f )(u) := x f (S(z)u)

for x, z ∈ U (l), u ∈ U and f ∈ Hom(V,U ), it is an isomorphism of U (l)⊗
U (l)-modules.

Differentiating themultiplicative character ηλ : AN+ → C
∗ of the previous

subsection gives a one-dimensional b-module, whose representation map we
also denote by ηλ. Then ηλ : b → C is concretely given by

ηλ(h + u) := λ(h), h ∈ h, u ∈ n+.

We write Cλ for the associated one-dimensional U (b)-module.

Definition 4.3 Let λ ∈ h∗. Write

Yλ := HomU (b)
(

U (g),Cλ+ρ
)

for the space of linear functionals f : U (g) → C satisfying f (xz) =
ηλ+ρ(x) f (z) for x ∈ U (b) and z ∈ U (g). We view Yλ as g-module by

(y f )(z) := f (zy), y ∈ g, z ∈ U (g).

By [10, Chpt. 9], the Harish-Chandra module Y k−fin
λ is admissible with

mtp(τ, Y k−fin
λ ) = deg(τ ) for all τ ∈ k∧. Consider K ∧ as subset of k∧. Note that

the inclusion K ∧ ↪→ k∧ is strict unless K is simply connected and semisimple.

Proposition 4.4 For λ ∈ h∗ we have an injective morphism of g-modules

HK−fin
λ ↪→ Y k−fin

λ , f �→ ˜f (4.10)

with

˜f (z) := (

r∗(S(z)) f
)

(1)

for f ∈ HK−fin
λ and z ∈ U (g). For τ ∈ K ∧ the embedding restricts to an

isomorphism

Hλ(τ ) ∼−→ Yλ(τ ) (4.11)

of k-modules.
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Proof Let f ∈ HK−fin
λ . Then f : G → C is analytic and satisfies r∗(S(x)) f =

ηλ+ρ(x) f for all x ∈ U (b). Hence (4.10) is a well defined injective linearmap.
A direct computation shows that (4.10) intertwines the g0-action. This proves
the first part of the proposition.

For τ ∈ K ∧ we have dim
(Hλ(τ )

) = deg(τ )2 = dim
(

Yλ(τ )
)

, hence (4.11)
follows from the first part of the proposition. ��
Remark 4.5 The embedding (4.10) is an isomorphism if K is simply connected
and semisimple. In general, the algebraic description of the (g0, K )-modules
HK−fin
λ and H(ξ),K−fin

λ within Y k−fin
λ amounts to taking the direct sum of iso-

typical components Yλ(τ ) for τ running over suitable subsets of K ∧ (see [10,
§9.3]).

Let φ� ∈ HomK (Hλ, V�), φr ∈ HomK (Vr ,Hλ). The associated σ -spherical
function f φ�,φr

Hλ ∈ C∞
σ (G) is an elementary σ -spherical function, and it is a

common eigenfunction of the biinvariant differential operators on G. Indeed,
by Proposition 4.4 it suffices to note that Yλ admits a central character. This
follows from [10, Thm. 9.3.3],

z f = ζλ−ρ(z) f (z ∈ Z(g), f ∈ Yλ). (4.12)

This also follows from the observation that Yλ is isomorphic to M∗−λ−ρ (see
Lemma 5.2) and the fact that ζμ−ρ = ζwμ−ρ for w ∈ W .

As a consequence, the restriction f φ�,φr
Hλ |Areg of f φ�,φr

Hλ ∈ C∞
σ (G) to Areg

are common eigenfunctions of ̂�σ(z) (z ∈ Z(g)),

̂�σ(z)
(

f φ�,φr
Hλ |Areg

) = ζλ−ρ(z) f φ�,φr
Hλ |Areg ∀z ∈ Z(g) (4.13)

(it is sometimes more natural to write the eigenvalue as ζw0(λ+ρ)(z)withw0 ∈
W the longest Weyl group element). By Proposition 4.1 it follows that the
restriction Eσλ |Areg of the Eisenstein integral to Areg is an End(Hom(Vr , V�))-
valued smooth function on Areg satisfying the differential equations

̂�σ(z)
(

Eσλ |Areg

) = ζλ−ρ(z)Eσλ |Areg ∀z ∈ Z(g). (4.14)

Corollary 4.6 The normalised smoothEnd(Hom(Vr , V�))-valued function on
A+ defined by

Eσλ (a
′) := δ(a′)Eσλ (a′) = δ(a′)

∫

K
dx ξ−λ−ρ(a(a′−1x))σ (x, k(a′−1x))

for a′ ∈ A+ is a common End(Hom(Vr , V�))-valued eigenfunction for the
quantum Hamiltonians of the quantum σ -spin hyperbolic Calogero–Moser
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system,

Hσ
(

Eσλ
) = −(λ, λ)

2
Eσλ

and

Hσ
z

(

Eσλ
) = ζλ−ρ(z)Eσλ (z ∈ Z(g)).

Remark 4.7 For sufficiently generic λ ∈ h∗, the σ -Harish-Chandra series
σwλ−ρ (w ∈ W ) exist and satisfy the same differential equations (4.14) on
A+ as Eσλ |A+ . Harish-Chandra’s [28] proved for generic λ ∈ h∗,

Eσλ (a)T =
∑

w∈W

cσ (w; λ)σwλ−ρ(a)T (4.15)

for a ∈ A+ and T ∈ HomM(Vr , V�), with leading coefficients cσ (w; λ) ∈
End(HomM(Vr , V�)) called c-functions (see [28, Thm. 5]). The c-function
expansion (4.15) plays an important role in the harmonic analysis on G.

For the left hand side of (4.15), Remark 4.2b provides a representation
theoretic interpretation in terms of the principal series representation of G. In
the next section we obtain a similar representation theoretic interpretation for
the σ -Harish-Chandra series σwλ−ρ in terms of Verma modules.

5 Formal elementary σ -spherical functions

We fix in this section two finite dimensional representations σ� : k → gl(V�)
and σr : k → gl(Vr ). We write σ for the k ⊕ k-representation map σ� ⊗ σ ∗

r of
the k ⊕ k-module V� ⊗ V ∗

r .

5.1 Verma modules

In this subsection we relate the algebraic principal series representations to
Verma modules. Let V be a g-module V . Write

V [μ] := {v ∈ V | hv = μ(h)v ∀ h ∈ h}

for the weight space of V of weight μ ∈ h∗. Then

V :=
∏

μ∈h∗
V [μ]
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inherits fromV the structure of ag-module as follows.Letv = (v[μ])μ∈h∗ ∈ V
and zα ∈ gα (α ∈ R ∪ {0}), where g0 := h. Then zαv = ((zαv)[μ])μ∈h∗ with

(zαv)[μ] := zαv[μ− α].

Clearly V ⊆ V as g-submodule. Note that V
h−fin = V for h-semisimple

g-modules V .
For μ ∈ h∗ write

projμV : V � V [μ], v �→ v[μ] (5.1)

for the canonical projection, and inclμV : V [μ] ↪→ V for the inclusionmap.We
omit the sublabel V from the notations projμV and inclμV if the representation
V is clear from the context.

Definition 5.1 The Verma module Mλ with highest weight λ ∈ h∗ is the
induced g-module

Mλ := U (g)⊗U (b) Cλ.

The Verma module Mλ and its irreducible quotient Lλ are highest weight
modules of highest weight λ. In particular, they are h-diagonalizable with
finite dimensional weight spaces. The weight decompositions are Mλ =
⊕

μ≤λ Mλ[μ] and Lλ = ⊕

μ≤λ Lλ[μ] with ≤ the dominance order on h∗
with respect to R+ and with one-dimensional highest weight spaces Mλ[λ]
and Lλ[λ]. We fix once and for all a highest weight vector 0 �= mλ ∈ Mλ[λ],
and write 0 �= �λ ∈ Lλ[λ] for its projection onto Lλ. Note that Mλ and Lλ
admit the central character ζλ.

The set h∗
irr of highest weights λ for which Mλ is irreducible is given by

h∗
irr = {λ ∈ h∗ | (λ+ ρ, α∨) /∈ Z>0 ∀α ∈ R+},

with α∨ := 2α/‖α‖2 the co-root of α. Note that h∗
HC ⊆ h∗

irr.
For a g-module V write θV for V endowed with the θ -twisted g-module

structure

x ∗ v := θ(x)v, x ∈ g, v ∈ V .

Lemma 5.2 Let λ ∈ h∗.

a. We have

M∗
λ

∼−→ Y−λ−ρ
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as g-modules, with the isomorphism f �→ ̂f given by ̂f (x) := f (S(x)mλ)
for f ∈ M∗

λ and x ∈ U (g).
b. If λ ∈ h∗

irr, then

Mλ � θY−λ−ρ

as g-modules. In particular, Mλ � θY h−fin
−λ−ρ as g-modules.

Proof a. This is immediate (it is a special case of [10, Prop. 5.5.4]).
b. The Shapovalov form is the nondegenerate symmetric bilinear form on

Lλ satisfying

Bλ(xu, v) = −Bλ(u, θ(x)v)

for x ∈ g and u, v ∈ Lλ and normalised by Bλ(�λ, �λ) = 1. It induces an
isomorphism of g-modules

θ Lλ
∼−→ L∗

λ (5.2)

mapping (v[μ])μ∈h∗ ∈ Lλ to the linear functional u �→ ∑

μ∈h∗ Bλ(v[μ], u)
on Lλ. If λ ∈ h∗

irr then Mλ = Lλ and the result follows part a of the lemma. ��
Remark 5.3 a. The dual M∨ of a module M in category O is defined by
M∨ := θM∗,h−fin. The final conclusion of part b of the lemma corresponds to
the well known fact that L∨

λ � Lλ.
b. Combining Proposition 4.4 and Lemma 5.2a, we have λ ∈ h∗ an embed-

ding of g-modules

HK−fin
λ ↪→ M∗−λ−ρ, f �→ f̆ ,

with f̆ (xm−λ−ρ) := (r∗(x) f )(1) for all x ∈ U (g). It restricts to an isomor-

phismHλ(τ ) ∼−→ M∗−λ−ρ(τ ) for each τ ∈ K ∧.

5.2 Spaces of k-intertwiners

In Sect. 4.2 we have constructed linear isomorphisms ιλ,V� : HomK (Hλ, V�)∼−→ V� and jλ,Vr : HomK (Vr ,Hλ) ∼−→ V ∗
r , with Hλ the principal series

representation. For Verma modules we have the following analogous result.
Write m∗

λ for the linear functional on Mλ that vanishes on
∏

μ<λ Mλ[μ] and
maps mλ to 1.

Proposition 5.4 Fix λ ∈ h∗.
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a. The map evλ,V� : Homk(Mλ, V�)→ V�,

evλ,V�(φ�) := φ�(mλ),

is a linear isomorphism.
b. The linear map hwλ,Vr : Homk(Vr ,Mλ)→ V ∗

r , defined by

hwλ,Vr (φr )(v) := m∗
λ(φr (v)) (v ∈ Vr ),

is a linear isomorphism when λ ∈ h∗
irr.

Proof We assume without loss of generality that σ�, σr ∈ k∧.
a. By Lemma 5.2a we have

Homk(Mλ, V�) � Homk(V
∗
� , Y−λ−ρ)

as vector spaces. The latter space is of dimension deg(σ�). Hence it suffices
to show that evλ,V� is injective. This follows from Mλ = U (k)mλ, which is an
immediate consequence of the Iwasawa decomposition g0 = k0 ⊕ h0 ⊕ n0,+
of g0.

b. Since λ ∈ h∗
irr we have Homk(Vr ,Mλ) � Homk(Vr , Y−λ−ρ) as vector

spaces by Lemma 5.2, and the latter space is of dimension deg(σr ). It thus
suffices to show that hwλ,Vr is injective. Let φr ∈ Homk(Vr ,Mλ) be a nonzero
intertwiner and consider the nonempty set

P := {μ ∈ h∗ | projμMλ(φr (v)) �= 0 for some v ∈ Vr }.

Take a maximal element ν ∈ P with respect to the dominance order ≤ on
h∗. Fix v ∈ Vr with projνMλ(φr (v)) �= 0. Suppose that eα(φr (v)[ν]) �= 0 in

Mλ for some α ∈ R+. Then projν+αMλ
(φr (yαv)) �= 0, but this contradicts the

fact that ν + α /∈ P . It follows that projνMλ(φr (v)) is a highest weight vector
in Mλ of highest weight ν. This forces ν = λ since Mλ is irreducible, hence
hwλ,Vr (φr )(v) �= 0. It follows that hwλ,Vr is injective, which completes the
proof. ��
Definition 5.5 Let λ ∈ h∗.

a. We call evλ,V (φ�) the expectation value of the intertwiner φ� ∈
Homk(Mλ, V�). We write φv�,λ ∈ Homk(Mλ, V�) for the k-intertwiner with
expectation value v ∈ V�.

b. We call hwλ,Vr (φr ) the highest weight component of the intertwiner φr ∈
Homk(Vr ,Mλ). If λ ∈ h∗

irr then we write φ f
r,λ ∈ Homk(Vr ,Mλ) for the

intertwiner with highest weight component f ∈ V ∗
r .
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The exact relation with the intertwiners from Proposition 4.1 is as follows.
Consider for σ� : K → GL(V�) a finite dimensional K -representation the
chain of linear isomorphisms

HomK (V
∗
� ,H−λ−ρ)

∼−→ Homk(V
∗
� ,M∗

λ)
∼−→ Homk(Mλ, V�)

∼−→ V�.

The first isomorphism is the pushforward of the map defined in Remark 5.3,
the second map is transposition and the third map is evλ,V� . Their composition

is the linear isomorphism j−λ−ρ,V ∗
�

: HomK (V ∗
� ,H−λ−ρ)

∼−→ V� defined
in Proposition 4.1. Similarly, for λ ∈ h∗

irr and σr : K → GL(Vr ) a finite
dimensional K -representation we have the chain of linear isomorphisms

HomK (Vr ,H−λ−ρ)
∼−→ Homk(Vr ,M∗

λ)
∼−→ Homk(Vr ,Mλ)

∼−→ V ∗
r .

In this case the first isomorphism is the pushforward of the map defined in
Remark 5.3, the second isomorphism is the pushforward of the g-intertwiner
M∗
λ

∼−→ θMλ realized by the Shapovalov form (see Lemma 5.2b and its
proof), and the third map is hwλ,Vr . Their composition is the linear isomor-

phism j−λ−ρ,Vr : HomK (Vr ,H−λ−ρ)
∼−→ V ∗

r defined in Proposition 4.1.
The following corollary is the analogue of Proposition 4.1c for Vermamod-

ules.

Corollary 5.6 Let V� and Vr be finite dimensional k-modules. The linear map

Homk(Mλ, V�)⊗ Homk(Vr ,Mλ)→ V� ⊗ V ∗
r � Hom(Vr , V�)

defined by φ�⊗ φr �→ Sφ�,φr
λ := evλ,V�(φ�)⊗ hwλ,Vr (φr ), is a linear isomor-

phism when λ ∈ h∗
irr.

In Sect. 5.4 we will give a representation interpretation of the analytic
Hom(Vr , V�)-valued function a �→ σλ (a)S

φ�,φr
λ for φ� ∈ Homk(Mλ, V�),

φr ∈ Homk(Vr ,Mλ) and a ∈ A+, with σ the representation map of the k⊕ k-
module V� ⊗ V ∗

r � Hom(Vr , V�).

5.3 The construction of the formal elementary spherical functions

We first introduce (h, k)-finite and (k, h)-finite matrix coefficients of Verma
modules. Let λ,μ ∈ h∗ with μ ≤ λ. Recall the projection and inclusion maps
inclμMλ and proj

μ
Mλ

. They are h-intertwiners

inclμMλ ∈ Homh(Mλ[μ],Mλ), projμMλ ∈ Homh(Mλ,Mλ[μ]).
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Let λ,μ ∈ h∗ with μ ≤ λ, and fix k-intertwiners φ� ∈ Homk(Mλ, V�) and
φr ∈ Homk(Vr ,Mλ). We write

φ
μ
� := φ� ◦ inclμMλ ∈ Hom(Mλ[μ], V�), φμr := projμMλ ◦ φr ∈ Hom(Vr ,Mλ[μ])

for the weight-μ components of φ� and φr , respectively. The map φμ� encodes
(k, h)-finite matrix coefficients of Mλ of type (σ�, μ), and φ

μ
r the (h, k)-finite

matrix coefficients of Mλ of type (μ, σr ). Formal elementary spherical func-
tions are now defined to be the generating series of the compositions φμ� ◦ φμr
of the weight compositions of the k-intertwiners φ� and φr :

Definition 5.7 Let λ ∈ h∗. For φ� ∈ Homk(Mλ, V�) and φr ∈ Homk(Vr ,Mλ)

let

Fφ�,φr
Mλ

∈ (V� ⊗ V ∗
r )[[ξ−α1, . . . , ξ−αn ]]ξλ

be the formal V� ⊗ U ⊗ V ∗
r -valued power series

Fφ�,φr
Mλ

:=
∑

μ≤λ
(φ� ◦ φμr )ξμ =

∑

μ≤λ
(φ
μ
� ◦ φμr )ξμ.

We call Fφ�,φr
Mλ

the formal elementary σ -spherical function associated to Mλ,
φ� and φr .

Note that under the natural identification Hom(Vr , V�) � V� ⊗ V ∗
r we have

φλ� ◦ φλr = evλ,V�(φ�)⊗ hwλ,Vr (φr ) = Sφ�,φr
λ ,

hence Fφ�,φr
Mλ

has leading coefficient Sφ�,φr
λ . By Corollary 5.6, if λ ∈ h∗

irr and

v ∈ V�, f ∈ V ∗
r , the formal elementary σ -spherical function F

φv�,λ,φ
f

r,λ
Mλ

is the
unique formal elementary σ -spherical function associated to Mλ with leading
coefficient v ⊗ f . We will denote it by Fv, f

Mλ
.

5.4 Relation to σ -Harish-Chandra series

Recall the Harish-Chandra coefficients �σλ (μ) ∈ V� ⊗ V ∗
r in the power series

expansion of the σ -Harish-Chandra series σλ , see Proposition 3.12. We have
the following main result of Sect. 5.

Theorem 5.8 Let λ ∈ h∗, φ� ∈ Homk(Mλ, V�) and φr ∈ Homk(Vr ,Mλ).
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a. For z ∈ Z(g),

̂�σ(z)Fφ�,φr
Mλ

= ζλ(z)Fφ�,φr
Mλ

(5.3)

as identity in (V� ⊗ V ∗
r )[[ξ−α1, . . . , ξ−αn ]]ξλ.

b. For λ ∈ h∗
HC and μ ≤ λ we have

φ� ◦ φμr = φμ� ◦ φμr = �σμ(λ)Sφ�,φr
λ . (5.4)

c. For λ ∈ h∗
HC, v ∈ V� and f ∈ V ∗

r we have

Fv, f
Mλ

= σλ (·)(v ⊗ f ). (5.5)

In particular, Fv, f
Mλ

is a V� ⊗ V ∗
r -valued analytic function on A+.

Proof Since h∗
HC ⊆ h∗

irr, part b and c of the theorem directly follow from part
a, Proposition 3.12, Proposition 3.16 and the fact that the leading coefficient
of Fv⊗ f

Mλ
is v ⊗ f . It thus suffices to prove (5.3).

Consider the Q-grading U (g) = ⊕

γ∈Q U [γ ] with U [γ ] ⊂ U (g) the sub-
space consisting of elements x ∈ U (g) satisfyingAda(x) = aγ x for all a ∈ A.
Set

 := {μ ∈ h∗ | μ ≤ λ},  m := {μ ∈  | (λ− μ, ρ∨) ≤ m}

for m ∈ Z≥0, where ρ∨ = 1
2

∑

α∈R+ α∨. Then (λ − μ, ρ∨) is the height of
λ − μ ∈ ∑n

i=1 Z≥0αi with respect to the basis {α1, . . . , αn} of R. We will
prove that

̂�σ(x)Fφ�,φr
Mλ

=
∑

μ∈ 
φ�(xφ

μ
r )ξμ (x ∈ U [0]) (5.6)

in Hom(Vr , V�)[[ξ−α1, . . . , ξ−αn ]]ξλ. This implies (5.3), since Z(g) ⊆ U [0]
and Mλ admits the central character ζλ.

Fix x ∈ U [0] and write �(x) = ∑

j∈J f j ⊗ h j ⊗ y j ⊗ z j with f j ∈ R,
h j ∈ U (h) and y j , z j ∈ U (k). By Theorem 3.1 we get the infinitesimal Cartan
decomposition

x = Ada(x) =
∑

j∈J

f j (a)y j h jAda(z j ) (a ∈ A+) (5.7)

of x ∈ U [0]. We will now substitute this decomposition in the truncated
version

∑

λ∈ m
φ�(xφ

μ
r )ξμ of the right hand side of (5.6).
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48 J. V. Stokman, N. Reshetikhin

Note that
∑

λ∈ m
φ�(xφ

μ
r )ξμ ∈ Hom(Vr , V�)[ξ−α1, . . . , ξ−αn ]ξλ is a

trigonometric quasi-polynomial, hence it can be evaluated at a ∈ A+. Substi-
tuting (5.7) and using that φ� is a k-intertwiner we obtain the formula

∑

λ∈ m

φ�(xφ
μ
r )a

μ =
∑

j∈J

∑

μ∈ m

f j (a)σ�(y j )φ�(h jAda(z j )φ
μ
r )a

μ (5.8)

in Hom(Vr , V�). Now expand z j = ∑

γ∈I j
z j [γ ] along the Q-grading ofU (g)

with z j [γ ] ∈ U [γ ] (but no longer in U (k)). Here I j ⊂ Q denotes the finite
set of weights for which z j [γ ] �= 0. Then (5.8) implies

∑

μ∈ m

φ�(xφ
μ
r )a

μ =
∑

j∈J

∑

γ∈I j

∑

μ∈ m

(μ+ γ )(h j )σ�(y j )φ�(z j [γ ]φμr ) f j (a)a
μ+γ

for all a ∈ A+. Let η ≥ λ such that λ+ γ ≤ η for all γ ∈ I := ∪ j∈J I j . Then
we conclude that

∑

μ∈ m

φ�(xφ
μ
r )ξμ =

∑

j∈J

∑

γ∈I j

∑

μ∈ m

(μ+ γ )(h j )σ�(y j )φ�(z j [γ ]φμr ) f jξμ+γ (5.9)

in Hom(Vr , V�)[[ξ−α1, . . . , ξ−αn ]]ξη (here the f j ∈ R are represented by
their convergent power series f j = ∑

β∈Q− c j,βξβ on A+ (c j,β ∈ C)). We
now claim that (5.9) is valid with the truncated sum over  m replaced by the
sum over  ,

∑

μ∈ 
φ�(xφ

μ
r )ξμ =

∑

j∈J

∑

γ∈I j

∑

μ∈ 
(μ+ γ )(h j )σ�(y j )φ�(z j [γ ]φμr ) f jξμ+γ (5.10)

in Hom(Vr , V�)[[ξ−α1, . . . , ξ−αn ]]ξη.
Fix ν ∈ h∗ with ν ≤ η. It suffices to show that the ξν-component of the left

(resp. right) hand side of (5.10) is the same as the ξν-component of the left
(resp. right) hand side of (5.9) when m ∈ Z≥0 satisfies (η − ν, ρ∨) ≤ m.

Choose m ∈ Z≥0 with (η− ν, ρ∨) ≤ m. The ξν-component of the left hand
side of (5.10) is zero if ν /∈  and φ�(xφνr ) otherwise. Since (λ − ν, ρ∨) ≤
(η − ν, ρ∨) ≤ m, this coincides with the ξν-component of the left hand side
of (5.9). The ξν-component of the right hand side of (5.10) is

∑

( j,β,γ,μ)

(μ+ γ )(h j )c j,βσ�(y j )φ�(z j [γ ]φμr ) ∈ V� ⊗ V ∗
r (5.11)
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with the sum over the finite set of four tuples ( j, β, γ, μ) ∈ J × Q− × I × 
satisfying γ ∈ I j and μ+ γ + β = ν. For such a four tuple we have

(λ− μ, ρ∨) = (λ+ γ − ν + β, ρ∨) ≤ (η − ν, ρ∨) ≤ m,

from which it follows that (5.11) is also the ξν-component of the right hand
side of (5.9). This concludes the proof of (5.10).

Since φr is a k-intertwiner, we have for fixed ν ∈ h∗,
∑

(μ,γ )∈ ×I j :
μ+γ=ν

z j [γ ]φμr = φνr σr (z j )

in Hom(Vr ,Mλ[ν]) (in particular, it is zero when ν /∈  ). Hence (5.10) sim-
plifies to

∑

μ∈ 
φ�(xφ

μ
r )ξμ =

∑

j∈J

∑

ν∈ 

(

σ�(y j )φ�(φ
ν
r )σ

∗
r (z j )

)

f jν(h j )ξν

= ̂�σ(x)Fφ�,φr
Mλ

(5.12)

in Hom(Vr , V�)[[ξ−α1, . . . , ξ−αn ]]ξλ, as desired. ��
Recall the normalisation factor δ, defined by (3.10). We will also view δ as
formal series in C[[ξ−α1, . . . , ξ−αn ]]ξρ through its power series expansion at
infinity within A+.

Definition 5.9 Let λ ∈ h∗ and fix k-intertwiners φ� ∈ Homk(Mλ−ρ, V�) and
φr ∈ Homk(Vr ,Mλ−ρ). We call

Fφ�,φr
λ := δFφ�,φr

Mλ−ρ ∈ (V� ⊗ V ∗
r )[[ξ−α1, . . . , ξ−αn ]]ξλ

the normalised formal elementary σ -spherical function of weight λ. We fur-
thermore write for λ ∈ h∗

irr + ρ and v ∈ V�, f ∈ V ∗
r ,

Fv, f
λ := δFv⊗ f

Mλ−ρ ,

which is the normalised formal elementary σ -spherical function of weight λ
with leading coefficient v ⊗ f .

By Theorem 5.8c we have for λ ∈ h∗
HC + ρ, v ∈ V� and f ∈ V ∗

r ,

Fv, f
λ = �σλ (·)(v ⊗ f ).
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In particular, Fv, f
λ is an V� ⊗ V ∗

r -valued analytic function on A+ when λ ∈
h∗
HC + ρ.
Theorem 3.18 now immediately gives the interpretation of Fφ�,φr

λ as formal
eigenstates for the σ -spin quantum hyperbolic Calogero–Moser system for all
weights λ ∈ h∗.
Theorem 5.10 Let λ ∈ h∗, φ� ∈ Homk(Mλ, V�) and φr ∈ Homk(Vr ,Mλ).
The normalised formal elementary σ -spherical function Fφ�,φr

λ of weight λ
satisfies the Schrödinger equation

Hσ (Fφ�,φr
λ ) = −(λ, λ)

2
Fφ�,φr
λ

as well as the eigenvalue equations

Hσ
z (F

φ�,φr
λ ) = ζλ−ρ(z)Fφ�,φr

λ , z ∈ Z(g) (5.13)

in (V� ⊗ V ∗
r )[[ξ−α1, . . . , ξ−αn ]]ξλ.

Proof This follows from the differential equations (5.3) for the formal ele-
mentary σ -spherical functions, and the results in Sect. 3.6. ��
Remark 5.11 a. Let λ ∈ h∗

HC and fix V�, Vr finite dimensional K -
representations. Let σ be the resulting tensor product representation of K × K
on Vσ := V� ⊗ V ∗

r � Hom(Vr , V�). For T ∈ HomM(Vr , V�) write H T
λ for

the Vσ -valued smooth function on Greg constructed from the Harish-Chandra
series σλ by

H T
λ (k1ak−1

2 ) := σ(k1, k2)σλ (a)T (a ∈ A+, k1, k2 ∈ K ),

see Remark 3.17. Then (5.5) gives an interpretation of H T
λ as formal ele-

mentary σ -spherical function associated with Mλ. This should be compared
with (4.8), which gives an interpretation of the Eisenstein integral as spherical
function associated to the principal series representation of G.

b. In [44, Thm. 4.4] Kolb proved an affine rank one analogue of Theorem 5.8
for the pair (̂sl2,̂θ), wherêθ the Chevalley involution on the affine Lie algebra
̂sl2 associated to sl2. The generalisation of Theorem 5.8 to arbitrary split affine
symmetric pairs will be discussed in a follow-up paper.

5.5 The rank one example

In this subsection we consider g0 = sl(2;R) with linear basis

H =
(

1 0
0 −1

)

, E =
(

0 1
0 0

)

, F =
(

0 0
1 0

)

,

123



N -point spherical functions and asymptotic... 51

and we take h0 = RH as split Cartan subalgebra. Then θ0(x) = −xt with xt

the transpose of x ∈ g0. Note that H
2
√
2

∈ h0 has norm one with respect to the
Killing form. Let α be the unique positive root, satisfying α(H) = 2. Then
tα = H

4 , and we can take eα = E
2 and e−α = F

2 . With this choice we have
k0 = Ry with y := yα = E

2 − F
2 .

We identify h∗ ∼−→ C by themap λ �→ λ(H). The positive root α ∈ h∗ then
corresponds to 2. The bilinear formonh∗ becomes (λ, μ) = 1

8λμ forλ,μ ∈ C.

Furthermore, h∗
irr = h∗

HC becomes C \ Z≥0. We also identify A
∼−→ R>0

by expA(s H) �→ es (s ∈ R). With these identifications, the multiplicative
character ξλ on A (λ ∈ h∗) becomes ξλ(a) = aλ for a ∈ R>0 and λ ∈ C.

For ν ∈ C let χν ∈ k∧ be the one-dimensional representation mapping y
to ν. We write Cν for C regarded as k-module by χν . For λ ∈ C \ Z≥0 and

ν�, νr ∈ C, the scalar-valued Harish-Chandra series 
χν�⊗χνr
λ is the unique

analytic function on A+ admitting a power series of the form


χν�⊗χνr
λ (a) = aλ

∑

k≥0

�
χν�⊗χνr−2k (λ)a−2k (a ∈ A+) (5.14)

with �
χν�⊗χνr
0 (λ) = 1 that satisfies the differential equation

̂�(	)
χν�⊗χνr
λ = λ(λ+ 2)

8

χν�⊗χνr
λ (5.15)

(see Proposition 3.12). By Corollary 3.6,

(idDR ⊗ χν� ⊗ χνr )
̂�(	) = 1

8

(

a
d

da

)2 + 1

4

(

a2 + a−2

a2 − a−2

)

a
d

da

+ 2(ν� + a2νr )(ν� + a−2νr )

(a2 − a−2)2

= 1

8

(

(

a
d

da

)2 +
(

a + a−1

a − a−1 + a − a−1

a + a−1

)

a
d

da

+4(ν� + νr )
2

(a − a−1)2
− 4(ν� − νr )

2

(a + a−1)2

)

.

The equation (5.15) is the second-order differential equation that is solved

by the associated Jacobi function (cf., e.g., [48, §4.2]), and 
χν�⊗χνr
λ is the

corresponding asymptotically free solution.
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An explicit expression for
χν�⊗χνr
λ can be now derived as follows. Rewrite

(5.15) as a second order differential equation for h
χν�⊗χνr
λ with

h(a) := (a + a−1)i(νr −ν�)(a − a−1)−i(ν�+νr ).

One then recognizes the resulting differential equation as the second-order
differential equation [48, (2.10)] satisfied by the Jacobi function (which is the
Gauss’ hypergeometric differential equation after an appropriate change of
coordinates). Its solutions can be expressed in terms of the Gauss’ hypergeo-
metric series

2F1(a, b; c | s) :=
∞
∑

k=0

(a)k(b)k
(c)kk! sk, (5.16)

where (a)k := a(a + 1) · · · (a + k − 1) is the Pochhammer symbol (the series

(5.16) converges for |s| < 1). Then 
χν�⊗χνr
λ corresponds to the solution [48,

(2.15)] of the second-order differential equation [48, (2.10)]. Performing the
straightforward computations gives the following result.

Proposition 5.12 For λ ∈ C \ Z≥0 we have


χν�⊗χνr
λ (a) = (a + a−1)λ

(

a − a−1

a + a−1

)i(ν�+νr )

× 2F1

(

−λ
2

+ iν�,−λ
2

+ iνr ; −λ | 4

(a + a−1)2

)

for a > 1.

If χ−ν�, χ−νr ∈ K ∧ (i.e., if ν�, νr ∈ iZ), the restriction of the elementary
spherical function f

χ−ν� ,χ−νr
πλ to A is an associated Jacobi function. It can also

be expressed in terms of a single 2F1 (see [48, §4.2] and references therein for
details).

We compute now an alternative expression for 
χν�⊗χνr
λ using its real-

isation as generating function for compositions of weight components of
k-intertwiners (see Theorem 5.8).

The Verma module Mλ with highest weight λ ∈ C is explicitly realised as

Mλ =
∞

⊕

k=0

Cuk
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with uk := 1
k! Fkmλ and g-action Huk = (λ− 2k)uk , Euk = (λ− k + 1)uk−1

and Fuk = (k + 1)uk+1, where we have set u−1 := 0. We will identify

Homk(Cν,Mλ)
∼−→ M

χν
λ , ψ �→ ψ(1),

with M
χν
λ the space of χν-invariant vectors in Mλ (cf. Sect. 3.5). Note further-

more that

Homk(Mλ,Cν) � M∗,χ−ν
λ .

To apply Theorem 5.8 to 
χν�⊗χνr
λ , we thus need to describe the weight com-

ponents of the nonzero vectors in the one-dimensional subspaces M
∗,χ−ν�
λ and

M
χ−νr
λ for λ ∈ C \ Z≥0 (here we use that Cνr � C

∗−νr
as k-modules). For this

we need some facts about Meizner-Pollaczek polynomials, which we recall
from [46, §9.7].

Meixner–Pollaczek polynomials are orthogonal polynomials depending on
two parameters (λ, φ), of which we only need the special case φ = π

2 . The

monic Meixner–Pollaczek polynomials {p(λ)k (s) | k ∈ Z≥0} with φ = π
2 are

given by

p(λ)k (s) = (2λ)k
( i

2

)k
2F1

(−k, λ+ is; 2λ | 2).

They satisfy the three-term recursion relation

p(λ)k+1(s)− sp(λ)k (s)+ k(k + 2λ− 1)

4
p(λ)k−1(s) = 0, (5.17)

where p(λ)−1(s) := 0.
The following result should be compared with [4,49], where mixed matrix

coefficients of discrete series representations of SL(2;R)with respect to hyper-
bolic and elliptic one-parameter subgroups of SL(2,R) are expressed in terms
of Meixner–Pollaczek polynomials.

Lemma 5.13 Fix λ ∈ C \ Z≥0 and ν ∈ C.

a. We have

M
χ−ν
λ = Cvλ;ν

with the (λ− 2k)-weight coefficient of vλ;ν given by

vλ;ν[λ− 2k] = (−2)k p(−λ/2)k (−ν)
(−λ)k uk, k ∈ Z≥0.
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b. We have

M∗,χ−ν
λ = Cψλ;ν

with ψλ;ν satisfying

ψλ;ν(uk) = 2k p(−λ/2)k (−ν)
k! , k ∈ Z≥0.

Proof a. The requirement yv = −νv for an element v ∈ Mλ with weight
components of the form

v[λ− 2k] = (−2)kck

(−λ)k uk

is equivalent to the condition that the coefficients ck ∈ C (k ≥ 0) satisfy the
three-term recursion relation

ck+1 + νck + k(k − λ− 1)

4
ck−1 = 0, k ∈ Z≥0,

where c−1 := 0. By (5.17), the solution of this three-term recursion relation
satisfying c0 = 1 is given by ck = p(−λ/2)k (−ν) (k ∈ Z≥0).
b. The proof is similar to the proof of part a. ��

Let ν�, νr ∈ C and λ ∈ C \ Z≥0. We obtain from Lemma 5.13 and The-

orem 5.8 the following expression for the Harish-Chandra series 
χν�⊗χνr
λ .

Corollary 5.14 Fix λ ∈ C \ Z≥0 and ν�, νr ∈ C. We have for a ∈ R>1,


χν�⊗χνr
λ (a) = aλ

∞
∑

k=0

4k p(−λ/2)k (−ν�)p(−λ/2)k (−νr )

(−λ)kk! (−a−2)k .

Proof Note that vλ;ν[λ] = mλ and evλ,Cχν (ψλ;ν) = ψλ;ν(mλ) = 1, hence

S
ψλ;ν� ,vλ;νr
λ = 1

(we identify Hom(Cνr ,Cν�)
∼−→ C by T �→ T (1)). By Theorem 5.8b we

then get


χν�⊗χνr
λ (a) =

∞
∑

k=0

ψλ;ν�(vλ;νr [λ− 2k])aλ−2k
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for a ∈ R>1. The result now follows from Lemma 5.13. ��
Combined with Proposition 5.12, we reobtain the following special case of the
Poisson kernel identity [11, §2.5.2 (12)] for Meixner–Pollaczek polynomials.

Corollary 5.15 We have for a ∈ R>1,

aλ
∞
∑

k=0

4k p(−λ/2)k (−ν�)p(−λ/2)k (−νr )

(−λ)kk! (−a−2)k

= (a + a−1)λ
(

a − a−1

a + a−1

)i(ν�+νr )

× 2F1

(

−λ
2

+ iν�,−λ
2

+ iνr ; −λ | 4

(a + a−1)2

)

.

Remark 5.16 For a different representation theoretic interpretation of the Pois-
son kernel identity for Meixner–Pollaczek polynomials, see [47, Prop. 2.1].

6 N-point spherical functions

6.1 Factorisations of the Casimir element

Let M,M ′,U be g-modules. We will call g-intertwiners M → M ′ ⊗ U
vertex operators. This terminology is stretching the standard representation
theoretic notion of vertex operators as commonly used in the context of Wess–
Zumino–Witten conformal field theory. In that case (see, e.g., [41]), it refers
to intertwiners M → M ′ ⊗U (z) for affine Lie algebra representations M,M ′
and U (z) with M and M ′ highest weight representations (playing the role of
auxiliary spaces), and U (z) an evaluation representation (playing the role of
state space).

The space Hom(M,M ′ ⊗ U ) of all linear maps M → M ′ ⊗ U admits the
following left and right U (g)⊗2-action,

(

(x ⊗ y)�
)

(m) := (x ⊗ y)�(m),
(

� ∗ (x ⊗ y)
)

(m) := (1 ⊗ S(x))�(ym)

for x, y ∈ U (g), � ∈ Hom(M,M ′ ⊗ U ) and m ∈ M , with S the antipode of
U (g). Here we suppress the representation maps if no confusion can arise. We
sometimes also write xM for the action of x ∈ U (g) on the g-module M .

Definition 6.1 We say that a triple (τ �, τ r , d) with τ �, τ r ∈ g ⊗ g and d ∈
U (g) is a factorisation of the Casimir element 	 ∈ Z(g) if for all g-modules
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M,M ′,U and for all vertex operators � ∈ Homg

(

M,M ′ ⊗ U
)

we have

1

2

(

(	⊗ 1)� −�	) = τ �� −� ∗ τ r + (1 ⊗ d)� (6.1)

in Hom(M,M ′ ⊗ U ).

Suppose that (τ �, τ r , d) is a factorisation of 	. If 	M = ζM id and 	M ′ =
ζM ′ idM ′ for some constants ζM , ζM ′ ∈ C thenwe arrive at the asymptotic oper-
ator Knizhnik–Zamolodchikov–Bernard (KZB) equation for vertex operators
� ∈ Homg(M,M ′ ⊗ U ),

1

2
(ζM ′ − ζM)� = τ �� −� ∗ τ r + (1 ⊗ d)� (6.2)

(compare with the operator KZ equation from [23, Thm. 2.1]).
Consider now vertex operators �i ∈ Homg(Mi ,Mi−1 ⊗ Ui ) for i =

1, . . . , N .DenoteU := U1⊗U2⊗· · ·⊗UN andwrite� ∈ Homg(MN ,M0⊗U)
for the composition

� := (�1 ⊗ idU2⊗···⊗UN ) · · · (�N−1 ⊗ idUN )�N (6.3)

of the vertex operators �i . Assume that 	Mi = ζMi idMi for some constants
ζMi ∈ C (0 ≤ i ≤ N ). The asymptotic operator KZB equation (6.2) now
extends to the following system of equations for �.

Corollary 6.2 Let (τ �, τ r , d) be a factorisation of 	 with expansions τ � =
∑

k α
�
k ⊗ β�k and τ r = ∑

m α
r
m ⊗ βr

m in g ⊗ g. Under the above assumptions
and conventions we have

1

2
(ζMi−1 − ζMi )� =

(
i−1
∑

j=1

τ �U j Ui
−

N
∑

j=i+1

τ r
Ui U j

+ dUi

)

�

+
∑

k

(α�k)M0(β
�
k )Ui� +

∑

m

(αr
m)Ui�(β

r
m)MN

(6.4)

for i = 1, . . . , N.

Proof Write �Mi := �i ⊗ idUi+1⊗···⊗UN . Then

1

2
(ζMi−1 − ζMi )�

= 1

2
�M1 · · ·�Mi−1

(

	Mi−1�Mi −�Mi	Mi

)

�Mi+1 · · ·�MN . (6.5)
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Now (6.1) gives

1

2

(

	Mi−1�Mi −�Mi	Mi

) =
∑

k

(α�k)Mi−1(β
�
k )Ui�Mi

+
∑

m

(αr
m)Ui�Mi (β

r
m)Mi + dUi�Mi .

Substitute this equation in (6.5) and push the action of α�k on Mi−1 (resp. the
action of βr

m on Mi ) through the product�M1 · · ·�Mi−1 (resp.�Mi+1 · · ·�MN )
of vertex operators using the fact that

(x ⊗ 1)� −�x = −(1 ⊗ x)�

for x ∈ g and � ∈ Homg(M,M ′ ⊗ U ). This immediately results in (6.4). ��
The asymptotic operator KZB equations (6.4) for an appropriate factori-

sation of 	 give rise to boundary KZB type equations that are solved by
asymptotical N -point correlation functions for boundary WZW conformal
field theory on a cylinder. Here asymptotical means that the “positions” of the
local observables in the correlation functions escape to infinity. We will define
the asymptotical N -point correlation functions directly in Sects. 6.3 and 6.4,
and call them (formal) N -point spherical functions. The discussion how they
arise as limits of correlation functions is postponed to a followup paper.

We give now first two families of examples of factorisations of	. The first
family is related to the expression (3.9) of 	. It leads to asymptotic KZB
equations for generalised weighted trace functions (see [15]). As we shall see
later, this family also gives rise to the asymptotic boundary KZB equations
for the (formal) N -point spherical functions using a reflection argument. The
second family is related to the Cartan decomposition (3.6) of 	, and leads
directly to the asymptotic boundary KZB equations. This second derivation
of the asymptotic boundary KZB equations is expected to be crucial for the
generalisation to quantum groups.

Felder’s [21], [15, §2] trigonometric dynamical r -matrix r ∈ R ⊗ g⊗2 is
given by

r := −1

2

n
∑

j=1

x j ⊗ x j −
∑

α∈R

e−α ⊗ eα
1 − ξ−2α

. (6.6)

Set

r θ1 := (θ ⊗ idg)r = 1

2

n
∑

j=1

x j ⊗ x j +
∑

α∈R

eα ⊗ eα
1 − ξ−2α

.

123



58 J. V. Stokman, N. Reshetikhin

For s = ∑

i si ⊗ ti ∈ g⊗ g we write s21 := ∑

i ti ⊗ si and sθ221 := (1⊗ θ)s21.
Note that r θ1 is a symmetric tensor,

r θ221 = r θ1 .

We will write below r θ221 for the occurrences of the θ -twisted r -matrices in the
asymptotic boundary KZB equations, since this is natural when viewing the
asymptotic boundary KZB equations as formal limit of integrable boundary
qKZB equations (this will be discussed in future work).

Define folded r -matrices by

r± := ±r + r θ221.

Note that r+ ∈ R⊗ k⊗ g and r− ∈ R⊗ p⊗ g. The folded r -matrices r± are
explicitly given by

r+ =
∑

α∈R

yα ⊗ eα
1 − ξ−2α

,

r− =
n

∑

j=1

x j ⊗ x j +
∑

α∈R

(eα + e−α)⊗ eα
1 − ξ−2α

.

(6.7)

Proposition 6.3 Fix a ∈ Areg. The following triples (τ �, τ r , d) give factori-
sations of the Casimir 	 ∈ Z(g).

a. τ � = τ r = r(a), d = −1
2

∑

α∈R+
(

1+a−2α

1−a−2α

)

tα .

b. τ � = r+(a), τ r = −r−(a), d = b(a) with

b := 1

2

n
∑

j=1

x2j − 1

2

∑

α∈R+

(1 + ξ−2α

1 − ξ−2α

)

tα +
∑

α∈R

e2α
1 − ξ−2α

∈ R ⊗ U (g).

(6.8)

Proof The factorisations are obtained from the explicit expressions (3.9) and
(3.6) of 	 by moving Lie algebra elements in the resulting expression of
1
2

(

(	 ⊗ 1)� − �	
)

through the vertex operator � following a particular
(case-dependent) strategy. The elementary formulas we need are

(x ⊗ 1)� −�x = −(1 ⊗ x)�,

(xy ⊗ 1)� −�xy = −(1 ⊗ x)�y − (x ⊗ y)�
(6.9)
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for x, y ∈ g and� ∈ Homg(M,M ′ ⊗ U ). Note that the second formula gives
an expression of (xy ⊗ 1)� − �xy with x no longer acting on M and y no
longer acting on M ′. For case b we also need formulas such that both x and y
are not acting on M ′ (resp. on M),

(xy ⊗ 1)� −�xy = −(1 ⊗ x)�y − (1 ⊗ y)�x + (1 ⊗ yx)�,

(xy ⊗ 1)� −�xy = −(x ⊗ y)� − (y ⊗ x)� − (1 ⊗ xy)�
(6.10)

for x, y ∈ g and� ∈ Homg(M,M ′ ⊗U ). These equations are easily obtained
by combining the two formulas of (6.9).

a. Substitute (3.9) into 1
2 ((	⊗1)�−�	) and apply (6.9) to the terms. The

resulting identity can be written as τ �� −� ∗ τ r + (1⊗ d)� with (τ �, τ r , d)
as stated.

b. Use that

1

2

(

(	⊗ 1)� −�	) = 1

2

(

(Ada(	)⊗ 1)� −�Ada(	)
)

and substitute (3.6) in the right hand side of this equation. For the quadratic
terms xy (x, y ∈ g) in the resulting formula we use the second formula of
(6.9) when x ∈ k and y ∈ Ada(k), the first formula of (6.10) when both
x, y ∈ Ada(k) or both x, y ∈ h, and the second formula of (6.10) when both
x, y ∈ k. It results in the formula (6.1) with (τ �, τ r , d) given by

τ � = 1

2

∑

α∈R

yα ⊗ ((aα + a−α)Ada(yα)− 2yα)

(aα − a−α)2
,

τ r = −
n

∑

j=1

x j ⊗ x j + 1

2

∑

α∈R

(aα + a−α)yα − 2Ada(yα)

(aα − a−α)2
⊗ Ada(yα),

d = 1

2

n
∑

j=1

x2j − 1

2

∑

α∈R+

(1 + a−2α

1 − a−2α

)

tα + 1

2

∑

α∈R

(Ada(y2α)− y2α)

(aα − a−α)2
.

By the elementary identities

2Ada(yα)− (aα + a−α)yα = (aα − a−α)(eα + e−α),
Ada(y

2
α)− y2α = (a2α − 1)e2α + (a−2α − 1)e2−α

the above expressions for τ �, τ r and d simplify to the expressions (6.7) and
(6.8) for r+(a),−r−(a) and b(a). ��
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Remark 6.4 The limit ∞r := lima→∞ r(a) (meaning aα → ∞ for all α ∈
R+) gives the classical r -matrix

∞r = −1

2

n
∑

j=1

x j ⊗ x j −
∑

α∈R+
e−α ⊗ eα ∈ θ(b)⊗ b.

The corresponding limit for the folded r -matrices r±(a) gives

∞r± := ±∞r + ∞r θ221.

As a consequence of Proposition 6.3 we then obtain the following two (non-
dynamical) factorisations of the Casimir 	,

a. (σ, τ, d) = (∞r,∞r,−2tρ).
b. (σ, τ, d) = (∞r+,−∞r−,∞b) with

∞b := 1

2

n
∑

j=1

x2j − tρ +
∑

α∈R+
e2α ∈ U (g). (6.11)

6.2 Differential vertex operators

In Sect. 6.3 we apply the results of the previous subsection to Mi = H∞
λi

with λi ∈ h∗ (i = 0, . . . , N ) and to finite dimensional G-representations U j
( j = 1, . . . , N ). Before doing so, we first describe the appropriate class of
vertex operators in this context, which consists of G-equivariant differential
operators. We use the notion of vector-valued G-equivariant differential oper-
ators between spaces of global sections of complex vector bundles, see [36,
Chpt. II] as well as [50, §1].

Identify the G-space H∞
λ with the space of global smooth sections of the

complex line bundleLλ := (G×C)/ ∼λ overG/AN+ � K , with equivalence
relation ∼λ given by

(gb, ηλ+ρ(b−1)c) ∼λ (g, c), (g ∈ G, b ∈ AN+, c ∈ C). (6.12)

For λ,μ ∈ h∗ and U a finite dimensional G-representation let D(H∞
λ ,H∞

μ ⊗
U ) be the space of differential G-intertwiners H∞

λ → H∞
μ ⊗ U (note that

H∞
μ ⊗U is the space of smooth section of the vector bundle (G×U )/ ∼λ, with

∼λ given by the same formula (6.12) with c ∈ U ). We call D ∈ D(H∞
λ ,H∞

μ ⊗
U ) a differential vertex operator.

Let D′
0(Lλ) be the g-module consisting of distributions on Lλ supported at

1 ∈ K . Note that D′
0(Lλ) is contained in the continuous linear dual of H∞

λ .
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A straightforward adjustment of the proof of [7, Lem. 2.4] yields a linear
isomorphism

D(H∞
λ ,H∞

μ ⊗ U ) � Homg(D
′
0(Lμ),D′

0(Lλ)⊗ U )

via dualisation. Furthermore,

M−λ−ρ � D
′
0(Lλ)

as g-modules by Schwartz’ theorem, with the distribution ω associated to
xm−λ−ρ (x ∈ U (g)) defined by

ω(φ) := (

r∗(x)φ
)

(1) (φ ∈ H∞
λ )

(see again the proof of [7, Lem. 2.4]). We thus reach the following conclusion.

Proposition 6.5 For λ, ν ∈ h∗ and U a finite dimensional G-representation
we have

D(H∞
λ ,H∞

μ ⊗ U ) � Homg(M−μ−ρ,M−λ−ρ ⊗ U ). (6.13)

Remark 6.6 The inverse of the isomorphism (6.13) can be described explicitly
as follows. Fix a vertex operator� ∈ Homg(M−μ−ρ,M−λ−ρ ⊗ U ). Let {ui }i
be a linear basis of U and write {u∗

i }i for its dual basis. Let Yi ∈ U (k) be the
unique elements such that

�(m−μ−ρ) =
∑

i

Yi m−λ−ρ ⊗ ui ,

cf. the proof of Proposition 5.4a. Under the isomorphism (6.13), the inter-
twiner � is mapped to the differential vertex operator D� = ∑

i Li ⊗ ui ∈
D(H∞

λ ,H∞
μ ⊗ U ) with the scalar differential operators Li : H∞

λ → H∞
μ

explicitly given by

(Liφ)(g) =
∑

j

u∗
i (gu j )

(

r∗(Y j )φ
)

(g) (φ ∈ H∞
λ , g ∈ G).

For�V ∈ Homg(M−μ−ρ,M−λ−ρ⊗V ) and�U ∈ Homg(M−ν−ρ,M−μ−ρ⊗
U ) set

�V,U := (�V ⊗ idU )�U ∈ Homg(M−ν−ρ,M−λ−ρ ⊗ V ⊗ U ),

DU,V := (D�U ⊗ idV )D�V ∈ D(H∞
λ ,H∞

ν ⊗ U ⊗ V ).
(6.14)
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These two composition rules are compatiblewith the isomorphism fromPropo-
sition 6.5:

Proposition 6.7 Let PU V : U ⊗ V → V ⊗ U be the G-linear isomorphism
flipping the two tensor components. Then

D�V,U = (idH∞
ν

⊗ PU V )DU,V

in D(H∞
λ ,H∞

ν ⊗ V ⊗ U ).

Proof This follows by a straightforward but lengthy computation using
Remark 6.6. ��

Nextwe consider the parametrisation of the spaces of vertex operators.Write
m∗
μ ∈ M∗

μ for the linear functional satisfying m∗
μ(mμ) = 1 and m∗

μ(v) = 0
for v ∈ ⊕

ν<μ Mμ[ν].
Definition 6.8 Let U be a finite dimensional g-module, λ,μ ∈ h∗, and � ∈
Homg(Mλ,Mμ ⊗ U ). Then

〈�〉 := (m∗
μ ⊗ idU )�(mλ) ∈ U [λ− μ]

is called the expectation value of the vertex operator �.

The expectation value of the associated differential vertex operators read as
follows.

Lemma 6.9 For � ∈ Homg(M−μ−ρ,M−λ−ρ ⊗ U ) we have

(

D�Iλ
)

(1) = 〈�〉
in U [λ− μ], where Iλ ∈ H∞

λ is the function

Iλ(kan) := a−λ−ρ (k ∈ K , a ∈ A, n ∈ N ).

Proof Using the notations from Remark 6.6, we have

〈�〉 =
∑

i

ε(Yi )ui

with ε the counit of U (k). On the other hand,

(

D�Iλ
)

(1) =
∑

i

(Li Iλ)(1)ui =
∑

i

(

r∗(Yi )Iλ
)

(1)ui =
∑

i

ε(Yi )ui ,

hence the result. ��
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By [12, Lem. 3.3] we have the following result.

Lemma 6.10 Let U be a finite dimensional g-module, λ ∈ h∗ and μ ∈ h∗
irr.

The expectation value map 〈·〉 defines a linear isomorphism

〈·〉 : Homg(Mλ,Mμ ⊗ U )
∼−→ U [λ− μ].

The weights of a finite dimensional g-module U lie in the integral weight
lattice

P := {μ ∈ h∗ | (μ, α∨) ∈ Z ∀α ∈ R}.

Hence forμ ∈ h∗
irr, the space Homg(Mλ,Mμ⊗U ) of vertex operators is trivial

unless λ ∈ μ+ P . At a later stage (see Sect. 6.5), we want to restrict to highest
weightsλ0 ∈ h∗

irr such that for any vertex operator� ∈ Homg(MλN ,Mλ0⊗U),
given as a product of vertex operators �i ∈ Homg(Mλi ,Mλi−1 ⊗ Ui ) (i =
1, . . . , N ), has the property that λi−1 ∈ h∗

irr for i = 1, . . . , N (i.e., all vertex
operators are determined by their expectation values). In that case we will
restrict to highest weights from the dense open subset

h∗
reg := {ν ∈ h∗ | (ν, α∨) /∈ Z ∀α ∈ R}

of h. The (differential) vertex operators are then denoted as follows.

Definition 6.11 Let λ ∈ h∗
reg.

a. If U is a finite dimensional g-module and u ∈ U [λ−μ] is a weight vector
of weight λ−μ, then we write �u

λ ∈ Homg(Mλ,Mμ ⊗ U ) for the unique
vertex operator with expectation value 〈�u

λ 〉 = u.
b. If U is a finite dimensional G-representation and u ∈ U [λ−μ] is a weight

vector of weight λ − μ, then we write Du
λ ∈ D(H∞

λ ,H∞
μ ⊗ U ) for the

unique differential vertex operator with (Du
λIλ)(1) = u.

The expectation value of products of vertex operators gives rise to the fusion
operator. We recall its definition in Sect. 6.5, where we also discuss boundary
versions of fusion operators.

6.3 N-point spherical functions and asymptotic boundary KZB
equations

Fix finite dimensional G-representations U1, . . . ,UN with representation
maps τU1, . . . , τUN , and differential vertex operators Di ∈ D(H∞

λi
,H∞

λi−1
⊗Ui )

for i = 1, . . . , N . Write λ = (λ0, λ1, . . . , λN ) andU := U1⊗· · ·⊗UN . Write
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D ∈ D(H∞
λN
,H∞

λ0
⊗ U) for the product of the N differential vertex operators

Di (1 ≤ i ≤ N ),

D = (D1 ⊗ idU2⊗···⊗UN ) · · · (DN−1 ⊗ idUN )DN ,

which we call a differential vertex operator of weight λ.
Fix two finite dimensional K -representations V� and Vr , with representation

maps σ� and σr respectively. Let σ
(N )
� be the representation map of the tensor

product K -representation V�⊗U.We consider (V�⊗U)⊗V ∗
r � Hom(Vr , V�⊗

U) as K × K -representation, with representation map σ (N ) := σ
(N )
� ⊗ σ ∗

r .
Note that if φ� ∈ HomK (Hλ0, V�) then

(

φ� ⊗ idU
)

D ∈ HomK (HλN , V� ⊗ U)

by (4.2).

Definition 6.12 Let φ� ∈ HomK (Hλ0, V�), φr ∈ HomK (Vr ,HλN ) and D a
differential vertex operator of weight λ. We call the elementary σ (N )-spherical
function

f φ�,D,φr
Hλ (g) := (φ� ⊗ idU)D(πλN (g)φr ) (g ∈ G) (6.15)

a N -point σ (N )-spherical function associated with the (N + 1)-tuple of prin-
cipal series representationsHλ := (Hλ0, . . . ,HλN ).

To keep the notations manageable we write from now on the action of U (g)
and G on H∞

λ without specifying the representation map if no confusion can
arise. For instance, for x ∈ U (g), g ∈ G and v ∈ H∞

λN
we write gxv ∈ H∞

λN
for the smooth vector πλN (g)((x)H∞

λN
v), and the N -point spherical function

will be written as

f φ�,D,φr
Hλ (g) := (φ� ⊗ idU)D(gφr ) (g ∈ G).

Remark 6.13 In Sect. 6.4 we define formal N -point spherical functions, which
are asymptotical N -point correlation functions for boundary Wess–Zumino–
Witten conformal field theory on the cylinder when the positions escape to
infinity. The N -point spherical functions in Definition 6.12 are their analogues
in the context of principal series.
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By Proposition 4.1c the N -point spherical function f φ�,D,φr
Hλ admits the

Eisenstein type integral representation

f φ�,D,φr
Hλ (g) =

∫

K
dx ξ−λN −ρ(a(g−1x))

(

σ�(x)⊗ τU1(x)⊗ · · ·

· · · ⊗ τUN (x)⊗ σ ∗
r (k(g

−1x))
)

T (φ�⊗idU)D,φr
λN

(6.16)

with the vector T (φ�⊗idU)D,φr
λN

∈ V� ⊗ U ⊗ V ∗
r given by

T (φ�⊗idU)D,φr
λN

= ιλN ,V�⊗U((φ� ⊗ idU)D)⊗ jλN ,Vr (φr ).

Theorem 3.4a gives the family of differential equations

̂�σ
(N )
(z)

(

f φ�,D,φr
Hλ |Areg

) = ζλN −ρ(z) f φ�,D,φr
Hλ |Areg, z ∈ Z(g) (6.17)

for the restriction of f φ�,D,φr
Hλ to Areg. We will now show that f φ�,D,φr

Hλ |Areg

satisfies N additional first order asymptotic boundary KZB type differential
equations. Recall the factorisation (r+(a),−r−(a), b(a)) of 	 for a ∈ Areg,
with r± the folded r -matrices (6.7) and b given by (6.8).

Proposition 6.14 The N-point σ (N )-spherical function f φ�,D,φr
Hλ satisfies

((λi−1, λi−1)

2
− (λi , λi )

2
+

n
∑

j=1

(x j )Ui ∂x j

)

f φ�,D,φr
Hλ |Areg

=
(

r+
V�Ui

+
i−1
∑

j=1

r+
U j Ui

+ bUi +
N

∑

j=i+1

r−
Ui U j

+ r̃+
Ui V ∗

r

)

f φ�,D,φr
Hλ |Areg

(6.18)

for i = 1, . . . , N, with right boundary term

r̃+ :=
∑

α∈R

eα ⊗ yα
ξα − ξ−α ∈ R ⊗ g ⊗ k (6.19)

satisfying r̃+(a) = (Ada−1 ⊗ 1)r+
21(a) for a ∈ Areg.

Wederive the asymptotic boundary KZB type equations (6.18) in two different
ways. The first proof uses Proposition 6.3b involving the folded versions of
Felder’s dynamical r -matrix, the second proof uses Proposition 6.3a with a
reflection argument. The second argument is of interest from the conformal
field theoretic point of view, and provides some extra insights in the term b
(6.8) appearing in the asymptotic boundary KZB equations.
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Proof 1 (using the factorisation of 	 in terms of folded r -matrices).
Let a ∈ Areg. By Corollary 6.2 applied to the factorisation (r+(a),−r−(a),

b(a)) of 	, we have

1

2
(ζλi−1−ρ(	)− ζλi −ρ(	)) f φ�,D,φr

Hλ (a)

=
(

i−1
∑

j=1

r+
U j Ui

(a)+ bUi (a)+
N

∑

j=i+1

r−
Ui U j

(a)
)

f φ�,D,φr
Hλ (a)

+
∑

k

(

φ� ⊗ idU
)(

(α+
k )H∞

λ0
(β+

k )Ui D(aφr )
)

−
∑

k

(

φ� ⊗ idU
)(

(α−
k )Ui D(β

−
k aφr )

)

where we have written r±(a) = ∑

k α
±
k ⊗ β±

k . Now using r+(a) ∈ k⊗ g and

(

1 ⊗ Ada−1)r−(a) =
n

∑

j=1

x j ⊗ x j + r̃+(a)

with r̃+(a) ∈ g ⊗ k given by (6.19), the asymptotic boundary KZB type
equation (6.18) follows from the fact that φ� and φr are K -intertwiners and
ζλi−1−ρ(	)− ζλi −ρ(	) = (λi−1, λi−1)− (λi , λi ).

Proof 2 (using a reflection argument).
Leta ∈ Areg. Recall that the unfolded factorisation of	 is (r(a), r(a), d(a))

with

d(a) := −1

2

∑

α∈R

(1 + a−2α

1 − a−2α

)

tα.

Then it follows from a direct computation that

b(a) = d(a)+ m(r θ1(a)). (6.20)

Furthermore,

− r θ1(a)D − D ∗ r θ1(a) = (1 ⊗ m(r θ1(a)))D (6.21)

for a differential vertex operator D. This follows from the fact that r θ1(a) is a
symmetric tensor in g ⊗ g and

−(x ⊗ x)D − D ∗ (x ⊗ x) = (1 ⊗ x2)D
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for x ∈ g. The proof of the asymptotic boundary KZB equation (6.18) using
a reflection argument now proceeds as follows. Corollary 6.2 gives

((λi−1, λi−1)

2
− (λi , λi )

2

)

f φ�,D,φr
Hλ (a)

=
(

i−1
∑

j=1

rU j Ui (a)−
N

∑

j=i+1

rUi U j (a)+ dUi (a)
)

f φ�,D,φr
Hλ (a)

+ (

φ� ⊗ idU
)(

rH∞
λ0

Ui (a)D(aφr )
) +

∑

k

(

φ� ⊗ idU
)

((αk)Ui D(βkaφr ))

with r(a) = ∑

k αk ⊗ βk . We now apply the identity

(

φ� ⊗ idU
)

rH∞
λ0

Ui (a) = r+
V�Ui

(a)
(

φ� ⊗ idU
) − (

φ� ⊗ idU
)

r θ1H∞
λ0

Ui
(a)

in Hom(H∞
λ0

⊗ U, V� ⊗ U) to the left boundary term and the identity

∑

k

(αk)Ui D(βkaφr ) = −
n

∑

j=1

(x j )Ui D(ax jφr )

+
∑

k

(θ(αk))Ui D(βkaφr )+ r̃+
Ui V ∗

r
(a)D(aφr )

in U ⊗ V ∗
r to the right boundary term. The latter equality follows from the

easily verified identities

−(

id ⊗ θAda−1
)

(r(a)) = −
n

∑

j=1

x j ⊗ x j + (

id ⊗ Ada−1
)

(r θ1(a)),

−(

Ada−1 ⊗ id
)

(r+
21(a)) = (

id ⊗ Ada−1
)

(r(a))+ (

id ⊗ θAda−1
)

(r(a)).

We thus arrive at the formula

((λi−1, λi−1)

2
− (λi , λi )

2
+

n
∑

j=1

(x j )Ui ∂x j

)

f φ�,D,φr
Hλ (a)

=
(

r+
V�Ui

(a)+
i−1
∑

j=1

rU j Ui (a)+ dUi (a)−
N

∑

j=i+1

rUi U j (a)

+ r̃+
Ui V ∗

r
(a)

)

f φ�,D,φr
Hλ (a)− (

φ� ⊗ idU
)(

r θ1H∞
λ0

Ui
(a)D(aφr )

)

+
∑

k

(

φ� ⊗ idU
)

((θ(αk))Ui D(βkaφr )).

(6.22)

123



68 J. V. Stokman, N. Reshetikhin

Now pushing r θ1H∞
λ0

Ui
(a) through the differential vertex operators D j (1 ≤ j <

i) and pushing the action of βk through D j (i < j ≤ N ) using (6.9) and using
the fact that r θ1(a) is a symmetric tensor in g ⊗ g, the last line becomes

−(

φ� ⊗ idU
)(

r θ1H∞
λ0

Ui
(a)D(aφr )

) +
∑

k

(

φ� ⊗ idU
)

((θ(αk))Ui D(βkaφr ))

=
(

i−1
∑

j=1

r θ1U j Ui
(a)+

N
∑

j=i+1

r θ1Ui U j
(a)

)

f φ�,D,φr
Hλ (a)

+ (

φ� ⊗ idU
)

(

DH∞
λ1

· · · DH∞
λi−1

(

˜Di ⊗ idUi+1⊗···⊗UN

)

DH∞
λi+1

· · · DH∞
λN
(aφr )

)

with DH∞
λ j

:= D j ⊗ idU j+1⊗···⊗UN and

˜Di := −r θ1(a)Di − Di ∗ r θ1(a).

Applying now (6.21) we arrive at

− (

φ� ⊗ idU
)(

r θ1H∞
λ0

Ui
(a)D(aφr )

) +
∑

k

(

φ� ⊗ idU
)

((θ(αk))Ui D(βkaφr ))

=
(

i−1
∑

j=1

r θ1U j Ui
(a)+ (

m(r θ1(a))
)

Ui
+

N
∑

j=i+1

r θ1Ui U j
(a)

)

f φ�,D,φr
Hλ (a).

Combined with (6.22) and (6.20), we obtain (6.18). ��
Write κcore ∈ R ⊗ U (g) for the element

κcore := 1

2

n
∑

j=1

x2j +
∑

α∈R

e2α
1 − ξ−2α

(6.23)

and define κ ∈ R ⊗ U (k)⊗ U (g)⊗ U (k) by

κ :=
∑

α∈R

yα ⊗ eα ⊗ 1

1 − ξ−2α
+ 1 ⊗ κcore ⊗ 1 +

∑

α∈R

1 ⊗ eα ⊗ yα
ξα − ξ−α . (6.24)

Furthermore, write

E :=
n

∑

j=1

∂x j ⊗ x j ∈ DR ⊗ U (g). (6.25)

123



N -point spherical functions and asymptotic... 69

The asymptotic boundary KZB operators are now defined as follows.

Definition 6.15 The first-order differential operators

Di := Ei −
i−1
∑

j=1

r+
j i − κi −

N
∑

j=i+1

r−
i j (6.26)

in DR ⊗ U (k)⊗ U (g)⊗N ⊗ U (k) (i ∈ {1, . . . , N }) are called the asymptotic
boundary KZB operators. Here the subindices indicate in which tensor factor
of U (g)⊗N the U (g)-components of E , κ and r± are placed.

Remark 6.16 Note that κcore is the part of κ that survives when the U (k)-
components act according to the trivial representation of k. Note furthermore
that

Di ∈ DR ⊗ U (k)⊗ (

U (k)⊗(i−1) ⊗ U (g)⊗(N−i+1)) ⊗ U (k).

Consider the family H (N )
z ∈ DR ⊗ U (k)⊗(N+2) (z ∈ Z(g)) of commuting

differential operator

H (N )
z := (

�(N ) ⊗ idU (k)
)

Hz

with �(N ) : U (k) → U (k)⊗(N+1) the N th iterate comultiplication map of
U (k) and Hz given by (3.11). Then H(N ) := −1

2 (H
(N )
	 +‖ρ‖2) is the quantum

double spin Calogero–Moser Hamiltonian

H(N ) = − 1

2
�+ V (N ),

V (N ) := − 1

2

∑

α∈R

1

(ξα − ξ−α)2
(‖α‖2

2
+

∏

ε∈{±1}
(�(N )(yα)⊗ 1 + ξεα(1⊗(N+1) ⊗ yα))

)

by Proposition 3.10.

Theorem 6.17 Let λ ∈ h∗, φ� ∈ HomK (Hλ0, V�), φr ∈ HomK (Vr ,HλN )

and D a differential vertex operator of weight λ = (λ0, . . . , λN ). Consider the
smooth V� ⊗ U ⊗ V ∗

r -valued function

fφ�,D,φr
λ := δ f φ�,D,φr

Hλ |A+
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on A+, called the normalised N-point σ (N )-spherical function of weight λ,
which admits the explicit integral representation

fφ�,D,φr
λ (a′) = δ(a′)

∫

K
dx ξ−λN −ρ(a(a′−1x))

(

σ�(x)⊗ τU1(x)⊗ · · ·
· · · ⊗ τUN (x)⊗ σ ∗

r (k(a
′−1x))

)

T (φ�⊗idU)D,φr
λN

.

It satisfies the systems of differential equations

Di
(

fφ�,D,φr
λ

) =
((λi , λi )

2
− (λi−1, λi−1)

2

)

fφ�,D,φr
λ (i = 1, . . . , N ),

H(N )
(

fφ�,D,φr
λ

) = −(λN , λN )

2
fφ�,D,φr
λ

(6.27)

on A+. Furthermore, H (N )
z

(

fφ�,D,φr
λ

) = ζλN −ρ(z)fφ�,D,φr
λ on A+ for z ∈ Z(g).

Proof The integral representation follows from (6.16). The second line of
(6.27) follows from (6.17). By Proposition 6.14 we have

˜Di f φ�,D,φr
λ =

((λi , λi )

2
− (λi−1, λi−1)

2

)

f φ�,D,φr
λ (i = 1, . . . , N )

(6.28)

with ˜Di = Ei − ∑i−1
j=1 r+

j i − κ̃i − ∑N
j=i+1 r−

i j and

κ̃ := r+ ⊗ 1 + 1 ⊗ b ⊗ 1 + 1 ⊗ r̃+ = κ − 1

2

∑

α∈R+

(1 + ξ−2α

1 − ξ−2α

)

tα.

To prove the first set of equations of (6.27) it thus suffices to show that

δE(δ−1) = −1

2

∑

α∈R+

(1 + ξ−2α

1 − ξ−2α

)

tα (6.29)

in R ⊗ h. This follows from the following computation,

δE(δ−1) = −
n

∑

j=1

⎛

⎝ρ(x j )x j −
∑

α∈R+

ξ−2αα(x j )x j

1 − ξ−2α

⎞

⎠

= −tρ −
∑

α∈R+

ξ−2αtα
1 − ξ−2α

= −1

2

∑

α∈R+

(1 + ξ−2α

1 − ξ−2α

)

tα.

��
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6.4 Formal N-point spherical functions

In this subsection we introduce the analogue of N -point spherical functions in
the context of Verma modules. They give rise to asymptotically free solutions
of the asymptotic boundary KZB operators.

Fix finite dimensional g-representations τi : g → gl(Ui ) (1 ≤ i ≤ N ).
Let λ = (λ0, . . . , λN ) with λi ∈ h∗ and choose vertex operators �i ∈
Homg(Mλi ,Mλi−1 ⊗ Ui ) for i = 1, . . . , N . Set

� := (�1 ⊗ idU2⊗···⊗UN ) · · · (�N−1 ⊗ idUN )�N , (6.30)

which is a g-intertwiner MλN → Mλ0 ⊗ U. Let (σ�, V�), (σr , Vr ) be two finite
dimensional k-modules.Write σ (N )� for the representationmap of the k-module

V� ⊗ U, and σ (N ) = σ
(N )
� ⊗ σ ∗

r for the representation map of the associated
k ⊕ k-module (V� ⊗ U)⊗ V ∗

r .

Definition 6.18 For φ� ∈ Homk(Mλ0, V�), φr ∈ Homk(Vr ,MλN ) and vertex
operator � given by (6.30). Then (φ� ⊗ idU)� ∈ Homk(Mλ, V� ⊗ U) and the
associated formal elementary σ (N )-spherical function

Fφ�,�,φr
Mλ

:=F (φ�⊗idU)�,φr
MλN

=
∑

μ≤λN

((φ� ⊗ idU)�φ
μ
r )ξμ ∈ (V� ⊗ U ⊗ V ∗

r )[[ξ−α1 , . . . , ξ−αn ]]ξλN

(6.31)

is called a formal N -point σ (N )-spherical function associatedwith the (N +1)-
tuple of Verma modules (Mλ0, . . . ,MλN ).

By Theorem 5.8, the formal N -point σ (N )-spherical function Fφ�,�,φr
Mλ

is
analytic on A+ for λN ∈ h∗

HC.
Recall the normalisation factor δ defined by (3.10) (which we will view as

formal power series in C[[ξ−α1, . . . , ξ−αn ]]ξρ).
Definition 6.19 Let �i ∈ Homg(Mλi −ρ,Mλi−1−ρ ⊗ Ui ) (1 ≤ i ≤ N ) and
write

� ∈ Homg(MλN −ρ,Mλ0−ρ ⊗ U)

for the resulting vertex operator (6.30). We call

Fφ�,�,φr
λ := δFφ�,�,φr

Mλ−ρ ∈ (V� ⊗ U ⊗ V ∗
r )[[ξ−α1, . . . , ξ−αn ]]ξλN

a normalised N -point σ (N )-spherical function ofweightλ−ρ := (λ0−ρ, λ1−
ρ, . . . , λN − ρ).
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ForweightλwithλN ∈ h∗
HC+ρ the normalised formal N -pointσ (N )-spherical

function Fφ�,�,φr
λ is an V�⊗ U ⊗ V ∗

r -valued analytic function on A+. In terms

of the normalised formal elementary σ (N )-spherical functions, we have

Fφ�,�,φr
λ = F(φ�⊗idU)�,φr

λN
, (6.32)

and hence

H(N )
(

Fφ�,�,φr
λ

) = −(λN , λN )

2
Fφ�,�,φr
λ ,

H (N )
z

(

Fφ�,�,φr
λ

) = ζλN −ρ(z)Fφ�,�,φr
λ , z ∈ Z(g)

(6.33)

by Theorem 5.10. We now show by a suitable adjustment of the algebraic
arguments from Sect. 6.1 that the normalised formal N -point σ (N )-spherical
functions are eigenfunctions of the asymptotic boundary KZB operators.

Theorem 6.20 Let φ� ∈ Homk(Mλ0, V�), φr ∈ Homk(Vr ,MλN ) and let � be
a product of N vertex operators as given in Definition 6.19. The normalised
formal N-point σ (N )-spherical function Fφ�,�,φr

λ satisfies the system of differ-
ential equations

Di
(

Fφ�,�,φr
λ

) =
((λi , λi )

2
− (λi−1, λi−1)

2

)

Fφ�,�,φr
λ (i = 1, . . . , N )

(6.34)

in (V� ⊗ U ⊗ V ∗
r )[[ξ−α1, . . . , ξ−αn ]]ξλN . For λN ∈ h∗

HC + ρ the differential
equations (6.34) are valid as analytic V�⊗ U ⊗ V ∗

r -valued analytic functions
on A+.

Proof As in the proof of Theorem 6.17, the differential equations (6.34) are
equivalent to

˜Di
(

Fφ�,�,φr
Mλ

) = 1

2
(ζλi (	)− ζλi−1(	))F

φ�,�,φr
Mλ

(i = 1, . . . , N )

(6.35)

with ˜Di = Ei − ∑i−1
j=1 r+

j i − κ̃i − ∑N
j=i+1 r−

i j and

κ̃ := κ − 1

2

∑

α∈R+

(1 + ξ−2α

1 − ξ−2α

)

tα = r+ ⊗ 1 + 1 ⊗ b ⊗ 1 + 1 ⊗ r̃+

(here b is given by (6.8)).
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Write  = {μ ∈ h∗ | μ ≤ λN } and  m := {μ ∈  | (λN − μ, ρ∨) ≤ m}
(m ∈ Z≥0). Consider the V� ⊗ U ⊗ V ∗

r -valued quasi-polynomial

Fφ�,�,φr
Mλ,m

:=
∑

μ∈ m

((φ� ⊗ idU)�φ
μ
r )ξμ

for m ∈ Z≥0. Fix a ∈ A+. Then we have

(ζλi−1(	)−ζλi (	))F
φ�,�,φr
Mλ,m

(a)

=
∑

μ∈ m

(φ� ⊗ idU)(�Mλ1
· · ·�Mλi−1

˜�i�Mλi+1
· · ·�MλN

φμr )a
μ

with �Mλi
:= �i ⊗ idUi+1⊗···⊗UN and ˜�i := 	Mλi−1

�Mλi
− �Mλi

	Mλi
.

By the asymptotic operator KZB equation (6.4) applied to the factorisation
(r+(a),−r−(a), b(a)) of 	 (see Proposition 6.3b), we get

(( ζλi−1(	)

2
− ζλi (	)

2
+ EUi −

i−1
∑

j=1

r+
U j Ui

− r+
V�Ui

− bUi −
N

∑

j=i+1

r−
Ui U j

)

Fφ�,�,φr
Mλ,m

)

(a)

= −
∑

μ∈ m

∑

α∈R

(eα + e−α)Ui

(1 − a−2α)
(φ� ⊗ idU)(�(eα)MλN

φμr )a
μ.

This being valid for all a ∈ A+, hence we get

(1

2
(ζλi−1(	)−ζλi (	))+ EUi −

i−1
∑

j=1

r+
U j Ui

− r+
V�Ui

− bUi −
N

∑

j=i+1

r−
Ui U j

)

Fφ�,�,φr
Mλ,m

= −
∑

μ∈ m

∑

α∈R

(eα + e−α)Ui (φ� ⊗ idU)(�(eα)MλN
φμr )

ξμ

(1 − ξ−2α)

(6.36)

viewed as identity in (V�⊗U⊗V ∗
r )[[ξ−α1, . . . , ξ−αn ]]ξλN (so (1−ξ−2α)

−1 =
∑∞

k=0 ξ
2k−α if α ∈ R+ and (1 − ξ−2α)

−1 = − ∑∞
k=1 ξ

2k
α if α ∈ R−, and anal-

ogous expansions for the coefficients of r± and κ̃). We claim that the identity
(6.36) is also valid when the summation over  m is replaced by summation
over  :

(1

2
(ζλi−1(	)−ζλi (	))+ EUi −

i−1
∑

j=1

r+
U j Ui

− r+
V�Ui

− bUi −
N

∑

j=i+1

r−
Ui U j

)

Fφ�,�,φr
Mλ

= −
∑

μ∈ 

∑

α∈R

(eα + e−α)Ui (φ� ⊗ idU)(�(eα)MλN
φμr )

ξμ

(1 − ξ−2α)

(6.37)

in (V� ⊗ U ⊗ V ∗
r )[[ξ−α1, . . . , ξ−αn ]]ξλN . Take η ∈  and let m ∈ N such that

(λN −η, ρ∨) ≤ m. Then the ξη-coefficient of the left hand side of (6.37) is the
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same as the ξη-coefficient of the left hand side of (6.36) since the coefficients
of r± and κ̃ are in C[[ξ−α1, . . . , ξ−αn ]]. Exactly the same argument applies to
the ξμ-coefficients of the right hand sides of (6.37) and (6.36), from which the
claim follows. Now rewrite the right hand side of (6.37) as

−
∑

μ∈ 

∑

α∈R

(eα + e−α)Ui (φ� ⊗ idU)(�(eα)MλN
φμr )

ξμ

(1 − ξ−2α)

= −
∑

α∈R

∑

ν∈ 
(eα + e−α)Ui (φ� ⊗ idU)�(proj

ν
MλN

(eα)MλN
φr )

ξν

(ξα − ξ−α)

and use that

∑

α∈R

(eα + e−α)⊗ eα
ξα − ξ−α =

∑

α∈R

eα ⊗ yα
ξα − ξ−α

to obtain

−
∑

μ∈ 

∑

α∈R

(eα + e−α)Ui (φ� ⊗ idU)(�(eα)MλN
φμr )

ξμ

(1 − ξ−2α)

= −
∑

α∈R

∑

ν∈ 
(eα)Ui (φ� ⊗ idU)�(proj

ν
MλN

(yα)MλN
φr )

ξν

(ξα − ξ−α)
= r̃+

Ui V ∗
r

Fφ�,�,φr
Mλ

,

where we used that φr is a k-intertwiner, as well as the explicit formula (6.19)
for r̃+. Substituting this identity in (6.37), we obtain (6.35). ��

6.5 Boundary fusion operators

In Sect. 6.2 we introduced the expectation value of (differential) vertex
operators. Recall the parametrisation of the vertex operators introduced in
Definition 6.11. The expectation value of products (6.30) of vertex operators
gives rise to the fusion operator:

Definition 6.21 [12, Prop. 3.7]. Let λ ∈ h∗
reg. The fusion operator JU(λ) is the

h-linear automorphism of U defined by

u1 ⊗ · · · ⊗ uN �→ (m∗
λ0

⊗ idU)(�
u1
λ1

⊗ idU2⊗···⊗UN ) · · · (�uN−1
λN−1

⊗ idUN )�
uN
λN
(mλ)

for ui ∈ Ui [μi ] (μi ∈ P), where λi := λ−μi+1 · · ·−μN for i = 0, . . . , N −1
and λN = λ.
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We suppress the dependence on U and denote JU(λ) by J(λ) if no confusion is
possible (in fact, a universal fusion operator exists, in the sense that its action
on U reproduces JU(λ) for all finite dimensional g⊕N -modules, see, e.g., [12,
Prop. 3.19] and references therein).

Lemma 6.10 shows that for u := u1 ⊗ · · · ⊗ uN with ui ∈ U [μi ] and
λ ∈ h∗

reg we have

�
J(λ)u
λ = (�u1

λ1
⊗ idU2⊗···⊗UN ) · · · (�uN−1

λN−1
⊗ idUN )�

uN
λN

(6.38)

in Homg(Mλ,Mλ0 ⊗ U).
Fix from now on a finite dimensional k-module V�. Recall the parametrisa-

tion of k-intertwiners φv�,λ ∈ Homk(Mλ, V�) by their expectation value v ∈ V�
as introduced in Definition 5.5a.

Lemma 6.22 Let λ ∈ h∗
reg. The linear operator J�,U(λ) ∈ End(V� ⊗ U),

defined by

J�,U(λ)(v ⊗ u) := (φv�,λ−μ ⊗ idU)�
J(λ)u
λ (mλ)

for v ∈ V� and u ∈ U[μ] (μ ∈ P), is a linear automorphism.

Proof For v ∈ V� and u ∈ U[μ] we have

�
J(λ)u
λ (mλ) ∈ mλ−μ ⊗ J(λ)u +

⊕

ν>μ

Mλ−μ ⊗ U[ν],

and consequently we get

J�,U(λ)(v ⊗ u) ∈ v ⊗ J(λ)u +
⊕

ν>μ

V� ⊗ U[ν].

Choose an ordered tensor product basis of V�⊗U in which the U-components
consist of weight vectors. Order the tensor product basis in such a way that
is compatible with the dominance order on the weights of the U-components
of the basis elements. With respect to such a basis, J�,U(λ)(idV� ⊗ J(λ)−1)

is represented by a triangular operator with ones on the diagonal, hence it is
invertible. ��
We call J�,U(λ) the (left) boundary fusion operator on V� ⊗ U (we denote
J�,U(λ) by J�(λ) if no confusion is possible). A right version Jr (λ) of the left
boundary fusion operator J�(λ) can be constructed in an analogous manner.
We leave the straightforward details to the reader.
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Let λ ∈ h∗
reg. By Proposition 5.4a and Lemma 6.22, the map

V� ⊗ U → Homk(Mλ, V� ⊗ U), v ⊗ u �→ φ
J�(λ)(v⊗u)
�,λ

is a linear isomorphism. The k-intertwiner φJ�(λ)(v⊗u)
�,λ admits the following

alternative description.

Corollary 6.23 Let λ ∈ h∗
reg, μ ∈ P and v ∈ V�. For u ∈ U[μ] we have

φ
J�(λ)(v⊗u)
�,λ = (φv�,λ−μ ⊗ idU)�

J(λ)u
λ . (6.39)

For u = u1 ⊗ · · · ⊗ uN with ui ∈ Ui [μi ] (1 ≤ i ≤ N ) we furhermore have

φ
J�(λ)(v⊗u)
�,λ = (φv�,λ0 ⊗ idU)(�

u1
λ1

⊗ idU2⊗···⊗UN ) · · · (�uN−1
λN−1

⊗ idUN )�
uN
λN
,

(6.40)

with λi := λ− μi+1 · · · − μN (i = 0, . . . , N − 1), and λN := λ.

Proof The result follows immediately from Proposition 5.4a, Lemma 6.22
and (6.38). ��

Definition 6.24 Let V�, Vr be finite dimensional k-modules. Let λ =
(λ0, . . . , λN )with λN ∈ h∗

reg and withμi := λi −λi−1 ∈ P for i = 1, . . . , N .
Let v ∈ V�, f ∈ V ∗

r and u = u1 ⊗ · · · ⊗ uN with ui ∈ Ui [μi ]. We write

Fv,u, f
Mλ

:= FJ�(λN )(v⊗u)⊗ f
Mλ

for the formal N -point spherical function with leading coefficient J�(λN )(v⊗
u)⊗ f , and

Fv,u, f
λ := δFv,u, f

Mλ−ρ = FJ�(λN −ρ)(v⊗u)⊗ f
λ

for its normalised version.

Note that

Fv,u, f
Mλ

= F
φv�,λ0

,�
J(λN )u
λN

,φ
f

r,λN
Mλ
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by Lemma 6.23.Written out as formal power series we thus have the following
three expressions for Fv,u, f

Mλ
,

Fv,u, f
Mλ

=
∑

μ≤λN

φ
J�(λN )u
�,λN

(projμMλN
φ

f
r,λN
)ξμ

=
∑

μ≤λN

(φv�,λ0 ⊗ idU)�
J(λN )u
λN

(projμMλN
φ

f
r,λN
)ξμ

=
∑

μ≤λN

(φv�,λ0 ⊗ idU)(�
u1
λ1

⊗ idU2⊗···⊗UN ) · · · (�uN−1
λN−1

⊗ idUN )�
uN
λN
(projμMλN

φ
f

r,λN
)ξμ.

The main results of the previous subsection for λ ∈ h∗
reg can now be reworded

as follows.

Corollary 6.25 Let λ ∈ h∗
reg. Let λ = (λ0, . . . , λN ) with λN ∈ h∗

reg and
with μi := λi − λi−1 ∈ P for i = 1, . . . , N. Let v ∈ V�, f ∈ V ∗

r and
u = u1 ⊗ · · · ⊗ uN with ui ∈ Ui [μi ] (i = 1, . . . , N ). Then we have for
i = 1, . . . , N,

Di
(

Fv,u, f
λ

) =
((λi , λi )

2
− (λi−1, λi−1)

2

)

Fv,u, f
λ ,

H(N )
(

Fv,u, f
λ

) = −(λN , λN )

2
Fv,u, f
λ

(6.41)

and H (N )
z

(

Fv,u, f
λ

) = ζλN −ρ(z)Fv,u, f
λ for z ∈ Z(g). This holds true as V� ⊗

U ⊗ V ∗
r -valued analytic functions on A+ when λN ∈ h∗

HC ∩ h∗
reg.

6.6 Commutativity of the asymptotic boundary KZB operators

In this subsection we show that the asymptotic boundary KZB operators Di
(1 ≤ i ≤ N ) pairwise commute inDR⊗U (k)⊗U (g)⊗N ⊗U (k), and that they
also commute with the quantum Hamiltonians H (N )

z ∈ DR ⊗ U (k)⊗(N+2) for
z ∈ Z(g) (and hence also with H(N )). We begin with the following lemma.

Lemma 6.26 Let V be a finite dimensional U (k)⊗ U (g)⊗N ⊗ U (k)-module
and suppose that λ ∈ h∗

reg. Then the asymptotic boundary KZB operators

Di (1 ≤ i ≤ N ) and the quantum Hamiltonians H (N )
z (z ∈ Z(g)) pairwise

commute as linear operators on V [[ξ−α1, . . . , ξ−αn ]]ξλ.
Proof It suffices to prove the lemma for V = V� ⊗ U ⊗ V ∗

r with V�, Vr
finite dimensional k-modules and U = U1 ⊗ · · ·⊗ UN with U1, . . . ,UN finite
dimensional g-modules.

Define an ultrametric d on (V� ⊗ U ⊗ V ∗
r )[[ξ−α1, . . . , ξ−αn ]]ξλ by the

formula d( f, g) := 2−"( f −g) with, for
∑

μ≤λ eμξμ ∈ (V� ⊗ U ⊗
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V ∗
r )[[ξ−α1, . . . , ξ−αn ]]ξλ nonzero,

"
(
∑

μ≤λ
eμξμ

) := min{(λ− μ, ρ∨) | μ ≤ λ : eμ �= 0},

and "(0) = ∞. Consider (V� ⊗ U ⊗ V ∗
r )[[ξ−α1, . . . , ξ−αn ]]ξλ as topo-

logical space with respect to the resulting metric topology. Note that Di

(1 ≤ i ≤ N ) and H (N )
z (z ∈ Z(g)) are continuous linear operators

on (V� ⊗ U ⊗ V ∗
r )[[ξ−α1, . . . , ξ−αn ]]ξλ since their scalar components lie

in the subring R ⊆ C[[ξ−α1, . . . , ξ−αn ]]. It thus suffices to show that
(V� ⊗ U ⊗ V ∗

r )[[ξ−α1, . . . , ξ−αn ]]ξλ has a topological linear basis consist-
ing of common eigenfunctions for the differential operators Di (1 ≤ i ≤ N )
and H (N )

z (z ∈ Z(g)).
Fix linear basis {vi }i∈I , {b j } j∈J and { fs}s∈S of V�, U and V ∗

r respectively.
Take the basis elements b j of the form b j = u1, j ⊗ · · · ⊗ uN , j with uk, j a
weight vector in Uk of weight μk(b j ) (1 ≤ k ≤ N ). For q ∈ ∑r

k=1 Z≥0αk
write

λ(b j )− q := (λ− q − μ1(b j )− · · · − μN (b j ), . . . , λ− q − μN (b j ), λ− q).

We then have

F
vi ,b j , fs

λ(b j )−q = (

J�(λ− q)(vi ⊗ b j )⊗ fs
)

ξλ−q +
∑

μ<λ−q

ei, j,s;q(μ)ξμ

for certain vectors ei, j,s;q(μ) ∈ V� ⊗ U ⊗ V ∗
r . Lemma 6.22 then implies that

{

F
vi ,b j , fs

λ(b j )−q | (i, j, s) ∈ I × J × S, q ∈
r

∑

k=1

Z≥0αk
}

is a topological linear basis of (V� ⊗ U ⊗ V ∗
r )[[ξ−α1, . . . , ξ−αn ]]ξλ. Finally

Corollary 6.25 shows that the basis elements F
vi ,b j , fs

λ(b j )−q are simultaneous eigen-

functions of Dk (1 ≤ k ≤ N ) and H (N )
z (z ∈ Z(g)). ��

We can now show the universal integrability of the asymptotic boundary KZB
operators, as well as their compatibility with the quantum Hamiltonians H (N )

z
(z ∈ Z(g)).

Theorem 6.27 In DR ⊗ U (k)⊗ U (g)⊗N ⊗ U (k) we have

[Di ,D j ] = 0, [Di , H (N )
z ] = 0, [H (N )

z , H (N )
z′ ] = 0

for i, j = 1, . . . , N and z, z′ ∈ Z(g).
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Proof By the previous lemma, it suffices to show that if the differential oper-
ator

L ∈ DR ⊗ U (k)⊗ U (g)⊗N ⊗ U (k)

acts as zero on V [[ξ−α1, . . . , ξ−αn ]]ξλ for all finite dimensional U (k) ⊗
U (g)⊗N ⊗ U (k)-modules V and all λ ∈ h∗

reg, then L = 0.

We identify the algebraD(A)A of constant coefficient differential operators
on A with the algebra S(h∗) of complex polynomials on h∗, by associating ∂h
(h ∈ h0) with the linear polynomial λ �→ λ(h). For p ∈ S(h∗) we write p(∂)
for the corresponding constant coefficient differential operator on A.

Write

L =
∑

i

fi Li

with { fi }i ⊂ R linear independent and Li ∈ D(A)A ⊗U (k)⊗U (g)⊗N ⊗U (k).
Expand

Li =
∑

j

ai j pi j (∂)

with pi j ∈ S(h∗) and {ai j } j ⊂ U (k)⊗U (g)⊗N ⊗U (k) linear independent for
all i . Then

0 = L(vξλ) =
∑

i

(
∑

j

pi j (λ)ai j (v)
)

fiξλ

in V [[ξ−α1, . . . , ξ−αn ]]ξλ for v ∈ V and λ ∈ h∗
reg, where V is an arbitrary

finite dimensional U (k)⊗ U (g)⊗N ⊗ U (k)-module. Since the { fi }i are linear
independent, we get

∑

j

pi j (λ)ai j (v) = 0

in V for all i , for all λ ∈ h∗
reg and all v ∈ V , with V any finite dimensional

U (k)⊗ U (g)⊗N ⊗ U (k)-module. Then [10, Thm. 2.5.7] implies that

∑

j

pi j (λ)ai j = 0
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inU (k)⊗U (g)⊗N ⊗U (k) for all i and all λ ∈ h∗
reg. By the linear independence

of {ai j } j , we get pi j (λ) = 0 for all i, j and all λ ∈ h∗
reg, hence pi j = 0 for all

i, j . This completes the proof of the theorem. ��

6.7 Folded dynamical trigonometric r-and k-matrices

We end this section by discussing the reformulation of the commutator rela-
tions

[Di ,D j ] = 0

in DR ⊗ U (k)⊗ U (g)⊗N ⊗ U (k) for 1 ≤ i, j ≤ N in terms of explicit con-
sistency conditions for the constituents r± and κ of the asymptotic boundary
KZB operators Di (see (6.26)).

Before doing so, we first discuss as a warm-up the situation for the usual
asymptotic KZB equations (see [15] and references therein), which we will
construct from an appropriate “universal” version of the operators that are no
longer integrable. Recall that �(N−1) : U (g) → U (g)⊗N is the (N − 1)th
iterated comultiplication of U (g).

Proposition 6.28 Fix r̂ ∈ R ⊗ U (g)⊗2 satisfying the invariance property

[�(h), r̂ ] = 0 ∀ h ∈ h. (6.42)

For N ≥ 2 and 1 ≤ i ≤ N write,

̂D(N )i := Ei −
i−1
∑

s=1

r̂si +
N

∑

s=i+1

r̂is ∈ DR ⊗ U (g)⊗N

with E = ∑n
k=1 ∂xk ⊗ xk, see (6.25). The following two statements are equiv-

alent.

a. For N ≥ 2 and 1 ≤ i �= j ≤ N,

[̂D(N )i , ̂D(N )j ] = −
r

∑

k=1

∂xk (̂ri j )�
(N−1)(xk) (6.43)

in DR ⊗ U (g)⊗N .
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b. r̂ is a solution of the classical dynamical Yang–Baxter equation,

n
∑

k=1

(

(xk)3∂xk (̂r12)−(xk)2∂xk (̂r13)+ (xk)1∂xk (̂r23)
)

+ [̂r12, r̂13] + [̂r12, r̂23] + [̂r13, r̂23] = 0

(6.44)

in R ⊗ U (g)⊗3.

Proof By direct computations,

[̂D(2)1 ,
̂D(2)2 ] = −

n
∑

k=1

∂xk (̂r)�(xk)

in DR ⊗ U (g)⊗2 and

[̂D(3)1 ,
̂D(3)2 ] = −

n
∑

k=1

∂xk (̂r12)�
(2)(xk)+ [̂r12, r̂13] + [̂r12, r̂23] + [̂r13, r̂23]

+
n

∑

k=1

(

(xk)3∂xk (̂r12)− (xk)2∂xk (̂r13)+ (xk)1∂xk (̂r23)
)

in DR ⊗ U (g)⊗3. Hence a implies b.
It is a straightforward but tedious computation to show that classical dynam-

ical Yang–Baxter equation (6.44) implies (6.43) for all N ≥ 2 and all
1 ≤ i �= j ≤ N . ��
For instance, r̂(h) := r(h/2) (h ∈ h) with r Felder’s r -matrix (6.6) satisfies
the classical dynamical Yang–Baxter equation (6.44) as well as the invariance
condition (6.42). The same holds true for r̂ = 2r .

Corollary 6.29 (KZB operators) Let N ≥ 2. Let U1, . . . ,UN be finite dimen-
sional g-modules and write U := U1⊗· · ·⊗UN as before. Let r̂ ∈ R⊗U (g)⊗2

be a solution of the classical dynamical Yang–Baxter equation (6.44) sat-
isfying the invariance property (6.42). Define differential operators ̂DU

i ∈
DR ⊗ End

(

U[0]) for i = 1, . . . , N by

̂DU
i := ̂D(N )i |U[0].

Then [̂DU
i ,

̂DU
j ] = 0 in DR ⊗ End

(

U[0]) for i, j = 1, . . . , N.

Remark 6.30 Let λ ∈ h∗
reg. Let u = u1 ⊗ · · · ⊗ uN ∈ U[0] with ui ∈ Ui [μi ]

and
∑N

j=1 μ j = 0, and write λi := λ−μi+1 − · · · −μN (i = 1, . . . , N − 1)
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and λN := λ. By [12,15], the weighted trace of the product �J(λ)u
λ of the N

vertex operators �ui
λi

∈ Homg(Mλi ,Mλi−1 ⊗ Ui ) are common eigenfunctions

of the asymptotic KZB operators ̂DU
i (1 ≤ i ≤ N ) with r̂(h) = r(h/2) and r

Felder’s r -matrix (6.6).

Now we prove the analogous result for asymptotic boundary KZB type
operators. This time the universal versions of the asymptotic boundary KZB
operators themselves will already be integrable. This is because we are con-
sidering asymptotic boundary KZB operators associated to split Riemannian
symmetric pairs G/K (note that the representation theoretic context from
Remark 6.30 relates the asymptotic KZB operators to the group G viewed as
the symmetric space G × G/diag(G), with diag(G) the group G diagonally
embedding into G × G).

Proposition 6.31 (general asymptotic boundary KZB operators). Let A� and
Ar be two complex unital associative algebras. Let r̃ ± ∈ R ⊗ U (g)⊗2 and
κ̃ ∈ R ⊗ A� ⊗ U (g)⊗ Ar and suppose that

[h ⊗ 1, r̃ +] = [1 ⊗ h, r̃ −] ∀ h ∈ h. (6.45)

Write for N ≥ 2 and 1 ≤ i ≤ N,

˜D(N )i := Ei −
i−1
∑

s=1

r̃ +
si − κ̃i −

N
∑

s=i+1

r̃ −
is ∈ DR ⊗ A� ⊗ U (g)⊗N ⊗ Ar

with E given by (6.25) and with the indices indicating in which tensor compo-
nents of U (g)⊗N the U (g)-components of r̃ ± and κ̃ are placed. The following
statements are equivalent.

a. For all N ≥ 2 and all 1 ≤ i, j ≤ N,

[˜D(N )i , ˜D(N )j ] = 0

in DR ⊗ A� ⊗ U (g)⊗N ⊗ Ar .
b. r̃+ and r̃− are solutions of the following three coupled classical dynamical

Yang–Baxter equations,

n
∑

k=1

(

(xk)1∂xk (̃r
−
23)− (xk)2∂xk (̃r

−
13)

) = [̃r −
13, r̃

+
12] + [̃r −

12, r̃
−
23] + [̃r −

13, r̃
−
23],

n
∑

k=1

(

(xk)1∂xk (̃r
+
23)− (xk)3∂xk (̃r

−
12)

) = [̃r −
12, r̃

+
13] + [̃r −

12, r̃
+
23] + [̃r −

13, r̃
+
23],

n
∑

k=1

(

(xk)2∂xk (̃r
+
13)− (xk)3∂xk (̃r

+
12)

) = [̃r +
12, r̃

+
13] + [̃r +

12, r̃
+
23] + [̃r −

23, r̃
+
13]

(6.46)
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in R ⊗ U (g)⊗3, and κ̃ is a solution of the associated classical dynamical
reflection equation

n
∑

k=1

(

(xk)1∂xk (̃κ2 + r̃+)− (xk)2∂xk (̃κ1 + r̃−)
) = [̃κ1 + r̃−, κ̃2 + r̃+]

(6.47)

in R ⊗ A� ⊗ U (g)⊗2 ⊗ Ar .

Proof By direct computations, [˜D(2)1 ,
˜D(2)2 ] = 0 is equivalent to the

dynamical reflection equation (6.47) and [˜D(3)i ,
˜D(3)j ] = 0 for (i, j) =

(1, 2), (1, 3), (2, 3) is equivalent to the three coupled classical dynamical
Yang–Baxter equations. Hence a implies b. Conversely, a direct but tedious
computation shows that the three coupled classical dynamical Yang–Baxter
equations and the associated classical dynamical reflection equation imply
[˜D(N )i , ˜D(N )j ] = 0 for N ≥ 2 and 1 ≤ i, j ≤ N . ��
Applied to the asymptotic boundary KZB operators Di (1 ≤ i ≤ N ) given by
(6.26), we obtain from Theorem 6.27 with A� = U (k) = Ar the following
main result of this subsection.

Theorem 6.32 The folded dynamical r-matrices r± ∈ R ⊗ g⊗2 (see (6.7))
and the dynamical k-matrix κ ∈ R ⊗ k ⊗ U (g) ⊗ k (see (6.24)) satisfy the
coupled classical dynamical Yang–Baxter equations (6.46) inR⊗U (g)⊗3 and
the associated classical dynamical reflection equation (6.47) in R ⊗ U (k)⊗
U (g)⊗2 ⊗ U (k).

A direct algebraic proof of Theorem 6.32, which does not resorting to the
commutativity of the asymptotic boundary KZB operators, is given in [62].

Acknowledgements We thank Ivan Cherednik, Pavel Etingof, Giovanni Felder, Gert Heck-
man, Erik Koelink, Christian Korff, Tom Koornwinder, Eric Opdam, Maarten van Pruijssen,
Taras Skrypnyk and Bart Vlaar for discussions and comments. We thank Sam van den Brink
for carefully reading the first part of the paper and pointing out a number of typos. The work
of J.S. and N.R. was supported by NWO 613.009.126. In addition the work of N.R. was par-
tially supported by NSF DMS-1601947 and by RSF 21-11-00141. He also would like to thank
ETH-ITS for the hospitality during the final stages of the work. The work on this paper was
completed before N.R. retired from the University of California at Berkeley. He would like to
thank the Department of Mathematics at UC Berkeley and all colleagues there for many happy
and productive years.

References
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