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Abstract We determine the density of monic integer polynomials of given
degree n > 1 that have squarefree discriminant; in particular, we prove for
the first time that the lower density of such polynomials is positive. Similarly,
we prove that the density of monic integer polynomials f (x), such that f (x)
is irreducible and Z[x]/( f (x)) is the ring of integers in its fraction field, is
positive, and is in fact given by ζ(2)−1. It also follows from our methods that
there are� X1/2+1/n monogenic number fields of degree n having associated
Galois group Sn and absolute discriminant less than X , and we conjecture that
the exponent in this lower bound is optimal.

1 Introduction

The pupose of this paper is to determine the density of monic integer poly-
nomials of given degree whose discriminant is squarefree. For polynomials
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f (x) = xn + a1xn−1 + · · · + an , the term (−1)i ai represents the sum of the
i-fold products of the roots of f . It is thus natural to order monic polynomials
f (x) = xn + a1xn−1 + · · · + an by the height H( f ) := max{|ai |1/ i } (see,
e.g., [4,18,23]). We determine the density of monic integer polynomials of
degree n having squarefree discriminant with respect to the ordering by this
height, and show that the density is positive. The existence of infinitely many
monic integer polynomials of each degree having squarefree discriminant was
first demonstrated byKedlaya [14]. However, it has not previously been known
whether the density exists or even that the lower density is positive.

To state the theorem, define the constants λn(p) by

λn(p) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if n = 1,

1 − 1

p2
if n = 2,

1 − 3pn−1 − pn−2 + (−1)n(p − 1)2

pn(p + 1)
if n ≥ 3

(1)

for p �= 2; also, let λ1(2) = 1 and λn(2) = 1/2 for n ≥ 2. Then a
result of Yamamura [26, Proposition 3] states that λn(p) is the density of
monic polynomials of degree n overZp having discriminant indivisible by p2.
Let λn := ∏

p λn(p), where the product is over all primes p. We prove:

Theorem 1.1 Let n ≥ 1 be an integer. Then when monic integer poly-
nomials f (x) = xn + a1xn−1 + · · · + an of degree n are ordered by
H( f ) := max{|a1|, |a2|1/2, . . . , |an|1/n}, the density having squarefree dis-
criminant �( f ) exists and is equal to λn > 0.

Our method of proof implies that the theorem remains true even if we restrict
only to those polynomials of a given degree n having a given number of real
roots.

It is easy to see from the definition of the λn(p) that the λn rapidly approach
a limit λ as n → ∞, namely,

λ = lim
n→∞ λn = 1

2
·
∏

p≥3

(

1 − 3p − 1

p2(p + 1)

)

≈ 30.7056%. (2)

Therefore, as the degree tends to infinity, the probability that a random monic
integer polynomial has squarefree discriminant tends to λ ≈ 30.7056%.

In algebraic number theory, one often considers number fields that are
defined as a quotient ring K f := Q[x]/( f (x)) for some irreducible inte-
ger polynomial f (x). The question naturally arises as to whether R f :=
Z[x]/( f (x)) gives the ring of integers of K f . Our second main theorem states
that this is in fact the case for most polynomials f (x). We prove:
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Squarefree values of polynomial discriminants I 1039

Theorem 1.2 Let n > 1 be an integer. Then when monic integer polynomials
f (x) = xn + a1xn−1 + · · · + an of degree n are ordered by H( f ), the density
of polynomials f such that Z[x]/( f (x)) is the ring of integers in its fraction
field is

∏
p(1 − 1/p2) = ζ(2)−1.

Note that ζ(2)−1 ≈ 60.7927%. Since a density of 100% of monic integer
polynomials are irreducible (and indeed have associated Galois group Sn) by
Hilbert’s irreducibility theorem, it follows that ≈ 60.7927% of monic integer
polynomials f of any given degree n > 1 have the property that f is irreducible
and Z[x]/( f (x)) is the maximal order in its fraction field. The quantity

ρn(p) := 1 − 1

p2
(3)

represents the density of monic integer polynomials of degree n > 1 over Zp
such that Zp[x]/( f (x)) is the maximal order in Qp[x]/( f (x)). The determi-
nation of this beautiful p-adic density, and its independence of n, is due to
Hendrik Lenstra (see [1, Proposition 3.5]). Theorem 1.2 again holds even if
we restrict to polynomials of degree n having a fixed number of real roots.

If the discriminant of an order in a number field is squarefree, then that order
must be maximal. Thus the irreducible polynomials counted in Theorem 1.1
are a subset of those counted in Theorem 1.2. The additional usefulness of The-
orem 1.1 in some arithmetic applications is that if f (x) is a monic irreducible
integer polynomial of degree n with squarefree discriminant, then not only
is Z[x]/( f (x)) maximal in the number field Q[x]/( f (x)) but the associated
Galois group is necessarily the symmetric group Sn (see, e.g., [15,16,20,25]
for further details and applications).

We prove both Theorems 1.1 and 1.2 with power-saving error terms. More
precisely, let Vn(Z) denote the subset of Z[x] consisting of all monic integer
polynomials of degree n. Then it is easy to see that

#{ f ∈ Vn(Z) : H( f ) < X} = 2n X
n(n+1)

2 + O

(

X
n(n+1)

2 −1
)

.

We prove

#{ f ∈ Vn(Z) : H( f ) < X and �( f ) squarefree}
= λn · 2n X n(n+1)

2 + Oε

(

X
n(n+1)

2 −1
5+ε

)

;

#{ f ∈ Vn(Z) : H( f ) < X and Z[x]/( f (x)) maximal}
= 6

π2 · 2n X n(n+1)
2 + Oε

(

X
n(n+1)

2 −1
5+ε

)

(4)

for n > 1.
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1040 M. Bhargava et al.

These asymptotics imply Theorems 1.1 and 1.2. Since it is known that the
number of reducible monic polynomials of a given degree n is of a strictly
smaller order of magnitude than the error terms above (see Proposition 4.3), it
does not matter whether we require f to be irreducible in the above asymptotic
formulae.

Recall that a number field K is called monogenic if its ring of integers is
generated overZ by one element, i.e., ifZ[θ ] gives the maximal order of K for
some θ ∈ K . As a further application of our methods, we obtain the following
corollary to Theorem 1.1:

Corollary 1.3 Let n > 1. The number of isomorphism classes of number fields
of degree n and absolute discriminant less than X that aremonogenic and have
associated Galois group Sn is � X1/2+1/n.

Wenote that our lower bound for the number ofmonogenic Sn-number fields of
degree n improves slightly the best-known lower bounds for the number of Sn-
number fields of degree n, due to Ellenberg andVenkatesh [9, Theorem1.1], by
simply forgetting the monogenicity condition in Corollary 1.3. We conjecture
that the exponent in our lower bound in Corollary 1.3 for monogenic number
fields of degree n is optimal.

As is illustrated by Corollary 1.3, Theorems 1.1 and 1.2 give a powerful
method to produce number fields of a given degree having given properties or
invariants. We give one further example of interest. Given a number field K of
degree n with r real embeddings ξ1, . . . , ξr and s complex conjugate pairs of
complex embeddings ξr+1, ξ̄r+1, . . . , ξr+s, ξ̄r+s , the ring of integersOK may
naturally be viewed as a lattice inR

n via the map x 	→ (ξ1(x), . . . , ξr+s(x)) ∈
R
r ×C

s ∼= R
n . We may thus ask about the length of the shortest vector in this

lattice generating K .
In their final remark [9, Remark 3.3], Ellenberg and Venkatesh conjecture

that the number of number fields K of degree n whose shortest vector in OK
generating K is of length less than Y is � Y (n−1)(n+2)/2. They prove an upper
bound of this order of magnitude. We use Theorem 1.2 to prove also a lower
bound of this size, thereby proving their conjecture:

Corollary 1.4 Let n > 1. The number of isomorphism classes of number fields
K of degree n whose shortest vector inOK generating K has length less than
Y is � Y (n−1)(n+2)/2. The same is true if we further impose the condition that
the Galois group of the normal closure of K is Sn.

Finally, we remark that our methods allow the analogues of all of the above
results to be proven with any finite set of local conditions imposed at finitely
many places (including at infinity); the orders of magnitudes in these theorems
are then seen to remain the same—with different (but easily computable in the
cases of Theorems 1.1 and 1.2) positive constants—provided that no local
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Squarefree values of polynomial discriminants I 1041

conditions are imposed that force the set being counted to be empty (i.e.,
no local conditions are imposed at p in Theorem 1.1 that force p2 to divide
the discriminant, no local conditions are imposed at p in Theorem 1.2 that
cause Zp[x]/( f (x)) to be non-maximal over Zp, and no local conditions
are imposed at p in Corollary 1.3 that cause such number fields to be non-
monogenic locally). In fact, we can even impose certain infinite sets of local
conditions (see Theorem 4.1).

We now briefly describe our methods. It is easily seen that the desired
densities in Theorems 1.1 and 1.2, if they exist, must be bounded above by the
Euler products

∏
p λn(p) and

∏
p(1− 1/p2), respectively. The difficulty is to

show that these Euler products are also the correct lower bounds. As is standard
in sieve theory, to demonstrate the lower bound, a “tail estimate” is required
to show that not too many discriminants of polynomials f are divisible by
p2 when p is large relative to the discriminant �( f ) of f (here, large means
larger than �( f )1/(n−1), say).

For any prime p, and a monic integer polynomial f of degree n such that
p2 | �( f ), we say that p2 strongly divides �( f ) if p2 | �( f + pg) for any
integer polynomial g of degree n; otherwise, we say that p2 weakly divides
�( f ). Then p2 strongly divides �( f ) if and only if f modulo p has at least
two distinct multiple roots in F̄p, or has a root in Fp of multiplicity at least
3; and p2 weakly divides �( f ) if p2 | �( f ) but f modulo p has only one
multiple root in Fp and this root is a simple double root.

For any squarefree positive integerm, letW(1)
m (resp.W(2)

m ) denote the set of
monic integer polynomials in Vn(Z) whose discriminant is strongly divisible
(resp. weakly divisible) by p2 for every prime factor p of m. Then we prove
tail estimates for W(1)

m and W(2)
m separately, as follows.

Theorem 1.5 For any positive real number M and any ε > 0, we have

(a) #
⋃

m>M
m squarefree

{ f ∈ W(1)
m : H( f ) < X}

= Oε(X
n(n+1)/2+ε/M) + O(Xn(n+1)/2−1);

(b) #
⋃

m>M
m squarefree

{ f ∈ W(2)
m : H( f ) < X}

= Oε(X
n(n+1)/2+ε/M) + Oε(X

n(n+1)/2−1/5+ε),

where the implied constants are independent of M and X.

To prove our main theorems, we will use Theorem 1.5 with M = X1/2.
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1042 M. Bhargava et al.

The power savings in the error terms above also have applications towards
determining the distributions of low-lying zeros in families of Dedekind zeta
functions of monogenic degree-n fields; see [21, §5.2].

We prove the estimate in the strongly divisible case (a) of Theorem 1.5
by geometric techniques, namely, a quantitative version of the Ekedahl sieve
([8], [2, Theorem 3.3]). While the proof of [2, Theorem 3.3] uses homoge-
neous heights, and considers the union over all primes p > M , the same
proof also applies in our case of weighted homogeneous heights, and a union
over all squarefree m > M . Since the last coefficient an is in a larger range
than the other coefficients, we in fact obtain a smaller error term than in [2,
Theorem 3.3].

The estimate in the weakly divisible case (b) of Theorem 1.5 is considerably
more difficult. Our main idea is to embed polynomials f , whose discriminant
is weakly divisible by p2, into a larger space that has more symmetry, such
that the invariants under this symmetry are given exactly by the coefficients
of f ; moreover, we arrange for the image of f in the bigger space to have
discriminant strongly divisible by p2. We then count in the bigger space.

More precisely, wemake use of the representation ofG = SOn on the space
W = Wn of symmetric n × n matrices, as studied in [4,23]. We fix A0 to be
the n × n symmetric matrix with 1’s on the anti-diagonal and 0’s elsewhere.
The group G = SO(A0) acts onW via the action g · B = gBgt for g ∈ G and
B ∈ W . Define the invariant polynomial of an element B ∈ W by

fB(x) = (−1)n(n−1)/2 det(A0x − B).

Then fB is a monic polynomial of degree n. It is known (see [3, §4]) that the
ring of polynomial invariants for the action of G on W is freely generated by
the coefficients of the invariant polynomial. Define the discriminant�(B) and
height H(B) of an element B ∈ W by �(B) = �( fB) and H(B) = H( fB).
This representation of G on W was used in [4,23] to study 2-descent on the
hyperelliptic curves C : y2 = fB(x).

A key step of our proof of Theorem 1.5(b) is the construction, for every
positive squarefree integer m, of a map

σm : W(2)
m → 1

4
W (Z),

such that fσm( f ) = f for every f ∈ W(2)
m ; here 1

4W (Z) ⊂ W (Q) is the
lattice of elements B whose coefficients have denominators dividing 4. In our
construction, the image of σm in fact lies in a special subspace W0 of W ;
namely, if n = 2g + 1 is odd, then W0 consists of symmetric matrices B ∈ W
whose top left g × g block is 0, and if n = 2g + 2 is even, then W0 consists
of symmetric matrices B ∈ W whose top left g × (g + 1) block is 0. We
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Squarefree values of polynomial discriminants I 1043

associate to any element of W0 a further polynomial invariant which we call
the Q-invariant (which is a relative invariant for the subgroup of SO(A0) that
fixes W0). Next, we show that for elements B in the image of σm , we have
|Q(B)| = m. Finally, even though the discriminant polynomial of f ∈ W(2)

m
is weakly divisible by p2, the discriminant polynomial of its image σm( f ),
when viewed as a polynomial on W0 ∩ 1

4W (Z), is strongly divisible by p2.
This is the ey point of our construction.

To obtain Theorem 1.5(b), it thus suffices to estimate the number of G(Z)-
equivalence classes of elements B ∈ W0∩ 1

4W (Z) of height less than X having
Q-invariant larger than M . This can be reduced to a geometry-of-numbers
argument in the spirit of [4,23], although the current count ismore subtle in that
we are counting certain elements in a cuspidal region of a fundamental domain
for the action ofG(Z) onW (R). TheG(Q)-orbits of elements B ∈ W0∩W (Q)

are called distinguished orbits in [4,23], as they correspond to the identity 2-
Selmer elements of the Jacobians of the corresponding hyperelliptic curves
y2 = fB(x) over Q; these were not counted separately by the geometry-of-
numbers methods of [4,23], as these elements lie deeper in the cusps of the
fundamental domains. We develop a method to count those elements in the
cusp having bounded height and Q-invariant larger than M , following the
arguments of [4,23] while using the invariance and algebraic properties of the
Q-invariant polynomial. This yields Theorem 1.5(b), which then allows us to
carry out the sieves required to obtain Theorems 1.1 and 1.2.

Corollary 1.3 can be deduced from Theorem 1.1 roughly as follows. Let
g ∈ Vn(R) be a monic real polynomial of degree n and nonzero discriminant
having r real roots and 2s complex roots. Then R[x]/(g(x)) is isomorphic to
R
n ∼= R

r × C
s via its real and complex embeddings. Let θ denote the image

of x in R[x]/(g(x)) and let Rg denote the lattice formed by taking the Z-span
of 1, θ, . . . , θn−1. Suppose further that there exist monic integer polynomials
hi of degree i for i = 1, . . . , n − 1 such that 1, h1(θ), h2(θ), . . . , hn−1(θ) is
the unique Minkowski-reduced basis of Rg; we say that the polynomial g(x)
is strongly quasi-reduced in this case. Note that if g is an integer polynomial,
then the lattice Rg is simply the image of the ringZ[x]/(g(x)) ⊂ R[x]/(g(x))
in R

n via its archimedean embeddings.
When ordered by their heights, we prove that 100%ofmonic integer polyno-

mials g(x) are strongly quasi-reduced. We furthermore prove that two distinct
strongly quasi-reduced integer polynomials g(x) and g∗(x) of degree n with
vanishing xn−1-term necessarily yield non-isomorphic rings Rg and Rg∗ . The
proof of the positive density result of Theorem 1.1 then produces� X1/2+1/n

strongly quasi-reduced monic integer polynomials g(x) of degree n having
vanishing xn−1-term, squarefree discriminant, and height less than X1/(n(n−1)).
These therefore correspond to � X1/2+1/n non-isomorphic monogenic rings
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of integers in Sn-number fields of degree n having absolute discriminant less
than X , and Corollary 1.3 follows.

A similar argument proves Corollary 1.4. Suppose f (x) is a strongly quasi-
reduced irreducible monic integer polynomial of degree n with squarefree
discriminant�( f ). Elementary estimates show that if H( f ) < Y , then ‖θ‖ �
Y , and so the shortest vector in the ring of integers generating the field also
has length bounded by O(Y ). The above-mentioned result on the number of
strongly quasi-reduced irreducible monic integer polynomial of degree n with
squarefree discriminant, vanishing xn−1-coefficient, and height bounded by Y
then gives the desired lower bound of � Y (n−1)(n+2)/2. We give full proofs of
Corollaries 1.3 and 1.4 in Section 5.

In a subsequent paper [6] (Part II), we prove the corresponding results for
non-monic integer polynomials of degree n ordered by the maximum of the
absolute values of the coefficients. Namely, we determine the density of such
polynomials having squarefree discriminant and the density corresponding to
maximal orders. The treatment of non-monic integer polynomials in Part II
builds on the ideas here, but involves a number of new ideas due to the fact that
there exist non-monic integer polynomials f (x) of degree n for which there
are no symmetric integer matrices A and B such that f (x) = det(Ax − B)!
(See [5].) This complication requires additional methods to adapt the proof
to the non-monic case. The non-monic case has a number of applications as
well, including new results towards counting number fields and also to the
resolution of a conjecture of Poonen [17] on an arithmetic Bertini theorem for
the projective line. The main theorems of this paper are the analogous results
for the affine line. The results in [17], building on work of Granville [12],
imply versions of Theorems 1.1 and 1.2 conditional on the ABC Conjecture.

This paper is organized as follows. In Sects. 2 and 3, we begin by collecting
some algebraic facts about the representation 2⊗ g⊗ (g+1) of SL2 ×GLg ×
GLg+1 and we define the Q-invariant, which is a relative polynomial invariant
for this action. We then apply geometry-of-numbers techniques as described
above to prove the critical estimates of Theorem 1.5, handling the cases of
n odd and n even separately. In Sect. 4, we then show how our main theorems,
Theorems 1.1 and 1.2, can be deduced from Theorem 1.5. Finally, in Sect. 5,
we prove Corollary 1.3 on the number of monogenic Sn-number fields of
degree n having bounded absolute discriminant, as well as Corollary 1.4 on
the number of rings of integers in number fields of degree n whose shortest
vector generating the number field is of bounded length.

2 A uniformity estimate for odd degree monic polynomials

In this section, we prove the estimate of Theorem 1.5(b) when n = 2g + 1 is
odd, for any g ≥ 1.
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Squarefree values of polynomial discriminants I 1045

2.1 Invariant theory for the fundamental representation: SOn on the
space W of symmetric n× n matrices

Let A0 denote the n × n symmetric matrix with 1’s on the anti-diagonal and
0’s elsewhere. The group G = SO(A0) acts on W via the action

γ · B = γ Bγ t .

We recall some of the arithmetic invariant theory for the representation W
of n × n symmetric matrices of the split orthogonal group G; see [4] for more
details. The ring of polynomial invariants for the action of G(C) on W (C) is
freely generated by the coefficients of the invariant polynomial fB(x) of B,
defined by

fB(x) := (−1)g det(A0x − B)

(see [3, §4]). We define the discriminant � on W by �(B) = �( fB), and the
G(R)-invariant height of elements in W (R) by H(B) = H( fB).

Let k be any field of characteristic not 2. For a monic polynomial f (x) ∈
k[x] of degree n such that �( f ) �= 0, let C f denote the smooth hyperelliptic
curve y2 = f (x) of genus g and let J f denote the Jacobian ofC f . ThenC f has
a rational Weierstrass point at infinity. The stabilizer of an element B ∈ W (k)
with invariant polynomial f (x) is naturally isomorphic to J f [2](k) by [4,
Proposition 5.1], and hence has cardinality at most #J f [2](k̄) = 22g, where k̄
denotes a separable closure of k.

We say that an element (or the G(k)-orbit of an element) B ∈ W (k) with
�(B) �= 0 is k-distinguished if there exists a g-dimensional subspace defined
over k that is isotropic with respect to both A0 and B. If B is k-distinguished,
then the set of these g-dimensional subspaces over k is in bijection with
J f [2](k) by [4, Proposition 4.1], and so it too has cardinality at most 22g.
In fact, it is known (see [4, Proposition 5.1]) that the elements of J f [2](k)

are in natural bijection with the even-degree factors of f defined over k. (Note
that the number of even-degree factors of f over k̄ is indeed 22g.) In particular,
if f is irreducible over k, then the group J f [2](k) is trivial.

Now let W0 be the subspace of W consisting of matrices whose top left
g × g block is zero. Then elements B in W0(k) with nonzero discriminant are
all evidently k-distinguished since the g-dimensional subspace Yg spanned by
the first g basis vectors is isotropic with respect to both A0 and B. Let G0
denote the subgroup of G consisting of elements γ such that γ t preserves Yg.
Then G0 acts on W0.

An element γ ∈ G0 has the block matrix form

γ =
(

γ1 0
δ γ2

)
∈

( Mg×g 0
M(g+1)×g M(g+1)×(g+1)

)
, (5)
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so γ ∈ G0 transforms the top right g × (g + 1) block of an element B ∈ W0
as follows:

(γ · B)top = γ1B
topγ t

2 ,

where we use the superscript “top” to denote the top right g × (g + 1) block
of any given element in W0. It will be convenient for us to view (Atop

0 , Btop)

as an element of the representation Vg = 2 ⊗ g ⊗ (g + 1) of the group
Hg := SL2 × GLg × GLg+1. We have a map θ : G0 → Hg sending γ

expressed in (5) to (1, γ1, γ2). Then we have

(Atop
0 , (γ · B)top) = θ(γ ) · (Atop

0 , Btop)

for γ ∈ G0 and B ∈ W0.
Next, we construct a relative polynomial invariant for the action of Hg on

Vg as follows. We write any 2 × g × (g + 1) matrix v in Vg as a pair (A, B)

of g × (g + 1) matrices. Let Mv(x, y) denote the vector of g × g minors of
Ax−By, where x and y are indeterminates; in other words, the i-th coordinate
of the vector Mv(x, y) is given by (−1)i−1 times the determinant of the matrix
obtained by removing the i-th column of Ax − By. Then Mv(x, y) is a vector
of length g+1 consisting of binary forms of degree g in x and y, each of which
has g+1 coefficients. Taking the determinant of the resulting (g+1)×(g+1)
matrix of coefficients of these g + 1 binary forms in Mv(x, y) then yields a
polynomial Q = Q(v) in the coordinates of Vg, which is a relative invariant
for the action of Hg. Explicitly, we have

Q((γ0, γ1, γ2) · v) = det(γ1)
g+1 det(γ2)

gQ(v). (6)

Indeed, it follows from the definition that the Q-invariant is invariant under
the action of the subgroup SL2 × SLg × SLg+1. (Alternatively, the group
SL2 × SLg × SLg+1 has no nontrivial characters.) Moreover, we may work
over the algebraic closure and write γ1 and γ2 as products of scalar matrices
and matrices with determinant 1. Finally one can easily check (6) when γ1 and
γ2 are scalar matrices.

We then define the Q-invariant of B ∈ W0 to be the Q-invariant of
(Atop

0 , Btop):

Q(B) := Q(Atop
0 , Btop). (7)

Then the Q-invariant is also a relative invariant for the action of G0 on W0,
since for any γ ∈ G0 expressed in the form (5), we have

Q(γ · B) = det(γ1)Q(B). (8)

In fact, wemay extend the definition of the Q-invariant to an even larger subset
of W (Q) than W0(Q). We have the following proposition.
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Proposition 2.1 Let B ∈ W0(Q) be an element whose invariant polynomial
f (x) is irreducible over Q. Then for every B ′ ∈ W0(Q) such that B ′ is G(Z)-
equivalent to B, we have Q(B ′) = ±Q(B).

Proof Suppose B ′ = γ · B with γ ∈ G(Z) and B, B ′ ∈ W0(Q). Then Yg and
γ tYg are both g-dimensional subspaces over Q isotropic with respect to both
A0 and B. Since f is irreducible over Q, we have that J f [2](Q) is trivial, and
so these two subspaces must be the same. We conclude that γ ∈ G0(Z), and
thus Q(γ · B) = ±Q(B) by (8). ��

We may thus define the |Q|-invariant for any element B ∈ W (Q) that
is G(Z)-equivalent to some element B ′ ∈ W0(Q) and whose invariant
polynomial is irreducible over Q; indeed, we set |Q|(B) := |Q(B ′)|. By
Proposition 2.1, this definition of |Q|(B) is independent of the choice of B ′.
Note that all such elements B ∈ W (Q) are Q-distinguished.

2.2 Embedding W(2)
m into 1

2W(Z)

We begin by describing those monic integer polynomials in Vn(Z) that lie
in W(2)

m , i.e., the monic integer polynomials that have discriminant weakly
divisible by p2 for all p | m.

Proposition 2.2 Let m be a positive squarefree integer, and let f be a monic
integer polynomial whose discriminant is weakly divisible by p2 for all p | m.
Then there exists an integer � such that f (x + �) has the form

f (x + �) = xn + b1x
n−1 + · · · + bn−2x

2 + bn−1x + bn (9)

for some integers b1, . . . , bn where m divides bn−1 and m2 divides bn.

Proof Since m is squarefree, by the Chinese Remainder Theorem it suffices
to prove the assertion in the case that m = p is prime. Since p divides the dis-
criminant of f , the reduction of f modulo pmust have a repeated factor h(x)e

for some polynomial h ∈ Fp[x] and some integer e ≥ 2. As the discriminant
of f is not strongly divisible by p2, we see that h is linear and e = 2. By
replacing f (x) by f (x + �) for some integer �, if necessary, we may assume
that the repeated factor is x2, i.e., we may assume that f (x) has the form

f (x) = xn + b1x
n−1 + · · · + bn−1x + bn

for some integers b1, . . . , bn such that p divides bn−1 and bn . It remains now
to show that p2 divides bn .
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Viewing the discriminant �( f ) as a polynomial in bn , we write

�( f ) = bn�1 + �2,

for polynomials �1 ∈ Z[b1, . . . , bn] and �2 ∈ Z[b1, . . . , bn−1]. Next we set
bn to 0 and observe that b2n−1 divides�2. Indeed, the discriminant of f is equal
to the resultant Res( f (x), f ′(x)) of f (x) and f ′(x). When bn = 0, the only
nonzero entry in the last column of the matrix whose determinant computes
Res( f (x), f ′(x)) is bn−1 appearing in the last row. The corresponding minor
after removing the last row and column has two nonzero entries in its last
column, both of which equal to bn−1. This implies that we can pull out another
factor of bn−1 from the determinant of this minor. Hence there is a polynomial
�3 ∈ Z[b1, . . . , bn−1] such that

�( f ) = bn�1 + b2n−1�3. (10)

Since p divides bn−1 and bn , we see that p2 | �( f ) if and only if p2 | bn�1. If
p2 does not divide bn , then p divides �1, which implies that p2 divides �( f )
strongly, a contradiction. Therefore, we have that p2 divides bn . ��

Proposition 2.2 identifies the p2 hidden in the coefficients of a monic poly-
nomial f when p2 weakly divides�( f ).Wenext construct amatrix in 1

2W0(Z)

with invariant polynomial f and where the two p’s in p2 are split apart. For
any integers m, c1, . . . , cn , consider the matrix

Bm(c1, . . . , cn)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m 0

. .
.

. .
.

1 0
1 0

1 −c1 −c2/2
1 0 −c2/2 −c3 −c4/2

. .
. 0 −c4/2 −c5

. . .

m . .
. . . .

. . . −cn−1/2
0 −cn−1/2 −cn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(11)

in 1
2W0(Z). It follows from a direct computation that

fBm(c1,...,cn)(x) = xn + c1x
n−1 + · · · + cn−2x

2 + mcn−1x + m2cn.
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We compute the Q-invariant of Bm(c1, . . . , cn). Let v = (Atop
0 ,

Bm(c1, . . . , cn)top) be the corresponding element in Vg. The vector Mv(x, y)

of length g + 1 of minors of Atop
0 x − Bm(c1, . . . , cn)topy is

Mv(x, y) =

⎛

⎜
⎜
⎜
⎜
⎝

xg

xg−1y
...

xyg−1

myg

⎞

⎟
⎟
⎟
⎟
⎠

.

Computing the determinant of the (g + 1) × (g + 1) matrix of coefficients of
Mv(x, y) then gives

Q(Bm(c1, . . . , cn)) = Q(v) = m.

For any integer �, we have

fBm(c1,...,cn)+�A0(x) = (−1)g det(A0(x − �) − Bm(c1, . . . , cn))

= fBm(c1,...,cn)(x − �), (12)

and by the SL2-invariance of the Q-invariant,

Q(Bm(c1, . . . , cn) + �A0) = Q(Bm(c1, . . . , cn)) = m. (13)

Theorem 2.3 Let m be a positive squarefree integer. There exists a map σm :
W(2)

m → 1
2W0(Z) such that for every f ∈ W(2)

m ,

fσm( f ) = f, Q(σm( f )) = m. (14)

Proof Let f be any element ofW(2)
m . By Proposition 2.2, there exists an integer

� and integers c1, . . . , cn such that

f (x + �) = xn + c1x
n−1 + · · · + cn−2x

2 + mcn−1x + m2cn.

We set σm( f ) = Bm(c1, . . . , cn)+�A0. Then (14) follows from (12) and (13).
��

We remark that the integer � in the proof of Theorem 2.3 is unique modulo
m since it is the unique double root of f (x) modulo every prime factor p
of m. Since the invariant polynomial of σm( f ) recovers f , we see that no
two elements in the image of σm are in the same G(Z)-orbit (or even G(C)-
orbit). Furthermore, by the definition of discriminant on W , we have that

123



1050 M. Bhargava et al.

�(σm( f )) = �( f ) is divisible by p2 for every prime factor p of m. If one
varies the coefficients of σm( f ) by multiples of p while keeping the top left
g × g block 0, one can show that p2 still divides the discriminant of the
resulting matrix. In other words, the matrix σm( f ), as an element of 1

2W0(Z),
has discriminant strongly divisible by p2. It then seems natural to use the
Ekedahl sieve to handle this strongly divisible case. However, the Ekedahl
sieve does not apply when the polynomial is not squarefree as a polynomial
and as we will show in the sequel, as polynomials in the coordinates ofW0, the
discriminant � is divisible by Q2. Instead, we will count elements in 1

2W0(Z)

having large Q-invariant using geometry-of-numbers techniques.
More precisely, let L be the set of elements v ∈ 1

2W (Z) satisfying the
following conditions: v isG(Z)-equivalent to some element in 1

2W0(Z) and the
invariant polynomial of v is irreducible over Q. Then by the remark following
Proposition 2.1, we may view |Q| as a function also on L. Using W(2),irr

m to
denote the set of irreducible polynomials inW(2)

m , we then have the following
immediate consequence of Theorem 2.3:

Theorem 2.4 Let m > 0 be a squarefree integer. There exists an injective
map

σ̄m : W(2),irr
m → G(Z)\L

such that fσ̄m( f ) = f for every f ∈ W(2),irr
m . Moreover, for every element B

in the G(Z)-orbit of an element in the image of σ̄m, we have |Q|(B) = m.

The number of reducible monic integer polynomials having height less than
X is of a strictly smaller order of magnitude than the total number of such
polynomials (see, e.g., Proposition 4.3). Thus, for our purposes of proving
Theorem 1.5(b), it will suffice to count elements in W(2),irr

m of height less
than X over all m > M , which by Theorem 2.4 we may do by counting
these special G(Z)-orbits on L ⊂ 1

2W (Z) having height less than X and |Q|-
invariant greater than M . More precisely, let N (L; M; X) denote the number
of G(Z)-equivalence classes of elements in L whose |Q|-invariant is greater
than M and whose height is less than X . Then, by Theorem 2.4, to obtain an
upper bound for the left hand side in Theorem 1.5(b), it suffices to obtain the
same upper bound for N (L; M; X).

2.3 Counting G(Z)-orbits in 1
2W(Z)

The counting problem for the representation W of G is studied in [4]. In this
section, we recall some of the set up and results of [4].
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We remark first that the representation studied in [4] is the subspace of W
consisting of symmetric matrices with anti-trace 0. Since this is a linear con-
dition on the anti-diagonal entries, each of which has weight 1 when restricted
to the action of the maximal torus (see also (19)), the only difference in not
imposing this condition is an extra factor of X in the count. We will in fact
make use of the anti-trace-0 version in Sect. 5 in our application to counting
fields.

To count G(Z)-orbits in a lattice 1
2W (Z) inW (R), one begins by construct-

ing fundamental domains for the action of G(Z) on the set of elements in
W (R) with nonzero discriminant. A fundamental domain R for the action of
G(R) on the set of elements in W (R) with nonzero discriminant and height
less than 1 is obtained in [4, §9.1]. The exact shape of R is not important.What
is important is that R is (absolutely) bounded. Next a fundamental domain F
for the left multiplication action of G(Z) on G(R) is written down in [4, §9.2].
This is done using the Iwasawa decomposition of G(R) as

G(R) = N (R)T K ,

where N is a unipotent group consisting of lower triangular matrices, K is
compact, and T is the split torus of G given by

T =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t−1
1

. . .

t−1
g

1
tg

. . .

t1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

: t1, . . . , tg ∈ R

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

We may also make the following change of variables. For 1 ≤ i ≤ g − 1, set

si = ti/ti+1,

and set sg = tg. It follows that for 1 ≤ i ≤ g, we have ti = si si+1 · · · sg.
We denote an element of T with coordinates ti (resp. si ) by (t) (resp. (s)). A
fundamental set for the action of G(Z) on G(R) can then be taken to be con-
tained in a Siegel set, i.e., contained in N ′T ′K , where N ′ consists of elements
in N (R) whose coefficients are absolutely bounded and T ′ ⊂ T consists of
elements in (s) ∈ T with si ≥ c for some positive constant c.

For any h ∈ G(R), since Fh remains a fundamental domain for the action
of G(Z) on G(R), the set (Fh) · (XR) (when viewed as a multiset) is a finite
cover of a fundamental domain for the action ofG(Z) on the elements inW (R)
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with nonzero discriminant and height bounded by X . The degree of the cover
depends only on the size of stabilizer in G(R) and is thus absolutely bounded
by 22g. The presence of these stabilizers is in fact the reason we consider
Fh · XR as a multiset. Hence, we have

N (L; M; X) � #{B ∈ ((Fh) · (XR)) ∩ L : |Q|(B) > M}. (15)

Let G1 be a compact left K -invariant set in G(R) which is the closure of a
nonempty open set. Averaging (15) over h ∈ G1 and exchanging the order of
integration as in [4, §10.1], we obtain

N (L; M; X) �
∫

γ∈F
#{B ∈ ((γG1) · (XR)) ∩ L : |Q|(B) > M}dγ, (16)

where the implied constant depends only on G1 and R, and where dγ is a Haar
measure on G(R) given by

dγ = dn δ(s)d×s dk,

where dn is aHaarmeasure on the unipotent group N (R), dk is aHaarmeasure
on the compact group K , d×s is given by

d×s :=
g∏

i=1

dsi
si

,

and

δ(s) =
g∏

k=1

sk
2−2kg

k ; (17)

see [4, (10.7)].
Since si ≥ c for every i , there exists a compact subset N ′′ of N (R) contain-

ing (t)−1N ′ (t) for all t ∈ T ′. Since N ′′, K , G1 are compact and R is bounded,
the set E = N ′′KG1R is bounded. Then we have

N (L; M; X) �
∫

si�1
#{B ∈ ((s) · XE) ∩ L : |Q|(B) > M}δ(s)d×s. (18)

We denote the coordinates on W by bi j , for 1 ≤ i ≤ j ≤ n. These coordi-
nates are eigenvectors for the action of T on W ∗, the dual of W . Denote the
T -weight of a coordinate α on W , or more generally a product α of powers of
such coordinates, by w(α). An elementary computation shows that
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w(bi j ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t−1
i t−1

j if i, j ≤ g

t−1
i if i ≤ g, j = g + 1

t−1
i tn− j+1 if i ≤ g, j > g + 1

1 if i = j = g + 1
tn− j+1 if i = g + 1, j > g + 1

tn−i+1tn− j+1 if i, j > g + 1.

(19)

Then the (i, j)-entry of any B ∈ (s) · XE is bounded by Xw(bi j ), up to a
multiplicative constant depending only on G1 and R.

Let W dist denote the subset of W (Q) consisting of Q-distinguished ele-
ments. Then L is a subset of W dist. It is shown in [4, §10.2] that most of the
lattice points in W dist lie inside the subspace W00 consisting of symmetric
matrices B whose (i, j)-entries are 0 whenever i + j < n. More precisely, we
have the following estimates from [4, Propositions 10.5 and 10.7]:

Proposition 2.5 We have

∫

si�1
#{B ∈ ((s) · XE) ∩ (12W (Z) \ 1

2W00(Z)) : b11 = 0}δ(s)d×s

= Oε(X
n(n+1)/2−1+ε) (20)

∫

si�1
#{B ∈ ((s) · XE) ∩ L : b11 �= 0}δ(s)d×s

= o(Xn(n+1)/2). (21)

Therefore, to prove Theorem 1.5(b) when n is odd, it remains to obtain a
power-saving improvement of (21) and estimate

∫

si�1
#{B ∈ ((s) · XE) ∩ L ∩ 1

2W00(Z) : |Q|(B) > M}δ(s)d×s. (22)

2.4 Proof of Theorem 1.5(b) for odd n

We begin with a power-saving improvement of (21).

Proposition 2.6 We have

∫

si�1
#{B ∈ ((s) · XE) ∩ W dist ∩ 1

2W (Z) : b11 �= 0}δ(s)d×s

= Oε(X
n(n+1)/2−1/5+ε).
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Proof We note that the p-adic density of elements in W (Zp) that are Qp-
distinguished is bounded uniformly away from 1. In fact, this density is
bounded above by 1 − g

2g+1 + O(1/p) by [4, §10.7]. Then an application
of the Selberg sieve exactly as in [22] yields the result. ��

We now estimate (22). The Q-invariant can also be given a weight by view-
ing the torus T as sitting inside G0 and using (8). Namely,

w(Q) =
g∏

k=1

t−1
k =

g∏

k=1

s−k
k . (23)

Since the polynomial Q is homogeneous of degree g(g + 1)/2 in the coeffi-
cients of W0, we see that the Q-invariant of any B ∈ (s) · XE is bounded by
Xg(g+1)/2w(Q), up to a multiplicative constant depending only on G1 and R.
Although we shall not use this fact directly, the points in ((s) · XE) ∩

1
2W00(Z)with irreducible invariant polynomial occur predominantly when the
coordinates si are so large that they force any (half-)integral point of (s)·XE to
lie inside W00; this can be deduced by following the proof of Proposition 2.5
and using Proposition 2.6. On the other hand, since the weight of the Q-
invariant is a product of negative powers of si , the Q-invariants of points in
((s) · XE) ∩ 1

2W00(Z) become large when the coordinates si are small. It is
the tension between these two requirements that underlies the proof of the
following proposition, which gives the desired power-saving estimate for the
number of elements in ((s) · XE) ∩ 1

2W00(Z) having large |Q|-invariant.
Proposition 2.7 We have

∫

si�1
#{B ∈ ((s) · XE) ∩ L ∩ 1

2W00(Z) : |Q|(B) > M}δ(s)d×s

= O

(
1

M
Xn(n+1)/2 log X

)

.

Proof First note that if an element in 1
2W00(Z) has (i, j)-coordinate 0 for

some i + j = n, then the element has discriminant 0 and hence is not in L.
Since the weight of bi,n−i is s

−1
i , to count points in L it suffices to integrate

only in the region where si � X for all i . Furthermore, the condition on
the |Q|-invariant implies that it suffices to integrate only in the region where
Xg(g+1)/2w(Q) � M .
Let S denote the set of coordinates of W00, i.e., S = {bi j : i + j ≥ n}. For

(s) in the range 1 � si � X , we have Xw(α) � 1 for all α ∈ S. Hence the
number of lattice points in (s) ·(XE) for (s) in this range is� ∏

α∈S(Xw(α)).
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Therefore,

∫

si�1
#{B ∈ ((s) · (XE)) ∩ L ∩ 1

2W00(Z) : |Q(B)| > M}δ(s)d×s

�
∫

1�si�X, Xg(g+1)/2w(Q)�M

∏

α∈S

(
Xw(α)

)
δ(s)d×s

�
∫

1�si�X, Xg(g+1)/2w(Q)�M
Xn(n+1)/2−g2

g∏

k=1

s2k−1
k d×s

� 1

M

∫ X

si=1
Xn(n+1)/2−g2+g(g+1)/2w(Q)

g∏

k=1

s2k−1
k d×s

� 1

M

∫ X

si=1
Xn(n+1)/2−g(g−1)/2

g∏

k=1

sk−1
k d×s

� 1

M
Xn(n+1)/2 log(X),

where the second inequality follows from the definition (17) of δ(s) and the
computation (19) of the weights of the coordinates bi j , the third inequality
follows from the fact that Xg(g+1)/2w(Q) � M , the fourth inequality follows
from the computation of the weight of Q in (23), and the log X factor comes
from the integration over s1. ��

The estimate in Theorem 1.5(b) for odd n now follows from Theorem 2.4
and Propositions 2.5, 2.6 and 2.7, in conjunction with the bound on the number
of reducible polynomials proved in Proposition 4.3.

3 A uniformity estimate for even degree monic polynomials

In this section, which is structured similarly to Sect. 2, we prove the estimate
of Theorem 1.5(b) when n = 2g + 2 is even, for any g ≥ 1.

3.1 Invariant theory for the fundamental representation: SOn on the
space W of symmetric n× n matrices

Let A0 denote the n × n symmetric matrix with 1’s on the anti-diagonal and
0’s elsewhere. The group SO(A0) acts on W via the action

γ · B = γ Bγ t .
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The central μ2 acts trivially and so the action descends to an action of G =
SO(A0)/μ2.

We recall some of the arithmetic invariant theory of the representationW of
n×n symmetricmatrices of the (projective) split orthogonal groupG = PSOn.

See [23] for more details. The ring of polynomial invariants over C is freely
generated by the coefficients of the invariant polynomial

fB(x) := (−1)g+1 det(A0x − B)

(see [23, §2.1, 2.2]). We define the discriminant � and height H on W as the
discriminant and height of the invariant polynomial.

Let k be a field of characteristic not 2. For any monic polynomial f (x) ∈
k[x] of degree n such that �( f ) �= 0, let C f denote the smooth hyperel-
liptic curve y2 = f (x) of genus g and let J f denote its Jacobian. Then C f
has two rational non-Weierstrass points at infinity that are conjugate by the
hyperelliptic involution. The stabilizer of an element B ∈ W (k) with invari-
ant polynomial f (x) is isomorphic to J f [2](k) by [24, Proposition 2.33], and
hence has cardinality at most #J f [2](k̄) = 22g, where k̄ denotes a separable
closure of k.

We say that an element (or the G(k)-orbit of an element) B ∈ W (k) with
�(B) �= 0 is distinguished if there exists a flag Y ′ ⊂ Y defined over k where
Y is (g+ 1)-dimensional isotropic with respect to A0 and Y ′ is g-dimensional
isotropic with respect to B. If B is distinguished, then the set of these flags is in
bijection with J f [2](k) by [24, Proposition 2.32], and so it too has cardinality
at most 22g.

In fact, it is known (see [5, Proposition 22]) that the elements of J f [2](k)
are in natural bijection with the even degree factorizations of f defined over
k. (Note that the number of such factorizations of f over k̄ is indeed 22g.) In
particular, if f is irreducible over k and does not factor as g(x)ḡ(x) over some
quadratic extension of k, then the group J f [2](k) is trivial.

LetW0 be the subspace ofW consisting ofmatriceswhose top left g×(g+1)
block is zero. Then elements B in W0(k) with nonzero discriminant are all
distinguished since the (g + 1)-dimensional subspace Yg+1 spanned by the
first g + 1 basis vectors is isotropic with respect to A0 and the g-dimensional
subspace Yg ⊂ Yg+1 spanned by the first g basis vectors is isotropic with
respect to B. Let G0 be the parabolic subgroup of G consisting of elements γ

such that γ t preserves the flag Yg ⊂ Yg+1. Then G0 acts on W0.
An element γ ∈ G0 has the block matrix form

γ =
⎛

⎝
γ1 0 0
δ1 α 0
δ2 δ3 γ2

⎞

⎠ ∈
⎛

⎝
Mg×g 0 0
M1×g M1×1 M1×(g+1)

M(g+1)×g M(g+1)×1 M(g+1)×(g+1)

⎞

⎠ , (24)
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so γ ∈ G0 acts on the top right g × (g + 1) block of an element B ∈ W0 by

γ.Btop = γ1B
topγ t

2 ,

where we use the superscript “top” to denote the top right g× (g+1) block of
any given element of W0. We may thus view (Atop

0 , Btop) as an element of the
representation Vg = 2⊗ g⊗ (g+ 1). As before, we define the Q-invariant of
B ∈ W0 as the Q-invariant of (Atop

0 , Btop):

Q(B) := Q(Atop
0 , Btop). (25)

Then the Q-invariant is a relative invariant for the action of G0 onW0, i.e., for
any γ ∈ G0 in the form (24), we have by (6),

Q(γ.B) = det(γ1)
g+1 det(γ2)

gQ(B) = det(γ1)α
−gQ(B). (26)

In fact, we may extend the definition of the Q-invariant to an even larger
subset of W (Q) than W0(Q). We have the following proposition.

Proposition 3.1 Let B ∈ W0(Q) be an element whose invariant polynomial
f (x) is irreducible over Q and, when n ≥ 4, does not factor as g(x)ḡ(x) over
some quadratic extension of Q. Then for every B ′ ∈ W0(Q) such that B ′ is
G(Z)-equivalent to B, we have Q(B ′) = ±Q(B).

Proof The assumption on the factorization property of f (x) implies that
J f [2](Q) is trivial. The proof is now identical to that of Proposition 2.1. ��
We may thus define the |Q|-invariant for any element B ∈ W (Q) that

is G(Z)-equivalent to some B ′ ∈ W0(Q) and whose invariant polynomial is
irreducible overQ anddoes not factor as g(x)ḡ(x)over anyquadratic extension
of Q; indeed, we set |Q|(B) := |Q(B ′)|. By Proposition 3.1, this definition of
|Q|(B) is independent of the choice of B ′.We note again that all such elements
B ∈ W (Q) are distinguished.

3.2 Embedding W(2)
m into 1

4W(Z)

Letm be a positive squarefree integer and let f be anmonic integer polynomial
whose discriminant is weakly divisible by m2. Then as proved in §2.2, there
exists an integer � such that f (x + �) has the form

f (x + �) = xn + c1x
n−1 + · · · + cn−2x

2 + mcn−1x + m2cn.

Consider the following matrix:
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1058 M. Bhargava et al.

Bm(c1, . . . , cn)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m 0

. .
.

. .
.

1 . .
.

1 0
1 −c1/2

1 −c1/2 c21/4−c2 −c3/2
1 0 −c3/2 −c4 −c5/2

. .
.

. .
. −c5/2 −c6

. . .

m . .
. . . .

. . . −cn−1/2
0 −cn−1/2 −cn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(27)

It follows from a direct computation that

fBm(c1,...,cn)(x) = xn + c1x
n−1 + · · · + cn−2x

2 + mcn−1x + m2cn.

We set σm( f ) := Bm(c1, . . . , cn) + �A0 ∈ 1
4W (Z). Then evidently fσm( f ) =

f. A direct computation again shows that Q(Bm(c1, . . . , cn)) = m. Since the
Q-invariant on 2 ⊗ g ⊗ (g + 1) is SL2-invariant, we conclude that

Q(σm( f )) = m.

Theorem 3.2 Let m be a positive squarefree integer. There exists a map σm :
W(2)

m → 1
4W (Z) such that for every f ∈ W(2)

m ,

fσm( f ) = f, Q(σm( f )) = m. (28)

Let L be the set of elements v ∈ 1
4W (Z) that are G(Z)-equivalent to some

elements of 1
4W0(Z) and such that the invariant polynomial of v is irreducible

over Q and does not factor as g(x)ḡ(x) over some quadratic extension of Q.
Then by the remark following Proposition 3.1, we may view |Q| as a function
also onL. LetW(2),irr

m denote the set of polynomials inW(2)
m that are irreducible

over Q and do not factor as g(x)ḡ(x) over any quadratic extension of Q. Then
we have the following immediate consequence of Theorem 3.2:

Theorem 3.3 Let m be a positive squarefree integer. There exists an injective
map

σ̄m : W(2),irr
m → G(Z)\L

such that fσ̄m( f ) = f for every f ∈ W(2)
m . Furthermore, every element in

every orbit in the image of σ̄m has |Q|-invariant m.
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The number of monic integer polynomials having height less than X that
are reducible or factor as g(x)ḡ(x) over some quadratic extension of Q is of a
strictly smaller order of magnitude than the total number of such polynomials
(see, e.g., Proposition 4.3). Thus to prove Theorem 1.5(b), it suffices to count
the number of elements inW(2),irr

m having height less than X over all m > M ,
which, by Theorem 3.3, we may do by counting G(Z)-orbits on L ⊂ 1

4W (Z)

having height less than X and |Q|-invariant greater than M . More precisely,
let N (L; M; X) denote the number of G(Z)-equivalence classes of elements
in L whose |Q|-invariant is greater than M and whose height is less than X .
We obtain a bound for N (L; M; X) using the same method as in Sect. 2.

3.3 Counting G(Z)-orbits in 1
4W(Z)

The counting problem for the representation W of G is studied in [23]. In this
section, we recall some of the set up and results of [23].

Let R be a fundamental domain for the action of G(R) on the elements of
W (R) having nonzero discriminant and height bounded by 1 as constructed
in [23, §4.1]. Let F be a fundamental set for the left multiplication action
of G(Z) on G(R) obtained using the Iwasawa decomposition of G(R). More
explicitly, we have

G(R) = N (R)T K ,

where N is a unipotent group consisting of lower triangular matrices, K is
compact, and T is the split torus of G given by

T =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t−1
1

. . .

t−1
g+1

tg+1
. . .

t1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

We may also make the following change of variables. For 1 ≤ i ≤ g, define
si to be

si = ti/ti+1,

and let sg = tgtg+1. We denote an element of T with coordinates ti (resp. si )
by (t) (resp. (s)). We may takeF to be contained in a Siegel set, i.e., contained
in N ′T ′K , where N ′ consists of elements in N (R) whose coefficients are
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absolutely bounded and T ′ ⊂ T consists of elements in (s) ∈ T with si ≥ c
for some positive constant c.

Let G1 be a compact left K -invariant set in G(R) which is the closure of
nonempty open set. Then as in Sect. 2, we have

N (L; M; X) �
∫

γ∈F
#{B ∈ ((γG1) · (XR)) ∩ L : |Q|(B) > M}dγ, (29)

where the implied constant depends only on G1 and R, and where dγ is a Haar
measure on G(R) given by

dγ = dn δ(s)d×s dk,

where dn is aHaarmeasure on the unipotent group N (R), dk is aHaarmeasure
on the compact group K , d×s is given by

d×s :=
g+1∏

i=1

dsi
si

,

and δ(s) is given by

δ(s) =
g−1∏

k=1

sk
2−2kg−k

k · (sgsg+1)
−g(g+1)/2; (30)

see [23, (20)].
Since si ≥ c for every i , there exists a compact subset N ′′ of N (R) contain-

ing (t)−1N ′ (t) for all t ∈ T ′. Since N ′′, K ,G0 are compact and R is bounded,
the set E = N ′′KG0R is bounded. Then we have

N (L; M; X) �
∫

si�1
#{B ∈ ((s) · XE) ∩ L : |Q|(B) > M}δ(s)d×s. (31)

As before, we denote the coordinates of W by bi j , for 1 ≤ i ≤ j ≤ n, and
we denote the T -weight of a coordinate α on W , or a product α of powers of
such coordinates, by w(α). We compute the weights of the coefficients bi j to
be

w(bi j ) =
⎧
⎨

⎩

t−1
i t−1

j if i, j ≤ g + 1

t−1
i tn− j+1 if i ≤ g + 1, j > g + 1

tn−i+1tn− j+1 if i, j > g + 1.
(32)

Then the (i, j)-entry of any B ∈ (s) · XE is bounded by Xw(bi j ), up to a
multiplicative constant depending only on G1 and R.
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Let W00 ⊂ W denote the space of symmetric matrices B such that bi j =
0 for i + j < n. Let W dist denote the subset of W (Q) consisting of Q-
distinguished elements. ThenL is a subset ofW dist. It was shown in [23, §4.2]
that most of the lattice points in W dist lie inside W00. More precisely, we have
the following estimates from [23, Proposition 21 and 23].

Proposition 3.4 We have

∫

si�1
#{B ∈ ((s) · XE) ∩ (14W (Z) \ 1

4W00(Z)) : b11 = 0}δ(s)d×s

= Oε(X
n(n+1)/2−1+ε) (33)

∫

si�1
#{B ∈ ((s) · XE) ∩ L : b11 �= 0}δ(s)d×s

= o(Xn(n+1)/2). (34)

Therefore, to prove Theorem 1.5(b) when n = 2g + 2 is even, it remains to
obtain a power saving improvement of (34) and estimate

∫

si�1
#{B ∈ ((s) · XE) ∩ L ∩ 1

4W00(Z) : |Q|(B) > M}δ(s)d×s. (35)

3.4 Proof of Theorem 1.5(b) for even n

We begin with a power saving improvement of (34).

Proposition 3.5 We have

∫

si�1
#{B ∈ ((s) · XE) ∩ W dist ∩ 1

4W (Z) : b11 �= 0}δ(s)d×s

= Oε(X
n(n+1)/2−1/5+ε).

Proof In the proof of [23, Proposition 23], it is shown that the p-adic density
of elements in W (Zp) that are Qp-distinguished is bounded uniformly away
from 1. Then an application of the Selberg sieve exactly as in [22] yields the
result. ��

We now estimate (35). The Q-invariant can also be given a weight by view-
ing the torus T as sitting inside G0 and using (26). Namely,

w(Q) = (t1 · · · tg)−1t gg+1 =
g∏

k=1

skk . (36)
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Since the polynomial Q is homogeneous of degree g(g + 1)/2 in the coeffi-
cients of W0, we see that the Q-invariant of any B ∈ (s) · XE is bounded by
Xg(g+1)/2w(Q), up to a multiplicative constant depending only on G0 and R.

Proposition 3.6 We have

∫

si�1
#{B ∈ ((s) · (XE)) ∩ L ∩ 1

4W00(Z) : |Q|(B) > M}δ(s)d×s

= O(Xn(n+1)/2 log2 X/M).

Proof Analogous to the proof of Proposition 2.7, in order for the set {B ∈
((s) · (XE)) ∩ L ∩ 1

4W00(Z) : |Q|(B) > M} to be nonempty, the following
conditions must be satisfied:

Xs−1
i � 1,

Xsgs
−1
g+1 � 1,

Xg(g+1)/2w(Q) � M.

(37)

Let S denote the set of coordinates of W00, i.e., S = {bi j : i + j ≥ n}. Let
TX,M denote the set of (s) satisfying si � 1 and the conditions of (37). Then
we have

∫

si�1
#{B ∈ ((s) · (XE)) ∩ L ∩ 1

2W00(Z) : |Q|(B) > M}δ(s)d×s

�
∫

(s)∈TX,M

( ∏

α∈S
(Xw(α))

)
δ(s)d×s

�
∫

(s)∈TX,M

Xn(n+1)/2−g(g+1)
g−1∏

k=1

s2k−1
k · sg−1

g sgg+1d
×s

� 1

M

∫

(s)∈TX,M

Xn(n+1)/2−g(g+1)/2w(Q)

g−1∏

k=1

s2k−1
k · sg−1

g sgg+1d
×s

� 1

M

∫

(s)∈TX,M

Xn(n+1)/2−g(g+1)/2
g−1∏

k=1

sk−1
k · s−1

g sgg+1d
×s

� 1

M

∫

(s)∈TX,M

Xn(n+1)/2−g(g+1)/2+g
g−1∏

k=1

sk−1
k · sg−1

g d×s

� 1

M
Xn(n+1)/2 log2(X),
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where the first inequality follows from the fact that Xw(bi j ) � 1 for all bi j ∈ S
when (s) is in the range 1 � si � X , the second inequality follows from the
definition (30) of δ(s) and the computation (32) of the weights of the coordi-
nates bi j , the third inequality follows from the fact that Xg(g+1)/2w(Q) � M ,
the fourth inequality follows from the computation of the weight of Q in (36),
the fifth inequality comes from multiplying by the factor (Xsgs

−1
g+1)

g � 1,

and the log2 X factor in the last inequality comes from the integrals over s1
and sg+1. ��

The estimate in Theorem 1.5(b) for even n now follows from Theorem 3.3
and Propositions 3.4, 3.5 and 3.6, in conjunction with the bound on the number
of reducible polynomials proved in Proposition 4.3.

4 Proof of the main theorems

In this section,we prove a result fromwhichTheorems 1.1 and 1.2 immediately
follow.Let� = (�v)v be a collection of sets�v ⊂ Vn(Zv) indexed by places v

ofQ, such that�p is defined by congruence conditions modulo some power of
p for any finite prime p and�∞ ⊂ Vn(R) consists of all degree-n polynomials
f such that the number of real roots of f lies in some fixed nonempty subset of
{0, . . . , n}. Such a set is called a collection of local specifications. Associate
to each collection � the subset V(�) of Vn(Z) consisting of all elements
f that satisfy f ∈ �v for all places v. For any positive integer κ , we say
that a collection � of local specifications is κ-acceptable if �p is defined by
congruence conditionsmodulo pκ for all primes p; and for all sufficiently large
primes p, the sets�p contain every element f ∈ Vn(Zp)with p2 � �( f ). The
local specifications corresponding to Theorems 1.1 and 1.2 are 2-acceptable.
For a set S ⊂ Vn(Z), let SX denote the set of elements in Swith height bounded
by X . Then we have the following theorem:

Theorem 4.1 Let κ be a positive integer and let� be a κ-acceptable collection
of local specifications. Then

#V(�)X = Vol(�∞,H<1)
∏

p

Vol(�p) · Xn(n+1)/2 + Oε(X
n(n+1)/2−min{1/5,1/(2κ)}+ε),

where �∞,H<1 is the set of elements in �∞ having height less than 1, the
volumes of sets in Vn(Zp) (resp. Vn(R)) are computed with respect to the
Haar-measures normalized so that Vn(Zp) has volume 1 (resp. Vn(Z) has
covolume 1), and where the implied constant depends only on n and �.

This section is organized as follows. First in §4.1 we prove some estimates
for the number of reducible elements in Vn(Z) having bounded height. Then in
§4.2, we prove a uniformity estimate on polynomials whose discriminants are
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divisible by a large square.We then proveTheorem4.1 by using this uniformity
estimate and a squarefree sieve, from which we then deduce Theorems 1.1
and 1.2.

4.1 Estimates on reducible forms

Let Vn(Z) denote the set of monic integer polynomials of degree n. Let
Vn(Z)red denote the subset of polynomials that are reducible or when n ≥ 4,
factor as g(x)ḡ(x) over some quadratic extension of Q. We first give a power
saving bound for the number of polynomials in Vn(Z)red having bounded
height. We start with the following lemma.

Lemma 4.2 The number of elements in Vn(Z)X that have a rational linear
factor is bounded by O(Xn(n+1)/2−n+1 log X).

Proof Consider the polynomial

f (x) = xn + a1x
n−1 + · · · + an ∈ Vn(Z)X .

First, note that the number of such polynomials with an = 0 is bounded by
O(Xn(n+1)/2−n). Next, we assume that an �= 0. There are O(Xn(n+1)/2−n+1)

possibilities for the (n − 1)-tuple (a1, a2, . . . , an−2, an). If an �= 0 is fixed,
then there are O(log X) possibilities for the linear factor x − r of f (x), since
r | an . By setting f (r) = 0, we see that the values of a1, a2, . . . , an−2, an ,
and r determine an−1 uniquely. The lemma follows. ��

Following arguments of Dietmann [7], we now prove that the number of
reducible monic integer polynomials of bounded height is negligible, with a
power-saving error term.

Proposition 4.3 We have

#Vn(Z)redX = O(Xn(n+1)/2−n+1 log X).

Proof First, by [7, Lemma 2], we have that

xn + a1x
n−1 + · · · + an−1x + t (38)

has Galois group Sn over Q(t) for all (n − 1)-tuples (a1, . . . , an−1) aside
from a set S of cardinality O(X (n−1)(n−2)/2). Hence, the number of n-tuples
(a1, . . . , an) with height bounded by X such that the Galois group of xn +
a1xn−1 + · · · + an−1x + t over Q(t) is not Sn is O(X (n−1)(n−2)/2Xn) =
O(Xn(n+1)/2−n+1).
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Next, let H be a subgroup of Sn that arises as the Galois group of the
splitting field of a polynomial in Vn(Z) with no rational root. For reducible
polynomials, we have from [7, Lemma 4] that H has index at least n(n−1)/2
in Sn . When n ≥ 4 is even and the polynomial factors as g(x)ḡ(x) over a
quadratic extension, the splitting field has degree at most 2(n/2)! and so the
index of the corresponding Galois group in Sn is again at least n(n − 1)/2.
For fixed a1, . . . , an−1 such that the polynomial (38) has Galois group Sn over
Q(t), an argument identical to the proof of [7, Theorem 1] implies that the
number of an with |an| ≤ Xn such that the Galois group of the splitting field
of xn + a1xn−1 + · · · an over Q is H is bounded by

Oε

(
X ε exp

( n

[Sn : H ] log X + O(1)
))

= O(X2/(n−1)+ε).

In conjunction with Lemma 4.2, we thus obtain the estimate

#Vn(Z)redX = O(Xn(n+1)/2−n+1 log X) + O(Xn(n+1)/2−n+1)

+Oε(X
n(n+1)/2−n+2/(n−1)+ε),

and the proposition follows. ��

4.2 Proof of Theorem 4.1

Recall that we proved the estimates of Theorem 1.5(b) for odd and even n in §2
and §3, respectively. The estimate of Theorem 1.5(a) is a direct consequence
of [2, Theorem 3.5, Lemma 3.6] since the discriminant polynomial on Vn is
irreducible. For any positive squarefree integerm, letWm denote the set of all
elements in Vn(Z)whose discriminants are divisible bym2. We now prove the
following direct consequence of Theorem 1.5.

Theorem 4.4 Let Wm,X denote the set of elements in Wm having height
bounded by X. For any positive real number M, we have

∑

m>M
m squarefree

#Wm,X = Oε(X
n(n+1)/2+ε/

√
M) + Oε(X

n(n+1)/2−1/5+ε). (39)

Proof Note first that an element f ∈ Vn(Z) belongs to atmost O(X ε) different
sets Wm , since m is a divisor of �( f ). Hence it suffices to prove the bound
(39) for the number of elements in the union of Wm,X over all squarefree
integers m > M . Now suppose f is an element in this union. Let k1 denote
the product of all the primes p where p2 strongly divides �( f ) and let k2
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denote the product of all the primes p where p2 weakly divides �( f ). Then
f ∈ W(1)

k1
∩ W(2)

k2
with k1k2 > M . In other words,

⋃

m>M
m squarefree

Wm,X ⊂
⋃

k1>
√
M

k1 squarefree

W(1)
k1,X

∪
⋃

k2>
√
M

k2 squarefree

W(2)
k,X .

The theorem now follows from Parts (a) and (b) of Theorem 1.5. ��
We remark that the

√
M in the denominator in (39) can be improved to

M . However we will be using Theorem 4.4 for M = X1/κ (where κ = 2
for the application to Theorems 1.1 and 1.2) in which case the second term
Oε(Xn(n+1)/2−1/5+ε) sometimes dominates. We outline here how to improve
the denominator to M for the sake of completeness. Break up Wm into sets
W(1)

m1 ∩W(2)
m2 for positive squarefree integersm1,m2 withm1m2 = m as above.

Break the ranges ofm1 andm2 into dyadic ranges. For each range, we count the
number of elements inW(1)

m1 ∩W(2)
m2 by embedding eachW(2)

m2 into 1
4W (Z) as

in Sects. 2 and 3. Earlier, we bounded the cardinality of the image of W(2)
m2,X

by splitting 1
4W (Z) up into two pieces: 1

4W00(Z) and 1
4W (Z) \ 1

4W00(Z).
The bound on the second piece does not depend on m2 and continues to be
Oε(Xn(n+1)/2−1/5+ε). However for the first piece, we now impose the further
condition that elements in 1

4W00(Z) are strongly divisible by p2 for all prime
factors p of m1 and apply the quantitative version of the Ekedahl sieve as
in [2]. This gives the desired additional 1/m1 saving, improving the bound to

Oε(X
n(n+1)/2+ε/M) + Oε(X

n(n+1)/2−1/5+ε).

The reason for counting in dyadic ranges of m1 and m2 is that for both the
strongly and weakly divisible cases, we count not for a fixed m but sum over
all m > M .

Let (�v)v be a κ-acceptable collection of local specifications. Let N denote
a positive integer such that for every prime p > N , the set �p contains every
element f ∈ Vn(Zp) with p2 � �( f ). Let P denote the product of all primes
p ≤ N . For squarefree integers m, we let Wm(�) denote the set of elements
f such that f /∈ �p for all p | m and letm′ denote the product of all the prime
factors of m that are larger than N . Then m′ ≥ m/P and Wm(�) ⊂ Wm′ .
Since P depends only on �, we may assume that log X > P in what follows.
In other words, we have

∑

m>X1/κ

m squarefree

#Wm(�)X ≤
∑

m′>X1/κ−ε

m′ squarefree

#Wm′,X . (40)
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For each prime p, let θ(p) denote Vol(�p), let θ(∞) denote Vol(�∞,H<1),
and set θ̄ (p) := 1 − θ(p). We define θ̄ (m) = ∏

p|m θ̄ (m) for squarefree
integers m. Let μ denote the Möbius function. We have

#V(�)X =
∑

m≥1

μ(m)#Wm(�)X

=
X1/κ
∑

m=1

μ(m)θ(∞)θ̄(m)Xn(n+1)/2 + O
(X1/κ
∑

m=1

Xn(n+1)/2−n
)

+O
(∑

m>X1/κ #Wm(�)X

)

= θ(∞)
∏

p

θ(p) · Xn(n+1)/2 + Oε(X
n(n+1)/2−1/(2κ)+ε)

+Oε(Xn(n+1)/2−1/5+ε),

(41)

where the final equality follows from (40) and Theorem 4.4. This concludes
the proof of Theorem 4.1.

Finally note that Theorems 1.1 and 1.2 follow from Theorem 4.1 since
the corresponding families are 2-acceptable, and the constants λn and ζ(2)−1

appearing in these theorems are equal simply to
∏

p λn(p) and
∏

p ρn(p),
respectively.

5 A lower bound on the number of degree-n number fields that are
monogenic/have a short generating vector

Let g ∈ Vn(R) be a monic real polynomial of degree n and nonzero dis-
criminant with r real roots and 2s complex roots. Then R[x]/(g(x)) is
naturally isomorphic to R

n ∼= R
r × C

s as R-vector spaces via its real
and complex embeddings (where we view C as R + R

√−1). The R-
vector space R[x]/(g(x)) also comes equipped with a natural basis, namely
1, θ, θ2, . . . , θn−1, where θ denotes the image of x in R[x]/(g(x)). Let Rg
denote the lattice spanned by 1, θ, . . . , θn−1. In the case that g is an inte-
gral polynomial in Vn(Z), the lattice Rg may be identified with the ring
Z[x]/(g(x)) ⊂ R[x]/(g(x)) ⊂ R

n .
Since g(x) gives a lattice in R

n in this way, we may ask whether this basis
is reduced in the sense of Minkowski, with respect to the usual inner product
on R

n .1 More generally, for any monic real polynomial g(x) of degree n
and nonzero discriminant, we may ask whether the basis 1, θ, θ2, . . . , θn−1

is Minkowski-reduced for the lattice Rg, up to a unipotent upper-triangular

1 Recall that a Z-basis α1, . . . , αn of a lattice L is called Minkowski-reduced if successively
for i = 1, . . . , n the vector αi is the shortest vector in L such that α1, . . . , αi can be extended
to a Z-basis of L . Most lattices have a unique Minkowski-reduced basis.
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transformation over Z (i.e., when the basis [1 θ θ2 · · · θn−1] is replaced by
[1 θ θ2 · · · θn−1]A for some upper triangular n × n integer matrix A with
1’s on the diagonal).

More precisely, given g ∈ Vn(R) of nonzero discriminant, let us say that the
corresponding basis 1, θ, θ2, . . . , θn−1 of R

n is quasi-reduced if there exist
monic integer polynomials hi of degree i , for i = 1, . . . , n − 1, such that
the basis 1, h1(θ), h2(θ), . . . , hn−1(θ) of Rg is Minkowski-reduced (so that
the basis 1, θ, θ2, . . . , θn−1 is Minkowski-reduced up to a unipotent upper-
triangular transformation over Z). By abuse of language, we then call the
polynomial g quasi-reduced as well. We say that g is strongly quasi-reduced
if in addition Z[x]/(g(x)) has a unique Minkowski-reduced basis.

The relevance of being strongly quasi-reduced is contained in the following
lemma.

Lemma 5.1 Let g(x) and g∗(x) be distinct monic integer polynomials of
degree n and nonzero discriminant that are strongly quasi-reduced and
whose xn−1-coefficients vanish. ThenZ[x]/(g(x)) andZ[x]/(g∗(x)) are non-
isomorphic rings.

Proof Let θ and θ∗ denote the images of x in Z[x]/(g(x)) and Z[x]/(g∗(x)),
respectively. By the assumption that g and g∗ are strongly quasi-reduced, we
have that 1, h1(θ), h2(θ), . . . , hn−1(θ) and 1, h∗

1(θ
∗), h∗

2(θ
∗), . . . , h∗

n−1(θ
∗)

are the unique Minkowski-reduced bases of Z[x]/(g(x)) and Z[x]/(g∗(x)),
respectively, for some monic integer polynomials hi and h∗

i of degree i for
i = 1, . . . , n − 1.

If φ : Z[x]/(g(x)) → Z[x]/(g∗(x)) is a ring isomorphism, then by
the uniqueness of Minkowski-reduced bases for these rings, φ must map
Minkowski basis elements to Minkowski basis elements, i.e., φ(hi (θ)) =
h∗
i (θ

∗) for all i . In particular, this is true for i = 1, so φ(θ) = θ∗ + c for
some c ∈ Z, since h1 and h∗

1 are monic integer linear polynomials. Therefore
θ and θ∗ + c must have the same minimal polynomial, i.e., g(x) = g∗(x − c);
the assumption that θ and θ∗ both have trace 0 then implies that c = 0. It
follows that g(x) = g∗(x), a contradiction. We conclude that Z[x]/(g(x))
and Z[x]/(g∗(x)) must be non-isomorphic rings, as desired. ��

The condition of being quasi-reduced is fairly easy to attain:

Lemma 5.2 If g(x) is a monic real polynomial of nonzero discriminant, then
g(ρx) is quasi-reduced for any sufficiently large ρ > 0.

Proof This is easily seen from the Iwasawa-decomposition description of
Minkowski reduction. Consider the fundamental domainFSL for the action of
SLn(Z) on SLn(R) given by

FSL = {γ = ντκ : ν ∈ N ′ τ ∈ T ′; κ ∈ SOn(R)},
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where N ′ denotes a compact subset (depending on τ ) of the group of lower-
triangular matrices and T ′ is the group of diagonal matrices (t1, . . . , tn) with
ti ≤ c ti+1 for all i and some absolute constant c = cn > 0. Given an n-
ary positive definite integer-valued quadratic form Q, viewed as a symmetric
n×nmatrix, wewrite Q = γ Inγ T , where In is the sum-of-n-squares diagonal
quadratic formand γ = ντ ∈ SLn(R) is unique up to rightmultiplication by an
element in SOn(R). The condition that Q is Minkowski reduced is equivalent
to the condition that γ belongs to FSL. The condition that Q be quasi-reduced
is simply then that ti ≤ c ti+1 (with no condition on ν).

Consider the natural isomorphism R[x]/(g(x)) → R[x]/(g(ρx)) of étale
R-algebras defined by x → ρx . If θ denotes the image of x in R[x]/(g(x)),
then ρθ is the image of x in R[x]/(g(ρx)) under this isomorphism. Let Q1
be the Gram matrix of the lattice basis 1, θ, θ2, . . . , θn−1 in R

n and Qρ be
the Gram matrix of the lattice basis 1, ρθ, ρ2θ2, . . . , ρn−1θn−1 in R

n . If the
element τ ∈ T corresponding to g(x) is (t1, . . . , tn), then the element τρ ∈ T
corresponding to g(ρx) is (t1, ρt2, ρ2t3, . . . , ρn−1tn). This is because Qρ =
�Q1�

T , where � is the diagonal matrix (1, ρ, ρ2, . . . , ρn−1); therefore, if
Q1 = (ντκ)In(ντκ)T , then

Qρ = (�ντκ)In(�ντκ)T = (ν′(�τ)κ)In(ν
′(�τ)κ)T

for some ν′ ∈ N depending on �, so τρ = �τ . For sufficiently large ρ, we
then have ρi−1ti ≤ cρi ti+1 for all i = 1, . . . , n − 1, as desired. ��
Lemma 5.2 implies that most monic irreducible integer polynomials are
strongly quasi-reduced:

Lemma 5.3 A density of 100% of irreducible monic integer polynomials
f (x) = xn + a1xn−1 + · · · + an of degree n, when ordered by height
H( f ) := max{|a1|, |a2|1/2, . . . , |an|1/n}, are strongly quasi-reduced.
Proof Let ε > 0, and let B be a compact region in R

n ∼= Vn(R) consisting of
monic real polynomials of nonzero discriminant and height less than 1 such
that

Vol(B) > (1 − ε)Vol({ f ∈ Vn(R) : H( f ) < 1}).

For each f ∈ B, by Lemma 5.2 there exists a minimal finite constant ρ f >

0 such that f (ρx) is quasi-reduced for any ρ > ρ f . The function ρ f is
continuous in f , and thus by the compactness of B there exists a finite constant
ρB > 0 such that f (ρx) is quasi-reduced for any f ∈ B and ρ > ρB .

Now consider the weighted homogeneously expanding region ρ ·B inR
n ∼=

Vn(R), where a real number ρ > 0 acts on f ∈ B by (ρ · f )(x) = f (ρx).
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Note that H(ρ · f ) = ρH( f ). For ρ > ρB , we have that all polynomials in
ρ · B are quasi-reduced, and

Vol(ρ · B) > (1 − ε)Vol({ f ∈ Vn(R) : H( f ) < ρ}).
Letting ρ tend to infinity shows that the density of monic integer polynomials
f of degree n, when ordered by height, that have nonzero discriminant and are
strongly quasi-reduced is greater than 1− ε. Since ε was arbitrary, and 100%
of integer polynomials are irreducible, the lemma follows. ��

We have the following variation of Theorem 1.1.

Theorem 5.4 Let n ≥ 1 be an integer. Then when monic integer polynomials
f (x) = xn + a1xn−1 + · · · + an of degree n with a1 = 0 are ordered by
H( f ) := max{|a1|, |a2|1/2, . . . , |an|1/n}, the density having squarefree dis-
criminant�( f ) exists and is equal to κn = ∏

p κn(p) > 0, where κn(p) is the

density of monic polynomials f (x) over Zp with vanishing xn−1-coefficient
having discriminant indivisible by p2.

Indeed, the proof of Theorem 1.1 applies also to those monic integer
polynomials having vanishing xn−1-coefficient without any essential change;
one simply replaces the representation W (along with W0 and W00) by the
codimension-1 linear subspace consisting of symmetric matrices with anti-
trace 0, but otherwise the proof carries through in the identical manner. The
analogue of Theorem 5.4 holds also if the condition a1 = 0 is replaced by
the condition 0 ≤ a1 < n; in this case, κn = ∏

p κn(p) > 0 is replaced by
the same constant λn = ∏

p λn(p) > 0 of Theorem 1.1, since for any monic
degree-n polynomial f (x) there is a unique constant c ∈ Z such that f (x + c)
has xn−1-coefficient a1 satisfying 0 ≤ a1 < n.

Lemmas 5.1 and 5.3 and Theorem 5.4 imply that 100% of monic integer
irreducible polynomials having squarefree discriminant and vanishing xn−1-
coefficient (or those having xn−1-coefficient non-negative and less than n),
when ordered by height, yield distinct degree-n fields. Since polynomials of
height less than X1/(n(n−1)) have absolute discriminant� X , and since number
fields of degree n and squarefree discriminant always have associated Galois
group Sn , we see that the number of Sn-number fields of degree n and absolute
discriminant less than X is � X (2+3+···+n)/(n(n−1)) = X1/2+1/n . We have
proven Corollary 1.3.

Remark 5.5 The statement of Corollary 1.3 holds even if one specifies the real
signatures of the monogenic Sn-number fields of degree n, with the identical
proof. It holds also if one imposes any desired set of local conditions on the
degree-n number fields at a finite set of primes, so long as these local conditions
do not contradict local monogeneity.
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Remark 5.6 We conjecture that a positive proportion of monic integer poly-
nomials of degree n with xn−1-coefficient non-negative and less than n and
absolute discriminant less than X have height O(X1/(n(n−1))), where the
implied O-constant depends only on n. That is why we conjecture that the
lower bound in Corollary 1.3 also gives the correct order of magnitude for the
upper bound.

In fact, letCn denote the (n−1)-dimensional Euclidean volume of the (n−
1)-dimensional region R0 in Vn(R) ∼= R

n consisting of all polynomials f (x)
with vanishing xn−1-coefficient and absolute discriminant less than 1. Then
the region Rz in Vn(R) ∼= R

n of all polynomials f (x) with xn−1-coefficient
equal to z and absolute discriminant less than 1 also has volume Cn , since Rz
is obtained from R0 via the volume-preserving transformation x 	→ x + z/n.
Since we expect that 100% of monogenic number fields of degree n can be
expressed as Z[θ ] in exactly one way (up to transformations of the form θ 	→
±θ + c for c ∈ Z), in view of Theorem 1.2 we conjecture that the number of
monogenic number fields of degree n and absolute discriminant less than X is
asymptotic to

nCn

2ζ(2)
X1/2+1/n. (42)

When n = 3, a Mathematica computation shows that we have C3 =
21/3(3+√

3)
45

�(1/2)�(1/6)
�(2/3) .

Finally,we turn to the proof ofCorollary 1.4. Following [9], for any algebraic
number x , we write ‖x‖ for the maximum of the archimedean absolute values
of x . Given a number field K , write s(K ) = inf{‖x‖ : x ∈ OK , Q(x) = K }.
We consider the number of number fields K of degree n such that s(K ) ≤ Y .

As already pointed out in [9, Remark 3.3], an upper bound of �
Y (n−1)(n+2)/2 is easy to obtain. Namely, a bound on the archimedean absolute
values of an algebraic number x gives a bound on the archimedean absolute
values of all the conjugates of x , which then gives a bound on the coefficients of
the minimal polynomial of x . Counting the number of possible minimal poly-
nomials satisfying these coefficient bounds gives the desired upper bound.

To obtain a lower boundof� Y (n−1)(n+2)/2,we useLemmas 5.1 and 5.3 and
Theorem 5.4. Suppose f (x) = xn +a2xn−2+· · ·+an is an irreducible monic
integer polynomial of degree n. Let θ denote a root of f (x). If H( f ) ≤ Y ,
then |θ | � Y ; this follows, e.g., from Fujiwara’s bound [10]:

‖θ‖ ≤ max{|a1|, |a2|1/2, . . . , |an−1|1/(n−1)|, |an/2|1/n}.

Therefore, if H( f ) ≤ Y , then

s(Q[x]/( f (x))) ≤ ‖θ‖ � Y. (43)
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Now Lemma 5.3 and Theorem 5.4 imply that there are � Y (n−1)(n+2)/2 such
polynomials f (x) of height less than Y that have squarefree discriminant and
are also strongly quasi-reduced. Lemma 5.1 and (43) then imply that these
polynomials define distinct Sn-number fields K of degree n with s(K ) ≤ Y .
This completes the proof of Corollary 1.4.
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