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Abstract We compute the mod p homology growth of residual sequences of
finite index normal subgroups of right-angled Artin groups. We find exam-
ples where this differs from the rational homology growth, which implies the
homology of subgroups in the sequence has lots of torsion. More precisely, the
homology torsion grows exponentially in the index of the subgroup. For odd
primes p, we construct closed locally CAT(0) manifolds with nonzero mod p
homology growth outside the middle dimension. These examples show that
Singer’s conjecture on rational homology growth and Lück’s conjecture on
torsion homology growth are incompatible with each other, so at least one of
them must be wrong.
This paper is about the growth of homology in regular coverings of finite
aspherical complexes X = B�. We will content ourselves with the situation
when the fundamental group � = π1X is residually finite. This means there is
a nested sequence of finite index normal subgroups �k � � with ∩k�k = 1.
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712 G. Avramidi et al.

We fix a choice of such a sequence and will be interested in the normalized
limits of Betti numbers with coefficients in a field F

b(2)
i (�; F) := lim sup

k

bi (B�k; F)

[� : �k] ,

where F is either Q or Fp. When F = Q then Lück’s approximation theo-
rem [11] shows this does not depend on the choice of sequence and can be
identified with a more analytically defined i th L2-Betti number of the uni-
versal cover E�. When F = Fp we will analogously refer to b(2)

i (�;Fp) as
the Fp-L2-Betti number, even though it does not (as far as we know) have an
analytic interpretation and it is not even known whether the lim sup depends
on the choice of sequence (we abuse notation by omitting the sequence from
b(2)
i (�;Fp)). Note that if the lim sup is independent of the sequence, then it
becomes an honest limit.

For a finite aspherical complex B� it is easy to see that the mod p L2-Betti
number is greater or equal to the ordinary L2-Betti number

b(2)
i (�;Fp) ≥ b(2)

i (�;Q),

but it might be strictly bigger. We show that this does—in fact—happen for
some right-angled Artin groups. This seems to have not been observed pre-
viously and contradicts a conjecture of Lück [Conjecture 3.4, [13]] that these
numbers are independent of the coefficient field. When � is a right-angled
Artin group we compute b(2)

i (�; F) completely for any coefficient field, via a
residually finite variant of the argument Davis and Leary [9] used to compute
the ordinary L2-Betti numbers of such groups.

Theorem 1 Let AL be a right-angled Artin group with defining flag complex
L and F any field (e.g. Q or Fp). Then

b(2)
i (AL; F) = b̄i−1(L; F).

Here b̄i−1(L; F) denotes the reduced Betti number of L with coefficients in
F . In particular, the lim sup is actually a limit, it does not depend on the choice
of chain but does depend on the characteristic of the coefficient field.

Corollary 2 Suppose that L is a flag triangulation of RP2.

b(2)
3 (AL;Q) = 0,

b(2)
3 (AL;F2) = 1.
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Mod p and torsion homology growth in nonpositive curvature 713

The proof of Theorem 1 also shows that F-L2-Betti numbers of finite index
subgroups of RAAG’s are multiplicative (see Corollary 10), and we will use
this later in Theorem 4. In general, it is not known whether the Fp-L2-Betti
numbers are multiplicative.

By the universal coefficient theorem, Hn(X,Fp) is determined by Hn(X,Q)

and Z/p-summands in Hn(X,Z) and Hn−1(X,Z). In this case, if AL is as in
Corollary 2, then since AL has a 3-dimensional model for BAL , H3(B�k;Z)

is torsion-free. Therefore, this discrepancy betweenQ and F2 homology leads
to exponentially growing torsion in homology in degree 2.

Corollary 3 The group AL as in Corollary 2 has exponential H2-torsion
growth:

lim sup
k

log |H2(B�k;Z)tors |
[AL : �k] > 0.

Furthermore, the rank of the 2-torsion subgroup of H2(B�k;Z) grows linearly
in [AL : �k].
While it is conjectured that for arithmetic hyperbolic 3-manifold groups the
torsion in homology grows exponentially in residual chains of congruence
covers, this is the first example of a finitely presented group of any sort where
one can prove that homology torsion grows exponentially in a residual chain,
answering a query of Bergeron for such a group. By contrast, Abert, Gelander,
andNikolov showed that if L is connected then H1-torsion of AL grows slower
than exponentially [1].

For other groups � the computation of L2-Betti numbers and homology
torsion growth is a difficult problem. A basic vanishing principle which can
make computations of L2-Betti numbers simpler is the following conjecture
often attributed to Singer.

Singer Conjecture Let Mn be a closed aspherical manifold. Then

b(2)
i (π1(M

n);Q) = 0 for i �= n

2
.

So in the residually finite setting, the free part of homology should grow
sublinearly outside the middle dimension. A more recent vanishing principle
regarding torsion growth, motivated by considerations in number theory, is
the following conjecture made by Bergeron and Venkatesh in the context of
arithmetic locally symmetric spaces [4] (see also [3]).

Bergeron–Venkatesh Conjecture Let G be a semisimple Lie group, � a
cocompact arithmetic lattice inG, and�k a sequence of congruence subgroups
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714 G. Avramidi et al.

with ∩k�k = 1. Then

lim sup
k

log |Hi (B�k;Z)tors |
[� : �k] = 0

unless i = dim(G/K )−1
2 .

Remark The conjecture is actually more precise and predicts that the limit is
positive in some cases, e.g. when G is SL(3,R), SL(4,R) or SO(m, n) for
mn odd.

Partially motivated by this conjecture, in [12] Lück suggested such a van-
ishing principle could hold quite generally for arbitrary closed aspherical
manifolds.

Lück Conjecture (1.12(2), [12]) Let Mn be a closed aspherical n-manifold
with residually finite fundamental group. Let �k � π1(Mn) be any normal
chain with

⋂
k �k = 1. If i �= (n − 1)/2 then

lim sup
k

log |Hi (B�k;Z)tors |
[π1(Mn) : �k] = 0.

It is interesting to note that the Singer and Lück Conjectures together imply
an Fp-version of the Singer conjecture.
Fp–Singer Conjecture Let Mn be a closed aspherical n-manifold with resid-
ually finite fundamental group. Then

b(2)
i (π1(M

n);Fp) = 0 for i �= n

2
.

To see this, suppose we have an n-manifoldMn with b(2)
i (π1(Mn);Fp) �= 0

for i �= n/2. By Poincaré duality, we can assume i > n/2. The Künneth
formula implies that Mn × Mn × Mn has nontrivial Fp-L2-Betti numbers in

dimension 3i . Since the Singer Conjecture predicts that b(2)
3i (π1((Mn)3);Q) =

0, the universal coefficient theorem implies exponential homological torsion
growth in dimension 3i or 3i − 1, which lies above the middle dimension,
contradicting Lück’s Conjecture.

The Fp-Singer Conjecture is open even for n = 3 (but see [4,6]). But in
high enough dimensions, we show this conjecture is not true for any odd prime
p.

Theorem 4 For any odd prime p, the Fp-Singer Conjecture fails in all odd
dimensions ≥ 7 and all even dimensions ≥ 14.
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Mod p and torsion homology growth in nonpositive curvature 715

Our examples are manifolds constructed via right-angled Coxeter groups; in
particular they are locally CAT(0), so it follows that the rational homology and
torsion homology growth conjectures are incompatible in the CAT(0) setting.
On the other hand, our examples are not locally symmetric so even though
the Singer conjecture is known for locally symmetric spaces the Bergeron–
Venkatesh conjecture remains open.

Here is a brief outline of our construction. In [14], it was shown that if a finite
type group� acts properly on a contractible n-manifold and b(2)

i (�;Q) �= 0 for
i > n

2 , then there is a counterexample to the Singer Conjecture (in some dimen-
sion possibly different from n.) We employ a similar strategy here. Our group
is a finite index subgroup of a right-angledArtin groupwith b(2)

4 (AL;Fp) �= 0,
and the 7-manifold is going to be the Davis complex corresponding to a right-
angled Coxeter group associated to a flag triangulation of a S6.

This uses Theorem 1 and the main result of [2]. More precisely, suppose
L = S2 ∪p D3 is a flag triangulation of a complex obtained by gluing a 3-disk

to a 2-sphere along a degree p map. Theorem 1 shows that b(2)
4 (AL;Fp) = 1.

Since H3(L;F2) = 0, [2, Theorem 5.1] shows that a related flag complex
OL (the link of a vertex in the Salvetti complex of AL ) embeds into a flag
triangulation T of S6. This is where we need p �= 2; interestingly this goes
back to the fact that van Kampen’s obstruction to embedding d-dimensional
simplicial complexes into R2d is an order two invariant.

Now, AL is commensurable to the right-angled Coxeter groupWOL by [8],
and WOL is a subgroup of WT . This acts properly on the associated Davis
complex, a contractible 7-manifold, so we obtain the desired proper action for
a finite index subgroup of AL .

We then show that the Fp-Singer Conjecture fails for either the right-angled
Coxeter group associated to T or to a link of an odd-dimensional simplex in
T . In other words, there must be a right-angled Coxeter group counterexample
in one of the dimensions 3, 5, or 7.

Taking cartesian products of counterexamples and surface groups, we get
counterexamples in all the dimensions stated in the theorem. In this way, we
also get a single closed asphericalmanifold contradictingFp-Singer for a finite
collection of primes. This suggests the following.

Question 5 Given a closed aspherical manifold Mn, is there a number N so
that for all primes p > N, the Fp-Singer Conjecture holds for Mn?

Of course, this is at least as difficult as the ordinary Singer conjecture, but it
seems interesting (and open) in many cases where the ordinary Singer con-
jecture is known. Along the same lines, one can modify the Lück conjecture
by ignoring the contributions to torsion coming from a finite collection of
exceptional primes which should be determined by the geometry of the man-
ifold Mn (akin to how the exceptional primes for right-angled Artin groups
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716 G. Avramidi et al.

are determined by the complex L .) This seems particularly interesting for
locally symmetric spaces and might be easier than the Bergeron–Venkatesh
conjecture.

1 Right-angled Artin and Coxeter groups

We collect some facts about right-angled Artin groups (RAAG’s), right-angled
Coxeter groups (RACG’s) and relations between one and the other which we
will need later. The philosophy to keep inmind is that RAAGs are the thingswe
can compute, RACGs are the things related to closed asphericalmanifolds, and
translating from the former to the later involves a bit of (classical) embedding
theory.

Let L be a flag complexwith vertex set V . The one-skeleton of L determines
two group presentations. A presentation for the RAAG AL has generators
{gv}v∈V ; there are relations [gv, gv′ ] = 1 (i.e., gv and gv′ commute) whenever
{v, v′} ∈ L(1). The RACG WL is the quotient of AL formed by adding the
relations (gv)

2 = 1, for all v ∈ V .
We now describe a standard classifying space for a RAAG AL . More pre-

cisely, let T V denote the product (S1)V . Each copy of S1 is given a cell structure
with one vertex e0 and one edge. For each simplex σ ∈ L , T (σ ) denotes the
subset of T V consisting of points (xv)v∈V such that xv = e0 whenever v is
not a vertex of σ . So, T (σ ) is a (dim σ + 1)-dimensional standard subtorus
of T V . The Salvetti complex for AL is the subcomplex BAL of T V defined as
the union of the subtori T (σ ) over all simplices σ in L:

BAL :=
⋃

σ⊂L

T (σ ).

The link of the unique vertex is a flag complex of the same dimension as L ,
and is usually denoted OL (and called the octahedralization of L .)

Wenowgive a similar construction of a classifying space for the commutator
subgroup CL of WL (which is torsion-free and finite index in WL .) Let I V

denote the product ([−1, 1])V . Each copy of [−1, 1] is given a cell structure
with two vertices and one edge. For each simplex σ ⊂ L , I (σ ) denotes the
subset of I V consisting of those points (xv)v∈V such that xv ∈ {±1}whenever
v is not a vertex of σ . So, I (σ ) is a disjoint union of parallel faces of I V of
dimension dim σ +1. The standard classifying space forCL is the subcomplex
BCL of I V defined as the union of the I (σ ) over all simplices σ in L:

BCL :=
⋃

σ∈L
I (σ ).
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Mod p and torsion homology growth in nonpositive curvature 717

The link of each vertex of BCL is a copy of L . The universal cover of BCL
is denoted �L and called the Davis complex of WL . (Z/2)V acts on I V and
preserves the subcomplex BCL . The lifts of this induced action to �L are
precisely WL and we have the exact sequence

1 → CL → WL → (Z/2)V → 1.

Lemma 6 Let L be a flag complex.

(1) AL is commensurable to WOL [8].
(2) WL is linear, and hence residually finite. Therefore, so is AL.
(3) If L is a triangulation of Sn−1, then �L is a contractible n-manifold [7].

With Davis in [2], we studied the minimal dimension of aspherical manifolds
with right-angled Artin fundamental groups. Constructing such manifolds
involves embedding right-angled Artin groups AL into manifold Coxeter
groupsWSn−1 . This boils down to finding PL-embeddings of OL into spheres.
The complexes OL have “join-like” properties which make them difficult
to embed directly but one can compute when the van Kampen embedding
obstruction vanishes for these complexes. It is a complete obstruction to PL-
embedding d-complexes in S2d , except when d = 2, and gives the following
embedding criterion.

Theorem 7 (2.2, 5.1 and 5.4, [2]) Suppose L is a d-dimensional flag complex,
d �= 2. Then OL embeds as a full subcomplex into a flag PL-triangulation of
S2d if and only if Hd(L;F2) = 0.

The prime 2 plays a special role in this theorembecause vanKampen’s obstruc-
tion looks at what happens to pairs of distinct points under a generic map
OL → S2d , which leads to an order two (co)-homological invariant. There-
fore, if Hd(L;F2) = 0 we get an embedding OL ↪→ S2d irrespective of the
Fp-homology of L for odd primes p. This observation is key to the proof of
Theorem 4.

2 Proof of Theorem 1

Let L be a flag complex, � = AL the right-angled Artin group defined by
this complex, B� its Salvetti complex, and F any field. By Lemma 6, we can
choose a chain �k � � of normal, finite index subgroups with

⋂
k �k = 1.

Consider the cover of the Salvetti complex B� by the standard maximal
tori Tα . Its nerve is a simplex � since all the tori intersect at the base-point.
For a simplex σ in �, we denote the intersection of the corresponding tori
by Tσ = ⋂

α∈σ Tα . We look at the finite cover B�k or equivalently, look at
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718 G. Avramidi et al.

the coefficient module V = F[�/�k]. The Mayer–Vietoris spectral sequence
(see VII.4 [5]) corresponding to the cover {Tα} has E1 term

E1
i, j := Ci (�; Hj (Tσ ; V )) 
⇒ Hi+ j (B�; V ) = Hi+ j (B�k; F).

The following lemma is crucial.

Lemma 8

lim
k→∞

dimF Hj (Tσ ; F[�/�k])
[� : �k] =

{
1 if Tσ = pt, and j = 0,

0 otherwise.

Proof Since covers of tori are tori, the only way the homology of covers of Tσ

can grow linearly is if the number of components of the preimage of Tσ in B�k
grows linearly in the index. Since �k is a residual sequence of normal covers,
the number of components grows linearly if and only if Tσ is a point. In more
detail, since the cover is normal, the number of components is the ratio of
indices [�:�k ]|π1Tσ :π1Tσ ∩�k | , and since the sequence �k is residual, the denominator
grows with k as long as π1Tσ is infinite. �
Therefore, up to an error whose dimension is sublinear in the index [� : �k],
the spectral sequence is concentrated on the E1

i,0 line. This implies

lim sup
k

dimF E2
i,0

[� : �k] = lim sup
k

bi (B�k; F)

[� : �k] . (1)

Next, we approximate the chain complex E1
i,0 by something that we will be

able to compute exactly. For this, set

Vσ :=
{
F[�/�k] if Tσ = pt,

0 otherwise.

Then the projection E1
i,0 → Ci (�; Vσ ) is a chain map and its kernel has

dimension that is sublinear in the index [� : �k]. Therefore

lim sup
k

dimF E2
i,0

[� : �k] = lim sup
k

dimF Hi (�; Vσ )

[� : �k] . (2)

The quantity in the limit on the right can be computed exactly, just in terms of
the topology of L .
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Mod p and torsion homology growth in nonpositive curvature 719

Lemma 9

dimF Hi (�; Vσ )

[� : �k] = b̄i−1(L; F).

Proof The complex � has a subcomplex L ⊂ � whose simplices are those
intersections of tori that consist of more than one point. In other words,

L := {σ ⊂ � | Vσ = 0}.

This complexL is precisely the nerve of the cover of L by maximal simplices,
so it is homotopy equivalent to L . From the definition of L and Vσ we get the
exact sequence of chain complexes

0 → C∗(L; F) ⊗ V → C∗(�; F) ⊗ V → C∗(�; Vσ ) → 0.

Since � is a simplex, this implies

Hi (�; Vσ ) ∼= H̄i−1(L; F) ⊗ V .

This finishes the proof since V is a [� : �k]-dimensional F-vector space. �
The theorem follows from this lemma, together with (1) and (2). Note that
we only used normality of the �k in Lemma 8. The proof goes through for
chains �k where the number of lifts in B�k of standard n-tori in B� for n > 0
grows sublinearly. For example, this occurs for normal chains in a finite index
subgroup of �.

Corollary 10 For a finite index subgroup H of a RAAG � we have

b(2)
i (H ; F) = [� : H ]b(2)

i (�; F).

Proof Let �k � H be a normal chain. The cover BH of B� has ≤ [� : H ]
lifts of each torus. For each lifted torus T̃σ in BH , the number of lifts in B�k
is given by

[H : �k]
|π1T̃σ : π1T̃σ ∩ �k |

,

which is sublinear. Hence, b(2)
i (�; F) = lim bi (B�k ;F)

[�:�k ] , which implies the
multiplicativity formula. �
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720 G. Avramidi et al.

3 Mayer–Vietoris sequences for F-L2-Betti numbers of Coxeter groups

Let L be a flag complex and WL the corresponding RACG. Look at a decom-
position L = A∪C B where A, B and henceC are full subcomplexes of L . The
Coxeter group WL splits as an amalgamated product WL = WA ∗WC WB , and
our goal in this section is to describe relations between F-L2-Betti numbers
that arise from such splittings. Everywhere in this section coefficients are in
an arbitrary field F and will be omitted to improve readability.

Let �k be a chain of finite index torsion-free normal subgroups with⋂
k �k = 1 (note that any residual normal chain in WL is eventually torsion-

free.) Let �L be the associated Davis complex for WL , and let Y k
L = �L/�k .

Given any full subcomplex A of L , the RACGWA is a subgroup ofWL , and
the corresponding Davis complex �A is naturally a subcomplex of �L . The
stabilizer of�A inWL is preciselyWA. TheWL -orbit of�A in�L is a disjoint
union of copies of �A. The intersections of �k with WA give a corresponding
chain of finite index subgroups WA ∩ �k � WA.

We let Y k
A denote the image of this orbit in Y k

L , so that Y k
A is a disjoint

union of [WL :�k ][WA:�k∩WA] copies of �A/WA ∩ �k . It follows that we can compute

b(2)
i (WA) (with respect to the chain WA ∩ �k) using Y k

A:

b(2)
i (WA) = lim sup

k

bi (Y k
A)

[WL : �k] .

Suppose that L = A ∪C B where A, B and hence C are full subcomplexes
of L . We then have a decomposition of spaces:

Y k
L = Y k

A ∪Y k
C
Y k
B,

and hence a Mayer–Vietoris sequence

· · · → Hi (Y
k
C ) → Hi (Y

k
A) ⊕ Hi (Y

k
B) → Hi (Y

k
L) → . . .

By the above discussion taking lim sup of dimensions of the homology
groups in this sequence divided by [WL : �k] gives F-L2-Betti numbers of
the corresponding Coxeter groups. Since lim sup is subadditive, it follows that
having b(2)

i = 0 for one of the terms gives the usual inequalities between the
nearby terms.

The decomposition we will use is when A = St(v) is the star of a vertex v,
B = L − v is its complement and C = Lk(v) is the link of v. In this case, the
Mayer–Vietoris sequence leads to the following inequalities.

Lemma 11 (1) b(2)
i (WL) ≤ b(2)

i (WL−v) if b(2)
i−1(WLk(v)) = 0,

123



Mod p and torsion homology growth in nonpositive curvature 721

(2) b(2)
i (WL) ≥ b(2)

i (WL−v) if b(2)
i (WLk(v)) = 0.

Proof Removing the vertex v from L gives a Mayer–Vietoris sequence

· · · → Hi (Y
k
Lk(v))

i1∗⊕i2∗−−−−→ Hi (Y
k
St(v))) ⊕ Hi (Y

k
L−v) → Hi (Y

k
L ) → Hi−1(Y

k
Lk(v)) → . . .

The map i1 : Y k
Lk(v) → Y k

St(v) is an inclusion of the form Y × {±1} ↪→
Y × [−1, 1], so i1∗ maps Hi (Y k

Lk(v)) onto Hi (Y k
St(v)). The stated inequalities

follow from this. �
Iteratively removing vertices leads to the following lemma. It lets us reduce

dimension by passing from complexes to their links.

Lemma 12 (1) If A is a flag complex with b(2)
i (WA) �= 0, then there exists a

vertex v ∈ A and a full subcomplex B of LkA(v) with b(2)
i−1(WB) �= 0.

(2) If L is a flag complex with b(2)
i (WL) = 0 and if A is a full subcomplex of L

with b(2)
i (WA) �= 0, then there exists a vertex v ∈ L and a full subcomplex

B of LkL(v) with b(2)
i (WB) �= 0.

Proof Assume that all the link terms have b(2)
i−1 = 0. Then removing vertices

from A one at a time until we are left with a single vertex leads, by the first
part of Lemma 11, to

b(2)
i (WA) ≤ b(2)

i (WA−v) ≤ · · · ≤ b(2)
i (Wpt ) = 0

which contradicts the assumption that b(2)
i (WA) > 0. This proves the first part.

Now, assume that all the link terms have b(2)
i = 0. Then removing vertices

from L one at a time until we are left with A leads, by the second part of
Lemma 11, to

b(2)
i (WL) ≥ b(2)

i (WL−v) ≥ · · · ≥ b(2)
i (WA)

which contradicts the assumption b(2)
i (WL) = 0 < b(2)

i (WA). This proves the
second part. �

4 Proof of Theorem 4

We are now ready for the proof of Theorem 4. Fix an odd prime p. Let L =
S2 ∪p D3 be a flag triangulation of a complex obtained by gluing a 3-disk
to a 2-sphere via a degree p map. Since H3(L;F2) = 0, by Theorem 7 the
octahedralization OL embeds as a full subcomplex of a flag PL-triangulation
T of S6.
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722 G. Avramidi et al.

Using commensurability we choose a common finite index subgroup N of
AL and WOL , which is normal in WOL . We fix a torsion-free normal residual
chain in WT which intersects WOL inside N . These are abundant as there is
an obvious retraction r : WT → WOL so we can intersect any residual chain
with r−1(N ).

Since �T is a 7-manifold, the Fp-Singer Conjecture predicts vanishing

of b(2)∗ (WT ;Fp), and similarly, vanishing for the links of odd-dimensional
simplices.

Proposition 13 The Fp-Singer Conjecture fails either for T , or for one of the
links of 1 or 3-dimensional simplices.

Proof Suppose the Fp-Singer Conjecture holds for T , and in particular

b(2)
4 (WT ;Fp) = 0. Since the chain in WOL is contained in N and N has

finite index in AL , Corollary 10 implies b(2)
4 (WOL;Fp) �= 0. By the second

part of Lemma 12 applied to OL and T , there is a full subcomplex B of LkT (v)

with b(2)
4 (WB;Fp) �= 0. Now we apply the first part of Lemma 12 to B, to get

a full subcomplex C of LkB(u) with b(2)
3 (WC ;Fp) �= 0. Note that LkB(u),

and therefore C , is a full subcomplex of LkLkT (v)(u) = LkT (uv) ≈ S4.
If theFp-Singer Conjecture still holds for LkT (uv), we can repeat this argu-

ment to get get a full subcomplex D of LkT (σ 3) ≈ S2 with b(2)
2 (WD;Fp) �= 0.

Now, the Fp-Singer Conjecture must fail for LkT (σ 3), because repeating this

argument once more produces a subcomplex of S0 with b(2)
1 �= 0, which is

clearly impossible. �
It follows that theFp-SingerConjecturemust fail in at least one of the dimen-

sions 3, 5, or 7. Since a closed surface Sg with g ≥ 2 has b(2)
1 (π1(Sg);Fp) �= 0,

taking cartesian products between surface groups and our counterexamples
gives, via the Künneth formula, counterexamples in all odd dimensions ≥ 7
and all even dimensions ≥ 14.

Remark The reasonwhyweused a 3-dimensional complex S2∪p D3 instead of
a 2-dimensional complex S1 ∪p D2 above is twofold. First, for 2-dimensional
complexes there are other obstructions to embedding in S4 besides the classical
van Kampen obstruction [10]. Second, in codimension 2 there is a problem
of extending a given triangulation on the complex to a triangulation of S4

(the embedding might be locally knotted.) If for a flag triangulation L of
S1 ∪p D2 one can exhibit its octahedralization OL as a subcomplex of S4,
then ourmethodwould yield a 5-dimensional counterexample to theFp-Singer
Conjecture.
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