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Abstract We prove the existence of mixing solutions of the incompressible
porous media equation for all Muskat type H? initial data in the fully unstable
regime. The proof combines convex integration, contour dynamics and a basic
calculus for non smooth semiclassical type pseudodifferential operators which
is developed.
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1 Introduction and the main theorem

The dynamics of an incompressible fluid in an homogeneous and isotropic
porous media is modeled by the following system

gp+u-Vp=0 in Q (1.1)

V-u=0 in Q (1.2)
Yu=—Vp—pg in @, (1.3)
K

where p is the density, u is the incompressible velocity field, p is the pressure,
v is the viscosity, x is the permeability of the media and g is the gravity.
The first equation represents the mass conservation law, equation (1.2) the
incompressibility of the fluid and equation (1.3) is Darcy’s law [20], which
relates the velocity of the fluid with the forces acting on it. In this paper we
will consider = R2. As usual, we will refer to the system (1.1), (1.2) and
(1.3) as the IPM system.

The Muskat problem deals with two incompressible and immiscible fluids
in a porous media with different constant densities p* and p~ and different
constant viscosities. In this work we will focus on the case in which both
fluids have the same viscosity. Then one can obtain the following system of
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equations from IPM

V.-u=0 in Q@) (1.4)
Viiu=0 in Q%) (1.5)
E(u+ —uT)-t=—g(p"—p7)O0,1)-t on I'(t) (1.6)
" —u7)-n=0 in I'(¢) (1.7)
aX(x, 1) =uX(x,1),1) in Q1(0) (1.8)
Qt (1) = X(Q1(0), 1), (1.9)

where u® is the restriction of the velocity to the interface, I'(t) = dQ1(£) N
027 (1), between both fluids , n is the normal unit vector to I"(¢) pointing out
of QF, t is a unit tangential vector to I'(r), Q¥ is the domain occupied by
the fluid with density p* and therefore Q~ = R? \ Q. Without any loss of
generality we will take fromnowon g =v =« = 1.

The same system of equations governs an interface separating two fluids
trapped between two closely spaced parallel vertical plates (a “Helle Shaw
cell”). See [37].

We also assume that 7 (0) is open and simple connected, that there exist
a constant C such that {x = (x1, x2) € R? : x» < C} C QT(0) (the fluid
with density pT is below) and that the interface I"(0) is asymptotically flat
at infinity with limy, , o x2 = limy, o0 X2 = 0 for x € I'(0). This type of
initial data will be called of Muskat type.

In this situation one can find an equation for the interface between the two
fluids. Indeed, if we take the parametrization

T(t) = {z(s, 1) = (z1(s5, 1), z2(s,1)) € R?},

the curve z(s, t) must satisfy from (1.4),..., (1.9) (see [6] and [17])

0rZ(s,t) = ) — d,z(s’, 1))ds’,

(1.10)

pt—p~ v /O" zi(s, 1) — z1(s', 1)

05Z(s, t
2 —oo |2(s, 1) — (s, t)|2( 2

where P.V. denotes the principal value integral. At the same time the solutions
of the Muskat equation (1.10) provide weak solutions of the IPM system.
The behaviour of the equation (1.10) strongly depends on the order of the
densities p* and p~. The problem is locally well posed in Sobolev spaces, H>
(see [17]), if the interface is a graph and p™ > p~, i.e., in the stable regime
(see also [13,14] and [18] for improvements of the regularity). Otherwise,
we are in the unstable regime and the problem is ill-posed in H*. This is a

@ Springer
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consequence of the instant analyticity proved in [6] in the stable case (see also
[17] for ill-posedness in H 3 for an small initial data).

This contrast between the stable and unstable case is easy to believe since
F(s,1) = afz(s, t) satisfies that

0/F = —o(s,t)AF + a(s, t)0,F + R(s, 1),

where A = (—A)% ,a(s,t) and R are lower order terms and the Rayleigh-
Taylor function o (s, t) reads

0521(s, 1)

_ + - SVt
o(s,t)=(p" —p )|asz(s,t)|2'

A quick analogy with the heat equation indicates that for o (s, t) positive
everywhere the problem is well-possed (we are in the stable case). If o (s, t) is
negative the equation resembles a backwards heat equation in this region and
therefore instabilities arise.

However, in the present paper, we show that there exists weak solutions to
the IPM system starting with an initial data of Muskat type in the fully unstable
regime, i.e., pT < p~and d;z1(s,0) > 0 everywhere. The initial interface will
have Sobolev regularity and in addition these solutions will have the following
structure: there will exist domains Q% (¢) where the density will be equal to p™
and a mixing domain €2,,;,(¢#) such that for every space-time ball contained
in the mixing area the density will take both values p™ and p~. We will call
these solutions mixing solutions (see the forthcoming definition 2.2). In Figs.
1 and 2 we present the main features of this kind of solutions.

Theorem 1.1 Let I'(0) = {(x, fo(x)) € R?} with fo € H>. Let us suppose
that p™ < p~. Then there exist infinitely many “mixing solutions” starting
with the inital data of Muskat type given by I'(0) (in the fully unstable regime)
for the IPM system.

Remark 1.2 The existence of such mixing solutions was predicted by Otto
in [36]. In this pioneering paper, Otto discretizes the problem and present a
relaxation in the context of Wasserstein metric, which yields the existence of
a “relaxed” solution in the case of a flat initial interface. It is a very interesting
question whether it is possible to extend this approach to cover Theorem 1.1.
We would like to emphasize that the initial interface has Sobolev regularity,
thus the Muskat problem is ill-possed in the Hadamard sense (see for example
[17]). Therefore the creation of a mixing zone provides a mechanism to solve
the IPM system in a situation where solutions of Muskat are not known.

Remark 1.3 Notice that these “mixing solutions” do not change the values that
the density initially takes and that in any space-time ball B C €2,,,; (#) x (0, T'),
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Mixing solutions for the Muskat problem 255

Fig.1 A Muskat type initial data in fully unstable regime
o 0
p <p t>

MIXING ZONE

Z(S/t) +

Fig. 2 A mixing solution a time ¢ > 0 starting in the configuration of Fig. 1

p takes both values, i.e there is total mixing. In fact, a more refined version of
convex integration recently presented in the recent manuscript [5], it is proved
that there is mixing in space balls.

The method of the proof is based on the adaptation of the method of convex
integration for the incompressible Euler equation in the Tartar framework
developed recently by De Lellis and Székelyhidi (see [3,11,19,21-25,43] and
[42] for the incompressible Euler and for another equations [2,7-10] and [40]).
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Very briefly, the version of convex integration used initially by De Lellis and
Székelyhidi understands a nonlinear PDE, F(p, u) = 0 as a combination of a
linear system L(p, u, g) = 0 and a pointwise constraint (o, u, g) € K where
K is a convenient set of states and ¢ is an artificial new variable. Then L gives
rises to a wave cone A and the geometry of the A hull of K, K, rules whether
the convex integration method will yield solutions. An h-principle holds in this
context: if for a given initial data there exists an evolution which belongs to
K2, called a subsolution, then one finds infinitely many weak solutions.

For the case of the IPM system, in [ 16], the authors initiated this analysis and
used a version of the convex integration method which avoids the computation
of A hulls based on T4 configurations, key in other applications of convex inte-
gration, e.g. to the (lack of) regularity of elliptic systems [29,30,34]. Keeping
the discussion imprecise, their criteria amounts to say that (0, 0) must be in
the convex hull of A N K in a stable way. Shvydkoy extended this approach
to a general family of active scalars, where the velocity is an even singular
integral operator, in [39]. Recently, in [28], Isett and Vicol using more subtle
versions of convex integration show the existence of weak solution for IPM
with C®—regularity. All of these solutions, change the range of the modulus
of the density. We remark that the solutions in theorem 1.1 do not change the
values of the density.

Székelyhidi refined the result of [16] in [41] computing explicitly the A-hull
for the case of IPM. Notice that this increases the number of subsolutions (and
thus the solutions available). In fact, Székelyhidi showed that for the case of a
flat interface in the unstable regime there exists a subsolution and thus proved
theorem 1.1 in this case.

The main contribution of this work is a new way to construct such subso-
lutions, inspired by previous studies in contour dynamics, which we believe
of interest in related problems. Let us describe it briefly. The mixing zone
(that is where the subsolution is not a solution) will be a neighborhood of
size 2e(x, t) of a suitable curve (x, f(x, t)) evolving in time according to a
suitable evolution equation. We call this curve the pseudointerface.

Namely, if x(x, A) = (x, A+ f(x, t)) we will declare the mixing zone $2,,;
to be

Quixr = {x € R’ : x= x(x,A) for
(x,A) € (—00,00) X (—&(x,1), e(x,1))}.

Inside the mixing zone, the density of our subsolution will be simply p = S(j—t)

Notice that the width of the mixing zone is variable, and it will grow linearly
in time as e(x, 1) = c(x, 1)t, where c(x,1), 1 < c(x,t) < 2, is essentially
an arbitrary smooth function (technical assumptions will be made in theorem
4.1).
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Mixing solutions for the Muskat problem 257

The case of constant c(x, t) = c is technically easier but we have preferred
to deal with the variable growth case as it is more useful for further application
and it shows the flexibility of the method.

Let us observe, that at the boundary of the mixing zone, the subsolution
must become a solution (]p| = 1). Our choice of the subsolution imposes that
f (x, t) must satisfy the following non linear and non local equation,

0 f(x,t) =Mu(x,t)
S (x,0) =fox), (1.11)

where

1 1
Mu(x,t) = ——f

/"O 1/ (x =) (3 f(x) = 3y () + re(x) = Me(y)

d)'dyd.
LG =2+ E@h— e + f) — FonE Y

Here Mu can be understood as a suitable double average of the velocity in
the Muskat case.

It turns out that it is possible but rather difficult to obtain uniform estimates
on t for the operator Mu in order to obtain existence for this system. The
situation is reminiscent to that of the Muskat problem but it is different as,
on one hand, the kernel is not so singular but, on the other hand, we need to
obtain estimates which are independent of ¢ (notice that for ¢ = 0 the problem
is ill-posed). The first difficulty is to quasi-linearize the operator Mu. This
quasi-linearization is inspired by that one for the classical Muskat equation
1.10 (see for example [17]). However, even in the case of constant &, some
new difficulties arise and to deal with them we need to use different tools e.g.,
pseudodifferential theory. The presence of variable width ¢(x, ¢) introduces
additional technical complications. Since the proof is long and delicate but
the result is believable we postpone the proof to the ‘Appendix A.1 and A.2”
where we have introduced ad hoc notation which should make the proofs nice
to follow.

In turn, the needed a priori estimate boils down to understanding the evolu-
tion of the following equation for F(x,t) = 8; fx,t)

oF(x,1t) = / Kx,y,)o, F(x —y,t)dy +a(x,t)o  F(y,t) + G(x, 1),
(1.12)

for a suitable kernel K : Rx RxRT — R, where G(x, t) is alower order term
and a(x, t) are functions with a lower number of derivatives. The important
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fact in equation (1.12) is that the kernel K is order zero at time t = 0, and

yields a (—A)% —term with the wrong sign. However K is of (—1)-order for
any ¢ > 0 and yields a bounded term but with a blowing up norm ~ %

At the beginning of Sect. 4.2.2 we explain with a toy model, where the
x—dependence of K is frozen, that this behaviour forces a loss of at least one
derivative with respect to the initial data. Semiclassical analysis [45] studies
how the behaviour of smooth symbols p(x, #&) is like that of Fourier mul-
tipliers up to factors of 7, i standing for the Planck constant. Our symbols
p(x,t, t&) can be interpreted as semiclassical with the time playing the role of
7 but they are not smooth. Thus, in order to deal with the full system, we pro-
duce a basic calculus of semiclassical type of pseudodifferential operators with
limited smoothness, e.g., composition of such symbols or a suitable Garding
inequality. The results are pretty general and perhaps of its own interest.

Once that we define such a pseudointerface and the corresponding mixing
zone, we can find the corresponding density p and velocity u and show that
they belong to the suitable A hull for small time, yielding then a subsolution.
Given the subsolution, convex integration applies to create infinitely many
weak solutions, though an additional observation is needed to obtain the mixing
property (see Sect. 3).

The method of the proof seems robust to prove existence of weak solutions in
a number of free boundary problems in an unstable regime. For further recents
developments of this circle of ideas, see e.g [1,32,33,35]. As it was remarked
by Otto and Székelyhidi ([36] and [41]) the underlying subsolution seems to
capture relevant observed properties of the solution as it is the growing rate
of the mixing zone, the fingering phenomena (see the numerics in [4]) or the
volume proportion of the mixing (This has been recently quantified in [5]).

It seems to us that the creation of a mixing zone in the lines of this work,
might end up in to a canonical way of turning ill-posed problems into solvable
ones, at the price of loosing uniqueness at least at the microscopic level (this
line of thought has been already expressed in [36] and [41]). We emphasize
that subsolutions as such are also highly non unique (e.g. see the recent [26]
for an elegant proof of existence of subsolutions with piecewise constant den-
sities). In the case of the flat interface the relaxation solution obtained by Otto
can be characterized as the unique entropy solution [36] of a concrete scalar
conservation law, the one who linearly interpolates between the heavier and
lighter fluid and as the subsolution who maximizes the speed of growth of
the mixing zone ([41]). Perhaps the most challenging open question after this
work to obtain such nicely agreeing selection criteria for subsolutions in the
case of an arbitrary interface. At the end of the paper we add a remark showing
that surprisingly the mixing solutions are also present in the stable regime in
the case of straight interfaces except in the horizontal case. Let us remark that
this have been extended to not flat interfaces in [26]
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The paper is organized as follows: In Sect. 2 we introduce the rigorous
definition of mixing solutions and subsolution. In Sect. 3 we explain how
the convex integration theory allow us to obtain a mixing solution from a
subsolution. Section 4 is divided in two parts. In the first part, subsection
4.1, we construct a subsolution for the IPM system assuming the existence of
the pseudointerface, ie. solution for the equation (1.11). In the second part,
section 4.2, we will show the existence of solutions for the equation (1.11). As
discussed before, the proof requires some pseudodifferential estimates for non
smooth symbols which might be of its own interest so we have gathered them
in Sect. 5. First we present the results which are general and then those more
related to our specific symbols, though it would not be difficult to extrapolate
general theorems from the later, as in the case of Garding inequality.

In Sect. 6 we show how to construct mixing solutions in the stable regime.
Finally in the ‘Appendix” we prove the quasilinearization estimates as well as
compute the symbols and their estimates.

1.1 Notation

We close the introduction by fixing some notation as it varies quite a lot in the
literature. When no confusion arises will use L2, H¥ to denote L2(R), H*(R)
and S denotes the Schwarz class. Given a symbol p(x, §) we define a pseu-
dodifferential operator Op(p) by

Op(p)(f)(x) = / AT p(x, £) F(E)dE,

for f € S.

In the case that the symbol p = p(§), depends only on the frequency
variable, i.e., p is a Fourier multiplier, we denote the operator by P (the capital
letter). We will use the following notation to estimate commutators, correlation
of differential operators and the skew symmetric part of an operator.

[Op(p1), Op(p2)] = Op(p1) o Op(p2) — Op(p2) o Op(p1),
&(p1, p2) = Op(p1) o Op(p2) — Op(p1 - p2),
Op(p)*™*“" = Op(p) — Op(p)”,

where Op(p)T is the adjoint respect to the standard L? product. For smoothness
of the symbols we use the norms

Ipllag = sup 19997 p(x, &),
3

x.£.0'<a,f'<B
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where the derivatives are taken in the distributional sense. Finally we will say
that p(x, §) € Sy, if

[Plla.p < 0.

The symbols ||| f||| and (A) will denote some polynomial function evaluated
in || f||g+ and ||A]| g3 and we recall that

A=0,f

along the paper. In particular both ||| f||| and (A) will depend on ¢ as well
but we will not make such dependence explicit as it is harmless for the apriori
estimates (for a c¢(x, t) as in the statement of theorem 4.1).

2 The concepts of mixing solution and subsolution

Following [41] we rigorously define the concept of “mixing solution” in the
statement of theorem 1.1. We would like our solutions to mix in every ball of
the domain and thus we incorporate this into the definition. Firstly, since we are
working in unbounded domains, we give a definition of weak solution in which
we prescribed the behaviour of the density at co. In the following R;, with
i = 1, 2 are the Riesz transform and BS is the Biot-Savart convolution. Recall
that for a smooth function f these operators admit the kernel representations,

1
Rifw=5-pv. [ i sy

BS f(x) = / (x - |2 E=9" Ly,

Definition 2.1 Let 7 > 0 and py € L>(R?). The density p(x, 1) € L>®(R? x
[0, T']) and the velocity u(x, t) € L>®(R? x [0, T]) are a weak solution of the
IPM system with initial data pp and if and only if the weak equation

T
/ / p(8r<p+u-V<p)dxdt=/ ®(x, 0)po(x)dx
0 R2 R2

holds for all ¢ € C2°([0, T) x R?), and

u(x) = BS(—dy, p). 2.1)
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Mixing solutions for the Muskat problem 261

Notice that we have interpreted the incompressibility of the velocity field
and Darcy’s law with (2.1). In fact, for p € C° (R?), the equations
V.u=0

(2.2)
Viou=-— Oy, 0.

together with the condition that u vanishes at infinity (the boundary condition)
are equivalent to

u(x) = BS(=dx,; p) = (R2R1p, —RiR1p) .

Thus, they are consistent with definition 2.1. Definition 2.1 extends the concept
of solution of the system (2.2) plus vanishing boundary condition for densities
which do not necessarily vanish at infinity. Notice that incompressibility and
Darcy’s law are automatically satisfied by our solution in the weak sense. That
is,

/ u- Vodx =0
R2

/ u-VJ‘godx = —/ 00y, pdX,
R2 R2

for all p € C°(R?).

Definition 2.2 The density p(x, ¢) and the velocity u(x, ¢) are a “mixing solu-
tion” of the IPM system if they are a weak solution and also there exist, for
every ¢ € [0, T], open simply connected domains Qi(t) and €2, () with
QtuQ- U Qumix = R? such that, for almost every (x,1) € R2 x [0, T], the
following holds:

+ in Q*(r)

px,t) = {(/) ,0+)(,0 p ) =01n Qi (1) ~

Forevery r > 0,x € R2,0 <t < T B((x,1), 1) C Uges<7nix (1) it

holds that
/(p—p+)f(p—p_) # 0.
B B

For sake of simplicity and without any loss of generality we will fix the
values of the density to be

ot =Fl. (2.3)
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The concept of subsolution is rooted in the Tartar framework understanding a
non linear PDE as a linear PDE plus a non linear constraint. In our context the
linear constraint is given by

K={(p,u,m)eRxR>xR*:m=pu, |p| =1}.

As observed by Székelyhidi the set K contains unbounded velocities which is
slightly unpleasant. Thus for a given M > 1 we define

Ky ={(p,u,m) e Rx R* xR*:m = pu, |p| = 1, [u] < M}.

Subsolutions arise as a relaxation of the nonlinear constraint. In the frame-
work of the IPM system the relaxation is given by the mixing hull, the A
lamination hull for the associated wave cone A (see [16,41] for a description
of A). In [41], the author computed the laminations hulls of K and K ;. We
take them as definitions.

Definition 2.3 We defined the mixing hulls for IPM by
1
KA = {(p,u,m) ERxR>xR?: ‘m—pu+§(0,l—p2)

- (% (1- pZ))} | 2.4

For a given M > 1, the M-mixing hull K A[,‘I are the elements in K which
additionally satisfy that

2u+ (0, p)I* < M?* — (1 — p?) (2.5)
1 M

‘m—u—E(O,l—p) < 7(1—,0) (2.6)
1 M

‘m+u+ 5(0,1-1—,0) < 7(1+,0). 2.7

Remark 2.4 Let us clarify the differences between our notation and the nota-
tion in [41]. We are using same notation as in [41] in section 4, but with v
there replaced by u here. The concept of M-subsolution arises in section 2,
proposition 2.5 in [41]. To translate this proposition to our language one has
to replace u there by 2u + (0, p) and m there by m + %(O, 1) (notice that in

[41] m, in section 2, pass to m + %(O, 1) in section 4).

Definition 2.5 Let M > 1and T > 0. We will say that (p, u, m) € L®(R? x
[0, T]) x L2 (R2 x [0, T]) x L®(R? x [0, T]), is a M-subsolution of the IPM
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Mixing solutions for the Muskat problem 263

system if there exist open simply connected domains QT (1) and Qi (1) with
QT U Q™ U Qi = R? and such that the following holds:

(No mixing) The density satisfies
p(x, 1) = F1 in QT ().

(linear constraint) In R2 x [0, T] (p, u, m) satisfy the equations

orp+V-m=0
p(x,0) =po
1 _ 1
u) =B = —— [ XV o sondy. @28

27 Jra X —yl?

in a weak sense. N
(Relaxation) (p, u, m) € KA‘}I in Qix(t) x (0, T) and (p,u,m) € K, in
R? x (0, 7).

(Continuity) (p, u, m) is continuous in €2,,;(t) x (0, T).

Remark 2.6 Along the text we will typically speak about subsolution (rather
than M-subsolution) and we only make explicit the constant M when it is
needed.

3 H-principle: subsolutions yield weak solutions

In this section we follow [41] to find that to prove theorem 1.1 is enough to
show the existence of a M-subsolution, for some M > 1, (p,u, m). Since
L®[R?) c L*(dp) with dp = we will work with L?(d i), where
diin = dudt as the auxiliar space.

Associated to a M-subsolution (o, @, m) in [0, T'], we define a set X|.

dx
(1+x]3>

Xo = {(p, u,m) € L2R? x [0, T] x L®R? x [0, T]) x L®[R? x [0, T])

(p,u,m) = (p,u,m) a.e. inR>\ Qpix,

and (p, u, m) is a subsolution} .

This set is not empty since (p, u, m) € Xo.

Lemma 3.1 Let (o, u, m) be a M-subsolution. Then the space X is bounded
in L(dv).
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Proof Let (p,u,m) € Xo. Then ||p||ze < 1 and [lu||g < C(M), so that
for a fixed time ||p[|12(4,)» ull12(q) < C(M). Similarly

lmllz2g,) <

1
m—,ou-l—i(O,l—pz)

L%(dp)

1
+',0u—5(0,1—,02)

L*(dw) '

Thus ||m||L2(du) is bounded thanks to (2.4) and to ||/0||L2(du)’ ||“||L2(du) <
C(M). The claim follows by integrating respect to time in [0, T'].
O

Since X is bounded in L?(d 1) and the weak topology of this space is metriz-
able, we can consider the space X given by closure of X under this metric.
We will prove the following theorem,

Theorem 3.2 If X is not empty the set of mixing solutions of IPM with pg as
initial data is residual in X. Here p is the subsolution at time t = Q.

The general framework of convex integration applies easily to our setting.
For the sake of simplicity we will follow the “Appendix” from [41] with an
slight modification. We consider the unbounded domain R? (R? in space and
R in time), z : 2 — R and a bounded set K C R such that

d
> Aidiz =0, (3.1)
i=1
zeK. (3.2)

Assumptions:

H1 The wave cone. There exists a closed cone A C R> such that for every
Z € A and for every ball B € R there exists a sequence z j € CX(B, R>)
such that

i) dist(z;, [z, z]) — O uniformly,
ii) z; — 0 weakly 0 in L?(d 1) weakly,
i) [ |z;1din > 51217,

H2 The A convex hull. There exist an open set U with U N K = ¥ and a
continuous convex and increasing nonnegative function ¢ with ¢(0) = 0
that forevery z € U 7+ t7 € U for |t| < ¢(dist(z, K))

H3 Subsolutions. There exists a set Xo C L2(d i) that is a bounded subset of
L?(d i) which is perturbable in a fixed subdomain ¢/ C € such that any
z € Xothatsatisfiesz(y) € U andifw; € CU, R’) is the approximating
sequence from [H1] and z + w; € U then z + w; € Xj.
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In the case of the IPM equation with the constraints |p| = 1, |u| < M both A,
Ky and K ,{,\, has been extensively studied in [16,41]. We take U = 2, (¢) X
(0, T). The property [H2] for K 1\1} was proved in [41, Proposition 3.3]. For
the property [H1] we use the sequence z; as constructed for example in [16,
Lemma 3.3]. Our Property [H11)] is stated in the first property stated in that
lemma. For property [H1ii)] notice that we know from [16, Lemma 3.3] that
zj — 0 weakly star topology of L°°. However, z; is uniformly bounded in
L and compactly supported and thus uniformly bounded in L?(dft). Thus
the weak star convergence implies also weak star convergence in L>(d1). Our
property [H1iii)] requires some work as n does not scale uniformly. However
as proved for example in [16, Lemma 3.3], in addition to the properties listed
in [41, H1] it holds that for a A segment 7 the approximating sequence satisfies
also that,

lim [(x,7) € B:|z;(x,1)| #£z] =0,

J—>00

and by absolute continuity it holds that

jlgrolou{(x,t) € B:|z;(x, )| # £z} =0.

Thus by choosing j large enough iii) also holds.
We skip the proof of the following lemma as it is identical to [41, Lemma
5.2]

Lemma 3.3 Let z € X( with me,-x(t)x[o r F((x,0)di > & > 0. For all
n > 0 there exists 7 € Xo with dx(z,%) < n and

/ Iz —71%dj > 6.
Qunix (1) x[0,T]

Here 5§ = 6(¢).

Proof of theorem 3.2 Firstly, as in the proof of [41, theorem 5.1] lemma 3.3
implies that the set of bounded solutions to IPM is residual in X. The proof
works in the same way since due to the fact that u (R?) < o0, convolutions with
a standard mollification kernel are continuous from L?(d i, w) to L?(d ft) and
thus the Identity is a Baire one map, with a residual set of points of continuity.
That is the set of (p, u, m) € X which belong to K7 a.e. (x,t) € R2 x [0, T]
is residual in X. This is precisely the set of weak solutions to IPM with the
Muskat initial data.
It remains to show the mixing property:
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Choose B((x,1),r) C Ug<s <7 2mix(¢). Declare
Xpo1 = {(pousm) € X 1 / (&1 - p) =0},
B

Then Xp +1 C X is closed by the definition of weak convergence and since
Xp +1NXo =¥ (forstates in Xo, |p| < 1)and Xp +1 C Xo. Thus, X B +1has
empty interior. Therefore X \ X p 41 is residual. Since intersection of residual
sets is residual, it follows that

{X\ Ui Xp, +1: B = B(xi, i, 1) CUger7R(1), x; € Q*, 1; € Q, 1 € Q)

with Q the rationals is residual. By density of rationals elements in X \U; X . +1
satisfy the mixing property and thus the set of mixing solutions is residual in
X with respect to the weak topology. |

Remark 3.4 We introduce the measure i to deal with the unboundedness of
the domain. However we could have followed instead [22] and consider for
capital N /" oo Iy : X +— Rdefined by Iy : fB(O,N)x[O,T](|p|2 —1)dxdt. By
convexity of the L? norm it follows that I is lower semicontinuous respect to
the weak star topology of L°°(X). Thus it is a Baire one map with a residual
set of points of continuity. By our lemma 3.3 if z is a point of continuity of
Iy in X Iy (z) = 0. Since elements of X such that p(x, t) = 1 correspond to
weak solutions to IPM and intersection of residual sets is residual the theorem
follows.

Remark 3.5 The proof presented above only yields weak solutions to the [IPM
system such that |p(x, )| = 1 for a.e. t+ € [0, T]. However (see the proof
of [16, Lemma 3.3]) for every 7 = (p, u,m) € A with p # 0 there exists
&,&) € Ri x Ry, & # 0 such that

uy  p+uz

U Vh((E &) (x, )+ VI (&) - (x, 1) = h"(E &) - (x, )m.

DAnE. &) - e, =6 oo (P T

This is the analogous of [22, Proposition 4] . Thus one imitates the proof in
[22, Proposition 2] and obtain weak solutions to the IPM systems such that

lo(x, ] =1

for every . We skip the details since there is no essential difference. Also
following [5] the mixing property can be proven at every time slice.
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Proof of theorem 1.1 We start with a given initial data of Muskat type fp €
H?,with I < ¢(x,t) < 2satisfying hypothesis of theorem 4.1. By theorem 4.1
there exists a time 7*(fy) > 0 and a function f € C([0, T*(fo)], H*(R)),
such that (e(x,t) = c(x,t)t, f(x,t)) solve the equation (1.11). By theo-
rem 4.4 there exists a M-subsolution in [0, T'( fo, M, ¢)], with T (fo, M, c) <
T*(fo), and therefore we can define the space X associated to this subsolution
and apply theorem 3.2. O

4 Constructing a subsolution for the IPM system

This section is divided in two parts and its purpose is to show the existence of
a subsolution. In the first part we will find a subsolution for the IPM system in
the sense of definition 2.5 assuming that there exist a solution for the equation
(1.11). We next state such existence theorem with the precise conditions on
the speed of opening c.

Theorem 4.1 Let fo(x) € H>(R) and c(x, 1) € C®(R x RY) and such that
either there exist constants coo € R and k > 0 such that 1 +k < c(x,t) <2
and c(x, 1) — ceo € C1 ([0, 00); HO(R)), with

sup (|leC, 1) = cooll gomys H18:cC, Dl o)) < €

teR+

orc(x,t) = 1. Then there exists a time T > 0 and
fx,1) € C([0, T1, H*[R)) N C'([0, T], H*(R)),

solving the equation (1.11) with e(x,t) = c(x, t)t.

Remark 4.2 The condition ¢ > 1+« could be replaced by ¢ > 1 plus technical
conditions on the zeros of ¢ — 1 and the behaviour of ¢ at £00. This would only
affect the proof of lemma B.6 which would be less neat. We have preferred
to keep the statement of the theorem easy. In order to deal with low speed of
opening ¢ < 1 different pseudodifferential machinery is needed to deal with
equation (1.11), thus we have not pursued the issue here. The H®-condition
is needed in the proof of 4.8. Finally, in our proof we have prescribed p = %
as it is simplest continuous function and agrees with the entropy and maximal
mixing solution in the case of the flat interface. Other choices might be of
interest though the proof would be technically different as the velocity would
change. We have not explored this later aspect. The fact that the maximum
growth of the mixing zone is linear on ¢ seems to be intrinsically related to
the problem and it is coherent with Darcy’s law and the flat interface case.
Our proof quickly breaks if we want to have sublinear growth (see equation
(4.15)).
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Remark 4.3 Let us explain why we need to ask five derivatives on the initial
data. Firstly, in order to perform energy estimates we need to quasi-linearize
the equation as in lemmas 4.8 and 4.9, where [.0.t are defined in 4.7. The
number of derivatives that we take it is enough to get the estimate in 4.7 for the
l.0.t.. We do not claim that the regularity can not be improved to get solutions
to 1.11 with an initial data fy € H* and k < 5. The quasi-linearization of
1.11 in that case would be much more complicated. Secondly, in order to deal
with the higher order terms in lemma 4.9, we need some regularity in the
pseudodifferential operators that arise in Sect. 4.2.2. The regularity of these
operators is linked to that of the solution f. It turns that, again, the number of
derivatives we take suffices for our purposes.

4.1 Constructing a subsolution. Part 1

This section is dedicated to the proof of the following theorem.

Theorem 4.4 Let us assume that f, with f(x,t) € C L([0, T1 x R), solves
the equation (1.11), with c(x,t) as in Theorem 4.1. Then there exists a M-
subsolution of the IPM system fort € [0, T], T small enough depending on
fo(x), and for some M.

We start by defining the mixing zone. For x € (—00, 00) and —¢&(x, ) <
A < e(x, t) we define the change of coordinates

X(x, ) = (x, A+ f(x,1)).
We define the set Q,,iy C R? as follows

Quix = {xeR? : x=x(x,A) for (x,A)
€ (—00,00) X (—e(x,1),e(x,1))}. 4.1)

Recall that, in €2,,,;,, our subsolutions (o, m, u) should solve

o0+ V-m=0 4.2)
u =BS(—0y, p). 4.3)

We prescribe m to be of the form
m = pu— (0,@) (1 - p?),
where « will be chosen later. Then the transport equation (4.2) reads

dp+u-Vp=V-(0,a(l-p%). (4.4)
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On the other hand we need (p, u, m) € int K, in (2.4), which is equivalent

to
1\N>  /1\?
- = -, 4.5
(«-3) <(2) =
,02 < 1. (4.6)
In fact, we need (o, u, m) € intK A but we will take care of this later.

4.1.1 The equations in (x, A)-coordinates and the choices of p and m

Next we write the equation (4.4) in (x, A)— coordinates. Let g : Q,,;x — R
be a smooth function. We will denote

gh (. 1) = g(x(x, ). 4.7)
Let us analyze the mixing error in these new coordinates. Set
E*(x, 1) = (1 - p*%) (0, a"), (4.8)
which we split as,
E=F ¢,

with

f=(1-,2) <o,aﬁ—%), e = %(0, 1 (1 - p%).

We will define the density in the mixing zone to be

pF(x, 1) =

4.9
e(x,t) 49)
and it will simplify the calculation to call h* = (af — ) (1 — (,on)2>. Then

ot produces a density p(x) satisfying the condition (4.6) in €2,,,;«. In addition
pi(£e) = £1 thus

F1 in QF

. , 4.10
P(X) 10 2y x ( )

p(x) = {

where Q7 is the open domain below €2,,,;x and  is the open domain above
Quix, is @ continuous function in RZ.
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After, these choices, the next lemma describes the necessary conditions to
be a subsolution.

Lemma 4.5 Let p* = 2 andm® = p*u® —h*(0, 1) —e* withe* = (0, 1)(1—

p2). Then, p, u and m satisfy the equation (4.2) if and only if

A 1 0xe
akhﬁ: 8—2+3zpﬁ+g<uﬁ'(—3xf—)~%, 1)_alf)' (4'11)

In addition if
W =y - p?)
the inclusion (4.5) reads

1
g _ 2
|V|<2-

Proof Since (dy,p)(x, A + f(x,1)) = pﬁ(x,)\) — 3 f(x, )3, p" and
(O, P) (X, A4 f(x,1) = B;Lpﬁ(x, ) we have that
ux, A+ f(x, 1) (Vp) (x, 2+ f(x,1))
=0 (0, 1) - (3PP, 2) — B f (1, D0RF, upP(x,2).  (412)

Also

3PP (x, 1) = (Bp) (X, A+ f(x, 1)) + (D, p) (X, & + f(x, )0, f
= (9rp)(x, A+ f(x, 1)) + p" (x, )3, f (x, 1). (4.13)

In addition,

V-(E+e)x, A+ f(x, 1) = dht(x, 1) + 056" (x, 1) = dh® — pFo,p".
(4.14)

Evaluating (4.4) atx = (x, A+ f(x, t)), putting together (4.12), (4.13) and
(4.14) and taking into account (4.9) yields (4.11).
Finally, if we define

1

=
1 — p#2

y h,

the condition (4.5) reads
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O

From lemma 4.5 we have that in order to prove theorem 4.4, it is enough to
show that 2 < % with y# given by

Aoy
Vﬁ(l—ﬂﬁ2)=/ .

o2 g2
1 # Oy € ’
+ (0w A (=0 f —2A—, 1) =9 f )dAr
€ e
(I —¢) 12
= _ 1 —
7 (I=p™)
ot
+/ (0 (x, e()X) - (—0y f(x) = Bped/, 1) — fi) dA,
-1
(4.15)
u given by the Biot-Savart law and p (x) by (4.10) and (4.9).
4.1.2 The velocity u and the equation for the pseudointerface
The velocity u is given by the expression
L[ x=—y" 1 x-y*
U = —o— | o d ey = —— | 0 p(y)dy.
27 Jr2 [X -yl 27 J Qi X =Yl

Then a change of coordinates yields

1o 8®<x—m»xmL< /®aw> ,
[ — 0 4+ A== \)dMNd
v Jt/m%@)m)m—ﬂ%NW A s Y

1/w1 D (x—x(y, ()t

7)o 2 )1 Ix=x(y, e(NA) 2 (3y f(y) + A'0ye(y)) dA'dy.
(4.16)

Next we will modify this expression since it will help in the proof of the
local existence for the equation (1.11). This idea has been already introduced
in [17]. First we notice that

_ (x1 =)
x —x(y, e(n)A)|?
= e(A = F()@y f () +2'9,e(3)
X —x(y, e(MA)[? '

1
59y log (Ix = x(y, eMA)I?) =

@ Springer



272 A. Castro et al.

Thus since the integral of the left hand side is null (in the sense of the principal
value) we can also write (4.16) in the most convenient form,

1 o1 rl X1 —y , ,
u(x) = ;P.V. /_OO 3 /_1 r—— 8()}))\/)'2(1, Ay f(y) +A'dye(y))dA'dy.
4.17)

As we prove in the following lemma this velocity u is in L>(R?).

Lemma 4.6 Letu be like in expression (4.17) with f € H* and ¢ as in theorem
(4.1). Thenu € L™ (R?) and

(-, Ol g w2y = PULfI1H4)
for some smooth function P.
Proof The proof of this result is left to “Appendix A.3”. O

We turn back to our equation (4.15). It says that the evolution is governed
by the following modified velocity.

ul(x, 1) =0 (x, e(X)A) - (=3 f(x, 1) — dpe(x)A, 1)
1 / /1 X —y
= _—P.V.
27 RJ-1 (x =)+ (A — (A + f(x) — f()?
X 3y f(y) — 3x f(x) + dye()A" — dpe(x)A)dA dy,

where the principal value is taken at infinity. Now, notice that by at [A| = 1,
the left hand side of (4.15) is 0. Therefore a continuous solution must satisfy
that

1
& f = Mu(x,t) = %flug(x, Ada, (4.18)

which is what motivates (1.11). Of course, the specific aspect of the kernel is
prescribed by our ansatz for p.
Then, (4.15) reads

#
yi(1—p™) = —¥(1 — p™) +/i (ul(x, ) = fi)dn,  (4.19)
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Proof of theorem 4.4 We have already constructed a candidate to be the sub-
solution. This candidate is given by (p, u, m) with p¥ = %, u as in (4.16),

= pu—y(1—pH0, 1) —ee= 30,1 - p?), yﬁ(s, ) =y (x(s, 1))
and y® as in (4.19). Next, we show that |y < %, as stated in lemma 4.5.

Notice that (4.19) yields,

f
(1 —¢g) 1 P
yi=— 5 Lo 1—pﬁ2/1 (ul(x, 1)) — f;)d,

We first focus on the first term on the right hand side of this equation.
Notice that |1 — 9;¢| < |1 — ¢(x, t)| + |0:c(x, t)|t. Therefore, our choice of
1 < c(x,t) < 2 (see statement of theorem 4.1) implies that |1 — d;¢] < 1
for small enough time. Then to finish the proof it is enough to prove that the
second term in (4.19) is as small as we want by making ¢ small. This term is
problematic because the factor (I*IW' However we will find a cancelation in
order to control it by continuity.

Here it is where we will use the relation between ¢ and f. First we will deal
with the part of €2,,;, which lies below the pseudointerface, i.e —e < A < 0.
We need to make small the term

1 pﬁ ft / /
W/l (MC(X,)\)—atf)d)»

1
7 Sup  sup |uﬁ(x A) — 0 f(x, t)|
— P xeR —1<A<0

< Csup sup ‘uﬁ(x, A) — o f(x, t)| .
xeR —1<i<0

<C
1

Here notice that p* < 0.
Then we see that, since

1
ul(x,A) — 3 f(x,1) = %f (uf(x, ) — ub(x, 1))
-1

Lemma A.12, where it is proven that |u§(x, A) — ug(x, A)| = O(t) uniformly
in x, implies that this term is as small as we want by taking ¢ small.

To deal with the upper part of €2,,;, we use that our choice of pseudoint-
erface, (1.11), makes the situation rather symmetric. Indeed, it follows from
(1.11) that

ft 1
/ " W Xy — 3 = [ i~ aupra
-1 p*
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1
+1/ WhCr, 3y — b, )
-1

=0

1
= — fﬁ (MB.()C, )\,/) — 3,f(x, t))d)\,/
o

Thus, the term ﬁ| ff (uf — o f ) d)'|, can be made arbitrarily small

by taking ¢ small as well. Hence we have proven that there exists 7 > 0,
depending on fj and c(x, t), such that lyE(x, A, 1) < % for (x, X, 1) € R x
(—e(x,t),e(x,t)) x [0, T] as desired.

Recall that lemma 4.6 implies that u € L®(R? x [0, T]).

In order to conclude the proof of theorem 4.4 we need to check that (p, u, m)
is continuous in (0, T') x ,,,; (0, #) and that also satisfies (2.5), (2.6) and (2.7),
for some M > 1. The continuity is a consequence of that p(x, ¢) is a Lipschitz
function in (0, T') X Q,,ix(t). Furthermore, if

M > 8 (lluf|ge + 1),

since |p| < 1 is easy to check (2.5). In addition, in order to satisfy condition
(2.6) we proceed as follows:

Lo = Li— g2
m—u—2(0,1=p)[=m-—pu—2(-p7
F2(1=ph = (1= pu—=(0.1-p)
S(—p pu— 0. 1-p
1

5((1+p)+lu|+§)(1—p),

where we have used (2.4). Then we see that (2.6) is satisfied. To check (2.7)
we follows similar steps that for (2.6). O

4.2 Constructing a subsolution. Part 2
The bulk of the proof is to show energy estimates for (1.12). Before starting

with the computation we will present a toy model to explain the strategy of
the proof. Let us consider the following equation

9 —(;> Af inRxR*
i f = T el * Af inR x
fx,0) = ), (4.20)
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where 1 < ¢ < 2. In the Fourier side this equation reads

af (&) = 1+|§|t|.§|f(§)

which can be solved explicitly. Indeed, the solutions are given by
~ 1 A
f&) = +ctlEDe fod). (4.21)

From (4.21) we see that the solution to (4.20) loses %—derivatives with respect
to the initial data. Equation (1.11) has a similar behaviour to (4.20) but there is
no chance to find explicit solutions. Instead of that we will use energy estimates
in the same way that the following energy estimate for (4.20). We compute

the time derivative of || &) to obtain that
1+11E] ]| 2

f@© / H 3 f (&) p
T+ 106] f(s)( A+ 1) 1+t|§|) :
:/ f |§|( -1, ] )ds

r |1+ 1]E] 1+¢tE] 1+ ct|€] ’

: 1 1
1 >
and since TF]E]

1
50

> 0 for ¢ > 1 we can conclude that

= TrerfE]
Lol f®
27 (| 1+ rfE] ’
and therefore | li(télél 2 = Il follr2.

The same analysis for 32 f yields the estimate

2216
1+ ||

(4.22)

1
50

In addition, it is easy to see that 8t||f||2 < éllfll2 ;||a f||2 Further-
more, |Jy f(é)l is less or equal than |f(§‘)| for |£| < 1 and is less or equal than

1+l‘§| |82f(§)| for |€] > 1 and ¢t < 1 (this is just because 1 < 11'55 in this
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— 12
range). Therefore, Wehavethat||8xf||%2 < ||f||iz+4 % and
2
! 27 |
r 2 < 2y
5 A = I T 1]

which allows us to get, together with (4.22) that

o — 2
2 a}%f 2 2 2 Ct
1115+ || < (Ifol 122 + 1182 fol 3,) €,
+ el ||,

forany ¢t < 1. Thus, forz < 1, wealso control || f|| 51, by losing one derivative
with respect to the initial data, i.e.

Nf Ol g < Cllfollg2, fort < 1.

This strategy is flexible enough to be applied to the full system (1.11) with
the price of paying more derivatives with respect to the initial data than we
actually need. In (1.11) we are dealing with pseudodifferential operators but
arguing semiclassically we will show that they behave as Fourier multipliers
up to factors of ¢. This is the content of the following sections.

4.2.1 First manipulations of the equation and of the mean velocity Mu

In order to obtain energy estimates for the equation (1.11) we need to take 5
derivatives with respect to x in both sides of the equation. We describe 35 Mu
as the sum of a main term and lower order terms. Since we expect to lose one
derivative respect to initial data (e.g by the toy model) we will work with the
Fourier multipliers,

— 1 - N
D-1f ) = T f(é) DfE) = (14 2mit§) f(§).

Notice that when t+ = 0, D~! equals to the identity and therefore it is not
smoothing.

Definition 4.7 We say that a function G(x,t) : R x [0, T] is a lower order
term, [.o.t., if and only if

ID7'GlI2 = € (fllas + 105D F11.2)
for some smooth function C : R — R.
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Lemma4.8 Let f € H ® and ¢ = c(x, 1)t with ¢ as in the statement of
Theorem rm 4.1 and 0 <t < 1. Then

BJ?MM = —/ AB;’f(x, x— K&, x —y)dy+lo.t.,
R

where

y

1 1 1 ,
Keox=w=q2 L L VI Af (o x =)+ e(h — o — yyan2 M

and l.o.t. defined as in 4.7.
Proof The proof is left to “Appendix A.1". |

We still need to simplify the kernel K (x, y) (which depends on f in a
nonlinear way). Actually we can linearize it as the next lemma shows.

Lemma 4.9 Let f € H® and ¢ = c(x, 1)t with ¢ as in the statement of
Theorem 4.1 and 0 <t < 1. Then

P Mu = /R 3 f(x — y)Kgf}>(’j;C<x>(y)dy +a(x, 3% f(x) + Lo.t,
where

c(x),0xc(x)
Kaxf(x) o)

1! y
- — rd)
4 /_1 /—1 /R y2 4 @0 f(x)y + dxc(0)ry) + c(x)r (A — ?»/))zd >
a(x,t) = —P.V./ K(x, y)dy,
R

and l.o.t. defined as in 4.7.
Proof This lemma is proven in “Appendix A.2”. O

We will deal with the equation mostly on the Fourier side. In order to show
the relation with the toy model in the following lemma we present the Fourier
transform of

y

/ 1!
ped L / f drdy. (423
A O 4 J_1 )1 2+ (Ay + cltyN + ct (o — V)2 *29

Notice that to compute the Fourier transform A, ¢, ¢’ are taking as constants.
In the application they are functions of x but not of y.
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Lemma 4.10 Let KIZ’C/ asin(4.23)with A, ¢’ € Randc > 0. Then its Fourier
transform is given by

.. 1
I?ffl(é) _ —isign(§) (2 _ 2moyetlEl(—1-3)(Ayisign(§)+1)

4 - 2mct|E] J_4
_82nak/|$|(1fk/)(A)L/isign(é)fl)) d)\/. (4'24)
where o1 = 1+1Ai/ and Ay = A+ c't).
In addition
A —isign(§) 1 _4
ReOgy— —HS8me) (4 ( roct|§| 4o Act
A (&) ImctE] < +4mt|&_| e (cos(dmo Act|§])
—Asin(4roAct|é])) — 1)),
where 0 = ﬁ.
Proof This lemma will be proven in “Appendix B.1, lemma B.1". O

In spite of its behaviour, a careful Taylor expansion 132’0 at zero (using
o= ﬁ) shows that it is bounded. On the other hand for large semiclassical

frequencies ¢|&| behaves like %trllg) These two observations suggested the

toy model from the beginning of the section.

The next lemma describes more precisely the growth of K 2’0. It is dramatic
to frame ourselves in the realm of positive symbols and to guess the correct
energy estimate

Lemma 4.11 The following estimate holds for every (x,£€,1t) € R x R x R
and1 <c¢ <2,

1
N A ! 2|1A|+ 5+ 87
2misign© K" ©)| < 125+ T aR

Proof The proof of this lemma can be found in “Appendix B.1, lemma B.3” O
4.2.2 A priori energy estimates for the quasi-linear equation

Lemma 4.9 says that if f is an smooth solution of (1.11) and we call F'(x, t) =
32 f(x,t) and A(x, 1) = dy f (x, t) it holds that

0 F(x.1) = /R K005 e — y)a, F(n)dy + a(x)d F(x) + G (x),
(4.25)
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where G (x) is al.o.t. Let us write the equation closer to the spirit of pseudod-
ifferential operators. We will define the operation

Ky ™ @ foo = fR Ko™ & = n f (dy,
in such a way that the equation (4.25) reads as
0 F = KU @ 0, F(x) + a(0)d F(x) + G(x). (4.26)

Notice that the pseudoconvolution ® can be alternatively expressed as,

K ® f(x) =0p(p)f(x),

where K is the Schwarz kernel of the symbol p, i.e.,

P, £) = f eTEK (x, y)dy.
R

Definition of Symbols The upper bound in lemma4.11 motivates the definition
of the following pseudodifferential operator .7 ~!. First we define the function
¢ : RT — RT in the following way

p(t) = (4.27)

where B is a constant that just depends on || fo|| s, fo being the initial data in
(1.11). It suffices to take

B = 200 foll ;5 -+ 200. (4.28)

€]
Next we define the multiplier j (&) = e~ o™ @4t which satisfies

3 = —lElplED ;" (4.29)

Hence, the corresponding operator 7 ~! of degree —1 is given by the expression

1]

T1fE) =e b o@dr fg)

Here we remark that since % < j*1 (tlED(1+1)E]) < C, T Lis comparable
to D! meaning that

1 _ _ _
ell4 Yo D7 fllpen 2 < CHT 7 Fllas 12,
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where C just depend on B.
If we read the right hand side of (4.26) as an operator on F, the main part
is described by the symbol

Pmain(x,§) = 27Ti§[22’c .

This is a bounded symbol in & and x, but its L> norm blows as ~!. This is
problematic to get an uniform in time apriori estimate. Next we explain the
strategy to deal with this issue. Firstly, we introduce a suitable decomposition
of pmain. The symbols p, pp, pgood and p4 will be given by the expressions

p= 27”-;165;0, pb = 27i& (Pmain — P) »

Pgood = IEIP pl§]), and py = —(+[&])Pgood- (4.30)

We point out that all of these symbols are even in & and therefore the
corresponding pseudodifferential operator are real valued.

Secondly, we observe that Op(p;) is a bounded operator from L? to L.
Then we observe that the growth of p is controlled by |&|¢. Thus, the Garding
inequality, Lemma 5.5, allows to control the norm of Op(p4) from L2 to L?

in terms of the norms p? 1. As expected, these norms blow up as 1~ > This is
integrable near 0 and suffices to our purposes.
Hence we are led to study the problem

9 f = Op(l&le(t&N) f. (4.31)

Integrating the equation (4.31), as in the toy problem, leads to 3, |7~ ' F (-, 1) |?
= 0. Thus in the fully nonlinear case there is the hope of the existence of energy
estimate for that quantity. Indeed, this is the case, but a few manipulations show
that then correlation between J and p,.in needs to be estimated as well.
Happily even if p,,qi, blows like r~!, this is compensated by the ¢ provided
by our non smooth semiclassical estimates. Therefore the worst behaviour is

1
given by p7. The following apriori estimate shows how these heuristics are
made rigorous.

Theorem 4.12 Let f be a smooth solution to the equation (1.11) and c as in
the statement of Theorem4.1. SetF = 85 f.LetO < T, < 1small enough such
that 210y f (-, t)|[Le + 5+ 87 < 5 B with B as in (4.28). Then, ift € [0, T)],
it holds that

T FC D2 < 7 M (Il follgs, (1 Nlz2 + 1T~ Fliz2))

@ Springer



Mixing solutions for the Muskat problem 281

where M is an smooth function M : RT x R* — R, positive and finite.

Proof Firstly, we recall that by lemma 4.9
0 F = Op(pmain) F +ad F + G,

where G stands for l.o.t. in the sense of definition 4.7. Secondly, it is crucial
for our estimates that if # < T, lemma 4.11 and the definition of ¢ implies
that p > 0, (p4 is even for all times).

Next we compute the time derivative, and express it in terms of the symbols,

lafulF( 2 _/ gy 7]
’ 0Pdx= | TF8.J 7 Fdx
2" Je A
=/J—1F/ezmx€at <j—1(t|§|)13“(g)> dédx
R R
= [[T7F [ e (leloclel + GF) deds

:fj—lF/eZ”"xfj*(nsD (—leleaienFe)
R R
+FLOp(pmain) F1(§)) d§dx

+ / I / AT (18 )ady F(§)dEdx
R R

+ / J'FT'Gadx.
R
We denote g = J 1 F and we will split the term
/R e 7N alg]) (— 181 UIED F ©) + FLOP (Pmain) FI(®)) ddx
in the following way

/Reh”f (—1Ele1EDEE) + FLT ™" 0 OP(Pmain) © T 81(5)) d&

= fR XTI (—|E|@(|E]) + Pmain(x, £)) §(E)dE
+ j_l ¢] Op(pmain) o jg - OP(pmain)g

]
= —0p(p4)g + Op(p — Ep)g + Op(pp)g + T OP(Pmain), Tlg.

where we have just added and subtracted Op(pqin)g in the first equality and
in the second one we have used the definition of py,4i, and p.
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Then,

1
dillgll7> < —/RgOP(m)gderngOp(w - Ep)gder/l;gOp(ph)gdx

1+(9) Tg00a(8) Ip(g)

+ /R T 'Op(Pmain), Tlgdx

Icom

+f gj“(aaxF)dx+/gj—‘de.
R R

Itranxport (8) I1.0.1.(8)

We recall that the symbols ||| f||| and (A) will denote some polynomial
function evaluated in || f|| 4 and || A|| 3 respectively (A = 9, f ). Thus since
|7~ F|| 2 is comparable with || D' F|| ;> it holds that, for finite time,

A+ (A) < C(If N2 + 1T Fllg2), (4.32)

where the right hand side of (4.32) C means a smooth function evaluated at
1 llz2 + 1T F e
We can estimate this collection of terms in the following way:

L. |1+(g)| < % ||g||iz. In order to get this inequality we first use lemma 5.5.

After that we use that
11
Jle(vhrt)

1 skew
oo
1 1
(See Sect. 1.1 for the notation). The estimate for ||p;"L 1,1 < (A)t™2 canbe

1 skew
Op (Pi) ‘

sequence of theorem 5.3 and lemma B.6. The bound for

1
Ipilia

L2112

L2—L2

found in lemma B.6. The bound for < (A)isacon-

2,12

1 1
¢ (pi, pi)
(A)t_% follows from theorem 5.2 and lemma B.6.

2. [1go0a(8) + [Ip(8)] =< (A)Ilglliz by the estimates |[Op(pp)ll2_ 2 +
Op(pgood) |l 2— 12 < (A). These estimates are a consequence of theorem
5.1 and lemma B.5.

3. [Icom(g)] =< (A>”g||iz follows from ”j_][Op(pmain), \7]||L2—>L2 =<
(A). This estimate is a consequence of theorem 5.13 and lemma B.5.

=
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4. Tiransport ()| < I 11 ||g||i2 by lemma 5.11 and the estimate for the norm
of a, given in lemma A.13.

5. 1104 < 177 'Gll2llgl2 < CID™'Gll2ligll2 < CAIFID gl 2
where C is the function appearing in the definition of lower order terms,
definition 4.7.

Finally notice that in the definition of ¢, appears a constant B which depends
on fy. Thus aslongas0 < ¢ < T, since p4 > 0, the claim follows where the
function M is built from the function C and a high power of || f||;2 + llgll2-

O

Proposition 4.13 Let f be and smooth solution of equation (1.11), with fy €
H? and ¢ as in Theorem 4.1. Then there is T = T (|l foll ys) such that

sup [|fllge < sup (I1£1l2 + 21D Fli2) < P (Il follys)
O0<t<T 0<t<T

where P is some bounded function.

Proof Let u(t) = (|| fl|z2 + [|ID~'32 £1,2)%. From theorem 4.12 and since
¢|| f112 1s easy to control by a function of u(7), we have that, for 7 € [0, T}, ],

oru(t) 1
—. 4.33
M Sollgs,u@) — Vi (4.33)

Since M is positive, the function U : RT — R defined by U(x) =

X 1 .. . . .
fo CTITIPS) dy is increasing. Let us integrate both sides of (4.33) respect

to time. Since |U (u(0))| < U (|| f°| | 75), it follows that

U®) < U0 ys) + 241

Since U (x) is increasing, we see than for small time depending on fj the initial
data all smooth solutions satisfy that

u(t) = Pl foll gs)-
In particular since the time of positiveness 7, depends on |3, f|, this yields a
lower bound 7', which depends on || fy|| 55 but not on f. Thus we can select
T, in such a way that we achieve the conclusion of proposition (4.13). |

4.2.3 The regularized system and local existence

In order to be able to apply a Picard’s theorem we will regularize the system by
using two parameters, § and . With the parameter 6 we regularize the transport
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term and with the parameter « the nonlocal operator. We will consider the
following equation for £ %(x, 1),

9 f< () = —gbs / (65 % B0 <0 (x) — s % 3y 12 (1) Ko, (x, Y)dly

/ / / Ox & (X)A — 0x & (x — VA zd)»d)»/dy
124+ (Af(x,x —y) + & (X)L — gc(x — y)A)
Gelf*9)
+ ks * 02ps % [0 (4.34)

0, 0) = O,
(4.35)

where k, § > 0, ¢ is a positive and smooth function with mean equal to one
and ¢s = %d) (%) and K, (x, y) is like K(x, y) in lemma 4.8 but replacing
e(x,t) =c(x,)tbyee(x,t) =c(x,t)(t +«) (also e(y, t) = c(y, t)t pass to
c(y, D)t +K)).

The Picard’s theorem that we will apply is the following

Theorem 4.14 (Picard) Let B be a Banach space and O C B an open set.
Let us consider the equation

dx(t) —F[X, 1] (4.36)
dt ’ '
X(0) =Xp, 4.37)

where
F[-,t] : O — B for|t| <n, forsomen >0

is continuous in a neighbourhood of Xo C O. Suppose further that, F is
Lipschitz in O, i.e.,

IFIX' 1] = FIX*,1]lls < COIX' = X?||5. forlt] <,
and F[Xo, t] is a continuous function of t for t < |n| with values on B,

with ||F[Xo, t]lllp < C. Then, there exist T > 0 and a unique X(t) €
CY([-T, T1, O) solving (4.36), (4.37).

By applying theorem 4.14 the following result holds:
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Theorem 4.15 Let fO e H*R), ¢ as in Theorem 4.1 and 8, k > 0. Then
there exist T*% > 0 (depending on « and 8) and

% e C(—=T%%, T%); H*(R))

such that f* 8(x, 1)) solves the system (4.34). In addition, this solution can be
extended if its H*-norm is bounded.

Proof In order to apply theorem 4.14 we choose B = H*,
Om=1{feH" : |Ifllg: < M),

Xo = f9 (we take M > || fO|| y«) and

F =y * f (65 % 05 £5 0 () — s % 0y £° (1) Ko (x, )y

—00

+G o [f0 + s % 025 % [0 (x).

Because the properties of the mollifiers ¢s and that the kernel K.« is not
singular in Oy (g, > 7, for T% < 5 in this open set), the hypothesis of
theorem 4.14 can be verified. In addition we notice that F' is also Lipschitz on
t thus the solutions can be extended on time as long as its H*-norm is bounded.
This is rather standard and we will omit the details. O

Proof of Thorem 4.1 Once, we dispose of the solutions £%* we need to obtain
estimates independent of § and «, for positive time, in order to be able extend
these solutions to an interval [0, T'), with T independent of § and k. Then, we
are entitled to take the limit. After taking four derivatives in F, we find that

o

Ke, (x, y)¢s % 87 f (»)dy

9LF =g+ (a9 <03 0) + 95+ [
+ 1 % 025 % [0 + Lout.,

where

a(x) =—P.V. /OO K¢, (x,y)dy,

—00

and [.0.t means terms bounded in H* independently of §.
Therefore, the main terms in the derivative %8, [|fl 2 are

[ o (atas < 035 c0) ot
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and
/ o * / Koy (e y)s % 32 £ () dy 02 £ (x)dx.

The first term can be bounded in the following way

‘ [ osx (atas < 035 c0) ot r i

_ ‘ / T a()gs 83 F()s * 9% f (0dx
< Clldxal|L|13} £112,.

And in order to bound the second one we just notice that K,_ is not singular
because &, = c(x,t)(t + k) and then we can integrate by parts in order to
gain a derivative in x. Thus, the uniform estimate in § are easy to get (the term
coming from the Laplacian operator is treated in the usual way). The main
difficulty to prove theorem 4.1 is then performing estimates uniform in « for
the equation

3 f(x)
S f/l /1 D) = B f (6 = 3) + Bu8 (R — dut (= YV
T oax e ) ) V(A — ) F a0k — scx — )2
drdN'dy + K2 f*. (4.38)

We notice that because of the effect of the term /ca§ [ the solution to (4.38)
are actually smooth, and then, we have enough regularity to apply our energy
estimates to obtain estimates uniform in « as in the proof of Proposition 4.13.
The only difference is that for the regularized system there is the new term
coming from the Laplacian. Again, this term is harmless as it is a differential
and positive operator. Then we have a control of the H*—norm of the solution
uniform in «. This information is enough to pass to the limit and to find a
classical solution for (1.11).

Finally we show the continuity on time of the H*-norm of the solution then
C! —continuity in H? follows directly from the equation. For ¢ > 0 the proof
follows standard techniques. The continuity at # = 0 is more delicate. This fact
follows from the following argument. We can write the difference 8? f— 8;‘ fo
as

o0if — ¢ fo=D "D (35 f —df fo) =D (0; f — 9 fo)
+ 1D A f — AD f).
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The second term is controlled by the energy estimate.
In addition,

D719t fo = 0t fo — 1D ADY S

Thus, the only problematic term is

e /’ 3o 'i/ OO
e sl T S \TasEn? T Tl

but 9; 8;‘ f is of the order of 83 f by the equation. Then taking the L? norm,
again the energy estimate implies that

03¢ f — 8¢ foll» < Ct,

for small z. O

5 Semiclassical analysis with limited smoothness on the symbols

In the following section we develop what we call our semiclassical estimates.
As a matter of fact, our symbols are a bit more general than those of the type
p(x, t&) but our results certainly apply to those. We have divided the section
into a first part where we state result for general symbols and a second one
where we deal with the ones appearing in the current paper.

5.1 General symbols
5.1.1 Results

We start by recalling the basic boundedness of pseudodifferential operators
with optimal smoothness as proved in [12,15,27]. We state it exactly as [27,
Theorem 1.3] as we will elaborate on ideas from this work.

Theorem 5.1 (I. L. Hwang) Let p € Sy and f € L%. Then

10p(P) flizz = Clipllall fliz2-

The semiclassical type estimates we need are related to the results for
symbols with a limited degree of smoothness studied in [31] and [44] via
paradifferential calculus. However the estimates in these two papers are not
enough for our purposes.

Our first result is on the correlation of symbols (see Sect. 1.1).
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Theorem 5.2 Let py, p2 € 8171 NSroand f € L2
Then,

1€(p1, p2) fliz2 = NEp1, PN flIL2, (.1

where

NEp1, p)II < C (Ipillillog p2llno + (p2li1 + 1p2l2,0) 19e pillio) -

Theorem 5.3 Let p € 81,1 be even in the & variable. Let 0 < ¢ < 1 such that

Sl;P (1053 pC, )l =+ + 1053 P, )l g1+e) < 0.

Let f € L2
Then

10p(P)** 1112 < 11Op(PY* ™ 11 £1I 12,

where

1Op(p)**ev ||| < ngp (185 PG, E)ll e + 135D PG, E) gy1ve) -

Remark 5.4 Notice that since in both theorems, in the estimate of the norms
there is multiplying factors with d¢ in the case of semiclassical symbols
p(x,t&) our theorems yield a gain a factor of ¢. The whole semiclassical
calculus e.g [45] or [38] for more general symbols can be replicated for non
smooth symbols. A prime example is the coercivity of elliptic semiclassical
symbols for ¢ small, which is a corollary of our results.

Positive symbols have additional properties. The next Garding inequality
1
gives control of them at the price of bounding the derivatives of p3.
Lemma 5.5 (Garding inequality) Let py be an even in the & variable positive
1

symbol such that p_% € S1.1 NS0 and
1 1
Sl;p (Ilaxaspille + ||3x3§PiIIH1+s> < 00,
for some ¢ > 0, and f € L?. Then

1ol 1 1
_/RfOP(p-i-)fdx < cllepi, pII+ P3O D™  IDILf 7.
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5.1.2 Proofs

Our proof are inspired in the ideas of Hwang to prove theorem 5.1. As usual, in
the proofs we obtain the estimates applying the various operators to functions
in the Schwarz class, where we can use the explicitly representation of the
operators as integrals against the symbols, and achieve L? results by density.
Moreover this fact makes it enough to obtain the correct bounds considering
smooth and fast decaying approximations of the symbols. We will provide
some of the details in the proof of Theorem 5.3, where these arguments are
slightly more involved, and skip them in the rest of the theorems. Several
integration by parts in combination with the basic properties of the exponential
and Plancherel identity are used recurrently. Hence we have isolated them in
some preliminary lemmas.
The first lemma is an extension of [27, Lemma 3.1].

Lemma 5.6 Let f € L>. We define, for (y, n) € R?,

f(@)

he(y,m) = | ¥ii— 2> 4z
O m /R 1+ 2mi(y —2)

Then for k € OUN,
195R1 22y < CIIf Il 2.
Let p(y,n) € Sk and set U g(y,n) = p(y, Mhys(y,n). Then,

15T £l 222y < P llkoll 1l 2-

Proof [27, Lemma 3.1], which follows by Plancherel and a change of variable,
says that if g, f € L?

hye(y,m) = /Rez’””zf(Z)g(y —2)dz
satisfies that

1Al 22y < ClIglp2l fllL2-
Notice next that for k € 0 U N the function g = Bf( i +21m.x) € L2. Hence we
can differentiate & ¢ (y, n) under the integral sign and the claim follows from
[27, Lemma 3.1].
The second estimation follows from the first, the assumptions and the prod-
uct rule. O
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Lemma 5.7 Letr, g € L? and F € L*(R?) and define, for (x,&) € R2,
606 = [ [ O E Gt = O = ydydn. (52

Then,

1G(xs 2wy < Irll2ligl 21 F s mll2g2)-

Proof We first take Fourier transform in x and do a change of variables to
obtain

Gla £) = / TG (x, ) dx
R
_ / / AT I—E=@Y By iy (n — €)§(a)dyd.
R JR

Next, Cauchy-Schwarz inequality respect to 1 yields the pointwise estimate,

2
dn. (5.3)

1G e, &) < 171318 (@) /R ‘ fR ATIEOY By n)dy

We will need that Plancherel identity, with variables y, &, yields the equality

J

Thus, we first apply (5.3) and Plancherel again to bound the L? norm of G,

2

AeZHi(n—$—a))’F(y’ ndy| d&§ = A\g | F(y, n)lzdy. 54

2
déda,

1G22 2, < 17112 f 18 () |? / ‘ f AT ITEOY By p)dy
LZ(RZ) L R R |JR

and we conclude by integrating first in & and then applying (5.4). With a final
use of Plancherel the lemma is proved. O

Lemma 5.8 Let g € L2 T, 0,I" € LZ(RZ) and define, for (x, &) € R2,

Gx, £) = / FTIDL (0 yye(x — y)dndy. (5.5)
RZ

Then,

1G22y = 18l 111 = 3y) Uil 12 R2).-
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Proof Letr(x) = m ‘We will use that

. 1 .
2ri(n—§&)y __ 2wi(n—§)
e S S— W R . 5.6
1+2m(n—€)( Y 60

We insert (5.6) into (5.5) and integrate by parts respect to y to obtain that,
Gx,6) = [ 0y — )1 = 0,) (1, (s = y)dndy
= [ 00 = 0,3 = )20~ y)dndy
+ / T (n — E)T (0, y)ga(x — y)dndy,

where g>(x) = 1+ 0y g. Thus both terms are as required in (5.2) and the claim
follows from a direct application of lemma (5.7) O

Lemma 5.9 Ler Q(x, &), 0, Q(x, £) € L>(R?). We define, for a.e.x € R,
Ag(x) = fR I O(x, E)E.

Then,
||AQ”L2 = “(1 - 8x)Q”L2(R2).
Proof Letv € C3°(R) be a test function. Then we estimate || A g || 2 by duality.

Thus for v € L2, Fourier inversion formula and the definition of A imply
that

/AQ(x)v(x)dxz//eZ”iMAQ(x)ﬁ()»)dkdx
R RJR

- / / / FOFOIX O (x, £)D(M)dAdxdE.
RJR JR

Now we use (5.6) and integrate by parts in x to get

/ Ag(¥)v(x)dx = — / / PTEN( — 0,)Q(x, €V (€, —x)dxdE,
R RJR

by direct application of the definition of /; as defined in lemma 5.6. A direct
application of Cauchy-Schwarz inequality in R? and lemma 5.6 finishes the
proof. m|
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In our proof we will use lemma 5.9 for functions defined by integrals, e.g

O(x,£) = /R (TSR O,y &, idydn,
or
06,6 = [ 0 dx, & midyd.
Proof of Theorem 5.2

Proof We start by giving an explicit expression of Op(p1) o Op(p2) f,

Op(p1) o Op(p2) f = f3 TIETETD (., £) pa(y, 1) f (mdndyde.
R
We bring in p; p» by adding and subtracting suitable terms,

p1(x, &)p2(y, n) = (p1(x, &) — p1(x, n)p2(y, n)
+ p1(x, ) (p2(y, n) — p2(x, m) + p1(x, ) p2(x, n).

Therefore, we can write

<(p1, p2) f(x)
= f TSI (py (x, €) — pi () pa(y, m) f (m)dndydE
R
+ /Ra I CETEII by (x, ) (pa(y, m) — pa(x, m) f (n)dndyd.
Notice that the second term is zero (e.g use that as distributions,

Jp 2T VEdE = 5(x — y).
Thus,

Q:(Pl, pZ)f(-x) — /I‘QS eZni(xé—%"y-l—yn)(pl(x’é;)
— p1Gx, M) pa(y, m) f (ndndydé,

and we aim to bound it in L. We express it directly as an operator on f itself:

Q:(Pl, P2)f(x) — ‘/1%4 ehi(xé—@%—yn—nz)(pl(x’ S)

= p1(x, M) p2(y, n) f(z)dzdndyd§.
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Now the basic formula (like (5.6)),

(1 4 8y)eFOTIN = p2mi—n,
1+ 27i(y —z)( 2

and an integration by parts in the » variable, yields
C(p1, p2) f(x)

_ / 62ﬂi(X$—%’y+y77—nz)(1 — ) {(p1(x, &)
R4

f @)
14+27i(y —2)

_ / ATIEEE I (1 _ 3y (1 (x, )
R3

—p1(x, M) p2(y, M}y hg(y, n)dndydg,

—p1(x,m)p2(y, m} dzdndydé

where in the last equality we have absorbed the integral respect to z in the

definition of &y (Lemma 5.6). Now we expand the n derivative to express
&(p1, p2) f as a sum of three terms:

_ /R ATIEEIE (1 (x, ) — pi e, m) pa(y, g (v, dndyd
- /R FTIEEE ()0, pa(y, M (3, My

+ /R AEEY, (1 (50 pa(y, ) g (0, mdndyd

= &(p1, p2) f1 + €(p1, p2) o + &(p1, p2) f3.

Notice that in fact, if we use again that f e2mig (X_Y)di;‘ = §(x — y), we
obtain that

C(p1, p2) f3 szez””’xan (p1(x, M) pa(x, M) I g (x, ).

We treat each of the above terms individually.

1. Estimation for €(p1, p2) f1 :

In order to estimate €(p1, p2) f1 we integrate again by parts to obtain

<(p1, p2) i =/

5 ATHEEZEYTID (1 — 96) (p1(x, &) — p1(x, ) p2(y, )}
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hyg(y,n)
(1427i(x —y))

- / PTIOETETIN (py (x, 8)
R3

hy(n,y))
(1 4+27i(x —y))

_ / PTGy () (v, )
R

= C(p1, p2) f11 + €(p1, p2) f12.

dzdndydg

dzdndydé

= pi1(x,M)p2(y, n)

hg(n,y)
(1 4+27mi(x —y))

dzdndyds

(a) Estimation for €(p1, p2) f11 :

We start by we integrate by parts with respect to y to bring a factor n+§

and thus a difference quotient for p1;
<(p1, p2) f11(x) :/ —) ean(x§—§y+yn)
r3 2mi(E —1n)
ST M) T r(y,
(p1(x.8) = p1(x,m) Tr(y n)dydndg

1+ 2mi(x —y)

(e —E vty Uy, m)
_ 2mi(xE—=Ey+yn) 0+ _ dndyd

where

(p1(x,8) — p1(x, 1))

Ly, m = pa(n, hy(y,m, 0@, n,x) = 2iE — )

The mean value theorem respect to &, tells us that

1911l w3y = 119 P1llLoo®2)y < 19z P1ll1,0

5.7
1105 Ol 2oy < I19Z ,P1 ooy < g Pl 0-

Now a direct application of lemma 5.9 yields that

1€(p1, p2) frill2 < G (x, E)ll L2r2)

where,

G@m):/?me@Wl—%MQ@WJWy
R
Cr(y,m)
(1+2nmx—)o)>dm”'
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Here we can not directly apply lemma 5.7 as Q depends on 1 but we
follow a similar strategy. We integrate by parts in y to obtain that

; 1
cx) = 2mi(n—&)y _
G = [ e Tt
Ly, m)
(Q(g, n, x)(1 = 9y)dy <m)> dndy.

Let us write G(&; x) in the following way

1
L) — #
G(s’x)_/quLZni(n—é)Q (&, n,x)dn,

with
Q%(&,m,x) = / A=Y (1 — 5))
R

Cr(y,
(Q@, n, X)(1 = 8y)dy (H—#y(xn)—y))> “

By Cauchy-Schwarz

GE: D < C/I; %€ n. x)%dn.

and therefore,
161 sqee) = € [ |10%(6,n.) Pnded,

Our next task is to deal with Q% (&, n, x). We first expand the derivatives
in x. Notice that

[r(n,
(1= 3x) (Q@v 7 21 = 3y)3 (Hzfr(—m))

1
= Q(&, n,x)(1 — 9y,)d, (Ff(y, m (1 =) (m»

Cr(y,m) )

—0xQ(&, n, x)(1 — 3y)dy (m

Then

/R |0 &, n, x)Pdndédx
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:/ /627”'(175))1(1 — )
R3 [/R

Ly,
(Q(ﬁ, 7, X)L = 0,)9y <1++n(xy)—y))> “

2
dédndx

< 1Ol Lo w3

/ /' OV (1 — §,)d,
R’ |JR
1
(Ff(y, m(1 —dy) (1+T(x—y))) dy

+ ||8XQ||L°°(R3)/ ‘/ ezﬂi(n_g)y(l _ 8y)ay
R3 [JR

( Cr(y,m) )d2
1 +27ir—y) )¢

= [ Ol w3 It + [10x Qll oo (w3 2.

2
dnd&dx

dndé&dx

Now we expand the derivatives in y. We obtain that both [, I; are a
sum of terms of the type

1,-:/
R3

with g; € L? and j = 0, 1, 2. We proceed as in the proof of lemma 5.7.
We first do Plancherel in the x variable and then Fubini to integrate first
respect to £ and conclude by Plancherel again with real variable y and
Fourier variable &.

I; =/ 18:) ()]
R3

— lgill2 / | / PHEYIT (v, mdy2dEdn

. 2
/ReZm(n—S)y% Ff(y, ngi(x —y)dy| dndédx,

i 2
/Rezm(”_é)yajl"f(y,n)dy dédadn

= ||gi||Lz/|a§rf<y,n>|2dydn < Clip2130ll £113,,

where the last inequality follows from a direct use of of lemma 5.6 and
the uniform bound for ||g;||;2. Combined with (5.7) yields the desired
bound,

1G22y = Clip2ll2,0l19 prll1oll fllz2- (5.8)
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(b) Estimation for €(p1, p2) f12 :

The estimate goes in a similar way to the previous one. However we
already have a derivative of the symbol, so the first integration by part
is not necessary. By applying lemma 5.9 it holds that,

1€(p1, p2) fi2llzz < 1G(x, E) 12 (w2)-

where

9 p1(x,§)

_BEPVEE gndy.
14 27i(x — ) 1Y

Gx.8) = fR LT pa(y b p (. ) (1 = D)

Thus, we have to control terms of the form

Gi(§,x) = qi(x,£) /Rz ATIENT L (y, m)gi(x — y)dndy,

where either g;(x,§) = 0gp1, or g = 0x(dp1), and thus
IgillLo®2y = 10 p1ll1,0. Igillz2 1s uniformly bounded and 'y =
p2hy.

Hence a direct application of lemma 5.8 yields that

1GiCx, )l 2@ey < 10 pillioll(1 = 8T ¢ (0, W)l 22R2).-

Now I is exactly as in the lemma 5.6.Thus

1€(p1, p2) f12ll2 < Cllog prlivollp2ll2,0ll Sl 2. (5.9

This finishes the estimate for €(p1, p2) f12 and hence thatof €(p1, p2) fi.
2. Estimation of €(p1, p2) f2 :

In order to bound €(p1, p2) f> in L? we start by integrating by parts in £,

C(p1, p2) for = /R3 ATEETEYII b (x £), pa(y, mh (v, n)dydndE

hy(y,m)

YW gy ande.
T 2miGr — y)ydnds

:/ ZTICE=EYEI (1 — 3.) py (x, £)0y p2 (2 )
R3

By lemma 5.9 we are led to estimate in L?(R?) the function

(I —0g)p1(x, %)

G — 2riy(n—§)) 4 h 1—9
(x, 8) /Rze nP2(ys mh g (y, (1 — dx) T+ 2mit—y)

)dydn.
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Expanding the derivatives in x and & we discover that G is a a sum of terms
of the type

Gitx.©) =i (x,&) [ 0T 1 y)gix = )y,

Here g; € L? uniformly, I' y = 9, p2h s and g; = 0, fpl withoa, g =0, 1.
Thus we have the uniform bound ||g; || < || p1ll1,1 as well. Hence, a direct
application of lemma 5.8 yields the bound

1Gi(x, )22 = llptllll(d = 8T rll 122y -
Therefore lemma 5.6 (with k = 0, 1) applied to 9, p; yields

1€(p1. p2) f2llz2 = Clipilinilldg p2llioll fllz2- (5.10)

3. Estimation for €(p1, p2) f3 :

We denote M(x,n) = d,(pi(x,mpa(x,m) and M(x,m) = (I —
dx)M (x, n). Notice that, by expanding the various derivatives, it holds that

1Ml oo 2y < 10 pilliollp2llig + 19 palivollpillig. — (5.11)

Then
¢(p1, p2) f3(x) = /Rez’”'”"M(x, mh £ (x, n)dn.

Lemmas 5.9 and 5.6 gives

I1€(p1, p2) f3llr2 < IMhgllpagey < IM]ll f 1,2

5.12)
< C(log p1llrollp2llt,1 + 10g p2ll10ll 1, 1)||f||L2

Finally, by combining the bounds (5.8),(5.9),(5.10), (5.12) we have
achieved the conclusion of Theorem 5.2 with norm,

E(p1, pIIIl = C2lI9 pilitollp2llz,0 + 11l 1110 p21l1,0

(5.13)
+ 10z p1ll1,oll 2111 + 10g p2ll1,0ll p1ll1,1)-

Thus, 1€Cpr, p2lll = C(Ipilhalidspalio + (Ip20n + lp2ll2o)
l|0g p1l 1,()) as claimed.
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Proof of theorem 5.3

Proof Since p(x,&) = p(x, —£&) for f, g € S, the Schwarz class, it holds
that

[ ovr e fwgds = [ TS (i) = iy, ) )y

We consider the following smooth and fastly decaying approximation of the
symbol,

PP(x &) = e e gk p(x, &) € HF

for every k € O U N. Here ¢y is an standard approximation of the identity in
the x variable. Since f,g are in the Schwarz class, by Dominated Convergence
Theorem we have that,

i ROp(pS’K>sk€wf<x>g(x)dx= fR Op(p)™*" f (x)g(x)dx. (5.14)

Therefore, we can integrate by parts in £ to obtain,

S,k 8.k

Op(p5,K)Skve(x) — / ezﬂi(x—y);;: a%-(p (X, é) p (y’ é))f(y)dydg
R2 2mi(x — y)
= [ R0 v 6 f (e,
where
9 S,k , _ .0,k ,
0. y.£) = £ (p (2x ?) pre(y S)).
Ti(x —y)
Thus, by Lemma 5.9,

1OP(p** )™ fll 2 < I1G L2R2): (5.15)

where
GG 6) = [ e = 0000 3. 67 (),
R
Now for 2ig®* (x, &) = g pPK(x, &), the basic properties of the Fourier

transform yield that,

B qé,x(x’ %-) _ qé,K(y’ %-) B i2rnx _ ei2m7y

Q(xv y’g) -

) ) =y "
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i2mn(x—y) _

m, it holds that

Thus, if we declare ¥ (n, x — y) = (1 — 9y)

G(x, &) = /R i ATICYERI) Y (0 x — 3)d,g5 (. £) £ (n)dyd.

I\Lext, we compute the Fourier transform of G (x, &) respect to x, denoted
by G(w, &), and change variables in x — y. We obtain the formula,

Gl &)= [ " OT 0,0 (1.6 F ()

b(n) ~ — —~
=/ ﬂl/f(n,a)axq‘s”‘(n,é)f(—wr%+Ot)dn,
R b(n)

where b(n) is an auxiliary function, which will be specified later, introduced
to bargain differentiability into integrability, Now Cauchy Schwarz yields the
pointwise estimate,

1

G(e.£)] < </R|b(n)@(n,é)lzdn>2

(/ L TR F - —a)d )é
w b T 7 )

Thus, for C(p) = sup; fR |b(n)8xq/5\v’<(n, £)|%dn, it holds that

| S —~
G117 22y < C(p) fR lb(n)|2|w(n,a)|2|f(n —§ —w)’dndida

_ 2 R 2
=CIfI72 /1;2 |b(n)|2"”("’“)| dndo

_ 2 o p
=CPIfI72 /Rz Ib(n)|2|‘ﬁ(x, m| dndx.

ix 2 ix 2
Now, since [p |4 x_l) + |9, <e x_1>) dx < C, it holds that

wa,(x, m2dx < C(Inl+ ™).
Therefore, by Fubini,

Inl + In|~!

1 2
_ , dndx < C
/Rz bapp 2t midndx <€ | = pe e
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This last expression, is integrable for every 0 < & < 1 if we take b(n) =
™ xjo.11 (D) + (1 = xpo.13-(Inh)n' **.
Hence inserting the bound of ||G||;2 in (5.15) we obtain that
10p(p*>* ) fll 2 < CIl g2,

with C = C(p>*) = sup; [ |b(1)d:q®* (1, §)|*dn. Given our choice of
b(n), it holds that,

C(p) < sup (19xq®“ Nl e + 118xq° Nl g—- )

=sup (05 P** Nl pyree + 195 > Nl ) -

. 2 .
However, setting p* = ¢ ¢ * p, it holds that

_§E2 _Sg2
sup 150" - = sup (281£1e°% 13, =) sup (7% 13s0 )

Notice that p* e L? implies that 8, p* H~¢. Hence we can take first the
limit § N\ O to get rid of the term |9, p*||. Then, continuity of the Sobolev
norms respect to mollifiers allows us to let ¥ go to 0, to obtain the bound
supg [|0x 9 pll gy

Arguing exactly in the same way with the H'+¢ — term, in combination with
(5.14) yields the desired,

)skew

10p(P)™ L2 12 = Slgp (1823e pll e + 1190 pll y1+e ) -

The proof is finished. |
Proof of lemma 5.5

Proof
- [ ropprrax == [ opepipt)sas

. /R FOp(p2) 0 Op(p?) fax — /R FCpL, pl) fdx.
Cauchy-Schwarz and Theorem 5.2 imply that

1o 1o
I/Rf(’i(pi,pi)deI < e, PO (5.16)
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For the first, notice that

[ ot r0p sax = [ 10pp]) P = 0.
Thus,
- [ F0opirir 0 Oty fdx == [ 0p(w) FOp(P])
<~ [ 0w} FOp(p])
+ [ vt r0p(r)
= [100(2)7 1 — Op(pi) 110001
< 10p(P2) (P2 10p(p 2 £ 2.

The claim follows from theorem 5.3 and theorem 5.1. O

5.2 Lemmas for the apriori estimate
5.2.1 Transport term

Recall that D is the operator associated with the symbol d(§) = 1 + 2mit|€]|

and J is associated with j(§) = efotm ¢(DdT £ (&) where ¢ was defined in
(4.27).

In order to deal with the transport term we need the following lemma which
states that 7 and D have a similar behaviour.

Lemma 5.10 There exists ¢ such that

J@lg]) =1 +1l&|p(11€])

satisfying
o lEDIILe = C, 11§10z (@(t]E]) [ = C,

where C does not depend on ¢.

Proof Notice that by the fundamental theorem of Calculus

! St
jagh =1 —I—tlSlf o(st|Eelo e gy
0
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Thus,

! st
p(16D = [ gestiened wcas
0

With these representations the claimed properties follow readily. O

Lemma 5.11 Let 8,a € H'T¢(R) for e > 0 and J~'(f) € L. Then,

| / T T Nafodx| < Cllosall g 1T (O (5.17)

Proof In order to bring in a suitable commutator we first notice that

1
/ T (Pai g (fdx = 5 / f ad T (HPdx (B.18)
R R

and thus, integrating by parts
| fR T fad, T fdx| < llaxllL= 1T (I3 (5.19)

and since |lax||po < ||axl|l yi+e, we conclude that f J*Ifa8xj*1fdx isa
harmless term. Thus we can subtract it to the transport term and we are led to
bound the commutator,

[T, all f2].
Letg = j_lf sothat f = Jg.Lety = ¢(¢|€])|&]. Then

afy =aJ gy = agy +tW¥(agy) + tla, V](gy) = J(agx) + tla, V]1(gx),
[T alfy = agy — T Nafy) = 1T a, ¥1(gy).

We iterate this trick once more. Let us denote G = 7! gy, which has
L?-norm bounded by ||g]| ;2. Then

[T, alfe = [a, V]ig, = [a, V]G + t¥([a, V])(G) + t[[a, V], W](G)
= J([a, ¥V]G) +1[la, ¥], ¥](G)

and therefore

tT a, W1(gy) = [a, W1G + 1T 'la, ¥], ¥1(G).
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Now notice that
[[a, V], ¥] = a(V)? — 2W(a¥) + (V)%a

and then

—

la, W]G(§) = /&(n)é(é —n) (El@1E]) — 1§ — nle 1§ —nl))dn

—

[la, W], ¥]G(§) = /&(n)é(%‘ — ) (ElpIED — 1€ — nlpt|E — nl))* dn.
Thus by the mean value theorem and lemma 5.10

[1Elp (11D — 1§ — nle 1§ —nD| < Clnl,

Thus

Ia, ¥1G |2 + |llla, W1, W1G|| 2 s/R|fR|é<s—n>|<|a’;Z(n)|
HaeamD + [n)° (A + [n))~"“dn|*dE

and we conclude by Holder inequality in the 5 variable (Recall that||G||;2 <
lglz2)- O

5.2.2 Commutator between Op(p) and J

Similar computations to the above allow us to interchange J and Op(p). In
order to simplify the proof we will first relate D with Op(p). Then we use
our commutator estimation theorem 5.2 to transfer the result to 7 to finish the
estimate.

Lemma 5.12 Letto,p € 51,1 and g € L?. Then,
ID~'Op(p)Dg — Op(p)gli 2 < lltd,plii.iligll L2
Proof By the definition of D,

Op(p)(Dg) = Op(p)(g) +10p(p)(9xg)
= D(Op(p)(g)) + t[0x, Op(p)1(g)
= D(Op(p)(g)) + tOp(dx p)(g).

Hence
D™'0p(p)Dg — Op(p)g = D' (Op(1d, p)(g)).
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Thus, taking L? norms and using theorem 5.1 for the symbol 9y p, and that
d~ " is bounded in L the claim is straightforward.
O

Theorem 5.13 Suppose that td,p, tp € Si,1 and dgp € Sy0. Let g € L?
then

1T~ 0p(p)T (&) — Op(p)gll 2 < C(P)ligllz2,

where C(p) = C(ltdxplli,1 + ltplli,n + 18z pli0)-

Proof Define § = D~'Jg and observe that [|g]l;2 < |lgll;2. We write
Op(p)g = Op(p)J'Dg,Op(p)Jg = OpDZ and sum and subtract
J~'DOp(p)g. Then

J'0p(p)Tg — Op(p)(g) = T~ 'D(D~'0p(p)Dg — Op(p)3)
+[Op(p), T~ 'DIg.

In order to deal with the first term readily notice that 7 ~! D has a bounded
Fourier multiplier and lemma 5.12 implies that

ID~'0p(p) Dg — Op(p)&llz2 < ltdxpliniligll 2. (5.20)

For the second, notice that since 7 ~! D hasasymbolm = j~'d independent
of x then Op(p) o J~'D = Op (p - m). Thus

[T~'D, Op(p)] = €m, p).
Therefore we can estimate ||E(m, p)||;2_, ;2 by theorem 5.2,

1€0m, p)III < € (lmllo, 113 plivo + (Pt + lp12,0) 19emlloo) -

Lemma 5.10 implies that m € L* and |dgm| >~ < Ct. Therefore, we
achieve the conclusion of the lemma by the assumptions on p.
O

6 Mixing solutions in the stable regime

As discussed in the introduction our work was motivated by [41] where it is
shown that in the case of horizontal interface there exists subsolutions in the
unstable regime but it seems imposible to find them in the stable regime and
perhaps they do not exist. Surprisingly, if the flat interface is not horizontal
then one can construct mixing solutions with a straight initial interface in both
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the fully stable and the fully unstable regime. The proof runs along similar
steps than the one in [41]. Even if we will need the machinery expose in Sect.
3 to carry out this construction this section only expect to be a remark.

Let’s consider the change of variables x(s, A) = st+nA, with t = %,
Ryt
1 > 0and pr € R. We declare ¢ = ct, with ¢ > 0 and Q,,,;, = {x € R? :
X =Xx(s,A), s eR, —e() <X < e(t)}. We define p, u and m through
pF = —sign(0)2, u¥ = ——£2—pPt and m* = pu® — y* (1 — (,oﬁ)z) n—

2 2
mitu;
3 (1= (09)7) 0. 1), with ¥ € R. Here o > 0 yields an initial data in the
stable regime and o < 0 an initial data in the unstable regime. Then

V£ (x(s, 1)) =tdy f7 +nd; f*
V- f(x(s, 1)) =t- d,f* +n - 9,f.

Using this formulas is easy to check that V-u = 0, V- .u = — v, 0 and
u - Vp = 0. In addition, the equation 3;p + V - m = 0 transforms to y* =

—LL_ 4 sign(o)c
N
If 0 < 0 then we obtain from (4.5) the constrain 0 < ¢ < 1 + \/% If
mitus

, what give rise to a mixing solution in

D=

3
N
the stable regime but if the interface is flat and horizontal.

At this point, it is convenient to notice that the case non horizontal and flat
interface is only stable in the sense of the Muskat curve-evolution equation. In
the hydrodynamical context this configuration is unstable even if the lighter
fluid is above, because it leads to an instantaneous velocity shear layer (i.e.
discontinuity in the velocity). The only hydrodynamically stable configuration
seems to be the flat horizontal interface with the lighter fluid above.

o>0weobtain0 <c < 1—

Acknowledgements AC, DC and DF were partially supported by ICMAT Severo Ochoa
projects SEV-2011-0087 and SEV-2015-556 and by the Spanish Ministry of Science and
Innovation, through the “Severo Ochoa Program for Centre of Excellence in R&D” (CEX2019-
00904-S)”. AC and DC were partially supported by the grant MTM2014-59488-P and
MTM2017-89976-P (Spain). AC and DF were partially supported by the ERC grant 307179-
GFTIPFD. AC was partially supported by the Ramén y Cajal program RyC-2013-14317 and
the Europa Excelencia program ERC2018-092824 (Spain). DC was partially supported by the
ERC grant 788250-NONFLU. DF was partially supported by the grants MTM2014-57769-P-1,
MTM2017-85934-C3-2-P(Spain) and ERC grant 834728-QUAMAP. We are very thankful to
Fabricio Macfia for suggesting the semiclassical interpretation and to Mikko Salo for illuminat-
ing discussions on the classical theory.

@ Springer



Mixing solutions for the Muskat problem 307

A Appendix

In this “Appendix” we will prove lemma 4.8, lemma 4.9 and the required
estimates for the velocity u# and for the coefficient of the transport term a.
Throughout the whole section, there are integrals which are interpreted in the

principal value sense, both at 0 and oco. Since, this is standard and harmless in
our context, we will not make it explicit.

A.1 Lower order terms. Proof of lemma 4.8

We can write

1 1 1
Mu = ——/ / f ko (x, y)0,0dyd) dx.
A J 1)1 Jr

The main part of the proof of the lemma will be showing that

1 1 1
HD—l (anu + — / / / ko (-, y)afedydk/dk)
4 —1J-1JR L2

= C (1111 1D793 111.2) - (A1)

In order to accomplish this, we will need to compute the derivatives of the
function

Y
y2 462

kg (x,y) =
where
0=Af(x,x —y)+e(x)h—ex — YN = Af + Ae)’ +e(x)(A —1)).
In addition we introduce
h=f(x)+re(x) and h' = f(x)+Nex),y =e@x)(r —1).
Thus,
0 =Ah +ex)(A—LA)=Ah"+y,

where we remark that  depends on x and on ¢ although we will not make this
dependence explicit. We recall that c(x, ¢) is as in the statement of theorem
4.1. Since e(x, t) = c(x, 1)t, with0 < ¢ < c(x, t) and ||c(x, 1)||cs < C,

lyles < Ctia = Al. (A.2)
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A big part of our proof will be based on comparing 6 with its linearized
version

Olin = axh/(x)y +vy.

Remark A.1 Notice that in order to obtain selfadjoint pseudodifferential oper-
ators we could deal as well with

xX+y
O = axh/(T)y + vy,

Here the W in the exponent stands for the Weyl quantization. We do not pursue
this issue here.

To make the notation even more compact we will write Af = Af(x,x —y)
and 3% f (x) = 8% f. Then we have

v60,0
dxkg(x,y) = —2(};2_{_—92)2 = —Zké](X, y),
02ko (x. y) = — Y(3:6)* + ©)370)  y((0)d:6)
ko(X, Yy (y2 + (0)2)2 (y2 + (9)2)3

= c01k3! (x, y) 4 ek (x, y),

30,0026 + (6)976 0)0,0((3:6)* + (6)976
ko (x,y) = -2y —F + 036, 0)0:6((0:0)" + (6)3:6)

2+ ()22 YT 02+ (0)2)3
P ONCROK
YO+ 0)2)
= c31k3  (x, ¥) 4 caky(x, y) + 33k (x, ¥), (A3)
4 4 2 2 2 2
A gy @@ (0P20.0)%(0:6) + 0)20)
koo ) =BT T e P 02+ 02

N y24(3x9)4 + 144(0)(3,0)%926 + 24(0)*(826)?
(y? +(0)?)3
32(6)?9,0836
SR
6(320)% + 88,0930 — 2(0)3)
- 02+ ©)2)?
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= carkg' (x, y) + caokg? (x, y) 4 caskd® (x, y) + caakg*(x, y),
(0)°(3:0)° (0)3(3:0)° + (0)*(8,0)%320
ko (x, y) = —3840y —————~_ 4 3840 X
who (X y) YT+ 0)2) Y 02+ 0)D)°
240(8x9)3829 +360(0)3,0(320)% + 240(0)(3,0)%336
(v2 + (6)2)*
80(0)?320936 + 40(0)%0,0920
Y 02+ 0)D)?
100,0970 + 2(0)336
(% + (6)%)?
52 53
+ c50kp”(x, y) + cs53ky” (x, y)

= cs1ky' (x, )

+ csaky* (x, y) + essk3> (x, y),

where we notice that the numbers ¢;; i, j = 1, 2, 3,4, 5 are harmless coeffi-
cients. Then, by applying Minkowski inequality, we need to bound

o »
D 1/ 8k (-, )0~ 9,6y
R

L2

Sy

1i=1

- /R k) )3 0,60dy

5
— L2

J
independently of ¢, A and . The highest order terms in this sum are given by

D—lka;l(x,y)afedy and D_lkagS(x,y)aXQdy. (A.4)

Since there are 5 derivatives of the function 6 in both terms we have to use the
operator D~!. Since D! is bounded in L? it holds that

5 min(j, 4)
ji 5
Z D /k;‘( Wy’ 0,.0dy
=2 =1 L?
5 mm(] 4)
< Z ’/ K)o o,0dy|| (A5)
j=2 L2

which make the computation easy. We first deal with the sum (A.5) and finally
with (A.4), which are somewhat more delicate.
We will use the following convection. We will write:
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1. = meaning “is bounded in absolute value by”.

2. f(0) ~g()if 1f — gl 2 < (A).
3. We will denote by k/* (x) the integral

[ K i oay.
R

4. Ci4q will be a constant depending on || f||-k+e, With k an integer and

0<a< % Ci+ (x) will be a function whose L°°—norm is bounded by a
constant depending on || f|| ck+e.

5. Givenanintegral [ f (x, y)dy we will estimate separately, f\y|>l f(x, y)dy

its in—Part and fly,|<1 f(x,. y)dy its out—part. Several terms k/! (x), with
i and j integers, will arise in the computations above. In these terms there
always will be an integration of the form

We will call k{; (x) and k/7j out(x) to its in—part and to its out—part
respectively.

6. Forany f, we will write A;p_| f = Af(x, x — [t(A — 1)|y).

7. We always assume that & < 1.

8. In every integral we take a principal value.

A.l.1 Preliminary lemmas

The proof is rather long and will be armed by the lemmas below. They could
be ordered as follows.

1) Estimates of pointwise of the kernel. Lemmas A.2, A.3 and A.4 estimate
operators with non singular terms.
ii) Comparison between the kernels depending 6 and those depending on 6;;,,.
Lemmas A.5 and A.6.
iii) Lemmas on kernels depending on 6, 6;;,,.

The proof of iii) either use i) to show that the kernels are not singular or rely
on properties of the Hilbert transform.

The first two lemmas are pointwise properties of the functions involved.
The proofs follows from the mean value theorem.

Lemma A.2 There exists a constant 1 < C4 < oo depending only on the
L°-norm of the d.h'(x) such that

1
(y + Gh(X)Ah (.X)C(_X))z —+ C(X)ZO'()C)Z = CA()’)
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Ca lyl=Ca
= Vx e R
S opi>ca 7
Here Ap(x) = 8xh'(x) and o (x) = 5057

Proof Along this proof C4 denotes a constant bigger that 1 and depending
only in ||Ap|| L. Firstly we notice that

1
(v £ 0n(x) Ap(x)e(x)? + c?o
1

< 9
T (y £ on(0)AR(X)e(x))? + (infer ¢(x)op (x))?

where

1

—————— = Ojnf-
L+ AP

e
Lo

1
(y£o (x)A(x)c(x)

oy This is bounded by L5 and decay like {4. But —Cy <

op(x)Ap(x)c(x) < Cya. Then the conclusion of the lemma follows easily. O

Fixed x, the function

o) is a translation of the func-

tion

The following lemma will allow us to show that numerators of various kernels
are in fact bounded for |y| sufficiently small.

Lemma A.3 There exists a constant ¢4 which depends on || f||c1 + |l€l] o
and on ¢ such that for |y| < ca the following inequality holds:

le(x, 1) —

Asp—ih -
tA— My

NS I SR |

leCx, D] = 19:"(x)y] =

Proof By the mean value theorem,

Af(x,x —t|A —X|y) + Ae(x, x —t|A]y)
tix— Ay

< lIfllcr +lleller

thus the claim follows. O

For the reiterative use we state that L! kernels gives us good bounds.
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Lemma A.4 Consider a kernel J,(x,y) satisfying |J,(x,y)] < j(y) €
Ll(R), forall x € Rand ) € [—1, 1. Then, the the integral

h(x) = fR T (e ) £ (x = Ap)dy

is bounded in L? as || |12 < C(1j 1 DI fl 2
Proof Again the proof is straightforward by using Minkowski inequality. O

The next two lemmas allow us to compare 6 with 6;;, = 3,4’y + y in
various expressions. We start with a pointwise bound.

Lemma A.5 The following bound holds for every y € R.

1 1
(2 +62)" (2 +62,)
0 2((12:1) |y|2a;l|y|l+l i
= (62 +02)" (v +67,)
fora > 2.
Proof We just write that
1 1

02+ O (32 +67,)
(»*+67,)" = (> + ©)?)"
(2 + )" (> +62,)

and, since, ¢* — b* = (c —b) > |_, b= for ¢, b € R, we have that

(7 +67.)" = (0 + ©)?)"
a
= (62, — @) Y. (P +02,)" 7 (P +0)
[=1
Next we introduce the expansions
(07, — %) = (9:1'y — Al') (3:h"y + AR +2y)
2 Gy Uyl +1vD,

@ Springer



Mixing solutions for the Muskat problem 313

Here, we have used that since 7 € H* , we have uniform L bound of
o h, 8§h/ and thus its uniform Lipschitz continuity. Next, since

a—l
02 +6%,) 7 = clia—Dy* D@,
i=0
a—1,2i
= Y cli.a—Dem, 20)y* D @)y
i=0,n=0
a—1,2i
30> Py
i=0,n=0

and

(> +©?)"
1—1,2i

3C Y Py,
j=0,m=0

it follows that,

(02 +67,)" = (0 + ®?)
a-12i  1-12i

SCIPAyI+lyh Y Y ey
i=0,n=0 j=0,m=0
2(a—1)

3Gy Py + Iy DIy PO Y iy
=0
2(a—1)

=Gy Uyl +1vD D vyl
=0
2(a—1) 2(a—1)

=Coy* | Y0 Il 4+ DY Ty
=0 =0

2(a—1)

3Gy Y Iyl
[=—1

From this last inequality is easy to achieve the conclusion of the lemma. O

Next we show that we can also compare operators depending on 6 by those
depending on its linearization 6;;,,.
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Lemma A.6 Leta = 2,3, 4 or 5 and define

2a—1
uwm=fu(23wm”1>
lyl<

1 1
— — y)dy.
" ((y2 o +efm>“> g m

Then,

IklgIllz2 = (AMIgll2, lIklgllizee = (A)IgllLee, Ik[1]llze < (A),

where g € L? in the first estimate and g € L™ in the second one.
Proof By lemma A.5 we have that

2a—1

kuxﬁb/ 3 pyfify et

lyl<l i=0

2(a—1) 2a—l |y |1+

ly
> a —lg(x — y)ldy

X
= (02 +©?) (2 +67,)
2(a—1).2a—1

Z |y|4a—l—(i+l)|y|i+l+l
e / 20— Wldy.
=i <t 02+ @) (2 +67,)"

By the upper bound on y we need to estimate

|y|4a—1—(i+l)|t|)\‘ _ )\‘/”H—H—l
kuu>=f g — y)[dy.
pi<t (4O (> +675,)"

After the change of variable y’ = we have that

Y
HA—=A|

ki i(x) = tla = 2|

Iyl<
[y[4=1=1= g (x — 113 — X |y)]
<y + (T Sy e(o)sign(i ( — ¥ ») > (32 + @ fy + c()sign(t (. — 1)))?)*

[ e o
Iyl<ea ea<lyl< i

dy

The integrand in k; ;(x) is bounded in |y| < ca by lemma A.3 for every
—1<1<2@—-1)and0 <i <2a—1.In|y| > c4, the integrand is bounded
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by Cly|~'="~! for every —1 <[ < 2(a — 1) and 0 < i < 2a — 1. Then
Minkowski inequality yields

<|y|<
CA—‘yI—tM—)J\

Hnmmgcmmy<LHm m“%4m>§cmwy

for every —1 </ <2(a—1)and 0 <i < 2a — 1. The L* bound simply
follows by extracting ||g||~o as a constant. O

The next lemma gives L and L> bounds for the various operators. It turns
out that after a change of variable, lemma A.3 shows that in fact the kernels are
not singular near cero, whereas away from cero direct L° bounds are available
for the kernel. This yields direct proofs for L°° bounds and a further use of
Minkowski inequality yields L? bound. We state separately the action of the
operator on 1 for later use.

Lemma A.7 Let g € L2
a) Leta > 2 and k[g](x) be given by
2a 2a—iy,, i
|yI* "y
kigl(x) = / S nalgx = y)ldy.
; lyl<1 (y% + 62)
Then

Iklglliz2 = (AMIgllp2,  [Ik[1]llze < (A).
b) Leta=2,...,10 and k[g] be given by

E e e M
k[g](x) = ; /|y|<1 Wg(x — y)dy.
Then
klgllz2 < (AMIgllz2, Nkl < (A).

Proof We prove first the L? bound for a). We notice that, by the upper bound
on y it is enough to estimate

ly[2a= |e)n — 2|
ki) = 122 e = ay.
i<t (2 +90)
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After the change of variables y’ = we have that

_y
=]

|y~ ,
lg(x — 1A — A|y)ldy

1 2
th=2'] y + c(x, 1)sign(h — N)) )

ki(x):/ =2 /
Iyl< <y2 n <Am—x’h

A=Ay
:/ ~--dy+/ . s dy.
[yl<ca cA<VI<inTm
For everyi = 0, ..., 2a, in the region |y| < c4 we can apply lemma A.3,

obtaining that the kernel is uniformly bounded. Intheregioncy < |y| < ﬁ
we can estimate

|y|2a—i
2 Agpyih ion(h — A 2\“
y + tl)"_}"/ly y + C(x’ t)SIgn( - )

< Cat|h = N||y|™" < Cat|r — 1],

tHA — V|

for everyi = 0, ..., 2a. Then we can apply Minkowski inequality to prove
the lemma. Indeed,

CMM—NI/ gl —tla = A p)idy
ca<yl<gsn 12
< Cat|r — | I||gC = t1x = X |»)|,;2 dy
CA<D’|<W
<Cath=Nllglls [ dy = Callgllpe
ca<lyl<

A=)

The L bound follows in the same way. The case b) is dealt with by the
same change of variables. |

In the next lemmas the kernel scales as y~! and thus the estimates are more

delicate. For the outer integral we show that the kernel can be decomposed
as the sum of ¢(x)L and a function which decays as |y|~2. Thus, the Hilbert
transform controls the first and the second is not singular.

Lemma A.8 Letg € L% a > 2 and
2a—1

y
k = _— — y)dy.
) /|y|>l (y? +9,2in)“g(x y)dy
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Then,

Iklglll L2 = (A)lIgll2, k[Tl < (A).

Proof Direct computation shows hat

2a—1 1 1

y .
¥ @y

(v +6;

lin

(x,y),

U+ @)y — (2 +(3:h y 7))
(v2+62,)" (1+(8h"))2y
the claim for L? follows from the L2 boundedness of the truncated Hilbert

transform and lemma A.4. In order to estimate k[ 1] notice that Lg y=0.
lyl>1y O

where j(x,y) = . Since [j(x, y)| < Cly|™2

The proof of the next lemma is more subtle as it uses an explicit computation
of the Hilbert transform of our kernel.

Lemma A.9 Let g € L?anda = 2,3, 4 or 5. Then, the integral

2a—1

y
1 = | ———&(x —ydy.
[g1(x) A(y2+9§n)ag(x ydy

satisfies

1112 = (A)lIgllL2, [Tl < (A).

Proof In analogy with other estimates, we denote o, = (1 + a:h'(x)?) ! and
Ap = 0,h’(x). Therefore

Y24 @h'y + 1) =0, N + Anony)? + o7 y?). (A.6)

and
y2a71
1) = Ci(x) /
R ((y + Apony)? + ofy?)e

(v + Apopy)?a!

glx —y)dy

=C —yd
1) e Ot Avon? + oz S TP
2a—1 2a—1
y = O+ Anony)
+C —yd
1o /]R ((y + Apony)* + o e gl
=11 (x) + L(x). (A7)

@ Springer



318 A. Castro et al.

Now we use the identity (for fixed o3, and y)

2a—1 a—l
x onlyl 2a—1-1) 2
H X)=————F5— ag (op X
{ = ahzyz)za—l} ® =37 7,50 ,; at @]y 1)
where the «;’s are harmless coefficients. Then
onlyl
nw = |
R (v + Anony)? + o y?)e

a—1

D aar (enly)* D (v + Apony) Hg(x — y)dy,

1=0

and after the usual change of variables

a—1 . 2i

(v + cApoptsign((h — 1))~

11(x>§612/ L H g(x — = X |y)dy
= IR (O + copApsign( — 1)) + o)

a—1
0y /R(l + 1y PCA Hg(x — tlh — X [y)dy,
i=0

where we have applied lemma A.2. Then I;(x) is bounded in L? thanks
to lemma A.4. To bound I>(x) we notice that we can write this term in the
following way:

g(x —t|x — X |y)dy.

I (x) — / y2a—1 — (y + CO'hAhSign()\ _ A/))Za—]
2 R ((y — copApsign(h — 1')% + czahz)a

Since the numerator is a polynomial in y of order 2(a — 1) we can apply again
lemmas A.2 and A.4 to obtain a suitable estimate in L.
In order to estimate /[1] simply replace g(x — y) by 1 and notice that the
analogous term to /1(x) in (A.7) is equal to zero in this case.
O

A.1.2 Estimation of the terms in the sum (A.5)

We need to estimate the terms ké’f)f—J 6 which can be further decomposed
into a sum of products of various derivatives of 6 divided by (y* 4 62)¢ for
a = 2,3,4. It will be important that since we assume that & and hence 6
belongs to H* we can assume that 839 is uniformly Lipschitz. Thus if in the

product of derivatives 3100120 - .- 3/ 3,0 there is only one j; > 3 we can
interpreted as an operator acting on 87’6 and we could put our hands on the
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kernel, linearizing it using the Lipschitz continuity. We illustrate this in the
first section with j = 2 and leave the rest to the reader. Unfortunately, there
are some terms with j = 3 with e.g (8)%9)2 appears. Those have to be dealt
with independently. We do it by means of another pseudodifferential operator.

1.1. Terms in (A.5) with j =2,i =1, 2.
1.1.1. Let us estimate k2! (x). We split it into two terms Klx) = k%l (x) +
k3! (x), with

K (x) = — fR K2 (e, y)3h' (x — y)dy and k3'(x) = dth /R k2 (x, y)dy.

To bound k%l we proceed as follows,

9,0)% + 0020
Rl (x) = — /R y OO0 301 yyay.

(y2 + 92)2
2 92
Since y% = Calyl 3, klzlom is bounded by lemma A.4. In order

to bound the inner part we further split it into two terms, one with only terms
depending on A’ and the other where y and its derivatives appear. Namely,
kil =kl 4+ kil with

lin 1lin

0,:7)% +2A0,h'9
= [ O = vy
y<

(y2+92)2
N / yy(Aa%h/+8%y>+Ah'a§y
lyl<1

o7 1 69 W= ydy  (AS)

and

A, AR + AR O2AR
E /|| 1 e L 3th (x — y)dy. (A.9)
y <

kiy. =

To estimate k1211 ;n We use the regularity of 2" and mean value theorem to
bound its integrand by

c 2 — NPyl + |yt — 2|
3

RERE 0*h(x — y)|

and after that we apply lemma A.7.
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To bound kﬁ (x) we write

” y ((OxARN? + AIZAR)  y3 ((02h')? + 9ch'93h)
Kip () = = 2 4 g2)2 B 2102 \2
R (¥ +62) (% + i)
ah' (x — y)dy
y3
— ((@2n")* + ach'331) / _r
R (y2 + lein)
= kiz (X) + kig (x). (A.10)

Oih (x — y)dy

(3x AR)Y2+AZAN
(y2+67)°
can directly apply A.8 with a = 2 to the second term other part. To bound

klzél in(*) we split it into two new terms,

To bound k%%lom(x) we notice that = Ca|y|™ and we

) = / y((Ox AR + ARDZAR) — y3 ((9Fh))* + dch'93h')
121; X
! lyl<1 (2 + 92)2

tn' (x — y)dy

1 1
N CHAE TN NS / y? ( — ) O (x — y)dy
= \p2 40 (7 e,
- / (y((axAh’)2 + AR2AR) — y3((92h')? + axh/agh/)>
Iyl<1 (y2 +62)°

ath' (x — y)dy,

where we have applied lemma A.6, with a = 2. Therefore, applying lemma
A.7 , with a = 2 we check that

C3lyl* + Caqaly ™
ki () 3 / = 03h (x — y)ldy
lyl<l (y2+6?)

C3 a| | _
~/ Covall 2ty (x—y>|dy</ Y1704 (x — y)ldy.
i<t (y2 +62) lyl<l

Thus, we can apply lemma A.4 to finish the estimate of kﬂl in ().

To bound k%%z(x) we apply lemma A.9 with a = 2. This finishes the bound
for k3! (x).

To bound k3! (x) in L? is enough to bound Eél(x) = [p k' (x,y)dy in
L®°. The outer part is estimated as we did for k%l. For the inner part we split
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—21 —21 21 | . =21

Ky in () = k1, (x) + ks With k3, as k37, (x) in (A.8) and ky, ;, (%)
as k21 (x) in (A.9) but replacing 3*4(x — y) by 1. k3, ;,(x) is bounded by
applying lemma A.7. To bound %g; (x) we split this term into Ei;l (x) + %21
(analogous to 2}, (x) and km(x) in (A.10)). Koy o (x) is bounded by using

lemmas A.4 and A.8. For k221 in(x) we do the analogous splitting than for
klzél in and we apply the same argument together with lemma A.7. To bound

%222 (x) we use lemma A.9. This finishes the estimate of k2! (x) in L™ and
completes the proof of the estimate of k2! (x) in L2.
To bound kﬂ (x) we write

. v (@x AR+ ABZAR)  y3 ((92h)? + 8,h'93h)
kip(x) = — T — —
R (¥ +62) (y>+67,)
o (x — y)dy
3
— (@21)% + 8, h'93R') / %B;‘h/(x — V)dy
R ()72 + Qlin)
= kiy; (x) + kip (). (A.11)

(B AR)Y2+ A AN
(y2+6)°
directly apply A.8 with a = 2 to the second term. To bound k%%l i (X) we split

it into two new terms,

To bound klzél our (X) We notice that = C2|y|*3 and we can

2 / V(@ AR 4+ AR B2 AR — y3((82h')? + 8,k 33h)
121in\ X)) = —
" Iyl<1 (2 +62)°
O*n' (x — y)dy
1 1
— ((320))* 4 0.h'33K) / y? - a*h'(x — y)dy
X X X R (y2 + 92)2 ( 02 )2 X

lin

L / y((@x AR + AROEAR) — y3 (02h')* + 01031
yi<1 (y2 +62)°
gh (x — y)dy,

where we have applied lemma A.6, with a = 2. Therefore, applying lemma
A.7 , with a = 2 we check that

1020 (x — y)|dy

) < / C3ly|* + Caply P
121
in lyl< (y2 +92)2
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Catalyl™ ~
~ f T O = ldy 3|y (= y)ldy.
i<t (y2 +62) lyl<1

Thus, we can apply lemma A .4 to finish the estimate of kﬁl in ().

To bound klzéz (x) we apply lemma A.9 with a = 2. This finishes the bound
for k%l (x).

To bound k%l(x) in L2, it is enough to bound E%l(x) = fR k%l(x, y)dy in
L®°. The outer part is estimated as we did for k%l. For the inner part we split
—21 —21 —21 ., 21 . —21
k5 in () = Ky, (x) + knazy, With k3, as k37, (x) in (A.8) and ky, ;, (%)
as k2L (x) in (A.9) but replacing 8% (x — y) by 1. k3, ;,,(x) is bounded by
applying lemma A.7. To bound %g; (x) we split this term into Eg;l (x) + %21
(analogous to k21, (x) and k2L, (x) in (A.11)). Ky o, (x) is bounded by using

lemmas A.4 and A.8. For Eﬁl in(x) we do an analogous splitting to that for
klzél in and we apply the same argument together with lemma A.7. To bound

@éz (x) we use lemma A.9. This finishes the estimate of k2!(x) in L and
completes the proof of the estimate of k2! (x) in L2.
1.1.2. Let us estimate k22(x). We split into two terms

K2 (x) = kP (x) + k3% (), (A.12)
with

K2 (x) = — /R k22 (x, y)0th' (x — y)dy, and k3% =d'h /R k32 (x, y)dy.

We split k32 (x) in four terms, k32 (x) = k33(x) + k33 (x) + k33 + k37, with

) = — / v (Aaxh;)yzz(f;é”h/) B4 (x — y)dy (A.13)
k3 (x) = — /R y%a)ﬁh’u — y)dy. (A.14)
K2 ) = — f y(za”M(xy’l/i 98;“;2)@”)28?#@ —ndy  (AL5)
ki () = — / y (Guy)” 28};;?_%:2/;?/2 27 A O (x — y)dy.

(A.16)

The function k%% (x) can be bounded in L? as follows. The integrand of
k$2(x) 3 Cily|7219¢h'(x — y)|. Then k37 (x) is estimated by lemma A.4.

11 out
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30,2
Also the integrand of k77 (x) 3 Cz%g)'g)'}” 18¢h’ (x — y)| and we can apply

lemma A.7 with @ = 3 to bound k37, (x). Similarly, we can deal with k37 and
kﬁ as we can obtain the correct estimates in powers of |y| and |y| to apply
Lemma A.7.

To bound k%% (x) we write

00 = - / (y(Aaxh’F(Ah’)2 @)@
R

Oh'(x — y)dy
(»2 +62)° (2 +62,)° )

yS 4
————— W (x —y)

3 Ox
R (y2+67,)

in

= k73, (x) + ki3, (x). (A.17)

— (3:h)*(32h)?

¢ YAdN)2 (AR

(2+©)?)’
apply A.8 to the other part with @ = 3. To bound klzgl,in(x) we split in two
terms,

To bound k%%l our (X) We notice tha =< C |y|_5 and we can

k22 ) :/ (y(Ah/)Z(Aaxh/)z_yS(axh)Z(a)%h)Z
121, in lyl<1 (y2+(9)2)3

1 1
F P [ <ot - way,
yl<1 (y2+62) (y2+912m)

) ath' (x — y)dy

in such a way that we can apply lemma A.7 witha = 3, since | y(AR)2 A (3, h')?
— ¥3(8,h)?(82h")%] 2 C3y5, and lemma A.6 with a = 3.

To bound kf%z (x) we apply lemma A.9 with a = 3. This finishes the bound
for k122 (x).The term k%z (x)is estimated in a similar way to k%l. We have com-
pleted the proof of the estimate of k?*(x) in L2.

1.2. Terms in (A.5) with j =3 and i = 1.

Let us bound 3! (x). Unfortunately the proof of the estimation of (x)
does not follow the same steps than the rest of the functions ki (x). Indeed we
need to do something different and use the boundedness of pseudodifferential
operators used in the body of the text.

We split into two terms k3! (x) = k31 (x) + k39 (x) with

9,09%0
k31u(X) — / yx—xzagAh/dy
B (y?+6%)

0)330
R (y2+62)
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The proof for k3!“ (x) will be similar to the above.

For k319 (x) we need new estimates since as & € H* we can not bound 830
by |y| uniformly.

Let us bound k319 (x) first. We split this function in four parts,

y83h/
k{’ld(x)zfy;zaﬁm/dy, and (A.18)
B (v +62)
AR 33 AR
k3l = / y——=——0d}Ah'dy and (A.19)
2 (2 +6%)
AR}
3 = / y—X”zajAh/dy (A.20)
B (v +62)
83
K3 (x) = / y—22Y 93 Ady. and (A21)
B2 +02)

The last two terms are easily bounded by Lemma A.7 for the in part and by
Lemma A.4 for the outer part.

To bound k39 (x) we use that A(@3h)? = 283 A3h — A ((83n)?), and
then, we need to show that the integral

N(x) = / ﬂzAgdy (A22)
R (y2 +62)

is in L2 with either g = 33h’ or (33h’)?. Notice that, in both cases, we can
allow in our estimates that ||g|| 51 appears. We will split N (x) in two terms
Ni(x) and N, (x) with

AW EN %
N1(x)=fy< 7 — > z 2) Agdy, (A.23)
RO\ +6%)" (2 +67,)
2
No(x) = a,h / —  _Agdy. (A.24)
R (y2 + Ql%n)z

That is N1 compares with the linearized version and N, treats with the lin-
earized kernel. We can not deal directly with Ny with our previous lemmas by
replacing Ak’ by y as the denominator is too singular. However we can add

an subtract a term
1927,7,,2
~0Zh
/zzx—i)zAgdy'
(y +91in)
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Then several terms appear but since & € H* we have that
AR — a0y — 320 (x)y? < |y (A.25)

After splitting in various terms, all of them can be deal with using our
lemmas A.6, A.7, A.9 and a small modification.

In order to deal with N;(x) we need to introduce another new idea. We first
use (A.6) and treat the two terms in Ag separately. proceed as follows

y2

dy
R ((y +0nApy)? +02y?)?

y2

/R (v + o3 Apy)? + ofy?)

Na(x) =3, yo} (g(x)

58(x — y)dy>

Now we can compute that

y? n

dy =
R ((y + 0nAny)? + 0 y?)? 2021yl

For the convolution term, the following Fourier transform computation

32
F 16!
(v + 0 AV? +0222) (A.26)
= 2U#me27”.‘4"§)‘e_2”‘7M”“El (1 +2m0%(A% = 1) + 4niA02§A)
yields that

y2

R (v +0nApy)? + oy

T / IEX 3 (£) 2TIEARTLY =27 onYIIE

2)zg(x — y)dy

x (142707 |y |EI(A? — 1) + 4mi AcfEy)dE,

so that
T
No(x) = 0h EOP(p)(Ag)
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where the symbol is given by,

plx, €) =—— (1 = risuonty o-2xnls )
£l

— ofmrePm Aoy g=2manlE IV (A2 — 1) 4 2isign(&)sign(y))

Therefore by applying lemma 5.1 we obtain that the L?—norm of N(x) is
bounded by (A)([[Agllz2 + [[9xgll2)-

This concludes the proof of the estimate of the L>—norm of k;’ld(x).

To deal with k39, we use again that (A33h")? = 2030’ A" — A ((33h)?).
Thus, it suffices to bound the integral

Yy

Mx) = [ — 27
= 727

Ag(x — y)dy (A.27)

in terms of the H '-norm of g. The proof is analogous since at the only delicate
point it holds that

/ yy J Am

_—_— y = -,
2 1\2 2

R (y2+67,) 2071yl

1.3.The rest of the terms in (A.5).
The estimation of the rest of the terms in (A.5) follow the same steps than
the estimation for either k2! (x) or k22(x).

A.1.3 Estimation of the terms in (A.4)

We will show how to estimate is k1 (x) in (A.4), since k¥ (x) is analogous.
Here we recall that we are concerned with || D~ k|| 2. In order to bound this
norm we will proceed as follows

k“(x)=/kél(x,y)8§9dy=/kél(x,yw@dy,
R R

where © == D—la§0 (we clarify that the operator D = (1 4 t9,) acts on x
rather than y). Then we would like to estimate ||[D~'k!'!||;2 < (A)||®]|;2. In
order to do it we notice that

o [ Kl medy = [ okl yedy + [ 6 sed.
R R R
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so that
D—lk“<x>=/ké‘(x,y)@)dy—rD—l/ dcky' (x, y)Ody
R R
= S1(x) + D715 (x).

Happily, the proof of the estimation for S; and S follow the same steps that
the estimation of k22(x) in (A.12). Thus we have proven (A.1). That is

1 1 1
8;./\/114 = ——f / / ko (-, y)afédyd)»'dk +1l.0.t.
dr J 1)1 Jr

In order to finish the proof of lemma 4.8 notice that
ko320 = kg3 AL (x,x — y) + ko (3%e(x)1 — 80 (x — y)1')

and, by assumptions on c(x, 1), ch(‘, 1) € L? uniformly in ¢. We then have
that

1 1 1

P Mu = ——/ / /kg(-, MICAS (x, x — y)dyd\ d) + Lo.t.
4 Jo1J-1Jr

Lemma 4.8 is proved.

A.2 Proof of Lemma 4.9

In this section we will prove Lemma 4.9. We will use the same convection as
in the previous section.

Since the transport term in lemma 4.9 arises in an obvious way, t he main
issue is to linearize 6 to 6, in the integral

1 1
M 6 /
———=3, f(x — y)dydiA'.
L st - va

This is the content of the following L? estimate.

Lemma A.10 Let f € HS, ¢ as in theorem 4.1 and

1 1 1 y y
F(x =D_1—/ // - 8% £ (x — y)dydil'.
(x) 2 ) L \re T e o f(x —y)dy

lin
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Then,
IFll2 < (A)ID7'92 £l

After applying Minkowski inequality, to obtain the estimate, it is enough to
show that

-1 y y 6
D /R<y2+92_y2+92>8xf(x_)’)dy

lin

is in L? with L?—norm bounded by (A) (|[D~'3? f|;2 + 1) uniformly in ¢
(for small ), > and 1.

Letus call g(x) = D! 8)? f(x). Then we proceed as when investigating the
commutators [D !, Op(p)] but this time working directly with the kernel

y y
k(x,y) = — .
( )’) (yZ + 62 yZ + lein)

Then we have to estimate the function

P(x)=D"! f k(x,y)Doyg(x — y)dy.
R

By direct application of the definition of D, it holds that f k(x,y)Doyg(x —
y)dy =D [k(x, y)drg(x —y)dy —t [ dck(x, y)drg(x — y)dy we have

P(x) =A;k(x, V)oxg(x — y)dy — tD! Aaxk(x, y)org(x — y)dy
=M (x) + D 'L(x),
We need to estimate both M (x) and L(x) in L2

To bound M (x) we first integrate by parts, recalling that d,g(x — y) =

Y Y
Mix)= ([ 9 — —y)d

lin
/ 1 1 ( Y
= - g(x —y)dy
R\Y2+62 2 +067
Y+ 0indch’ y+ 00k (x —y)
+2/y< ey ———— ) g(x — y)dy
R\ (v +67,) (2 +62)
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= Mi(x) +2M>(x). (A.28)

As a matter of fact both M|, M, can be estimated by means our previous
lemmas. The outer integrals can be estimated by brute force as the kernels decay
fast enough. The inner ones, by using the first and second Taylor polynomial
of h’, can be split into terms with the appropriate powers of y in order to apply
Lemmas A.6, A.9 as before.

It remains to bound L (x). This function is given by

09,0 011, (02h'y + 0
L(x)=—2/y X _ 1in(Oxh"y + dxy)

Oxg(x — y)dy
2 212 2 x
(v +02) (y2+912m> )

_ _2/ y (AW Adch +yAdch')  0fh'dchy* + yogh'y
R

Oxg(x — y)dy
2 2\2 2 x
(2 +062) (y2+012l.n) )

2/ Yy AR dxyoxh'y
_ y 5 -
R\ (2 +6?) (yz " glzin)

yoxy Yoxy
—2/ y 5 = 5 | 0xg(x — y)dy
2\ 02407 (y2402,)

= S(x) + Sx) + S(x).

2) dxg(x — y)dy

Firstly, we will carefully bound S(x) since the numerators of the terms S
and S have the same behaviour.

We repeat the trick of observing that 9, g(x —y) = —d,g(x —y) to integrate
by parts and obtain that

(AR + y)o AR O1ind2h'y
S(x):—2/ ( — — "2 5 | §(x — y)dy
R (»*+6?) (y2+67,)

2/ Byh(x — y)ax AR’ 4+ (AR + y)d2h (x — y)
- y
R (y2 +62)°

_Oh'ahy + (Bin) 37 H
(32 + Glzin)z
N 8/ ; <eaxAh/(y2 +02)(y + (Ah/2+ Y)OZH (x — y)
(»2+62)

) g(x —y)dy
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_ Gindh' Y (Y + 63:,) (v + B1in) O’

(y2 + Gl%n)z
= —-251(x) — 28 (x) + 8S3(x).

) glx —y)dy

To bound S;(x) we split it in the following way

00, AR — 6,021
Si(x) = / - m Y o (x — )y
R (2 +6%)

1 1
+ | Grin)d2H — (x — y)d
/R l y((y2+02)2 (2 +62 )2>gx e

lin

= S11(x) + S12(x). (A.29)

To bound S;(x) we split into two terms

$1106) = / AW AR — axhz/a,%h/y2
R (v*+62)
N / y(@x AR — 32h'y)
2 (2467
N / AW 3 AR — 3,h'32h'y?
R (2 +62)°

glx —y)dy

gx — y)dy

g(x — y)dy.

The last line follows from the bound (8, Ah" — 8)%h’y) = Ca(lyl + 1) and
lemma A.7.

The next term is more complicated as in principle the numerator scales as y>
which is not enough to apply our lemmas. As before we Taylor A, up to second
order and differentiate to obtain Ah'd, Ah' = pa,h'd2h'y> + G@Lh')|y|® +
C|y|“. Being explicit,

G = 0, h' 3N + (320')> + 821’33 h)
which is uniformly bounded in x since /' € H*. Since terms of the type
[ =g -
T 2 L8\ Ty
r (2 +65,)
are estimated like our terms k// (x) we can subtract them freely. Hence

‘ |yt / / 3 1
[S11in ()| < (y2+92)dy+G(h YX) |y (y2+912in)2 02102 )
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S12(x) is easy by now. It can be estimated as M5 (x) in (A.28). This finishes

the estimation of S (x).
To bound S>(x) we split it into two terms

Sy0x) = / , (Bxh/(x — V)3 AR+ 032h (x — y) — Bth/afh’y — 3y + y)a)%h/> 2t — y)dy
R (»2+6?2)
+/ y (axh’aﬁh/y + (k' y + y)afh/) ( : - ! . )g(x —y)dy
R (2+02)° (0 +0,)
= S21(x) + S (x). (A.30)

The term S, has the correct behaviour in powers of y and y to deal with
them S>; (x) we add freely a term

l3311/(x)/y—3dy
2" O +67,)

and proceed exactly as with Sy;.

Finally, it remains to bound S3(x). Since the computation are longer but no
new idea is needed we skip the details.

Then we have achieved the conclusion of lemma 4.9.

A.3 Estimates for the velocity

Lemma A.11 Let u be like in expression (4.17) with f and ¢ = ct in theorem
4.1. Thenu € L*(R?) and

(-, Ol w2y < PULf )
for some smooth function P.

Proof In this proof C stands for a constant that may depend on || f || 7+ and on
the regularity of c(x, t). The velocity in (4.17) reads

u(x)—lpvflf1 St (10, £ (¥)
T a2 )Gy — fO) — e Y
+ o e(y)A)dN dy.

And evaluating in at (x, f(x) +A), (x,A) € R2, we have that

u(fo(x))—vaflfl x—y
’ o T R2 01—y Af(L ) 4+ o= e()IV)?
(1, 3y, f(y) + dre(MA)dN dx’'
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with Af(x,y) = f(x) — f(y). Next we check that the integral

xX—y
1 = P.V. d
() /R @ — 92+ (A ) + A —e(a)2
— P.V./ Y
R 02+ (Af(.x —y) + 4 —e(x — A2

dy  (A31)

belongs to L*°(dx) uniformly in A € R and 2" € [—1, 1]. In order to do it we
split (A.31) into two parts

_ y
i) = P'V'/R Y2H(Af(x,x—y)+ 1 —elx —y)A)?
Y24 ((Ox f(x) + 3re(X)A)y + & — e(x)1)?

B y
h(x) = P-V-/R V2 4 ((0y f(x) + dre(X)A)y + A — 5(x))‘/)2dy.

We will denote

1
AL =03, f(x) + 0,8(x)N, oy = ———, =A+ex))\.
A i f(x) + 0xe(x) A 1+Ai' 12 (x)
Thus
y
hx) = O’;\/P.V./ dy
R (y + oAl y)? + y2o}
Y+ oAy

= O’)\/P.V.

y
R (y+0owAyy)?+ ),2%2,

_ U)»’/ O—NANV dy
R (y + 0w Ayy)? + y2o}

The first integral on the right hand side of the previous equation is equal to
zero. The second one is a bounded integral for every value of y € R and
Ael[-1,1]

In order to bound /7 (x) we split it into two terms

1 (x) =f 3 . 3
<t Y*+ (Af(x,x —y) + A —elx — y)A)
2+ (Apy +7)?

y
I =P.V.
200 /|y|>1 V24 (Af(x,x —y)+ 21 —e(x —y)1)?
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y2+ (Apy +y)?

To bound 712 (x) we consider /121 (x) and I127(x) with

y
1 =P.V. d
12100 /|y\>1 VA (A x— )+ h e — a2

y y
=P.V. - d
/|y‘>1 <y2 +(Af(xr,x—y)+r—elx — )2 y? +A2) !
and
Iin(x) = P.V./ 3 4 2dy
=1 Y+ (Avy +v)

y y
= P.V./ - dy.
ly|>1 <y2+(AN}’+V)2 (1 +Ai,)y2+y2>

Then

’

A+ 12D
1 C —"
[1121(x)| < /|y>] G2+ =

and

ly|
[I122(x)] < Cf ————-dy <
=1 (2 +7?)

To bound /1 (x) we notice that

Ay + )2 = (Af(x,x —y) + 1 —e(x — y)A)?
=Auy+y —Af(x,x—y)—A+e(x — AV Avy + Af(x,x —y)
+y+r—elx—yr).

In addition,

Apy+y —Af(x,x —y) — A +e(x — y)A
=0 f(X)y — Af(x,x — y) + (—&(x) + e(x — y) + dre(x)y)A

Then
[(Avy +9)? = (Af(x,x — ) + 2 — e(x — YA)?| < Cy?,
and

Ay + Af(x,x —y) +y + A —ex — y)A|
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< C(yl + 122 = (e(x) + e(x — y)A)
< CUyI+2[( — eV + [e(x) —e(x = VI < CUyl + yD.

MEGIER)
I c dy.
il = /|y\<1 24 Ay + )22+ (Af(x, x —y) + A —e(x — Y)A)?) Yy

(A.32)

Since we can bound

bl —c
P+ A+ +H A x —y) +r—elx—y)A)H) =

the first integral in (A.32) is easy to bound. In addition for |y | > 4(]| f||L>~ +
||&]| ) we have that

2
(Af + 1 —e(x — A2 = (Af + (e(x) —e(x — YA + )% > VT

so that, in this range

Py
P+ Ay +HO?+(Af(x,x —y) + 1 —elx — y)A)?)
Iylly]
TP

and we can estimate the second integral. In the range |y | < 4||A,/||L~ we can
apply lemma A.7. This concludes the proof of the bound of 7 (x).
The bound

P.V./ Y
R 2+ (Af(x,x —y)+ A +e(x —y)A)?
(0 f(x — y) + dce(x — y)A)dy.

J(x) =

follows similar steps.
Then we have achieved the conclusion of lemma A.11. O

Lemma A.12 Let f and ¢ = ct be as in theorem 4.1. Then the velocity
uE(x, M) satisfies

uf(x, 1) — ul(x, 2| < Ct,
where C depends on || f || ya but it does not depend on either x, A or .
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Proof Recall that

1
ul(x, 1) = / ko(x, y)0,0dyd)'.

Then it is enough to prove that the function

hix, ) =/ 028 . 0dy

satisfies ||0x /]| Lo ax) < ||| fl|f for every A. In addition, by Sobolev’s embed-
ding we reduce the problem to prove that ||9yh|| 14y < |I[.f]][z. We notice
that

h(x, X _e(x)/ —axe.
2 +62)°

The L? — norm of this function can be bounded in the same way we bounded

k3'9(x) in (A.18) and N (x) in (A.22). By taking a derivative with respect to
x we have

2y6 / 2y0 )
00 h(x, ) =¢ —— 00 +¢ — 9.0
Orh(x, A) )c‘/R (y2 +92)2 X ( - (y2 +92)2 x

2y ) / 2y6?
+ | ———— @30 —2 | ————4,0
A A

The first two terms can be bounded exactly as we bound N (x) in (A.22).
The third can be bounded in the same way that k;’ld(x) in (A.18) and N (x)
in (A.22). The last term can be bounded by using a similar strategy, though a
different pseudodifferential operator arises.

O

A.4 Estimates on the coefficient a(x, 7)

The function a(x, t) is given by the expression

a(x,t) = P.V./ K(x, y)dy
R

where the principal value is taken at 0 and at the infinity. We need to prove the
next lemma
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Lemma A.13 Let f and ¢ = ct be as in theorem 4.1. The following estimate
holds:

10xall g2 < IIIFIII-

Proof We will use the same convection than in “Appendix A.1”. Recall that
Wwe can express

1,1
y /
a(x,t) :/ f dydidi
1o 2+ 62 Y

and thus, if we set
we need to show that for j = 1, 2, 3, 4 and every i.
ki e L?

The estimation in fact are often easier than in Sect. A.1.2. All the outer integrals
are automatic since the terms d;_; A6 do not appear in the numerators. The
inner integrals can also be dealt with.

We sketch the case with j = 3 which is the most singular and leave the
rest to the energetic reader. From the fourth terms corresponding to (A.18) we
can directly bound the inner integrals of k3!, IE% I 1221 by means of lemma A.4
whereas 12; is equal to N in (A.22), with g = 8,63 directly. The other two
terms are easily bounded. Namely we have the bounds,

(yz + 92)3 Y= <y2 + 92)3
Y02 +0:0° LI 4 yy©
(24 62r Y = 2+ 625

|1€.32(x)|=/ Y00,:0(8:0)° + 6030y +yy*
" yI<1
ki ()] =

Fora = 3, 4, the terms with y|y|?“~2 in the numerator are directly bounded
by lemma A.7, whereas the term with |y |2¢=1 is bounded in the usual two steps.
Firstly, we use Lemma A.6 to replace 6 by 6;;, and then obtain the estimate
with lemma A.9. The rest of the derivatives are bounded in the same way.

O
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B Symbols and estimates
B.1 Fourier transform of Kf"c’ (x)
Lemma B.1 Let K f‘/’c the function given by the expression

c,c 1 ! ! y
Ky (%) =— 2 Y M2
4o J 1)y + Ay + 'ty +ct(A— X))

drd).

Then

_ o 1
Ko () = —isign(§) (2_eZna)\/cﬂS\(—I—A’)(Ak/isign(é)—l—l)
A 4. 2met)E] ),

_eZNU)L/ctlSI(I—)L’)(Al/isign(é)—1)) ’

and
I’(‘Z,O(g) — —isign(€) S (e_4”"”|5| (cos(4mo Actl&|)
2mct|] 4mct|€|
—Asin(dmoAct|E])) — 1)). (B.1)
where
Ay =A+ct) oy = 1
: 14+ A2

Proof We first notice that, if we call
Yy = Ct|)" - )\'/Iv
we can write

V24 (Ay + Nty +ct(h—A)? = 1+ (A+ VD)D) y? + 22 (L — V)2
+2(A+ N )yet (v — L)

1 2 : / 2
= (y 4+ 20,/ Ay ysign(A — X))y + oy )
)\’/

1 .
= — ((y + oy Ay ysign(h — A2+ am/z — af,Ai,yz)

o)/
1 .
= — (0 +owAyysign( — 1)) +oiy?).
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And then

cc o)y ’
= drd i
Kato= 471/ /1(y+u)2+v2

with & = oy Ay ysign(h — 1) and v = oy y.
With these notations Fourier transforms are easier as they resemble the
relation between Poisson and Abel kernels. We can compute that

y _ y+u
f[(y+u)2+v2](g) _F[<y+u>2+v2]@
1
_Mf[(y+u)2+v2] ©

i Y :
— Mk =2 VIE| (—isign(é) - E) :
V

Therefore

=

1ol
Agvc/(g):l/ / 5y 2T A et (=8 y=2 0 ctli— ]

(—isign(§) — Aysign(h — 1)) dAd ). (B.2)

For visualization set ctoﬁZm’ |€] = a in the next estimates

1
f A ISign@) (A=) p—ald—1| (—isign(§) — A;ssign(h — 1)) dA
-1

:/ ea(1+iAA/sign(€))(A7A/) (—lSlgn(f)-i-A)\/)d)u
—1

1
+/ ea(—l—i—iA)L/sign(S))()\—)\/) (—lSlgn(éE) _ A)\.,) d)\,,

_ _—isign) + Ay <1 _ea(—l—A/)(Ak/isign(é)—i-l))
a(l +iAysign(§))
—isign(§) — Ay (ea(l—w)(AA,isign(g)—l) B 1)
a(iAysign(§) — 1)
_ —isign(&)l <2 _ pa(=1=M)(Ayisign()+1) _ ea(l—k’)(Ax/isign(S)—l)) .
a
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Thus
. . 1
o~ / —18S19n / ‘o
Ko (6) = isign(§) (2_ 27O ct[El(—1=2) (A, isign(€)+1)

4 - 2mct|&| J_4
_ezmﬂ\§|(1—N)(Aﬂisign(s)—l)> .

This proves the first identity of lemma B.1.
By taking ¢’ = 0 we have that

. . 1
-~ —1812n ’ .o
Kf{o(f) _ isig (é) (2_ GAToctEl(=1=2) (Aisign(€)+1)

4 - 2mcet|&] J
_ezna|s|<1—x’><Aisign<s>—1>> d, (B.3)
where 0 = — Integrating in A" yields

1+A2"

1
I = / e—2nact(1+k’)|$|(1+iAsign(§))d)\/
—1

— 1 <1 . e—4nact(1+iAsign($))|§|)
2roct|&|(1 4 i Asign(§))
and
1
Il = / leract(flJr)/)E\(lfiAsign(S))d)L/
-1
_ 1 <1 _ e—4ﬂact(1—iAsign(E))|E|> .
2roct|&](1 —iAsign(§))
However
2
I+11=—Re(l).
2moct|&]

Now if we notice that

1 e—4nactiA§
Re{ ——— ) =0, Re —>
1 + i Asign(&) 1 + i Asign(&)

=0 (cos (4mo Act|é]) — Asin (dmoctAlE))),

equality (B.1) follows. O
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B.2 Estimations of the various symbols

In this section we will use the notation & = 7. In the following estimates:

1. A is function in H3.
2. The function c is as in the statement of theorem 4.1.
3. We can consider that the time r << 1.

To alleviate the notation we introduce the following auxiliar function

h(x,7) = S {1 + ! (e*4’”m (cos(dmctoA) — Asin(4mcto A)) — 1)}
cT dmcet
1
= —(1 +hy(1)) (B4
cT

with
1
ha(x, 1) = - (-1+ e~V (cos(dmo Act) — A sin(4ro Act)))
et

ando = —L

14A2;
We empﬁasis that 4 and h; depend on x just through A and c.
Notice that (B.1) implies that

2misign(£)K (&) = h(x, 7).

We will omit that # depends on A as well. We study the regularity of the
function /4 in detail.

Lemma B.2 The following identities holds:
1
ha(x, 1) = —/ e 4T cos(Amro ActTy)d T, (B.5)
0
1 pl
hix,7) = 4770] f e~MOTUT L (cos(Amo AcT T T2)
0 Jo

+Asin(droActti1p))dodr]. (B.6)

The following estimate not only gives us how the symbol p grows but it also
implies lemma 4.11, the key in showing that p_ is positive for small times.

Lemma B.3 Let ¢, h defined as above. The following estimates hold:

¢ 2/Al+5+87

h
|h(x, 7)| < T4 T (2‘2) , ®)
[0ah(x, T)| +10:h(x, T)] < T
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and

1—1 B (A +5+8n)
— h(x, > ¢ )
(p(r) —h(x, 7)) = Tt + T2

(B.8)

Proof We start with T = ¢|£]| > 1. Since ¢ > 1 we have that

1 1 i
— (1 + —— (e7*7T (cos(dmo Act) — Asin(4ro Act)) — 1))
cT 4ret
1 Al +2
< — 45",
cT T
But since for t > 1,{1—2 < ﬁand%:lJlr_r+%_H%:plr_r+tj&,2 <
1 1
e T T Then
L 1 —4noct _ . _
1+ —— (e (cos(dmo Act) — Asin(4mo Act)) — 1)
cT 4mcet

1 2|A|+5

C

< .
1471 1+ 12

For T < 1 we use the expression (B.2) to get uniform bounds on / and its
derivatives.
The derivatives of & for T > 1 are controlled by

1 1 1
[0k < C <£ + m(l + |A]) + mf(l + |Al)
A
+ﬂmer%si§),
1 2
9ahl = C (57141 +14P)

If we combine (B.7) with the definition of ¢, (B.8) follows as well. O

LemmaB4 Letk=1,2,3

[0ch(x, T)] + |ar,Ah| + |8r,ch| <(A)

14172’
lacc]  |9ke| + |3k A]
akh , < A X X ,
x<xr>_<><1+r+ o
lacc]  |akc| +19kA
%9, h(x, 1) < (A X X
XT(X 'L')_( >(1+T2 1+|T|3
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where the constant C depends on |8)"Cc| + |8)’;A|fori < k.
Proof For T < 1 we use lemma B.2 and the result follows. For t > 1, from
the expression

1 1 n 1
et 4mc?t?  4me?7?

e~ T (cos(dmco At) — Asin(dreo At)),

(B.9)

we see that |9; 2| < (A)(1+ t2)~1. In order to bound the derivatives on o and
A of 0. h we see that the two first terms in (B.9) do not cause any difficulty. The

third one in (B.9) brings down a factor t but since ¢ > 1 and o > m

we still have exponential decay. In order to bound the derivatives with respect
to x of 4 and d;/ a similar argument applies.
O

We recall that
p=2mit K", pp = 27i& (Pmain — D),

1
Pgood = EP —o@l&]), and py =—(1+ |S|)pgood-

Lemma B.5 Givent > 0, the symbols pp, t0x Pmain, Pgood € S1,1 With the
following estimates.

D) lpolli1 + 1 Pgooalli,n = (A)
i) ||tpmain”1,l + ”taxpmain”l,l + ||a$pmain||l,0 < (A)

Proof We start with the L® estimates (no x derivatives). The estimation of pj,
itself is the most subtle so we address it first.

1. Estimation of the L norm of pj.

The fundamental theorem of calculus tell us that,

o . 1 1
—isign(s) / / A amogenlgl (14214 Asisign©) g 3,
—1J0 ds

P — Pmain = 4. 2nct|i§|
. . 1 l
4 —isign(s) / / 4 2ot (1-1)(1-iAusign®) g g3,
4 . 2mcet|&| J_1 Jo ds
=T+ T>.
Now we use the chain rule and that 9;A4,; = c'tA and 0405 =

—ZGEAA saC'tA to obtain that

2wiéT
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1 1 1 .
= Ef / ZJSZAAS;Lc/t)\chﬂSl(l + A) (A +iAgsign(§))
—-1J0

6—27”%)»6'“5|(1+X)(1+iA.sASigH§)dsdk

1 1 1
+ —/ / ctrisign(€)(—2mogct|E](1 4+ 1))
4et J_1 Jo
e 2 osict[E|(A+2) (141 Asp)sign(€) g 72 (B.10)
=T + T. (B.11)

Now observe that the dangerous ¢ in the denominator cancels out in both
T11, T12. Thus, we are entitled to take modulus and obtain the elementary
bound:

1 1
27i&Ty| < C/ / 2 ogct|E|(1 4+ L)e ot EI0FM gogn < (A).
—-1J0

The estimation involving 75 is exactly analogous and thus || pp || < (A).

2. Estimation of the L-norm of 9 (2i&(K0(€) — K$ (£))). We recall
that

2riE(R$O(&) — RS ()

1
— 1 <627TUA/CIIEI(—l—k')(AA/iSign(f)—H)
4et J_

_}_eZJTUA/|§|(1—A’)(Al/isign(.§)—1)) d

1
% (eZﬂactlé|(—1—)J)(Aisign(§)+1) +eZna(l—k’)(Aisign(S)—l)) dy
ct J .y

= U + Us.

In this case we can bound U; and U, separately and it is enough to
estimate Up. In addition, we can split Uy = Ujy + Ujp with Uyp =

ﬁ 11 2oy ctE|(=1=2)(Ayisign@E)+1) g3/ and it easy to see that the esti-
o

mation of Uy and U}, follows similar steps. We have that

1 1
0:U1 = E/ (=2moet(l+ ) (sign(€) +iA;)
—1
eZnaA/ctlé|(7lf)h’)(A)L/isign(E)+l)d)L/
1
= i / (=270 (1 + 1) (sign(§) + i Ay)e? ow cHEICIDDAyisien@)+D) g7
-1

(B.12)
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and then [0 U11| < (A).

3. The L*° estimate for pg,,q follows directly from lemma B.3 and the defi-
nition of ¢.

4. To estimate pyqi, We notice that pn.in = pp + p. We have already
proved that pp, is bounded and recall that p = £h(x, t). Thus |p(x, §)| =
%rh(x, 7) and thus the estimate (B.7) implies that ||tpmainllze < (A).
Similarly, when estimating g pyqin, by our uniform estimate on pj, we are
reduce to estimate d¢ p. Now notice that by the definition of p and the chain
rule, [|0g pllp~ = %ll dz(th)|| < (A) where the last bound follows from the
lemma B.4

5. Finally, we deal with the derivatives respect to x. Firstly, observe that
tp(x,t) = th(x, 1) and thus the estimates of the derivatives in x fol-
low directly from those of 4, which are explicitly bounded in lemma B.4.
Hence we obtain that

lzplia + 20xpllii + 19 pollio < (A). (B.13)

Next we look at the x derivatives of pj, dg pp. We have done all the work
as in the expressions, of 711, T12, U1, U> the only difficulty occurs when
after the use of chain rule we differentiate A and c. Thus we obtain that

IPollt iy + 10xpollin < (A). (B.14)

Since, £ = h(x, t) and ¢ is explicit lemma B.3, lemma B.4 imply readily
the bounds for || pgoodll1,1 < (A) and thus the claim 1) follows. Claim ii),
which deals with py,4in, is an straightforward consequence of (B.13) and
(B.14).

O

1
The following lemma is cumbersome as considering p; instead of p is

less innocent than it seems. In fact here is the only place where the existence
of the constant ¢, is required.

L L
Lemma B.6 Let2|A| +5+ 87 < % The symbols p and q = 3¢ p] satisfy
that for 0 < ¢ < 1 it holds that,

I 1
l£2p2llig < (A), 3 pillieme) < (A),

1
10x 3¢ P I oo m2) < (A), sup (10xq Il g2 + 10xql ) < (A),
£eR
Lo g
16207 P3|l w2y = (A).
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Proof We give the proof in the case ¢ > 1 + «, and will explain at the end of
the proof the modifications for the case ¢ = 1. We explain first the L> bounds
then d,¢q € H ¢ and finally how to control the x derivatives of both symbols.

1. Since,

tp+(x,8) = (1 + 1) (¢(r) — h(x, 7)) (B.15)

it follows from (B.8) that

L4
pil= s (B.16)
Now we deal with g = 0¢ pé (x, &). By product rule for derivatives,
1 si |
g6 = 3 " o) — ot
(+1ED?
+ 041D () — e o) e () — ()

(B.17)

The first term is innocent since (¢ — k) is bounded. For the second we
notice, that

tA+IEDT <t2(1+ )2 (p—h) 2 <CA+1)7,  (B.IS)

where the second inequality comes from lemma B.3. In addition, lemma B.4

implies that |3, (p — h)| < 14 Thus, the desired

lg(x, &) < (A).

follows.

2. That 9,q € H~¢ follows from the existence of a constant goo such that
g — goo € L?. Since the only x dependence of ¢ is through A, c mwe
will declare goo(f, &) = ¢ (0, co, t, §). Now by plugging into (B.17) the
bounds from lemmas B.3 amd B.4, it follows that [V4 .|g < (A). Then,
the mean value theorem applied to ¢ as a function of A, ¢, yields that for
every x € R,

1g(x) = ool = (A)(JA(x) = O] + |c(x) = cool)

and since A is H> and [le—coo |>’dx < C by assumption, the result follows.
1

The proof to bound || pi || - follows similar steps.

@ Springer



346 A. Castro et al.

1
3. Now we compute 8)’; pi(x, &) and afq. By chain and product rule
1 , 4
8§pj(x,é)itisasumoftermsofthetype(1~|—|EI)%(go—h)%_’l'lzo,i:ka,?’(go—
h)fori =1,...,k By (B.18) and lemma B.4 the most singular term is
1+t
(14 1)k
1
=1 2(A) (lex| + 1AxD -

1 1 1
A+ 1ED2 (0 — )27 H 9kl <172 (A) e + 1A,

1

We move to g. We need to show that d,g € L* for pf_ € &1.1 and that
a§q e L?fork = 1,2, 3. By lemma B.2 we only need to give the details of
the case T > 1. Notice that when we differentiate in (B.17) the derivatives of
the first term still remain innocent as 8)16‘ (p(t) — h(x, ‘r))% has been shown
to be bounded by sup; ;-4 | aj;cl + |8)’; A|. For the second term, again product
rule combined with lemma B.3 and B.4 implies that the most singular term
is

(14 1ED2(p — hx, 1) 2 K|ah *d, (o(1) — h(x, 7))
(1+ ‘C)k+1

Notice that the terms dy' (¢ — h) and dy' 9, (¢ — h) will be less singular
respect to T and will be controlled by (A) (|35 c| + |05 A|).

Finally, we mention that in the case ¢ = 1, d,c = 0, thus their derivatives are
bounded by powers of - +112 and lemma B.3 implies that (p—h)~! < %(1 +12).
The terms appearing in our various derivatives compensate exactly in the same

way. O
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