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Abstract We prove the existence of mixing solutions of the incompressible
porous media equation for all Muskat type H5 initial data in the fully unstable
regime. The proof combines convex integration, contour dynamics and a basic
calculus for non smooth semiclassical type pseudodifferential operators which
is developed.
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1 Introduction and the main theorem

The dynamics of an incompressible fluid in an homogeneous and isotropic
porous media is modeled by the following system

∂tρ + u · ∇ρ = 0 in � (1.1)

∇ · u = 0 in � (1.2)
ν

κ
u = −∇ p − ρg in �, (1.3)

where ρ is the density, u is the incompressible velocity field, p is the pressure,
ν is the viscosity, κ is the permeability of the media and g is the gravity.
The first equation represents the mass conservation law, equation (1.2) the
incompressibility of the fluid and equation (1.3) is Darcy’s law [20], which
relates the velocity of the fluid with the forces acting on it. In this paper we
will consider � = R

2. As usual, we will refer to the system (1.1), (1.2) and
(1.3) as the IPM system.

The Muskat problem deals with two incompressible and immiscible fluids
in a porous media with different constant densities ρ+ and ρ− and different
constant viscosities. In this work we will focus on the case in which both
fluids have the same viscosity. Then one can obtain the following system of
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equations from IPM

∇ · u = 0 in �±(t) (1.4)

∇⊥ · u = 0 in �±(t) (1.5)
ν

κ
(u+ − u−) · t = −g(ρ+ − ρ−)(0, 1) · t on �(t) (1.6)

(u+ − u−) · n = 0 in �(t) (1.7)

∂tX(x, t) = u(X(x, t), t) in �+(0) (1.8)

�+(t) = X(�+(0), t), (1.9)

where u± is the restriction of the velocity to the interface, �(t) = ∂�+(t)∩
∂�−(t), between both fluids , n is the normal unit vector to �(t) pointing out
of �+, t is a unit tangential vector to �(t), �± is the domain occupied by
the fluid with density ρ± and therefore �− = R

2 \ �+. Without any loss of
generality we will take from now on g = ν = κ = 1.

The same system of equations governs an interface separating two fluids
trapped between two closely spaced parallel vertical plates (a “Helle Shaw
cell”). See [37].

We also assume that �+(0) is open and simple connected, that there exist
a constant C such that {x = (x1, x2) ∈ R

2 : x2 < C} ⊂ �+(0) (the fluid
with density ρ+ is below) and that the interface �(0) is asymptotically flat
at infinity with limx1→−∞ x2 = limx1→∞ x2 = 0 for x ∈ �(0). This type of
initial data will be called of Muskat type.

In this situation one can find an equation for the interface between the two
fluids. Indeed, if we take the parametrization

�(t) = {z(s, t) = (z1(s, t), z2(s, t)) ∈ R
2},

the curve z(s, t) must satisfy from (1.4),…, (1.9) (see [6] and [17])

∂tz(s, t) = ρ+ − ρ−

2π
P.V .

∫ ∞

−∞
z1(s, t) − z1(s′, t)
|z(s, t) − z(s′, t)|2 (∂sz(s, t) − ∂sz(s′, t))ds′,

(1.10)

where P.V . denotes the principal value integral. At the same time the solutions
of the Muskat equation (1.10) provide weak solutions of the IPM system.

The behaviour of the equation (1.10) strongly depends on the order of the
densities ρ+ and ρ−. The problem is locally well posed in Sobolev spaces, H3

(see [17]), if the interface is a graph and ρ+ > ρ−, i.e., in the stable regime
(see also [13,14] and [18] for improvements of the regularity). Otherwise,
we are in the unstable regime and the problem is ill-posed in H4. This is a
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consequence of the instant analyticity proved in [6] in the stable case (see also
[17] for ill-posedness in H3 for an small initial data).

This contrast between the stable and unstable case is easy to believe since
F(s, t) = ∂4s z(s, t) satisfies that

∂tF = −σ(s, t)�F + a(s, t)∂sF + R(s, t),

where � = (−�)
1
2 , a(s, t) and R are lower order terms and the Rayleigh-

Taylor function σ(s, t) reads

σ(s, t) = (ρ+ − ρ−)
∂s z1(s, t)

|∂sz(s, t)|2 .

A quick analogy with the heat equation indicates that for σ(s, t) positive
everywhere the problem is well-possed (we are in the stable case). If σ(s, t) is
negative the equation resembles a backwards heat equation in this region and
therefore instabilities arise.

However, in the present paper, we show that there exists weak solutions to
the IPM system starting with an initial data ofMuskat type in the fully unstable
regime, i.e., ρ+ < ρ− and ∂s z1(s, 0) > 0 everywhere. The initial interfacewill
have Sobolev regularity and in addition these solutions will have the following
structure: there will exist domains�±(t)where the density will be equal to ρ±
and a mixing domain �mix (t) such that for every space-time ball contained
in the mixing area the density will take both values ρ+ and ρ−. We will call
these solutions mixing solutions (see the forthcoming definition 2.2). In Figs.
1 and 2 we present the main features of this kind of solutions.

Theorem 1.1 Let �(0) = {(x, f0(x)) ∈ R
2} with f0 ∈ H5. Let us suppose

that ρ+ < ρ−. Then there exist infinitely many “mixing solutions” starting
with the inital data of Muskat type given by �(0) (in the fully unstable regime)
for the IPM system.

Remark 1.2 The existence of such mixing solutions was predicted by Otto
in [36]. In this pioneering paper, Otto discretizes the problem and present a
relaxation in the context of Wasserstein metric, which yields the existence of
a “relaxed” solution in the case of a flat initial interface. It is a very interesting
question whether it is possible to extend this approach to cover Theorem 1.1.
We would like to emphasize that the initial interface has Sobolev regularity,
thus the Muskat problem is ill-possed in the Hadamard sense (see for example
[17]). Therefore the creation of a mixing zone provides a mechanism to solve
the IPM system in a situation where solutions of Muskat are not known.

Remark 1.3 Notice that these “mixing solutions” do not change the values that
the density initially takes and that in any space-time ball B ⊂ �mix (t)×(0, T ),
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Mixing solutions for the Muskat problem 255

Fig. 1 A Muskat type initial data in fully unstable regime

Fig. 2 A mixing solution a time t > 0 starting in the configuration of Fig. 1

ρ takes both values, i.e there is total mixing. In fact, a more refined version of
convex integration recently presented in the recent manuscript [5], it is proved
that there is mixing in space balls.

The method of the proof is based on the adaptation of the method of convex
integration for the incompressible Euler equation in the Tartar framework
developed recently by De Lellis and Székelyhidi (see [3,11,19,21–25,43] and
[42] for the incompressible Euler and for another equations [2,7–10] and [40]).
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Very briefly, the version of convex integration used initially byDe Lellis and
Székelyhidi understands a nonlinear PDE, F(ρ, u) = 0 as a combination of a
linear system L(ρ, u, q) = 0 and a pointwise constraint (ρ, u, q) ∈ K where
K is a convenient set of states and q is an artificial new variable. Then L gives
rises to a wave cone� and the geometry of the� hull of K , K�, rules whether
the convex integrationmethod will yield solutions. An h-principle holds in this
context: if for a given initial data there exists an evolution which belongs to
K�, called a subsolution, then one finds infinitely many weak solutions.
For the case of the IPM system, in [16], the authors initiated this analysis and

used a version of the convex integration method which avoids the computation
of� hulls based on T4 configurations, key in other applications of convex inte-
gration, e.g. to the (lack of) regularity of elliptic systems [29,30,34]. Keeping
the discussion imprecise, their criteria amounts to say that (0, 0) must be in
the convex hull of � ∩ K in a stable way. Shvydkoy extended this approach
to a general family of active scalars, where the velocity is an even singular
integral operator, in [39]. Recently, in [28], Isett and Vicol using more subtle
versions of convex integration show the existence of weak solution for IPM
with Cα−regularity. All of these solutions, change the range of the modulus
of the density. We remark that the solutions in theorem 1.1 do not change the
values of the density.

Székelyhidi refined the result of [16] in [41] computing explicitly the�-hull
for the case of IPM. Notice that this increases the number of subsolutions (and
thus the solutions available). In fact, Székelyhidi showed that for the case of a
flat interface in the unstable regime there exists a subsolution and thus proved
theorem 1.1 in this case.

The main contribution of this work is a new way to construct such subso-
lutions, inspired by previous studies in contour dynamics, which we believe
of interest in related problems. Let us describe it briefly. The mixing zone
(that is where the subsolution is not a solution) will be a neighborhood of
size 2ε(x, t) of a suitable curve (x, f (x, t)) evolving in time according to a
suitable evolution equation. We call this curve the pseudointerface.

Namely, if x(x, λ) = (x, λ+ f (x, t))wewill declare the mixing zone�mix
to be

�mix = {x ∈ R
2 : x = x(x, λ) for

(x, λ) ∈ (−∞, ∞) × (−ε(x, t), ε(x, t))}.

Inside themixing zone, the density of our subsolutionwill be simplyρ = λ
ε(x,t) .

Notice that the width of the mixing zone is variable, and it will grow linearly
in time as ε(x, t) = c(x, t)t , where c(x, t), 1 ≤ c(x, t) < 2, is essentially
an arbitrary smooth function (technical assumptions will be made in theorem
4.1).
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The case of constant c(x, t) = c is technically easier but we have preferred
to deal with the variable growth case as it is more useful for further application
and it shows the flexibility of the method.

Let us observe, that at the boundary of the mixing zone, the subsolution
must become a solution (|ρ| = 1). Our choice of the subsolution imposes that
f (x, t) must satisfy the following non linear and non local equation,

∂t f (x, t) =Mu(x, t)

f (x, 0) = f0(x), (1.11)

where

Mu(x, t) = −1

2

∫ 1

−1

1

π

∫ ∞

−∞
1

2

∫ 1

−1

(x − y)
(
∂x f (x) − ∂y f (y) + λε(x) − λ′ε(y)

)
(x − y)2 + (ε(x)λ − ε(y)λ′ + f (x) − f (y))2

dλ′dydλ.

Here Mu can be understood as a suitable double average of the velocity in
the Muskat case.

It turns out that it is possible but rather difficult to obtain uniform estimates
on t for the operator Mu in order to obtain existence for this system. The
situation is reminiscent to that of the Muskat problem but it is different as,
on one hand, the kernel is not so singular but, on the other hand, we need to
obtain estimates which are independent of ε (notice that for ε = 0 the problem
is ill-posed). The first difficulty is to quasi-linearize the operator Mu. This
quasi-linearization is inspired by that one for the classical Muskat equation
1.10 (see for example [17]). However, even in the case of constant ε, some
new difficulties arise and to deal with them we need to use different tools e.g.,
pseudodifferential theory. The presence of variable width ε(x, t) introduces
additional technical complications. Since the proof is long and delicate but
the result is believable we postpone the proof to the ‘Appendix A.1 and A.2”
where we have introduced ad hoc notation which should make the proofs nice
to follow.

In turn, the needed a priori estimate boils down to understanding the evolu-
tion of the following equation for F(x, t) = ∂5x f (x, t)

∂t F(x, t) =
∫

K (x, y, t)∂x F(x − y, t)dy + a(x, t)∂x F(y, t) + G(x, t),

(1.12)

for a suitable kernel K : R×R×R
+ → R, whereG(x, t) is a lower order term

and a(x, t) are functions with a lower number of derivatives. The important
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fact in equation (1.12) is that the kernel K is order zero at time t = 0, and

yields a (−�)
1
2−term with the wrong sign. However K is of (−1)-order for

any t > 0 and yields a bounded term but with a blowing up norm ∼ 1
t .

At the beginning of Sect. 4.2.2 we explain with a toy model, where the
x−dependence of K is frozen, that this behaviour forces a loss of at least one
derivative with respect to the initial data. Semiclassical analysis [45] studies
how the behaviour of smooth symbols p(x, h̄ξ) is like that of Fourier mul-
tipliers up to factors of h̄, h̄ standing for the Planck constant. Our symbols
p(x, t, tξ) can be interpreted as semiclassical with the time playing the role of
h̄ but they are not smooth. Thus, in order to deal with the full system, we pro-
duce a basic calculus of semiclassical type of pseudodifferential operators with
limited smoothness, e.g., composition of such symbols or a suitable Gårding
inequality. The results are pretty general and perhaps of its own interest.

Once that we define such a pseudointerface and the corresponding mixing
zone, we can find the corresponding density ρ and velocity u and show that
they belong to the suitable � hull for small time, yielding then a subsolution.
Given the subsolution, convex integration applies to create infinitely many
weak solutions, though an additional observation is needed to obtain themixing
property (see Sect. 3).

Themethod of the proof seems robust to prove existence ofweak solutions in
a number of free boundary problems in an unstable regime. For further recents
developments of this circle of ideas, see e.g [1,32,33,35]. As it was remarked
by Otto and Székelyhidi ([36] and [41]) the underlying subsolution seems to
capture relevant observed properties of the solution as it is the growing rate
of the mixing zone, the fingering phenomena (see the numerics in [4]) or the
volume proportion of the mixing (This has been recently quantified in [5]).

It seems to us that the creation of a mixing zone in the lines of this work,
might end up in to a canonical way of turning ill-posed problems into solvable
ones, at the price of loosing uniqueness at least at the microscopic level (this
line of thought has been already expressed in [36] and [41]). We emphasize
that subsolutions as such are also highly non unique (e.g. see the recent [26]
for an elegant proof of existence of subsolutions with piecewise constant den-
sities). In the case of the flat interface the relaxation solution obtained by Otto
can be characterized as the unique entropy solution [36] of a concrete scalar
conservation law, the one who linearly interpolates between the heavier and
lighter fluid and as the subsolution who maximizes the speed of growth of
the mixing zone ([41]). Perhaps the most challenging open question after this
work to obtain such nicely agreeing selection criteria for subsolutions in the
case of an arbitrary interface. At the end of the paper we add a remark showing
that surprisingly the mixing solutions are also present in the stable regime in
the case of straight interfaces except in the horizontal case. Let us remark that
this have been extended to not flat interfaces in [26]
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The paper is organized as follows: In Sect. 2 we introduce the rigorous
definition of mixing solutions and subsolution. In Sect. 3 we explain how
the convex integration theory allow us to obtain a mixing solution from a
subsolution. Section 4 is divided in two parts. In the first part, subsection
4.1, we construct a subsolution for the IPM system assuming the existence of
the pseudointerface, ie. solution for the equation (1.11). In the second part,
section 4.2, we will show the existence of solutions for the equation (1.11). As
discussed before, the proof requires some pseudodifferential estimates for non
smooth symbols which might be of its own interest so we have gathered them
in Sect. 5. First we present the results which are general and then those more
related to our specific symbols, though it would not be difficult to extrapolate
general theorems from the later, as in the case of Gårding inequality.

In Sect. 6 we show how to construct mixing solutions in the stable regime.
Finally in the ‘Appendix” we prove the quasilinearization estimates as well as
compute the symbols and their estimates.

1.1 Notation

We close the introduction by fixing some notation as it varies quite a lot in the
literature. When no confusion arises will use L2, Hk to denote L2(R), Hk(R)

and S denotes the Schwarz class. Given a symbol p(x, ξ) we define a pseu-
dodifferential operator Op(p) by

Op(p)( f )(x) =
∫

e2π i xξ p(x, ξ) f̂ (ξ)dξ,

for f ∈ S.
In the case that the symbol p = p(ξ), depends only on the frequency

variable, i.e., p is a Fourier multiplier, we denote the operator by P (the capital
letter).Wewill use the following notation to estimate commutators, correlation
of differential operators and the skew symmetric part of an operator.

[Op(p1),Op(p2)] = Op(p1) ◦ Op(p2) − Op(p2) ◦ Op(p1),

C(p1, p2) = Op(p1) ◦ Op(p2) − Op(p1 · p2),
Op(p)skew = Op(p) − Op(p)T ,

whereOp(p)T is the adjoint respect to the standard L2 product. For smoothness
of the symbols we use the norms

‖p‖α,β = sup
x,ξ,α′≤α,β ′≤β

|∂α′
x ∂

β ′
ξ p(x, ξ)|,
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where the derivatives are taken in the distributional sense. Finally we will say
that p(x, ξ) ∈ Sα,β , if

‖p‖α,β < ∞.

The symbols ||| f ||| and 〈A〉will denote somepolynomial function evaluated
in || f ||H4 and ||A||H3 and we recall that

A = ∂x f

along the paper. In particular both ||| f ||| and 〈A〉 will depend on c as well
but we will not make such dependence explicit as it is harmless for the apriori
estimates (for a c(x, t) as in the statement of theorem 4.1).

2 The concepts of mixing solution and subsolution

Following [41] we rigorously define the concept of “mixing solution” in the
statement of theorem 1.1. We would like our solutions to mix in every ball of
the domain and thuswe incorporate this into the definition. Firstly, sincewe are
working in unbounded domains, we give a definition of weak solution in which
we prescribed the behaviour of the density at ∞. In the following Ri , with
i = 1, 2 are the Riesz transform and BS is the Biot-Savart convolution. Recall
that for a smooth function f these operators admit the kernel representations,

Ri f (x) = 1

2π
P.V .

∫
R2

xi − yi
|x − y|3 f (y)dy,

BS f (x) = 1

2π

∫
R2

(x − y)⊥

|x − y|2 f (y)dy.

Definition 2.1 Let T > 0 and ρ0 ∈ L∞(R2). The density ρ(x, t) ∈ L∞(R2×
[0, T ]) and the velocity u(x, t) ∈ L∞(R2 × [0, T ]) are a weak solution of the
IPM system with initial data ρ0 and if and only if the weak equation

∫ T

0

∫
R2

ρ (∂tϕ + u · ∇ϕ) dxdt =
∫

R2
ϕ(x, 0)ρ0(x)dx

holds for all ϕ ∈ C∞
c ([0, T ) × R

2), and

u(x) = BS(−∂x1ρ). (2.1)
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Mixing solutions for the Muskat problem 261

Notice that we have interpreted the incompressibility of the velocity field
and Darcy’s law with (2.1). In fact, for ρ ∈ C∞

c (R2), the equations

∇ · u =0

∇⊥ · u = − ∂x1ρ.
(2.2)

together with the condition that u vanishes at infinity (the boundary condition)
are equivalent to

u(x) = BS(−∂x1ρ) = (R2R1ρ, −R1R1ρ) .

Thus, they are consistent with definition 2.1. Definition 2.1 extends the concept
of solution of the system (2.2) plus vanishing boundary condition for densities
which do not necessarily vanish at infinity. Notice that incompressibility and
Darcy’s law are automatically satisfied by our solution in the weak sense. That
is,

∫
R2

u · ∇ϕdx =0
∫

R2
u · ∇⊥ϕdx = −

∫
R2

ρ∂x1ϕdx,

for all ϕ ∈ C∞
c (R2).

Definition 2.2 The density ρ(x, t) and the velocity u(x, t) are a “mixing solu-
tion” of the IPM system if they are a weak solution and also there exist, for
every t ∈ [0, T ], open simply connected domains �±(t) and �mix (t) with
�+ ∪ �− ∪ �mix = R

2 such that, for almost every (x, t) ∈ R
2 × [0, T ], the

following holds:

ρ(x, t) =
{

ρ± in �±(t)
(ρ − ρ+)(ρ − ρ−) = 0 in �mix (t)

.

For every r > 0, x ∈ R
2, 0 < t < T B((x, t), r) ⊂ ∪0<t<T�mix (t) it

holds that
∫
B
(ρ − ρ+)

∫
B
(ρ − ρ−) �= 0.

For sake of simplicity and without any loss of generality we will fix the
values of the density to be

ρ± = ∓1. (2.3)
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The concept of subsolution is rooted in the Tartar framework understanding a
non linear PDE as a linear PDE plus a non linear constraint. In our context the
linear constraint is given by

K = {(ρ, u, m) ∈ R × R
2 × R

2 : m = ρu, |ρ| = 1}.

As observed by Székelyhidi the set K contains unbounded velocities which is
slightly unpleasant. Thus for a given M > 1 we define

KM = {(ρ, u, m) ∈ R × R
2 × R

2 : m = ρu, |ρ| = 1, |u| ≤ M}.

Subsolutions arise as a relaxation of the nonlinear constraint. In the frame-
work of the IPM system the relaxation is given by the mixing hull, the �

lamination hull for the associated wave cone � (see [16,41] for a description
of �). In [41], the author computed the laminations hulls of K and KM . We
take them as definitions.

Definition 2.3 We defined the mixing hulls for IPM by

K� =
{
(ρ, u, m) ∈ R × R

2 × R
2 :
∣∣∣∣m − ρu + 1

2

(
0, 1 − ρ2)∣∣∣∣

<

(
1

2

(
1 − ρ2))} . (2.4)

For a given M > 1, the M-mixing hull K�
M are the elements in K� which

additionally satisfy that

|2u + (0, ρ)|2 < M2 − (1 − ρ2) (2.5)∣∣∣∣m − u − 1

2
(0, 1 − ρ)

∣∣∣∣ < M

2
(1 − ρ) (2.6)

∣∣∣∣m + u + 1

2
(0, 1 + ρ)

∣∣∣∣ < M

2
(1 + ρ). (2.7)

Remark 2.4 Let us clarify the differences between our notation and the nota-
tion in [41]. We are using same notation as in [41] in section 4, but with v

there replaced by u here. The concept of M-subsolution arises in section 2,
proposition 2.5 in [41]. To translate this proposition to our language one has
to replace u there by 2u + (0, ρ) and m there by m + 1

2 (0, 1) (notice that in
[41] m, in section 2, pass to m + 1

2 (0, 1) in section 4).

Definition 2.5 Let M > 1 and T > 0. We will say that (ρ, u, m) ∈ L∞(R2×
[0, T ])× L∞(R2×[0, T ])× L∞(R2×[0, T ]), is a M-subsolution of the IPM
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system if there exist open simply connected domains �±(t) and �mix (t) with
�+ ∪ �− ∪ �mix = R

2 and such that the following holds:

(No mixing) The density satisfies

ρ(x, t) = ∓1 in �±(t).

(linear constraint) In R
2 × [0, T ] (ρ, u, m) satisfy the equations

∂tρ + ∇ · m =0

ρ(x, 0) =ρ0

u(x) =BS(−∂x1ρ) ≡ 1

2π

∫
R2

(x − y)⊥

|x − y|2 (−∂y1ρ(y))dy, (2.8)

in a weak sense.
(Relaxation) (ρ, u, m) ∈ K�

M in �mix (t) × (0, T ) and (ρ, u, m) ∈ K
�

M in
R
2 × (0, T ).

(Continuity) (ρ, u, m) is continuous in �mix (t) × (0, T ).

Remark 2.6 Along the text we will typically speak about subsolution (rather
than M-subsolution) and we only make explicit the constant M when it is
needed.

3 H-principle: subsolutions yield weak solutions

In this section we follow [41] to find that to prove theorem 1.1 is enough to
show the existence of a M-subsolution, for some M > 1, (ρ, u, m). Since
L∞(R2) ⊂ L2(dμ) with dμ = dx

(1+|x |)3 ,we will work with L2(dμ̃), where
dμ̃ = dμdt as the auxiliar space.

Associated to a M-subsolution (ρ, u, m) in [0, T ], we define a set X0.

X0 =
{
(ρ, u, m) ∈ L∞(R2 × [0, T ] × L∞(R2 × [0, T ]) × L∞(R2 × [0, T ]) :

(ρ, u, m) = (ρ, u, m) a. e. in R
2 \ �mix ,

and (ρ, u, m) is a subsolution} .

This set is not empty since (ρ, u, m) ∈ X0.

Lemma 3.1 Let (ρ,u,m) be a M-subsolution. Then the space X0 is bounded
in L2(dμ̃).
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Proof Let (ρ, u, m) ∈ X0. Then ||ρ||L∞ ≤ 1 and ||u||L∞ ≤ C(M), so that
for a fixed time ||ρ||L2(dμ), ||u||L2(dμ) ≤ C(M). Similarly

||m||L2(dμ) ≤
∣∣∣∣
∣∣∣∣m − ρu + 1

2

(
0, 1 − ρ2)∣∣∣∣

∣∣∣∣
L2(dμ)

+
∣∣∣∣
∣∣∣∣ρu − 1

2

(
0, 1 − ρ2)∣∣∣∣

∣∣∣∣
L2(dμ)

.

Thus ||m||L2(dμ) is bounded thanks to (2.4) and to ||ρ||L2(dμ), ||u||L2(dμ) ≤
C(M). The claim follows by integrating respect to time in [0, T ].

��
Since X0 is bounded in L2(dμ̃) and the weak topology of this space is metriz-
able, we can consider the space X given by closure of X0 under this metric.

We will prove the following theorem,

Theorem 3.2 If X0 is not empty the set of mixing solutions of IPM with ρ0 as
initial data is residual in X. Here ρ0 is the subsolution at time t = 0.

The general framework of convex integration applies easily to our setting.
For the sake of simplicity we will follow the “Appendix” from [41] with an
slight modification. We consider the unbounded domain R

3 (R2 in space and
R in time), z : � → R

5 and a bounded set K ⊂ R
5 such that

d∑
i=1

Ai∂i z = 0, (3.1)

z ∈ K . (3.2)

Assumptions:

H1 The wave cone. There exists a closed cone � ⊂ R
5 such that for every

z ∈ � and for every ball B ∈ R
3 there exists a sequence z j ∈ C∞

c (B, R
5)

such that
i) dist(z j , [−z, z]) → 0 uniformly,
ii) z j → 0 weakly 0 in L2(dμ̃) weakly,
iii)

∫ |z j |2dμ̃ ≥ 1
2 |z|2.

H2 The � convex hull. There exist an open set U with U ∩ K = ∅ and a
continuous convex and increasing nonnegative function φ with φ(0) = 0
that for every z ∈ U z + t z ∈ U for |t | ≤ φ(dist (z, K ))

H3 Subsolutions. There exists a set X0 ⊂ L2(dμ̃) that is a bounded subset of
L2(dμ̃) which is perturbable in a fixed subdomain U ⊂ � such that any
z ∈ X0 that satisfies z(y) ∈ U and ifw j ∈ C∞

c (U, R
5) is the approximating

sequence from [H1] and z + w j ∈ U then z + w j ∈ X0.
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In the case of the IPM equation with the constraints |ρ| = 1, |u| ≤ M both �,
KM and K�

M has been extensively studied in [16,41]. We take U = �mix (t)×
(0, T ). The property [H2] for K�

M was proved in [41, Proposition 3.3]. For
the property [H1] we use the sequence z j as constructed for example in [16,
Lemma 3.3]. Our Property [H1i)] is stated in the first property stated in that
lemma. For property [H1ii)] notice that we know from [16, Lemma 3.3] that
z j → 0 weakly star topology of L∞. However, z j is uniformly bounded in
L∞ and compactly supported and thus uniformly bounded in L2(dμ̃). Thus
the weak star convergence implies also weak star convergence in L2(dμ̃). Our
property [H1iii)] requires some work as μ does not scale uniformly. However
as proved for example in [16, Lemma 3.3], in addition to the properties listed
in [41, H1] it holds that for a� segment z the approximating sequence satisfies
also that,

lim
j→∞ |(x, t) ∈ B : |z j (x, t)| �= ±z| = 0,

and by absolute continuity it holds that

lim
j→∞ μ{(x, t) ∈ B : |z j (x, t)| �= ±z} = 0.

Thus by choosing j large enough i i i) also holds.
We skip the proof of the following lemma as it is identical to [41, Lemma

5.2]

Lemma 3.3 Let z ∈ X0 with
∫
�mix (t)×[0,T ] F(z((x, t)))dμ̃ ≥ ε > 0. For all

η > 0 there exists z̃ ∈ X0 with dX (z, z̃) ≤ η and

∫
�mix (t)×[0,T ]

|z − z̃|2dμ̃ ≥ δ.

Here δ = δ(ε).

Proof of theorem 3.2 Firstly, as in the proof of [41, theorem 5.1] lemma 3.3
implies that the set of bounded solutions to IPM is residual in X . The proof
works in the sameway since due to the fact thatμ(R2) < ∞, convolutionswith
a standard mollification kernel are continuous from L2(dμ̃, w) to L2(dμ̃) and
thus the Identity is a Baire one map, with a residual set of points of continuity.
That is the set of (ρ, u, m) ∈ X which belong to KM a.e. (x, t) ∈ R

2 ×[0, T ]
is residual in X . This is precisely the set of weak solutions to IPM with the
Muskat initial data.

It remains to show the mixing property:
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Choose B((x, t), r) ⊂ ∪0<t<T�mix(t). Declare

XB,±1 = {(ρ, u,m) ∈ X :
∫
B
(±1 − ρ) = 0}.

Then XB,±1 ⊂ X is closed by the definition of weak convergence and since
XB,±1∩ X0 = ∅ (for states in X0, |ρ| < 1) and XB,±1 ⊂ X0. Thus, XB,±1 has
empty interior. Therefore X \ XB,±1 is residual. Since intersection of residual
sets is residual, it follows that

{X \ ∪i XBi ,±1 : Bi = B(xi , ti , ri ) ⊂ ∪0<t<T�(t), xi ∈ Q
2, ti ∈ Q, ri ∈ Q}

withQ the rationals is residual.Bydensity of rationals elements in X\∪i XBi ,±1
satisfy the mixing property and thus the set of mixing solutions is residual in
X with respect to the weak topology. ��
Remark 3.4 We introduce the measure μ to deal with the unboundedness of
the domain. However we could have followed instead [22] and consider for
capital N ↗ ∞ IN : X �→ R defined by IN : ∫B(0,N )×[0,T ](|ρ|2−1)dxdt . By

convexity of the L2 norm it follows that IN is lower semicontinuous respect to
the weak star topology of L∞(X). Thus it is a Baire one map with a residual
set of points of continuity. By our lemma 3.3 if z is a point of continuity of
IN in X IN (z) = 0. Since elements of X such that ρ(x, t) = 1 correspond to
weak solutions to IPM and intersection of residual sets is residual the theorem
follows.

Remark 3.5 The proof presented above only yields weak solutions to the IPM
system such that |ρ(x, t)| = 1 for a.e. t ∈ [0, T ]. However (see the proof
of [16, Lemma 3.3]) for every z = (ρ, u,m) ∈ � with ρ �= 0 there exists
(ξ, ξt ) ∈ R

2
x × Rt , ξ �= 0 such that

D2(h((ξ, ξt ) · (x, t))) = h′′((ξ, ξt ) · (x, t))

(
ρ − u2 u1
u1 ρ + u2

)

∂t∇h((ξ, ξt ) · (x, t)) + ∇⊥h′((ξ, ξt ) · (x, t)) = h′′((ξ, ξt ) · (x, t))m.

This is the analogous of [22, Proposition 4] . Thus one imitates the proof in
[22, Proposition 2] and obtain weak solutions to the IPM systems such that

|ρ(x, t)| = 1

for every t . We skip the details since there is no essential difference. Also
following [5] the mixing property can be proven at every time slice.
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Proof of theorem 1.1 We start with a given initial data of Muskat type f0 ∈
H5, with 1 ≤ c(x, t) < 2 satisfying hypothesis of theorem 4.1. By theorem 4.1
there exists a time T ∗( f0) > 0 and a function f ∈ C([0, T ∗( f0)], H4(R)),
such that (ε(x, t) = c(x, t)t, f (x, t)) solve the equation (1.11). By theo-
rem 4.4 there exists a M-subsolution in [0, T ( f0, M, c)], with T ( f0, M, c) ≤
T ∗( f0), and thereforewe can define the space X0 associated to this subsolution
and apply theorem 3.2. ��

4 Constructing a subsolution for the IPM system

This section is divided in two parts and its purpose is to show the existence of
a subsolution. In the first part we will find a subsolution for the IPM system in
the sense of definition 2.5 assuming that there exist a solution for the equation
(1.11). We next state such existence theorem with the precise conditions on
the speed of opening c.

Theorem 4.1 Let f0(x) ∈ H5(R) and c(x, t) ∈ C∞(R × R
+) and such that

either there exist constants c∞ ∈ R and κ > 0 such that 1 + κ ≤ c(x, t) ≤ 2
and c(x, t) − c∞ ∈ C1

([0, ∞); H6(R)
)
, with

sup
t∈R+

(||c(·, t) − c∞||H6(R), +||∂t c(·, t)||H6(R)

) ≤ C

or c(x, t) = 1. Then there exists a time T > 0 and

f (x, t) ∈ C([0, T ], H4(R)) ∩ C1([0, T ], H3(R)),

solving the equation (1.11) with ε(x, t) = c(x, t)t .

Remark 4.2 The condition c ≥ 1+κ could be replaced by c ≥ 1 plus technical
conditions on the zeros of c−1 and the behaviour of c at±∞. This would only
affect the proof of lemma B.6 which would be less neat. We have preferred
to keep the statement of the theorem easy. In order to deal with low speed of
opening c < 1 different pseudodifferential machinery is needed to deal with
equation (1.11), thus we have not pursued the issue here. The H6-condition
is needed in the proof of 4.8. Finally, in our proof we have prescribed ρ = λ

ε
as it is simplest continuous function and agrees with the entropy and maximal
mixing solution in the case of the flat interface. Other choices might be of
interest though the proof would be technically different as the velocity would
change. We have not explored this later aspect. The fact that the maximum
growth of the mixing zone is linear on t seems to be intrinsically related to
the problem and it is coherent with Darcy’s law and the flat interface case.
Our proof quickly breaks if we want to have sublinear growth (see equation
(4.15)).
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Remark 4.3 Let us explain why we need to ask five derivatives on the initial
data. Firstly, in order to perform energy estimates we need to quasi-linearize
the equation as in lemmas 4.8 and 4.9, where l.o.t are defined in 4.7. The
number of derivatives that we take it is enough to get the estimate in 4.7 for the
l.o.t.. We do not claim that the regularity can not be improved to get solutions
to 1.11 with an initial data f0 ∈ Hk and k < 5. The quasi-linearization of
1.11 in that case would be much more complicated. Secondly, in order to deal
with the higher order terms in lemma 4.9, we need some regularity in the
pseudodifferential operators that arise in Sect. 4.2.2. The regularity of these
operators is linked to that of the solution f . It turns that, again, the number of
derivatives we take suffices for our purposes.

4.1 Constructing a subsolution. Part 1

This section is dedicated to the proof of the following theorem.

Theorem 4.4 Let us assume that f , with f (x, t) ∈ C1([0, T ] × R), solves
the equation (1.11), with c(x, t) as in Theorem 4.1. Then there exists a M-
subsolution of the IPM system for t ∈ [0, T ], T small enough depending on
f0(x), and for some M.

We start by defining the mixing zone. For x ∈ (−∞, ∞) and −ε(x, t) <

λ < ε(x, t) we define the change of coordinates

x(x, λ) = (x, λ + f (x, t)).

We define the set �mix ⊂ R
2 as follows

�mix = {x ∈ R
2 : x = x(x, λ) for (x, λ)

∈ (−∞, ∞) × (−ε(x, t), ε(x, t))}. (4.1)

Recall that, in �mix , our subsolutions (ρ, m, u) should solve

∂tρ + ∇ · m =0 (4.2)

u =BS(−∂x1ρ). (4.3)

We prescribe m to be of the form

m = ρu − (0, α)
(
1 − ρ2) ,

where α will be chosen later. Then the transport equation (4.2) reads

∂tρ + u · ∇ρ = ∇ · ((0, α)
(
1 − ρ2)) . (4.4)
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On the other hand we need (ρ, u, m) ∈ int K�, in (2.4), which is equivalent
to

(
α − 1

2

)2

<

(
1

2

)2
, (4.5)

ρ2 < 1. (4.6)

In fact, we need (ρ, u, m) ∈ intK�
M , but we will take care of this later.

4.1.1 The equations in (x, λ)-coordinates and the choices of ρ and m

Next we write the equation (4.4) in (x, λ)− coordinates. Let g : �mix → R

be a smooth function. We will denote

g�(x, λ) = g(x(x, λ)). (4.7)

Let us analyze the mixing error in these new coordinates. Set

E�(x, λ) = (1 − ρ�2) (0, α�), (4.8)

which we split as,

E� = f
� + e�,

with

f
� = (1 − ρ�2) (0, α� − 1

2

)
, e� = 1

2
(0, 1)

(
1 − ρ�2) .

We will define the density in the mixing zone to be

ρ�(x, λ) = λ

ε(x, t)
(4.9)

and it will simplify the calculation to call h� = (
α� − 1

2

) (
1 − (ρ�

)2)
. Then

ρ� produces a density ρ(x) satisfying the condition (4.6) in �mix . In addition
ρ�(±ε) = ±1 thus

ρ(x) =
{ ∓1 in �±

ρ(x) in �mix
, (4.10)

where �+ is the open domain below �mix and �− is the open domain above
�mix , is a continuous function in R

2.
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After, these choices, the next lemma describes the necessary conditions to
be a subsolution.

Lemma 4.5 Let ρ� = λ
ε
andm� = ρ�u�−h�(0, 1)−e� with e� = 1

2 (0, 1)(1−
ρ�2). Then, ρ, u and m satisfy the equation (4.2) if and only if

∂λh
� = λ

ε2
+ ∂tρ

� + 1

ε

(
u� · (−∂x f − λ

∂xε

ε
, 1) − ∂t f

)
. (4.11)

In addition if

h� = γ �(1 − ρ�2)

the inclusion (4.5) reads

|γ �| <
1

2
.

Proof Since (∂x1ρ)(x, λ + f (x, t)) = ρ
�
x (x, λ) − ∂x f (x, t)∂λρ

� and
(∂x2ρ)(x, λ + f (x, t)) = ∂λρ

�(x, λ) we have that

u(x, λ + f (x, t)) · (∇ρ) (x, λ + f (x, t))

= u�(x, λ) · (∂xρ�(x, λ) − ∂x f (x, t)∂λρ
�, ∂λρ

�(x, λ)
)
. (4.12)

Also

∂tρ
�(x, λ) = (∂tρ)(x, λ + f (x, t)) + (∂x2ρ)(x, λ + f (x, t))∂t f

= (∂tρ)(x, λ + f (x, t)) + ∂λρ
�(x, λ)∂t f (x, t). (4.13)

In addition,

∇ · (f + e)(x, λ + f (x, t)) = ∂λh
�(x, λ) + ∂λe�(x, λ) = ∂λh

� − ρ�∂λρ
�.

(4.14)

Evaluating (4.4) at x = (x, λ+ f (x, t)), putting together (4.12), (4.13) and
(4.14) and taking into account (4.9) yields (4.11).

Finally, if we define

γ � = 1

1 − ρ�2 h
�,

the condition (4.5) reads

γ �2 <

(
1

2

)2

.
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��
From lemma 4.5 we have that in order to prove theorem 4.4, it is enough to

show that γ �2 < 1
2 with γ � given by

γ �
(
1 − ρ�2) =

∫ λ

−ε

λ′

ε2
− λ

∂tε

ε2

+ 1

ε

(
u�(x, λ) · (−∂x f − λ

∂xε

ε
, 1) − ∂t f

)
dλ′

= −(1 − εt )

2
(1 − ρ�2)

+
∫ ρ�

−1

(
u�(x, ε(x)λ′) · (−∂x f (x) − ∂xελ

′, 1) − ft
)
dλ′,

(4.15)

u given by the Biot-Savart law and ρ(x) by (4.10) and (4.9).

4.1.2 The velocity u and the equation for the pseudointerface

The velocity u is given by the expression

u(x) = − 1

2π

∫
R2

(x − y)⊥

|x − y|2 ∂x1ρ(y)dy = − 1

2π

∫
�mix

(x − y)⊥

|x − y|2 ∂x1ρ(y)dy.

Then a change of coordinates yields

u(x) = − 1

π

∫ ∞

−∞
1

2ε(y)

∫ ε(y)

−ε(y)

(x − x(y, λ′))⊥

|x − x(y, λ′)|2
(

∂y f (y) + λ′ ∂yε(y)
ε(y)

)
dλ′dy

= − 1

π

∫ ∞

−∞
1

2

∫ 1

−1

(x − x(y, ε(y)λ′))⊥

|x − x(y, ε(y)λ′)|2
(
∂y f (y) + λ′∂yε(y)

)
dλ′dy.

(4.16)

Next we will modify this expression since it will help in the proof of the
local existence for the equation (1.11). This idea has been already introduced
in [17]. First we notice that

1

2
∂y log

(|x − x(y, ε(y)λ′)|2) = − (x1 − y)

|x − x(y, ε(y)λ′)|2

− x2 − ε(y)λ′ − f (y))(∂y f (y) + λ′∂yε(y))
|x − x(y, ε(y)λ′)|2 .
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Thus since the integral of the left hand side is null (in the sense of the principal
value) we can also write (4.16) in the most convenient form,

u(x) = 1

π
P.V .

∫ ∞

−∞
1

2

∫ 1

−1

x1 − y

|x − x(y, ε(y)λ′)|2 (1, ∂y f (y) + λ′∂yε(y))dλ′dy.

(4.17)

As we prove in the following lemma this velocity u is in L∞(R2).

Lemma 4.6 Letu be like in expression (4.17)with f ∈ H4 and c as in theorem
(4.1). Then u ∈ L∞(R2) and

||u(·, t)||L∞(R2) ≤ P(|| f ||H4)

for some smooth function P.

Proof The proof of this result is left to “Appendix A.3”. ��
We turn back to our equation (4.15). It says that the evolution is governed

by the following modified velocity.

u�
c(x, λ) ≡ u�(x, ε(x)λ) · (−∂x f (x, t) − ∂xε(x)λ, 1)

= 1

2π
P.V .

∫
R

∫ 1

−1

x − y

(x − y)2 + (ε(x)λ − ε(y)λ′ + f (x) − f (y))2

× (∂y f (y) − ∂x f (x) + ∂yε(y)λ
′ − ∂xε(x)λ)dλ′dy,

where the principal value is taken at infinity. Now, notice that by at |λ| = 1,
the left hand side of (4.15) is 0. Therefore a continuous solution must satisfy
that

∂t f = Mu(x, t) = 1

2

∫ 1

−1
u�
c(x, λ)dλ, (4.18)

which is what motivates (1.11). Of course, the specific aspect of the kernel is
prescribed by our ansatz for ρ.

Then, (4.15) reads

γ �
(
1 − ρ�2) = −(1 − εt )

2
(1 − ρ�2) +

∫ ρ�

−1

(
u�
c(x, λ

′) − ft
)
dλ′, (4.19)
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Proof of theorem 4.4 We have already constructed a candidate to be the sub-
solution. This candidate is given by (ρ, u, m) with ρ� = λ

ε
, u as in (4.16),

m = ρu − γ (1 − ρ2)(0, 1) − e, e = 1
2 (0, 1)(1 − ρ2), γ �(s, λ) = γ (x(s, λ))

and γ � as in (4.19). Next, we show that |γ �| < 1
2 , as stated in lemma 4.5.

Notice that (4.19) yields,

γ � = −(1 − εt )

2
+ 1

1 − ρ�2

∫ ρ�

−1

(
u�
c(x, λ

′) − ft
)
dλ′,

We first focus on the first term on the right hand side of this equation.
Notice that |1 − ∂tε| ≤ |1 − c(x, t)| + |∂t c(x, t)|t . Therefore, our choice of
1 ≤ c(x, t) < 2 (see statement of theorem 4.1) implies that |1 − ∂tε| < 1
for small enough time. Then to finish the proof it is enough to prove that the
second term in (4.19) is as small as we want by making t small. This term is
problematic because the factor 1

(1−ρ�2)
. However we will find a cancelation in

order to control it by continuity.
Here it is where we will use the relation between ε and f . First we will deal

with the part of �mix which lies below the pseudointerface, i.e −ε < λ < 0.
We need to make small the term

∣∣∣∣∣
1

1 − ρ�2

∫ ρ�

−1
(u�

c(x, λ
′) − ∂t f )dλ′

∣∣∣∣∣
≤ C

1

1 − ρ�
sup
x∈R

sup
−1<λ<0

∣∣u�
c(x, λ) − ∂t f (x, t)

∣∣
≤ C sup

x∈R

sup
−1<λ<0

∣∣u�
c(x, λ) − ∂t f (x, t)

∣∣ .

Here notice that ρ� < 0.
Then we see that, since

u�
c(x, λ) − ∂t f (x, t) = 1

2

∫ 1

−1

(
u�
c(x, λ) − u�

c(x, λ
′)
)
dλ′.

Lemma A.12, where it is proven that |u�
c(x, λ)− u�

c(x, λ′)| = O(t) uniformly
in x , implies that this term is as small as we want by taking t small.

To deal with the upper part of �mix we use that our choice of pseudoint-
erface, (1.11), makes the situation rather symmetric. Indeed, it follows from
(1.11) that

∫ ρ�

−1
(u�

c(x, λ
′) − ∂t f )dλ′ = −

∫ 1

ρ�

(u�
c(x, λ

′) − ∂t f )dλ′
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+
∫ 1

−1
(u�

c(x, λ
′) − ∂t f ) dλ′

︸ ︷︷ ︸
=0

= −
∫ 1

ρ�

(u�
c(x, λ

′) − ∂t f (x, t))dλ′.

Thus, the term 1
1−ρ�2 |

∫ ε

λ

(
u�
c − ∂t f

)
dλ′|, can be made arbitrarily small

by taking t small as well. Hence we have proven that there exists T > 0,
depending on f0 and c(x, t), such that |γ �(x, λ, t)| < 1

2 for (x, λ, t) ∈ R ×
(−ε(x, t), ε(x, t)) × [0, T ] as desired.

Recall that lemma 4.6 implies that u ∈ L∞(R2 × [0, T ]).
In order to conclude the proof of theorem4.4we need to check that (ρ, u, m)

is continuous in (0, T )×�mix(0, t) and that also satisfies (2.5), (2.6) and (2.7),
for some M > 1. The continuity is a consequence of that ρ(x, t) is a Lipschitz
function in (0, T ) × �mix (t). Furthermore, if

M > 8 (||u||L∞ + 1) ,

since |ρ| ≤ 1 is easy to check (2.5). In addition, in order to satisfy condition
(2.6) we proceed as follows:

|m − u − 1

2
(0, 1 − ρ)| = |m − ρu − 1

2
(1 − ρ2)

+ 1

2
(1 − ρ2) − (1 − ρ)u − 1

2
(0, 1 − ρ)|

≤
(

(1 + ρ) + |u| + 1

2

)
(1 − ρ),

where we have used (2.4). Then we see that (2.6) is satisfied. To check (2.7)
we follows similar steps that for (2.6). ��

4.2 Constructing a subsolution. Part 2

The bulk of the proof is to show energy estimates for (1.12). Before starting
with the computation we will present a toy model to explain the strategy of
the proof. Let us consider the following equation

∂t f =
(

1

1 + ct |ξ |
)̌

∗ � f in R × R
+

f (x, 0) = f 0(x), (4.20)
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where 1 ≤ c < 2. In the Fourier side this equation reads

∂t f̂ (ξ) = |ξ |
1 + ct |ξ | f̂ (ξ),

which can be solved explicitly. Indeed, the solutions are given by

f̂ (ξ) = (1 + ct |ξ |) 1
c f̂0(ξ). (4.21)

From (4.21) we see that the solution to (4.20) loses 1
c -derivatives with respect

to the initial data. Equation (1.11) has a similar behaviour to (4.20) but there is
no chance to find explicit solutions. Instead of that wewill use energy estimates
in the same way that the following energy estimate for (4.20). We compute

the time derivative of
∣∣∣
∣∣∣ f̂ (ξ)
1+t |ξ |

∣∣∣
∣∣∣
L2

to obtain that

1

2
∂t

∣∣∣∣∣
∣∣∣∣∣

f̂ (ξ)

1 + t |ξ |

∣∣∣∣∣
∣∣∣∣∣
2

L2

≤
∫

R

f̂ (ξ)

(
− |ξ |

(1 + t |ξ |)2 + ∂t f̂ (ξ)

1 + t |ξ |

)
dξ

=
∫

R

∣∣∣∣∣
f̂

1 + t |ξ |

∣∣∣∣∣
2

|ξ |
( −1

1 + t |ξ | + 1

1 + ct |ξ |
)
dξ,

and since 1
1+t |ξ | ≥ 1

1+ct |ξ | ≥ 0 for c ≥ 1 we can conclude that

1

2
∂t

∣∣∣∣∣
∣∣∣∣∣

f̂ (ξ)

1 + t |ξ |

∣∣∣∣∣
∣∣∣∣∣
2

L2

≤ 0,

and therefore
∣∣∣
∣∣∣ f̂ (ξ)
1+t |ξ |

∣∣∣
∣∣∣
L2

≤ || f0||L2 .

The same analysis for ∂2x f yields the estimate

1

2
∂t

∣∣∣∣∣
∣∣∣∣∣
∂̂2x f (ξ)

1 + t |ξ |

∣∣∣∣∣
∣∣∣∣∣
2

L2

≤ 0. (4.22)

In addition, it is easy to see that ∂t || f ||2L2 ≤ 1
2 || f ||2L2 + 1

2 ||∂x f ||2L2 . Further-

more, |̂∂x f (ξ)| is less or equal than | f̂ (ξ)| for |ξ | ≤ 1 and is less or equal than
2

1+t |ξ | |̂∂2x f (ξ)| for |ξ | > 1 and t < 1 (this is just because 1 ≤ 2|ξ |
1+t |ξ | in this
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range). Therefore, we have that ||∂x f ||2L2 ≤ || f ||2
L2 + 4

∣∣∣∣
∣∣∣∣ ̂∂2 f
1+t |ξ |

∣∣∣∣
∣∣∣∣
2

L2
and

1

2
∂t || f ||2L2 ≤ || f ||2L2 + 2

∣∣∣∣∣
∣∣∣∣∣

∂̂2 f

1 + t |ξ |

∣∣∣∣∣
∣∣∣∣∣
2

L2

,

which allows us to get, together with (4.22) that

|| f ||2L2 +
∣∣∣∣∣
∣∣∣∣∣

∂̂2x f

1 + t |ξ |

∣∣∣∣∣
∣∣∣∣∣
2

L2

≤ (|| f0||2L2 + ||∂2x f0||2L2

)
eCt ,

for any t ≤ 1. Thus, for t ≤ 1, we also control || f ||H1 , by losing one derivative
with respect to the initial data, i.e.

|| f (t)||H1 ≤ C || f0||H2, for t < 1.

This strategy is flexible enough to be applied to the full system (1.11) with
the price of paying more derivatives with respect to the initial data than we
actually need. In (1.11) we are dealing with pseudodifferential operators but
arguing semiclassically we will show that they behave as Fourier multipliers
up to factors of t . This is the content of the following sections.

4.2.1 First manipulations of the equation and of the mean velocityMu

In order to obtain energy estimates for the equation (1.11) we need to take 5
derivatives with respect to x in both sides of the equation. We describe ∂5xMu
as the sum of a main term and lower order terms. Since we expect to lose one
derivative respect to initial data (e.g by the toy model) we will work with the
Fourier multipliers,

D̂−1 f (ξ) = 1

1 + 2π i tξ
f̂ (ξ), D̂ f (ξ) = (1 + 2π i tξ) f̂ (ξ).

Notice that when t = 0, D−1 equals to the identity and therefore it is not
smoothing.

Definition 4.7 We say that a function G(x, t) : R × [0, T ] is a lower order
term, l.o.t., if and only if

||D−1G||L2 ≤ C
(
|| f ||H4 + ||∂5xD−1 f ||L2

)
,

for some smooth function C : R → R.
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Lemma 4.8 Let f ∈ H6 and ε = c(x, t)t with c as in the statement of
Theorem rm 4.1 and 0 < t < 1. Then

∂5xMu = −
∫

R

�∂6x f (x, x − y)K (x, x − y)dy + l.o.t.,

where

K (x, x − y) = 1

4π

∫ 1

−1

∫ 1

−1

y

y2 + (� f (x, x − y) + ε(x)λ − ε(x − y)λ′)2
dλdλ′,

and l.o.t. defined as in 4.7.

Proof The proof is left to “Appendix A.1”. ��
We still need to simplify the kernel K (x, y) (which depends on f in a

nonlinear way). Actually we can linearize it as the next lemma shows.

Lemma 4.9 Let f ∈ H6 and ε = c(x, t)t with c as in the statement of
Theorem 4.1 and 0 < t < 1. Then

∂5xMu =
∫

R

∂6x f (x − y)Kc(x),∂x c(x)
∂x f (x)

(y)dy + a(x, t)∂6x f (x) + l.o.t,

where

K c(x),∂x c(x)
∂x f (x)

(y)

= 1

4π

∫ 1

−1

∫ 1

−1

∫
R

y

y2 + (∂x f (x)y + ∂xc(x)t yλ′ + c(x)t (λ − λ′))2
dλdλ′,

a(x, t) ≡ −P.V .

∫
R

K (x, y)dy,

and l.o.t. defined as in 4.7.

Proof This lemma is proven in “Appendix A.2”. ��
We will deal with the equation mostly on the Fourier side. In order to show
the relation with the toy model in the following lemma we present the Fourier
transform of

Kc,c′
A (y) = 1

4π

∫ 1

−1

∫ 1

−1

y

y2 + (Ay + c′t yλ′ + ct (λ − λ′))2
dλdλ′. (4.23)

Notice that to compute the Fourier transform A, c, c′ are taking as constants.
In the application they are functions of x but not of y.
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Lemma 4.10 Let K c,c′
A as in (4.23)with A, c′ ∈ R and c > 0. Then its Fourier

transform is given by

K̂ c,c′
A (ξ) = −isign(ξ)

4 · 2πct |ξ |
∫ 1

−1

(
2 − e2πσλ′ct |ξ |(−1−λ′)(Aλ′ isign(ξ)+1)

−e2πσλ′ |ξ |(1−λ′)(Aλ′ isign(ξ)−1)
)
dλ′. (4.24)

where σλ′ = 1
1+A2

λ′
and Aλ′ = A + c′tλ′.

In addition

K̂ c,0
A (ξ) = −isign(ξ)

2πct |ξ |
(
1 + 1

4πct |ξ |
(
e−4πσct |ξ | (cos(4πσ Act |ξ |)

−A sin(4πσ Act |ξ |)) − 1)) ,

where σ = 1
1+A2 .

Proof This lemma will be proven in “Appendix B.1, lemma B.1”. ��
In spite of its behaviour, a careful Taylor expansion K̂ c,0

A at zero (using
σ = 1

1+A2 ) shows that it is bounded. On the other hand for large semiclassical

frequencies t |ξ | behaves like −isign(ξ)
2πct |ξ | . These two observations suggested the

toy model from the beginning of the section.
The next lemma describes more precisely the growth of K̂ c,0

A . It is dramatic
to frame ourselves in the realm of positive symbols and to guess the correct
energy estimate

Lemma 4.11 The following estimate holds for every (x, ξ, t) ∈ R × R × R
+

and 1 ≤ c ≤ 2,

∣∣∣2π isign(ξ)K̂ c,0
A (ξ)

∣∣∣ ≤
1
c

1 + t |ξ | + 2|A| + 5 + 8π

1 + (t |ξ |)2 .

Proof The proof of this lemma can be found in “Appendix B.1, lemma B.3” ��
4.2.2 A priori energy estimates for the quasi-linear equation

Lemma 4.9 says that if f is an smooth solution of (1.11) and we call F(x, t) =
∂5x f (x, t) and A(x, t) = ∂x f (x, t) it holds that

∂t F(x, t) =
∫

R

Kc(x),∂x c(x)
A(x) (x − y)∂x F(y)dy + a(x)∂x F(x) + G(x),

(4.25)
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where G(x) is a l.o.t . Let us write the equation closer to the spirit of pseudod-
ifferential operators. We will define the operation

Kc(x),∂x c(x)
A(x) ⊗ f (x) =

∫
R

Kc(x),∂x c(x)
A(x) (x − y) f (y)dy,

in such a way that the equation (4.25) reads as

∂t F = Kc(x),∂x c(x)
A(x) ⊗ ∂x F(x) + a(x)∂x F(x) + G(x). (4.26)

Notice that the pseudoconvolution ⊗ can be alternatively expressed as,

K ⊗ f (x) = Op(p) f (x),

where K is the Schwarz kernel of the symbol p, i.e.,

p(x, ξ) =
∫

R

e−2π iyξ K (x, y)dy.

Definition of SymbolsTheupper bound in lemma4.11motivates the definition
of the following pseudodifferential operator J −1. First we define the function
ϕ : R

+ → R
+ in the following way

ϕ(τ) = 1

1 + τ
+ B

1 + τ 2
, (4.27)

where B is a constant that just depends on || f0||H5 , f0 being the initial data in
(1.11). It suffices to take

B = 200|| f0||H5 + 200. (4.28)

Next we define the multiplier j−1(ξ) = e− ∫ t |ξ |
0 ϕ(τ)dτ which satisfies

∂t j
−1 = −|ξ |ϕ(t |ξ |) j−1. (4.29)

Hence, the correspondingoperatorJ −1 of degree−1 is givenby the expression

Ĵ −1 f (ξ) = e− ∫ t |ξ |
0 ϕ(τ)dτ f̂ (ξ).

Herewe remark that since 1
C < j−1(t |ξ |)(1+t |ξ |) ≤ C ,J −1 is comparable

to D−1 meaning that

1

C
||J −1 f ||L2→L2 ≤ ||D−1 f ||L2→L2 ≤ C ||J −1 f ||L2→L2,
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where C just depend on B.
If we read the right hand side of (4.26) as an operator on F , the main part

is described by the symbol

pmain(x, ξ) ≡ 2π iξ K̂ c,c′
A .

This is a bounded symbol in ξ and x , but its L∞ norm blows as t−1. This is
problematic to get an uniform in time apriori estimate. Next we explain the
strategy to deal with this issue. Firstly, we introduce a suitable decomposition
of pmain . The symbols p, pb, pgood and p+ will be given by the expressions

p = 2π iξ K̂ c,0
A , pb = 2π iξ (pmain − p) ,

pgood = 1

|ξ | p − ϕ(t |ξ |), and p+ = −(1 + |ξ |)pgood. (4.30)

We point out that all of these symbols are even in ξ and therefore the
corresponding pseudodifferential operator are real valued.

Secondly, we observe that Op(pb) is a bounded operator from L2 to L2.
Then we observe that the growth of p is controlled by |ξ |ϕ. Thus, the Gårding
inequality, Lemma 5.5, allows to control the norm of Op(p+) from L2 to L2

in terms of the norms p
1
2+. As expected, these norms blow up as t− 1

2 . This is
integrable near 0 and suffices to our purposes.

Hence we are led to study the problem

∂t f = Op(|ξ |ϕ(|tξ |)) f. (4.31)

Integrating the equation (4.31), as in the toy problem, leads to ∂t‖J −1F(·, t)‖2
= 0. Thus in the fully nonlinear case there is the hope of the existence of energy
estimate for that quantity. Indeed, this is the case, but a fewmanipulations show
that then correlation between J and pmain needs to be estimated as well.
Happily even if pmain blows like t−1, this is compensated by the t provided
by our non smooth semiclassical estimates. Therefore the worst behaviour is

given by p
1
2+. The following apriori estimate shows how these heuristics are

made rigorous.

Theorem 4.12 Let f be a smooth solution to the equation (1.11) and c as in
the statement of Theorem 4.1. Set F = ∂5x f . Let 0 < Tp < 1 small enough such
that 2||∂x f (·, t)||L∞ + 5 + 8π ≤ B

2 , with B as in (4.28). Then, if t ∈ [0, Tp],
it holds that

∂t‖J −1F(·, t)‖L2 ≤ 1√
t
M
(|| f0||H5,

(|| f ||L2 + ‖J −1F‖L2
))

,
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where M is an smooth function M : R
+ × R

+ → R
+, positive and finite.

Proof Firstly, we recall that by lemma 4.9

∂t F = Op(pmain)F + a∂x F + G,

where G stands for l.o.t. in the sense of definition 4.7. Secondly, it is crucial
for our estimates that if t < Tp, lemma 4.11 and the definition of ϕ implies
that p+ > 0, (p+ is even for all times).

Next we compute the time derivative, and express it in terms of the symbols,

1

2
∂t

∫
R

|J −1F(x)|2dx =
∫

R

J −1F∂tJ −1Fdx

=
∫

R

J −1F
∫

R

e2π i xξ ∂t
(
j−1(t |ξ |)F̂(ξ)

)
dξdx

=
∫

R

J −1F
∫

R

e2π i xξ j−1(t |ξ |) (−|ξ |ϕ(t |ξ |) + ∂̂t F
)
dξdx

=
∫

R

J −1F
∫

R

e2π i xξ j−1(t |ξ |)
(
−|ξ |ϕ(t |ξ |)F̂(ξ)

+F[Op(pmain)F](ξ)) dξdx

+
∫

R

J −1F
∫

R

e2π i xξ j−1(t |ξ |)â∂x F(ξ)dξdx

+
∫

R

J −1FJ −1Gdx .

We denote g = J −1F and we will split the term
∫

R

e2π i xξ j−1(t |ξ |)
(
−|ξ |ϕ(t |ξ |)F̂(ξ) + F[Op(pmain)F](ξ)

)
dξdx

in the following way
∫

R

e2π i xξ
(−|ξ |ϕ(t |ξ |)ĝ(ξ) + F[J −1 ◦ Op(pmain) ◦ J g](ξ)

)
dξ

=
∫

R

e2π i xξ (−|ξ |ϕ(t |ξ |) + pmain(x, ξ)) ĝ(ξ)dξ

+ J −1 ◦ Op(pmain) ◦ J g − Op(pmain)g

= −Op(p+)g + Op(ϕ − 1

|ξ | p)g + Op(pb)g + J −1[Op(pmain), J ]g,

where we have just added and subtracted Op(pmain)g in the first equality and
in the second one we have used the definition of pmain and p+.
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Then,

∂t‖g‖2L2 ≤ −
∫

R

gOp(p+)gdx
︸ ︷︷ ︸

I+(g)

+
∫

R

gOp(ϕ − 1

|ξ | p)gdx︸ ︷︷ ︸
Igood (g)

+
∫

R

gOp(pb)gdx
︸ ︷︷ ︸

Ib(g)

+
∫

R

gJ −1[Op(pmain), J ]gdx
︸ ︷︷ ︸

Icom

+
∫

R

gJ −1(a∂x F)dx
︸ ︷︷ ︸

Itransport (g)

+
∫

R

gJ −1Gdx
︸ ︷︷ ︸

Il.o.t.(g)

.

We recall that the symbols ||| f ||| and 〈A〉 will denote some polynomial
function evaluated in || f ||H4 and ||A||H3 respectively (A = ∂x f ). Thus since
‖J −1F‖L2 is comparable with ‖D−1F‖L2 it holds that, for finite time,

||| f ||| + 〈A〉 ≤ C
(‖ f ‖L2 + ‖J −1F‖L2

)
, (4.32)

where the right hand side of (4.32) C means a smooth function evaluated at
‖ f ‖L2 + ‖J −1F‖L2 .

We can estimate this collection of terms in the following way:

1. |I+(g)| ≤ 〈A〉√
t
‖g‖2

L2 . In order to get this inequality we first use lemma 5.5.
After that we use that

‖p
1
2+‖1,1

∣∣∣∣∣
∣∣∣∣∣Op

(
p

1
2+
)skew

∣∣∣∣∣
∣∣∣∣∣
L2→L2

+
∣∣∣∣
∣∣∣∣C
(
p

1
2+, p

1
2+
)∣∣∣∣
∣∣∣∣
L2→L2

≤ 〈A〉t− 1
2 .

(See Sect. 1.1 for the notation). The estimate for ‖p
1
2+‖1,1 ≤ 〈A〉t− 1

2 can be

found in lemmaB.6. The bound for

∣∣∣∣∣
∣∣∣∣∣Op

(
p

1
2+
)skew

∣∣∣∣∣
∣∣∣∣∣
L2→L2

≤ 〈A〉 is a con-

sequence of theorem 5.3 and lemma B.6. The bound for

∣∣∣∣
∣∣∣∣C
(
p

1
2+, p

1
2+
)∣∣∣∣
∣∣∣∣ ≤

〈A〉t− 1
2 follows from theorem 5.2 and lemma B.6.

2. |Igood(g)| + |Ib(g)| ≤ 〈A〉||g||2
L2 by the estimates ||Op(pb)||L2→L2 +

||Op(pgood)||L2→L2 ≤ 〈A〉. These estimates are a consequence of theorem
5.1 and lemma B.5.

3. |ICom(g)| ≤ 〈A〉‖g‖2
L2 follows from ||J −1[Op(pmain),J ]||L2→L2 ≤

〈A〉. This estimate is a consequence of theorem 5.13 and lemma B.5.
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4. |Itransport (g)| ≤ ||| f |||‖g‖2
L2 by lemma 5.11 and the estimate for the norm

of a, given in lemma A.13.
5. |Il.o.t (g)| ≤ ‖J −1G‖L2‖g‖L2 ≤ C‖D−1G‖L2‖g‖L2 ≤ C(||| f |||)‖g‖L2

where C is the function appearing in the definition of lower order terms,
definition 4.7.

Finally notice that in the definition ofϕ, appears a constant B which depends
on f0. Thus as long as 0 < t < Tp, since p+ > 0, the claim follows where the
function M is built from the function C and a high power of ‖ f ‖L2 + ‖g‖L2 .

��
Proposition 4.13 Let f be and smooth solution of equation (1.11), with f0 ∈
H5 and c as in Theorem 4.1. Then there is T = T (‖ f0‖H5) such that

sup
0<t<T

|| f ||H4 ≤ sup
0<t<T

(|| f ||L2 + 2||D−1F ||L2
) ≤ P

(|| f0||H5

)

where P is some bounded function.

Proof Let u(t) = (|| f ||L2 + ||D−1∂5x f ||L2)2. From theorem 4.12 and since
∂t || f ||L2 is easy to control by a function of u(t), we have that, for t ∈ [0, Tp],

∂t u(t)

M(|| f0||H5, u(t))
≤ 1√

t
. (4.33)

Since M is positive, the function U : R
+ → R defined by U (x) =∫ x

0
1

M(|| f 0||H5 ,y)
dy is increasing. Let us integrate both sides of (4.33) respect

to time. Since |U (u(0))| ≤ U (|| f 0||H5), it follows that

U (u(t)) ≤ U (|| f 0||H5) + 2
√
t .

SinceU (x) is increasing, we see than for small time depending on f0 the initial
data all smooth solutions satisfy that

u(t) ≤ P(‖ f0‖H5).

In particular since the time of positiveness Tp depends on |∂x f |, this yields a
lower bound Tp which depends on || f0||H5 but not on f . Thus we can select
T , in such a way that we achieve the conclusion of proposition (4.13). ��
4.2.3 The regularized system and local existence

In order to be able to apply a Picard’s theoremwewill regularize the system by
using two parameters, δ and κ .With the parameter δwe regularize the transport
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term and with the parameter κ the nonlocal operator. We will consider the
following equation for f κ, δ(x, t),

∂t f
κ, δ(x) = −φδ ∗

∫ ∞

−∞
(
φδ ∗ ∂x f

κ, δ(x) − φδ ∗ ∂y f
κ, δ(y)

)
Kεκ (x, y)dy

− 1

4π

∫
R

∫ 1

−1

∫ 1

−1

∂xεκ(x)λ − ∂xεκ(x − y)λ′

y2 + (� f (x, x − y) + εκ(x)λ − εκ(x − y)λ′)2
dλdλ′dy

︸ ︷︷ ︸
Gκ [ f κ, δ]

+ κφδ ∗ ∂2xφδ ∗ f κ,δ (4.34)

f κ, δ(x, 0) = f 0(x),

(4.35)

where κ, δ > 0, φ is a positive and smooth function with mean equal to one
and φδ = 1

δ
φ
( x

δ

)
and Kκ(x, y) is like K (x, y) in lemma 4.8 but replacing

ε(x, t) = c(x, t)t by εκ(x, t) = c(x, t)(t + κ) (also ε(y, t) = c(y, t)t pass to
c(y, t)(t + κ)).

The Picard’s theorem that we will apply is the following

Theorem 4.14 (Picard) Let B be a Banach space and O ⊂ B an open set.
Let us consider the equation

dX(t)

dt
=F[X, t] (4.36)

X(0) =X0, (4.37)

where

F[·, t] : O → B for |t | < η, for some η > 0

is continuous in a neighbourhood of X0 ⊂ O. Suppose further that, F is
Lipschitz in O, i.e.,

||F[X1, t] − F[X2, t]||B ≤ C(O)||X1 − X2||B, for |t | ≤ η,

and F[X0, t] is a continuous function of t for t ≤ |η| with values on B,
with ||F[X0, t]||B ≤ C. Then, there exist T > 0 and a unique X(t) ∈
C1([−T, T ], O) solving (4.36), (4.37).

By applying theorem 4.14 the following result holds:
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Theorem 4.15 Let f 0 ∈ H4(R), c as in Theorem 4.1 and δ, κ > 0. Then
there exist T κ,δ > 0 (depending on κ and δ) and

f κ, δ ∈ C((−T κ,δ, T κ,δ); H4(R))

such that f κ, δ(x, t)) solves the system (4.34). In addition, this solution can be
extended if its H4-norm is bounded.

Proof In order to apply theorem 4.14 we choose B = H4,

OM = { f ∈ H4 : || f ||H4 < M},
X0 = f 0 (we take M > || f 0||Hk ) and

F = −φδ ∗
∫ ∞

−∞
(
φδ ∗ ∂x f

κ, δ(x) − φδ ∗ ∂y f
κ, δ(y)

)
Kεκ (x, y)dy

+Gκ [ f κ,δ] + κφδ ∗ ∂2xφδ ∗ f κ,δ(x).

Because the properties of the mollifiers φδ and that the kernel Kεκ is not
singular in OM (εκ > κ

2 , for T
κ,δ < κ

2 in this open set), the hypothesis of
theorem 4.14 can be verified. In addition we notice that F is also Lipschitz on
t thus the solutions can be extended on time as long as its H4-norm is bounded.
This is rather standard and we will omit the details. ��
Proof of Thorem 4.1 Once, we dispose of the solutions f δ,κ we need to obtain
estimates independent of δ and κ , for positive time, in order to be able extend
these solutions to an interval [0, T ), with T independent of δ and κ . Then, we
are entitled to take the limit. After taking four derivatives in F , we find that

∂4x F =φδ ∗
(
a(x)φδ ∗ ∂5x f (x)

)
+ φδ ∗

∫ ∞

−∞
Kεκ (x, y)φδ ∗ ∂5x f (y)dy

+ κφδ ∗ ∂2xφδ ∗ f κ,δ + l.o.t.,

where

a(x) = −P.V .

∫ ∞

−∞
Kεκ (x, y)dy,

and l.o.t means terms bounded in H4 independently of δ.
Therefore, the main terms in the derivative 1

2∂t || f ||H4 are

∫ ∞

−∞
φδ ∗

(
a(x)φδ ∗ ∂5x f (x)

)
∂4x f (x)dx
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and
∫ ∞

−∞
φδ ∗

∫ ∞

−∞
Kεk (x, y)φδ ∗ ∂5x f (y) dy ∂4x f (x)dx .

The first term can be bounded in the following way
∣∣∣∣
∫ ∞

−∞
φδ ∗

(
a(x)φδ ∗ ∂5x f (x)

)
∂4x f (x)dx

∣∣∣∣
=
∣∣∣∣
∫ ∞

−∞
a(x)φδ ∗ ∂5x f (x)φδ ∗ ∂4x f (x)dx

∣∣∣∣
≤ C ||∂xa||L∞||∂4x f ||2L2 .

And in order to bound the second one we just notice that Kεκ is not singular
because εκ = c(x, t)(t + κ) and then we can integrate by parts in order to
gain a derivative in x . Thus, the uniform estimate in δ are easy to get (the term
coming from the Laplacian operator is treated in the usual way). The main
difficulty to prove theorem 4.1 is then performing estimates uniform in κ for
the equation

∂t f
κ(x)

= − 1

4π

∫
R

∫ 1

−1

∫ 1

−1

∂x f κ(x) − ∂x f κ(x − y) + ∂xεκ(x)λ − ∂xεκ(x − y)λ′

y2 + (� f (x, x − y) + εκ(x)λ − εκ(x − y)λ′)2

dλdλ′dy + κ∂2x f
κ . (4.38)

We notice that because of the effect of the term κ∂2x f
κ the solution to (4.38)

are actually smooth, and then, we have enough regularity to apply our energy
estimates to obtain estimates uniform in κ as in the proof of Proposition 4.13.
The only difference is that for the regularized system there is the new term
coming from the Laplacian. Again, this term is harmless as it is a differential
and positive operator. Then we have a control of the H4−norm of the solution
uniform in κ . This information is enough to pass to the limit and to find a
classical solution for (1.11).

Finally we show the continuity on time of the H4-norm of the solution then
C1−continuity in H3 follows directly from the equation. For t > 0 the proof
follows standard techniques. The continuity at t = 0 is more delicate. This fact
follows from the following argument. We can write the difference ∂4x f − ∂4x f0
as

∂4x f − ∂4x f0 = D−1D (∂4x f − ∂4x f0
) = D−1(∂4x f − ∂4x f0)

+ tD−1(�∂4x f − �∂4x f0).
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The second term is controlled by the energy estimate.
In addition,

D−1∂4x f0 = ∂4x f0 − tD−1�∂4x f0.

Thus, the only problematic term is

∂̂4x f

1 + t |ξ | − ∂̂4x f0 =
∫ t

0
∂s

∂̂4x f (s)

1 + s|ξ |ds =
∫ t

0

(
− |ξ |̂∂4x f (s)

(1 + s|ξ |)2 + ∂t ∂̂4x f (s)

1 + s|ξ |

)
ds.

but ∂t∂
4
x f is of the order of ∂5x f by the equation. Then taking the L2 norm,

again the energy estimate implies that

||∂4x f − ∂4x f0||L2 ≤ Ct,

for small t . ��

5 Semiclassical analysis with limited smoothness on the symbols

In the following section we develop what we call our semiclassical estimates.
As a matter of fact, our symbols are a bit more general than those of the type
p(x, tξ) but our results certainly apply to those. We have divided the section
into a first part where we state result for general symbols and a second one
where we deal with the ones appearing in the current paper.

5.1 General symbols

5.1.1 Results

We start by recalling the basic boundedness of pseudodifferential operators
with optimal smoothness as proved in [12,15,27]. We state it exactly as [27,
Theorem 1.3] as we will elaborate on ideas from this work.

Theorem 5.1 (I. L. Hwang) Let p ∈ S1,1 and f ∈ L2. Then

‖Op(p) f ‖L2 ≤ C ||p||1,1‖ f ‖L2 .

The semiclassical type estimates we need are related to the results for
symbols with a limited degree of smoothness studied in [31] and [44] via
paradifferential calculus. However the estimates in these two papers are not
enough for our purposes.

Our first result is on the correlation of symbols (see Sect. 1.1).

123



288 A. Castro et al.

Theorem 5.2 Let p1, p2 ∈ S1,1 ∩ S2,0 and f ∈ L2.
Then,

‖C(p1, p2) f ‖L2 ≤ |||C(p1, p2)||| ‖ f ‖L2, (5.1)

where

|||C(p1, p2)||| ≤ C
(‖p1‖1,1‖∂ξ p2‖1,0 + (‖p2‖1,1 + ‖p2‖2,0

) ‖∂ξ p1‖1,0
)
.

Theorem 5.3 Let p ∈ S1,1 be even in the ξ variable. Let 0 < ε < 1 such that

sup
ξ

(‖∂x∂ξ p(·, ξ)‖H−ε + ‖∂x∂ξ p(·, ξ)‖H1+ε

)
< ∞.

Let f ∈ L2.
Then

‖Op(p)skew f ‖L2 ≤ |||Op(p)skew||| ‖ f ‖L2,

where

|||Op(p)skew||| ≤ C sup
ξ

(‖∂x∂ξ p(·, ξ)‖Ḣ−ε + ‖∂x∂ξ p(·, ξ)‖H1+ε

)
.

Remark 5.4 Notice that since in both theorems, in the estimate of the norms
there is multiplying factors with ∂ξ in the case of semiclassical symbols
p(x, tξ) our theorems yield a gain a factor of t . The whole semiclassical
calculus e.g [45] or [38] for more general symbols can be replicated for non
smooth symbols. A prime example is the coercivity of elliptic semiclassical
symbols for t small, which is a corollary of our results.

Positive symbols have additional properties. The next Gårding inequality

gives control of them at the price of bounding the derivatives of p
1
2+.

Lemma 5.5 (Gårding inequality) Let p+ be an even in the ξ variable positive

symbol such that p
1
2+ ∈ S1,1 ∩ S2,0 and

sup
ξ

(
||∂x∂ξ p

1
2+||H−ε + ||∂x∂ξ p

1
2+||H1+ε

)
< ∞,

for some ε > 0, and f ∈ L2. Then

−
∫

R

f Op(p+) f dx ≤ C(|||C(p
1
2+, p

1
2+)||| + ‖p

1
2+‖1,1|||Op(p

1
2+)skew|||)‖ f ‖2L2 .
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5.1.2 Proofs

Our proof are inspired in the ideas of Hwang to prove theorem 5.1. As usual, in
the proofs we obtain the estimates applying the various operators to functions
in the Schwarz class, where we can use the explicitly representation of the
operators as integrals against the symbols, and achieve L2 results by density.
Moreover this fact makes it enough to obtain the correct bounds considering
smooth and fast decaying approximations of the symbols. We will provide
some of the details in the proof of Theorem 5.3, where these arguments are
slightly more involved, and skip them in the rest of the theorems. Several
integration by parts in combination with the basic properties of the exponential
and Plancherel identity are used recurrently. Hence we have isolated them in
some preliminary lemmas.

The first lemma is an extension of [27, Lemma 3.1].

Lemma 5.6 Let f ∈ L2. We define, for (y, η) ∈ R
2,

h f (y, η) =
∫

R

e2π iηz
f (z)

1 + 2π i(y − z)
dz.

Then for k ∈ 0 ∪ N,

‖∂ky h‖L2(R2) ≤ C‖ f ‖L2 .

Let p(y, η) ∈ Sk,0 and set � f (y, η) = p(y, η)h f (y, η). Then,

‖∂ky� f ‖L2(R2) ≤ ‖p‖k,0‖ f ‖L2 .

Proof [27, Lemma 3.1], which follows by Plancherel and a change of variable,
says that if g, f ∈ L2

h f,g(y, η) =
∫

R

e2π iηz f (z)g(y − z)dz

satisfies that

‖h‖L2(R2) ≤ C‖g‖L2‖ f ‖L2 .

Notice next that for k ∈ 0 ∪ N the function g = ∂kx (
1

1+2π i x ) ∈ L2. Hence we
can differentiate h f (y, η) under the integral sign and the claim follows from
[27, Lemma 3.1].

The second estimation follows from the first, the assumptions and the prod-
uct rule. ��
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Lemma 5.7 Let r, g ∈ L2 and F ∈ L2(R2) and define, for (x, ξ) ∈ R
2,

G(x, ξ) =
∫

R

∫
R

e2π i(η−ξ)y F(y, η)r(η − ξ)g(x − y)dydη. (5.2)

Then,

‖G(x, ξ)‖L2(R2) ≤ ‖r‖L2‖g‖L2‖F(y, η)‖L2(R2).

Proof We first take Fourier transform in x and do a change of variables to
obtain

Ĝ(α, ξ) =
∫

R

e−2π i xαG(x, ξ)dx

=
∫

R

∫
R

e2π i(η−ξ−α)y F(y, η)r(η − ξ)ĝ(α)dydη.

Next, Cauchy-Schwarz inequality respect toη yields the pointwise estimate,

|Ĝ(α, ξ)|2 ≤ ‖r‖2L2 |ĝ(α)|2
∫

R

∣∣∣∣
∫

R

e2π i(η−ξ−α)y F(y, η)dy

∣∣∣∣
2

dη. (5.3)

Wewill need that Plancherel identity, with variables y, ξ , yields the equality

∫
R

∣∣∣∣
∫

R

e2π i(η−ξ−α)y F(y, η)dy

∣∣∣∣
2

dξ =
∫

R

|F(y, η)|2dy. (5.4)

Thus, we first apply (5.3) and Plancherel again to bound the L2 norm of G,

‖G‖2L2(R2)
≤ ‖r‖2L2

∫
R

|ĝ(α)|2
∫

R

∣∣∣∣
∫

R

e2π i(η−ξ−α)y F(y, η)dy

∣∣∣∣
2

dξdα,

and we conclude by integrating first in ξ and then applying (5.4). With a final
use of Plancherel the lemma is proved. ��
Lemma 5.8 Let g ∈ L2, �, ∂y� ∈ L2(R2) and define, for (x, ξ) ∈ R

2,

G(x, ξ) =
∫

R2
e2π iy(η−ξ)�(η, y)g(x − y)dηdy. (5.5)

Then,

‖G‖L2(R2) ≤ ‖g‖H1‖(1 − ∂y)�‖L2(R2).
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Proof Let r(x) = 1
1+2π i x . We will use that

e2π i(η−ξ)y = 1

1 + 2π i(η − ξ)
(1 + ∂y)e

2π i(η−ξ). (5.6)

We insert (5.6) into (5.5) and integrate by parts respect to y to obtain that,

G(x, ξ) =
∫

R2
e2π iy(η−ξ)r(η − ξ)(1 − ∂y)

(
�(η, y)g(x − y))dηdy

=
∫

R2
e2π iy(η−ξ)(1 − ∂y)(�(η, y))r(η − ξ)g(x − y)dηdy

+
∫

e2π iy(η−ξ)r(η − ξ)�(η, y)g2(x − y)dηdy,

where g2(x) = 1+∂x g. Thus both terms are as required in (5.2) and the claim
follows from a direct application of lemma (5.7) ��
Lemma 5.9 Let Q(x, ξ), ∂x Q(x, ξ) ∈ L2(R2). We define, for a.e.x ∈ R,

AQ(x) =
∫

R

e2π iξ x Q(x, ξ)dξ.

Then,

‖AQ‖L2 ≤ ‖(1 − ∂x )Q‖L2(R2).

Proof Let v ∈ C∞
0 (R) be a test function. Thenwe estimate ‖AQ‖L2 by duality.

Thus for v ∈ L2, Fourier inversion formula and the definition of AQ imply
that

∫
R

AQ(x)v(x)dx =
∫

R

∫
R

e2π iλx AQ(x)v̂(λ)dλdx

=
∫

R

∫
R

∫
R

e2π i(λ+ξ)x Q(x, ξ)v̂(λ)dλdxdξ.

Now we use (5.6) and integrate by parts in x to get

∫
R

AQ(x)v(x)dx = −
∫

R

∫
R

e2π iξ x(1 − ∂x )Q(x, ξ)hv̂(−λ)(ξ, −x)dxdξ,

by direct application of the definition of hv̂ as defined in lemma 5.6. A direct
application of Cauchy-Schwarz inequality in R

2 and lemma 5.6 finishes the
proof. ��
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In our proof we will use lemma 5.9 for functions defined by integrals, e.g

Q(x, ξ) =
∫

R2
e2π iξ(x−y)+2π iηy Q̃(x, y, ξ, η)dydη,

or

Q(x, ξ) =
∫

R2
e2π iξ(x−y) Q̃(x, y, ξ, η)dydη.

Proof of Theorem 5.2

Proof We start by giving an explicit expression of Op(p1) ◦ Op(p2) f ,

Op(p1) ◦ Op(p2) f =
∫

R3
e2π i(xξ−ξ y+yη) p1(x, ξ)p2(y, η) f̂ (η)dηdydξ.

We bring in p1 p2 by adding and subtracting suitable terms,

p1(x, ξ)p2(y, η) = (p1(x, ξ) − p1(x, η))p2(y, η)

+ p1(x, η)(p2(y, η) − p2(x, η)) + p1(x, η)p2(x, η).

Therefore, we can write

C(p1, p2) f (x)

=
∫

R3
e2π i(xξ−ξ y+yη)(p1(x, ξ) − p1(x, η))p2(y, η) f̂ (η)dηdydξ

+
∫

R3
e2π i(xξ−ξ y+yη) p1(x, η)(p2(y, η) − p2(x, η)) f̂ (η)dηdydξ.

Notice that the second term is zero (e.g use that as distributions,∫
R
e2π i(x−y)ξdξ = δ(x − y)).
Thus,

C(p1, p2) f (x) =
∫

R3
e2π i(xξ−ξ y+yη)(p1(x, ξ)

− p1(x, η))p2(y, η) f̂ (η)dηdydξ,

and we aim to bound it in L2. We express it directly as an operator on f itself:

C(p1, p2) f (x) =
∫

R4
e2π i(xξ−ξ y+yη−ηz)(p1(x, ξ)

− p1(x, η))p2(y, η) f (z)dzdηdydξ.
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Now the basic formula (like (5.6)),

1

1 + 2π i(y − z)
(1 + ∂η)e

2π i(y−z)η = e2π i(y−z)η,

and an integration by parts in the η variable, yields

C(p1, p2) f (x)

=
∫

R4
e2π i(xξ−ξ y+yη−ηz)(1 − ∂η) {(p1(x, ξ)

−p1(x, η))p2(y, η)} f (z)

1 + 2π i(y − z)
dzdηdydξ

=
∫

R3
e2π i(xξ−ξ y+yη)(1 − ∂η) {(p1(x, ξ)

−p1(x, η))p2(y, η)} h f (y, η)dηdydξ,

where in the last equality we have absorbed the integral respect to z in the
definition of h f (Lemma 5.6). Now we expand the η derivative to express
C(p1, p2) f as a sum of three terms:

=
∫

R3
e2π i(xξ−ξ y+yη) {(p1(x, ξ) − p1(x, η))p2(y, η)} h f (y, η)dηdydξ

−
∫

R3
e2π i(xξ−ξ y+yη) p1(x, ξ)∂η p2(y, η)h f (y, η)dηdydξ

+
∫

R3
e2π i(xξ−ξ y+yη)∂η (p1(x, η)p2(y, η)) h f (y, η)dηdydξ

≡ C(p1, p2) f1 + C(p1, p2) f2 + C(p1, p2) f3.

Notice that in fact, if we use again that
∫
e2π iξ(x−y)dξ = δ(x − y), we

obtain that

C(p1, p2) f3 =
∫

R

e2π iηx∂η (p1(x, η))p2(x, η)) h f (x, η)dη.

We treat each of the above terms individually.

1. Estimation for C(p1, p2) f1 :

In order to estimate C(p1, p2) f1 we integrate again by parts to obtain

C(p1, p2) f1 =
∫

R3
e2π i(xξ−ξ y+yη)(1 − ∂ξ ) {(p1(x, ξ) − p1(x, η))p2(y, η)}
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× h f (y, η)

(1 + 2π i(x − y))
dzdηdydξ

=
∫

R3
e2π i(xξ−ξ y+yη)(p1(x, ξ)

− p1(x, η))p2(y, η)
h f (η, y))

(1 + 2π i(x − y))
dzdηdydξ

−
∫

R3
e2π i(xξ−ξ y+yη)∂ξ p1(x, ξ)p2(y, η)

h f (η, y)

(1 + 2π i(x − y))
dzdηdydξ

≡ C(p1, p2) f11 + C(p1, p2) f12.

(a) Estimation for C(p1, p2) f11 :

We start by we integrate by parts with respect to y to bring a factor 1
η−ξ

and thus a difference quotient for p1;

C(p1, p2) f11(x) =
∫

R3

−1

2π i(ξ − η)
∂ye

2π i(xξ−ξ y+yη)

(p1(x, ξ) − p1(x, η)) � f (y, η)

1 + 2π i(x − y)
dydηdξ

=
∫

R3
e2π i(xξ−ξ y+yη)Q(ξ, η, x)∂y

(
� f (y, η)

1 + 2π i(x − y)

)
dηdydξ,

where

� f (y, η) ≡ p2(η, y)h f (y, η), Q(ξ, η, x) ≡ (p1(x, ξ) − p1(x, η))

2π i(ξ − η)
.

The mean value theorem respect to ξ , tells us that

‖Q|‖L∞(R3) ≤ ‖∂ξ p1‖L∞(R2) ≤ ‖∂ξ p1‖1,0
||∂x Q||L∞(R3) ≤ ‖∂2ξ x p1‖L∞(R2) ≤ ‖∂ξ p1‖1,0.

(5.7)

Now a direct application of lemma 5.9 yields that

‖C(p1, p2) f11‖L2 ≤ ‖G(x, ξ)‖L2(R2)

where,

G(ξ ; x) =
∫

R2
e2π i(η−ξ)y(1 − ∂x )

(
Q(ξ, η, x)∂y

(
� f (y, η)

1 + 2π i(x − y)

))
dηdy.
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Here we can not directly apply lemma 5.7 as Q depends on η but we
follow a similar strategy. We integrate by parts in y to obtain that

G(ξ ; x) =
∫

R2
e2π i(η−ξ)y 1

1 + 2π i(ξ − η)
(1 − ∂x )

(
Q(ξ, η, x)(1 − ∂y)∂y

(
� f (y, η)

1 + 2π i(x − y)

))
dηdy.

Let us write G(ξ ; x) in the following way

G(ξ ; x) =
∫

R

1

1 + 2π i(η − ξ)
Q�(ξ, η, x)dη,

with

Q�(ξ, η, x) =
∫

R

e2π i(η−ξ)y(1 − ∂x )

(
Q(ξ, η, x)(1 − ∂y)∂y

(
� f (y, η)

1 + 2π i(x − y)

))
dy,

By Cauchy-Schwarz

|G(ξ ; x)|2 ≤ C
∫

R

|Q�(ξ, η, x)|2dη,

and therefore,

||G||2L2(R2)
≤ C

∫
R3

|Q�(ξ, η, x)|2dηdξdx .

Our next task is to deal with Q�(ξ, η, x).We first expand the derivatives
in x . Notice that

(1 − ∂x )

(
Q(ξ, η, x)(1 − ∂y)∂y

(
� f (η, y)

1 + 2π i(x − y)

))

= Q(ξ, η, x)(1 − ∂y)∂y

(
� f (y, η)(1 − ∂x )

(
1

1 + 2π i(x − y)

))

− ∂x Q(ξ, η, x)(1 − ∂y)∂y

(
� f (y, η)

1 + 2π i(x − y)

)
.

Then
∫

R3
|Q�(ξ, η, x)|2dηdξdx
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=
∫

R3

∣∣∣∣
∫

R

e2π i(η−ξ)y(1 − ∂x )

(
Q(ξ, η, x)(1 − ∂y)∂y

(
� f (η, y)

1 + 2π i(x − y)

))
dy

∣∣∣∣
2

dξdηdx

≤ ||Q||L∞(R3)∫
R3

∣∣∣∣
∫

R

e2π i(η−ξ)y(1 − ∂y)∂y

(
� f (y, η)(1 − ∂x )

(
1

1 + 2π i(x − y)

))
dy

∣∣∣∣
2

dηdξdx

+ ||∂x Q||L∞(R3)

∫
R3

∣∣∣∣
∫

R

e2π i(η−ξ)y(1 − ∂y)∂y

(
� f (y, η)

1 + 2π i(x − y)

)
dy

∣∣∣∣
2

dηdξdx

≡ ||Q||L∞(R3) I1 + ||∂x Q||L∞(R3) I2.

Now we expand the derivatives in y. We obtain that both I1, I2 are a
sum of terms of the type

Ii =
∫

R3

∣∣∣∣
∫

R

e2π i(η−ξ)y∂
j
y� f (y, η)gi (x − y)dy

∣∣∣∣
2

dηdξdx,

with gi ∈ L2 and j = 0, 1, 2. We proceed as in the proof of lemma 5.7.
We first do Plancherel in the x variable and then Fubini to integrate first
respect to ξ and conclude by Plancherel again with real variable y and
Fourier variable ξ .

Ii =
∫

R3
|ĝi )(α)|2

∣∣∣∣
∫

R

e2π i(η−ξ)y∂
j
y� f (y, η)dy

∣∣∣∣
2

dξdαdη

= ‖gi‖L2

∫
|
∫

e2π iξ y∂ j
y� f (y, η)dy|2dξdη

= ‖gi‖L2

∫
|∂ j

y� f (y, η)|2dydη ≤ C‖p2‖22,0‖ f ‖2L2,

where the last inequality follows from a direct use of of lemma 5.6 and
the uniform bound for ‖gi‖L2 . Combined with (5.7) yields the desired
bound,

‖G‖L2(R2) ≤ C‖p2‖2,0‖∂ξ p1‖1,0‖ f ‖L2 . (5.8)
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(b) Estimation for C(p1, p2) f12 :

The estimate goes in a similar way to the previous one. However we
already have a derivative of the symbol, so the first integration by part
is not necessary. By applying lemma 5.9 it holds that,

‖C(p1, p2) f12‖L2 ≤ ‖G(x, ξ)‖L2(R2).

where

G(x, ξ) =
∫
R3

e2π iy(η−ξ)) p2(y, η)h f (η, y)(1 − ∂x )
∂ξ p1(x, ξ)

1 + 2π i(x − y)
dηdy.

Thus, we have to control terms of the form

Gi (ξ, x) = qi (x, ξ)

∫
R2

e2π i(η−ξ)y� f (y, η)gi (x − y)dηdy,

where either qi (x, ξ) = ∂ξ p1, or qi = ∂x (∂ξ p1), and thus
‖qi‖L∞(R2) ≤ ‖∂ξ p1‖1,0, ‖gi‖L2 is uniformly bounded and � f =
p2h f .

Hence a direct application of lemma 5.8 yields that

‖Gi (x, ξ)‖L2(R2) ≤ ‖∂ξ p1‖1,0‖(1 − ∂y)� f (η, y)‖L2(R2).

Now � f is exactly as in the lemma 5.6.Thus

‖C(p1, p2) f12‖L2 ≤ C‖∂ξ p1‖1,0‖p2‖2,0‖ f ‖L2 . (5.9)

Thisfinishes the estimate forC(p1, p2) f12 andhence that ofC(p1, p2) f1.
2. Estimation of C(p1, p2) f2 :

In order to bound C(p1, p2) f2 in L2 we start by integrating by parts in ξ ,

C(p1, p2) f2 =
∫

R3
e2π i(xξ−ξ y+yη) p1(x, ξ)∂η p2(y, η)h f (y, η)dydηdξ

=
∫

R3
e2π i(xξ−ξ y+yη)(1 − ∂ξ )p1(x, ξ)∂η p2(y, η)

h f (y, η)

1 + 2π i(x − y)
dydηdξ.

By lemma 5.9 we are led to estimate in L2(R2) the function

G(x, ξ) =
∫
R2

e2π iy(η−ξ))∂η p2(y, η)h f (y, η)(1 − ∂x )
(1 − ∂ξ )p1(x, ξ)

1 + 2π i(x − y)

)
dydη.
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Expanding the derivatives in x and ξ we discover thatG is a a sum of terms
of the type

Gi (x, ξ) = qi (x, ξ)

∫
R2

e2π iy(η−ξ))� f (η, y)gi (x − y)dydη.

Here gi ∈ L2 uniformly, � f = ∂η p2h f and qi = ∂
α,β
x,ξ p1 with α, β = 0, 1.

Thuswe have the uniform bound ‖qi‖L∞ ≤ ‖p1‖1,1 aswell. Hence, a direct
application of lemma 5.8 yields the bound

‖Gi (x, ξ)‖L2(R2 ≤ ‖p1‖1,1‖(1 − ∂y)� f ‖L2(R2).

Therefore lemma 5.6 (with k = 0, 1) applied to ∂η p2 yields

‖C(p1, p2) f2‖L2 ≤ C ||p1‖1,1‖∂ξ p2‖1,0‖ f ‖L2 . (5.10)

3. Estimation for C(p1, p2) f3 :

We denote M(x, η) = ∂η(p1(x, η)p2(x, η)) and M̃(x, η) = (1 −
∂x )M(x, η). Notice that, by expanding the various derivatives, it holds that

‖M̃‖L∞(R2) ≤ ‖∂ξ p1‖1,0‖p2‖1,1 + ‖∂ξ p2‖1,0‖p1‖1,1. (5.11)

Then

C(p1, p2) f3(x) =
∫

R

e2π iηx M(x, η)h f (x, η)dη.

Lemmas 5.9 and 5.6 gives

‖C(p1, p2) f3‖L2 ≤ ‖M̃h f ‖L2(R2) ≤ ‖M̃‖L∞‖ f ‖L2

≤ C(‖∂ξ p1‖1,0‖p2‖1,1 + ‖∂ξ p2‖1,0‖p1‖1,1)‖ f ‖L2 .
(5.12)

Finally, by combining the bounds (5.8),(5.9),(5.10), (5.12) we have
achieved the conclusion of Theorem 5.2 with norm,

|||C(p1, p2)||| = C(2‖∂ξ p1‖1,0‖p2‖2,0 + ‖p1‖1,1‖∂ξ p2‖1,0
+ ‖∂ξ p1‖1,0‖p2‖1,1 + ‖∂ξ p2‖1,0‖p1‖1,1). (5.13)

Thus, |||C(p1, p2)||| ≤ C
(
‖p1‖1,1‖∂ξ p2‖1,0 +

(
‖p2‖1,1 + ‖p2‖2,0

)

‖∂ξ p1‖1,0
)
as claimed.

��
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Proof of theorem 5.3

Proof Since p(x, ξ) = p(x, −ξ) for f, g ∈ S, the Schwarz class, it holds
that∫

R

Op(p)skew f (x)g(x)dx =
∫

R2
e2π i(x−y)ξ (p(x, ξ) − p(y, ξ)) f (y)dydξdx .

We consider the following smooth and fastly decaying approximation of the
symbol,

pδ,κ (x, ξ) = e−δξ2e−κx2ϕκ ∗ p(x, ξ) ∈ Hk

for every k ∈ 0 ∪ N. Here ϕk is an standard approximation of the identity in
the x variable. Since f,g are in the Schwarz class, by Dominated Convergence
Theorem we have that,

lim
κ↘0,δ↘0

∫
R

Op(pδ,κ )skew f (x)g(x)dx=
∫

R

Op(p)skew f (x)g(x)dx . (5.14)

Therefore, we can integrate by parts in ξ to obtain,

Op(pδ,κ )skew f (x) =
∫

R2
e2π i(x−y)ξ ∂ξ (pδ,κ (x, ξ) − pδ,κ (y, ξ))

2π i(x − y)
f (y)dydξ

=
∫

R2
e2π i(x−y)ξ Q(x, y, ξ) f (y)dydξ,

where

Q(x, y, ξ) = ∂ξ (pδ,κ (x, ξ) − pδ,κ (y, ξ))

2π i(x − y)
.

Thus, by Lemma 5.9,

‖Op(pδ,κ )skew f ‖L2 ≤ ‖G‖L2(R2), (5.15)

where

G(x, ξ) =
∫

R

e−2π iyξ (1 − ∂x )Q(x, y, ξ) f (y)dy.

Now for 2π iqδ,κ(x, ξ) = ∂ξ pδ,κ (x, ξ), the basic properties of the Fourier
transform yield that,

Q(x, y, ξ) = qδ,κ (x, ξ) − qδ,κ (y, ξ)

(x − y)
=
∫

∂̂xqδ,κ (η, ξ)
ei2πηx − ei2πηy

2π iη(x − y)
dη.
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Thus, if we declare ψ(η, x − y) = (1 − ∂x )
ei2πη(x−y)−1
2π iη(x−y) , it holds that

G(x, ξ) =
∫

R2
e2π i(−yξ+ηy)ψ(η, x − y)∂̂xqδ,κ (η, ξ) f (y)dydη.

Next, we compute the Fourier transform of G(x, ξ) respect to x , denoted
by Ĝ(α, ξ), and change variables in x − y. We obtain the formula,

Ĝ(α, ξ) =
∫

R2
eiy(η−ξ−α)ψ̂(η, α)∂̂xqδ,κ (η, ξ) f (y)dydη

=
∫

R

b(η)

b(η)
ψ̂(η, α)∂̂xqδ,κ (η, ξ) f̂ (−η + ξ + α)dη,

where b(η) is an auxiliary function, which will be specified later, introduced
to bargain differentiability into integrability, Now Cauchy Schwarz yields the
pointwise estimate,

|Ĝ(α, ξ)| ≤
(∫

R

|b(η)∂̂xqδ,κ (η, ξ)|2dη

) 1
2

(∫
R

1

b(η)
|ψ̂(η, α)|2| f̂ (η − ξ − α)|2dη

) 1
2

.

Thus, for C(p) = supξ

∫
R

|b(η)∂̂xqδ,κ (η, ξ)|2dη, it holds that

‖G‖2L2(R2)
≤ C(p)

∫
R3

1

|b(η)|2 |ψ̂(η, α)|2| f̂ (η − ξ − α)|2dηdξdα

= C(p)‖ f ‖2L2

∫
R2

1

|b(η)|2 |ψ̂(η, α)|2dηdα

= C(p)‖ f ‖2L2

∫
R2

1

|b(η)|2 |ψ(x, η)|2dηdx .

Now, since
∫

R

∣∣∣ eix−1
x

∣∣∣2 +
∣∣∣∂x
(
eix−1

x

)∣∣∣2 dx ≤ C , it holds that

∫
R

|ψ(x, η)|2dx ≤ C
(|η| + |η|−1) .

Therefore, by Fubini,

∫
R2

1

|b(η)|2 |ψ2(x, η)|2dηdx ≤ C
∫

R

|η| + |η|−1

|b(η)|2 dη.
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This last expression, is integrable for every 0 < ε < 1 if we take b(η) =
η−εχ[0,1](|η|) + (1 − χ[0,1].(|η|))η1+ε.

Hence inserting the bound of ‖G‖L2 in (5.15) we obtain that

‖Op(pδ,κ )skew f ‖L2 ≤ C‖ f ‖L2,

with C = C(pδ,κ ) = supξ

∫
R

|b(η) ̂∂xqδ,κ (η, ξ)|2dη. Given our choice of
b(η), it holds that,

C(p) ≤ sup
ξ

(‖∂xqδ,κ‖H1+ε + ‖∂xqδ,κ‖Ḣ−ε

)

= sup
ξ

(‖∂2xξ pδ,κ‖H1+ε + ‖∂2xξ pδ,κ‖Ḣ−ε

)
.

However, setting pκ = e−κx2ϕk ∗ p, it holds that

sup
ξ

‖∂xqδ,κ‖Ḣ−ε = sup
ξ

(
2δ|ξ |e−δξ2‖∂x pκ‖Ḣ−ε

)
+ sup

ξ

(
e−δξ2‖∂x∂ξ p

κ‖Ḣ−ε

)
.

Notice that pκ ∈ L2 implies that ∂x pκ ∈ Ḣ−ε. Hence we can take first the
limit δ ↘ 0 to get rid of the term ‖∂x pκ‖. Then, continuity of the Sobolev
norms respect to mollifiers allows us to let κ go to 0, to obtain the bound
supξ ‖∂x∂ξ p‖Ḣ−ε

Arguing exactly in the samewaywith the Ḣ1+ε− term, in combinationwith
(5.14) yields the desired,

‖Op(p)skew‖L2→L2 ≤ sup
ξ

(‖∂x∂ξ p‖Ḣ−ε + ‖∂x∂ξ p‖H1+ε

)
.

The proof is finished. ��
Proof of lemma 5.5

Proof

−
∫

R

fOp(p+) f dx = −
∫

R

fOp(p
1
2+ p

1
2+) f dx

= −
∫

R

fOp(p
1
2+) ◦ Op(p

1
2+) f dx −

∫
R

f C(p
1
2+, p

1
2+) f dx .

Cauchy-Schwarz and Theorem 5.2 imply that

|
∫

R

f C(p
1
2+, p

1
2+) f dx | ≤ |||C(p

1
2+, p

1
2+)|||‖ f ‖2L2 . (5.16)
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For the first, notice that
∫

Op(p
1
2+) fOp(p

1
2+) f dx =

∫
|Op(p

1
2+) f |2dx > 0.

Thus,

−
∫

fOp(p
1
2+) ◦ Op(p

1
2+) f dx = −

∫
Op(p

1
2+)T fOp(p

1
2+) f dx

≤ −
∫

Op(p
1
2+)T fOp(p

1
2+) f dx

+
∫

(Op(p
1
2+) fOp(p

1
2+) f dx

=
∫

[Op(p
1
2+)T f − Op(p

1
2+) f ]Op(p

1
2+) f dx

≤ ‖Op(p
1
2+)( f )‖L2‖Op(p

1
2+)skew f ‖L2 .

The claim follows from theorem 5.3 and theorem 5.1. ��

5.2 Lemmas for the apriori estimate

5.2.1 Transport term

Recall that D is the operator associated with the symbol d(ξ) = 1 + 2π i t |ξ |
and J is associated with j (ξ) = e

∫ t |ξ |
0 ϕ(τ)dτ f̂ (ξ) where ϕ was defined in

(4.27).
In order to deal with the transport term we need the following lemma which

states that J and D have a similar behaviour.

Lemma 5.10 There exists φ such that

j (t |ξ |) = 1 + t |ξ |φ(t |ξ |)
satisfying

||φ(t |ξ |)||L∞ ≤ C, |||ξ |∂ξ (φ(t |ξ |)) ||L∞ ≤ C,

where C does not depend on t .

Proof Notice that by the fundamental theorem of Calculus

j (t |ξ |) = 1 + t |ξ |
∫ 1

0
ϕ(st |ξ |)e

∫ st |ξ |
0 ϕ(τ)dτds.
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Thus,

φ(t |ξ |) =
∫ 1

0
ϕ(st |ξ |)e

∫ st |ξ |
0 ϕ(τ)dτds.

With these representations the claimed properties follow readily. ��
Lemma 5.11 Let ∂xa ∈ H1+ε(R) for ε > 0 and J −1( f ) ∈ L2. Then,

|
∫

J −1 f J −1(a fx )dx | ≤ C ||∂xa||H1+ε‖J −1( f )‖2L2 . (5.17)

Proof In order to bring in a suitable commutator we first notice that

∫
R

J −1( f )a∂xJ −1( f )dx = 1

2

∫
R

∫
a∂x |J −1( f )|2dx (5.18)

and thus, integrating by parts

|
∫

R

J −1 f a∂xJ −1 f dx | ≤ ‖ax‖L∞‖J −1( f )‖2L2 (5.19)

and since ‖ax‖L∞ ≤ ‖ax‖H1+ε , we conclude that
∫ J −1 f a∂xJ −1 f dx is a

harmless term. Thus we can subtract it to the transport term and we are led to
bound the commutator,

[J −1, a][ fx ].

Let g = J −1 f so that f = J g. Let ψ = φ(t |ξ |)|ξ |. Then

a fx = aJ gx = agx + t�(agx ) + t[a, �](gx ) = J (agx ) + t[a, �](gx ),
[J −1, a] fx = agx − J −1(a fx) = tJ −1[a, �](gx ).

We iterate this trick once more. Let us denote G = tJ −1gx , which has
L2-norm bounded by ||g||L2 . Then

[J −1, a] fx = [a, �]tgx = [a, �]G + t�([a, �])(G) + t[[a, �], �](G)

= J ([a, �]G) + t[[a, �], �](G)

and therefore

tJ −1[a, �](gx ) = [a, �]G + tJ −1[[a, �], �](G).
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Now notice that

[[a, �], �] = a(�)2 − 2�(a�) + (�)2a

and then

[̂a, �]G(ξ) =
∫

â(η)Ĝ(ξ − η) (|ξ |φ(t |ξ |) − |ξ − η|φ(t |ξ − η|)) dη

̂[[a, �], �]G(ξ) =
∫

â(η)Ĝ(ξ − η) (|ξ |φ(t |ξ |) − |ξ − η|φ(t |ξ − η|))2 dη.

Thus by the mean value theorem and lemma 5.10

||ξ |φ(t |ξ |) − |ξ − η|φ(t |ξ − η|)| ≤ C |η|,
Thus

‖[a, �]G‖L2 + ‖[[a, �], �]G‖L2 ≤
∫

R

|
∫

R

|Ĝ(ξ − η)|(|∂̂xa(η)|
+|∂̂xxa(η)|)(1 + |η|)ε(1 + |η|)−εdη|2dξ

and we conclude by Hölder inequality in the η variable (Recall that‖G‖L2 ≤
‖g‖L2). ��
5.2.2 Commutator between Op(p) and J

Similar computations to the above allow us to interchange J and Op(p). In
order to simplify the proof we will first relate D with Op(p). Then we use
our commutator estimation theorem 5.2 to transfer the result to J to finish the
estimate.

Lemma 5.12 Let t∂x p ∈ S1,1 and g ∈ L2. Then,

‖D−1Op(p)Dg − Op(p)g‖L2 ≤ ‖t∂x p‖1,1‖g‖L2 .

Proof By the definition of D,

Op(p)(Dg) = Op(p)(g) + tOp(p)(∂x g)

= D(Op(p)(g)) + t[∂x ,Op(p)](g)
= D(Op(p)(g)) + tOp(∂x p)(g).

Hence

D−1Op(p)Dg − Op(p)g = D−1(Op(t∂x p)(g)).

123



Mixing solutions for the Muskat problem 305

Thus, taking L2 norms and using theorem 5.1 for the symbol t∂x p, and that
d−1 is bounded in L∞ the claim is straightforward.

��
Theorem 5.13 Suppose that t∂x p, tp ∈ S1,1 and ∂ξ p ∈ S1,0. Let g ∈ L2,
then

‖J −1Op(p)J (g) − Op(p)g‖L2 ≤ C(p)‖g‖L2,

where C(p) = C(‖t∂x p‖1,1 + ‖tp‖1,1 + ‖∂ξ p‖1,0).
Proof Define g̃ = D−1J g and observe that ‖g̃‖L2 ≤ ‖g‖L2 . We write
Op(p)g = Op(p)J −1Dg̃,Op(p)J g = OpDg̃ and sum and subtract
J −1DOp(p)g̃. Then

J −1Op(p)J g − Op(p)(g) = J −1D
(
D−1Op(p)Dg̃ − Op(p)g̃

)
+ [Op(p),J −1D]g̃.

In order to deal with the first term readily notice that J −1D has a bounded
Fourier multiplier and lemma 5.12 implies that

‖D−1Op(p)Dg̃ − Op(p)g̃‖L2 ≤ ‖t∂x p‖1,1‖g‖L2 . (5.20)

For the second, notice that sinceJ −1D has a symbolm = j−1d independent
of x then Op(p) ◦ J −1D = Op (p · m). Thus

[J −1D, Op(p)] = C(m, p).

Therefore we can estimate ||C(m, p)||L2→L2 by theorem 5.2,

|||C(m, p)||| ≤ C
(‖m‖0,1‖∂ξ p‖1,0 + (‖p‖1,1 + ‖p‖2,0

) ‖∂ξm‖0,0
)
.

Lemma 5.10 implies that m ∈ L∞ and ‖∂ξm‖L∞ ≤ Ct . Therefore, we
achieve the conclusion of the lemma by the assumptions on p.

��

6 Mixing solutions in the stable regime

As discussed in the introduction our work was motivated by [41] where it is
shown that in the case of horizontal interface there exists subsolutions in the
unstable regime but it seems imposible to find them in the stable regime and
perhaps they do not exist. Surprisingly, if the flat interface is not horizontal
then one can construct mixing solutions with a straight initial interface in both
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the fully stable and the fully unstable regime. The proof runs along similar
steps than the one in [41]. Even if we will need the machinery expose in Sect.
3 to carry out this construction this section only expect to be a remark.

Let’s consider the change of variables x(s, λ) = st + nλ, with t = (μ1,μ2)√
μ2
1+μ2

2

,

μ1 ≥ 0 and μ2 ∈ R. We declare ε = ct , with c > 0 and �mix = {x ∈ R
2 :

x = x(s, λ), s ∈ R, −ε(t) < λ < ε(t)}. We define ρ, u and m through

ρ� = −sign(σ )λ
ε
, u� = − μ2√

μ2
1+μ2

2

ρ�t and m� = ρ�u� − γ �
(
1 − (ρ�

)2)n −
1
2

(
1 − (ρ�

)2)
(0, 1), with γ � ∈ R. Here σ > 0 yields an initial data in the

stable regime and σ < 0 an initial data in the unstable regime. Then

∇ f (x(s, λ)) =t∂s f � + n∂λ f
�

∇ · f(x(s, λ)) =t · ∂sf� + n · ∂λf�.

Using this formulas is easy to check that ∇ · u = 0, ∇⊥ · u = −∂x1ρ and
u · ∇ρ = 0. In addition, the equation ∂tρ + ∇ · m = 0 transforms to γ � =
1
2

(
μ1√

μ2
1+μ2

2

+ sign(σ )c

)

If σ < 0 then we obtain from (4.5) the constrain 0 < c < 1 + μ1√
μ2
1+μ2

2

. If

σ > 0 we obtain 0 < c < 1 − μ1√
μ2
1+μ2

2

, what give rise to a mixing solution in

the stable regime but if the interface is flat and horizontal.
At this point, it is convenient to notice that the case non horizontal and flat

interface is only stable in the sense of the Muskat curve-evolution equation. In
the hydrodynamical context this configuration is unstable even if the lighter
fluid is above, because it leads to an instantaneous velocity shear layer (i.e.
discontinuity in the velocity). The only hydrodynamically stable configuration
seems to be the flat horizontal interface with the lighter fluid above.
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A Appendix

In this “Appendix” we will prove lemma 4.8, lemma 4.9 and the required
estimates for the velocity u and for the coefficient of the transport term a.
Throughout the whole section, there are integrals which are interpreted in the
principal value sense, both at 0 and ∞. Since, this is standard and harmless in
our context, we will not make it explicit.

A.1 Lower order terms. Proof of lemma 4.8

We can write

Mu = − 1

4π

∫ 1

−1

∫ 1

−1

∫
R

kθ (x, y)∂xθdydλ′dλ.

The main part of the proof of the lemma will be showing that

∣∣∣∣
∣∣∣∣D−1

(
∂5xMu + 1

4π

∫ 1

−1

∫ 1

−1

∫
R

kθ (·, y)∂6x θdydλ′dλ

)∣∣∣∣
∣∣∣∣
L2

≤ C
(
|| f ||H4, ||D−1∂5x f ||L2

)
. (A.1)

In order to accomplish this, we will need to compute the derivatives of the
function

kθ (x, y) = y

y2 + θ2
,

where

θ = � f (x, x − y) + ε(x)λ − ε(x − y)λ′ = � f + �ελ′ + ε(x)(λ − λ′).

In addition we introduce

h = f (x) + λε(x) and h′ = f (x) + λ′ε(x), γ = ε(x)(λ − λ′).

Thus,

θ = �h′ + ε(x)(λ − λ′) = �h′ + γ,

where we remark that γ depends on x and on t although we will not make this
dependence explicit. We recall that c(x, t) is as in the statement of theorem
4.1. Since ε(x, t) = c(x, t)t , with 0 < c < c(x, t) and ||c(x, t)||C5 ≤ C ,

‖γ ‖C5 ≤ Ct |λ − λ′|. (A.2)
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A big part of our proof will be based on comparing θ with its linearized
version

θlin = ∂xh
′(x)y + γ.

Remark A.1 Notice that in order to obtain selfadjoint pseudodifferential oper-
ators we could deal as well with

θW
lin = ∂xh

′( x + y

2
)y + γ,

Here theW in the exponent stands for theWeyl quantization.We do not pursue
this issue here.

To make the notation even more compact we will write� f = � f (x, x− y)
and ∂kx f (x) = ∂kx f . Then we have

∂xkθ (x, y) = −2
yθ∂xθ

(y2 + θ2)2
≡ −2k11θ (x, y),

∂2x kθ (x, y) = −2
y((∂xθ)2 + (θ)∂2x θ)

(y2 + (θ)2)2
+ 8

y((θ)∂xθ)2

(y2 + (θ)2)3

≡ c21k
21
θ (x, y) + c22k

22
θ (x, y),

∂3x kθ (x, y) = −2y
3∂xθ∂2x θ + (θ)∂3x θ

(y2 + (θ)2)2
+ 24y

(θ)∂xθ((∂xθ)2 + (θ)∂2x θ)

(y2 + (θ)2)3

− 48y
(θ)3(∂xθ)3

(y2 + (θ)2)4

≡ c31k
31
θ (x, y) + c32k

32
θ (x, y) + c33k

33
θ (x, y), (A.3)

∂4x kθ (x, y) = 384y
(θ)4(∂xθ)4

(y2 + (θ)2)5
− 288y

(θ)2(∂xθ)2((∂xθ)2 + (θ)∂2x θ)

(y2 + (θ)2)4

+ y
24(∂xθ)4 + 144(θ)(∂xθ)2∂2x θ + 24(θ)2(∂2x θ)2

(y2 + (θ)2)3

+ y
32(θ)2∂xθ∂3x θ

(y2 + (θ)2)3

− y
6(∂2x θ)2 + 8∂xθ∂3x θ − 2(θ)∂4x θ)

(y2 + (θ)2)2
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≡ c41k
41
θ (x, y) + c42k

42
θ (x, y) + c43k

43
θ (x, y) + c44k

44
θ (x, y),

∂5x kθ (x, y) = −3840y
(θ)5(∂xθ)5

(y2 + (θ)2)6
+ 3840y

(θ)3(∂xθ)5 + (θ)4(∂xθ)3∂2x θ

(y2 + (θ)2)5

+ y
240(∂xθ)3∂2x θ + 360(θ)∂xθ(∂2x θ)2 + 240(θ)(∂xθ)2∂3x θ

(y2 + (θ)2)4

+ y
80(θ)2∂2x θ∂3x θ + 40(θ)2∂xθ∂4x θ

(y2 + (θ)2)3

− y
10∂xθ∂4x θ + 2(θ)∂5x θ

(y2 + (θ)2)2
≡ c51k

51
θ (x, y)

+ c52k
52
θ (x, y) + c53k

53
θ (x, y)

+ c54k
54
θ (x, y) + c55k

55
θ (x, y),

where we notice that the numbers ci j i, j = 1, 2, 3, 4, 5 are harmless coeffi-
cients. Then, by applying Minkowski inequality, we need to bound

5∑
j=1

∣∣∣∣
∣∣∣∣D−1

∫
R

∂
j
x kθ (·, y)∂5− j

x ∂xθdy

∣∣∣∣
∣∣∣∣
L2

=
5∑
j=1

j∑
i=1

∣∣∣∣
∣∣∣∣D−1

∫
R

k ji
θ (·, y)∂5− j

x ∂xθdy

∣∣∣∣
∣∣∣∣
L2

independently of t , λ and λ′. The highest order terms in this sum are given by

D−1
∫

R

k11θ (x, y)∂5x θdy and D−1
∫

R

k55θ (x, y)∂xθdy. (A.4)

Since there are 5 derivatives of the function θ in both terms we have to use the
operator D−1. Since D−1 is bounded in L2 it holds that

5∑
j=2

min( j, 4)∑
i=1

∣∣∣∣
∣∣∣∣D−1

∫
R

k ji
θ (·, y)∂5− j

x ∂xθdy

∣∣∣∣
∣∣∣∣
L2

≤
5∑
j=2

min( j, 4)∑
i=1

∣∣∣∣
∣∣∣∣
∫

R

k ji
θ (·, y)∂5− j

x ∂xθdy

∣∣∣∣
∣∣∣∣
L2

, (A.5)

which make the computation easy. We first deal with the sum (A.5) and finally
with (A.4), which are somewhat more delicate.

We will use the following convection. We will write:
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1. � meaning “is bounded in absolute value by”.
2. f (x) ∼ g(x) if || f − g||L2 ≤ 〈A〉.
3. We will denote by k ji (x) the integral

∫
R

k ji
θ (x, y)∂6− j

x θdy.

4. Ck+α will be a constant depending on || f ||Ck+α , with k an integer and
0 ≤ α < 1

2 . Ck+α(x) will be a function whose L∞−norm is bounded by a
constant depending on || f ||Ck+α .

5. Given an integral
∫
R
f (x, y)dywewill estimate separately,

∫
|y|>1 f (x, y)dy

its in−part and
∫
|y|<1 f (x, y)dy its out−part. Several terms k ji (x), with

i and j integers, will arise in the computations above. In these terms there
always will be an integration of the form

kij (x) =
∫

R

· · · dy.

We will call k ji
in(x) and k ji j out(x) to its in−part and to its out−part

respectively.
6. For any f , we will write �t |λ−λ′| f ≡ � f (x, x − |t (λ − λ′)|y).
7. We always assume that ε < 1.
8. In every integral we take a principal value.

A.1.1 Preliminary lemmas

The proof is rather long and will be armed by the lemmas below. They could
be ordered as follows.

i) Estimates of pointwise of the kernel. Lemmas A.2, A.3 and A.4 estimate
operators with non singular terms.

ii) Comparison between the kernels depending θ and those depending on θlin.

Lemmas A.5 and A.6.
iii) Lemmas on kernels depending on θ, θlin .

The proof of iii) either use i) to show that the kernels are not singular or rely
on properties of the Hilbert transform.

The first two lemmas are pointwise properties of the functions involved.
The proofs follows from the mean value theorem.

Lemma A.2 There exists a constant 1 < CA < ∞ depending only on the
L∞-norm of the ∂xh′(x) such that

1

(y ± σh(x)Ah(x)c(x))2 + c(x)2σ(x)2
≤ CA(y)
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≡
{
CA |y| ≤ CA
CA
y2

|y| > CA
∀x ∈ R

Here Ah(x) = ∂xh′(x) and σh(x) = 1
1+Ah(x)2

.

Proof Along this proof CA denotes a constant bigger that 1 and depending
only in ||Ah||L∞ . Firstly we notice that

1

(y ± σh(x)Ah(x)c(x))2 + c2σ 2

≤ 1

(y ± σh(x)Ah(x)c(x))2 + (infx∈R c(x)σh(x))2
,

where

inf
x∈R

σh(x) = 1

1 + ||Ah||2L∞
≡ σin f .

Fixed x , the function 1
(y±σ(x)A(x)c(x))2+(σin f )

2 is a translation of the func-

tion 1
y2+(σinf )2

. This is bounded by 1
(σin f )

2 and decay like CA
y2
. But −CA ≤

σh(x)Ah(x)c(x) ≤ CA. Then the conclusion of the lemma follows easily. ��
The following lemma will allow us to show that numerators of various kernels
are in fact bounded for |y| sufficiently small.

Lemma A.3 There exists a constant cA which depends on || f ||C1 + ||ε||C1

and on c such that for |y| < cA the following inequality holds:

|c(x, t)| −
∣∣∣∣ �t |λ−λ′|h
t |λ − λ′|y y

∣∣∣∣ ≥ c

2

|c(x, t)| − |∂xh′(x)y| ≥ c

2
.

Proof By the mean value theorem,

∣∣∣∣� f (x, x − t |λ − λ′|y) + �ε(x, x − t |λ|y)
t |λ − λ′|y

∣∣∣∣ ≤ || f ||C1 + ||ε||C1

thus the claim follows. ��
For the reiterative use we state that L1 kernels gives us good bounds.
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Lemma A.4 Consider a kernel Jλ(x, y) satisfying |Jλ(x, y)| ≤ j (y) ∈
L1(R), for all x ∈ R and λ ∈ [−1, 1]. Then, the the integral

Iλ(x) =
∫

R

Jλ(x, y) f (x − λy)dy

is bounded in L2 as ||Iλ||L2 ≤ C(|| j ||L1)|| f ||L2 .

Proof Again the proof is straightforward by using Minkowski inequality. ��
The next two lemmas allow us to compare θ with θlin = ∂xh′y + γ in

various expressions. We start with a pointwise bound.

Lemma A.5 The following bound holds for every y ∈ R.

1(
y2 + θ2

)a − 1(
y2 + θ2lin

)a

� C2

2(a−1)∑
l=−1

|y|2a−l |γ |l+1(
y2 + θ)2

)a (
y2 + θ2lin

)a

for a ≥ 2.

Proof We just write that

1(
y2 + (θ)2

)a − 1(
y2 + θ2lin

)a

=
(
y2 + θ2lin

)a − (y2 + (θ)2
)a

(
y2 + (θ)2

)a (
y2 + θ2lin

)a

and, since, ca − ba = (c − b)
∑a

l=1 c
a−lbl−1 for c, b ∈ R, we have that

(
y2 + θ2lin

)a − (y2 + (θ)2
)a

= (θ2lin − (θ)2
) a∑
l=1

(
y2 + θ2lin

)a−l (
y2 + θ2

)l−1
.

Next we introduce the expansions

(
θ2lin − (θ)2

) = (∂xh′y − �h′) (∂xh′y + �h′ + 2γ
)

� C2|y|2 (|y| + |γ |) ,
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Here, we have used that since h ∈ H4 , we have uniform L∞ bound of
∂xh′, ∂2x h′ and thus its uniform Lipschitz continuity. Next, since

(
y2 + θ2lin

)a−l =
a−l∑
i=0

c(i, a − l)y2(a−l−i)(θlin)
2i

=
a−l,2i∑
i=0,n=0

c(i, a − l)c(n, 2i)y2(a−l)−n(∂xh
′)2i−nγ n

� C1

a−l,2i∑
i=0,n=0

|y|2(a−l)−n|γ |n

and

(
y2 + (θ)2

)l−1

� C1

l−1,2i∑
j=0,m=0

|y|2(l−1)−m |γ |m,

it follows that,

(
y2 + θ2lin

)a − (y2 + (θ)2
)a

� C2|y|2(|y| + |γ |)
a−l,2i∑
i=0,n=0

l−1,2i∑
j=0,m=0

|y|2(a−1)−(n+m)|γ |n+m

� C2|y|2(|y| + |γ |)|y|2(a−1)
2(a−1)∑
l=0

|y|−l |γ |l

= C2|y|2a(|y| + |γ |)
2(a−1)∑
l=0

|y|−l |γ |l

= C2y
2a

⎛
⎝2(a−1)∑

l=0

|y|−l+1|γ |l +
2(a−1)∑
l=0

|y|−l |γ |l+l

⎞
⎠

� C2|y|2a
2(a−1)∑
l=−1

|y|−l |γ |l+1.

From this last inequality is easy to achieve the conclusion of the lemma. ��
Next we show that we can also compare operators depending on θ by those
depending on its linearization θlin .
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Lemma A.6 Let a = 2, 3, 4 or 5 and define

k[g](x) =
∫

|y|<1

(
2a−1∑
i=0

|γ |i |y|2a−1−i

)

×
(

1(
y2 + θ2

)a − 1(
y2 + θ2lin

)a
)
g(x − y)dy.

Then,

‖k[g]‖L2 ≤ 〈A〉||g||L2, ‖k[g]‖L∞ ≤ 〈A〉||g||L∞, ‖k[1]‖L∞ ≤ 〈A〉,

where g ∈ L2 in the first estimate and g ∈ L∞ in the second one.

Proof By lemma A.5 we have that

k(x) �C2

∫
|y|<1

2a−1∑
i=0

|γ |i |y|2a−1−i

×
2(a−1)∑
l=−1

|y|2a−l |γ |l+1

(
y2 + (θ)2

)a (
y2 + θ2lin

)a |g(x − y)|dy

= C2

2(a−1), 2a−1∑
l=−1, i=0

∫
|y|<1

|y|4a−1−(i+l)|γ |i+l+1

(
y2 + (θ)2

)a (
y2 + θ2lin

)a |g(x − y)|dy.

By the upper bound on γ we need to estimate

kl, i (x) =
∫

|y|<1

|y|4a−1−(i+l)|t |λ − λ′||i+l+1

(
y2 + (θ)2

)a (
y2 + θ2lin

)a |g(x − y)|dy.

After the change of variable y′ = y
t |λ−λ′| we have that

kl, i (x) = t |λ − λ′|
∫

|y|< 1
t |λ−λ′ |

|y|4a−1−l−i |g(x − t |λ − λ′|y)|(
y2 +

(
�t |λ−λ′ |h′
t |λ−λ′ |y y + c(x)sign(t (λ − λ′))

)2)a (
y2 + (∂x f y + c(x)sign(t (λ − λ′)))2

)a dy

=
∫

|y|<cA
· · · dy +

∫
cA<|y|< 1

t |λ−λ′ |
· · · dy.

The integrand in kl, i (x) is bounded in |y| < cA by lemma A.3 for every
−1 ≤ l ≤ 2(a−1) and 0 ≤ i ≤ 2a−1. In |y| > cA, the integrand is bounded
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by C |y|−1−i−l for every −1 ≤ l ≤ 2(a − 1) and 0 ≤ i ≤ 2a − 1. Then
Minkowski inequality yields

||kl, i ||L2 ≤ C1||g||L2

(
1 + |γ |

∫
cA≤|y|≤ 1

t |λ−λ′|
|y|−1−i−ldy

)
≤ C1||g||L2

for every −1 ≤ l ≤ 2(a − 1) and 0 ≤ i ≤ 2a − 1. The L∞ bound simply
follows by extracting ‖g‖∞ as a constant. ��

The next lemma gives L2 and L∞ bounds for the various operators. It turns
out that after a change of variable, lemmaA.3 shows that in fact the kernels are
not singular near cero, whereas away from cero direct L∞ bounds are available
for the kernel. This yields direct proofs for L∞ bounds and a further use of
Minkowski inequality yields L2 bound. We state separately the action of the
operator on 1 for later use.

Lemma A.7 Let g ∈ L2.

a) Let a ≥ 2 and k[g](x) be given by

k[g](x) =
2a∑
i=0

∫
|y|<1

|y|2a−i |γ |i(
y2 + θ2

)a |g(x − y)|dy.

Then

‖k[g]‖L2 ≤ 〈A〉||g||L2, ‖k[1]‖L∞ ≤ 〈A〉.

b) Let a = 2, . . . , 10 and k[g] be given by

k[g](x) =
2a−1∑
i=1

∫
|y|<1

|y|2a−1−i |γ |i(
y2 + θ2

)a g(x − y)dy.

Then

‖k[g]‖L2 ≤ 〈A〉||g||L2, ‖k[1]‖L∞ ≤ 〈A〉.

Proof We prove first the L2 bound for a). We notice that, by the upper bound
on γ ,it is enough to estimate

ki (x) =
∫

|y|<1

|y|2a−i |t |λ − λ′||i(
y2 + θ

)a |g(x − y)|dy.

123



316 A. Castro et al.

After the change of variables y′ = y
t |λ−λ′| we have that

ki (x) =
∫
|y|< 1

t |λ−λ′|
t |λ − λ′| |y|2a−i(

y2 +
(

�t |λ−λ′ h′
t |λ−λ′|y y + c(x, t)sign(λ − λ′)

)2)a |g(x − t |λ − λ′|y)|dy

=
∫
|y|<cA

· · · dy +
∫
cA<|y|< 1

t |λ−λ′ |
· · · dy.

For every i = 0, . . . , 2a, in the region |y| < cA we can apply lemma A.3,
obtaining that the kernel is uniformlybounded. In the region cA < |y| < 1

t |λ−λ′|
we can estimate

t |λ − λ′| |y|2a−i(
y2 +

(
�t |λ−λ′|h
t |λ−λ′|y y + c(x, t)sign(λ − λ′)

)2)a

≤ CAt |λ − λ′||y|−i ≤ CAt |λ − λ′|,

for every i = 0, . . . , 2a. Then we can apply Minkowski inequality to prove
the lemma. Indeed,

CAt |λ − λ′|
∣∣∣∣∣
∣∣∣∣∣
∫
cA<|y|< 1

t |λ−λ′|
|g(x − t |λ − λ′|y)|dy

∣∣∣∣∣
∣∣∣∣∣
L2

≤ CAt |λ − λ′|
∫
cA<|y|< 1

t |λ−λ′|
| ∣∣∣∣g(· − t |λ − λ′|y)∣∣∣∣L2 dy

≤ CAt |λ − λ′|||g||L2

∫
cA<|y|< 1

t |λ−λ′|
dy ≤ CA||g||L2 .

The L∞ bound follows in the same way. The case b) is dealt with by the
same change of variables. ��

In the next lemmas the kernel scales as y−1 and thus the estimates are more
delicate. For the outer integral we show that the kernel can be decomposed
as the sum of c(x) 1y and a function which decays as |y|−2. Thus, the Hilbert
transform controls the first and the second is not singular.

Lemma A.8 Let g ∈ L2, a ≥ 2 and

k(x) =
∫

|y|>1

y2a−1(
y2 + θ2lin

)a g(x − y)dy.
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Then,

‖k[g]‖L2 ≤ 〈A〉||g||L2, ‖k[1]‖L∞ ≤ 〈A〉.

Proof Direct computation shows hat

y2a−1(
y2 + θ2lin

)a − 1

(1 + (∂xh′)2)a
1

y
= j (x, y),

where j (x, y) = (1+(∂x h′)2)a y2a−(y2+(∂x h′y+γ )2)a(
y2+θ2lin

)a
(1+(∂x h′)2)2y . Since | j (x, y)| ≤ C |y|−2

the claim for L2 follows from the L2 boundedness of the truncated Hilbert
transform and lemmaA.4. In order to estimate k[1] notice that ∫|y|>1

1
y dy = 0.

��
The proof of the next lemma ismore subtle as it uses an explicit computation

of the Hilbert transform of our kernel.

Lemma A.9 Let g ∈ L2 and a = 2, 3, 4 or 5. Then, the integral

I [g](x) =
∫

R

y2a−1(
y2 + θ2lin

)a g(x − y)dy,

satisfies

‖I [g]‖L2 ≤ 〈A〉||g||L2, ‖I [1]‖L∞ ≤ 〈A〉.

Proof In analogy with other estimates, we denote σh = (1+ ∂xh′(x)2)−1 and
Ah = ∂xh′(x). Therefore

y2 + (∂xh
′y + γ )2 = σ−1

h ((y + Ahσhγ )2 + σ 2
h γ 2). (A.6)

and

I (x) = C1(x)
∫

R

y2a−1

((y + Ahσhγ )2 + σ 2
h γ 2)a

g(x − y)dy

= C1(x)
∫

R

(y + Ahσhγ )2a−1

((y + Ahσhγ )2 + σ 2
h γ 2)a

g(x − y)dy

+ C1(x)
∫

R

y2a−1 − (y + Ahσhγ )2a−1

((y + Ahσhγ )2 + σ 2
h γ 2)a

g(x − y)dy

≡ I1(x) + I2(x). (A.7)
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Now we use the identity (for fixed σh and γ )

H

[
x2a−1

(x2 + σ 2
h γ 2)2a−1

]
(x) = − σh|γ |

(x2 + σ 2
h γ 2)a

a−1∑
l=0

αal (σh|γ |)2(a−1−l) x2l

where the αal’s are harmless coefficients. Then

I1(x) =
∫

R

σh|γ |
((y + Ahσhγ )2 + σ 2

h γ 2)a

a−1∑
l=0

αal (σh|γ |)2(a−1−l) (y + Ahσhγ )2l Hg(x − y)dy,

and after the usual change of variables

I1(x) � C1

a−1∑
i=0

∫
R

(y + cAhσhtsign((λ − λ′))2i
((y + cσh Ahsign(λ − λ′))2 + c2σ 2

h )a
H g(x − t |λ − λ′|y)dy

� C1

a−1∑
i=0

∫
R

(1 + |y|2i )CA(y)a Hg(x − t |λ − λ′|y)dy,

where we have applied lemma A.2. Then I1(x) is bounded in L2 thanks
to lemma A.4. To bound I2(x) we notice that we can write this term in the
following way:

I2(x) =
∫

R

y2a−1 − (y + cσh Ahsign(λ − λ′))2a−1

((y − cσh Ahsign(λ − λ′))2 + c2σ 2
h )a

g(x − t |λ − λ′|y)dy.

Since the numerator is a polynomial in y of order 2(a−1) we can apply again
lemmas A.2 and A.4 to obtain a suitable estimate in L2.

In order to estimate I [1] simply replace g(x − y) by 1 and notice that the
analogous term to I1(x) in (A.7) is equal to zero in this case.

��
A.1.2 Estimation of the terms in the sum (A.5)

We need to estimate the terms k ji
θ ∂

5− j
x θ which can be further decomposed

into a sum of products of various derivatives of θ divided by (y2 + θ2)a for
a = 2, 3, 4. It will be important that since we assume that h and hence θ

belongs to H4 we can assume that ∂2x θ is uniformly Lipschitz. Thus if in the

product of derivatives ∂
j1
x θ∂

j2
x θ · · · ∂ jn

x ∂xθ there is only one ji ≥ 3 we can
interpreted as an operator acting on ∂

ji
x θ and we could put our hands on the
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kernel, linearizing it using the Lipschitz continuity. We illustrate this in the
first section with j = 2 and leave the rest to the reader. Unfortunately, there
are some terms with j = 3 with e.g (∂3x θ)2 appears. Those have to be dealt
with independently. We do it by means of another pseudodifferential operator.

1.1. Terms in (A.5) with j = 2, i = 1, 2.
1.1.1. Let us estimate k21(x). We split it into two terms k21(x) = k211 (x) +
k212 (x), with

k211 (x) = −
∫

R

k21θ (x, y)∂4x h
′(x − y)dy and k212 (x) = ∂4x h

∫
R

k21θ (x, y)dy.

To bound k211 we proceed as follows,

k211 (x) = −
∫

R

y
(∂xθ)2 + θ∂2x θ

(y2 + θ2)2
∂4x h

′(x − y)dy.

Since y (∂xθ)2+θ∂2x θ

(y2+θ2)2
� C2|y|−3, k211 out is bounded by lemma A.4. In order

to bound the inner part we further split it into two terms, one with only terms
depending on h′ and the other where γ and its derivatives appear. Namely,
k211 in = k2111 in + k2111 in , with

k2111 in =
∫

|y|<1
y
(∂xγ )2 + 2�∂xh′∂xγ

(y2 + θ2)2
∂4x h

′(x − y)dy

+
∫

|y|<1
y
γ (�∂2x h

′ + ∂2x γ ) + �h′∂2x γ
(y2 + θ2)2

∂4x h
′(x − y)dy (A.8)

and

k2112 in =
∫

|y|<1
y
(∂x�h′)2 + �h′∂2x�h′

(y2 + θ2)2
∂4x h

′(x − y)dy. (A.9)

To estimate k2111 in we use the regularity of h′ and mean value theorem to
bound its integrand by

C3
t2|λ − λ′|2|y| + |y|2t |λ − λ′|

(y2 + θ2)2
|∂4h(x − y)|

and after that we apply lemma A.7.
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To bound k2112(x) we write

k2112(x) = −
∫

R

(
y
(
(∂x�h′)2 + �∂2x�h′)
(
y2 + θ2

)2 − y3
(
(∂2x h

′)2 + ∂xh′∂3x h
)

(
y2 + θ2lin

)2
)

∂4x h
′(x − y)dy

− ((∂2x h′)2 + ∂xh
′∂3x h′) ∫

R

y3(
y2 + θ2lin

)2 ∂4x h
′(x − y)dy

≡ k21121(x) + k21122(x). (A.10)

To bound k21121 out (x) we notice that (∂x�h′)2+�∂2x�h′

(y2+θ2)
2 � C2|y|−3 and we

can directly apply A.8 with a = 2 to the second term other part. To bound
k21121 in(x) we split it into two new terms,

k21121 in(x) = −
∫

|y|<1

(
y((∂x�h′)2 + �h′∂2x�h′) − y3((∂2x h

′)2 + ∂xh′∂3x h′)(
y2 + θ2

)2
)

∂4x h
′(x − y)dy

− ((∂2x h
′)2 + ∂xh

′∂3x h′)
∫

R

y3
(

1(
y2 + θ2

)2 − 1(
y2 + θ2lin

)2
)

∂4x h
′(x − y)dy

∼ −
∫

|y|<1

(
y((∂x�h′)2 + �h′∂2x�h′) − y3((∂2x h

′)2 + ∂xh′∂3x h′)(
y2 + θ2

)2
)

∂4x h
′(x − y)dy,

where we have applied lemma A.6, with a = 2. Therefore, applying lemma
A.7 , with a = 2 we check that

k21121 in(x) �
∫

|y|<1

C3|y|4 + C3+α|y|3+α

(
y2 + θ2

)2 |∂4x h′(x − y)|dy

∼
∫

|y|<1

C3+α|y|3+α

(
y2 + θ2

)2 |∂4x h′(x − y)|dy �
∫

|y|<1
|y|−1+α|∂4x h′(x − y)|dy.

Thus, we can apply lemma A.4 to finish the estimate of k21121 in(x).
To bound k21122(x) we apply lemma A.9 with a = 2. This finishes the bound

for k211 (x).

To bound k212 (x) in L2 is enough to bound k
21
2 (x) ≡ ∫

R
k21λ (x, y)dy in

L∞. The outer part is estimated as we did for k211 . For the inner part we split
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k
21
2 in(x) ≡ k

21
21 in(x) + k

21
22 in , with k

21
21 in as k2221 in(x) in (A.8) and k

21
22 in(x)

as k2112 in(x) in (A.9) but replacing ∂4x h
′(x − y) by 1. k

21
21 in(x) is bounded by

applying lemma A.7. To bound k
21
22(x) we split this term into k

21
221(x) + k

21
221

(analogous to k21121(x) and k
21
122(x) in (A.10)). k

21
221 out (x) is bounded by using

lemmas A.4 and A.8. For k
21
221 in(x) we do the analogous splitting than for

k21121 in and we apply the same argument together with lemma A.7. To bound

k
21
222(x) we use lemma A.9. This finishes the estimate of k21(x) in L∞ and

completes the proof of the estimate of k21(x) in L2.
To bound k2112(x) we write

k2112(x) = −
∫

R

(
y
(
(∂x�h′)2 + �∂2x�h′)
(
y2 + θ2

)2 − y3
(
(∂2x h

′)2 + ∂xh′∂3x h
)

(
y2 + θ2lin

)2
)

∂4x h
′(x − y)dy

− ((∂2x h′)2 + ∂xh
′∂3x h′) ∫

R

y3(
y2 + θ2lin

)2 ∂4x h
′(x − y)dy

≡ k21121(x) + k21122(x). (A.11)

To bound k21121 out (x) we notice that
(∂x�h′)2+�∂2x�h′

(y2+θ2)
2 � C2|y|−3 and we can

directly apply A.8 with a = 2 to the second term. To bound k21121 in(x) we split
it into two new terms,

k21121 in(x) = −
∫

|y|<1

(
y((∂x�h′)2 + �h′∂2x�h′) − y3((∂2x h

′)2 + ∂xh′∂3x h′)(
y2 + θ2

)2
)

∂4x h
′(x − y)dy

− ((∂2x h
′)2 + ∂xh

′∂3x h′)
∫
R

y3
(

1(
y2 + θ2

)2 − 1(
y2 + θ2lin

)2
)

∂4x h
′(x − y)dy

∼ −
∫

|y|<1

(
y((∂x�h′)2 + �h′∂2x�h′) − y3((∂2x h

′)2 + ∂xh′∂3x h′)(
y2 + θ2

)2
)

∂4x h
′(x − y)dy,

where we have applied lemma A.6, with a = 2. Therefore, applying lemma
A.7 , with a = 2 we check that

k21121 in(x) �
∫

|y|<1

C3|y|4 + C3+α|y|3+α

(
y2 + θ2

)2 |∂4x h′(x − y)|dy
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∼
∫

|y|<1

C3+α|y|3+α

(
y2 + θ2

)2 |∂4x h′(x − y)|dy �
∫

|y|<1
|y|−1+α|∂4x h′(x − y)|dy.

Thus, we can apply lemma A.4 to finish the estimate of k21121 in(x).
To bound k21122(x) we apply lemma A.9 with a = 2. This finishes the bound

for k211 (x).

To bound k212 (x) in L2, it is enough to bound k
21
2 (x) ≡ ∫

R
k21λ (x, y)dy in

L∞. The outer part is estimated as we did for k211 . For the inner part we split

k
21
2 in(x) ≡ k

21
21 in(x) + k

21
22 in , with k

21
21 in as k2221 in(x) in (A.8) and k

21
22 in(x)

as k2112 in(x) in (A.9) but replacing ∂4x h
′(x − y) by 1. k

21
21 in(x) is bounded by

applying lemma A.7. To bound k
21
22(x) we split this term into k

21
221(x) + k

21
221

(analogous to k21121(x) and k
21
122(x) in (A.11)). k

21
221 out (x) is bounded by using

lemmas A.4 and A.8. For k
21
221 in(x) we do an analogous splitting to that for

k21121 in and we apply the same argument together with lemma A.7. To bound

k
21
222(x) we use lemma A.9. This finishes the estimate of k21(x) in L∞ and

completes the proof of the estimate of k21(x) in L2.
1.1.2. Let us estimate k22(x). We split into two terms

k22(x) = k221 (x) + k222 (x), (A.12)

with

k221 (x) = −
∫

R

k22θ (x, y)∂4x h
′(x − y)dy, and k222 = ∂4x h

∫
R

k22θ (x, y)dy.

We split k221 (x) in four terms, k221 (x) = k2211(x) + k2212(x) + k2213 + k2214, with

k2211(x) = −
∫

R

y
(�∂xh′)2(γ 2 + 2γ�h′)

(y2 + θ2)3
∂4x h

′(x − y)dy (A.13)

k2212(x) = −
∫

R

y
(�∂xh′)2(�h′)2

(y2 + θ2)3
∂4x h

′(x − y)dy. (A.14)

k2213(x) = −
∫

R

y
(2∂xγ�∂xh′ + ∂xγ

2)(�h′)2

(y2 + θ2)3
∂4x h

′(x − y)dy (A.15)

k2214(x) = −
∫

R

y
((∂xγ )2 + 2∂xγ�∂xh′)(γ 2 + 2γ�h′)

(y2 + θ2)3
∂4x h

′(x − y)dy.

(A.16)

The function k2211(x) can be bounded in L2 as follows. The integrand of
k2211(x) � C1|y|−5|∂4x h′(x − y)|. Then k2211 out (x) is estimated by lemma A.4.
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Also the integrand of k2211(x) � C2
y3(γ 2+2|γ |y)
(y3+(θ)2)3

|∂4x h′(x − y)| and we can apply
lemma A.7 with a = 3 to bound k2211 in(x). Similarly, we can deal with k2213 and
k2214 as we can obtain the correct estimates in powers of |y| and |γ | to apply
Lemma A.7.

To bound k2212(x) we write

k2212(x) = −
∫

R

(
y(�∂xh′)2(�h′)2(

y2 + θ2
)3 − (∂2x h

′)2(∂xh′)2y5(
y2 + θ2lin

)3
)

∂4x h
′(x − y)dy

− (∂xh
′)2(∂2x h′)2

∫
R

y5(
y2 + θ2lin

)3 ∂4x h
′(x − y)

≡ k22121(x) + k22122(x). (A.17)

To bound k22121, out (x) we notice that
y(�∂x h′)2(�h′)2

(y2+(θ)2)
3 � C1|y|−5 and we can

apply A.8 to the other part with a = 3. To bound k22121,in(x) we split in two
terms,

k22121, in =
∫
|y|<1

(
y(�h′)2(�∂x h′)2 − y5(∂x h)2(∂2x h)2(

y2 + (θ)2
)3

)
∂4x h

′(x − y)dy

+ (∂x h
′)2(∂2x h′)2

∫
|y|<1

y5

⎛
⎜⎝ 1(

y2 + θ2
)3 − 1(

y2 + θ2lin

)3
⎞
⎟⎠ ∂4x h

′(x − y)dy,

in such away thatwecan apply lemmaA.7witha = 3, since |y(�h′)2�(∂xh′)2
− y5(∂xh′)2(∂2x h′)2| � C3y6, and lemma A.6 with a = 3.

To bound k22122(x) we apply lemma A.9 with a = 3. This finishes the bound
for k221 (x).The term k222 (x)is estimated in a similar way to k212 . We have com-
pleted the proof of the estimate of k22(x) in L2.
1.2. Terms in (A.5) with j = 3 and i = 1.

Let us bound k31(x). Unfortunately the proof of the estimation of k31(x)
does not follow the same steps than the rest of the functions kij (x). Indeed we
need to do something different and use the boundedness of pseudodifferential
operators used in the body of the text.

We split into two terms k31(x) = k31u(x) + k31d2 (x) with

k31u(x) =
∫

R

y
∂xθ∂2x θ(
y2 + θ2

)2 ∂3x�h′dy

k31d(x) =
∫

R

y
(θ)∂3x θ(
y2 + θ2

)2 ∂3x�h′dy.
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The proof for k31u(x) will be similar to the above.
For k31d(x) we need new estimates since as h ∈ H4 we can not bound ∂3x θ

by |y| uniformly.
Let us bound k31d(x) first. We split this function in four parts,

k31d1 (x) =
∫

R

y
γ ∂3x h

′
(
y2 + θ2

)2 ∂3x�h′dy, and (A.18)

k31d2 =
∫

R

y
�h′∂3x�h′
(
y2 + θ2

)2 ∂3x�h′dy and (A.19)

k31d3 =
∫

R

y
�h′∂3xγ(
y2 + θ2

)2 ∂3x�h′dy (A.20)

k31d4 (x) =
∫

R

y
γ ∂3xγ(

y2 + θ2
)2 ∂3x�h′dy. and (A.21)

The last two terms are easily bounded by Lemma A.7 for the in part and by
Lemma A.4 for the outer part.

To bound k31d2 (x) we use that �(∂3x h)2 = 2∂3x h�∂3x h − �
(
(∂3x h)2

)
, and

then, we need to show that the integral

N (x) =
∫

R

y�h′
(
y2 + θ2

)2�gdy (A.22)

is in L2 with either g = ∂3x h
′ or (∂3x h

′)2. Notice that, in both cases, we can
allow in our estimates that ||g||H1 appears. We will split N (x) in two terms
N1(x) and N2(x) with

N1(x) =
∫

R

y

(
�h′

(
y2 + θ2

)2 − ∂xh′y(
y2 + θ2lin

)2
)

�gdy, (A.23)

N2(x) = ∂xh
′
∫

R

y2(
y2 + θ2lin

)2�gdy. (A.24)

That is N1 compares with the linearized version and N2 treats with the lin-
earized kernel. We can not deal directly with N1 with our previous lemmas by
replacing �h′ by y as the denominator is too singular. However we can add
an subtract a term

∫ 1
2∂

2
x h

′y2(
y2 + θ2lin

)2�gdy.
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Then several terms appear but since h ∈ H4 we have that

�h′ − ∂xh
′y − ∂2x h

′(x)y2 ≤ |y|3. (A.25)

After splitting in various terms, all of them can be deal with using our
lemmas A.6, A.7, A.9 and a small modification.

In order to deal with N2(x) we need to introduce another new idea. We first
use (A.6) and treat the two terms in �g separately. proceed as follows

N2(x) =∂xh
′γ σ 2

h

(
g(x)

∫
R

y2

((y + σh Ahγ )2 + σ 2γ 2)2
dy

−
∫

R

y2

((y + σh Ahγ )2 + σ 2
h γ 2)2

g(x − y)dy

)

Now we can compute that

∫
R

y2

((y + σh Ahγ )2 + σ 2
h γ 2)2

dy = π

2σ 2
h |γ |

For the convolution term, the following Fourier transform computation

F
[

y2(
(y + σ Aλ)2 + σ 2λ2

)2
]

(ξ)

= π

2σ 2|λ|e
2π i Aσξλe−2πσ |λ||ξ | (1 + 2πσ 2(A2 − 1) + 4π i Aσ 2ξλ

)(A.26)

yields that

∫
R

y2

((y + σh Ahγ )2 + σ 2
h γ 2)2

g(x − y)dy

= π

2σ 2
h |γ |

∫
R

e2π iξ x ĝ(ξ)e2π iξ Ahσhγ e−2πσh |γ ||ξ |

× (1 + 2πσ 2
h |γ ||ξ |(A2 − 1) + 4π i Aσ 2

h ξγ )dξ,

so that

N2(x) = ∂xh
′ π
2
Op(p)(�g)
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where the symbol is given by,

p(x, ξ) = 1

|ξ ||γ |
(
1 − e2π i Ahσhξγ e−2πσh |ξ ||γ |)

− σ 2
hπ2e2π i Ahσhξγ e−2πσh |ξ ||γ |((A2

h − 1) + 2isign(ξ)sign(γ ))

Therefore by applying lemma 5.1 we obtain that the L2−norm of N2(x) is
bounded by 〈A〉(||�g||L2 + ||∂x g||L2).

This concludes the proof of the estimate of the L2−norm of k31d2 (x).
To deal with k31d1 , we use again that (�∂3x h

′)2 = 2∂3x h
′�∂3x h

′−�
(
(∂3x h

′)2
)
.

Thus, it suffices to bound the integral

M(x) =
∫

R

yγ

(y2 + (θ)2)2
�g(x − y)dy (A.27)

in terms of the H1-norm of g. The proof is analogous since at the only delicate
point it holds that

∫
R

yγ(
y2 + θ2lin

)2 dy = − Aπ

2σ 2|γ | ,

1.3.The rest of the terms in (A.5).
The estimation of the rest of the terms in (A.5) follow the same steps than

the estimation for either k21(x) or k22(x).

A.1.3 Estimation of the terms in (A.4)

We will show how to estimate is k11(x) in (A.4), since k55(x) is analogous.
Here we recall that we are concerned with ||D−1k11||L2 . In order to bound this
norm we will proceed as follows

k11(x) =
∫

R

k11θ (x, y)∂5x θdy =
∫

R

k11θ (x, y)D�dy,

where � ≡= D−1∂5x θ (we clarify that the operator D = (1 + t∂x ) acts on x
rather than y). Then we would like to estimate ||D−1k11||L2 ≤ 〈A〉||�||L2 . In
order to do it we notice that

∂x

∫
R

k11θ (x, y)�dy =
∫

R

∂xk
11
θ (x, y)�dy +

∫
R

k11θ (x, y)∂x�dy,
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so that

D−1k11(x) =
∫

R

k11θ (x, y)�dy − t D−1
∫

R

∂xk
11
θ (x, y)�dy

≡ S1(x) + t D−1S2(x).

Happily, the proof of the estimation for S1 and S2 follow the same steps that
the estimation of k22(x) in (A.12). Thus we have proven (A.1). That is

∂5xMu = − 1

4π

∫ 1

−1

∫ 1

−1

∫
R

kθ (·, y)∂6x θdydλ′dλ + l.o.t.

In order to finish the proof of lemma 4.8 notice that

kθ ∂
6
x θ = kθ ∂

6
x� f (x, x − y) + kθ

(
∂6x ε(x)λ − ∂6x ε(x − y)λ′)

and, by assumptions on c(x, t), ∂6x c(·, t) ∈ L2 uniformly in t . We then have
that

∂5xMu = − 1

4π

∫ 1

−1

∫ 1

−1

∫
R

kθ (·, y)∂6x� f (x, x − y)dydλ′dλ + l.o.t.

Lemma 4.8 is proved.

A.2 Proof of Lemma 4.9

In this section we will prove Lemma 4.9. We will use the same convection as
in the previous section.

Since the transport term in lemma 4.9 arises in an obvious way, t he main
issue is to linearize θ to θlin in the integral

∫ 1

−1

∫ 1

−1

∫
R

y

y2 + θ2
∂6x f (x − y)dydλλ′.

This is the content of the following L2 estimate.

Lemma A.10 Let f ∈ H6, c as in theorem 4.1 and

F(x) = D−1 1

4

∫ 1

−1

∫ 1

−1

∫
R

(
y

y2 + θ2
− y

y2 + θ2lin

)
∂6x f (x − y)dydλλ′.
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Then,

‖F‖L2 ≤ 〈A〉||D−1∂5x f ||L2 .

After applying Minkowski inequality, to obtain the estimate, it is enough to
show that

D−1
∫

R

(
y

y2 + θ2
− y

y2 + θ2lin

)
∂6x f (x − y)dy

is in L2 with L2−norm bounded by 〈A〉 (||D−1∂5x f ||L2 + 1
)
uniformly in t

(for small t), λ and λ′.
Let us call g(x) = D−1∂5x f (x). Then we proceed as when investigating the

commutators [D−1,Op(p)] but this time working directly with the kernel

k(x, y) =
(

y

y2 + θ2
− y

y2 + θ2lin

)
.

Then we have to estimate the function

P(x) = D−1
∫

R

k(x, y)D∂x g(x − y)dy.

By direct application of the definition of D, it holds that
∫
k(x, y)D∂x g(x−

y)dy = D
∫
k(x, y)∂x g(x − y)dy − t

∫
∂xk(x, y)∂x g(x − y)dy we have

P(x) =
∫

R

k(x, y)∂x g(x − y)dy − t D−1
∫

R

∂xk(x, y)∂x g(x − y)dy

≡M(x) + t D−1L(x),

We need to estimate both M(x) and L(x) in L2.
To bound M(x) we first integrate by parts, recalling that ∂x g(x − y) =

−∂yg(x − y),

M(x) =
∫

R

∂y

(
y

y2 + θ2
− y

y2 + θ2lin

)
g(x − y)dy

=
∫

R

(
1

y2 + θ2
− 1

y2 + θ2lin

)
g(x − y)dy

+ 2
∫

R

y

(
y + θlin∂xh′
(
y2 + θ2lin

)2 − y + θ∂xh′(x − y)(
y2 + θ2

)2
)
g(x − y)dy
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≡ M1(x) + 2M2(x). (A.28)

As a matter of fact both M1, M2 can be estimated by means our previous
lemmas.Theouter integrals canbe estimatedbybrute force as the kernels decay
fast enough. The inner ones, by using the first and second Taylor polynomial
of h′, can be split into terms with the appropriate powers of y in order to apply
Lemmas A.6, A.9 as before.

It remains to bound L(x). This function is given by

L(x) = −2
∫
R

y

⎛
⎜⎝ θ∂xθ(

y2 + θ2
)2 − θlin(∂

2
x h

′y + ∂xγ )(
y2 + θ2lin

)2
⎞
⎟⎠ ∂x g(x − y)dy

= −2
∫
R

y

⎛
⎜⎝ (�h′�∂x h + γ�∂x h′)(

y2 + θ2
)2 − ∂2x h

′∂x hy2 + γ ∂2x h
′y(

y2 + θ2lin

)2
⎞
⎟⎠ ∂x g(x − y)dy

− 2
∫
R

y

⎛
⎜⎝ ∂xγ�h′
(
y2 + θ2

)2 − ∂xγ ∂x h′y(
y2 + θ2lin

)2
⎞
⎟⎠ ∂x g(x − y)dy

− 2
∫
R

y

⎛
⎜⎝ γ ∂xγ(

y2 + θ2
)2 − γ ∂xγ(

y2 + θ2lin

)2
⎞
⎟⎠ ∂x g(x − y)dy

≡ S(x) + S̃(x) + S(x).

Firstly, we will carefully bound S(x) since the numerators of the terms S̃
and S have the same behaviour.

We repeat the trick of observing that ∂x g(x− y) = −∂yg(x− y) to integrate
by parts and obtain that

S(x) = −2
∫

R

(
(�h′ + γ )∂x�h′
(
y2 + θ2

)2 − θlin∂
2
x h

′y(
y2 + θ2lin

)2
)
g(x − y)dy

− 2
∫

R

y

(
∂xh(x − y)∂x�h′ + (�h′ + γ )∂2x h

′(x − y)(
y2 + θ2

)2

−∂xh′∂2x h′y + (θlin)∂
2
x h

′
(
y2 + θ2lin

)2
)
g(x − y)dy

+ 8
∫

R

y

(
θ∂x�h′(y2 + θ2)(y + (�h′ + γ ))∂2x h

′(x − y)(
y2 + θ2

)2

123



330 A. Castro et al.

−θlin∂
2
x h

′y(y2 + θ2lin)(y + θlin)∂
2
x h

′
(
y2 + θ2lin

)2
)
g(x − y)dy

≡ −2S1(x) − 2S2(x) + 8S3(x).

To bound S1(x) we split it in the following way

S1(x) =
∫

R

θ∂x�h′ − θlin∂
2
x h

′y(
y2 + θ2

)2 g(x − y)dy

+
∫

R

(θlin)∂
2
x h

′y
(

1(
y2 + θ2

)2 − 1(
y2 + θ2lin

)2
)
g(x − y)dy

≡ S11(x) + S12(x). (A.29)

To bound S11(x) we split into two terms

S11(x) =
∫

R

�h′∂x�h′ − ∂xh′∂2x h′y2(
y2 + θ2

)2 g(x − y)dy

+
∫

R

γ (∂x�h′ − ∂2x h
′y)(

y2 + θ2
)2 g(x − y)dy

∼
∫

R

�h′∂x�h′ − ∂xh′∂2x h′y2(
y2 + θ2

)2 g(x − y)dy.

The last line follows from the bound (∂x�h′ − ∂2x h
′y) � C2(|y| + 1) and

lemma A.7.
The next term is more complicated as in principle the numerator scales as y2

which is not enough to apply our lemmas. As beforeweTaylor�h up to second
order and differentiate to obtain �h′∂x�h′ = paxh′∂2x h′y2 + G(∂

j
x h′)|y|3 +

C |y|α . Being explicit,
G = ∂xh

′∂3x h′ + (∂2x h
′)2 + ∂2x h

′∂3x h′)

which is uniformly bounded in x since h′ ∈ H4. Since terms of the type

∫
R

G(h′)
(y2 + θ2lin)

2
g(x − y)

are estimated like our terms k ji (x) we can subtract them freely. Hence

|S11in(x)| ≤
∫ |y|3+α

(y2 + θ2)
dy + G(h′)(x)

∫
y3
(

1

(y2 + θ2lin)
2

− 1

(y2 + θ2)2

)
.
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S12(x) is easy by now. It can be estimated as M2(x) in (A.28). This finishes
the estimation of S1(x).

To bound S2(x) we split it into two terms

S2(x) =
∫
R

y

(
∂x h′(x − y)∂x�h′ + θ∂2x h

′(x − y) − ∂x h′∂2x h′y − (∂x h′y + γ )∂2x h
′

(
y2 + θ2

)2
)
g(x − y)dy

+
∫
R

y
(
∂x h

′∂2x h′y + (∂x h
′y + γ )∂2x h

′)
(

1(
y2 + θ2

)2 − 1(
y2 + θ2lin

)
)
g(x − y)dy

≡ S21(x) + S22(x). (A.30)

The term S22 has the correct behaviour in powers of y and γ to deal with
them S21(x) we add freely a term

1

2
∂3x h

′(x)
∫

y3

(y2 + θ2lin)
dy

and proceed exactly as with S11.
Finally, it remains to bound S3(x). Since the computation are longer but no

new idea is needed we skip the details.
Then we have achieved the conclusion of lemma 4.9.

A.3 Estimates for the velocity

Lemma A.11 Let u be like in expression (4.17) with f and ε = ct in theorem
4.1. Then u ∈ L∞(R2) and

||u(·, t)||L∞(R2) ≤ P(|| f ||H4)

for some smooth function P.

Proof In this proof C stands for a constant that may depend on || f ||H4 and on
the regularity of c(x, t). The velocity in (4.17) reads

u(x) = 1

π
P.V .

∫
R

1

2

∫ 1

−1

x1 − y

|(x1 − y, x2 − f (y) − ε(y)λ′)|2 (1, ∂x f (y)

+ ∂xε(y)λ
′)dλ′dy.

And evaluating in at (x, f (x) + λ), (x, λ) ∈ R
2, we have that

u(x, λ + f (x)) = 1

π
P.V .

∫
R

1

2

∫ 1

−1

x − y

|(x − y, � f (x, y) + (λ − ε(y)λ′))|2
(1, ∂x , f (y) + ∂xε(y)λ

′)dλ′dx ′
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with � f (x, y) = f (x) − f (y). Next we check that the integral

I (x) = P.V .

∫
R

x − y

(x − y)2 + (� f (x, y) + λ − ε(y)λ′)2
dy

= P.V .

∫
R

y

(y2 + (� f (x, x − y) + λ − ε(x − y)λ′)2
dy (A.31)

belongs to L∞(dx) uniformly in λ ∈ R and λ′ ∈ [−1, 1]. In order to do it we
split (A.31) into two parts

I1(x) = P.V .

∫
R

y

y2 + (� f (x, x − y) + λ − ε(x − y)λ′)2

− y

y2 + ((∂x f (x) + ∂xε(x)λ′)y + λ − ε(x)λ′)2
dy

I2(x) = P.V .

∫
R

y

y2 + ((∂x f (x) + ∂xε(x)λ′)y + λ − ε(x)λ′)2
dy.

We will denote

A′
λ = ∂x f (x) + ∂xε(x)λ

′, σλ′ = 1

1 + A2
λ′

, γ = λ + ε(x)λ′.

Thus

I2(x) = σλ′ P.V .

∫
R

y

(y + σλ′ A′
λγ )2 + γ 2σ 2

λ′
dy

= σλ′ P.V .

∫
R

y + σλ′ Aλ′γ

(y + σλ′ Aλ′γ )2 + γ 2σ 2
λ′
dy

− σλ′
∫

R

σλ′ Aλ′γ

(y + σλ′ Aλ′γ )2 + γ 2σ 2
λ′
dy.

The first integral on the right hand side of the previous equation is equal to
zero. The second one is a bounded integral for every value of γ ∈ R and
λ′ ∈ [−1, 1].

In order to bound I1(x) we split it into two terms

I11(x) =
∫

|y|<1

y

y2 + (� f (x, x − y) + λ − ε(x − y)λ′)2

− y

y2 + (Aλ′ y + γ )2
dy

I12(x) = P.V .

∫
|y|>1

y

y2 + (� f (x, x − y) + λ − ε(x − y)λ′)2
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− y

y2 + (Aλ′ y + γ )2
dy.

To bound I12(x) we consider I121(x) and I122(x) with

I121(x) = P.V .

∫
|y|>1

y

y2 + (� f (x, x − y) + λ − ε(x − y)λ′)2 dy

= P.V .

∫
|y|>1

(
y

y2 + (� f (x, x − y) + λ − ε(x − y)λ′)2 − y

y2 + λ2

)
dy

and

I122(x) = P.V .

∫
|y|>1

y

y2 + (Aλ′ y + γ )2
dy

= P.V .

∫
|y|>1

(
y

y2 + (Aλ′ y + γ )2
− y

(1 + A2
λ′)y2 + γ 2

)
dy.

Then

|I121(x)| ≤ C
∫

|y|>1

(1 + |λ|)
|y|(y2 + λ2)

dy ≤ C,

and

|I122(x)| ≤ C
∫

|y|>1

|γ |
(y2 + γ 2)

dy ≤ C.

To bound I11(x) we notice that

(Aλ′ y + γ )2 − (� f (x, x − y) + λ − ε(x − y)λ′)2

= (Aλ′ y + γ − � f (x, x − y) − λ + ε(x − y)λ′)(Aλ′ y + � f (x, x − y)

+ γ + λ − ε(x − y)λ′).

In addition,

Aλ′ y + γ − � f (x, x − y) − λ + ε(x − y)λ′

= ∂x f (x)y − � f (x, x − y) + (−ε(x) + ε(x − y) + ∂xε(x)y)λ
′

Then
∣∣(Aλ′ y + γ )2 − (� f (x, x − y) + λ − ε(x − y)λ′)2

∣∣ ≤ Cy2,

and
∣∣Aλ′ y + � f (x, x − y) + γ + λ − ε(x − y)λ′∣∣
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≤ C(|y| + |2λ − (ε(x) + ε(x − y))λ′)
≤ C(|y| + 2|(λ − ε(x)λ′| + |ε(x) − ε(x − y)||λ′| ≤ C(|y| + |γ |).

|I11| ≤ C
∫

|y|<1

|y|3(|y| + |γ |)
(y2 + (Aλ′ y + γ )2)(y2 + (� f (x, x − y) + λ − ε(x − y)λ′)2)

dy.

(A.32)

Since we can bound

|y|4
(y2 + (Aλ′ y + γ )2)(y2 + (� f (x, x − y) + λ − ε(x − y)λ′)2)

≤ C,

the first integral in (A.32) is easy to bound. In addition for |γ | > 4(|| f ||L∞ +
||ε||L∞) we have that

(� f + λ − ε(x − y)λ′)2 = (� f + (ε(x) − ε(x − y))λ′ + γ )2 ≥ γ 2

4
,

so that, in this range

|y|3|γ |
(y2 + (Aλ′ y + γ )2)(y2 + (� f (x, x − y) + λ − ε(x − y)λ′)2)

≤ |y||γ |
y2 + 1

4γ
2
,

and we can estimate the second integral. In the range |γ | ≤ 4||Aλ′ ||L∞ we can
apply lemma A.7. This concludes the proof of the bound of I (x).

The bound

J (x) = P.V .

∫
R

y

(y2 + (� f (x, x − y) + λ + ε(x − y)λ′)2
(∂x f (x − y) + ∂xε(x − y)λ′)dy.

follows similar steps.
Then we have achieved the conclusion of lemma A.11. ��

Lemma A.12 Let f and ε = ct be as in theorem 4.1. Then the velocity
u�
c(x, λ) satisfies

|u�
c(x, λ) − u�

c(x, λ
′)| ≤ Ct,

where C depends on || f ||H4 but it does not depend on either x, λ or λ′.
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Proof Recall that

u�
c(x, λ) =

∫ 1

−1
kθ (x, y)∂xθdydλ′.

Then it is enough to prove that the function

h(x, λ) =
∫

R

y

y2 + θ2
∂xθdy

satisfies ||∂λh||L∞(dx) ≤ ||| f |||t for every λ. In addition, by Sobolev’s embed-
ding we reduce the problem to prove that ||∂λh||H1(dx) ≤ ||| f |||t . We notice
that

∂λh(x, λ) = ε(x)
∫

R

2yθ(
y2 + θ2

)2 ∂xθ.

The L2 − norm of this function can be bounded in the same way we bounded
k31d2 (x) in (A.18) and N (x) in (A.22). By taking a derivative with respect to
x we have

∂x∂λh(x, λ) = εx

∫
R

2yθ(
y2 + θ2

)2 ∂xθ + ε
( ∫

R

2yθ(
y2 + θ2

)2 ∂2x θ

+
∫

R

2y(
y2 + θ2

)2 (∂xθ)2 − 2
∫

R

2yθ2(
y2 + θ2

)3 ∂xθ
)
.

The first two terms can be bounded exactly as we bound N (x) in (A.22).
The third can be bounded in the same way that k31d2 (x) in (A.18) and N (x)
in (A.22). The last term can be bounded by using a similar strategy, though a
different pseudodifferential operator arises.

��

A.4 Estimates on the coefficient a(x, t)

The function a(x, t) is given by the expression

a(x, t) = P.V .

∫
R

K (x, y)dy

where the principal value is taken at 0 and at the infinity. We need to prove the
next lemma
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Lemma A.13 Let f and ε = ct be as in theorem 4.1. The following estimate
holds:

||∂xa||H2 ≤ ||| f |||.

Proof We will use the same convection than in “Appendix A.1”. Recall that
we can express

a(x, t) =
∫ 1

−1

∫ 1

−1

y

y2 + θ2
dydλdλ′

and thus, if we set

∫
k ji
θ (x, y)dy = k̄i j ,

we need to show that for j = 1, 2, 3, 4 and every i .

k̄i j ∈ L2

The estimation in fact are often easier than in Sect. A.1.2. All the outer integrals
are automatic since the terms ∂ j−i�θ do not appear in the numerators. The
inner integrals can also be dealt with.

We sketch the case with j = 3 which is the most singular and leave the
rest to the energetic reader. From the fourth terms corresponding to (A.18) we
can directly bound the inner integrals of k̄311 , k̄313 , k̄314 by means of lemma A.4
whereas k̄312 is equal to N in (A.22), with g = ∂xθ

3 directly. The other two
terms are easily bounded. Namely we have the bounds,

|k̄32in (x)| =
∫

|y|≤1

yθ∂xθ(∂xθ)2 + θ∂2x θ

(y2 + θ2)3
dy ≤ y5 + yγ 4

(y2 + θ2)3

|k̄33in (x)| =
∫

yθ3 + ∂xθ
3

(y2 + θ2)4
dy ≤ C

∫ |y|7 + yγ 6

(y2 + θ2)4
dy.

For a = 3, 4, the terms with y|γ |2a−2 in the numerator are directly bounded
by lemmaA.7, whereas the termwith |y|2a−1 is bounded in the usual two steps.
Firstly, we use Lemma A.6 to replace θ by θlin and then obtain the estimate
with lemma A.9. The rest of the derivatives are bounded in the same way.

��
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B Symbols and estimates

B.1 Fourier transform of Kc,c′
A (x)

Lemma B.1 Let K c′,c
A the function given by the expression

K c,c′
A (x) = 1

4π

∫ 1

−1

∫ 1

−1

y

y2 + (Ay + c′tλ′y + ct (λ − λ′))2
dλdλ′.

Then

̂
Kc,c′

A (ξ) = −isign(ξ)

4 · 2πct |ξ |
∫ 1

−1

(
2 − e2πσλ′ct |ξ |(−1−λ′)(Aλ′ isign(ξ)+1)

−e2πσλ′ct |ξ |(1−λ′)(Aλ′ isign(ξ)−1)
)

,

and

K̂ c,0
A (ξ) = −isign(ξ)

2πct |ξ |
(
1 + 1

4πct |ξ |
(
e−4πσct |ξ | (cos(4πσ Act |ξ |)

−A sin(4πσ Act |ξ |)) − 1)) . (B.1)

where

Aλ′ = A + c′tλ′, σλ′ = 1

1 + A2
λ′

.

Proof We first notice that, if we call

γ = ct |λ − λ′|,

we can write

y2 + (Ay + c′λ′t y + ct (λ − λ′))2 = (1 + (A + c′λ′t)2)y2 + c2t2(λ − λ′)2

+ 2(A + c′λ′t ′)yct (λ − λ′)

= 1

σλ′

(
y2 + 2σλ′ Aλ′γ sign(λ − λ′)y + σλ′γ 2)

= 1

σλ′

(
(y + σλ′ Aλ′γ sign(λ − λ′))2 + σλ′γ 2 − σ 2

λ′ A2
λ′γ 2)

= 1

σλ′

(
(y + σλ′ Aλ′γ sign(λ − λ′))2 + σ 2

λ′γ 2) .
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And then

Kc,c′
A (x) = 1

4π

∫ 1

−1

∫ 1

−1

σλ′ y

(y + μ)2 + ν2
dλdλ′

with μ = σλ′ Aλ′γ sign(λ − λ′) and ν = σλ′γ.

With these notations Fourier transforms are easier as they resemble the
relation between Poisson and Abel kernels. We can compute that

F
[

y

(y + μ)2 + ν2

]
(ξ) = F

[
y + μ

(y + μ)2 + ν2

]
(ξ)

− μF
[

1

(y + μ)2 + ν2

]
(ξ)

= e2π iξμ

(
F
[

y

y2 + ν2

]
(ξ) − μF

[
1

y2 + ν2

]
(ξ)

)

= e2π iξμe−2πν|ξ |π
(
−isign(ξ) − μ

ν

)
.

Therefore

K̂ c,c′
A (ξ) = 1

4

∫ 1

−1

∫ 1

−1
σλ′e2π iσλ′ Aλ′ct (λ−λ′)ξe−2πσλ′ct |λ−λ′||ξ |

(−isign(ξ) − Aλ′sign(λ − λ′)
)
dλdλ′. (B.2)

For visualization set ctσ ′
λ2π i |ξ | = a in the next estimates

∫ 1

−1
eaAλ′ isign(ξ)(λ−λ′)e−a|λ−λ′| (−isign(ξ) − Aλ′sign(λ − λ′)

)
dλ

=
∫ λ′

−1
ea(1+i Aλ′ sign(ξ))(λ−λ′) (−isign(ξ) + Aλ′) dλ

+
∫ 1

λ′
ea(−1+i Aλ′ sign(ξ))(λ−λ′) (−isign(ξ) − Aλ′) dλ,

= −isign(ξ) + Aλ′

a(1 + i Aλ′sign(ξ))

(
1 − ea(−1−λ′)(Aλ′ isign(ξ)+1)

)

+ −isign(ξ) − Aλ′

a(i Aλ′sign(ξ) − 1)

(
ea(1−λ′)(Aλ′ isign(ξ)−1) − 1

)

= −isign(ξ)
1

a

(
2 − ea(−1−λ′)(Aλ′ isign(ξ)+1) − ea(1−λ′)(Aλ′ isign(ξ)−1)

)
.
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Thus

K̂ c,c′
A (ξ) = −isign(ξ)

4 · 2πct |ξ |
∫ 1

−1

(
2 − e2πσλ′ct |ξ |(−1−λ′)(Aλ′ isign(ξ)+1)

−e2πσλ′ |ξ |(1−λ′)(Aλ′ isign(ξ)−1)
)
dλ′.

This proves the first identity of lemma B.1.
By taking c′ = 0 we have that

K̂ c,0
A (ξ) = −isign(ξ)

4 · 2πct |ξ |
∫ 1

−1

(
2 − e2πσct |ξ |(−1−λ′)(Aisign(ξ)+1)

−e2πσ |ξ |(1−λ′)(Aisign(ξ)−1)
)
dλ′, (B.3)

where σ = 1
1+A2 . Integrating in λ′ yields

I =
∫ 1

−1
e−2πσct (1+λ′)|ξ |(1+i Asign(ξ))dλ′

= 1

2πσct |ξ |(1 + i Asign(ξ))

(
1 − e−4πσct (1+i Asign(ξ))|ξ |)

and

I I =
∫ 1

−1
e2πσct (−1+λ′)|ξ |(1−i Asign(ξ))dλ′

= 1

2πσct |ξ |(1 − i Asign(ξ))

(
1 − e−4πσct (1−i Asign(ξ))|ξ |) .

However

I + I I = 2

2πσct |ξ |Re (I ) .

Now if we notice that

Re

(
1

1 + i Asign(ξ)

)
= σ, Re

(
e−4πσcti Aξ

1 + i Asign(ξ)

)

= σ (cos (4πσ Act |ξ |) − A sin (4πσct A|ξ |)) ,

equality (B.1) follows. ��
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B.2 Estimations of the various symbols

In this section we will use the notation tξ = τ . In the following estimates:

1. A is function in H3.
2. The function c is as in the statement of theorem 4.1.
3. We can consider that the time t << 1.

To alleviate the notation we introduce the following auxiliar function

h(x, τ ) = 1

cτ

{
1 + 1

4πcτ

(
e−4πcτσ (cos(4πcτσ A) − A sin(4πcτσ A)) − 1

)}

= 1

cτ
(1 + h2(τ )) (B.4)

with

h2(x, τ ) = 1

4πcτ

(−1 + e−4πσcτ (cos(4πσ Acτ) − A sin(4πσ Acτ))
)

and σ = 1
1+A2 .

We emphasis that h and h2 depend on x just through A and c.
Notice that (B.1) implies that

2π isign(ξ)K̂ c,0
A (ξ) = h(x, τ ).

We will omit that h depends on A as well. We study the regularity of the
function h in detail.

Lemma B.2 The following identities holds:

h2(x, τ ) = −
∫ 1

0
e−4πσcττ1 cos(4πσ Acττ1)dτ1, (B.5)

h(x, τ ) = 4πσ

∫ 1

0

∫ 1

0
e−4πσcττ1τ2τ1 (cos(4πσ Acττ1τ2)

+A sin(4πσ Acττ1τ2)) dτ2dτ1. (B.6)

The following estimate not only gives us how the symbol p grows but it also
implies lemma 4.11, the key in showing that p+ is positive for small times.

Lemma B.3 Let ϕ, h defined as above. The following estimates hold:

|h(x, τ )| ≤
1
c

1 + τ
+ 2|A| + 5 + 8π

1 + (τ )2
,

|∂Ah(x, τ )| + |∂ch(x, τ )| ≤ 〈A〉
1 + τ

,

(B.7)
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and

(ϕ(τ) − h(x, τ )) ≥ 1 − 1
c

1 + τ
+ B − (2|A| + 5 + 8π)

1 + τ 2
. (B.8)

Proof We start with τ = t |ξ | ≥ 1. Since c ≥ 1 we have that

1

cτ

(
1 + 1

4πcτ

(
e−4πσcτ (cos(4πσ Acτ) − A sin(4πσ Acτ)) − 1

))

≤ 1

cτ
+ |A| + 2

τ 2
.

But since for τ ≥ 1, 1
τ 2

≤ 2
1+τ 2

and 1
τ

= 1
1+τ

+ 1
τ

− 1
1+τ

= 1
1+τ

+ 1
τ+τ 2

≤
1

1+τ
+ 1

1+τ 2
. Then

1

cτ

(
1 + 1

4πcτ

(
e−4πσcτ (cos(4πσ Acτ) − A sin(4πσ Acτ)) − 1

))

≤
1
c

1 + τ
+ 2|A| + 5

1 + τ 2
.

For τ ≤ 1 we use the expression (B.2) to get uniform bounds on h and its
derivatives.

The derivatives of h for τ ≥ 1 are controlled by

|∂ch| ≤ C

(
1

c2τ
+ 1

c3τ 2
(1 + |A|) + 1

c2τ 2
τ(1 + |A|)

+τ(|A| + |A|2) ≤ 〈A〉
τ

)
,

|∂Ah| ≤ C

(
1

c2τ 2
τ(|A| + |A|2)

)
.

If we combine (B.7) with the definition of ϕ, (B.8) follows as well. ��
Lemma B.4 Let k = 1, 2, 3

|∂τh(x, τ )| + |∂τ,Ah| + |∂τ,ch| ≤ 〈A〉 1

1 + τ 2
,

∂kx h(x, τ ) ≤ 〈A〉
( |∂xc|
1 + τ

+ |∂kx c| + |∂kx A|
1 + τ 2

)
,

∂kx ∂τh(x, τ ) ≤ 〈A〉
( |∂xc|
1 + τ 2

+ |∂kx c| + |∂kx A|
1 + |τ |3

)
,
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where the constant C depends on |∂ ix c| + |∂ ix A| for i < k.

Proof For τ < 1 we use lemma B.2 and the result follows. For τ > 1, from
the expression

h = 1

cτ
− 1

4πc2τ 2
+ 1

4πc2τ 2
e−4πστ (cos(4πcσ Aτ) − A sin(4πcσ Aτ)) ,

(B.9)

we see that |∂τh| ≤ 〈A〉(1+ τ 2)−1. In order to bound the derivatives on σ and
A of ∂τh we see that the two first terms in (B.9) do not cause any difficulty. The
third one in (B.9) brings down a factor τ but since c > 1 and σ ≥ 1

1+||A||L∞
we still have exponential decay. In order to bound the derivatives with respect
to x of h and ∂τh a similar argument applies.

��
We recall that

p = 2π iξ K̂ c,0
A , pb = 2π iξ (pmain − p) ,

pgood = 1

|ξ | p − ϕ(t |ξ |), and p+ = −(1 + |ξ |)pgood.

Lemma B.5 Given t > 0, the symbols pb, t∂x pmain, pgood ∈ S1,1 with the
following estimates.

i) ‖pb‖1,1 + ‖pgood‖1,1 ≤ 〈A〉
ii) ‖tpmain‖1,1 + ‖t∂x pmain‖1,1 + ‖∂ξ pmain‖1,0 ≤ 〈A〉
Proof We start with the L∞ estimates (no x derivatives). The estimation of pb
itself is the most subtle so we address it first.

1. Estimation of the L∞ norm of pb.

The fundamental theorem of calculus tell us that,

p − pmain = −isign(ξ)

4 · 2πct |ξ |
∫ 1

−1

∫ 1

0

d

ds
e−2πσsλct |ξ |(1+λ)(1+i Asλsign(ξ))dsdλ

+ −isign(ξ)

4 · 2πct |ξ |
∫ 1

−1

∫ 1

0

d

ds
e−2πσsλct |ξ |(1−λ)(1−i Asλsign(ξ))dsdλ

≡ T1 + T2.

Now we use the chain rule and that ∂s Asλ = c′tλ and ∂sσsλ =
−2σ 2

sλAsλc′tλ to obtain that

2π iξT1
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= 1

4ct

∫ 1

−1

∫ 1

0
2σ 2

sλAsλc
′tλ2πct |ξ |(1 + λ)(1 + i Asλsign(ξ))

e−2πσsλct |ξ |(1+λ)(1+i Asλsignξ)dsdλ

+ 1

4ct

∫ 1

−1

∫ 1

0
c′tλisign(ξ)(−2πσsλct |ξ |(1 + λ))

e−2πσsλct |ξ |(1+λ)(1+i Asλ)sign(ξ)dsdλ (B.10)

≡ T11 + T12. (B.11)

Now observe that the dangerous t in the denominator cancels out in both
T11, T12. Thus, we are entitled to take modulus and obtain the elementary
bound:

|2π iξT1| ≤ C
∫ 1

−1

∫ 1

0
2πσsλct |ξ |(1 + λ)e−2πσsλct |ξ |(1+λ)dsdλ ≤ 〈A〉.

The estimation involving T2 is exactly analogous and thus ‖pb‖L∞ ≤ 〈A〉.
2. Estimation of the L∞-norm of ∂ξ (2π iξ(K̂ c,0

A (ξ) − K̂ c,c′
A (ξ))). We recall

that

2π iξ(K̂ c,0
A (ξ) − K̂ c,c′

A (ξ))

= 1

4ct

∫ 1

−1

(
e2πσλ′ct |ξ |(−1−λ′)(Aλ′ isign(ξ)+1)

+e2πσλ′ |ξ |(1−λ′)(Aλ′ isign(ξ)−1)
)
dλ′

+ 1

4ct

∫ 1

−1

(
e2πσct |ξ |(−1−λ′)(Aisign(ξ)+1) + e2πσ(1−λ′)(Aisign(ξ)−1)

)
dλ′

≡ U1 +U2.

In this case we can bound U1 and U2 separately and it is enough to
estimate U1. In addition, we can split U1 = U11 + U12 with U11 =
1
4ct

∫ 1
−1 e

2πσλ′ct |ξ |(−1−λ′)(Aλ′ isign(ξ)+1)dλ′ and it easy to see that the esti-
mation of U11 and U12 follows similar steps. We have that

∂ξU11 = 1

4ct

∫ 1

−1
(−2πσλ′ct (1 + λ′)(sign(ξ) + i Aλ′)

e2πσλ′ ct |ξ |(−1−λ′)(Aλ′ isign(ξ)+1)dλ′

= 1

4

∫ 1

−1
(−2πσλ′(1 + λ′)(sign(ξ) + i Aλ′)e2πσλ′ ct |ξ |(−1−λ′)(Aλ′ isign(ξ)+1)dλ′,

(B.12)
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and then |∂ξU11| ≤ 〈A〉.
3. The L∞ estimate for pgood follows directly from lemma B.3 and the defi-

nition of ϕ.
4. To estimate pmain we notice that pmain = pb + p. We have already

proved that pb is bounded and recall that p = ξh(x, τ ). Thus |p(x, ξ)| =
1
t τh(x, τ ) and thus the estimate (B.7) implies that ‖tpmain‖L∞ ≤ 〈A〉.
Similarly, when estimating ∂ξ pmain , by our uniform estimate on pb we are
reduce to estimate ∂ξ p. Now notice that by the definition of p and the chain
rule, ‖∂ξ p‖L∞ = t

t ‖∂τ (τh)‖ ≤ 〈A〉 where the last bound follows from the
lemma B.4

5. Finally, we deal with the derivatives respect to x . Firstly, observe that
tp(x, τ ) = τh(x, τ ) and thus the estimates of the derivatives in x fol-
low directly from those of h, which are explicitly bounded in lemma B.4.
Hence we obtain that

‖tp‖1,1 + ‖t∂x p‖1,1 + ‖∂ξ pb‖1,0 ≤ 〈A〉. (B.13)

Next we look at the x derivatives of pb, ∂ξ pb. We have done all the work
as in the expressions, of T11, T12,U1,U2 the only difficulty occurs when
after the use of chain rule we differentiate A and c. Thus we obtain that

‖pb‖1,1 + ‖∂x pb‖1,1 ≤ 〈A〉. (B.14)

Since, p
ξ

= h(x, τ ) and ϕ is explicit lemma B.3, lemma B.4 imply readily
the bounds for ‖pgood‖1,1 ≤ 〈A〉 and thus the claim i) follows. Claim ii),
which deals with pmain , is an straightforward consequence of (B.13) and
(B.14).

��

The following lemma is cumbersome as considering p
1
2+ instead of p+ is

less innocent than it seems. In fact here is the only place where the existence
of the constant c∞ is required.

Lemma B.6 Let 2|A| + 5 + 8π < B
2 . The symbols p

1
2+ and q = ∂ξ p

1
2+ satisfy

that for 0 < ε < 1 it holds that,

‖t 12 p
1
2+‖1,1 ≤ 〈A〉, ||∂ξ p

1
2+||L∞(R2) ≤ 〈A〉,

‖∂x∂ξ p
1
2+‖L∞(R2) ≤ 〈A〉, sup

ξ∈R

(‖∂xq‖H2 + ‖∂xq‖Ḣ−ε

) ≤ 〈A〉,

||t 12 ∂2x p
1
2+||L∞(R2) ≤ 〈A〉.
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Proof We give the proof in the case c ≥ 1 + κ , and will explain at the end of
the proof the modifications for the case c = 1. We explain first the L∞ bounds
then ∂xq ∈ Ḣ−ε and finally how to control the x derivatives of both symbols.

1. Since,

tp+(x, ξ) = (t + τ) (ϕ(τ) − h(x, τ )) (B.15)

it follows from (B.8) that

|p
1
2+| ≤ 〈A〉√

t
. (B.16)

Now we deal with q = ∂ξ p
1
2+(x, ξ). By product rule for derivatives,

q(x, ξ) = 1

2

sign(ξ)

(1 + |ξ |) 1
2

(ϕ(τ) − h(x, τ ))
1
2

+ (1 + |ξ |) 1
2
tsign(ξ)

2
(ϕ(τ) − h(x, τ ))−

1
2 × ∂τ (ϕ(τ) − h2(τ )) .

(B.17)

The first term is innocent since (ϕ − h) is bounded. For the second we
notice, that

t (1 + |ξ |) 1
2 ≤ t

1
2 (1 + |τ |) 1

2 , (ϕ − h)−
1
2 ≤ C(1 + τ)

1
2 , (B.18)

where the second inequality comes from lemmaB.3. In addition, lemmaB.4
implies that |∂τ (ϕ − h)| ≤ 〈A〉

1+τ 2
. Thus, the desired

|q(x, ξ)| ≤ 〈A〉.
follows.

2. That ∂xq ∈ Ḣ−ε follows from the existence of a constant q∞ such that
q − q∞ ∈ L2. Since the only x dependence of q is through A, c mwe
will declare q∞(t, ξ) = q(0, c∞, t, ξ). Now by plugging into (B.17) the
bounds from lemmas B.3 amd B.4, it follows that |∇A,c|q ≤ 〈A〉. Then,
the mean value theorem applied to q as a function of A, c, yields that for
every x ∈ R,

|q(x) − q∞| ≤ 〈A〉(|A(x) − 0| + |c(x) − c∞|)
and since A is H3 and

∫ |c−c∞|2dx < C by assumption, the result follows.

The proof to bound ||p
1
2+||Ḣ−ε follows similar steps.
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3. Now we compute ∂kx p
1
2+(x, ξ) and ∂kx q. By chain and product rule

∂kx p
1
2+(x, ξ) it is a sumof termsof the type (1+|ξ |) 1

2 (ϕ−h)
1
2−i�∑αi=k∂

αi
x (ϕ−

h) for i = 1, . . . , k. By (B.18) and lemma B.4 the most singular term is

(1 + |ξ |) 1
2 (ϕ − h)

1
2−k |∂xh|k ≤ t−

1
2 〈A〉|cx | + |Ax |(1 + τ)k

(1 + τ)k

≤ t−
1
2 〈A〉 (|cx | + |Ax |) .

We move to q. We need to show that ∂xq ∈ L∞ for p
1
2+ ∈ S1,1 and that

∂kx q ∈ L2 for k = 1, 2, 3. By lemma B.2 we only need to give the details of
the case τ > 1.Notice thatwhenwe differentiate in (B.17) the derivatives of
the first term still remain innocent as ∂kx (ϕ(τ) − h(x, τ ))

1
2 has been shown

to be bounded by sup1≤i≤k |∂ ix c|+|∂ ix A|. For the second term, again product
rule combined with lemma B.3 and B.4 implies that the most singular term
is

t (1 + |ξ |) 1
2 (ϕ − h(x, τ )−

1
2−k |∂xh|k∂τ (ϕ(τ) − h(x, τ ))

≤ 〈A〉 (|∂xc| + |∂x A|) (1 + τ)k+1

(1 + τ)k(1 + τ 2)
.

Notice that the terms ∂
αi
x (ϕ − h) and ∂

αi
x ∂τ (ϕ − h) will be less singular

respect to τ and will be controlled by 〈A〉(|∂αi
x c| + |∂αi

x A|).
Finally, we mention that in the case c = 1, ∂xc = 0, thus their derivatives are
bounded by powers of 1

1+τ 2
and lemmaB.3 implies that (ϕ−h)−1 ≤ C

B (1+τ 2).
The terms appearing in our various derivatives compensate exactly in the same
way. ��
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