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Abstract We show that manifolds with �n2�-positive curvature operators are
rational homology spheres. This follows from a more general vanishing and
estimation theorem for the pth Betti number of closed n-dimensional Rie-
mannian manifolds with a lower bound on the average of the lowest n − p
eigenvalues of the curvature operator. This generalizes results due toD.Meyer,
Gallot–Meyer, and Gallot.
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Introduction

A fundamental theme in Riemannian geometry is to understand the relation-
ship between the curvature and the topology of a Riemannian manifold. The
Bochner technique addresses this question by studying the existence of har-
monic tensors on closed Riemannian manifolds. This is motivated by Hodge’s
theorem which asserts that every de Rham cohomology class is represented
by a harmonic form.
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34 P. Petersen, M. Wink

Bochner [5] opened up a link to geometry and proved that the first Betti
number of compact manifolds with positive Ricci curvature vanishes. Berger
[1] andMeyer [26] established vanishing results for the Betti numbers of man-
ifolds with positive curvature operators and in particular Meyer showed that
they are rational (co)homology spheres. Furthermore, Micallef–Wang [29]
proved that the second Betti number of even dimensional manifolds with pos-
itive isotropic curvature vanishes.

The Ricci flow has been used extensively to obtain classification results,
which in particular imply Bochner vanishing-type theorems. For example,
Hamilton [20,21], Chen [13] and Böhm–Wilking [11] showed that manifolds
with positive, in fact 2-positive, curvature operators are space forms. Brendle–
Schoen [10] and Brendle [6] showed that this is more generally the case for
manifolds whose product with R

2 and R, respectively, have positive isotropic
curvature. As a consequence, Brendle–Schoen [10] proved the differentiable
sphere theorem.

Based onRicci flowwith surgery, compactmanifoldswith positive isotropic
curvature have been classified by Hamilton [22], Chen–Zhu [15] and Chen–
Tang–Zhu [14] in dimension n = 4 and by Brendle [8] and Huang [24] in
dimensions n ≥ 12.

Using different techniques, Micallef–Moore [27] proved that simply con-
nected compact manifolds with positive isotropic curvature are homotopy
spheres.

Our first main theorem introduces nested curvature conditions that give rise
to different vanishing results for the Betti numbers bp(M). Recall that the
curvature operator of a Riemannian manifold is called l-positive if the sum of
its lowest l eigenvalues is positive.

Theorem A Let n ≥ 3 and 1 ≤ p ≤ �n2�. If (M, g) is a closed n-dimensional
Riemannian manifold with (n− p)-positive curvature operator, then b1(M) =
. . . = bp(M) = 0 and bn−p(M) = . . . = bn−1(M) = 0.

Theorem A follows from Bochner’s [5] theorem on manifolds with positive
Ricci curvature for n = 3 or p = 1 and from the work of Böhm–Wilking [11]
for n = 4.

In dimensions n ≥ 4, the class of manifolds with k-positive curvature
operator, 3 ≤ k ≤ n− 1, is different from the class of manifolds with positive
isotropic curvature. The classes overlap but neither is contained in the other. In
particular, Example 4.3(b) exhibits a 3-positive algebraic curvature operator
with negative isotropic curvatures.

Furthermore, Böhm–Wilking [11] remarked that the set of 3-positive cur-
vature operators is not Ricci flow invariant in dimensions n ≥ 4. In contrast,
positive and 2-positive curvature operator or positive isotropic curvature are
curvature conditions preserved by the Ricci flow, as shown by Hamilton
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New curvature conditions for the Bochner Technique 35

[21,22], Chen [13], Brendle–Schoen [10] and Nguyen [30]. This observation
is crucial for the Ricci flow results discussed above.

Theorem A raises the following question:

Question Are there closed, simply connected Riemannian manifolds with
(n − 1)-positive curvature operator and large second Betti number?

Similar questions can be asked for higher Betti numbers to address whether
or not the conditions on the curvature operator in Theorem A are optimal.

Notice that CP2 is 3-positive with b2 = 1 and that Sha–Yang [37] exhib-
ited metrics of positive Ricci curvature on the connected sums

(
S2 × S2

)
#

. . . #
(
S2 × S2

)
.

In [23] Hoelzel established a surgery procedure for manifolds that satisfy a
pointwise curvature condition. This, for instance, generalizesMicallef–Wang’s
[29] result that positive isotropic curvature is preserved under connected sums.

Example 4.3 (c) exhibits an (n − 1)-positive algebraic curvature operator
and a 2-form which yield a negative curvature term in the Bochner formula.

Theorem A immediately implies:

Corollary Let n ≥ 3 and let (M, g) be a closed n-dimensional Riemannian
manifold. If the curvature operator is �n2�-positive, then bp(M) = 0 for 0 <

p < n.

In view of the results of Böhm–Wilking [11], Brendle–Schoen [10] and
Brendle [6], it is natural to ask:

Question Are closed manifolds with �n2�-positive curvature operators space
forms?

Many of the above mentioned results also have rigidity analogues in case
of the corresponding nonnegativity conditions. In the context of the Bochner
technique this goes back to Gallot–Meyer [17] who consideredmanifolds with
nonnegative curvature operator. The more general results due to Ni–Wu [31],
Brendle–Schoen [9], Seshadri [34] and Brendle [7] again rely on Ricci flow
techniques. The rigidity result corresponding to Theorem A is:

Theorem B Let n ≥ 3 and 1 ≤ p ≤ �n2�. If (M, g) is a closed n-dimensional
Riemannianmanifold with (n− p)-nonnegative curvature operator, then every
harmonic p-form is parallel. Similarly every harmonic (n−p)-form is parallel.

For n = 3 or p = 1 the result follows again from Bochner’s [5] work and
in dimension n = 4 from the results of Ni–Wu [31].

With regard to classification results for manifolds with a nonnegativity con-
dition on the sum of the lowest eigenvalues, Theorem B is mainly interesting
in the case of generic holonomy. Otherwise it reduces to previous results due
to Gallot–Meyer [17], Böhm–Wilking [11] and Mok [28]:
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36 P. Petersen, M. Wink

Remark Suppose that (M, g) is n-dimensional and locally reducible. If the
curvature operator is (n − 1)-nonnegative, then the curvature operator is non-
negative. Similarly, if λn > 0, then λ1 = . . . = λn−1 = 0.

Suppose that (M, g) is n-dimensional, locally irreducible, and has spe-
cial holonomy. If the curvature operator is

(1
4n(n − 2)

)
-nonnegative, then

the curvature operator is nonnegative. Similarly, if λ 1
4n(n−2)+1 > 0, then

λ1 = . . . = λ 1
4n(n−2) = 0.

Combined with Theorem A these observations lead to the following result:

Corollary Let (M, g) be a closed connected n-dimensional Riemannian
manifold with restricted holonomy SO(n). If the curvature operator is �n2�-
nonnegative, then bp(M) = 0 for 0 < p < n.

Cheeger [12] adapted the Bochner technique to singular spaces and proved
a vanishing theorem for spaces with positive piecewise constant curvature,
as well as the corresponding rigidity theorem. As Cheeger points out, these
results indicate that spaces with nonnegative piecewise constant curvaturemay
be regarded as a non-smooth analogue ofmanifoldswith nonnegative curvature
operator.

Based on work of Li [25], Gallot [16] further generalized the Bochner
technique and obtained estimation results for the Betti numbers in case the
curvature operator is bounded from below by κ ≤ 0 and the diameter is
bounded above by D > 0.

Theorem C Let (M, g) be a closed connected n-dimensional Riemannian
manifold, n ≥ 3, and let λ1 ≤ . . . ≤ λ(n2)

denote the of the curvature operator
of (M, g). Fix κ ≤ 0, D > 0 and 1 ≤ p ≤ �n2�. If

λ1 + . . . + λn−p

n − p
≥ κ and diam(M) ≤ D,

then there is a constant C
(
n, κD2

)
> 0 such that

bp(M) ≤
(
n

p

)
exp

(
C

(
n, κD2) ·

√
−κD2 p(n − p)

)
.

In particular, there exists ε(n) > 0 such that κD2 ≥ −ε(n) implies bp(M) ≤(n
p

)
.

Theorem C is due to Gallot [16] if instead λ1 ≥ κ is assumed.
Remarkably, in the context of sectional curvature Gromov [19] established

similar bounds on the Betti numbers, with coefficients in an arbitrary field,
using purely geometric ideas.
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New curvature conditions for the Bochner Technique 37

Another application of our method yields a generalization of a theorem due
to Tachibana [38].

Theorem D Let n ≥ 5 and let (M, g) be a closed n-dimensional Einstein
manifold. If the curvature operator is �n−1

2 �-nonnegative, then the curvature
tensor is parallel.

If M is connected and the curvature operator is �n−1
2 �-positive, then (M, g)

has constant sectional curvature.

In dimension n = 4 the classification results for manifolds with 2-
nonnegative curvature operators due to Böhm–Wilking [11] and Ni–Wu [31]
apply since Einstein metrics are fixed points of the Ricci flow.

The rigidity results due to Brendle–Schoen [9] and Seshadri [34] also yield
Tachibana-type theorems. Brendle [7] specifically considers Einstein mani-
folds and shows that Einstein manifolds with nonnegative isotropic curvature
are locally symmetric. In dimension n = 4 this was observed by Micallef–
Wang [29].

The proofs of Theorems A–D rely on a newmethod to control the curvature
term of Lichnerowicz Laplacians on (0, k)-tensors T,

�LT = ∇∗∇T + cRic(T )

where c > 0 is a constant. In case of 1-forms, Ric(ω) is indeed given by the
Ricci curvature. In general Ric(T ) depends on the entire Riemannian curva-
ture tensor. The basic principle of the Bochner technique asserts that every
harmonic tensor with Ric(T ) ≥ 0 is parallel.

More concretely, the new method is based on a slight generalization of
Poor’s [33] approach to the Hodge Laplacian. Poor used the derivative of the
regular representation on tensors to obtain a simple formula for the curvature
term. Specifically, Poor studied p-forms and showed that

g(Ric(ω), ω) =
∑

α

λα|�αω|2

where {�α} is an orthonormal eigenbasis of the curvature operator and {λα}
denote the corresponding eigenvalues.

The key new observation is that for 1 ≤ p ≤ �n2� every p-form ω sat-
isfies |�αω|2 ≤ p|ω|2 while

∑
α |�αω|2 = p(n − p)|ω|2. This implies

g(Ric(ω), ω) ≥ 0 provided λ1 + . . . + λn−p ≥ 0.
Lemma 2.1 extends this idea and more generally explains how to control

the curvature term based on an understanding how elements of so(n) interact
with tensors of a specific type. E.g. Theorem D considers the case of algebraic
curvature tensors. The required estimates to apply Lemma 2.1 are established
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38 P. Petersen, M. Wink

in Lemma 2.2 and Proposition 2.5. The work of Li [25] and Gallot [16] then
implies a bound on the dimension of the kernel of the Lichnerowicz Laplacian.

Section 1 reviews the relevant background material. The key technical lem-
mas are given in Section 2. The proofs of themain theorems follow in section 3.
Section 4 contains examples that show that the estimates in section 2 are opti-
mal and considers algebraic curvature operators to discuss the optimality of
the eigenvalue assumptions in Theorems A–D.

General references for background on the Bochner technique are Bérard [4],
Goldberg [18] and Petersen [32]. For an account of the early developments of
the Bochner technique the reader is referred to Yano–Bochner [39].

1 Preliminaries

1.1 Tensors

Let (V, g) be an n-dimensional Euclidean vector space. The vector space of
(0, k)-tensors on V will be denoted by T (0,k)(V ) and the vector space of
symmetric (0, 2)-tensors by Sym2(V ).

Recall that there is an orthogonal decomposition

Sym2(	2V ) = Sym2
B(	2V ) ⊕ 	4V,

where the vector space Sym2
B(	2V ) consists of all tensors T ∈ Sym2(	2V )

that also satisfy the first Bianchi identity. Any R ∈ Sym2
B(	2V ) is called an

algebraic curvature tensor.
The following norms and inner products for tensors, whose components

are with respect to an arbitrary choice of an orthonormal basis, will be used
throughout: When T ∈ T (0,k)(V ) define

|T |2 =
∑

i1,...,ik

(
Ti1...ik

)2

whereas for a p-form ω ∈ 	pV ∗ set

|ω|2 =
∑

i1<...<i p

(
ωi1...i p

)2
.

Similarly, if {ei }i=1,...,n is an orthonormal basis for V , then{
ei1 ∧ . . . ∧ ei p

}
1≤i1<...<i p≤n

is an orthonormal basis for 	pV . This also

induces an inner product on so(V ) via its identification with 	2V .
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New curvature conditions for the Bochner Technique 39

The Kulkarni-Nomizu product of S, T ∈ Sym2(V ) is given by

(S � T )(X, Y, Z ,W ) = S(X, Z)T (Y,W ) − S(X,W )T (Y, Z)

+ S(Y,W )T (X, Z) − S(Y, Z)T (X,W ).

In particular, the tensor

(g � g)(X, Y, Z ,W ) = 2 {g(X, Z)g(Y,W ) − g(X,W )g(Y, Z)}
corresponds to the curvature tensor of the sphere of radius 1/

√
2.

Proposition 1.1 If h ∈ Sym2(V ), then

|g � h|2 = 4(n − 2)|h|2 + 4 tr(h)2.

In particular, |g � g|2 = 8(n − 1)n.

Proof Byusing anorthonormal basis {ei } forV that diagonalizes h oneobtains:

(g � h)i jkl =

⎧
⎪⎨

⎪⎩

hii + h j j if i = k �= j = l,

−hii − h j j if i = l �= j = k,

0 otherwise.

Hence

|g � h|2 = 2
∑

i, j

(hii + h j j )
2 − 2

∑

i

(2hii )
2 = 4(n − 2)|h|2 + 4 tr(h)2

as claimed. ��
Recall that every algebraic (0, 4)-curvature tensor Rm satisfies the orthog-

onal decomposition

Rm = scal

2(n − 1)n
g � g + 1

n − 2
g � R̊ic + W,

where R̊ic = Ric− scal
n g is the trace-free Ricci tensor andW denotes theWeyl

part. The associated algebraic curvature operatorR : 	2V → 	2V is defined
by

g(R(x ∧ y), z ∧ w) = Rm(x, y, z, w).

Note that the induced algebraic curvature tensor R ∈ Sym2
B(	2V ) satisfies

|Rm |2 = 4|R|2.
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40 P. Petersen, M. Wink

1.2 The regular representation

The derivative of the regular representation of O(n) on (V, g) induces a deriva-
tion on tensors: If T ∈ T (0,k)(V ) and L ∈ so(V ), then

(LT )(X1, . . . , Xk) = −
k∑

i=1

T (X1, . . . , LXi , . . . , Xk).

Notice that the metric g satisfies Lg = 0 for all L ∈ so(V ) since

(Lg)(X, Y ) = −g(LX, Y ) − g(X, LY ) = −g(LX, Y ) + g(LX, Y ) = 0.

The information on how all L ∈ so(V ) interact with a fixed T ∈ T (0,k) can
be encoded in a tensor T̂ with values in 	2V .

Definition 1.2 For T ∈ T (0,k)(V ) define T̂ ∈ 	2V ⊗T (0,k)(V ) implicitly by

g(L , T̂ (X1, . . . , Xk)) = (LT )(X1, . . . , Xk)

for all L ∈ so(V ) = 	2V .

Notice that if {�α} is an orthonormal basis for so(V ) = 	2V , then

T̂ =
∑

α

�α ⊗ �αT .

Consequently,
|T̂ |2 =

∑

α

|�αT |2.

Example 1.3 Let e1, . . . , en be an orthonormal basis for V with dual basis
e1, . . . , en and let 1 ≤ i1 < . . . < i p ≤ n. It is simple to verify that

̂ei1 ∧ . . . ∧ ei p =
∑

j=1,...,p
k /∈{i1,...,i p}

(−1) j emin{k,i j } ∧ emax{k,i j } ek ∧ ei1 ∧ . . . ∧ êi j ∧ . . . ∧ ei p .

The following observation will be crucial for applications to the Bochner
technique.

Proposition 1.4 Let R : 	2V → 	2V be an algebraic curvature operator
and {�α} an orthonormal basis for 	2V . It follows that

R(T̂ ) = R ◦ T̂ =
∑

α

R(�α) ⊗ �αT .
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New curvature conditions for the Bochner Technique 41

Furthermore, if {�α} is an eigenbasis ofR and {λα} denote the corresponding
eigenvalues, then

g(R(T̂ ), T̂ ) =
∑

α,β

g(R(�α), �β)g(�αT, �βT ) =
∑

α

λα|�αT |2.

The following proposition will be useful for the computation of examples:

Proposition 1.5 If {�α} is an orthonormal basis for 	2V that diagonalizes
R ∈ Sym2(	2V ) and {λα} denote the corresponding eigenvalues, then

|LR|2 = 2
∑

α<β

(λα − λβ)2g(L�α, �β)2

for every L ∈ so(V ).

Proof This is a straightforward calculation:

|LR|2 =
∑

α,β

(
(LR)(�α, �β)

)2

=
∑

α,β

(−R(L�α, �β) − R(�α, L�β)
)2

=
∑

α,β

(−λβg(L�α, �β) − λαg(�α, L�β)
)2

=
∑

α,β

(λα − λβ)2g(L�α, �β)2.

��

1.3 The Bochner technique

Let (M, g)be a closedn-dimensionalRiemannianmanifold and let R(X, Y )Z =
∇Y∇X Z −∇X∇Y Z +∇[X,Y ]Z denote its curvature tensor. For T ∈ T (0,k)(M)

set

Ric(T )(X1, . . . , Xk) =
k∑

i=1

n∑

j=1

(R(Xi , e j )T )(X1, . . . , e j , . . . , Xk).

Remark 1.6 Recall that the Ricci identity asserts

R(X, Y )T (X1, . . . , Xk) = −
k∑

i=1

T (X1, . . . , R(X, Y )Xi , . . . , Xk),
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42 P. Petersen, M. Wink

which is in agreementwith the effect of R(X, Y ) ∈ so(T M) on T ∈ T (0,k)(M)

defined in Sect. 1.2. In particular the above definition of Ric(T ) carries over
to algebraic curvature tensors. The notation RicR(T ) will be used to specify
the algebraic curvature tensor R.

Let E → M be a subbundle of T (0,k)(M). For c > 0 the Lichnerowicz
Laplacian on E is given by

�L = ∇∗∇ + cRic .

A tensor T is called harmonic if �LT = 0.

Example 1.7 There are various important examples of Lichnerowicz Lapla-
cians for different c > 0.

(a) The Hodge Laplacian is a Lichnerowicz Laplacian for c = 1 and a p-form
ω is harmonic if and only if it is closed and divergence free.

(b) The natural definition of the Lichnerowicz Laplacian for symmetric (0, 2)-
tensors uses c = 1

2 . With this choice h ∈ Sym2(M) is harmonic if and only
if h is a Codazzi tensor and divergence free. This is equivalent to h being
Codazzi and having constant trace. This has been used by Berger [2,3] in
the case of Einstein metrics and by Simons [35] in the case of constant
mean curvature hypersurfaces.

(c) The Lichnerowicz Laplacian for algebraic curvature tensors Rm on a Rie-
mannian manifold also uses c = 1

2 . With this choice Rm is harmonic if it
satisfies the second Bianchi identity and it is divergence free. If Rm sat-
isfies the second Bianchi identity, then it is divergence free if and only if
its Ricci tensor is a Codazzi tensor, and in this case its scalar curvature is
constant. This was used by Tachibana [38].

The next proposition is established in [32, lemmas 9.3.3 and 9.4.3].

Proposition 1.8 If S, T ∈ T (0,k)(M), then

g(Ric(S), T ) = g(R(Ŝ), T̂ ).

In particular, Ric is self-adjoint.

The Bochner technique relies on the following principle. Every harmonic
(0, k)-tensor T satisfies

�
1

2
|T |2 = |∇T |2 + c · g(R(T̂ ), T̂ ).

If g(R(T̂ ), T̂ ) ≥ 0, then the maximum principle implies that ∇T = 0. If
in addition g(R(Ŝ), Ŝ) > 0 for all tensors S of the same type as T and with
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New curvature conditions for the Bochner Technique 43

Ŝ �= 0, then T̂ = 0. For example, on 1-forms the curvature term is given by

g(R(ω̂), ω̂) = Ric(ω#, ω#).

Thus, if Ric ≥ 0 on M and Ricp > 0 for some p ∈ M, then every harmonic
1-form vanishes. Hence, by Hodge theory, b1(M) = 0. This is Bochner’s [5]
original theorem.

Based on thework of Li [25], Gallot [16] showed that the Bochner technique
implies estimation theorems if a negative lower bound on the curvature term
and an upper diameter bound are assumed. The following theorem summarizes
the framework of the Bochner technique for general Lichnerowicz Laplacians,
see [32, Chapter 9] for a detailed introduction.

Theorem 1.9 Let n ≥ 3, κ ≤ 0 and D > 0, and let (M, g) be a closed
connected n-dimensional Riemannian manifold with Ric(M) ≥ (n − 1)κ and
diam(M) ≤ D.

Let E → M be a subbundle of T (0,k)(M) with m-dimensional fiber and
assume there is C > 0 such that

g(R(T̂ ), T̂ ) ≥ κC |T |2

for all T ∈ �(E).
If κ = 0, then all T ∈ ker(�L) are parallel. If in addition there is p ∈ M

such that g(Rp(T̂ ), T̂ ) > 0 for all T ∈ �(Ep) with T̂ �= 0, then

ker(�L) = {T ∈ �(E) | T parallel, T̂ = 0}.

If κ < 0, then the dimension of the kernel of the associated Lichnerowicz
Laplacian

ker(�L) = {
T ∈ �(E) | �LT = ∇∗∇T + cRic(T ) = 0

}

is bounded by

m · exp
(
C

(
n, κD2) ·

√
−κD2cC

)
.

Moreover, there is ε(n, cC) > 0 such that κD2 ≥ −ε(n, cC) implies
dim ker(�L) ≤ m.

Remark 1.10 The condition Ric(M) ≥ (n − 1)κ is always satisfied in the
situation of Theorems A - D since the Ricci curvature is bounded from below
by the sum of the lowest (n − 1) eigenvalues of the curvature operator.
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44 P. Petersen, M. Wink

2 Controlling the curvature term of Lichnerowicz Laplacians

The following lemma provides a general method of controlling the curvature
term of the Lichnerowicz Laplacian on tensors.

Lemma 2.1 Let R : 	2V → 	2V be an algebraic curvature operator with
eigenvalues λ1 ≤ . . . ≤ λ(n2)

and let T ∈ T (0,k)(V ).
Suppose there is C ≥ 1 such that

|LT |2 ≤ 1

C
|T̂ |2|L|2

for all L ∈ so(V ).

Let κ ≤ 0. If 1
�C�

(
λ1 + . . . + λ�C�

) ≥ κ , then g(R(T̂ ), T̂ ) ≥ κ|T̂ |2 and if

λ1 + . . . + λ�C� > 0, then g(R(T̂ ), T̂ ) > 0 unless T̂ = 0.

Proof Choose an orthonormal basis {�α} for 	2V such thatR(�α) = λα�α.

Notice that λ�C�+1 ≥ κ , which in turn implies

g(R(T̂ ), T̂ ) =
(n2)∑

α=1

λα|�αT |2

=
(n2)∑

α=�C�+1

λα|�αT |2 +
�C�∑

α=1

λα|�αT |2

≥ λ�C�+1

(n2)∑

α=�C�+1

|�αT |2 +
�C�∑

α=1

λα|�αT |2

= λ�C�+1|T̂ |2 +
�C�∑

α=1

(
λα − λ�C�+1

) |�αT |2

≥ λ�C�+1|T̂ |2 + 1

C

�C�∑

α=1

(
λα − λ�C�+1

) |T̂ |2

= λ�C�+1

(
1 − �C�

C

)
|T̂ |2 + |T̂ |2

C

�C�∑

α=1

λα

≥ κ|T̂ |2.

The last claim follows from the observation that for λ�C�+1 ≥ 0 the above

calculation implies g(R(T̂ ), T̂ ) ≥ |T̂ |2
C

∑�C�
α=1 λα. ��
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New curvature conditions for the Bochner Technique 45

In the following, |LT |2 will be estimated for various types of tensors:

Lemma 2.2 Let (V, g) be an n-dimensional Euclidean vector space and L ∈
so(V ). The following hold:

(a) Every T ∈ T (0,k)(V ) satisfies

|LT |2 ≤ k2|T |2|L|2.

(b) Every p-form ω satisfies

|Lω|2 ≤ min{p, n − p}|ω|2|L|2.

(c) Every R ∈ Sym2(	2V ) satisfies

|LR|2 ≤ 8|R̊|2|L|2

and the associated (0, 4)-tensor Rm also satisfies

|L Rm |2 ≤ 8| ˚Rm|2|L|2.

Proof Choose an orthonormal basis {ei } for V so that

L =
�n/2�∑

i=1

α2i− 1
2
e2i−1 ∧ e2i

and observe that Lei = (−1)i+1α
i+ (−1)i+1

2
ei+(−1)i+1 .

In case (a) this yields

T
(
ei1, . . . , Lei j , . . . , eik

)

= (−1)i j+1α
i j+ (−1)

i j+1

2

T
(
ei1, . . . , ei j+(−1)i j+1, . . . , eik

)

and

|(LT )(ei1, . . . , eik )|2 =
∣
∣
∣∣
∣∣
−

k∑

j=1

T
(
ei1, . . . , Lei j , . . . , eik

)
∣
∣
∣∣
∣∣

2

=
∣
∣∣
∣∣
∣
−

k∑

j=1

(−1)i j+1α
i j+ (−1)

i j+1

2

T
i1...i j+(−1)i j+1

...ik

∣
∣∣
∣∣
∣

2
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≤
⎛

⎝
k∑

j=1

(
α
i j+ (−1)

i j+1

2

)2
⎞

⎠

⎛

⎝
k∑

j=1

(
T
i1...i j+(−1)i j+1

...ik

)2
⎞

⎠

≤ k|L|2
k∑

j=1

(
T
i1...i j+(−1)i j+1

...ik

)2
.

Summation over i1, . . . , ik implies

|LT |2 ≤ k|L|2
∑

i1,...,ik

k∑

j=1

(
T
i1...i j+(−1)i j+1

...ik

)2 ≤ k2|L|2|T |2.

It suffices to prove (b) for p ≤ �n2� due to Hodge duality. Furthermore,
assume i1 < . . . < i p in the above calculation. It follows that the coefficients
α
i j+ (−1)

i j+1

2

that are summed over all correspond to different coefficients of L .

Indeed, a coefficient can only occur twice if there are consecutive indices k, l
such that

ik + 1

2
= il − 1

2
.

However, in this case observe that

αik+ 1
2
ω

(
ei1, . . . , eik+1, eil , . . . , ei p

)

= 0 and αil− 1
2
ω

(
ei1, . . . , eik , eil−1, . . . , ei p

) = 0

and hence these terms do not occur in the summation. Thus

|(Lω)
(
ei1, . . . , ei p

) |2 ≤ |L|2
p∑

j=1

(
ω

(
ei1, . . . , ei j+(−1)i j+1, . . . , ei p

))2

and summation over i1 < . . . < i p yields the claim.
Case (c) follows as in (b) by using the symmetries of Rm . ��

Remark 2.3 The estimates in Lemma 2.2 are optimal. For (a) this is easy to
see in case of symmetric (0, 2)-tensors and the examples in section 4 show that
the estimates in (b) and (c) cannot be improved without further assumptions
either.

Let id∧ id denote the curvature tensor of the unit sphere. The computa-
tion of |T̂ |2 in the propositions below relies on the observation that |T̂ |2 =
g(Ricid∧ id(T ), T ).
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Proposition 2.4 Let (V, g) be an n-dimensional Euclidean vector space and
T ∈ T (0,k)(V ). It follows that

Ricid∧ id(T )(X1, . . . , Xk)

= k(n − 1)T (X1, . . . , Xk) +
∑

i �= j

(T ◦ τi j )(X1, . . . , Xk)

−
∑

i �= j

g(Xi , X j )ci j (T )(X1, . . . , X̂i , . . . , X̂ j , . . . , Xk),

where τi j denotes the transposition of the i th and j th entries and ci j (T ) is the
contraction of T in the i th and j th entries.

Proof Recall that the curvature tensor of the unit sphere satisfies

R(X, Y )Z = g(X, Z)Y − g(Y, Z)X = (X ∧ Y )(Z).

Let {ei } be an orthonormal basis for V . The claim now follows from the
calculation:

Ricid∧ id(T )(X1, . . . , Xk)

=
k∑

i=1

n∑

a=1

(R(Xi , ea)T )(X1, . . . , ea, . . . , Xk)

=
∑

i �= j

n∑

a=1

T (X1, . . . , (ea ∧ Xi )X j , . . . , ea, . . . , Xk)

+
k∑

i=1

n∑

a=1

T (X1, . . . , (ea ∧ Xi )ea, . . . , Xk)

=
∑

i �= j

n∑

a=1

T (X1, . . . , g(ea, X j )Xi − g(Xi , X j )ea, . . . , ea, . . . , Xk)

+
k∑

i=1

n∑

a=1

T (X1, . . . , Xi − g(ea, Xi )ea, . . . , Xk)

=
∑

i �= j

n∑

a=1

T (X1, . . . , Xi , . . . , g(ea, X j )ea, . . . , Xk)

−
∑

i �= j

n∑

a=1

g(Xi , X j )T (X1, . . . , ea, . . . , ea, . . . , Xk)

+ k(n − 1)T (X1, . . . , Xk).

��
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Proposition 2.5 Let (V, g) be an n-dimensional Euclidean vector space and
let id∧ id denote the curvature tensor of the unit sphere. The following hold:

(a) Every p-form ω satisfies

Ricid∧ id(ω) = p(n − p)ω,

|ω̂|2 = p(n − p)|ω|2.

(b) Every algebraic (0, 4)-curvature tensor Rm and every R ∈ Sym2
B(	2V )

satisfies

Ricid∧ id(Rm) = 4(n − 1)Rm−2g � Ric,

|̂Rm|2 = |̂̊Rm|2 = 4(n − 1)| ˚Rm|2 − 8|R̊ic|2,
|R̂|2 = | ˆ̊R|2 = 4(n − 1)|R̊|2 − 2|R̊ic|2.

In particular R̂m = 0 if and only if Rm = κ
2 g � g for some κ ∈ R.

Proof (a)Notice thatω◦τi j = −ω for every transposition τi j and thus ci j (T ) =
0 for all i �= j . This implies

Ricid∧ id(ω) = −
∑

i �= j

ω + p(n − 1)ω = p(n − p)ω.

(b) Due to the symmetries of the curvature tensor

∑

i �= j

Rm ◦τi j

= 2(Rm ◦τ12 + Rm ◦τ13 + Rm ◦τ14 + Rm ◦τ23 + Rm ◦τ24 + Rm ◦τ34)

= −4Rm+2(Rm ◦τ13 + Rm ◦τ14 + Rm ◦τ23 + Rm ◦τ24)

which implies

∑

i �= j

(
Rm ◦τi j

)
(X, Y, Z ,W )

= −4Rm(X, Y, Z ,W ) + 2{Rm(Z , Y, X,W ) + Rm(W, Y, Z , X)

+ Rm(X, Z , Y,W ) + Rm(X,W, Z , Y )}
= −4{Rm(X, Y, Z ,W ) + Rm(Y, Z , X,W ) + Rm(Z , X, Y,W )}
= 0
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due to the first Bianchi identity. For the remaining term one computes

∑

i �= j

(g(·, ·)ci j (Rm))(X, Y, Z ,W )

= 2
n∑

i=1

{g(X, Z)Rm(ei , Y, ei ,W ) + g(X,W )Rm(ei , Y, Z , ei )

+ g(Y, Z)Rm(X, ei , ei ,W ) + g(Y,W )Rm(X, ei , Z , ei )}

= 2
n∑

i=1

{g(X, Z)Rm(Y, ei ,W, ei ) − g(X,W )Rm(Y, ei , Z , ei )

− g(Y, Z)Rm(X, ei ,W, ei ) + g(Y,W )Rm(X, ei , Z , ei )}
= 2(g � Ric)(X, Y, Z ,W ).

To calculate |R̂m|2 observe that

g(Rm, g�Ric) = scal2

2n2(n − 1)
|g�g|2+ 1

n − 2
|R̊ic�g|2 = 4

scal2

n
+4|R̊ic|2

due to Proposition 1.1. For the last claim observe that

|R̂m|2 = 4(n − 1)| ˚Rm|2 − 8|R̊ic|2

= 4(n − 1)

(
1

(n − 2)2
|g � R̊ic|2 + |W |2

)
− 8|R̊ic|2

=
(
16

n − 1

n − 2
− 8

)
|R̊ic|2 + 4(n − 1)|W |2.

In particular, |R̂m|2 = 0 is equivalent to | ˚Rm|2 = 0. ��

3 Geometric applications

This section contains the proofs of the main theorems.

Proof of Theorems A–C By replacing M with its orientation double cover, if
necessary, it may be assumed that M is orientable. Due to Poincaré duality it
suffices to consider p ≤ �n2�. Let ω be a p-form. Lemma 2.2 and Proposi-
tion 2.5 imply

|Lω|2 ≤ p|ω|2|L|2 = 1

n − p
|ω̂|2|L|2

for all L ∈ so(T M).
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If the eigenvalues of the curvature operator satisfy 1
n−p (λ1 + . . .+λn−p) ≥

κ, then Lemma 2.1 yields

g(R(ŵ), ω̂) ≥ κ|ω̂|2 = κp(n − p)|ω|2.

An application of the Bochner technique as in Theorem 1.9 to the Hodge
Laplacian completes the proof. ��
Remark 3.1 Example 4.3(c) constructs an (n−1)-positive algebraic curvature
operator R : 	2

R
n → 	2

R
n and a 2-form ω such that g(R(ω̂), ω̂) < 0.

Proof of Theorem D. Recall from Example 1.7(c) that the curvature tensor of
an Einstein manifold is harmonic. Hence it satisfies the Bochner formula

∇∗∇ Rm+1

2
Ric(Rm) = 0.

Moreover, since R̊ic= 0, Proposition 2.5 shows that |R̂m|2 = 4(n−1)| ˚Rm|2
and Lemma 2.2 implies

|L Rm |2 ≤ 8| ˚Rm|2|L|2 = 2

n − 1
|R̂m|2|L|2

for all L ∈ so(T M).

By assumption the eigenvalues of the curvature operator satisfy λ1 + . . . +
λ� n−1

2 � ≥ 0 and thus Lemma 2.1 implies

g(R(R̂m), R̂m) ≥ 0.

An application of the Bochner technique discussed before Theorem 1.9
shows that Rm is parallel. Moreover, if λ1+ . . .+λ� n−1

2 � > 0, then |R̂m|2 = 0
and thus Rm has constant sectional curvature due to Proposition 2.5. ��
Remark 3.2 (a) Recall that every irreducible Riemannian manifold with par-

allel Ricci tensor is Einstein, and hence Theorem D applies.
(b) Recall that in dimension n = 4 Theorem D follows from the work of

Böhm–Wilking [11] and Ni–Wu [31] assuming λ1 + λ2 ≥ 0. Using a
Singer–Thorpe basis [36] for the curvature operator of orientable Einstein
manifolds in dimension n = 4, it is possible to compute g(R(R̂m), R̂m)

explicitly and conclude that also g(R(R̂m), R̂m) ≥ 0providedλ1+λ2 ≥ 0.
In contrast, Example 4.3 (d) exhibits an Einstein, 3-nonnegative algebraic
curvature operator R with g(R(R̂m), R̂m) < 0.
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4 Examples

Examples 4.1–4.3 (a) show that the estimates in Lemma 2.2 are sharp in the
cases of forms and algebraic curvature tensors.

Example 4.3(b) exhibits a 3-positive algebraic curvature operator with neg-
ative isotropic curvatures. By considering algebraic curvature operators, the
optimality of the eigenvalue assumptions is discussed in examples 4.3(c) for
Theorems A–C and in Example 4.3(d) for Theorem D in dimension n = 4.

Example 4.1 Consider the 2-forms ω1 = e1∧e3−e2∧e4 and ω2 = e1∧e4+
e2 ∧ e3 and the bivector L = e1 ∧ e2 + e3 ∧ e4. It follows that Lω1 = −2ω2
and Lω2 = 2ω1. In particular, |Lω1|2 = |Lω2|2 = 8, |ω1|2 = |ω2|2 = 2 and
|L|2 = 2. Thus the estimate in Lemma 2.2 is optimal for 2-forms.

Example 4.2 For p-forms on R
2p consider L = e1 ∧ e2 + . . . + e2p−1 ∧ e2p.

There are 2p forms ω of the form eI = ei1 ∧ . . . ∧ ei p with i1 < . . . < i p
such that Lω is a linear combination of exactly p forms eI . Notice from the
proof of Lemma 2.2 that this happens precisely when i1 ∈ {1, 2}, . . . , i p ∈
{2p − 1, 2p}. The span of these eI is a subspace which is invariant under
L . Furthermore, there is a choice of αI , βI ∈ {±1} such that L

∑
αI eI =

±p
∑

βI eI . The signs can be predicted in the following way:
The basis elements will be grouped into p+1 groups B0, . . . , Bp where Bk

consists of
(p
k

)
basis elements. The coefficients of the basis elements in each

group will have the same sign but the coefficients of the basis elements in Bk
and Bk+2 must have opposite signs. Set B0 = {e1∧e3∧ . . .∧e2p−1}. Suppose
that B0, . . . , Bk have already been constructed. Apply L to the elements in Bk .
This produces

( p
k+1

)
basis elements which have not occurred in B0, . . . , Bk .

These elements form Bk+1. Note that, e.g., Bp = {e2 ∧ e4 ∧ . . .∧ e2p}. Define

ω1 = +
∑

B0

eI −
∑

B2

eI +
∑

B4

eI − . . . ,

ω2 = +
∑

B1

eI −
∑

B3

eI +
∑

B5

eI − . . . .

It follows that Lω1 = −pω2 and Lω2 = pω1. Notice that  = ω1 ± ω2
indeed uses 2p basis elements.

In the case p = 3 one obtains

ω1 = e1 ∧ e3 ∧ e5 − e1 ∧ e4 ∧ e6 − e2 ∧ e3 ∧ e6 − e2 ∧ e4 ∧ e5,

ω2 = e1 ∧ e3 ∧ e6 + e1 ∧ e4 ∧ e5 + e2 ∧ e3 ∧ e5 − e2 ∧ e4 ∧ e6.

For dimensions n ≥ 2p notice that 	2(R2p)∗ ⊆ 	2(Rn)∗. This shows that
the estimate of Lemma 2.2 is optimal for p-forms.
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Example 4.3 Consider the basis �1,± = 1√
2
(e1 ∧ e2 ± e3 ∧ e4) , �2,± =

1√
2
(e1 ∧ e3 ± e4 ∧ e2) , �3,± = 1√

2
(e1 ∧ e4 ± e2 ∧ e3) for 	2

R
4. Note that

if {i, j, k} = {1, 2, 3} and all signs agree, then |g (
(�i,±)� j,±, �k,±

) | = √
2

and otherwise zero.
The self-adjoint operator R : 	2

R
4 → 	2

R
4 defined by R(�i,±) =

λi,±�i,± satisfies the first Bianchi identity if and only if λ1,+ +λ2,+ +λ3,+ =
λ1,− + λ2,− + λ3,−. In this case R is Einstein.

Note thatR can be extended to an algebraic curvature operatorR : 	2
R
n →

	2
R
n by setting R(ek ∧ el) = λkl ek ∧ el for k ∈ {1, . . . , 4}, l ∈ {5, . . . , n}

and k, l ∈ {5, . . . , n} with k < l.

(a) Setting λ1,+ = −1, λ2,+ = 1, λ3,+ = 3 and λi,− = 1 for i = 1, 2, 3
one obtains an Einstein, 2-nonnegative curvature operator which satisfies
|R̊|2 = 8. Moreover, Proposition 1.5 implies that |�2,+R|2 = 8|R̊|2 and
hence this example achieves equality in the estimate for algebraic curvature
tensors in Lemma 2.2.

(b) Let ε > 0. Setting λ1,+ = λ2,+ = −ε, λ3,+ = 3 + 3ε and λ1,− = λ2,− =
1+3ε, λ3,− = 1−8ε one obtains an Einstein, 3-positive curvature operator
with negative isotropic curvatures. Note that for ε = 0 this is the curvature
operator of CP2. By setting λkl = 3ε this example extends to dimensions
n > 4.

(c) Let ω = e1 ∧ e4 + e2 ∧ e3. It follows that |�1,+ω|2 = |�2,+ω|2 = 2|ω|2
and �3,+ω = �i,−ω = 0 for i = 1, 2, 3. Furthermore, Proposition 1.4
yields g(R(ω̂), ω̂) = 2(λ1,++λ2,+)|ω|2. In particular, the above curvature
term vanishes on the Kähler form of CP2 with the Fubini Study metric.
For n > 4, set λ1,+ = λ2,+ = −(n − 3), λ3,+ = 2n and λi,− = λkl = 2
and note that |(ei ∧ e j )ω|2 = 1

2 |ω|2 if i ∈ {1, . . . , 4} and j ∈ {5, . . . , n}
but |(ei ∧ e j )ω|2 = 0 if i, j ∈ {5, . . . , n}. Proposition 1.5 shows thatR is
an (n − 1)-nonnegative algebraic curvature operator with g(R(ω̂), ω̂) =
−4|ω|2 < 0. Thus there also is an (n − 1)-positive algebraic curvature
operator R̃ with g(R̃(ω̂), ω̂) < 0.

(d) Recall that according to Remark 3.2 every Einstein, 2-nonnegative alge-
braic curvature operator R : 	2

R
4 → 	2

R
4 satisfies g(R(R̂), R̂) ≥ 0.

Setting λ1,+ = λ2,+ = −1, λ3,+ = 8, and λi,− = 2 for i = 1, 2, 3 one
obtains an Einstein, 3-nonnegative algebraic curvature operator such that
g(R(R̂), R̂) < 0. However, notice that the method used in the proof of
Theorem D in section 3 requires λ1 ≥ 0 in dimension n = 4.

Remark 4.4 (a) For p, q ≥ 2 there are doubly warped product metrics on
S p+q+1, C1-close to the round metric, of the following types:
(1) Metrics that have positive isotropic curvature but do not induce positive

isotropic curvature on S p+q+1 × R, and have (p + 1)-positive curvature
operator but do not have p-positive curvature operator.
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(2) Metrics with negative isotropic curvatures at some tangent space whose
curvature operator is k-positive but not (k−1)-positive for k = 5, . . . , pq+
p + q + 1.

In particular, Brendle’s [6] convergence theorem for the Ricci flow, Micallef–
Moore’s [27] theorem on simply connected manifolds with positive isotropic
curvature, and Theorem A indeed make different assumptions on curvature.

(b) Let R : 	2
R
n → 	2

R
n be a self-adjoint operator and 2p ≤ n. If

R is (n − p)-positive, then Lemmas 2.1, 2.2 and Proposition 2.5 show that
g(R(ω̂), ω̂) > 0 for every non-zero ω ∈ 	p(Rn)∗. In particular, R does not
need to satisfy the first Bianchi identity.

Given the examples of ω ∈ 	p(R2p)∗ and � ∈ so(R2p) with |�ω|2 =
p|ω|2 in Example 4.2, for every n ≥ 2p it is easy to find a self-adjoint,
(n − p + 1)-positive operatorR : 	2

R
n → 	2

R
n with g(R(ω̂), ω̂) < 0.
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