
Invent. math. (2021) 223:1027–1095
https://doi.org/10.1007/s00222-020-01000-6

Minimal submanifolds from the abelian Higgs
model

Alessandro Pigati1 · Daniel Stern2

Received: 1 September 2019 / Accepted: 1 September 2020 /
Published online: 10 September 2020
© The Author(s) 2020

Abstract Given a Hermitian line bundle L → M over a closed, oriented
Riemannian manifold M , we study the asymptotic behavior, as ε → 0, of
couples (uε, ∇ε) critical for the rescalings

Eε(u, ∇) =
∫
M

(
|∇u|2 + ε2|F∇|2 + 1

4ε2
(1 − |u|2)2

)

of the self-dual Yang–Mills–Higgs energy, where u is a section of L and∇ is a
Hermitian connection on L with curvature F∇ . Under the natural assumption
lim supε→0 Eε(uε, ∇ε) < ∞, we show that the energy measures converge
subsequentially to (the weight measure μ of) a stationary integral (n − 2)-
varifold. Also, we show that the (n − 2)-currents dual to the curvature forms
converge subsequentially to 2π�, for an integral (n − 2)-cycle � with |�| ≤
μ. Finally, we provide a variational construction of nontrivial critical points
(uε, ∇ε) on arbitrary line bundles, satisfying a uniform energy bound. As a
byproduct,we obtain a PDEproof, in codimension two, ofAlmgren’s existence
result for (nontrivial) stationary integral (n−2)-varifolds in an arbitrary closed
Riemannian manifold.
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1028 A. Pigati, D. Stern

1 Introduction

A level set approach for the variational construction of minimal hypersurfaces
was born from the work of Modica–Mortola [30], Modica [29], and Sternberg
[34]. Starting from a suggestion by De Giorgi [12], they highlighted a deep
connection between minimizers uε : M → R of the Allen–Cahn functional

Fε(v) :=
∫
M

(
ε|dv|2 + 1

4ε
(1 − v2)2

)
,

and two-sided minimal hypersurfaces in M , showing essentially that the func-
tionals Fε �-converge to (43 times) the perimeter functional onCaccioppoli sets.
Several years later, Hutchinson and Tonegawa [19] initiated the asymptotic
study of critical points vε of Fε with bounded energy, without the energy-
minimality assumption. They showed, in particular, that their energymeasures
concentrate along a stationary, integral (n − 1)-varifold, given by the limit of
the level sets v−1

ε (0).
These developments, together with the deep regularity work by Tonegawa

and Wickramasekera on stable solutions [38], opened the doors to a fruitful
min–max approach to the construction of minimal hypersurfaces, providing a
PDE alternative to the rather involved discretized min–max procedure imple-
mented by Almgren and Pitts [5,31] in the setting of geometric measure
theory. This promising min–max approach based on the Allen–Cahn func-
tionals was recently developed by Guaraco and Gaspar–Guaraco [14,16], and
has been used successfully to attack some profound questions concerning the
structure of min–max minimal hypersurfaces—most notably in Chodosh and
Mantoulidis’s work on the multiplicity one conjecture [11].

The initial motivation for this paper is to find, in a similar vein, a natural
way to construct minimal varieties of codimension two through PDEmethods.
Recently, other attempts in this direction have been made by Cheng [10] and
the second-named author [33], based on the study of the Ginzburg–Landau
functionals

Fε(v) := 1

| log ε|
∫
M

(
|dv|2 + 1

4ε2
(1 − |v|2)2

)

on complex-valued maps v : M → C. While the Ginzburg–Landau approach
can be employed successfully to produce nontrivial stationary rectifiable
(n − 2)-varifolds (building on the analysis of [8,28], and others), and leads to
existence results of independent interest for solutions of the Ginzburg–Landau
equations, it is not yet known whether the varifolds produced in this way are
integral, nor is it known whether the full energies Fε(vε) of the min–max crit-
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Minimal submanifolds from the abelian Higgs model 1029

ical points converge to the mass of the limiting minimal variety in the case
b1(M) �= 0.

While it is possible that these and other technical difficulties may be
overcome with sufficient effort—and establishing integrality in particular
remains a fascinating open problem—they point to the deeper fact that the
Ginzburg–Landau functionals, though intimately related to the (n − 2)-area,
do not provide a straightforward regularization of the codimension-two area
functional. Indeed, we stress that the Ginzburg–Landau energies should be
understood first and foremost as a relaxation of the Dirichlet energy for sin-
gular maps to S1, and while the limiting singularities of critical points may
coincide with minimal varieties, the associated variational problems exhibit
substantial qualitative differences at both large and small scales.

In the present paper, we consider instead the self-dual Yang–Mills–Higgs
energy

E(u, ∇) :=
∫
M

(
|∇u|2 + |F∇|2 + W (u)

)
(1.1)

and its rescalings (for ε ∈ (0, 1])

Eε(u, ∇) :=
∫
M

(
|∇u|2 + ε2|F∇|2 + ε−2W (u)

)
, (1.2)

for couples (u, ∇) consisting of a section u of a given Hermitian line bundle
L → M , and a metric connection ∇ on L . Here, the nonlinear potential
W : L → R is given by

W (u) := 1

4
(1 − |u|2)2, (1.3)

while F∇ ∈ �2(End(L)) denotes the curvature of ∇.
For the trivial bundle L = C × R

2 on the plane M = R
2, a detailed study

of the functional (1.1) and its critical points can be found in the doctoral work
of Taubes [35,36]. In [36], all finite-energy critical points (u, ∇) of (1.1) in
the plane are shown to solve the first order system1

∇∂1u ± i∇∂2u = 0; ∗F∇ = ±1

2
(1 − |u|2) (1.4)

known as the vortex equations—a two-dimensional counterpart of the instan-
ton equations in four-dimensional Yang–Mills theory. In particular, all such

1 Here and elsewhere, we implicitly identify F∇ with the two-form ω given by F∇ (X, Y ) =
−iω(X,Y ).
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1030 A. Pigati, D. Stern

solutions (u, ∇) minimize energy among pairs (u, ∇) with fixed vortex num-
ber

N := 1

2π

∫
R2

∗F∇ ∈ Z,

and carry energy exactly E(u, ∇) = 2π |N |. In [35], Taubes shows moreover
that there exist solutions of (1.4) with any prescribed zero set

u−1(0) = {z1, . . . , zN } ⊂ R
2,

which are unique up to gauge equivalence, so that [35,36] together give a
complete classification of finite-energy critical points of (1.1) in the plane.

In [18], Hong, Jost, and Struwe initiate the study of the rescaled functionals
(1.2) in the limit ε → 0 for line bundles L → � over a closedRiemann surface
�. The main result of [18] shows that, for solutions (uε, ∇ε) of the rescaled
vortex equations (given by replacing 1

2 (1− |u|2) with 1
2ε2

(1− |uε |2) in (1.4)),
the curvature ∗ 1

2π F∇ε converges as ε → 0 to a finite sum of Dirac masses
of total mass | deg(L)|, away from which ∇ε converges to a flat connection
∇0, and uε to a unit section u0 with ∇0u0 = 0, up to change of gauge. While
the authors of [18] focus on the vortex equations over Riemann surfaces, they
suggest that the asymptotic analysis of the rescaled functionals Eε may also
yield interesting results in higher dimension, pointing to similarities with the
Allen–Cahn functionals for scalar-valued functions.

In the present paper, we develop the asymptotic analysis as ε → 0 for
critical points of Eε associated to line bundles L → M over Riemannian
manifolds Mn of arbitrary dimension n ≥ 2. The bulk of the paper is devoted
to the proof of the following theorem, which describes the limiting behavior
as ε → 0 of the energy measures

με := 1

2π
eε(uε, ∇ε) volg

and curvatures F∇ε for critical points (uε, ∇ε) satisfying a uniform energy
bound.

Theorem 1.1 Let L → M be a Hermitian line bundle over a closed, oriented
Riemannian manifold Mn of dimension n ≥ 2, and let (uε, ∇ε) be a family of
critical points for Eε satisfying a uniform energy bound

Eε(uε, ∇ε) ≤ 	 < ∞.
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Minimal submanifolds from the abelian Higgs model 1031

Then, as ε → 0, the energy measures

με := 1

2π
eε(uε, ∇ε) volg

converge subsequentially, in duality with C0(M), to the weight measure μ of
a stationary, integral (n − 2)-varifold V . Also, for all 0 ≤ δ < 1,

spt(V ) = lim
ε→0

{|uε | ≤ δ}

in the Hausdorff topology. The (n − 2)-currents dual to the curvature forms
1
2π F∇ε converge subsequentially to an integral (n− 2)-cycle �, with |�| ≤ μ.

As will be clear from the proofs, orientability will be assumed only to show
the statement concerning the current �.

Roughly speaking, Theorem 1.1 says that the energy of the critical points
concentrates near the zero sets u−1

ε (0) of uε as ε → 0, which converge to
a (possibly rather singular) minimal submanifold of codimension two. In the
case dim(M) = 3, for instance, it follows from the results above and work of
Allard and Almgren [3] that energy concentrates along a stationary geodesic
network with integer multiplicities. The convergence of the curvature, more-
over, to an integral cycle Poincaré dual to c1(L), with mass bounded above
by limε→0 Eε(uε, ∇ε), provides a higher dimensional analog to the limiting
behavior described in two dimensions by Hong–Jost–Struwe [18].

At first glance, the obvious advantages of Theorem 1.1 over analogous
results for the complex Ginzburg–Landau equations (cf., e.g., [8,28,33]) are
the integrality of the limit varifold V , and the concentration of the full energy
measure to V , independent of the topology of M . Indeed, Theorem 1.1 and
the analysis leading to its proof align much more closely with the work of
Hutchinson and Tonegawa [19] on the Allen–Cahn equations than they do
with related results (e.g. [8,28]) for the complex Ginzburg–Landau equations.
The parallels between the analysis presented here and that of the Allen–Cahn
equations in [19] are in fact quite striking in places—a point to which we will
draw the reader’s attention throughout the paper.

Remark 1.2 We warn the reader, however, that while the qualitative analy-
sis of the Allen–Cahn functionals does not depend on the precise choice
of the double-well potential W , the analysis of the abelian Yang–Mills–
Higgs functionals (1.1)–(1.2) seems to depend quite strongly on the choice
W (u) = 1

4(1− |u|2)2. Indeed, already in two dimensions, replacingW with a
potential Wλ(u) := λ

4 (1 − |u|2)2 for some λ �= 1 yields a dramatically differ-
ent qualitative behavior, breaking the symmetry which leads to the first-order
equations (1.4), and introducing interactions between disjoint components of
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1032 A. Pigati, D. Stern

the zero set (see, e.g., [21, Chapters I–III]). This should serve as one indication
that the analysis of the abelian Higgs model is somewhat more delicate than
that of related semilinear scalar equations, in spite of the strong parallels.

To get some idea of the role played by gauge invariance, note that unit
sections of a Hermitian line bundle are indistinguishable up to change of gauge
(when no preferred connection has been selected) and, for a given unit section
u of L , one can always choose locally a connection with respect to which
u appears constant. Thus, while most of the energy of solutions vε to the
complex Ginzburg–Landau equations falls on annular regions—relatively far
from the zero set—where vε resembles a harmonic S1-valued map, the energy
eε(uε, ∇ε) of a critical pair (uε, ∇ε) for the abelian Yang–Mills–Higgs energy
instead concentrates near the zero set u−1

ε (0), with |∇εuε | vanishing rapidly
outside this region.

Of course, the results of Theorem 1.1 would be of limited interest if nontriv-
ial critical points (uε, ∇ε) could be found only in a few special settings. After
completing the proof of Theorem1.1, we therefore establish the following gen-
eral existence result, showing that nontrivial families satisfying the hypotheses
of Theorem 1.1 arise naturally on any line bundle (including, importantly, the
trivial bundle) over any Riemannian manifold Mn , from variational construc-
tions.

Theorem 1.3 For anyHermitian line bundle L → M over an arbitrary closed
base manifold Mn, there exists a family (uε, ∇ε) satisfying the hypotheses of
Theorem 1.1, with nonempty zero sets u−1

ε (0) �= ∅. In particular, the energy
με of these families concentrates (subsequentially) on a nontrivial stationary
integral (n − 2)-varifold V as ε → 0.

For nontrivial bundles L → M , this follows from a fairly simple argument,
showing that the minimizers (uε, ∇ε) of Eε satisfy uniform energy bounds
as ε → 0. For these energy-minimizing solutions, we expect moreover that
the limiting minimal variety μ = θHn−2 �, i.e. the weight measure |V |
of V , coincides with the weight measure |�| of the limiting (n − 2)-cycle
� = limε→0 ∗ 1

2π F∇ε , and that � minimizes (n − 2)-area in its homology
class. While we do not take up this question here, we believe that it would be
interesting to study the convergence of the functionals (1.2) to the (n−2)-area
functional in a �-convergence framework. Let us mention that an asymptotic
study for minimizers of the Ginzburg–Landau functional, on a domain with
boundary, was successfully carried out by Lin and Rivière [27], who were able
to identify the concentration measure with the weight of an integral current.
(See also [1,22] for related �-convergence results in that setting.)

Remark 1.4 We remark that a very special class of minimizers for Eε are
given by solutions (uε, ∇ε) of the first-order vortex equations in Kähler mani-
folds (M2n, ωK ) of higher dimension; these generalize the system (1.4) from

123



Minimal submanifolds from the abelian Higgs model 1033

the two-dimensional setting by replacing ∗F∇ in (1.4) by the inner product
〈F∇, ωK 〉 with the Kähler form ωK , and requiring additionally that F

0,2
∇ = 0.

As in the two-dimensional setting, solutions of this first-order system mini-
mize the energy Eε in appropriate line bundles on Kähler manifolds, and it
was shown by Bradlow2 [9] that the moduli space of solutions corresponds to
the space of complex subvarieties in M (of complex codimension one) via the
zero locus (uε, ∇ε) → u−1

ε (0).
In particular, the zero loci u−1

ε (0) in this case are already area-minimizing
subvarieties, before passing to the limit ε → 0. Note that the analysis of the
vortex equations plays a key role in the study of Seiberg–Witten invariants of
Kähler surfaces [39], and a similar analysis figures crucially intoTaubes’swork
relating the Seiberg–Witten andGromov–Witten invariants of symplectic four-
manifolds [37]. For a concise introduction to the higher-dimensional vortex
equations and connections to Seiberg–Witten theory, we refer the interested
reader to the survey [13] by García–Prada.

For the trivial bundle L ∼= C×M , we prove Theorem 1.3 by applying min–
max methods to the functionals (1.2), to produce nontrivial families (uε, ∇ε)

satisfying a uniform energy bound as ε → 0. While we consider only one
min–max construction in the present paper, we remark that many more may
be carried out in principle, due to the rich topology of the space

M := {(u, ∇) : 0 �≡ u ∈ �(C × M), ∇ a Hermitian connection}/G,

where G := Maps(M, S1) is the gauge group. Indeed, on a closed oriented
manifold M , one can show that the homotopy groups πi (M) are given by

π1(M) ∼= H1(M; Z), π2(M) ∼= Z, and πi (M) = 0 for i ≥ 3;
it may be of interest to note that these are isomorphic to the homotopy groups
of the space Zn−2(M; Z) of integral (n − 2)-cycles in M , as computed by
Almgren [4].

As an application of Theorem 1.3, we obtain a new proof of the existence
of stationary integral (n−2)-varifolds in an arbitrary Riemannian manifold—
a result first proved by Almgren in 1965 [5] using a powerful, but rather
involved geometric measure theory framework. As already mentioned, similar
constructions for the Allen–Cahn equations have been carried out success-
fully by Guaraco [16] and Gaspar–Guaraco [14], yielding new proofs of the
existence of minimal hypersurfaces of optimal regularity, and leading to other
recent breakthroughs in the min–max theory of minimal hypersurfaces (e.g.,
[11]).

2 The precise form of the energies considered by Bradlow in [9] differs slightly from the
functionals Eε considered here, but the analysis is essentially the same.
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1034 A. Pigati, D. Stern

In [11,16] (building on results of [38]), the stability properties of the min–
max critical points for the Allen–Cahn functionals play a central role in
controlling the regularity and multiplicity of the limit hypersurface. To obtain
an improved understanding of min–max families (uε, ∇ε) and the associated
minimal varieties in the abelian Higgs setting, it would likewise be very inter-
esting to refine the conclusions of Theorem 1.1 under the assumption that the
families (uε, ∇ε) satisfy a uniform Morse index bound as ε → 0. We hope to
take up this line of investigation in future work.

1.1 Organization of the paper

In Sect. 2 we fix notation and record some basic properties satisfied by critical
pairs (u, ∇) for the energies Eε .

In Sect. 3, we record some useful Bochner identities for the gauge-invariant
quantities |u|2, |F∇|2, and |∇u|2, and use them to establish an initial rough

estimate on ξε := ε|F∇| − (1−|u|2)
2ε , whose role should be compared to that of

the discrepancy function in the Allen–Cahn setting. Under suitable assump-
tions on the curvature of M , the fact that ξε ≤ 0 follows quickly from the
aforementioned Bochner identities and the maximum principle. Without the
curvature assumptions, some nontrivial additional work is required to obtain
the pointwise upper bound ξε ≤ C(M, Eε(u, ∇)). This estimate is the key
ingredient to obtain the sharp (n − 2)-monotonicity of the energy, and relies
on the specific choice of coupling constants appearing in the self-dual Yang–
Mills–Higgs functionals.

In Sect. 4 we derive the stationarity equation for inner variations, from
which an obvious (n − 4)-monotonicity property of the energy follows rather
immediately. Using our rough initial bounds on ξε from Sect. 3, we deduce
an intermediate (n − 3)-monotonicity; we use this to reach the pointwise
bound ξε ≤ C(M, Eε(u, ∇)), from which we finally infer the sharp (n − 2)-
monotonicity.

In Sect. 5we show that, similar to theAllen–Cahn setting, the energy density
eε(u, ∇) decays exponentially away from the set u−1(0)—more precisely,
away from {|u|2 ≥ 1 − βd} for some βd independent of ε.

Section 6, which constitutes the main part of the paper, contains an initial
description of the limiting varifold, showing that it is stationary, (n − 2)-
rectifiable, and has a lower density bound on the support. Then we establish
its integrality with a blow-up analysis, employing the estimates from the pre-
ceding sections to reduce the problem to a statement for entire planar solutions,
already contained in the work of Jaffe and Taubes [21]. We then use this anal-
ysis to show that the level sets u−1

ε (0) converge to the support of V in the
Hausdorff topology, and conclude the section with a discussion of the asymp-
totics for the curvature forms 1

2π F∇ε .
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Minimal submanifolds from the abelian Higgs model 1035

In Sect. 7, we show that Eε satisfies a variant of the Palais–Smale property
on suitable function spaces, allowing us to produce critical points via classical
min–max methods. We provide a variational construction to get nontrivial
critical points satisfying the assumptions of our main theorem, with energy
bounded from above and below, both for nontrivial and trivial line bundles.

Finally, the “Appendix” addresses the issue of showing regularity of critical
points, as obtained fromSect. 7,when they are read in a local or globalCoulomb
gauge.

2 The Yang–Mills–Higgs equations on U(1) bundles

Let M be a closed, oriented Riemannian manifold, and let L → Mn be a
complex line bundle overM , endowedwith aHermitian structure 〈·, ·〉. Denote
by W : L → R the nonlinear potential

W (u) := 1

4
(1 − |u|2)2.

For a Hermitian connection ∇ on L , a section u ∈ �(L) and a parameter
ε > 0, denote by Eε(u, ∇) the scaled Yang–Mills–Higgs energy

Eε(u, ∇) :=
∫
M

(
|∇u|2 + ε2|F∇|2 + ε−2W (u)

)
, (2.1)

where F∇ is the curvature of ∇. Throughout, we will identify the curvature
F∇ with a closed real two-form ω via

F∇(X, Y )u = [∇X , ∇Y ]u − ∇[X,Y ]u = −iω(X, Y )u. (2.2)

In computing inner products for two-forms, we follow the convention

|ω|2 =
∑

1≤ j<k≤n

ω(e j , ek)
2 = 1

2

n∑
j,k=1

ω(e j , ek)
2 (2.3)

with respect to a local orthonormal basis {e j }nj=1 for T M .
Note that Eε enjoys the U (1) gauge invariance

Eε(u, ∇) = Eε(e
iθu, ∇ − idθ),

for any (smooth) θ : M → R. More generally, we have

Eε(u, ∇) = Eε(ϕu, ∇ − iϕ∗(dθ)),
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1036 A. Pigati, D. Stern

for any ϕ : M → S1, identifying S1 with the unit circle in C.
It is easy to check that the smooth pair (u, ∇) gives a critical point for the

energy Eε , with respect to smooth variations, if and only if it satisfies the
system

∇∗∇u = 1

2ε2
(1 − |u|2)u, (2.4)

ε2d∗ω = 〈∇u, iu〉. (2.5)

We denote �H = dd∗ + d∗d the usual positive definite Hodge Laplacian on
differential forms and note that, in our convention, the adjoint to d : �1(M) →
�2(M) is

(d∗ω)(ek) = −
n∑
j=1

(Dejω)(e j , ek).

Since the curvature form ω is closed, taking the exterior derivative of (2.5)
gives

ε2(�Hω)(e j , ek) = (d〈∇u, iu〉)(e j , ek)
= 〈i∇e j u, ∇ek u〉 − 〈i∇ek u, ∇e j u〉

+ 〈iu, F∇(e j , ek)u〉
= ψ(u)(e j , ek) − |u|2ω(e j , ek);

i.e.,
ε2�Hω = −|u|2ω + ψ(u), (2.6)

where

ψ(u)(e j , ek) := 2〈i∇e j u, ∇ek u〉.
For future reference, we record the simple bound

|ψ(u)| ≤ |∇u|2. (2.7)

To confirm (2.7), fix x ∈ M and note that the linear map ∇u(x) : TxM → Lx
has a kernel of dimension at least n − 2. Take an orthonormal basis {e j } of
TxM such that e j ∈ ker∇u(x) for j > 2. We compute at x that

|ψ(u)| = 2|〈i∇e1u, ∇e2u〉| ≤ 2|∇e1u||∇e2u| ≤ |∇e1u|2 + |∇e2u|2,
which gives (2.7).
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Minimal submanifolds from the abelian Higgs model 1037

3 Bochner identities and preliminary estimates

From the Eqs. (2.6) and (2.4), we apply the standard Bochner–Weitzenböck
formulas to obtain some identities whichwill play a central role in our analysis.
For the curvature two-form ω, it will be useful to record the Bochner identity

�
1

2
|ω|2 = |Dω|2 + ε−2(|u|2|ω|2 − 〈ψ(u), ω〉) + R2(ω, ω), (3.1)

where D is the Levi–Civita connection andR2 denotes the Weitzenböck cur-
vature operator for two-forms on the base Riemannian manifold M . For any
δ > 0 we have

(|ω|2 + δ2)1/2�(|ω|2 + δ2)1/2 + |D|ω||2 ≥ �
1

2
(|ω|2 + δ2) = �

1

2
|ω|2.

Since |D|ω||2 ≤ |Dω|2, (3.1) implies

(|ω|2 + δ2)1/2�(|ω|2 + δ2)1/2 ≥ ε−2(|u|2|ω|2 − 〈ψ(u), ω〉) + R2(ω, ω).

Dividing by (|ω|2 + δ2)1/2 and letting δ → 0, we obtain

�|ω| ≥ ε−2(|u|2|ω| − |ψ(u)|) − |R−
2 ||ω|, (3.2)

in the distributional sense (and classically on {|ω| > 0}). Note that, by (2.7),
the relation (3.2) also gives us the cruder subequation

�|ω| ≥ ε−2|u|2|ω| − ε−2|∇u|2 − |R−
2 ||ω|. (3.3)

For the modulus |u|2 of the Higgs field u, we record

�
1

2
|u|2 = |∇u|2 − 1

2ε2
(1 − |u|2)|u|2, (3.4)

and observe that a simple application of the maximum principle yields the
pointwise bound

|u|2 ≤ 1 on M.

For the energy density |∇u|2 of the Higgs field u, we see that

�
1

2
|∇u|2 = |∇2u|2 − 〈∇(∇∗∇u), ∇u〉 + 〈d∗ω, 〈iu, ∇u〉〉

− 2〈ω, ψ(u)〉 + R1(∇u, ∇u)
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1038 A. Pigati, D. Stern

= |∇2u|2 − 2〈ω, ψ(u)〉 + 1

ε2
|〈iu, ∇u〉|2

− 1

2ε2
(1 − |u|2)|∇u|2 + 1

ε2
|〈u, ∇u〉|2 + R1(∇u, ∇u)

= |∇2u|2 + 1

2ε2
(3|u|2 − 1)|∇u|2 − 2〈ω, ψ(u)〉 + R1(∇u, ∇u),

where at p ∈ M we letR1(∇u, ∇u) = Ric(ei , e j )〈∇ei u, ∇e j u〉 and∇2
ei ,e j u =

∇ei (∇e j u), for any local orthonormal frame {ei }ni=1 with Dei (p) = 0.
Next, we introduce the function

ξε := ε|F∇| − 1

2ε
(1 − |u|2), (3.5)

and combine (3.3) with (3.4) to see that

�ξε ≥ ε−1|u|2|ω| − ε−1|∇u|2 − ε|R−
2 ||ω| + ε−1|∇u|2 − 1

2ε3
(1 − |u|2)|u|2

≥ ε−2|u|2ξε − ε‖R−
2 ‖L∞|ω|.

If R2 > 0, we can actually replace the term −ε‖R−
2 ‖L∞|ω| with cε|ω|, for

some positive constant c = c(M); from a simple application of the maximum
principle, in this case we get ξε ≤ 0 everywhere on M , and consequently (cf.
[21, Theorem III.8.1])

ε2|F∇|2 ≤ W (u)

ε2
pointwise, providedR2 > 0 on M. (3.6)

This balancing of the Yang–Mills and potential terms, which should be com-
pared with Modica’s gradient estimate in the asymptotic analysis of the
Allen–Cahn equations (cf. [19, Proposition 3.3]), will play a key role in our
analysis, allowing us to upgrade the obvious (n − 4)-monotonicity typical
of Yang–Mills–Higgs problems to the much stronger (n − 2)-monotonicity
d
dr (r

2−n
∫
Br
eε(u, ∇)) ≥ 0.

Remark 3.1 We remark that the analog of the identity �ξε ≥ ε−2|u|2ξε −
ε‖R−

2 ‖L∞|ω|—and, consequently, the sharp (n − 2)-monotonicity result—
fails for choices of coupling constants other than those corresponding to the
self-dual Yang–Mills–Higgs functionals considered here.

Without the positive curvature assumption, we may still employ the sube-
quation

�ξε ≥ |u|2
ε2

ξε − C(M)ε|F∇|, (3.7)
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to obtain strong estimates for the positive part ξ+
ε of ξε . To begin, denote by

G(x, y) the nonnegative Green’s function for the Laplacian on M , unique up
to additive constant, so that �xG(x, y) = 1

vol(M)
− δy , and set

hε(x) :=
∫
M
G(x, y)ε|F∇|(y) dy ≥ 0, (3.8)

so that

�hε(x) = 1

vol(M)
‖εF∇‖L1 − ε|F∇|(x). (3.9)

Taking C ′ to be the constant appearing in (3.7), for the difference ξε − C ′hε

we then have

�(ξε − C ′hε) ≥ |u|2
ε2

(ξε − C ′hε) + C ′ |u|2
ε2

hε − C ′ ‖εF∇‖L1

vol(M)

≥ |u|2
ε2

(ξε − C ′hε) − C ′ ‖εF∇‖L1

vol(M)
.

(3.10)

Observe that the L1 norm of ξε − C ′hε is bounded by the energy:

‖ξε − C ′hε‖L1 ≤ ‖ξε‖L1 + C(M)‖hε‖L1

≤ ‖ξε‖L1 + C(M)‖εF∇‖L1

≤ C(M)Eε(u, ∇)1/2.

(3.11)

(Where the constant C(M) may of course change from line to line.)
Integrating (3.10) against the positive part ζ := (ξε −C ′hε)

+ and bounding
‖εF∇‖L1 ≤ C(M)Eε(u, ∇)1/2, we get

∫
M

|dζ |2 ≤ −
∫
M

|u|2
ε2

ζ 2 − C(M)Eε(u, ∇)1/2
∫
M

ζ

≤ −C(M)Eε(u, ∇)1/2
∫
M

ζ.

Applying (3.11), this gives ‖dζ‖L2 ≤ C(M)Eε(u, ∇).
Thus, applying Moser iteration, namely integrating (3.10) against powers

ζ γ with increasing exponents γ > 1, we deduce that

ξε − C ′hε ≤ ζ ≤ C(M)Eε(u, ∇)1/2. (3.12)
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As a simple application of (3.12), we note that by definition (3.8) of hε and
the standard estimate (see, e.g., [7, Section 4.2])

G(x, y) ≤ C(M)d(x, y)2−n

if n ≥ 3 (or G(x, y) ≤ −C(M) log(d(x, y)) + C(M) if n = 2), we have the
L∞ estimate

‖hε‖L∞ ≤ C(M)‖εF∇‖Ln−1

(with 2 replacing n − 1 when n = 2). If n = 2, this inequality and (3.12) give
a pointwise bound

‖ξ+
ε ‖L∞ ≤ C(M)‖εF∇‖L2 + C(M)Eε(u, ∇)1/2 ≤ C(M)Eε(u, ∇)1/2.

In the sequel, we assume n ≥ 3 and aim for a similar pointwise bound. We
have

‖hε‖L∞ ≤ C(M)‖εF∇‖Ln−1 ≤ Cε‖F∇‖
n−3
n−1
L∞ ‖F∇‖

2
n−1

L2 .

Using this in (3.12), we compute at a maximum point for |F∇| to see that

‖εF∇‖L∞ − 1

2ε
(1 − |u|2) = ξε ≤ C‖εF∇‖

n−3
n−1
L∞ Eε(u, ∇)

1
n−1 + CEε(u, ∇)1/2,

and, by an application of Young’s inequality, it follows that

(1 − Cδ)‖εF∇‖L∞ ≤ 1

2ε
+ Cδ

3−n
2 Eε(u, ∇)1/2

for any δ ∈ (0, 1). Taking δ = ε2/n , we arrive at the crude preliminary estimate

‖εF∇‖L∞ ≤ 1

1 − Cε2/n

( 1

2ε
+ Cε3/nε−1Eε(u, ∇)1/2

)

≤ 1

2ε
+ α(ε)

2ε
(1 + Eε(u, ∇)1/2),

where α(ε) → 0 as ε → 0.
Now, consider the function

f := ε|ω| − 1 + α(ε)(1 + Eε(u, ∇)1/2)

2ε
(1 − |u|2).
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By virtue of the preceding estimate for ‖F∇‖L∞ , we then see that

f ≤ 1 + α(ε)(1 + Eε(u, ∇)1/2)

2ε
|u|2

pointwise. Appealing once again to (3.4) and (3.3), we see that

� f ≥ |u|2
ε2

f − Cε|F∇|,

so at a point where f achieves its maximum we have

|u|2
ε2

f ≤ Cε|F∇| ≤ C(1 + Eε(u, ∇)1/2)

ε
.

On the other hand, we know that |u|2 ≥ ε
C(1+Eε(u,∇)1/2)

f everywhere, so the
preceding computations yield an estimate of the form

(max f )2

ε
≤ C(M, Eε(u, ∇))

ε
,

provided max f ≥ 0, and we deduce that f ≤ C(M, Eε(u, ∇)) everywhere.
Putting all this together, we arrive at the following lemma.

Lemma 3.2 Let (u, ∇) solve (2.4) and (2.5) on a line bundle L → M, and
suppose Eε(u, ∇) ≤ 	. Then there exist a constant C(M, 	) and a function
α(M, 	, ε), with α(ε) → 0 as ε → 0, such that

ξε ≤ α(ε)
(1 − |u|2)

ε
+ C. (3.13)

In the next section, we will improve the rough preliminary estimate of
Lemma 3.2 to a uniform pointwise bound of the form ξε ≤ C(M, 	), but this
will require some additional effort.

4 Inner variations and improved monotonicity

In this section, we derive the inner variation equation for solutions of (2.4)–
(2.5), and explore the scaling properties of the energy Eε(uε, ∇ε) over balls
of small radius. Under the assumption that the curvature operator R2 appear-
ing in (3.3) is positive-definite (so that (3.6) holds), the analysis simplifies
considerably, leadingwith little effort to the desiredmonotonicity of the (n−2)-
energy density.Without this curvature assumption, more work is required, first
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building on the cruder estimates of the preceding section to obtain a uniform
pointwise bound for ξε .

Fixing notation, with respect to a local orthonormal basis {ei } for T M ,
define the (0, 2)-tensors ∇u∗∇u and ω∗ω by

(∇u∗∇u)(ei , e j ) := 〈∇ei u, ∇e j u〉, (4.1)

ω∗ω(ei , e j ) :=
n∑

k=1

ω(ei , ek)ω(e j , ek). (4.2)

Note that tr(∇u∗∇u) = |∇u|2 and tr(ω∗ω) = 2|ω|2. Denote by eε(u, ∇) the
energy integrand

eε(u, ∇) := |∇u|2 + ε2|F∇|2 + W (u)

ε2
.

The fact that dω = 0 reads

Dω(ei , e j ) = Deiω(·, e j ) + Dejω(ei , ·),

where D is the Levi–Civita connection of M . Using this identity, it is straight-
forward to check that

deε(u, ∇) = 2 div(∇u∗∇u) + 2〈∇u, ∇∗∇u〉 + d
W (u)

ε2

+ 2ω(〈iu, ∇u〉#, ·) + 2ε2 div(ω∗ω) − 2ε2ω((d∗ω)#, ·).

In particular, defining the stress-energy tensor Tε(u, ∇) by

Tε(u, ∇) := eε(u, ∇)g − 2∇u∗∇u − 2ε2ω∗ω, (4.3)

for (u, ∇) solving (2.4) and (2.5) it follows that

div(Tε(u, ∇)) = 0, (4.4)

meaning that
∑

i (Dei Tε)(ei , ·) = 0. Integrating (4.4) against a vector field X
on some domain � ⊆ M , we arrive at the usual inner-variation equation

∫
�

〈Tε(u, ∇), DX〉 =
∫

∂�

Tε(u, ∇)(X, ν), (4.5)

where we identify Tε(u, ∇) with a (1, 1)-tensor and denote by ν the outer unit
normal to �. Taking � = Br (p) to be a small geodesic ball of radius r about
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a point p ∈ M , and taking X = grad(12d
2
p), where dp is the distance function

to p, (4.5) gives

r
∫

∂Br (p)

(eε(u, ∇) − 2|∇νu|2 − 2ε2|ινω|2)

=
∫
Br (p)

〈Tε(u, ∇), DX〉

=
∫
Br (p)

〈Tε(u), g〉 +
∫
Br (p)

〈Tε(u), DX − g〉

=
∫
Br (p)

(neε(u, ∇) − 2|∇u|2 − 4ε2|F∇|2)

+
∫
Br (p)

〈Tε(u), DX − g〉.

Now, by the Hessian comparison theorem, we know that

|DX − g| ≤ C(M)d2p;
applying this in the relations above, we see that

r
∫

∂Br (p)

eε(u, ∇) ≥ 2r
∫

∂Br (p)

(|∇νu|2 + ε2|ινω|2)

+
∫
Br (p)

(
(n − 2)|∇u|2 + (n − 4)ε2|F∇|2 + n

W (u)

ε2

)

− C ′(M)r2
∫
Br (p)

eε(u, ∇).

Setting

f (p, r) := eC
′r2

∫
Br (p)

eε(u, ∇), (4.6)

it follows from the computations above (temporarily throwing out the addi-
tional nonnegative boundary terms) that

∂ f

∂r
≥ eC

′r2

r

∫
Br (p)

(
(n − 2)|∇u|2 + (n − 4)ε2|F∇|2 + n

W (u)

ε2

)
. (4.7)

At this point, one easily observes that the right-hand side of (4.7) is bounded
below by n−4

r f (p, r), to obtain themonotonicity of the (n−4)-energy density

∂

∂r
(r4−n f (p, r)) ≥ 0.
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For general Yang–Mills and Yang–Mills–Higgs problems, this codimension-
four energy growth is well known to be sharp (cf., e.g., [32,40]). For solutions
of (2.4) and (2.5) on Hermitian line bundles, however, we show now that this
can be improved to (near-) monotonicity of the (n − 2)-density r2−n f (p, r)
on small balls, which constitutes a key technical ingredient in the proof of
Theorem 1.1.

To begin, we rearrange (4.7), to see that

∂ f

∂r
≥ n − 2

r
f (r) + 2eC

′r2

r

∫
Br (p)

(W (u)

ε2
− ε2|F∇|2

)

= n − 2

r
f (r) − 2eC

′r2

r

∫
Br (p)

ξε

(
ε|F∇| + 1

2ε
(1 − |u|2)

)
,

recalling the notation ξε := ε|F∇| − 1
2ε (1 − |u|2). Now, by Lemma 3.2,

assuming Eε(u, ∇) ≤ 	, we have the pointwise bound

ξε

(
ε|F∇| + 1

2ε
(1 − |u|2)

)
≤ 2

(
C + α(ε)

1 − |u|2
ε

)
eε(u, ∇)1/2

≤ Ceε(u, ∇)1/2 + Cα(ε)eε(u, ∇).

Applying this in our preceding computation for ∂ f
∂r , we deduce that

∂ f

∂r
≥ n − 2

r
f (r) − eC

′r2

r

∫
Br (p)

Ceε(u, ∇)1/2 − α(ε)
eC

′r2

r

∫
Br (p)

Ceε(u, ∇)

≥ n − 2 − Cα(ε)

r
f (r) − eC

′r2

r
Crn/2

( ∫
Br (p)

eε(u, ∇)
)1/2

≥ n − 2 − C ′′α(ε)

r
f (r) − C ′′rn/2−1 f (r)1/2

for some constant C ′′(M, 	) and 0 < r < c(M). Taking ε sufficiently small,
we arrive next at the following coarse estimate for the (n − 3)-energy density,
which we will then use to establish an improved bound for ξε .

Lemma 4.1 For ε ≤ εm(M, 	) sufficiently small, we have a uniform bound

sup
0<r<inj(M)

r3−n
∫
Br (p)

eε(u, ∇) ≤ C(M, 	). (4.8)
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Proof The statement is trivial if n = 2, 3, so assume n ≥ 4. In the preceding
computation, take ε ≤ εm(M, 	) sufficiently small that C ′′α(ε) < 1

2 . Then
the estimate gives

f ′(r) ≥ n − 2 − 1/2

r
f (r) − C ′′rn/2−1 f (r)1/2,

from which it follows that, for 0 < r < c(M),

d

dr
(r3−n f (r)) ≥ r3−n f ′(r) + (3 − n)r2−n f (r)

≥ r2−n
((

n − 5

2

)
f (r) − Crn/2 f (r)1/2 + (3 − n) f (r)

)

≥ r2−n
(1
2
f (r) − Crn/2 f (r)1/2

)
.

If r3−n f (r) has amaximum in (0, c(M)), it follows that f (r) ≤ Crn/2 f (r)1/2

there, and therefore r3−n f (r) ≤ Cr3 ≤ C . Obviously the desired estimate
holds at r = 0 and r = c(M), so (4.8) follows. ��

With Lemma 4.1 in hand, we can now improve the bounds of Lemma 3.2
to a uniform pointwise estimate, as follows.

Proposition 4.2 Let (u, ∇) solve (2.4)–(2.5) on a line bundle L → M, with
the energy bound Eε(u, ∇) ≤ 	and ε ≤ εm. Then there is a constantC(M, 	)

such that

ξε := ε|F∇| − 1

2ε
(1 − |u|2) ≤ C(M, 	). (4.9)

Proof We can assume n ≥ 3, as we already obtained the claim for n = 2 in
Sect. 3. Recall from that section the function

hε(x) :=
∫
M
G(x, y)ε|F∇|(y) dy,

where G is the nonnegative Green’s function on M . As discussed in Sect. 3,
we can deduce from (3.7) a pointwise estimate of the form

ξε ≤ C(M)hε + C(M)Eε(u, ∇)1/2. (4.10)

Thus, to arrive at the desired bound (4.9), it will suffice to establish a pointwise
bound of the same form for hε .

To this end, recall again that G(x, y) ≤ C(M)d(x, y)2−n , so that by defi-
nition we have
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hε(x) ≤ C
∫
M
d(x, y)2−nε|F∇|(y) dy

≤ C
∫
M
d(x, y)2−neε(u, ∇)1/2(y) dy

≤ C
∫
M

(d(x, y)−n+1/2 + d(x, y)3−n+1/2eε(u, ∇)) dy,

where the last line is a simple application of Young’s inequality. Since the
integral

∫
M d(x, y)−n+1/2 dy is finite, it follows that

hε(x) ≤ C(M) + C(M)	 + C(M)

∫ inj(M)

0
r3−n+1/2

( ∫
∂Br (x)

eε(u, ∇)
)
dr

= C(M, 	) + C(M)

∫ inj(M)

0

d

dr

(
r−n+7/2

∫
Br (x)

eε(u, ∇)
)
dr

+ (n − 7/2)C(M)

∫ inj(M)

0
r3−n−1/2

( ∫
Br (x)

eε(u, ∇)
)
dr

≤ C(M, 	) + C(M)

∫ inj(M)

0
r3−n−1/2

( ∫
Br (x)

eε(u, ∇)
)
dr.

On the other hand, by Lemma 4.1, we know that r3−n
∫
Br (x)

eε(u, ∇) ≤
C(M, 	) for every r , so we see finally that

hε(x) ≤ C(M, 	) + C(M, 	)

∫ inj(M)

0
r−1/2 dr ≤ C(M, 	),

as desired. ��
Applying (4.9) in our original computation for f ′(r), we see now that

∂ f

∂r
≥ n − 2

r
f (r) − 2eC

′r2

r

∫
Br (p)

ξε

(
ε|F∇| + 1

2ε
(1 − |u|2)

)

≥ n − 2

r
f (r) − 2eC

′r2

r

∫
Br (p)

C(M, 	)eε(u, ∇)1/2

≥ n − 2

r
f (r) − C(M, 	)r

n−2
2 f (r)1/2.

In fact, bringing in the extra boundary terms that we have been neglecting, and

applying Young’s inequality to the term r
n−2
2 f (r)1/2, we see that
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∂ f

∂r
≥ 2eC

′r2
∫

∂Br (p)

(|∇νu|2 + ε2|ινF∇|2)

+ n − 2

r
f (r) − Cr

n−2
2 f (r)1/2

≥ 2eC
′r2

∫
∂Br (p)

(|∇νu|2 + ε2|ινF∇|2)

+ n − 2

r
f (r) − C f (r) − Crn−2.

With this differential inequality in place, a straightforward computation leads
us finally to one of our key technical theorems, the monotonicity formula for
the (n − 2)-density.

Theorem 4.3 Let (u, ∇) solve (2.4)–(2.5)onaHermitian line bundle L → M,
with an energy bound Eε(u, ∇) ≤ 	. Then there exist positive constants
εm(M, 	) and Cm(M, 	) such that the normalized energy density

Ẽε(x, r) := eCmrr2−n
∫
Br (x)

eε(u, ∇) (4.11)

satisfies

Ẽ ′
ε(r) ≥ 2r2−n

∫
∂Br (x)

(|∇νu|2 + ε2|ινF∇|2) − Cm, (4.12)

for 0 < r < inj(M) and ε ≤ εm.

As a simple corollary of the monotonicity result (together with a pointwise
bound for |∇u| derived in the following section), we deduce that (u, ∇) must
have positive (n − 2)-energy density wherever |u| is bounded away from 1.

Corollary 4.4 (clearing-out) Let (u, ∇) solve (2.4)–(2.5) on a line bundle
L → M, with Eε(u, ∇) ≤ 	 and ε ≤ εm. Given 0 < δ < 1, if

r2−n
∫
Br (x)

eε(u, ∇) ≤ η(M, 	, δ)

with x ∈ M and ε < r < inj(M), then we must have |u(x)| > 1 − δ.

Proof For ε ≤ εm , Theorem 4.3 gives

ε2−n
∫
Bε(x)

eε(u, ∇) ≤ C(M, 	)η + C(M, 	)r.

The gradient bound (5.3) in Proposition 5.1 of the following section gives
|d|u|| ≤ Cε−1. Hence, if |u(x)| ≤ 1 − δ then |u(y)| < 1 − δ

2 on Bεδ/(2C)(x),
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so that 1 − |u(y)|2 ≥ 1 − |u(y)| > δ
2 . We deduce that

δ2

16
vol(Bεδ/(2C)(x)) ≤

∫
Bε(x)

W (u) ≤ ε2
∫
Bε(x)

eε(u, ∇) ≤ Cεn(η + r).

Since vol(Bεδ/(2C)(x)) is bounded below by c(M, 	, δ)εn , we can choose
η̃(M, 	, δ) ≤ inj(M) so small that we get a contradiction if r, η ≤ η̃. On the
other hand, if r > η̃ then

η̃2−n
∫
Bη̃(x)

eε(u, ∇) ≤
( inj(M)

η̃

)n−2
η.

Hence, setting η :=
(

η̃
inj(M)

)n−2
η̃ ≤ η̃, we can reduce to the previous case

(replacing r with η̃), reaching again a contradiction. ��

5 Decay away from the zero set

Again, let (u, ∇) solve (2.4)–(2.5) on a line bundle L → M , with the energy
bound Eε(u, ∇) ≤ 	. In the preceding section, we obtained the pointwise
estimate

|F∇| ≤ 1

2ε2
(1 − |u|2) + 1

ε
C(M, 	) (5.1)

when ε ≤ εm . As a first step toward establishing strong decay of the energy
away from the zero set of u, we show in the following proposition that the full
energy density eε(u, ∇) is controlled by the potential W (u)

ε2
.

Proposition 5.1 For (u, ∇) as above, we have the pointwise estimates

ε2|F∇|2 ≤ C(M, 	)
W (u)

ε2
+ C(M, 	)ε (5.2)

and

|∇u|2 ≤ C(M, 	)
W (u)

ε2
+ C(M, 	)ε2, (5.3)

provided ε ≤ εd , for some εd = εd(M, 	).

Proof To begin, let C1 = C1(M, 	) be the constant from (5.1), and consider
the function

f := ε|F∇| − 1 + 2C1ε

2ε
(1 − |u|2) = ξε − C1 + C1|u|2.
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Similar to the proof of Lemma 3.2, observe that C1|u|2 ≥ f pointwise, by
(5.1), while the computations from Sect. 3 give

� f ≥ |u|2
ε2

f − C ′(M)ε|F∇|.

By (5.1) we have |F∇| ≤ 1
2ε2

+ C1
ε
, so at a positive maximum for f it follows

that

0 ≥ |u|2
ε2

f − C ′ε|F∇| ≥ f 2

C1ε2
− C(M, 	)

ε
,

so that

(max f )2 ≤ Cε

(provided max f ≥ 0), and consequently f ≤ Cε1/2 everywhere. As a con-
sequence, at any point, we have either f < 0, in which case

ε2|F∇|2 ≤ (1 + 2C1ε)2
W (u)

ε2
,

or f ≥ 0, in which case

ε2|F∇|2 ≤ 2 f 2 + 2(1 + 2C1ε)2
W (u)

ε2

≤ Cε + 2(1 + 2C1ε)2
W (u)

ε2
.

In either scenario, we obtain a bound of the desired form (5.2).
To bound |∇u|2, recall from Sect. 3 the identity

�
1

2
|∇u|2 = |∇2u|2 + 1

2ε2
(3|u|2 − 1)|∇u|2 − 2〈ω, ψ(u)〉 + R1(∇u, ∇u).

(5.4)
In view of the estimate (5.1) for |F∇| = |ω| and (2.7), we can estimate the
term 2〈ω, ψ(u)〉 from above by

2|F∇||∇u|2 ≤ 1

ε2
(1 − |u|2)|∇u|2 + C

ε
|∇u|2,

to obtain the existence of C2(M, 	) such that

�
1

2
|∇u|2 ≥ |∇2u|2 + 1

2ε2
(5|u|2 − 3)|∇u|2 − C2

ε
|∇u|2.
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For �|∇u|, this then gives

�|∇u| ≥ 1

2ε2
(5|u|2 − 3)|∇u| − C2

ε
|∇u|. (5.5)

Recalling once again the Eq. (3.4) for �1
2 |u|2, we define

w := |∇u| − 1

ε
(1 − |u|2),

and observe that

�w ≥ 1

2ε2
(5|u|2 − 3)|∇u| − C2

ε
|∇u|

+ 2

ε
|∇u|2 − 1

ε3
|u|2(1 − |u|2)

= |u|2
ε2

w + |∇u|
(2

ε
|∇u| − 3

2

(1 − |u|2)
ε2

− C2

ε

)

= |u|2
ε2

w + |∇u|
ε

(
2w + 1

2ε
(1 − |u|2) − C2

)
.

We then have

�w ≥ |u|2
ε2

w + 1

ε

(
w + 1

ε
(1 − |u|2)

)(
2w + 1

2ε
(1 − |u|2) − C2

)
. (5.6)

If w has a positive maximum, it follows that

2w + 1

2ε
(1 − |u|2) ≤ C2

at this maximum point; in particular, we deduce then that

|u|2 ≥ 1 − 2C2ε

at this point, and see from (5.6) that here

0 ≥ 1 − 2C2ε

ε2
w − 1

ε

(
w + 1

ε
(1 − |u|2)

)
C2 ≥ 1 − 3C2ε

ε2
w − 2

C2
2

ε
.

If ε ≤ εd(M, 	) is small enough, it follows that maxw ≤ Cε; as a conse-
quence, we check that

|∇u|2 ≤ C
W (u)

ε2
+ Cε2,
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completing the proof of (5.3). ��
As a simple consequence of the estimates in Proposition 5.1, we obtain the

following corollary.

Corollary 5.2 There exist constants 0 < βd(M, 	) < 1 and C(M, 	) such
that, for (u, ∇) as above, we have

�
1

2
(1 − |u|2) ≥ 1

4ε2
(1 − |u|2) − Cε2 (5.7)

on the set Zβd (u) := {|u|2 ≥ 1 − βd}.
Proof By the formula (3.4) for �1

2 |u|2, we know that

�
1

2
(1 − |u|2) = 1

2ε2
|u|2(1 − |u|2) − |∇u|2.

Combining this with the estimate (5.3) for |∇u|2, we then deduce the existence
of a constant Ĉ = Ĉ(M, 	) such that

�
1

2
(1 − |u|2) ≥ |u|2 1

2ε2
(1 − |u|2) − Ĉ

(1 − |u|2)2
2ε2

− Cε2.

By taking βd = βd(M, 	) > 0 sufficiently small, we can arrange that

|u|2 − Ĉ(1 − |u|2) ≥ 1 − βd − Ĉβd ≥ 1

2

on {|u|2 ≥ 1 − βd}, from which the claimed estimate follows. ��
Next, we employ the result of Corollary 5.2 to show that the quantity (1 −

|u|2) vanishes rapidly away from Zβd (u) (compare [21, Sections III.7–III.8]).

Proposition 5.3 Let (u, ∇) be as before, with ε ≤ εd , and define the set

Zβd := {x ∈ M : |u(x)|2 ≤ 1 − βd},
where βd(M, 	) is the constant provided by Corollary 5.2. Defining r : M →
[0, ∞) by

r(p) := dist(p, Zβ),

we have an estimate of the form

(1 − |u|2)(p) ≤ Ce−adr(p)/ε + Cε4 (5.8)

for some C = C(M, 	) and ad = ad(M) > 0.
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Proof Fix a point p ∈ M , and let r = r(p) = dist(p, Zβ) as above. We
can clearly assume r(p) < 1

2 inj(M). On the ball Br (p), for some constant
a = ad > 0 to be chosen later, consider the function

ϕ(x) := e(a/ε)(dp(x)2+ε2)1/2,

where dp(x) := dist(p, x). A straightforward computation then gives

�ϕ = a

ε
ϕ

(
(a/ε)d2p
d2p + ε2

− d2p
(d2p + ε2)3/2

)

+ a

2ε
ϕ

�d2p
(d2p + ε2)1/2

≤ a2

ε2
ϕ + a

2ε
ϕ

�d2p
(d2p + ε2)1/2

≤ a2 + C1a

ε2
ϕ

for some C1 = C1(M). Now, fix some constant c2 > 0 to be chosen later, and
let

f := 1

2
(1 − |u|2) − c2ϕ.

Combining the preceding computation with (5.7), we see that, on Br (p),

� f ≥ 1

4ε2
(1 − |u|2) − C(M, 	)ε2 − a2 + C1a

ε2
c2ϕ

= 1

2ε2
f + 1 − 2a2 − 2C1a

2ε2
c2ϕ − C(M, 	)ε2.

Choosing a = ad(M) > 0 sufficiently small, we can arrange that 2a2 +
2C1a ≤ 1, so that the above computation gives

� f ≥ f

2ε2
− Cε2. (5.9)

On the boundary of the ball ∂Br (p), it follows from definition of r = r(p)

that |u|2 ≥ 1 − βd , and therefore

f (x) ≤ βd

2
− c2ϕ ≤ βd

2
− c2e

ar/ε on ∂Br (p).
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Taking c2 := βde−ar/ε , it then follows that f < 0 on ∂Br (p), so we can apply
the maximum principle with (5.9) to deduce that

f ≤ Cε4 in Br (p).

Evaluating at p, this gives

Cε4 ≥ f (p) = 1

2
(1 − |u|2)(p) − βde

−ar(p)/εea,

so that

(1 − |u|2)(p) ≤ C(M, 	)e−ar(p)/ε + C(M, 	)ε4,

as desired. ��
Combining these estimates with those of Proposition 5.1, we arrive imme-

diately at the following decay estimate for the energy integrand eε(u, ∇).

Corollary 5.4 Defining Zβd and r(p) = dist(p, Zβd ) as in Proposition 5.3,
there exist ad(M) > 0 and Cd(M, 	) such that

eε(u, ∇)(p) ≤ Cd
e−adr(p)/ε

ε2
+ Cdε. (5.10)

6 The energy-concentration varifold

This section is devoted to the proof of the main result of the paper, which we
recall now.

Theorem 6.1 Let (uε, ∇ε) be a family of solutions to (2.4)–(2.5) satisfying a
uniform energy bound Eε(uε, ∇ε) ≤ 	 as ε → 0. Then, as ε → 0, the energy
measures

με := 1

2π
eε(uε, ∇ε) volg

converge subsequentially, in duality with C0(M), to the weight measure of a
stationary, integral (n − 2)-varifold V . Also, for all 0 ≤ δ < 1,

spt(V ) = lim
ε→0

{|uε | ≤ δ}

in the Hausdorff topology. The (n − 2)-currents dual to the curvature forms
1
2π ωε converge subsequentially to an integral (n − 2)-cycle �, with |�| ≤ μ.
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6.1 Convergence to a stationary rectifiable varifold

Let (uε, ∇ε) be as in Theorem 6.1, and pass to a subsequence ε j → 0 such
that the energy measures με j converge weakly-* to a limiting measure μ, in
duality with C0(M).

Note that, for 0 < r < R < inj(M), Theorem 4.3 yields

eCR R2−nμ(BR(x)) + CR ≥ lim sup
ε→0

eCR R2−nμε(BR(x)) + CR

≥ lim inf
ε→0

eCrr2−nμε(Br (x)) + Cr

≥ eCrr2−nμ(Br (x)) + Cr

with C = Cm , so approximating R with smaller radii we deduce

eCR R2−nμ(BR(x)) + CR ≥ eCrr2−nμ(Br (x)) + Cr, (6.1)

and in particular the (n − 2)-density

�n−2(μ, x) := lim
r→0

(ωn−2r
n−2)−1μ(Br (x))

is defined. As a first step toward the proof of Theorem 6.1, we show that this
density is bounded from above and below on the support spt(μ).

Proposition 6.2 There exists a constant 0 < C = C(M, 	) < ∞ such that

C−1 ≤ r2−nμ(Br (x)) ≤ C for x ∈ spt(μ), 0 < r < inj(M), (6.2)

and thus C−1 ≤ �n−2(μ, x) ≤ C for all x ∈ spt(μ).

Proof The upper bound follows from (6.1), which gives (when R = inj(M))

r2−nμ(Br (x)) ≤ eCmrr2−nμ(Br (x)) + Cmr

≤ C(M, 	)μ(M) + C(M, 	) inj(M)

≤ C(M, 	).

To see the lower bound, let βd = βd(M, 	) ∈ (0, 1) be the constant given
by Corollary 5.4, and again set

Zβ(uε) := {x ∈ M : |uε(x)|2 ≤ 1 − β}.
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Let � be the set of all limits x = limε xε , with xε ∈ Zβd (uε); that is, take

� :=
⋂
η>0

⋃
0<ε<η

Zβd (uε).

We then claim that
spt(μ) ⊆ � (6.3)

and
μ(Br (x)) ≥ c(M, 	)rn−2 for x ∈ �, 0 < r < inj(M). (6.4)

Once both (6.3) and (6.4) are established, the lower bound in (6.2) follows
immediately.

To establish (6.3), fix some p ∈ M\�; by definition of �, there must exist
δ = δ(p) > 0 such that

dist(p, Zβd (uε)) ≥ 2δ

for all ε sufficiently small. Applying Corollary 5.4 for all x ∈ Bδ(p), we
deduce that

μ(Bδ(p)) ≤ lim inf
ε→0

1

2π

∫
Bδ(p)

eε(uε, ∇ε)

≤ lim
ε→0

∫
Bδ(p)

(Cε−2e−aδ/ε + Cε)

= 0.

In particular, p ∈ M\ spt(μ), confirming (6.3).
To see (6.4), let x ∈ �. Note that, by definition of �, there exist points

xε ∈ Zβd (uε) with xε → x as ε → 0 (along a subsequence). We then see that

|uε(xε)|2 ≤ 1 − βd

and Corollary 4.4 gives c(M, 	) such that

με(Br (xε)) ≥ c(M, 	)rn−2

for ε < r < inj(M). Since for any δ > 0 we have Br (xε) ⊆ Br+δ(x)

eventually, it follows that μ(Br+δ(x)) ≥ crn−2, hence

μ(Br (x)) ≥ crn−2

for 0 < r < inj(M), which is (6.4). ��

123



1056 A. Pigati, D. Stern

With Proposition 6.2 in place, we will invoke a result by Ambrosio and
Soner [6] to conclude that the limiting measure μ = limε→0 με coincides
with the weight measure of a stationary, rectifiable (n − 2)-varifold. Recall
from Sect. 4 the stress-energy tensors

Tε = eε(uε, ∇ε)g − 2∇εu
∗
ε∇εuε − 2ε2F∗∇ε

F∇ε .

We record first the following lemma; in its statement, we canonically identify
(and pair with each other) tensors of rank (2, 0), (1, 1), and (0, 2), using the
underlying metric g.

Lemma 6.3 As ε → 0, the tensors Tε converge (subsequentially) as
Sym(T M)-valued measures, in duality with C0(M,Sym(T M)), to a limit
T satisfying

〈T, DX〉 = 0 for all vector fields X ∈ C1(M, T M), (6.5)
1

2π
〈T, ϕg〉 ≥ (n − 2)〈μ, ϕ〉 for every 0 ≤ ϕ ∈ C0(M), (6.6)

and

−
∫
M

|X |2 dμ ≤ 1

2π
〈T, X ⊗ X〉 ≤

∫
M

|X |2 dμ for all X ∈ C0(M, T M).

(6.7)

Proof For each ε > 0, note that, by definition of Tε , for every continuous
vector field X ∈ C0(M, T M) we have

∫
M

〈Tε, X ⊗ X〉 =
∫
M
eε(uε, ∇ε)|X |2 −

∫
M
2|(∇ε)Xuε |2 −

∫
M
2ε2|ιX F∇ε |2.

Evaluating (2.3) in an orthonormal basis such that X is a multiple of e1, we
see that |ιX F∇ε |2 ≤ |F∇ε |2|X |2, while |(∇ε)Xuε |2 ≤ |∇εuε |2|X |2. We deduce
that

−
∫
M

|X |2eε(uε, ∇ε) ≤
∫
M

〈Tε, X ⊗ X〉 ≤
∫
M
eε(uε, ∇ε)|X |2. (6.8)

As an immediate consequence, we see that the uniform energy bound
Eε(uε, ∇ε) ≤ 	 gives a uniform bound on ‖Tε‖(C0)∗ as ε → 0, so we can
indeed extract a weak-* subsequential limit T ∈ C0(M,Sym(T M))∗, for
which (6.7) follows from (6.8).
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The stationarity condition (6.5) for the limit T follows from (4.5). It remains
to establish the trace inequality (6.6). For this, we simply compute, for non-
negative ϕ ∈ C0(M),

∫
M

〈Tε , ϕg〉 =
∫
M

ϕ(neε(uε , ∇ε) − 2|∇εuε |2 − 4ε2|F∇ε |2)

=
∫
M

(n − 2)ϕeε(uε , ∇ε) + 2
∫
M

ϕ
(W (uε)

ε2
− ε2|F∇ε |2

)

≥ 2π(n − 2)〈με, ϕ〉 − 4π
∫
M

ϕeε(uε , ∇ε)
1/2

(
ε|F∇ε | − (1 − |uε |2)

2ε

)+
.

Recalling from Proposition 4.2 that

ε|F∇ε | − (1 − |uε |2)
2ε

≤ C(M, 	),

we then see that

〈T, ϕg〉 = lim
ε→0

∫
M

〈Tε, ϕg〉 ≥ 2π(n − 2)〈μ, ϕ〉 − C lim
ε→0

∫
M

ϕeε(uε, ∇ε)
1/2.

In particular, (6.6) will follow oncewe show that limε→0
∫
M eε(uε, ∇ε)

1/2=0.
But this is straightforward: from Proposition 6.2 we know that for 0 < δ <

inj(M) we have

μ(Bδ(x)) ≥ c(M, 	)δn−2 for x ∈ � = spt(μ).

Since vol(B5δ(x)) ≤ C(M)δn , a simple Vitali covering argument then implies
that the δ-neighborhood Bδ(�) of � satisfies a volume bound

vol(Bδ(�)) ≤ C(M, 	)δ2.

With this estimate in hand, we then see that

∫
M
eε(uε, ∇ε)

1/2 =
∫
Bδ(�)

eε(uε, ∇ε)
1/2 +

∫
M\Bδ(�)

eε(uε, ∇ε)
1/2

≤ vol(Bδ(�))1/2	1/2 + C(M)με(M\Bδ(�))1/2.

Fixing δ and taking the limit as ε → 0, we have με(M\Bδ(�)) → 0. Since
vol(Bδ(�)) ≤ Cδ2, we find that

lim sup
ε→0

∫
M
eε(uε, ∇ε)

1/2 ≤ Cδ	1/2.
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Finally, taking δ → 0, we conclude that
∫
M eε(uε, ∇ε)

1/2 → 0 as ε → 0,
completing the proof. ��

Estimate (6.7) says that |T | is absolutely continuous with respect to μ, so
by the Radon–Nikodym theorem we can write the limiting Sym(T M)-valued
measure T from Lemma 6.3 as

1

2π
〈T, S〉 =

∫
M

〈P(x), S(x)〉 dμ(x) (6.9)

for some L∞ (with respect to μ) section P : M → Sym(T M). Moreover, it
follows from (6.6) and (6.7) that −g ≤ P(x) ≤ g and tr(P(x)) ≥ n − 2 at μ-
a.e. x ∈ M , so that 1

2π T defines in a natural way a generalized (n−2)-varifold
in the sense of Ambrosio and Soner, namely a Radon measure on the bundle

An,n−2(M) := {S ∈ Sym(T M) : −ng ≤ S ≤ g, tr(S) ≥ n − 2}. (6.10)

We refer the reader to [6, Section 3]. Note that in [6] the authors work in the
Euclidean space and require the trace to be equal to n − 2 in (6.10); however,
the main result on generalized varifolds, namely [6, Theorem 3.8], still holds
in our setting. Indeed, in the proof of part (a) of that theorem, the condition∑m+1

i=1 λi = m that the authors obtain becomes
∑m+1

i=1 λi ≥ m in our setting
(withm = n−2), and the constraint λi ≤ 1 still ensures the conclusion λi ≥ 0
for all i . Similarly, for part (b), the condition

∑m
i=1 λi = m has to be replaced

by
∑m

i=1 λi = m, and this still implies λi = 1 for all i = 1, . . . ,m.
Hence, in view of the stationarity condition (6.5) and the density bounds of

Proposition 6.2, we can apply [6, Theorem 3.8(c)] to conclude that 1
2π T can be

identified with a stationary, rectifiable (n − 2)-varifold with weight measure
μ (so, in particular, spt(μ) is (n−2)-rectifiable), and that P(x) is givenμ-a.e.
by the orthogonal projection onto the (n−2)-subspace Tx spt(μ) ⊂ TxM . We
collect this information in the following statement.

Proposition 6.4 For a family (uε, ∇ε) satisfying the hypotheses of Theo-
rem 6.1, after passing to a subsequence, there exists a stationary, rectifiable
(n − 2)-varifold V = v(�n−2, θ) such that

lim
ε→0

1

2π

∫
M

〈Tε(uε, ∇ε), S〉 =
∫

�

θ(x)〈Tx�, S(x)〉 dHn−2 (6.11)

for every continuous section S ∈ C0(M,Sym(T M)). The energy measure
μ is given by μ = θHn−2 �. Also, we can choose � := spt(μ) and
θ(x) := �n−2(μ, x).
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6.2 Integrality of the limit varifold and convergence of level sets

We now show that the varifold V is integer rectifiable. Given x ∈ spt(μ) and
s > 0, we define Mx,s to be the ball of radius s−1 inj(M) in the Euclidean
space (TxM, gx ) and define ιx,s : Mx,s → M by ιx,s(y) := expx (sy). We
endow Mx,s with the smooth metric gx,s := s−2ι∗x,sg, which converges locally
smoothly to the Euclidean metric gx as s → 0.

By rectifiability, for μ-a.e. x the dilated varifolds Vx,s := (ι−1
x,s)∗(V

Binj(M)(x)) in Mx,s satisfy

Vx,s ⇀ v(Tx�, �n−2(x)) (6.12)

as s → 0, in duality with Cc(TxM). Fix x ∈ spt(μ) such that (6.12) holds.
The integrality of V will follow once we prove that � = �n−2(μ, x) is an
integer.

We can identify (TxM, gx ) with R
n by a linear isometry such that Tx� =

{0} × R
n−2. We also call μx,s the mass measure of Vx,s ; equivalently,

μx,s := s2−n(ι−1
x,s)∗(μ Binj(M)(x)).

With a diagonal selection, changing our sequence ε → 0 accordingly, we
can find scales sε → 0 such that we have the convergence of Radon measures

lim
ε→0

μ̂ε = lim
s→0

μx,s = �Hn−2 Tx�,

where (̂uε, ∇̂ε) is the pullback of (usεε, ∇sεε) by means of ιx,sε , and μ̂ε is the
associated energy measure. Note that (̂uε, ∇̂ε) is stationary for Eε in the line
bundle ι∗x,sε L , with respect to the base metric gx,sε . We introduce the notation

eTε (̂uε, ∇̂ε) :=
n∑

i=3

(|(∇ε)∂i ûε |2 + ε2|ι∂i F∇̂ε
|2).

Balls will be denoted by Br (y) or Bn
r (y), depending on whether they are

with respect to gx,sε or gRn , respectively. The volume |E | of a set E will be
always understood with respect to the Euclidean metric.

The next proposition, which exploits quantitatively the monotonicity for-
mula, is similar to an estimate in the proof of [26, Lemma 2.1].

Proposition 6.5 As ε → 0 we have

lim
ε→0

∫
B2
2×Bn−2

2

eTε (̂uε, ∇̂ε) = 0.

123



1060 A. Pigati, D. Stern

Proof Let Cm be the constant in Theorem 4.3. We first note that, given y ∈
{0} × R

n−2,

lim
ε→0

μ̂ε(Br (y)) = �ωn−2r
n−2;

indeed, for any η > 0, Bn
r−η(y) ⊆ Br (y) ⊆ Bn

r+η(y) eventually. Setting
yε := ιx,sε (y) ∈ M , we deduce that

lim
ε→0

(eCmsεr (sεr)
2−nμsεε(Bsεr (yε)) + Cmsεr)

= lim
ε→0

(eCmsεrr2−nμ̂ε(Br (y)) + Cmsεr)

= �ωn−2.

(6.13)

Pick 3 ≤ i ≤ n and fix R > 0. Choosing y := −2Rei , we can apply (4.12)
between the radii sεR and 3sεR to obtain that

∫
B3sε R(pi )\Bsε R(pi )

d2−n
pi (|∇νR,i usεε |2 + s2ε ε2|ινR,i F∇sεε |2)

≤ (eCm(3sε R)(3sεR)2−nμsεε(B3sε R(pi )) + Cm(3sεR))

− (eCm(sε R)(sεR)2−nμsεε(Bsε R(pi )) + Cm(sεR)),

where pi := ιx,sε (−2Rei ) and νR,i := grad dpi . Now (6.13) and the compa-
rability of gx,sε with gRn give

lim
ε→0

∫
B3R(−2Rei )\BR(−2Rei )

(|∇ν̃R,i ûε |2 + ε2|ι̃νR,i F∇̂ε
|2) = 0,

where ν̃R,i is the gradient of the distance function d−2Rei , both with respect
to the metric gx,sε . Since eventually B3R(−2Rei )\BR(−2Rei ) includes B2

2 ×
Bn−2
2 for R big enough, we get

lim
ε→0

∫
B2
2×Bn−2

2

(|∇ν̃R,i ûε |2 + ε2|ι̃νR,i F∇̂ε
|2) = 0. (6.14)

By monotonicity, as ε → 0 we have

lim sup
ε→0

∫
B2
2×Bn−2

2

eε (̂uε, ∇̂ε) ≤ lim sup
ε→0

s2−n
ε

∫
B5sε (x)

esεε(usεε, ∇sεε)

≤ C(M, 	).

(6.15)

123



Minimal submanifolds from the abelian Higgs model 1061

The smooth convergence gx,sε → gRn gives ν̃R,i (y) → YR,i (y) := y+2Rei
|y+2Rei |

uniformly on B2
2 × Bn−2

2 . Hence, the bound (6.15) and (6.14) give

lim
ε→0

∫
B2
2×Bn−2

2

(|∇YR,i ûε |2 + ε2|ιYR,i F∇̂ε
|2) = 0. (6.16)

Now YR,i → ei = ∂i as R → ∞, and the statement follows from (6.16) and
the uniform bound (6.15). ��

We now state the main technical result of the section, which will be shown
later. Fix a cut-off function χ ∈ C∞

c (B2
2 ) with χ(z) = 1 for |z| ≤ 3

2 and
0 ≤ χ ≤ 1, and let χ̂ (z, t) := χ(z).

Proposition 6.6 There exists Fε ⊆ Bn−2
1 with |Fε | ≥ 1

4 |Bn−2
1 | such that

sup
t∈Fε

dist
( ∫

R2×{t}
χ(z)eε (̂uε, ∇̂ε)(z, t), 2πN

)
→ 0 as ε → 0. (6.17)

Before giving the proof, let us see how this implies the integrality of V .

Proof of Theorem 6.1 As ε → 0, we have both (6.17) and

lim
ε→0

1

2π

∫
R2×Bn−2

1

χ̂eε (̂uε, ∇̂ε) = lim
ε→0

∫
R2×Bn−2

1

χ̂ dμ̂ε = ωn−2�, (6.18)

∫
R2×Bn−2

2

|dχ̂ | dμ̂ε ≤ Cμ̂ε((B
2
2\B2

1 ) × Bn−2
1 ) → 0, (6.19)

as μ̂ε ⇀ �Hn−2 {0} × R
n−2.

In view of (6.15) and (6.19), for any vector field (Y 3, . . . , Yn) ∈
C∞
c (Bn−2

2 , R
n−2) we can integrate (4.4) against χ̂(

∑n
i=3 Y

i∂i ) and obtain,
in the Euclidean metric,

∣∣∣
∫

R2×Bn−2
2

χ̂〈Tε(uε, ∇ε), dY
i ⊗ ∂i 〉

∣∣∣ ≤ λε(‖Y‖L∞ + ‖DY‖L∞)

for some sequence λε → 0, thanks to the smooth convergence gx,sε → gRn .
Invoking Proposition 6.5 and noting that ‖Y‖L∞ ≤ 2‖DY‖L∞ , we can con-

clude that the nonnegative function fε(t) := 1
2π

∫
R2×{t} χ̂eε (̂uε, ∇̂ε) satisfies

∣∣∣
∫
Bn−2
2

fε div(Y )

∣∣∣ ≤ λε‖DY‖L∞
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for a possibly different sequenceλε → 0.Applying theHahn–Banach theorem
to the subspace {DY | Y ∈ C∞

c (Bn−2
2 , R

n−2)} ⊆ C0(B
n−2
2 , R

n−2 ⊗ R
n−2)

(C0 denoting the closure of Cc), we can find real measures (νε)
i
j such that

∂ j fε =
n∑

i=3

∂i (νε)
i
j for all j = 3, . . . , n

as distributions and |(νε)
i
j |(Bn−2

2 ) → 0. Allard’s strong constancy lemma [2,
Theorem 1.(4)] gives then

∥∥∥ fε − 1

ωn−2

∫
Bn−2
1

fε
∥∥∥
L1(Bn−2

1 )
→ 0.

Since the sets Fε of Proposition 6.6 have positive measure, there clearly
exists tε ∈ Fε such that

∣∣∣ fε(tε) − 1

ωn−2

∫
Bn−2
1

fε
∣∣∣ ≤ 1

|Fε |
∥∥∥ fε − 1

ωn−2

∫
Bn−2
1

fε
∥∥∥
L1(Bn−2

1 )
→ 0.

Recalling (6.17), we deduce that

dist
( 1

ωn−2

∫
Bn−2
1

fε, 2πN

)
→ 0.

Hence, by (6.18), we get dist(�, N) = 0, which concludes the proof that V is
integral. ��
Proof of Proposition 6.6 Taking into account Proposition 6.5, the classical
Hardy–Littlewood weak-(1,1) maximal estimate (applied to the function
t → ∫

B2
2×{t} e

T
ε (̂uε, ∇̂ε)) gives

1

rn−2

∫
B2
2×Bn−2

r (t)
eTε (̂uε, ∇̂ε) ≤ C(n)

∫
B2
2×Bn−2

2

eTε (̂uε, ∇̂ε) → 0 (6.20)

for all t ∈ Bn−2
1 \Eε

1 and 0 < r < 1, where Eε
1 is a Borel set with |Eε

1 | ≤
1
4 |Bn−2

1 |. Similarly, (6.15) and (6.19) give

1

rn−2 μ̂ε(B
2
2 × Bn−2

r (t)) ≤ C(M, 	), (6.21)

1

rn−2 μ̂ε((B
2
2\B2

1 ) × Bn−2
r (t)) ≤ C(n)μ̂ε((B

2
2\B2

1 ) × Bn−2
2 ) → 0

(6.22)
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for t ∈ Bn−2
1 \(Eε

2 ∪ Eε
3) and 0 < r < 1, with |Eε

2 |, |Eε
3 | ≤ 1

4 |Bn−2
1 |.

Pick any tε ∈ Bn−2
1 \(Eε

1 ∪ Eε
2 ∪ Eε

3) and, for 0 < r < 1, define

Vε(r) := {z ∈ B2
1 : dist((z, tε), Zβd/2(̂uε)) < r}

(with the Euclidean distance), where Zβd/2(̂uε) = {|̂uε |2 ≤ 1 − βd/2}. In
other words, Vε is the tε-slice of the neighborhood Bn

r (Zβd/2(̂uε)).
We claim that, for 0 < r < 1

2 , Vε(r) satisfies a uniform area bound

|Vε(r)| ≤ C(M, 	)r2, (6.23)

provided ε < r and ε is small enough. Indeed, Vε(r) × {tε} is covered by
the balls Bn

r (y) with y ∈ (B2
3/2 × Bn−2

r (tε)) ∩ Zβd/2(̂uε). Vitali’s covering
lemma gives a disjoint collection {Bn

r (y j ) | j ∈ J } such that Vε(r) × {tε} ⊆⋃
j B

n
5r (y j ). By Corollary 4.4, we have a bound on the cardinality |J |:

μ̂ε(B
2
2 × Bn−2

2r (tε)) ≥
∑
j∈J

μ̂ε(B
n
r (y j )) ≥

∑
j∈J

μ̂ε(Br/2(y j )) ≥ c(M, 	)rn−2|J |

(since 1
4gRn ≤ gx,sε ≤ 4gRn for ε sufficiently small). Using also (6.21), we

get |J | ≤ C(M, 	). Hence, writing y j = (z j , t j ), we obtain

|Vε(r)| ≤
∑
j∈J

|B2
5r (z j )| ≤ 25π |J |r2 ≤ C(M, 	)r2,

confirming (6.23).
Given R > 0, let {zε

1, . . . , zε
N (R,ε)} be a maximal subset of Vε(Rε) with

|zε
k − zε

�| ≥ 2ε. Since
⋃

k(B
2
1 ∩ B2

ε (zk)) ⊆ Vε((R + 1)ε) and the balls
B2

ε (zk) are disjoint, (6.23) gives a uniform bound on N (R, ε) independent of
ε (eventually), so up to subsequences we can assume that N (R) = N (R, ε) is
constant and that ε−1|zε

k − zε
�| has a limit rk� as ε → 0, for each k, l.

We say that k ∼ � if rk� < ∞; this is evidently an equivalence relation (as
rkm ≤ rk� + r�m), so we can pick a set of representatives {k1, . . . , kP} of the
distinct equivalence classes [k1], . . . , [kP ] and conclude that

Vε(Rε) ⊆
P⋃
j=1

B2
Sε(z

ε
k j )

eventually, for any fixed S ≥ S0(R) := max{∑�∈[k j ] rk j�+2 | j = 1, . . . , P}.
Fix such an S which is also bigger than the constants C in (6.21) and

a−1
d ,Cd in Corollary 5.4. For any fixed δ > 0, (6.20) and (6.21) show that,
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1064 A. Pigati, D. Stern

for ε sufficiently small, Proposition 6.7 below applies to ûε(zε
k j

+ ε·, tε + ε·)
(with β := βd ). Writing K = K (βd , δ, S) > S, note that the balls B2

K ε(zk j )
are eventually disjoint and included in {χ = 1}. Hence, Proposition 6.7 and
(6.22) give

dist
( ∫

R2×{tε}
χ̂eε (̂uε, ∇̂ε), 2πN

)
≤ Pδ +

∫
B2
2\ ⋃P

j=1 B
2
K ε(z

ε
k j

)

eε (̂uε, ∇̂ε)(·, tε)

≤ Pδ +
∫
B2
2\Vε(Rε)

eε (̂uε, ∇̂ε)(·, tε)

≤ (P + 1)δ +
∫
B2
1\Vε(Rε)

eε (̂uε, ∇̂ε)(·, tε)

(for ε sufficiently small). Choosing δ = δ(R) ≤ 1
(P+1)R , we arrive at the

estimate

dist
( ∫

R2×{tε}
χ̂eε (̂uε, ∇̂ε), 2πN

)
≤ 1

R
+

∫
B2
1\Vε(Rε)

eε (̂uε, ∇̂ε)(·, tε).

To conclude the proof, it suffices to show that

lim
R→0

lim sup
ε→0

∫
B2
1\Vε(Rε)

eε (̂uε, ∇̂ε)(·, tε) → 0. (6.24)

Once we have this, we infer that

lim inf
ε→0

dist
( ∫

R2×{tε}
χ̂eε (̂uε, ∇̂ε), 2πN

)
= 0

for the original sequence (tε). Noting that the choice of tε in Fε := Bn−2
1 \Eε

1∪
Eε
2 ∪ Eε

3 was arbitrary, we get

lim inf
ε→0

sup
t∈Fε

dist
( ∫

R2×{t}
χ̂eε (̂uε, ∇̂ε), 2πN

)
= 0.

Since the argument applies to an arbitrary subsequence ε j → 0, the proposition
then follows.

To show (6.24), note that for z ∈ B2
1 the distance of ιx,sε ((z, t

ε)) to the set
Zβd/2(usεε) is (eventually) bounded below by sε

2 min{1, rε(z)}, where rε(z)
is the (Euclidean) distance of (z, tε) to Zβd/2(̂uε)). Since Zβd/2(usεε) ⊇
Zβd (usεε), for any R > 1 Corollary 5.4 gives

∫
B2
1 \Vε (Rε)

eε (̂uε , ∇̂ε) ≤ Cε−2
∫
B2
1 \Vε (Rε)

e−adrε (z)/(2ε) + Cε−2e−ad/(2ε) + Csεε
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= Cε−3
∫
B2
1 \Vε (Rε)

∫ ∞

rε (z)

ad
2
e−adr/(2ε) dr dz + Cε−2e−ad/(2ε) + Csεε

= Cε−3
∫ ∞

Rε

ad
2
e−adr/(2ε)|Vε(r)| dr + Cε−2e−ad/(2ε) + Csεε

≤ Cε−3
∫ ∞

Rε

e−adr/(2ε)r2 dr + Cε

= C
∫ ∞

R
e−ad t/2t2 dt + Cε,

where we used Fubini’s theorem in the second equality. The statement follows.
��

The followingkey technical proposition, used in the proof ofProposition6.6,
relies ultimately on the quantization phenomenon for the energy of entire solu-
tions in the plane, presented in [21, Chapter III]. For the reader’s convenience,
we give a self-contained proof, including the relevant arguments from [21].

Proposition 6.7 Given 0 < β, δ < 1
2 and S > 1, there exist K (β, δ, S) > S

and 0 < κ(β, δ, S, n) < K−1 such that the following is true. Assume (u, ∇)

is smooth and solves (2.4) and (2.5), with |u| ≤ 1 and ε = 1, on a line bundle
L over a cylinder (Q, g), with Q = B2

κ−1 × Bn−2
κ−1 . If we have

Zβ/2(u) ∩ (B2
κ−1 × {0}) ⊆ B

2
S × {0}, (6.25)

the energy bounds

e1(u, ∇) ≤ S, (6.26)
n∑

i=3

∫
B2

κ−1×Bn−2
r

(|∇∂i u|2 + |ι∂i F∇|2) ≤ κrn−2 for all 0 < r < κ−1,

(6.27)

as well as the decay

e1(u, ∇)(p) ≤ Se−S−1r + κ whenever Br (p) ⊂⊂ Q\Zβ, (6.28)

and ‖g − gRn‖C2 ≤ κ , then

∣∣∣
∫
B2
K×{0}

e1(u, ∇) − 2π |p|
∣∣∣ < δ,

where p is the degree of u
|u|(S·, 0), as a map from the circle to itself.
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Proof To begin with, fix a real number K (β, δ, S) > S so big that

∫ ∞

K
(2πr)Se−S−1(r−S) < δ. (6.29)

Arguing by contradiction, assume there exists a sequence κ j → 0 such that
the statement admits a counterexample (u j , ∇ j ) (for κ = κ j ) for a (necessarily
trivial) line bundle L j over Q j = B2

κ−1
j

×Bn−2
κ−1
j

, with respect to ametric g = g j

satisfying ‖g − gRn‖C2 ≤ κ j . Fixing a trivialization of L j over Q j , we can
write ∇ j = d − i A j for some real one-form A j .

By virtue of the uniform pointwise estimate (6.28) for e1(u j , ∇ j ) ≥
|d|u j ||2, we see that the functions |u j | are locally equi-Lipschitz. In partic-
ular, we can apply the Arzelà–Ascoli theorem to extract a subsequence |u j |
converging in C0

loc to a continuous function ρ∞ : R
n → R.

Since |∂k |u j || ≤ |(∇ j )∂k u j | for all k, (6.27) implies that ρ∞ depends only
on the first two variables. Moreover, (6.25) gives ρ2∞ ≥ 1− β

2 > 1−β outside
B2
S × R

n−2. In particular, setting

R j := max
{
r ≤ κ−1

j : (B2
r \B2

S) × Bn−2
1 ⊆

{
|u j | >

1

2

}}
,

we have R j → ∞. Let w j := u j
|u j | on {|u j | > 1

2 }.
The degree p j is uniformly bounded as, for r ≥ S and t ∈ R

n−2,

2πp j =
∫

∂B2
r ×{t}

w∗
j (dθ) =

∫
B2
r ×{t}

d A j +
∫

∂B2
r ×{t}

(w∗
j (dθ) − A j )

for j sufficiently large, so averaging over S < r < 2S and t ∈ Bn−2
1 we get

2π |p j | ≤ C(S)

∫
B2
2S×Bn−2

1

|d A j | + C(S)

∫
(B2

2S\B2
S)×Bn−2

1

|w∗
j (dθ) − A j |

≤ C(β, S)
( ∫

B2
2S×Bn−2

1

e1(u j , A j )
)1/2

,

as |u j ||w∗
j (dθ) − A j | ≤ |∇ j u j |. Thus, up to subsequences we can assume

p j = p is constant.
We now claim that, up to change of gauge, (u j , A j ) → (u∞, A∞) subse-

quentially in C1
loc(R

2 × Bn−2
1 ). Let ũ j = eiθ j u j and Ã j = A j + dθ j be the

section and the connection in the Coulomb gauge on the domain (B
n
5S, g j ),

with Ã j (ν) = 0 on the boundary (as described in the “Appendix”). Note
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that Bn
5S includes the cylinder Q′ := B2

4S × Bn−2
1 , and observe that, on

Q′′ := (B2
4S\B2

S) × Bn−2
1 , ũ j has the form

ũ j (re
iθ , t) = |u j |eipθ+iψ j

for a unique real function ψ j with 0 ≤ ψ j (2S, 0) < 2π .
Hence, u j = |u j |ei(pθ+ψ j−θ j ) on Q′′ and we can extend ψ j − θ j uniquely

to a function σ j : (B2
R j

\B2
S)×Bn−2

1 → R so that u j = |u j |eipθ+iσ j holds true

on all the domain of σ j . Finally, we replace (u j , A j ) with (eiτ j u j , A j + dτ j ),
where

τ j (z, t) :=
{

θ j − χ(|z|)ψ j |z| < 4S

−σ j |z| > 3S

for a fixed smooth function χ : [0, ∞) → [0, 1] such that χ = 0 on [0, 2S]
and χ = 1 on [3S, ∞). Observe that, in the cylinder Q′ = B2

4S × Bn−2
1 , the

new couple equals

(̃u j e
−χ(|z|)ψ j , Ã j − d(χ(|z|)ψ j )).

The function ψ j obeys uniform local W 2,q bounds, on (the interior of) Q′′,
for all 1 ≤ q < ∞, thanks to the Coulomb gauge specification (per Propo-
sition A.1 in the “Appendix”). Hence, the new couple (u j , A j ) has uniform
local W 2,q bounds on Q′.

Moreover, in the exterior annular region A j := (B2
R j

\B2
3S) × Bn−2

1 , we

have that u j (reiθ , t) = |u j |epiθ and we can obtain local W 2,q bounds noting
that

pdθ − A j = |u j |−2〈∇ j u j , iu j 〉.

Indeed, since the right-hand side is bounded by 2e1(u j , ∇ j )
1/2 ≤ 2S1/2 and

pdθ is a fixed smooth one-form, we immediately obtain uniform L∞ bounds
for A j locally in A j . Next, note that the identity (3.4) applies to give us an
estimate

|�|u j |2| ≤ Ce1(u j , ∇ j ) + C ≤ CS

in A j , from which it follows that the modulus |u j | satisfies uniform W 2,q

bounds for every q ∈ (1, ∞) locally in A j . Multiplying (2.4) by e−piθ and
taking the imaginary part gives

|u j |d∗(pdθ − A j ) = 2〈d|u j |, pdθ − A j 〉,
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from which it follows that d∗A j satisfies uniform L∞ bounds locally in A j
as well; together with the obvious pointwise bound |d A j | ≤ e1(u j , ∇ j )

1/2 ≤
S1/2, this in particular yields uniform bounds on the full derivative ‖DA j‖Lq

for every q ∈ (1, ∞) on fixed compact subsets of A j (this follows, e.g., from
[20, Lemma 4.7] and a cut-off argument).

Finally, writing (2.5) as

�H A j = dd∗A j + |u j |2(pdθ − A j ),

the preceding chain of identities and estimates give a uniform Lq bound on the
right-hand side over any fixed compact subset of A j , for any q ∈ (1, ∞); in
particular, this gives us the desired uniform local W 2,q bounds for A j (while
we already have the desired W 2,q bounds for u j = |u j |epiθ ).

Thanks to the compact embedding W 2,q ↪→ C1 on bounded regular
domains (for q > n), we obtain a limit couple (u∞, A∞) on R

2 × Bn−2
1 ,

as claimed, which solves (2.4) and (2.5) with respect to the flat metric. Also,
|u∞| = ρ∞ and

(∇∞)∂k u∞ = 0, ι∂k d A∞ = 0 for k = 3, . . . , n. (6.30)

The second part of (6.30) implies that we can find a function α ∈ C1(R2 ×
Bn−2
1 ) with α(z, 0) = 0 and ∂kα = (A∞)k , for all z ∈ R

2 and all k ≥ 3. Set
ũ∞ := e−iαu∞ and Ã∞ := A∞ − dα, so that

( Ã∞)k = 0, ∂k( Ã∞)� = ∂k(A∞)� − ∂2k�α = ∂�(A∞ − dα)k = 0

for all k = 3, . . . , n and � = 1, . . . , n [using again the second part of (6.30)].
The first part gives instead ∂k ũ∞ = 0 for k = 3, . . . , n. Hence, (̃u∞, Ã∞)

depends only on the first two variables and therefore corresponds to a planar
solution of (2.4) and (2.5).

Also, from (6.28) we deduce that

e1 (̃u∞, Ã∞)(z, t) = e1(u∞, A∞)(z, t) = lim
j→∞ e1(u j , A j )(z, t) ≤ Se−S−1(|z|−S) (6.31)

for |z| > S, as eventually B
n
|z|−S(z, t) ∩ Zβ(u j ) = ∅.

Integrating (4.4) on R
2 = R

2 × {0} against the position vector field we get
∫

R2
|d Ã∞|2 =

∫
R2

W (̃u∞).
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Thanks to the decay of e1(̃u∞, Ã∞), we can repeat the proof of (3.6): starting
from

�ξ̃∞ ≥ |̃u∞|2ξ̃∞, with ξ̃∞ := |d Ã∞| − 1 − |̃u∞|2
2

,

and applying the maximum principle, we deduce that the decaying function
ξ̃∞ is nonpositive. We then obtain |d Ã∞| ≤ √

W (̃u∞), so we must have
|d Ã∞| = √

W (̃u∞) everywhere (cf. [21, Section III.10]).
Observe that, by (3.4) and the strong maximum principle, |̃u∞| < 1 (unless

|̃u∞| = 1 everywhere, in which case |d Ã∞| = √
W (̃u∞) = 0 and |∇̃∞ũ∞| =

0 by (3.4), thus e1(̃u∞, Ã∞) = 0 and p = 0; so the statement of the proposition
holds eventually, contradiction). As a consequence, | ∗ d Ã∞| = W (̃u∞) > 0

and we get either 1−|̃u∞|2
2 = ∗d Ã∞ everywhere or 1−|̃u∞|2

2 = − ∗ d Ã∞
everywhere. Thus, integrating by parts and using (2.4), as well as the decay of
|pdθ − Ã∞|,

∫
R2

e1(̃u∞, Ã∞) =
∫

R2
(|∇̃∞ũ∞|2 + 2W (̃u∞))

=
∫

R2
(〈∇̃∗∞∇̃∞ũ∞, ũ∞〉 + 2W (̃u∞))

=
∫

R2

1 − |̃u∞|2
2

= ±
∫

R2
d Ã∞ = ± lim

r→∞

∫
∂B2

r

Ã∞

= ± lim
r→∞

∫
∂B2

r

pdθ = ±2πp.

Hence, the energy of the two-dimensional solution (̃u∞, Ã∞) is 2π |p|. Our
choice of K , namely (6.29), together with (6.31), then ensures that

dist
( ∫

B2
K×{0}

e1(u∞, A∞), 2πN

)
< δ.

As a consequence, this must hold eventually also for (u j , A j ), giving the
desired contradiction. ��
Remark 6.8 As a consequence, one also finds that

∫
B2
K×{0}

e1(u, ∇) < δ

if |u| > 0 everywhere on the cylinder Q. Indeed, if |u| > 0 everywhere, then
the degree p in the statement of Proposition 6.7 clearly must vanish.
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We are now able to address the statement on the convergence of level sets.

Proposition 6.9 For any 0 ≤ δ < 1 we have spt(μ) = limε→0{|uε | ≤ δ}, in
the Hausdorff topology.

Proof If x = limε→0 xε , for points xε ∈ {|uε | ≤ δ} defined along a subse-
quence, then the same argument used in the proof of Proposition 6.2 shows
that x ∈ spt(μ). Hence, for all η > 0, eventually {|uε | ≤ δ} is included in the
η-neighborhood of spt(μ).

To conclude the proof, it suffices to show that the converse inclusion
spt(μ) ⊆ Bη({uε = 0}) holds eventually. Arguing by contradiction, assume
that there are points pε ∈ spt(μ) whose distance from {uε = 0} is at least
η, along some subsequence (not relabeled). Up to further subsequences, let
pε → p0 ∈ spt(μ).
Since μ is (n − 2)-rectifiable, there exists a point q ∈ spt(μ) with

dist(p0, q) <
η
2 , and such that μ blows up to �n−2(μ, q)Hn−2 Tq� at

q. Observe that eventually we have

dist(q, {uε = 0}) ≥ η

2
. (6.32)

Now, repeating all the preceding blow-up analysis at q, in view of Remark 6.8
we can improve (6.17) to the uniform convergence

∫
R2×{t}

χ(z)eε (̂uε, ∇̂ε)(z, t) → 0

for t ∈ Fε , which implies that �n−2(μ, q) = 0. However, since q ∈ spt(μ),
this is impossible, by Proposition 6.2. ��

6.3 Limiting behavior of the curvature

As before, we identify the curvature F∇ε with a closed two-form ωε by
F∇ε (X, Y ) = −iωε(X, Y ). Recall that the cohomology class [ 1

2π ωε] rep-
resents the (rational) first Chern class c1(L) ∈ H2(M; R) of the complex line
bundle L → M .

Theorem 6.10 Let (uε, ∇ε) be a family as in Theorem 6.1. The curvature
forms 1

2π ωε can be identified with (n − 2)-currents that converge (weakly), as
ε → 0, to an integer rectifiable cycle � which is Poincaré dual to c1(L), and
whose mass measure |�| satisfies |�| ≤ μ.

Proof Recall from Sect. 2 that

d〈∇εuε, iuε〉 = ψ(uε) − |uε |2ωε,
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Minimal submanifolds from the abelian Higgs model 1071

where ψ(uε) = 〈2i∇uε, ∇εuε〉 is a two-form satisfying |ψ(uε)| ≤ |∇εuε |2
pointwise. In particular, denoting by J (uε, ∇ε) the two-form

J (uε, ∇ε) := ψ(uε) + (1 − |uε |2)ωε,

we can rewrite this identity as

J (uε, ∇ε) − ωε = d〈∇εuε, iuε〉, (6.33)

and observe that

|J (uε, ∇ε)| ≤ |∇εuε |2 + ε2|ωε |2 + 1

4ε2
(1 − |uε |2)2 = eε(uε, ∇ε). (6.34)

The dual (n − 2)-currents given by

〈�ε, ζ 〉 := 1

2π

∫
M

J (uε, ∇ε) ∧ ζ,

for any (n − 2)-form ζ ∈ �n−2(M), are thus bounded in mass by 1
2π 	.

(Here we compute the mass with the �2 norm on exterior algebras; for the
limit current, by rectifiability this will coincide with the usual mass, dual to
the comass.) Up to subsequences, we can take a weak limit �. The bound
|�ε | ≤ με implies that also |�| ≤ μ.

From (6.33) and integration by parts we get

∫
M

ωε ∧ ζ =
∫
M

J (uε, ∇ε) ∧ ζ −
∫
M

〈∇εuε, iuε〉 ∧ dζ.

Since (as discussed in the proof of Proposition 6.2)

∫
M

|〈∇εuε, iuε〉| ≤
∫
M
eε(uε, ∇ε)

1/2 → 0

as ε → 0, it follows that

〈�, ζ 〉 = 1

2π
lim
ε→0

∫
M

J (uε, ∇ε) ∧ ζ = 1

2π
lim
ε→0

∫
M

ωε ∧ ζ (6.35)

for every smooth (n − 2)-form ζ ∈ �n−2(M).
Since the two-forms ωε are closed, for any ξ ∈ �n−3(M) we have

〈∂�, ξ 〉 = 〈�, dξ 〉 = 1

2π
lim
ε→0

∫
M

ωε ∧ dξ = 1

2π
lim
ε→0

∫
M
d(ωε ∧ ξ) = 0,
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1072 A. Pigati, D. Stern

so � is a cycle. Since μ is (n − 2)-rectifiable, � must be a rectifiable (n − 2)-
current: this can be seen by blow-up, applying [25, Proposition 7.3.5]. By
(6.35), � is Poincaré dual to c1(L).

To complete the proof, it remains to show that� has integer multiplicity. By
means of a diagonal selection of a subsequence, as in the previous subsection,
we can deduce integrality at those points p ∈ spt(μ) where μ and � blow up
respectively to �n−2(μ, p)Hn−2 Tp� and a multiple of [Tp�], using the
following lemma. Note that its hypotheses are verified thanks to Corollary 5.4
and the fact that Zβd (uε) necessarily converges to a subset of Tp� in the local
Hausdorff topology, after rescaling (see the proof of Proposition 6.2).

Since μ is (n − 2)-rectifiable, we deduce that the limiting current � has
integer multiplicityHn−2-a.e. on its support, as claimed. ��
Lemma 6.11 On the Euclidean ball Bn

4 , let (uε, ∇ε) be a sequence of sections
and connections in a trivial line bundle L → Bn

4 (not necessarily satisfying
any equation) for which Eε(uε, ∇ε) ≤ 	, eε(uε, ∇ε) → 0 in C0

loc(B
n
4 \P) and

∗ωε → θ1[P] in Dn−2(Bn
4 ), where P = {0} × R

n−2. Then θ1 ∈ 2πZ.

Proof To begin, fix a test function ϕ ∈ C1
c (B

2
1 × Bn−2

1 ) of the form
ϕ(x1, . . . , xn) = ψ(x1, x2)η(x3, . . . , xn),withψ(x1, x2) = 1 for |(x1, x2)| ≤
1
2 . In the sequel, we shall omit the domain of integration when it equals R

n .
By assumption, we then have

θ1

∫
P

ηdx3 ∧ · · · ∧ dxn = lim
ε→0

∫
ϕωε ∧ dx3 ∧ · · · ∧ dxn.

Fixing trivializations of L over Bn
2 , wewrite∇ε = d−i Aε for some one-forms

Aε , so that ωε = d Aε , and the right-hand term in the preceding limit becomes
∫

ωε ∧ (ϕdx3 ∧ · · · ∧ dxn) =
∫

d(ϕAε ∧ dx3 ∧ · · · ∧ dxn)

+
∫

Aε ∧ dϕ ∧ dx3 ∧ · · · ∧ dxn

=
∫

η|uε |2Aε ∧ dψ ∧ dx3 ∧ · · · ∧ dxn

+
∫

η(1 − |uε |2)Aε ∧ dψ ∧ dx3 ∧ · · · ∧ dxn.

On Bn
2 we can choose our trivializations so that d∗Aε = 0, and Aε(ν) = 0

on ∂Bn
2 (see the “Appendix”). We then have the L2 control

∫
Bn
2

|Aε |2 ≤ C
∫
Bn
2

|d Aε |2 ≤ Cε−2	 (6.36)
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Minimal submanifolds from the abelian Higgs model 1073

(see, e.g., [20, Theorem 4.8]), and consequently

∣∣∣
∫

η(1 − |uε |2)Aε ∧ dψ ∧ dx3 ∧ · · · ∧ dxn
∣∣∣ ≤ C‖1 − |uε |2‖C0(spt(ηdψ))‖Aε‖L1(Bn

2 )

≤ C	1/2‖ε−1(1 − |uε |2)‖C0(spt(ηdψ))

≤ C	1/2‖eε(uε , ∇ε)‖1/2C0(spt(ηdψ))

→ 0

as ε → 0, where we have used the fact that dψ(x1, x2) = 0 for |(x1, x2)| ≤ 1
2 ,

and the assumption that eε(uε, ∇ε) → 0 in C0
loc(B

n
2 \P).

Combining our computations thus far, we have arrived at the identity

θ1

∫
P

ηdx3 ∧ · · · ∧ dxn = lim
ε→0

∫
η|uε |2Aε ∧ dψ ∧ dx3 ∧ · · · ∧ dxn.

Noting next that

||uε |2Aε − 〈duε, iuε〉| = |〈∇εuε, iuε〉| ≤ eε(uε, ∇ε)
1/2,

and using again the hypothesis that eε(uε, ∇ε) → 0 uniformly on spt(ηdψ),
the preceding identity yields

θ1

∫
P

ηdx3 ∧ · · · ∧ dxn = lim
ε→0

∫
η〈duε , iuε〉 ∧ dψ ∧ dx3 ∧ · · · ∧ dxn

= lim
ε→0

∫
η|uε |2(uε/|uε |)∗(dθ) ∧ dψ ∧ dx3 ∧ · · · ∧ dxn

= lim
ε→0

∫
η(uε/|uε |)∗(dθ) ∧ dψ ∧ dx3 ∧ · · · ∧ dxn .

Finally, since the one-form (uε/|uε |)∗(dθ) is closed on {uε �= 0} and dη ∧
dx3 ∧ · · · ∧ dxn = 0, integrating by parts on (R2\B2

1/2) × R
n−2 we see that

∫
η(uε/|uε |)∗(dθ) ∧ dψ ∧ dx3 ∧ · · · ∧ dxn

=
∫

Rn−2
η(t)

∫
∂B2

1/2×{t}
(uε/|uε |)∗(dθ) dt

= 2π deg(uε, P)

∫
P

η,

where deg(uε, P) stands for the degree of (uε/|uε |)(12eiθ , 0). The statement
follows. ��
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7 Examples from variational constructions

The goal of this section is to show that, for every closed manifold M and every
line bundle L → M endowed with a Hermitian metric, there exist critical
couples (uε, ∇ε) for the Yang–Mills–Higgs functional Eε , for ε small enough,
in such a way that

0 < lim inf
ε→0

Eε(uε, ∇ε) ≤ lim sup
ε→0

Eε(uε, ∇ε) < ∞. (7.1)

This will be easier when the line bundle is nontrivial, as in this case we can
just take (uε, ∇ε) to be a global minimizer for Eε . The upper and lower bounds
in (7.1) have the following immediate consequence—proved previously by
Almgren [5] using GMT methods.

Corollary 7.1 Every closed Riemannian manifold (Mn, g) supports a non-
trivial stationary, integral (n − 2)-varifold.

Proof We can always equip M with the trivial line bundle L := C × M .
As shown in the next subsection, there exists a sequence of critical couples
(uε, ∇ε) satisfying (7.1). The statement now follows from Theorem 6.1. ��

7.1 Min–max families for the trivial line bundle

In this section we will show how min–max methods may be applied to the
functionals Eε to produce nontrivial critical points in the trivial bundle L =
C × M on an arbitrary closed manifold M of dimension n ≥ 2. The min–
max construction that we consider here is based on two-parameter families
parametrized by the unit disk, similar to the constructions employed in [10,33]
for the Ginzburg–Landau functionals—with several technical adjustments to
account for the gauge-invariance and other features particular to the Yang–
Mills–Higgs energies.

One can show that the families we consider induce a nontrivial class in
π2(M) for the quotient

M := {(u, ∇) | 0 �≡ u ∈ �(L), ∇ a Hermitian connection}/{gauge transformations},

and the analysis that follows can be reformulated in terms ofmin–maxmethods
applied directly toM, which can be given the structure of a Banach manifold.

Without loss of generality, we assume henceforth that M is connected. In
some proofs we will also implicitly assume that n = dim(M) ≥ 3, leaving
the obvious changes for n = 2 to the reader.
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Definition 7.2 Fix n = dim(M) < p < ∞. In what follows, X̂ will denote
the Banach space of couples (u, A), where u ∈ L p(M, C) and A ∈ �1(M, R),
both of class W 1,2, with the norm

‖(u, A)‖ := ‖u‖L p + ‖du‖L2 + ‖A‖L2 + ‖DA‖L2 .

Denote by X := {(u, A) ∈ X̂ : d∗A = 0} the subspace consisting of those
couples for which the connection form A is co-closed.

Note that, for (u, A) ∈ X , the full covariant derivative
∫
M |DA|2 is bounded

by C(M)
∫
M(|A|2 + |d A|2): see, e.g., [20, Theorem 4.8] for a proof.

Definition 7.3 Given a form A ∈ �1(M, R) in L2, we denote by h(A) the
harmonic part of its Hodge decomposition, or equivalently the orthogonal
projection of A onto the (finite-dimensional) space H1(M) of harmonic one-
forms.

Remark 7.4 Selection of a Coulomb gauge gives a continuous retraction R :
X̂ → X : namely, given a couple (u, A) ∈ X̂ , consider the unique solution
θ ∈ W 2,2(M, R) to the equation

�θ = d∗A,

with
∫
M θ = 0, and set

R((u, A)) := (eiθu, A + dθ).

Note that the continuity of (u, A) → d(eiθu) = eiθ (du + iudθ), from X̂ to
L2, follows from the fact that L p · L2∗ ⊆ L2, where 2∗ = 2n

n−2 .

Throughout this section, W (u) = f (|u|) will be a smooth radial function

given by W (u) = (1−|u|2)2
4 for |u| ≤ 3/2, and satisfying W (u),W ′(u)[u] > 0

for all |u| > 1. For technical reasons, we also find it convenient to require that

W (u) = |u|p for |u| ≥ 2, (G)

which evidently gives the additional estimates |u| f ′(|u|) + |u|2 f ′′(|u|) ≤
C |u|p for |u| ≥ 2, for some constant C . For future use, observe also that the
potential W (u) then satisfies a simple bound of the form

(1 − |u|)2 ≤ CW (u). (7.2)

Proposition 7.5 The functional Eε is of class C1 on X̂ . Moreover, a couple
(u, A) is critical in X̂ for Eε if and only ifR((u, A)) is critical in X. Critical
points are smooth up to change of gauge.
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1076 A. Pigati, D. Stern

Proof Given a point (u, A) ∈ X̂ and a pair (v, B) ∈ X̂ with ‖(v, B)‖X̂ ≤ 1,
direct computation gives

Eε(u + v, A + B) = Eε(u, A) + 2
∫
M

〈du − iu A, dv − ivA − iuB〉

+ 2ε2
∫
M

〈d A, dB〉 + ε−2
∫
M
W ′(u)[v] + O(‖(v, B)‖2

X̂
),

where we are using the fact that X̂ · X̂ ⊆ Ln · L2∗ ⊆ L2 to see that

‖vA‖2L2 + ‖uB‖2L2 + ‖vB‖2L2 + Eε(u, A)1/2‖vB‖L2 = O(‖(v, B)‖2
X̂
),

and we invoke our assumptions on the structure of W to see that

∫
M

(W (u + v) − W (u)) =
∫
M
W ′(u)[v] + O(‖(v, B)‖2

X̂
)

for fixed (u, A) ∈ X̂ . It follows immediately that Eε is C1 on X̂ , with differ-
ential

dEε(u, A)[v, B] =
∫
M

(2〈du − iu A, dv − ivA − iuB〉 + 2ε2〈d A, dB〉
+ε−2W ′(u)[v]).

To confirm the second statement, assume without loss of generality that v

and B are smooth, and observe that

R((u + tv, A + t B)) = (etiψ ũ + teiθ+tiψv, Ã + t B + tdψ),

where (̃u, Ã) := R((u, A)) = (eiθu, A+ dθ) and ψ solves �ψ = d∗B. This
easily gives

R((u + tv, A + t B)) = R((u, A)) + t (eiθv + iψ ũ, B + dψ) + o(t) in X

and, using the gauge invariance Eε = Eε ◦ R, we deduce that

dEε(u, A)[v, B] = dEε (̃u, Ã)[eiθv + iψ ũ, B + dψ]. (7.3)

It follows that if (̃u, Ã) is critical for Eε in X then (u, A) is critical for Eε in
X̂ , as claimed. The converse is similar.
Finally, if (u, A) is critical for Eε (in either X̂ or X ), then applying the above

formula for the differential with v = (|u| − 1)+u/|u| ∈ W 1,2 and B = 0 we
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get

0 =
∫
M
2〈(d − i A)u, (d − i A)v〉 + ε−2

∫
M
W ′(u)[v]

≥ ε−2
∫
M

|u|−1(|u| − 1)+W ′(u)[u],

whereweused the fact that 〈u⊗d((|u|−1)+/|u|), ∇u〉 equals |u|−1|d|u||2 ≥ 0
a.e. on {|u| > 1} and vanishes elsewhere. SinceW ′(u)[u] > 0 on {|u| > 1} by
our assumption on W , we deduce that |u| ≤ 1. Together with Proposition A.1
and Remark A.3 in the “Appendix”, this implies that (u, A) is smooth in an
appropriate (Coulomb) gauge. ��

We next show that the functionals Eε satisfy a suitable variant of the Palais–
Smale condition on X , giving compactness of critical sequences for Eε after an
appropriate change of gauge. (Cf. [23] for similar results in the Seiberg–Witten
setting.)

Proposition 7.6 The functional Eε satisfies the following form of the Palais–
Smale condition: every sequence (u j , A j ) in X with bounded energy and
dEε(u j , A j ) → 0 in X∗ admits a subsequence converging strongly in X to a
critical couple (u∞, A∞), up to possibly replacing (u j , A j ) with

v j · (u j , A j ) := (v j u j , A j + v∗
j (dθ))

for suitable smooth harmonic functions v j : M → S1.

Proof First, we show that the boundedness of Eε(u j , A j ) implies the bound-
edness of the sequence in X , up to a change of gauge as in the statement. The
assumption (G) on the potential W gives

∫
M

|u j |p ≤ C +
∫
M
W (u j ) ≤ C + Eε(u j , A j ) ≤ C, (7.4)

that is, u j is uniformly bounded in L p.
Denote by	 ⊆ H1(M) the lattice in the space of harmonic one-forms given

by

	 := {−v∗
j (dθ) | v j : M → S1 harmonic}

=
{
h ∈ H1(M) :

∫
γ

h ∈ 2πZ for every γ ∈ C1(S1, M)
}
,

and let λ j ∈ 	 be a closest integral harmonic one-form to h(A j ) (with respect
to the L2 norm, say, onH1(M)). Then λ j = −v∗

j (dθ) for a suitable harmonic
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map v j : M → S1, and

‖λ j − h(A j )‖L2 ≤ C(M).

Replacing (u j , A j ) with the change of gauge (v j u j , A j − λ j ) ∈ X , we can
then assume that h(A j ) is bounded.

By standard Hodge theory we can write

A j = h(A j ) + d∗ξ j

for some closed ξ j ∈ W 2,2 satisfying �H ξ j = d A j and ‖d∗ξ j‖W 1,2 ≤
C(M)‖d A j‖L2 . Thus, given the energy bound Eε(u j , A j ) ≤ C , we see that

‖A j‖2W 1,2 ≤ C + 2‖d∗ξ j‖2W 1,2 ≤ C + C‖d A j‖2L2 ≤ C,

whereby A j is bounded inW 1,2 and, consequently, in L2∗
. As a consequence,

we see next that

‖du j‖2L2 ≤ 2
∫
M

|du j − iu j A j |2 + 2
∫
M

|u j A j |2

≤ C + C‖u j‖2L p‖A j‖2L2∗

≤ C + C‖u j‖p
L p ;

taking into account (7.4), we infer then that ‖du j‖L2 is also bounded as j →
∞.

We have therefore shown that (u j , A j ) is uniformly bounded in X as
j → ∞, so passing to subsequences we can assume that (u j , A j ) converges
pointwise a.e. and weakly (in X ) to a limiting couple (u∞, A∞).

In particular, defining r by

1

r
:= 1

2
− 1

q
>

1

2
− 1

n
= 1

2∗ ,

where n < q < p is an arbitrary fixed exponent, it follows from the compact-
ness of the embedding W 1,2 ↪→ Lr that

A j → A∞ strongly in Lr .

Moreover, the boundedness of u j in L p and the pointwise convergence to u∞
give

u j → u∞ strongly in Lq . (7.5)
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By definition of r , this implies in particular that

lim
j,k→∞ u j Ak = u∞A∞ strongly in L2.

Next, compute

dEε(u j , A j )[u j − uk, A j − Ak]
=

∫
M
2〈(d − i A j )u j , (d − i A j )(u j − uk) − iu j (A j − Ak)〉

+
∫
M

(2ε2〈d A j , d(A j − Ak)〉 + ε−2W ′(u j )[u j − uk]),

and observe that, due to the L2 convergence u j Ak → u∞A∞, the right-hand
side equals

∫
M

(2〈(d − i A j )u j , d(u j − uk)〉 + 2ε2〈d A j , d(A j − Ak)〉 + ε−2W ′(u j )[u j − uk ]) + o(1)

as j, k → ∞. For the difference

Dj,k := dEε(u j , A j )[u j − uk, A j − Ak] − dEε(uk, Ak)[u j − uk, A j − Ak],

we then see that

Dj,k =
∫
M

(2|d(u j − uk)|2 + 2ε2|d(A j − Ak)|2

+ ε−2(W ′(u j ) − W ′(uk))[u j − uk]) + o(1)

as j, k → ∞.
Now, by our assumption (G) on the structure of W (u), it is not difficult to

check (see, e.g., [17, Corollary 1]) that the zeroth order term in our computation
for Dj,k satisfies a lower bound

(W ′(u j ) − W ′(uk))[u j − uk] ≥ C−1|u j − uk |p − C |u j − uk |

for some constant C > 0. In particular, it follows now from the preceding
computations and the L1 convergence u j → u∞ that

Dj,k ≥
∫
M

(2|d(u j − uk)|2 + 2ε2|d(A j − Ak)|2 + C−1ε−2|u j − uk |p) + o(1)
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as j, k → ∞. On the other hand, since dEε(u j , A j ) → 0 and (u j − uk, A j −
Ak) is bounded in X , we know also that

Dj,k → 0 as j, k → ∞,

and it then follows that (u j , A j ) is Cauchy in X . In particular, (u j , A j ) con-
verges strongly to (u∞, A∞), which necessarily satisfies

dEε(u∞, A∞) = lim
j→∞ dEε(u j , A j ) = 0.

��
Having confirmed that the energies Eε satisfy a Palais–Smale condition, we

now argue in roughly the same spirit as [10,33] to produce nontrivial critical
points via min–max methods. To begin, note that the space X splits as C ⊕ Y ,
where C is identified with the set of constant couples (α, 0) and

Y :=
{
(u, A) ∈ X :

∫
M
u = 0

}
.

Definition 7.7 Let � denote the set of continuous families of couples F :
D → X parametrized by the closed unit disk D, with

F(eiθ ) = (eiθ , 0)

for all θ ∈ R. Equivalently, under the above identification C ⊂ X , we require
F |∂D = id. We denote by ωε(M) the “width” of � with respect to the energy
Eε , namely

ωε(M) := inf
F∈�

max
y∈D

Eε(F(y)).

Thanks to Proposition 7.6, we can apply classical min–max theory for C1

functionals on Banach spaces (see e.g. [15, Theorem 3.2]) to conclude that ωε

is achieved as the energy of a smooth critical couple (uε, Aε). In the following
proposition, we show that ωε(M) is positive, so that the corresponding critical
couples (uε, Aε) are nontrivial.

Proposition 7.8 We have ωε(M) > 0.

Proof Weargue by contradiction, though the proof could bemade quantitative.
Since we are proving only the positivity ωε(M) > 0 at this stage—making
no reference to the dependence on ε—in what follows we take ε = 1 for
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convenience. Assume that we have a family F ∈ � with maxy∈D E(F(y)) <

δ, with δ very small. Writing F(y) = (u, A), this implies that

‖A − h(A)‖W 1,2 ≤ C‖d A‖L2 < Cδ1/2, ‖DA‖L2 ≤ C(δ1/2 + ‖h(A)‖).

(7.6)

When b1(M) �= 0, some additional work is required to deduce that the
harmonic part h(A) of A must also be small for all couples (u, A) = F(y) in
the family. In particular, wewill need to employ the following lemma, showing
that h(A) lies close to the integral lattice 	 ⊂ H1(M) when E(u, A) < δ.

Lemma 7.9 There exists C(M) < ∞ such that if (u, A) ∈ X satisfies
E(u, A) < δ, with δ small enough, then

dist(h(A), 	) ≤ Cδ1/2.

Proof As in [33], it is convenient to define a box-type norm | · |b on the space
H1(M) of harmonic one-forms as follows. Fix a collection γ1, . . . , γb1(M) ∈
C∞(S1, M) of embedded loops generating H1(M; Q) and, for h ∈ H1(M),
set

|h|b := max
1≤i≤b1(M)

∣∣∣
∫

γi

h
∣∣∣. (7.7)

Since H1(M) is finite-dimensional, this is of course equivalent to any other
norm on H1(M). Assuming for simplicity that M is orientable, we may fix
a collection of diffeomorphisms !i : Bn−1

1 (0) × S1 → T (γi ) onto tubular
neighborhoods T (γi ) of γi , such that !i (0, θ) = γi (θ). For every t ∈ Bn−1

1 ,
set γ t

i (θ) := !i (t, θ).
Suppose now that (u, A) ∈ X satisfies the energy bound

E(u, A) =
∫
M

(|du − iu A|2 + |d A|2 + W (u)) < δ. (7.8)

As a consequence of the curvature bound ‖d A‖L2 ≤ δ1/2 and the definition
of X , it follows that

‖A − h(A)‖2L2 ≤ Cδ

as well. As in the proof of Proposition 7.6, applying a gauge transformation
φ · (u, A) by an appropriate choice of harmonic map φ : M → S1, we may
assume moreover that

|h(A)|b = distb(h(A), 	) ≤ π,
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which together with the energy bound (7.8) and the definition of X leads us to
the estimate ∫

M
|A|2 ≤ C(M). (7.9)

(Note that making a harmonic change of gauge preserves not only the energy
E(u, A), but also the distance distb(h(A), 	), so it indeed suffices to establish
the desired estimate in this gauge.)

Combining these estimates with a simple Fubini argument, we see that there
exists a nonempty set S of t ∈ Bn−1

1 for which

∫
γ t
i

(|du − iu A|2 + |d A|2 + W (u)) < Cδ, (7.10)

∫
γ t
i

|A − h(A)|2 < Cδ, (7.11)

and ∫
γ t
i

|A|2 ≤ C. (7.12)

Recalling the pointwise bound (7.2) for W (u), observe next that

|d(1 − |u|)2| = 2(1 − |u|)|d|u|| ≤ CW (u) + |du − iu A|2,

so that, along a curve γ t
i satisfying (7.10), it follows that

‖(1 − |u|)2‖C0 ≤ C‖(1 − |u|)2‖W 1,1 ≤ Cδ. (7.13)

Now, choose δ < δ1(M) sufficiently small that (7.13) gives

‖1 − |u|‖C0 ≤ η <
1

2

on γ t
i , so that φ := u/|u| defines there an S1-valued map φ : γ t

i → S1, whose
degree is given by

2π deg(φ) =
∫

γ t
i

|u|−2〈du, iu〉.

When (7.10)–(7.12) hold, we observe next that

∫
γ t
i

|u|2|A − |u|−2〈iu, du〉| =
∫

γ t
i

|〈iu, iu A − du〉| ≤ Cδ1/2.
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Since |u| ≥ 1
2 on γ t

i , it follows that

∣∣∣2π deg(φ) −
∫

γ t
i

A
∣∣∣ ≤

∫
γ t
i

|A − |u|−2〈iu, du〉| ≤ Cδ1/2 (7.14)

as well. Combining this with (7.11), we then deduce that

∣∣∣2π deg(φ) −
∫

γ t
i

h(A)

∣∣∣ ≤ Cδ1/2. (7.15)

On the other hand, we already made a gauge transformation so that

∣∣∣
∫

γi

h(A)

∣∣∣ =
∣∣∣
∫

γ t
i

h(A)

∣∣∣ ≤ π.

So, for δ chosen sufficiently small that Cδ1/2 < π , it follows that the degree
deg(φ) = 0. In particular, we can now conclude that

|h(A)|b = max
i

∣∣∣
∫

γi

h(A)

∣∣∣ ≤ Cδ1/2,

giving the desired estimate. ��
Remark 7.10 If M is not orientable, we have the weaker conclusion
dist(h(A), 1

2	) ≤ Cδ1/2 (still sufficient for the sequel): indeed, whenever
γi reverses the orientation, we can still parametrize a double cover of T (γi ) in
the same way, with γ t

i homotopic to γi traveled twice; in this case, the bound
(7.15) implies that 2

∫
γi
h(A) = ∫

γ t
i
h(A) has distance to 2πZ bounded by

Cδ1/2, from which the claim follows.

Returning to the proof of Proposition 7.8, suppose again that we have a
family D � y → F(y) ∈ X in � with

max
y∈D

E(F(y)) < δ.

For δ < δ1(M) sufficiently small, it follows from the lemma that
distb(h(A), 	) < π for every couple (u, A) = F(y) in the family. In
particular, since the assignment (u, A) → h(A) gives a continuous map
X → H1(M), and since h(A) = A = 0 for y ∈ ∂D, it follows that 0 is
the nearest point in the lattice 	 to h(A) for every y ∈ D, and the estimate
therefore becomes

‖h(A)‖ ≤ Cδ1/2.
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1084 A. Pigati, D. Stern

In particular, combining this with (7.6), we see now that

‖A‖W 1,2 ≤ Cδ1/2 (7.16)

for every couple (u, A) = F(y) in the family.
Now, for (u, A) = F(y), our structural assumption (G) on W (u) gives

‖u‖p
L p ≤ C + E(u, A) ≤ C + δ,

which together with the smallness

‖A‖L2∗ ≤ C‖A‖W 1,2 ≤ Cδ1/2

of A in L2∗
(recalling that p > n) gives

∫
M

|uA|2 ≤ Cδ.

Combining this with the fact that
∫
M |du − iu A|2 ≤ E(u, A) < δ by assump-

tion, we then deduce that
∫
M

|du|2 ≤ Cδ

as well.
Finally, by (7.2) and the Poincaré inequality, we have

1 −
∣∣∣ 1

vol(M)

∫
M
u
∣∣∣ ≤ C

∫
M

|1 − |u|| + C
∫
M

∣∣∣u − 1

vol(M)

∫
M
u
∣∣∣

≤ C
( ∫

M
W (u)

)1/2 + C
( ∫

M
|du|2

)1/2

≤ Cδ1/2.

As a consequence, we find that
∫
M uy is nonzero for all (uy, Ay) = F(y) in

the family. But then the averaging map

D → C, y →
∫
M uy

| ∫M uy| (7.17)

gives a retraction D → ∂D, whose nonexistence is well known. This gives
the desired contradiction. ��

Having shown positivity ωε(M) > 0 of the min–max energies, we can now
deduce the lower bound in (7.1) from the following simple fact.
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Proposition 7.11 There exist c(M) > 0 and ε0(M) > 0 such that the follow-
ing holds, for ε ≤ ε0. If (u, ∇) is critical for the functional Eε , then either
Eε(u, ∇) ≥ c or Eε(u, ∇) = 0.

Remark 7.12 For future reference, we make the obvious observation that the
trivial case Eε(u, ∇) = 0 can only occur when the bundle L is trivial.

Proof By Proposition 7.5, critical points are smooth up to change of gauge.
We claim that, whenever Eε(u, ∇) > 0, u has to vanish at some point x0 ∈ M .
Once we have this, assume e.g. Eε(u, ∇) ≤ 1; Corollary 4.4 (with 	 = 1)
gives a constant ε0 > 0 such that r2−nEε(u, ∇, Br (x0)) has a lower bound
independent of ε and r , for any radius ε < r < inj(M), provided that ε ≤ ε0.

We show the contrapositive, namely we assume that u is nowhere vanishing
and show that the energy is zero. Note that L must be trivial and we can use
the section u

|u| to identify L isometrically with the trivial line bundle C × M ,
equipped with the canonical Hermitian metric. Under this identification, u :
M → C takes values into positive real numbers. Writing ∇ = d − i A and
observing that 〈∇u, iu〉 = −|u|2A, (2.5) becomes

ε2d∗d A + |u|2A = 0.

Integrating against A we get
∫
M(ε2|d A|2 + u2|A|2) = 0, so A = 0 and ∇ is

the trivial connection. At a minimum point y0 for u, (3.4) gives

0 ≤ 1

2
�|u|2 = |du|2 − 1

2ε2
(1 − |u|2)|u|2 = − 1

2ε2
(1 − u2)u2,

which forces u(y0) ≥ 1 and thus u = 1 everywhere, giving Eε(u, ∇) = 0. ��
Finally, we turn to the uniform upper bound. In the next statement, L → M

is a Hermitian line bundle with a fixed Hermitian reference connection∇0. We
identify any other Hermitian connection ∇ with the real one-form A such that
∇s = ∇0s − is ⊗ A for all sections s.

Proposition 7.13 Given a smooth section u : M → L, we can find a smooth
couple (u′, A′) such that

Eε(u
′, A′) ≤ Cε−2 vol

({
|u| ≤ 1

2

})
+ C(1 + ε2‖∇0u‖2L∞)

∫
{|u|≤ 1

2 }
|∇0u|2

+ Cε2
∫
M

|ω0|2
(7.18)

for a universal constant C.
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Proof On {u �= 0} we let

w := u

|u| , iw ⊗ A := ∇0w.

Note that the compatibility of ∇0 with the Hermitian metric on L forces
〈∇0w, w〉 = 0, so that A is a real one-form.

We fix a smooth function ρ : [0, ∞] → [0, 1] with

ρ(t) = 0 for t ≤ 1

4
, ρ(t) = 1 for t ≥ 1

2

and we set

(u′, A′) := ρ(|u|)(w, A),

where the right-hand side is meant to be zero on {u = 0}.
Writing F∇0 = −iω0, observe that (∇0 − i A)w = 0, hence

|d A + ω0| = |FA| = 0 on {u �= 0}.

In particular, eε(u′, A′) = 0 on {|u| > 1
2 }.

From the estimates |d|u|| ≤ |∇0u| and |A| = |∇0w| ≤ 2|u|−1|∇0u|, it
follows that also

|∇0u
′| ≤ C |∇0u|,

|A′| ≤ C |∇0u|,
|d A′| ≤ |ρ′(|u|)d|u| ∧ A| + |ω0| ≤ C |∇0u||d|u|| + |ω0|,

and the statement follows immediately. ��
Proof of (7.1) The method used in [33, Section 3] gives a continuous map
H : D → W 1,2 ∩ C0(M, C) such that H(y) ≡ y for y ∈ ∂D and

‖dH(y)‖L∞ ≤ Cε−1,∫
{|H(y)|≤ 3

4 }
|dH(y)|2 ≤ C,

vol
({

|H(y)| ≤ 3

4

})
≤ Cε2

(7.19)

for all y ∈ D—the full Dirichlet energy having a worse bound
∫
M |dH(y)|2 ≤

C log ε−1, which is the natural one in the setting of Ginzburg–Landau. By
approximation,we can assume that H takes values inC∞(M, C), continuously
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in y, and still satisfies the same uniform bounds (7.19) (possibly increasing C
and replacing 3

4 with 1
2 ).

To each section H(y) of the trivial line bundle, Proposition 7.13 assigns in
a continuous way an element F(y) ∈ X . From the way F(y) is constructed, it
is clear that F ∈ �. Finally, combining (7.18) with (7.19) gives

ωε(M) ≤ max
y∈D

Eε(F(y)) ≤ C.

��

7.2 Minimizers for nontrivial line bundles

Suppose now that L is a nontrivial line bundle, equipped with a Hermitian
metric. Fix a smoothHermitian connection∇0 and identify anyotherHermitian
connection ∇ with the real one-form A such that

∇ = ∇0 − i A.

We can define X̂ and X as in the previous subsection. With this notation,
observe that the curvature of ∇ is given by

F∇ = F∇0 − id A.

Hence, writing F∇0 = −iω0, we have

Eε(u, ∇) =
∫
M

|∇0u − iu ⊗ A|2 + ε−2
∫
M
W (u) + ε2

∫
M

|ω0 + d A|2.

Definition 7.14 For a fixed n < p < ∞, we define X̂ to be the Banach space
of couples (u, A), where u : M → L is an L p section and A ∈ �1(M, R),
both of class W 1,2, with the norm

‖(u, A)‖ := ‖u‖L p + ‖∇0u‖L2 + ‖A‖L2 + ‖DA‖L2 .

We let X := {(u, A) ∈ X̂ : d∗A = 0}.
The analogous statements to Remark 7.4 and Propositions 7.5 and 7.6 hold,

with identical proofs (replacing du and uA with∇0u and u⊗ A, respectively).
Arguing as in the proof of Proposition 7.6, it is easy to see that a minimizing

sequence for Eε in X converges weakly—up to change of gauge—to a global
minimizer (uε, Aε). We now show that the energy of these minimizers enjoys
uniform upper and lower bounds as ε → 0.
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Proof of (7.1) The lower bound in (7.1) follows directly from Proposition 7.11
and Remark 7.12. In order to obtain the upper bound, pick a smooth section
s : M → L transverse to the zero section (see, e.g., [24, Theorem IV.2.1]) and
let N := {s = 0}, which is a smooth embedded (n − 2)-submanifold of M .
Proposition 7.13 applied to ε−1s gives a couple (u′

ε, A
′
ε) with

Eε(u
′
ε, A

′
ε) ≤ Cε−2 vol

({
|ε−1s| ≤ 1

2

})
+ Cε2

∫
M

|ω0|2.

By transversality of s, the set {|s| ≤ ε
2 } is contained in a C(s)ε-neighborhood

of N , whose volume is bounded by C(s)ε2. We infer that

Eε(uε, Aε) ≤ Eε(u
′
ε, A

′
ε) ≤ Cε−2 vol

({
|s| ≤ ε

2

})
+ C ≤ C.

��

Remark 7.15 When M is oriented, N can be oriented in such a way that
[N ] ∈ Hn−2(M, R) is Poincaré dual to the Euler class e(L) ∈ H2(M, R)

of the line bundle, which equals the first Chern class c1(L). The fact that
the energy of our competitors concentrates along N suggests that, given a
sequence of global minimizers (uε, Aε), up to subsequences the correspond-
ing energy concentration varifold is induced by an integral mass-minimizing
current whose homology class is Poincaré dual to c1(L). Theorem 6.10 pro-
vides the natural candidate �, which also satisfies |�| ≤ μ.
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Appendix: Interior regularity in the Coulomb gauge

In this short appendix, we describe the essential ingredients needed to establish
local regularity in the Coulomb gauge for finite-energy critical points (u, A)

of the (ε = 1) abelian Higgs energy E(u, A), collecting some estimates which
will be of use elsewhere in the paper.

Consider the manifold with boundary (�
n
, g) given by a smooth, con-

tractible domain �n ⊂⊂ R
n equipped with a C2 metric g, and let L ∼= C × �

be the trivial line bundle over �, with the standard Hermitian structure. With
respect to the metric g, we then define the Yang–Mills–Higgs energy

E(u, A) :=
∫

�

e(u, A) =
∫

�

|du − iu ⊗ A|2 + |d A|2 + W (u)

as in the preceding section. By (the first part of) Proposition 7.5, it is easy to
see that a pair (u, A) in W 1,2 with

|u| ≤ 1 (A.1)

is a critical point for E (with respect to smooth perturbations supported in �)
if and only if the equations

d∗d A = 〈du − iu ⊗ A, iu〉, (A.2)

�u = 2〈idu, A〉 + |A|2u − 1

2
(1 − |u|2)u − i(d∗A)u (A.3)

are satisfied distributionally in�, where all geometric quantities and operators
are defined with respect to the metric g.

Now, given a pair (u, A) in W 1,2 satisfying (A.2)–(A.3) and

E(u, A) ≤ 	 < ∞, (A.4)

we can select a local Coulomb gauge adapted to � as follows. Denote by
θ ∈ W 2,2(�, R) the unique solution of the Neumann problem

�θ = d∗A in �; ∂θ

∂ν
= −A(ν) on ∂� (A.5)

with zero mean
∫
�

θ = 0. Then the gauge-transformed pair

(̃u, Ã) := (eiθu, A + dθ)
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lies in W 1,2 and continues to satisfy (A.2)–(A.3), with

E (̃u, Ã) = E(u, A) ≤ 	,

but now with the additional constraints

d∗ Ã = 0 on �; Ã(ν) = 0 on ∂�. (A.6)

For the remainder of the section, we will assume that the pair (u, A) is
already in the Coulomb gauge on �, so that A satisfies (A.6). Note that (A.2)–
(A.3) then become

�u = 2〈idu, A〉 + |A|2u − 1

2
(1 − |u|2)u, (A.7)

�H A = 〈du − iu ⊗ A, iu〉. (A.8)

We now establish the local regularity for critical points (u, A) in the Coulomb
gauge, giving in particular local estimates for (u, A) in W 2,q norms.

Proposition A.1 Let (u, A) solve (A.2)–(A.3) in the Coulomb gauge (A.6) on
(�, g), with |u| ≤ 1. If

E(u, A; �) ≤ 	 (A.9)

and
‖g‖C2 + ‖g−1‖C2 ≤ 	, (A.10)

then for every compactly supported subdomain �′ ⊂⊂ � and q ∈ (1, ∞)

there exists Cq(	, �, �′) < ∞ such that

‖u‖W 2,q (�′) + ‖A‖W 2,q (�′) ≤ Cq . (A.11)

Proof To begin, note that (A.8) and standard Bochner–Weitzenböck identities
give the (weak) subequation

�
1

2
|A|2 = −〈�H A, A〉 + |DA|2 + Ric(A, A)

≥ −|du − iu ⊗ A||A| + |DA|2 − C(	)|A|2
(A.12)

for |A|2. On the other hand, as in Sect. 3, we also obtain from (A.3) the relation

�
1

2
|u|2 = |du − iu ⊗ A|2 − 1

2
(1 − |u|2)|u|2. (A.13)
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Recalling that |u| ≤ 1 and using Young’s inequality, we can combine (A.12)–
(A.13) to find an estimate of the form

1

2
�(|A|2 + |u|2) ≥ α(|DA|2 + |du|2) − C(α, 	)|A|2 − C(	), (A.14)

for any 0 < α < 1.
By standard estimates for one-forms A satisfying (A.6) (see, e.g., [20, The-

orem 4.8]), we have the global L2 bound

‖A‖W 1,2(�) ≤ C(	, �)‖d A‖L2(�) ≤ C(	, �),

hence |u|, |A| are both bounded in W 1,2 in terms of 	 (and �).
Note that (A.8) gives a localW 2,2 boundon A, by standard elliptic regularity.

This, together with Sobolev embedding and (A.7), gives

‖u‖W 2,p(�0)
+ ‖A‖W 2,2(�0)

+ ‖|A|p‖W 1,2(�0)
≤ C(	, �, �0) (A.15)

for all �0 ⊂⊂ � and some 1 < p < 2, depending only on n. We need the
following observation, stated and proved separately for the sake of clarity.

Lemma A.2 Defining f ∈ W 1,2(�) by

f := (1 + |A|2 + |u|2)1/2,

we have the subequation

� f p ≥ −C(p, 	) f p (A.16)

and, for all �0 ⊂⊂ �,

‖ f p‖W 1,2(�0)
≤ C(	, �, �0).

Proof Since u ∈ L∞ ∩W 1,2 ∩W 2,p
loc and A ∈ W 2,2

loc , a standard approximation

argument shows that |u|2, |A|2 ∈ W 2,1
loc , so that (A.14) holds pointwise a.e.

Likewise, we have f ∈ W 2,1
loc and the chain rule applies, giving

� f = f −1(|DA|2 + |du|2 − 〈A, D∗DA〉 + 〈u, �u〉) − f −1|d f |2

pointwise. The first term equals f −1�1
2 f

2, so recalling (A.14) we obtain

� f ≥ α f −1(|DA|2 + |du|2) − C(α, 	) f − f −1|d f |2.
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Also, since f ∈ W 1,2 ∩ W 2,p
loc , we have the pointwise inequalities

� f p = p(p − 1) f p−2|d f |2 + p f p−1� f

≥ pα f p−2(|DA|2 + |du|2) − C(α, 	) f p + p(p − 2) f p−2|d f |2
≥ p(α + p − 2) f p−2|d f |2 − C(α, 	) f p.

Choosing α := 2− p, inequality (A.16) follows. The second claim is an easy
consequence of (A.15) and the fact that |u| ≤ 1. ��

Returning to the proof of PropositionA.1, we can now applyMoser iteration
to (A.16), obtaining in particular that

‖A‖L∞(�1) ≤ C(	, �, �1) (A.17)

for any �1 ⊂⊂ �.
Now, fixing some intermediate domain �′ ⊂⊂ �1 ⊂⊂ � between �′ and

�, (A.7) together with the L∞(�1) estimate for A give pointwise bounds of
the form

|�u| ≤ C(	, �, �1)(|du| + 1) in �1. (A.18)

And since

|du| ≤ |du − iu ⊗ A| + |A| ≤ e(u, A) + C

in �1, we obtain from the energy bound E(u, A) ≤ 	 and (A.18) the simple
estimate

‖�u‖L2(�1)
≤ C(	, �, �1),

and consequently

‖u‖W 2,2(�2)
≤ C

for any �′ ⊂⊂ �2 ⊂⊂ �1. Returning to the pointwise bound (A.18), we can
now employ a simple iteration argument—combining Lq regularity theory
with the Sobolev embedding W 2,r ↪→ W 1, rn

n−r —over successive domains
between �′ and �, to arrive at the desired W 2,q estimates for u.

Returning finally to (A.8), it therefore follows from the preceding estimates
that

‖A‖L∞(�′′) + ‖�H A‖L∞(�′′) ≤ C(	, �, �′′)
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for some intermediate domain �′ ⊂⊂ �′′ ⊂⊂ �. In particular, this gives us
upper bounds for ‖�A‖Lq (�′′) for every q ∈ (1, ∞), and Lq regularity theory
therefore gives us the desired estimates for A in W 2,q(�′). ��

Finally, we remark that higher regularity of u and A in the Coulomb gauge
follows in a standard way—e.g., via Schauder theory—from the W 2,q esti-
mates obtained in the preceding proposition.

Remark A.3 With local regularity established, note that it is easy to find a
globally smooth couple (̃u, ∇̃) gauge equivalent to any critical pair (u, ∇) for
Eε on L → M . Indeed, for any critical pair (u, ∇) with u ∈ W 1,2 ∩ L∞ and
∇ = ∇0 − i A (where ∇0 is a smooth reference connection and A ∈ W 1,2), it
follows from the local regularity results above that the gauge-invariant objects
|u|2 and d A = F∇ − F∇0 are smooth globally. Making a change of gauge
(u, ∇) → (̃u, ∇̃ = ∇0 − i Ã) such that

d Ã = d A and d∗ Ã = 0,

it follows from the smoothness of d A that the new connection ∇̃ = ∇0 − i Ã
is smooth. And since ũ satisfies

∇̃∗∇̃ũ = 1

2ε2
(1 − |u|2)̃u

where both ∇̃ and |u|2 are smooth, standard results for linear elliptic equations
imply that ũ ∈ �(L) is a smooth section as well.
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