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Abstract It iswell-known that quantitative, scale invariant absolute continuity
(more precisely, the weak-A∞ property) of harmonic measure with respect to
surfacemeasure, on the boundary of an open set� ⊂ R
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regular boundary, is equivalent to the solvability of the Dirichlet problem in
�, with data in L p(∂�) for some p < ∞. In this paper, we give a geometric
characterization of the weak-A∞ property, of harmonic measure, and hence of
solvability of the L p Dirichlet problem for some finite p. This characterization
is obtained under background hypotheses (an interior corkscrew condition,
along with Ahlfors–David regularity of the boundary) that are natural, and in
a certain sense optimal: we provide counter-examples in the absence of either
of them (or even one of the two, upper or lower, Ahlfors–David bounds);
moreover, the examples show that the upper and lower Ahlfors–David bounds
are each quantitatively sharp.
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1 Introduction

A classical criterion of Wiener characterizes the domains in which one can
solve the Dirichlet problem for Laplace’s equation with continuous boundary
data, and with continuity of the solution up to the boundary. In this paper, we
address the analogous issue in the case of singular data. To be more precise,
the present work provides a purely geometric characterization of the open sets
for which L p solvability holds, for some p < ∞, and with non-tangential
convergence to the data a.e., thus allowing for singular boundary data. We
establish this characterization in the presence of background hypotheses (an
interior corkscrew condition [see Definition 2.4 below], and Ahlfors–David
regularity of the boundary [Definition 2.1]) that are in the nature of best pos-
sible, in the sense that there are counter-examples in the absence of either
of them (or of even one of the two, upper or lower, Ahlfors–David bounds);
moreover, the examples show that the upper and lower Ahlfors–David bounds
are each quantitatively sharp (see the discussion following Theorem 1.2, as
well as “Appendix A”, for more details).

Solvability of the L p Dirichlet problem is fundamentally tied to quantitative
absolute continuity of harmonic measure with respect to surface measure on
the boundary: indeed, it is equivalent to the so-called “weak-A∞” property
of the harmonic measure (see Definitions 2.14 and 2.15). It is through this
connection to quantitative absolute continuity of harmonic measure that we
shall obtain our geometric characterization of L p solvability.

The study of the relationship between the geometry of a domain, and
absolute continuity properties of its harmonic measure, has a long history.
A classical result of F. and M. Riesz [47] states that for a simply connected
domain� in the complex plane, rectifiability of ∂� implies that harmonicmea-
sure for � is absolutely continuous with respect to arclength measure on the
boundary. A quantitative version of this theorem was later proved by Lavren-
tiev [41].More generally, if only a portion of the boundary is rectifiable, Bishop
and Jones [12] have shown that harmonic measure is absolutely continuous
with respect to arclength on that portion. They also present a counter-example
to show that the result of [47] may fail in the absence of some connectivity
hypothesis (e.g., simple connectedness).

In dimensions greater than 2, a fundamental result of Dahlberg [18] estab-
lishes a quantitative version of absolute continuity, namely that harmonic
measure belongs to the class A∞ in an appropriate local sense (see Defini-
tions 2.14 and 2.15 below), with respect to surface measure on the boundary
of a Lipschitz domain.
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The result of Dahlberg was extended to the class of Chord-arc domains
(see Definition 2.7) by David and Jerison [21], and independently by Semmes
[48]. The Chord-arc hypothesis wasweakened to that of a two-sided corkscrew
condition (Definition 2.4) by Bennewitz and Lewis [11], who then drew the
conclusion that harmonic measure is weak-A∞ (in an appropriate local sense,
seeDefinitions 2.14 and 2.15)with respect to surfacemeasure on the boundary;
the latter condition is similar to the A∞ condition, but without the doubling
property, and is the best conclusion that can be obtained under the weakened
geometric conditions considered in [11]. We note that weak-A∞ is still a
quantitative, scale invariant version of absolute continuity.

More recently, one of us (Azzam) has given in [6] a geometric characteriza-
tion of the A∞ property of harmonic measure with respect to surface measure
for domains with n-dimensional Ahlfors–David regular (n-ADR) boundary
(see Definition 2.1). Azzam’s results are related to those of the present paper,
so let us describe them in a bit more detail. Specifically, he shows that for a
domain � with n-ADR boundary, harmonic measure is in A∞ with respect to
surfacemeasure, if and only if 1) ∂� is uniformly rectifiable (n-UR)1, and 2)�
is semi-uniform in the sense of Aikawa and Hirata [1]. The semi-uniform con-
dition is a connectivity condition which states that for some uniform constant
M , every pair of points x ∈ � and y ∈ ∂� may be connected by a rectifiable
curve γ = γ (y, x), with γ \{y} ⊂ �, with length �(γ ) ≤ M |x− y|, and which
satisfies the “cigar path” condition

min
{
�
(
γ (y, z)

)
, �
(
γ (z, x)

)} ≤ M dist(z, ∂�), ∀ z ∈ γ. (1.1)

Semi-uniformity is aweak version of thewell knownuniformcondition,whose
definition is similar, except that it applies to all pairs of points x, y ∈ �. For
example, the unit disk centered at the origin, with the slit {−1/2 ≤ x ≤
1/2, y = 0} removed, is semi-uniform, but not uniform. It was shown in [1]
that for a domain satisfying a John condition and the Capacity Density Condi-
tion (in particular, for a domain with an n-ADR boundary), semi-uniformity
characterizes the doubling property of harmonic measure. The method of [6]
is, broadly speaking, related to that of [21], and of [11]. In [21], the authors
show that a Chord-arc domain�may be approximated in a “Big Pieces” sense
(see [21] or [11] for a precise statement; also cf. Definition 2.12 below) by
Lipschitz subdomains �′ ⊂ �; this fact allows one to reduce matters to the
result of Dahlberg via the maximum principle (a method which, to the present
authors’ knowledge, first appears in [39] in the context of BMO1 domains).
The same strategy, i.e., Big Piece approximation by Lipschitz subdomains, is
employed in [11]. Similarly, in [6], matters are reduced to the result of [21],

1 This is a quantitative, scale-invariant version of rectifiability, seeDefinition 2.2 and the ensuing
comments.
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by showing that for a domain � with an n-ADR boundary, � is semi-uniform
with a uniformly rectifiable boundary if and only if it has “Very Big Pieces”
of Chord-arc subdomains (see [6] for a precise statement of the latter condi-
tion). As mentioned above, the converse direction is also treated in [6]. In that
case, given an interior corkscrew condition (which holds automatically in the
presence of the doubling property of harmonic measure), and provided that
∂� is n-ADR, the A∞ (or even weak-A∞) property of harmonic measure was
already known to imply uniform rectifiability of the boundary [32] (although
the published version appears in [28]; see also [44] for an alternative proof,
and a somewhat more general result); as in [1], semi-uniformity follows from
the doubling property, although in [6], the author manages to show this while
dispensing with the John domain background assumption (given a harmlessly
strengthened version of the doubling property).

Thus, in [6], the connectivity condition (semi-uniformity), is tied to the
doubling property of harmonic measure, and not to absolute continuity. On
the other hand, in light of the example of [12], and on account of the afore-
mentioned connection to solvability of the Dirichlet problem, it has been an
important open problem to determine the minimal connectivity assumption
which, in conjunctionwith uniform rectifiability of the boundary, yields quanti-
tative absolute continuity of harmonicmeasurewith respect to surfacemeasure.
In the present work, we present a connectivity condition, significantly milder
than semi-uniformity, whichwe call theweak local John condition (see Defini-
tion 2.11 below), and which solves this problem. Thus, we obtain a geometric
characterization of the domains for which one has quantitative absolute conti-
nuity of harmonic measure; equivalently, for which one has solvability of the
Dirichlet problem with singular (L p) data (see Theorem 1.1 below). In fact,
we provide two geometric characterizations of such domains, one in terms of
uniform rectifiability combined with the weak local John condition, the other
in terms of approximation of the boundary in a big pieces sense, by boundaries
of Chord-arc subdomains.

Let us now describe the weak local John condition, which says, roughly
speaking, that from each point x ∈ �, there is local non-tangential access to an
ample portion of a surface ball at a scale on the order of δ�(x) := dist(x, ∂�).
Let us make this a bit more precise. A “carrot path” (aka non-tangential path)
joining a point x ∈ �, and a point y ∈ ∂�, is a connected rectifiable path
γ = γ (y, x), with endpoints y and x , such that for some λ ∈ (0, 1) and for
all z ∈ γ ,

λ �
(
γ (y, z)

) ≤ δ�(z), (1.2)

where �
(
γ (y, z)

)
denotes the arc-length of the portion of the original path with

endpoints y and z. For x ∈ �, and N ≥ 2, set

	x = 	N
x := B

(
x, Nδ�(x)

) ∩ ∂�.
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We assume that every point x ∈ � may be joined by a carrot path to each
y in a “Big Piece” of 	x , i.e., to each y in a Borel subset F ⊂ 	x , with
σ(F) ≥ θσ (	x ), where σ denotes surface measure on ∂�, and where the
parameters N ≥ 2, λ ∈ (0, 1), and θ ∈ (0, 1] are uniformly controlled.
We refer to this condition as a “weak local John condition”, although “weak
local semi-uniformity” would be equally appropriate. See Definitions 2.8, 2.9
and 2.11 for more details. We remark that a strong version of the local John
condition (i.e., with θ = 1) has appeared in [37], in connection with boundary
Poincaré inequalities for non-smooth domains.

Let us observe that the weak local John condition is strictly weaker than
semi-uniformity: for example, the unit disk centered a the origin, with either
the cross {−1/2 ≤ x ≤ 1/2, y = 0} ∪ {−1/2 ≤ y ≤ 1/2, x = 0} removed,
or with the slit {0 ≤ x ≤ 1, y = 0} removed, satisfies the weak local John
condition, although semi-uniformity fails in each case.

The main result in the present work is the following geometric characteri-
zation of quantitative absolute continuity of harmonic measure, and of the L p

solvability of the Dirichlet problem. The terminology used here will be defined
in the sequel.

Theorem 1.1 Let � ⊂ R
n+1, n ≥ 1, be an open set satisfying an interior

corkscrew condition (see Definition 2.4 below), and suppose that ∂� is n-
dimensional Ahlfors–David regular (n-ADR; see Definition 2.1 below). Then
the following are equivalent:

(1) ∂� is Uniformly Rectifiable (n-UR; see Definition 2.2 below) and � sat-
isfies the weak local John condition (see Definition 2.11 below).

(2) � satisfies an Interior Big Pieces of Chord-Arc Domains (IBPCAD) con-
dition (see Definition 2.12 below).

(3) Harmonic measure ω is locally in weak-A∞ (see Definition 2.15 below)
with respect to surface measure σ on ∂�.

(4) The L p Dirichlet problem is solvable for some p < ∞, i.e., for some
p < ∞, there is a constant C such that if g ∈ L p(∂�), then the solution
to the Dirichlet problem with data g, is well defined as u(x) := ´

∂�
gdωx

for each x ∈ �, converges to g non-tangentially, and enjoys the estimate

‖N∗u‖L p(∂�) ≤ C ‖g‖L p(∂�), (1.3)

where N∗u is a suitable version of the non-tangential maximal function of
u.

Some explanatory comments are in order. The proof has two main new
ingredients: the implication (1) implies (2), and the fact that the weak-A∞
property of harmonic measure implies the weak local John condition (this is
the new part of (3) implies (1)). In turn, we split these main new results into
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two theorems: the first implication is the content of Theorem 1.2 below, and the
second is the content of Theorem 1.3. We remark that the interior corkscrew
condition is not needed for (1) implies (2) (nor for (2) implies (3) if and only
if (4)). Rather, it is crucial for (3) implies (1) (see “Appendix A”).

As regards the other implications, the fact that (2) implies (3) follows by a
well-known argument using the maximum principle and the result of [21] and
[48] for Chord-arc domains2, along with the criterion for weak-A∞ obtained
in [11]; the equivalence of (3) and (4) is well known, and we refer the reader
to, e.g., [27, Section 4], and to [26] for details. The implication (3) implies (1)
has two parts. As mentioned above, the fact that weak-A∞ implies weak local
John is new, and is the content of Theorem 1.3. The remaining implication,
namely that weak-A∞ implies n-UR, is the main result of [32]; an alternative
proof, with a more general result, appears in [44], and see also [28] for the
final published version of the results of [32], along with an extension to the
p-harmonic setting.
We note that our background hypotheses (upper and lower n-ADR, and

interior corkscrew) are in the nature of best possible: one may construct a
counter-example in the absence of any one of them, for at least one direction
of this chain of implications, as we shall discuss in “Appendix A”. In addition,
in the case of the n-ADR condition, given any ε > 0, the counter-examples for
the upper (respectively, lower) n-ADR property can be constructed in such a
way as to show that noweaker condition of the form Hn(B(x, r)∩∂�) � rn−ε

(resp., Hn(B(x, r) ∩ ∂�) � rn+ε), with r < 1, may be substituted for a true
n-ADR upper or lower bound. Moreover, the first example shows that one
cannot substitute the Capacity Density Condition (CDC)3 in place of the n-
ADRcondition: indeed, the example is anNTAdomain, in particular, it satisfies
an exterior corkscrew condition, and thus also the CDC.

As regards our assumption of the interior corkscrew condition, we point out
that, as is well known, the n-ADR condition implies that the open setRn+1\∂�

satisfies a corkscrew condition, with constants depending only on n and ADR,
i.e., at every scale r , and for every point x ∈ ∂�, there is at least one component
of R

n+1\∂� containing a corkscrew point relative to the ball B(x, r). Our last
example shows that such a component should lie inside � itself, for each x
and r ; i.e., that � should enjoy an interior corkscrew condition.

2 See, e.g., [26, Proposition 13] for the details in this context, but the proof originates in [39].
3 The CDC is a scale invariant potential theoretic “thickness” condition, i.e., a quantitative
version of Weiner regularity; see, e.g., [1].
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As explained above, the main new contributions of the present work are
contained in the following pair of theorems:

Theorem 1.2 Let � ⊂ R
n+1, n ≥ 1, be an open set, not necessarily con-

nected, with an n-dimensional Ahlfors–David regular (n-ADR) boundary.
Then the following are equivalent:

(i) ∂� is uniformly rectifiable (n-UR), and � satisfies the weak local John
condition.

(ii) � satisfies an Interior Big Pieces of Chord-Arc Domains (IBPCAD) con-
dition.

Only the direction (i) implies (ii) is new. For the converse, the fact that IBP-
CAD implies the weak local John condition is immediate from the definitions.
Moreover, the boundary of a Chord-arc domain is n-UR, and an n-ADR set
with big pieces of n-UR is also n-UR (see [23]). As noted above, that (ii)
implies the weak-A∞ property follows by well known arguments.

Theorem 1.3 Let � ⊂ R
n+1, n ≥ 1, be an open set satisfying an interior

corkscrew condition and suppose that ∂� is n-dimensional Ahlfors–David
regular (n-ADR). If the harmonic measure for � satisfies the weak-A∞ con-
dition, then � satisfies the weak local John condition.

Let us mention that the present paper is a combination of unpublished work
of two different subsets of the present authors: Theorem1.2 is due to the second
and third authors, and was first posted in the draft manuscript [34]4; Theorem
1.3 is due to the first, fourth and fifth authors, and appeared first in the draft
manuscript [9].

The paper is organized as follows. In the next section, we set notation and
give some definitions. In Part 1 of the paper (Sects. 3–8), we give the proof of
Theorem 1.2. In Part 2 of the paper (Sects. 9–16) we give the proof of Theorem
1.3. Finally, in “Appendix A”, we discuss some counter-examples which show
that our background hypotheses are in the nature of best possible.

We thank the referee for a careful reading of the paper, and for several
helpful suggestions that have led us to clarify certain matters, and to make
improvements in the presentation.

2 Notation and definitions

• Unless otherwise stated, we use the letters c,C to denote harmless posi-
tive constants, not necessarily the same at each occurrence, which depend
only on dimension and the constants appearing in the hypotheses of the
theorems (which we refer to as the “allowable parameters”). We shall also

4 An earlier version of this work [33] gave a direct proof of the fact that (1) implies (3) in
Theorem 1.1, without passing through condition (2).
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sometimes write a � b, a � b, and a ≈ b to mean, respectively, that
a ≤ Cb, a ≥ cb, and 0 < c ≤ a/b ≤ C , where the constants c and
C are as above, unless explicitly noted to the contrary. In some occasions
we will employ the notation a �λ b, a �λ b and a ≈λ b to emphasize
that the previous implicit constants c and/or C may depend on some rele-
vant parameter λ. At times, we shall designate by M a particular constant
whose value will remain unchanged throughout the proof of a given lemma
or proposition, but which may have a different value during the proof of a
different lemma or proposition.

• Our ambient space is R
n+1, n ≥ 1.

• �will always denote an open set inR
n+1, not necessarily connected unless

otherwise specified.
• We use the notation γ (x, y) to denote a rectifiable path with endpoints x
and y, and its arc-length will be denoted �(γ (x, y)). Given such a path,
if z ∈ γ (x, y), we use the notation γ (z, y) to denote the portion of the
original path with endpoints z and y.

• We let e j , j = 1, 2, . . . , n + 1, denote the standard unit basis vectors in
R
n+1.

• The open (n + 1)-dimensional Euclidean ball of radius r will be denoted
B(x, r). For x ∈ ∂�, a surface ball is denoted 	(x, r) := B(x, r) ∩ ∂�.

• Given a Euclidean ball B or surface ball 	, its radius will be denoted rB
or r	, respectively.

• Given a Euclidean or surface ball B = B(x, r) or 	 = 	(x, r), its con-
centric dilate by a factor of κ > 0 will be denoted κB := B(x, κr) or
κ	 := 	(x, κr).

• Given an open set � ⊂ R
n+1, for x ∈ �, we set δ�(x) := dist(x, ∂�).

• We let Hn denote n-dimensional Hausdorff measure, and let σ := Hn
⌊

∂�
denote the surface measure on ∂�.

• For a Borel set A ⊂ R
n+1, we let χA denote the usual indicator function

of A, i.e. χA(x) = 1 if x ∈ A, and χA(x) = 0 if x /∈ A.
• For a Borel set A ⊂ R

n+1, we let int(A) denote the interior of A.
• Given a Borel measure μ, and a Borel set A, with positive and finite μ

measure, we set
ffl
A f dμ := μ(A)−1

´
A f dμ.

• We shall use the letter I (and sometimes J ) to denote a closed (n + 1)-
dimensional Euclidean dyadic cube with sides parallel to the co-ordinate
axes, and we let �(I ) denote the side length of I . If �(I ) = 2−k , then we
set kI := k. Given an n-ADR set E ⊂ R

n+1, we use Q (or sometimes P or
R) to denote a dyadic “cube” on E . The latter exist (see [17,22,38]), and
enjoy certain properties which we enumerate in Lemma 2.16 below.

Definition 2.1 (n-ADR) (aka n-Ahlfors–David regular). We say that a set
E ⊂ R

n+1, of Hausdorff dimension n, is n-ADR if it is closed, and if there is
some uniform constant C such that
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890 J. Azzam et al.

1

C
rn ≤ σ

(
	(x, r)

) ≤ C rn, ∀r ∈ (0, diam(E)), x ∈ E, (2.1)

where diam(E) may be infinite. Here, 	(x, r) := E ∩ B(x, r) is the surface
ball of radius r , and as above, σ := Hn� E is the “surface measure” on E .

Definition 2.2 (n-UR) (aka n-uniformly rectifiable). An n-ADR (hence
closed) set E ⊂ R

n+1 is n-UR if and only if it contains “Big Pieces of Lip-
schitz Images” of R

n (“BPLI”). This means that there are positive constants
c1 and C1, such that for each x ∈ E and each r ∈ (0, diam(E)), there is a
Lipschitz mapping ρ = ρx,r : R

n → R
n+1, with Lipschitz constant no larger

than C1, such that

Hn
(
E ∩ B(x, r) ∩ ρ

({z ∈ R
n : |z| < r})

)
≥ c1r

n.

We recall that n-dimensional rectifiable sets are characterized by the prop-
erty that they can be covered, up to a set of Hn measure 0, by a countable union
of Lipschitz images of R

n; we observe that BPLI is a quantitative version of
this fact.

We remark that, at least among the class of n-ADR sets, the n-UR sets
are precisely those for which all “sufficiently nice” singular integrals are L2-
bounded [22]. In fact, for n-ADR sets in R

n+1, the L2 boundedness of certain
special singular integral operators (the “Riesz Transforms”), suffices to char-
acterize uniform rectifiability (see [43] for the case n = 1, and [45] in general).
We further remark that there exist sets that are n-ADR (and that even form the
boundary of a domain satisfying interior corkscrew and Harnack Chain condi-
tions), but that are totally non-rectifiable (e.g., see the construction of Garnett’s
“4-corners Cantor set” in [23, Chapter 1]). Finally, we mention that there are
numerous other characterizations of n-UR sets (many of which remain valid
in higher co-dimensions); cf. [22,23].

Definition 2.3 (“UR character”). Given an n-UR set E ⊂ R
n+1, its “UR char-

acter” is just the pair of constants (c1,C1) involved in the definition of uniform
rectifiability, along with the ADR constant; or equivalently, the quantitative
bounds involved in any particular characterization of uniform rectifiability.

Definition 2.4 (Corkscrew condition). Following [39], we say that an open set
� ⊂ R

n+1 satisfies the corkscrew condition if for someuniformconstant c > 0
and for every surface ball	 := 	(x, r),with x ∈ ∂� and 0 < r < diam(∂�),
there is a ball B(x	, cr) ⊂ B(x, r) ∩ �. The point x	 ⊂ � is called a
corkscrew point relative to 	. We note that we may allow r < C diam(∂�)

for any fixed C , simply by adjusting the constant c. In order to emphasize
that B(x	, cr) ⊂ �, we shall sometimes refer to this property as the interior
corkscrew condition.
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Definition 2.5 (Harnack Chains, and the Harnack Chain condition [39]).
Given two points x, x ′ ∈ �, and a pair of numbers M, N ≥ 1, an (M, N )-
Harnack Chain connecting x to x ′, is a chain of open balls B1, . . . , BN ⊂ �,
with x ∈ B1, x ′ ∈ BN , Bk ∩ Bk+1 �= ∅ and M−1 diam(Bk) ≤ dist(Bk, ∂�) ≤
M diam(Bk). We say that � satisfies the Harnack Chain condition if there
is a uniform constant M such that for any two points x, x ′ ∈ �, there is an
(M, N )-Harnack Chain connecting them, with N depending only on M and
the ratio |x − x ′|/ (min

(
δ�(x), δ�(x ′)

))
.

Definition 2.6 (NTA). Again following [39], we say that a domain � ⊂ R
n+1

is NTA (Non-tangentially accessible) if it satisfies the Harnack Chain condi-
tion, and if both � and �ext := R

n+1\� satisfy the corkscrew condition.

Definition 2.7 (CAD). We say that a connected open set � ⊂ R
n+1 is a CAD

(Chord-arc domain), if it is NTA, and if ∂� is n-ADR.

Definition 2.8 (Carrot path). Let � ⊂ R
n+1 be an open set. Given a point

x ∈ �, and a point y ∈ ∂�, we say that a connected rectifiable path γ =
γ (y, x), with endpoints y and x , is a carrot path (more precisely, a λ-carrot
path) connecting y to x , if γ \{y} ⊂ �, and if for some λ ∈ (0, 1) and for all
z ∈ γ ,

λ �
(
γ (y, z)

) ≤ δ�(z). (2.2)

With a slight abuse of terminology, we shall sometimes refer to such a path as
a λ-carrot path in �, although of course the endpoint y lies on ∂�.

A carrot path is sometimes referred to as a non-tangential path.

Definition 2.9 ((θ, λ, N )-weak local Johnpoint). Let x ∈ �, and for constants
θ ∈ (0, 1], λ ∈ (0, 1), and N ≥ 2, set

	x = 	N
x := B

(
x, Nδ�(x)

) ∩ ∂�.

We say that a point x ∈ � is a (θ, λ, N )-weak local John point if there is a
Borel set F ⊂ 	N

x , with σ(F) ≥ θσ (	N
x ), such that for every y ∈ F , there is

a λ-carrot path connecting y to x .

Thus, a weak local John point is non-tangentially connected to an ample
portion of the boundary, locally. We observe that one can always choose N
smaller, for possibly different values of θ and λ, by moving from x to a point
x ′ on a line segment joining x to the boundary.

Remark 2.10 We observe that it is a slight abuse of notation to write 	x ,
since the latter is not centered on ∂�, and thus it is not a true surface ball;
on the other hand, there are true surface balls, 	′

x := 	(x̂, (N − 1)δ�(x))
and 	′′

x := 	(x̂, (N + 1)δ�(x)), centered at a “touching point” x̂ ∈ ∂� with
δ�(x) = |x − x̂ |, which, respectively, are contained in, and contain, 	x .
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Definition 2.11 (Weak local John condition). We say that � satisfies a weak
local John condition if there are constants λ ∈ (0, 1), θ ∈ (0, 1], and N ≥ 2,
such that every x ∈ � is a (θ, λ, N )-weak local John point.

Definition 2.12 (IBPCAD). We say that a connected open set � ⊂ R
n+1 has

Interior Big Pieces of Chord-Arc Domains (IBPCAD) if there exist positive
constants η and C , and N ≥ 2, such that for every x ∈ �, with δ�(x) <

diam(∂�), there is a Chord-arc domain �x ⊂ � satisfying

• x ∈ �x .
• dist(x, ∂�x ) ≥ ηδ�(x).
• diam(�x ) ≤ Cδ�(x).
• σ(∂�x ∩ 	N

x ) ≥ η σ(	N
x ) ≈N η δ�(x)n .

• The Chord-arc constants of the domains �x are uniform in x .

Remark 2.13 In the presence of an interior corkscrew condition, Definition
2.12 is easily seen to be essentially equivalent to the following more standard
“Big Pieces” condition: there are positive constants η and C (perhaps slightly
different to that in Definition 2.12), such that for each surface ball 	 :=
	(x, r) = B(x, r) ∩ ∂�, x ∈ ∂� and r < diam(∂�), and for any corkscrew
point x	 relative to 	 there is a Chord-arc domain �	 satisfying

• x	 ∈ �	

• dist(x	, ∂�	) ≥ ηr .
• �	 ⊂ B(x,Cr) ∩ �.
• σ(∂�	 ∩ 	(x,Cr)) ≥ η σ(	(x,Cr)) ≈ ηrn .
• The Chord-arc constants of the domains �	 are uniform in 	.

Definition 2.14 (A∞, weak-A∞, and weak-RHq ). Given an n-ADR set E ⊂
R
n+1, and a surface ball 	0 := B0 ∩ E centered on E , we say that a Borel

measure μ defined on E belongs to A∞(	0) if there are positive constants C
and s such that for each surface ball 	 = B ∩ E centered on E , with B ⊆ B0,
we have

μ(A) ≤ C

(
σ(A)

σ (	)

)s

μ(	), for every Borel set A ⊂ 	. (2.3)

Similarly, we say that μ ∈ weak-A∞(	0) if for each surface ball 	 = B ∩ E
centered on E , with 2B ⊆ B0,

μ(A) ≤ C

(
σ(A)

σ (	)

)s

μ(2	), for every Borel set A ⊂ 	. (2.4)

We recall that, as is well known, the conditionμ ∈weak-A∞(	0) is equivalent
to the property that μ � σ in 	0, and that for some q > 1, the Radon–
Nikodym derivative k := dμ/dσ satisfies the weak reverse Hölder estimate
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( 

	

kqdσ

)1/q

�
 

2	
k dσ ≈ μ(2	)

σ(	)
, ∀ 	 = B∩ E, with 2B ⊆ B0,

(2.5)
with B centered on E .We shall refer to the inequality in (2.5) as a “weak-RHq”
estimate, and we shall say that k ∈ weak-RHq(	0) if k satisfies (2.5).

Definition 2.15 (Local A∞ and local weak-A∞). We say that harmonic mea-
sureω is locally in A∞ (resp., locally in weak-A∞) on ∂�, if there are uniform
positive constants C and s such that for every ball B = B(x, r) centered on
∂�, with radius r < diam(∂�)/4, and associated surface ball 	 = B ∩ ∂�,

ωp(A) ≤ C

(
σ(A)

σ (	)

)s

ωp(	), ∀ p ∈ �\4B, ∀ Borel A ⊂ 	, (2.6)

or, respectively, that

ωp(A) ≤ C

(
σ(A)

σ (	)

)s

ωp(2	), ∀ p ∈ �\4B, ∀ Borel A ⊂ 	 ; (2.7)

equivalently, if for every ball B and surface ball 	 = B ∩ ∂� as above, and
for each point p ∈ �\4B, ωp ∈ A∞(	) (resp., ωp ∈ weak-A∞(	)) with
uniformly controlled A∞ (resp., weak-A∞) constants.

Lemma 2.16 (Existence and properties of the “dyadic grid”) [17,22,23].
Suppose that E ⊂ R

n+1 is an n-ADR set. Then there exist constants a0 >

0, s > 0 and C1 < ∞, depending only on n and the ADR constant, such that
for each k ∈ Z, there is a collection of Borel sets (“cubes”)

Dk := {Qk
j ⊂ E : j ∈ Ik},

where Ik denotes some (possibly finite) index set depending on k, satisfying

(i) E = ∪ j Qk
j for each k ∈ Z.

(ii) If m ≥ k then either Qm
i ⊂ Qk

j or Q
m
i ∩ Qk

j = ∅.
(iii) For each ( j, k) and each m < k, there is a unique i such that Qk

j ⊂ Qm
i .

(iv) diam
(
Qk

j

) ≤ C12−k .

(v) Each Qk
j contains some “surface ball”	

(
xkj , a02

−k
) := B

(
xkj , a02

−k
)∩

E.
(vi) Hn

({
x ∈ Qk

j : dist(x, E\Qk
j ) ≤ ϑ 2−k

}) ≤ C1 ϑ s Hn
(
Qk

j

)
, for all k, j

and for all ϑ ∈ (0, a0).

A few remarks are in order concerning this lemma.
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• In the setting of a general space of homogeneous type, this lemma has
been proved by Christ [17] (see also [38]), with the dyadic parameter 1/2
replaced by some constant δ ∈ (0, 1). In fact, onemay always take δ = 1/2
(see [36, Proof of Proposition 2.12]). In the presence of the Ahlfors–David
property (2.1), the result already appears in [22,23]. Some predecessors of
this construction have appeared in [19] and [20].

• For our purposes, we may ignore those k ∈ Z such that 2−k � diam(E),
in the case that the latter is finite.

• We shall denote by D = D(E) the collection of all relevant Qk
j , i.e.,

D := ∪kDk,

where, if diam(E) is finite, the union runs over those k such that 2−k �
diam(E).

• Properties (iv) and (v) imply that for each cube Q ∈ Dk , there is a point
xQ ∈ E , a Euclidean ball B(xQ, rQ) and a surface ball 	(xQ, rQ) :=
B(xQ, rQ) ∩ E such that rQ ≈ 2−k ≈ diam(Q) and

	(xQ, rQ) ⊂ Q ⊂ 	(xQ,CrQ), (2.8)

for some uniform constant C . We shall refer to the point xQ as the “center”
of Q.

• For a dyadic cube Q ∈ Dk , we shall set �(Q) = 2−k , and we shall refer
to this quantity as the “length” of Q. Evidently, by adjusting if necessary
some parameters, we can assume that

diam(Q) ≤ �(Q) � diam(Q).

We shall denote

BQ := B(xQ, 4�(Q)), 	Q := 	(xQ, 4�(Q)). (2.9)

Notice that Q ⊂ 	Q ⊂ BQ .
• For a dyadic cube Q ∈ D, we let k(Q) denote the dyadic generation to
which Q belongs, i.e., we set k = k(Q) if Q ∈ Dk ; thus, �(Q) = 2−k(Q).

• Given R ∈ D, we set

D(R) := {Q ∈ D : Q ⊂ R}. (2.10)

For j ≥ 1, we also let

D j (R) :=
{
Q ∈ D(R) : �(Q) = 2− j �(R)

}
. (2.11)
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• For a pair of cubes Q′, Q ∈ D, if Q′ is a dyadic child of Q, i.e., if Q′ ⊂ Q,
and �(Q) = 2�(Q′), then we write Q′ � Q.

• For λ > 1, we write

λQ = {
x ∈ E : dist(x, Q) ≤ (λ − 1) �(Q)

}
.

With the dyadic cubes in hand, wemay now define the notion of a corkscrew
point relative to a cube Q.

Definition 2.17 (Corkscrew point relative to Q). Let � satisfy the corkscrew
condition (Definition 2.4), suppose that ∂� is n-ADR, and let Q ∈ D(∂�).
A corkscrew point relative to Q is simply a corkscrew point relative to the
surface ball 	(xQ, rQ) defined in (2.8).

Definition 2.18 (Coherency and Semi-coherency). [23]. Let E ⊂ R
n+1 be

an n-ADR set. Let T ⊂ D(E). We say that T is coherent if the following
conditions hold:

(a) T contains a unique maximal element Q(T) which contains all other ele-
ments of T as subsets.

(b) If Q belongs to T, and if Q ⊂ Q̃ ⊂ Q(T), then Q̃ ∈ T.
(c) Given a cube Q ∈ T, either all of its children belong to T, or none of them

do.

We say that T is semi-coherent if conditions (a) and (b) hold. We shall refer
to a coherent or semi-coherent collection T as a tree.

Part 1: Proof of Theorem 1.2

3 Preliminaries for the Proof of Theorem 1.2

We begin by recalling a bilateral version of the David-Semmes “Corona
decomposition” of an n-UR set. We refer the reader to [35] for the proof.

Lemma 3.1 ([35, Lemma 2.2]) Let E ⊂ R
n+1 be an n-UR set. Then given

any positive constants η � 1 and K � 1, there is a disjoint decomposition
D(E) = G ∪ B, satisfying the following properties.
(1) The “Good” collection G is further subdivided into disjoint trees, such

that each such tree T is coherent (Definition 2.18).
(2) The “Bad” cubes, as well as the maximal cubes Q(T), T ⊂ G, satisfy a

Carleson packing condition:

∑

Q′⊂Q, Q′∈B
σ(Q′) +

∑

T⊂G:Q(T)⊂Q

σ
(
Q(T)

) ≤ Cη,K σ(Q), ∀Q ∈ D(E).
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(3) For each T ⊂ G, there is a Lipschitz graph �T, with Lipschitz constant at
most η, such that, for every Q ∈ T,

sup
x∈	∗

Q

dist(x, �T) + sup
y∈B∗

Q∩�T

dist(y, E) < η �(Q), (3.1)

where B∗
Q := B(xQ, K�(Q)) and	∗

Q := B∗
Q ∩ E, and xQ is the “center”

of Q as in (2.8)–(2.9).

We remark that in [35], the trees T were denoted by S, and were called
“stopping time regimes” rather than trees.

We mention that David and Semmes, in [22], had previously proved a uni-
lateral version of Lemma 3.1, in which the bilateral estimate (3.1) is replaced
by the unilateral bound

sup
x∈	∗

Q

dist(x, �T) < η �(Q), ∀ Q ∈ T. (3.2)

Next, we make a standard Whitney decomposition of �E := R
n+1\E , for

a given n-UR set E (in particular, �E is open, since n-UR sets are closed by
definition). LetW = W(�E ) denote a collection of (closed) dyadic Whitney
cubes of�E , so that the cubes inW form a pairwise non-overlapping covering
of �E , which satisfy

4 diam(I ) ≤ dist(4I, E) ≤ dist(I, E) ≤ 40 diam(I ), ∀ I ∈ W (3.3)

(just dyadically divide the standard Whitney cubes, as constructed in [49,
Chapter VI], into cubes with side length 1/8 as large) and also

1
4 diam(I1) ≤ diam(I2) ≤ 4 diam(I1),

whenever I1 and I2 touch.
We fix a small parameter τ0 > 0, so that for any I ∈ W , and any τ ∈ (0, τ0],

the concentric dilate
I ∗(τ ) := (1 + τ)I (3.4)

still satisfies the Whitney property

diam I ≈ diam I ∗(τ ) ≈ dist
(
I ∗(τ ), E

) ≈ dist(I, E), 0 < τ ≤ τ0. (3.5)

Moreover, for τ ≤ τ0 small enough, and for any I, J ∈ W , we have that I ∗(τ )

meets J ∗(τ ) if and only if I and J have a boundary point in common, and
that, if I �= J , then I ∗(τ ) misses (3/4)J .
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Pick two parameters η � 1 and K � 1 (eventually, we shall take K =
η−3/4). For Q ∈ D(E), define

W0
Q := {

I ∈ W : η1/4�(Q) ≤ �(I ) ≤ K 1/2�(Q), dist(I, Q) ≤ K 1/2�(Q)
}
.

(3.6)

Remark 3.2 We note thatW0
Q is non-empty, provided that we choose η small

enough, and K large enough, depending only on dimension and ADR, since
the n-ADR condition implies that �E satisfies a corkscrew condition. In the
sequel, we shall always assume that η and K have been so chosen.

Next, we recall a construction in [35, Section 3], leading up to and including
in particular [35, Lemma 3.24]. We summarize this construction as follows.

Lemma 3.3 Let E ⊂ R
n+1 be n-UR, and set �E := R

n+1\E. Given positive
constants η � 1 and K � 1, as in (3.6) and Remark 3.2, let D(E) = G ∪ B,
be the corresponding bilateral Corona decomposition of Lemma 3.1. Then
for each T ⊂ G, and for each Q ∈ T, the collection W0

Q in (3.6) has an
augmentationW∗

Q ⊂ W satisfying the following properties.

(1) W0
Q ⊂ W∗

Q = W∗,+
Q ∪ W∗,−

Q , where (after a suitable rotation of coor-

dinates) each I ∈ W∗,+
Q lies above the Lipschitz graph �T of Lemma

3.1, each I ∈ W∗,−
Q lies below �T. Moreover, if Q′ is a child of Q, also

belonging to T, then W∗,+
Q (resp. W∗,−

Q ) belongs to the same connected

component of �E as does W∗,+
Q′ (resp. W∗,−

Q′ ) and W∗,+
Q′ ∩ W∗,+

Q �= ∅
(resp., W∗,−

Q′ ∩ W∗,−
Q �= ∅).

(2) There are uniform constants c and C such that

cη1/2�(Q) ≤ �(I ) ≤ CK 1/2�(Q), ∀I ∈ W∗
Q,

dist(I, Q) ≤ CK 1/2�(Q), ∀I ∈ W∗
Q,

cη1/2�(Q) ≤ dist(I ∗(τ ), �T), ∀I ∈ W∗
Q, ∀τ ∈ (0, τ0].

(3.7)

Moreover, given τ ∈ (0, τ0], set

U±
Q = U±

Q,τ :=
⋃

I∈W∗,±
Q

int
(
I ∗(τ )

)
, UQ := U+

Q ∪U−
Q , (3.8)

and given T′, a semi-coherent subtree of T, define

�±
T′ = �±

T′(τ ) :=
⋃

Q∈T′
U±

Q . (3.9)

123



898 J. Azzam et al.

Fig. 1 The domains �±
T′

Then each of �±
T′ is a CAD, with Chord-arc constants depending only on

n, τ, η, K, and the ADR/UR constants for ∂� (see Fig. 1).

Remark 3.4 In particular, for each T ⊂ G, if Q′ and Q belong to T, and if
Q′ is a dyadic child of Q, then U+

Q′ ∪ U+
Q is Harnack Chain connected, and

every pair of points x, y ∈ U+
Q′ ∪ U+

Q may be connected by a Harnack Chain
in �E of length at most C = C(n, τ, η, K ,ADR/UR). The same is true for
U−

Q′ ∪U−
Q .

Remark 3.5 Let 0 < τ ≤ τ0/2. Given any T ⊂ G, and any semi-coherent
subtree T′ ⊂ T, define �±

T′ = �±
T′(τ ) as in (3.9), and similarly set �̂±

T′ =
�±

T′(2τ). Then by construction, for any x ∈ �±
T′ ,

dist(x, E) ≈ dist(x, ∂�̂±
T′),

where of course the implicit constants depend on τ .
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As in [35], it will be useful for us to extend the definition of the Whitney
region UQ to the case that Q ∈ B, the “bad” collection of Lemma 3.1. Let
W∗

Q be the augmentation of W0
Q as constructed in Lemma 3.3, and set

WQ :=
{W∗

Q, Q ∈ G,

W0
Q, Q ∈ B . (3.10)

For Q ∈ G we shall henceforth simply write W±
Q in place of W∗,±

Q . For
arbitrary Q ∈ D(E), good or bad, we may then define

UQ = UQ,τ :=
⋃

I∈WQ

int
(
I ∗(τ )

)
. (3.11)

Let us note that for Q ∈ G, the latter definition agrees with that in (3.8). Note
that by construction

UQ ⊂ {y ∈ �E : dist(y, E) > cη1/2�(Q)} ∩ B(xQ,CK 1/2�(Q)), (3.12)

for some uniform constants C ≥ 1 and 0 < c < 1 (see (3.3), (3.6), and (3.7)).
In particular, for every Q ∈ D if follows that

⋃

Q′∈D(Q)

UQ′ ⊂ B(xQ, K�(Q)) =: B∗
Q . (3.13)

where we recall that D(Q) is defined in (2.10).
For future reference,we introducedyadic sawtooth regions as follows.Given

a family F of disjoint cubes {Q j } ⊂ D, we define the global discretized
sawtooth relative to F by

DF := D\
⋃

Q j∈F
D(Q j ), (3.14)

i.e., DF is the collection of all Q ∈ D that are not contained in any Q j ∈ F .
We may allow F to be empty, in which caseDF = D. Given some fixed cube
Q, we also define the local discretized sawtooth relative to F by

DF (Q) := D(Q)\
⋃

Q j∈F
D(Q j ) = DF ∩ D(Q). (3.15)

Note that with this convention, D(Q) = D∅(Q) (i.e., if one takes F = ∅ in
(3.15)).
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4 Step 1: the set-up

In the proof of Theorem 1.2, we shall employ a two-parameter induction argu-
ment, which is a refinement of the method of “extrapolation” of Carleson
measures. The latter is a bootstrapping scheme for lifting the Carlesonmeasure
constant, developed by J. L. Lewis [42], and based on the corona construction
of Carleson [15] and Carleson and Garnett [16] (see also [4,5,29–31,35]).

4.1 Reduction to a dyadic setting

To set the stage for the induction procedure, let us begin by making a prelim-
inary reduction. It will be convenient to work with a certain dyadic version
of Definition 2.12. To this end, let x ∈ �, with δ�(x) < diam(∂�), and set
	x = 	N

x = B(x, Nδ�(x)) ∩ ∂�, for some fixed N ≥ 2 as in Definition 2.9.
Let x̂ ∈ ∂� be a touching point for x , i.e., |x − x̂ | = δ�(x). Choose x1

on the line segment joining x to x̂ , with δ�(x1) = δ�(x)/2, and set 	x1 =
B(x1, Nδ�(x)/2) ∩ ∂�. Note that B(x1, Nδ�(x)/2) ⊂ B(x, Nδ�(x)), and
furthermore,

dist
(
B(x1, Nδ�(x)/2), ∂B(x, Nδ�(x)

)
>

N − 1

2
δ�(x) ≥ 1

2
δ�(x).

We may therefore cover 	x1 by a disjoint collection {Qi }Mi=1 ⊂ D(∂�), of
equal length �(Qi ) ≈ δ�(x), such that each Qi ⊂ 	x , and such that the
implicit constants depend only on n and ADR, and thus the cardinality M
of the collection depends on n, ADR, and N . With E = ∂�, we make the
Whitney decomposition of the set �E = R

n+1\E as in Sect. 3 (thus, � ⊂
�E ). Moreover, for sufficiently small η and sufficiently large K in (3.6), we
then have that x ∈ UQi for each i = 1, 2, . . . , M . By hypothesis, there are
constants θ0 ∈ (0, 1], λ0 ∈ (0, 1), and N ≥ 2 as above, such that every z ∈ �

is a (θ0, λ0, N )-weak local John point (Definition 2.9). In particular, this is
true for x1, hence there is a Borel set F ⊂ 	x1 , with σ(F) ≥ θ0σ(	x1),
such that every y ∈ F may be connected to x1 via a λ0-carrot path. By n-
ADR, σ(	x1) ≈ ∑M

i=1 σ(Qi ) and thus by pigeon-holing, there is at least one
Qi =: Q such that σ(F ∩ Q) ≥ θ1σ(Q), with θ1 depending only on θ0, n
and ADR. Moreover, the λ0-carrot path connecting each y ∈ F to x1 may be
extended to a λ1-carrot path connecting y to x , where λ1 depends only on λ0.

We have thus reduced matters to the following dyadic scenario: let Q ∈
D(∂�), let UQ = UQ,τ be the associated Whitney region as in (3.11), with
τ ≤ τ0/2 fixed, and suppose that UQ meets � (recall that by construction
UQ ⊂ �E = R

n+1\E , with E = ∂�). For x ∈ UQ ∩ �, and for a constant
λ ∈ (0, 1), let
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Fcar (x, Q) = Fcar (x, Q, λ) (4.1)

denote the set of y ∈ Q which may be joined to x by a λ-carrot path γ (y, x),
and for θ ∈ (0, 1], set

TQ = TQ(θ, λ) := {
x ∈ UQ ∩ � : σ

(
Fcar (x, Q, λ)

) ≥ θσ (Q)
}
. (4.2)

Remark 4.1 Our goal is to prove that, given λ ∈ (0, 1) and θ ∈ (0, 1], there are
positive constants η and C , depending on θ, λ, and the allowable parameters,
such that for each Q ∈ D(∂�), and for each x ∈ TQ(θ, λ), there is a Chord-arc
domain �x , with uniformly controlled Chord-arc constants, constructed as a
union ∪k I ∗

k of fattened Whitney boxes I ∗
k , such that

Ui
Q ⊂ �x ⊂ � ∩ B

(
x,Cδ�(x)

)
,

where Ui
Q is the particular connected component of UQ containing x , and

σ(∂�x ∩ Q) ≥ ησ(Q). (4.3)

For some Q ∈ D(∂�), it may be that TQ is empty. On the other hand, by the
preceding discussion, each x ∈ � belongs to TQ(θ1, λ1) for suitable Q, θ1 and
λ1, so that (4.3) (with θ = θ1, λ = λ1) implies

σ(∂�x ∩ 	x ) ≥ η1σ(	x ),

with η1 ≈ η, where Q is the particular Qi selected in the previous paragraph.
Moreover, since x ∈ TQ ⊂ UQ , we can modify �x if necessary, by adjoining
to it one or more fattened Whitney boxes I ∗ with �(I ) ≈ �(Q), to ensure that
for the modified �x , it holds in addition that dist(x, ∂�x ) � �(Q) ≈ δ�(x),
and therefore �x verifies all the conditions in Definition 2.12.

The rest of this section is therefore devoted to proving that there exists,
for a given Q and for each x ∈ TQ(θ, λ), a Chord-arc domain �x satisfying
the stated properties (when the set TQ(θ, λ) is not vacuous). To this end, we
let λ ∈ (0, 1) (by Remark 4.1, any fixed λ ≤ λ1 will suffice). We also fix
positive numbers K � λ−4, and η ≤ K−4/3 � λ4, and for these values of
η and K , we make the bilateral Corona decomposition of Lemma 3.1, so that
D(∂�) = G ∪B. We also construct the Whitney collectionsW0

Q in (3.6), and
W∗

Q of Lemma 3.3 for this same choice of η and K .
Given a cube Q ∈ D(∂�), we set

D∗(Q) := {
Q′ ⊂ Q : �(Q)/4 ≤ �(Q′) ≤ �(Q)

}
. (4.4)
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Thus, D∗(Q) consists of the cube Q itself, along with its dyadic children and
grandchildren. Let

M := {Q(T)}T⊂G

denote the collection of cubes which are the maximal elements of the trees T
in G. We define

αQ :=
{

σ(Q), if (M ∪ B) ∩ D∗(Q) �= ∅,

0, otherwise.
(4.5)

Given any collection D′ ⊂ D(∂�), we set

m(D′) :=
∑

Q∈D′
αQ . (4.6)

Thenm is a discrete Carleson measure, i.e., recalling thatD(R) is the discrete
Carleson region relative to R defined in (2.10), we claim that there is a uniform
constant C such that

m(D(R)) =
∑

Q⊂R

αQ ≤ Cσ(R), ∀ R ∈ D(∂�). (4.7)

Indeed, note that for any Q′ ∈ D, there are at most 3 cubes Q such that Q′ ∈
D∗(Q) (namely, Q′ itself, its dyadic parent, and its dyadic grandparent), and
that by n-ADR, σ(Q) ≈ σ(Q′), if Q′ ∈ D∗(Q). Thus, given any R ∈ D(∂�),

m(D(R)) =
∑

Q⊂R

αQ ≤
∑

Q′∈M∪B

∑

Q⊂R: Q′∈D∗(Q)

σ (Q)

�
∑

Q′∈M∪B: Q′⊂R

σ(Q′) ≤ Cσ(R),

by Lemma 3.1 part (2). Here, and throughout the remainder of this section,
a generic constant C , and implicit constants, are allowed to depend upon the
choice of the parameters η and K that we have fixed, along with the usual
allowable parameters.

With (4.7) in hand, we therefore have

M0 := sup
Q∈D(�)

m(D(Q))

σ (Q)
≤ C < ∞. (4.8)
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4.2 Induction hypothesis and outline of proof

As mentioned above, our proof will be based on a two parameter induction
scheme.Givenλ ∈ (0, λ1]fixed as above,we recall that the set Fcar (x, Q, λ) is
defined in (4.1). The induction hypothesis, which we formulate for any a ≥ 0,
and any θ ∈ (0, 1] is as follows:

H [a, θ ]

There is a positive constant ca = ca(θ) < 1 such that for
any given Q ∈ D(∂�), if

m(D(Q)) ≤ aσ(Q), (4.10)

and if there is a subset VQ ⊂ UQ ∩ � for which

σ

⎛

⎝
⋃

x∈VQ

Fcar (x, Q, λ)

⎞

⎠ ≥ θσ (Q) , (4.11)

then there is a subset V ∗
Q ⊂ VQ, such that for each con-

nected component Ui
Q of UQ which meets V ∗

Q, there is a

Chord-arc domain�i
Q which is the interior of the unionof a

collection of fattenedWhitney cubes I ∗, and whose Chord-
arc constants depend only on dimension, λ, a, θ , and the
ADR constants for �. Moreover, Ui

Q ⊂ �i
Q ⊂ B∗

Q ∩ � =
B(xQ, K�(Q)) ∩ �, and

∑
i σ(∂�i

Q ∩ Q) ≥ caσ(Q),

where the sum runs over those i such that Ui
Q meets V ∗

Q.

Let us briefly sketch the strategy of the proof. We first fix θ = 1, and
by induction on a, establish H [M0, 1]. We then show that there is a fixed
ζ ∈ (0, 1) such that H [M0, θ ] implies H [M0, ζ θ ], for every θ ∈ (0, 1].
Iterating, we then obtain H [M0, θ1] for any θ1 ∈ (0, 1]. Now, by (4.8), we
have (4.10) with a = M0, for every Q ∈ D(∂�). Thus, H [M0, θ1] may be
applied in every cube Q such that TQ(θ1, λ) (see (4.2)) is non-empty, with
VQ = {x}, for any x ∈ TQ(θ1, λ). For λ ≤ λ1, and an appropriate choice of θ1,
by Remark 4.1, we obtain the existence of a Chord-arc domain �x verifying
the conditions of Definition 2.12, and thus that Theorem 1.2 holds, as desired.

5 Some geometric observations

We begin with some preliminary observations. In what follows we have fixed
λ ∈ (0, λ1] and two positive numbers K � λ−4, and η ≤ K−4/3 � λ4, for
which the bilateral Corona decomposition ofD(∂�) in Lemma 3.1 is applied.
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We now fix k0 ∈ N, k0 ≥ 4, such that

2−k0 ≤ η

K
< 2−k0+1. (5.1)

Lemma 5.1 Let Q ∈ D(∂�), and suppose that Q′ ⊂ Q, with �(Q′) ≤
2−k0�(Q). Suppose that there are points x ∈ UQ ∩ � and y ∈ Q′, that are
connected by a λ-carrot path γ = γ (y, x) in �. Then γ meets UQ′ ∩ �.

Proof By construction (see (3.6), Lemma 3.3, (3.10) and (3.11)), x ∈ UQ
implies that

η1/2�(Q) � δ�(x) � K 1/2�(Q).

Since 2−k0 � η, and �(Q′) ≤ 2−k0�(Q), we then have that x ∈
�\B(y, 2�(Q′)

)
, so γ (y, x) meets B

(
y, 2�(Q′)

)\B(y, �(Q′)
)
, say at a point

z. Since γ (y, x) is a λ-carrot path, and since we have previously specified that
η � λ4,

δ�(z) ≥ λ�
(
γ (y, z)

) ≥ λ|y − z| ≥ λ�(Q′) � η1/4�(Q′).

On the other hand

δ�(z) ≤ dist(z, Q′) ≤ |z − y| ≤ 2�(Q′) � K 1/2�(Q′).

In particular then, the Whitney box I containing z must belong to W0
Q′ (see

(3.6)), so z ∈ UQ′ . Note that z ∈ � since γ ⊂ �. ��
We shall also require the following. We recall that by Lemma 3.3, for Q ∈

T ⊂ G, the Whitney region UQ has the splitting UQ = U+
Q ∪ U−

Q , with U+
Q

(resp. U−
Q ) lying above (resp., below) the Lipschitz graph �T of Lemma 3.1.

Lemma 5.2 Let Q′ ⊂ Q, and suppose that Q′ and Q both belong to G, and
moreover that both Q′ and Q belong to the same tree T ⊂ G. Suppose that
y ∈ Q′ and x ∈ UQ ∩ � are connected via a λ-carrot path γ (y, x) in �, and
assume that there is a point z ∈ γ (y, x) ∩ UQ′ ∩ � (by Lemma 5.1 we know
that such a z exists provided �(Q′) ≤ 2−k0�(Q)). Then x ∈ U+

Q if and only if

z ∈ U+
Q′ (thus, x ∈ U−

Q if and only if z ∈ U−
Q′).

Proof We suppose for the sake of contradiction that, e.g., x ∈ U+
Q , and that

z ∈ U−
Q′ . Thus, in traveling from y to z and then to x along the path γ (y, x),

one must cross the Lipschitz graph �T at least once between z and x . Let y1
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be the first point on γ (y, x) ∩ �T that one encounters after z, when traveling
toward x . By Lemma 3.3,

K 1/2�(Q) � δ�(x) ≥ λ�
(
γ (y, x)

) � K−1/4�
(
γ (y, x)

)
,

where we recall that we have fixed K � λ−4. Consequently, �
(
γ (y, x)

) �
K 3/4�(Q), so in particular, γ (y, x) ⊂ B∗

Q := B
(
xQ, K�(Q)

)
, as in Lemma

3.1. On the other hand, y1 /∈ B∗
Q′ . Indeed, y1 ∈ �T, so if y1 ∈ B∗

Q′ , then by
(3.1), δ�(y1) ≤ η�(Q′). However,

δ�(y1) ≥ λ�
(
γ (y, y1)

) ≥ λ�
(
γ (y, z)

) ≥ λ|y − z| ≥ λ dist(z, Q′) � λη1/2�(Q′),

where in the last step we have used Lemma 3.3. This contradicts our choice
of η � λ4.

We now form a chain of consecutive dyadic cubes {Pi } ⊂ D(Q), connecting
Q′ to Q, i.e.,

Q′ = P0 � P1 � P2 � · · · � PM � PM+1 = Q,

where the introduced notation Pi � Pi+1 means that Pi is the dyadic child of
Pi+1, that is, Pi ⊂ Pi+1 and �(Pi+1) = 2�(Pi ). Let P := Pi0 , 1 ≤ i0 ≤ M+1,
be the smallest of the cubes Pi such that y1 ∈ B∗

Pi
. Setting P ′ := Pi0−1, we

then have that y1 ∈ B∗
P , and y1 /∈ B∗

P ′ . By the coherency of T, it follows that
P ∈ T, so by (3.1),

δ�(y1) ≤ η�(P). (5.2)

On the other hand,

dist(y1, P
′) � K�(P ′) ≈ K�(P),

and therefore, since y ∈ Q′ ⊂ P ′,

δ�(y1) ≥ λ�
(
γ (y, y1)

) ≥ λ|y − y1| ≥ λ dist(y1, P
′) � λK�(P). (5.3)

Combining (5.2) and (5.3), we see that λ � η/K , which contradicts that we
have fixed η � λ4, and K � λ−4. ��
Lemma 5.3 Fix λ ∈ (0, 1). Given Q ∈ D(∂�) and a non-empty set VQ ⊂
UQ ∩ �, such that each x ∈ VQ may be connected by a λ-carrot path to some
y ∈ Q, set

FQ :=
⋃

x∈VQ

Fcar (x, Q, λ), (5.4)
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where we recall that Fcar (x, Q, λ) is the set of y ∈ Q that are connected via a
λ-carrot path to x (see (4.1)). Let Q′ ⊂ Q be such that �(Q′) ≤ 2−k0�(Q) and
FQ ∩ Q′ �= ∅. Then, there exists a non-empty set VQ′ ⊂ UQ′ ∩ � such that if
we define FQ′ as in (5.4)with Q′ replacing Q, then FQ ∩Q′ ⊂ FQ′ . Moreover,
for every y ∈ VQ′ , there exist x ∈ VQ, y ∈ Q′ (indeed y ∈ FQ ∩ Q′) and a
λ-carrot path γ = γ (y, x) such that y ∈ γ .

Proof For every y ∈ FQ ∩ Q′, by definition of FQ , there exist x ∈ VQ and
a λ-carrot path γ = γ (y, x). By Lemma 5.1, there is a point y′ = y′(y) ∈
γ ∩UQ′ ∩ � (there can be more than one y′, but we just pick one). Note that
the sub-path γ (y, y′) ⊂ γ (y, x) is also a λ-carrot path, for the same constant
λ. All the conclusions in the lemma follow easily from the construction by
letting VQ′ = ⋃

y∈FQ∩Q′ y′(y). ��
Remark 5.4 It follows easily from the previous proof that under the same
assumptions, if one further assumes that �(Q′) < 2−k0 �(Q), we can then
repeat the argument with both Q′ and (Q′)∗ (the dyadic parent of Q′) to
obtain respectively VQ′ and V(Q′)∗ . Moreover, this can be done in such a way
that every point in VQ′ (resp. V(Q′)∗) belongs to a λ-carrot path which also
meets V(Q′)∗ (resp. VQ′), connecting UQ and Q′.

Given a family F := {Q j } ⊂ D(∂�) of pairwise disjoint cubes, we recall
that the “discrete sawtooth” DF is the collection of all cubes in D(∂�) that
are not contained in any Q j ∈ F (see (3.14)), and we define the restriction of
m (cf. (4.5), (4.6)) to the sawtooth DF by

mF (D′) := m(D′ ∩ DF ) =
∑

Q∈D′\
(
∪Q j∈F D(Q j )

)
αQ . (5.5)

We then set

‖mF‖C(Q) := sup
Q′⊂Q

mF
(D(Q′)

)

σ(Q′)
.

Let us note that we may allow F to be empty, in which case DF = D and
mF is simply m. We note that the following claim, and others in the sequel,
remain true when F is empty; sometimes trivially so, and sometimes with
some straightforward changes that are left to the interested reader.

Claim 5.5 Given Q ∈ D(∂�), and a family F = FQ := {Q j } ⊂ D(Q)\{Q}
of pairwise disjoint sub-cubes of Q, if ‖mF‖C(Q) ≤ 1/2, then each Q′ ∈
DF ∩D(Q), each Q j ∈ F , and every dyadic child Q′

j of any Q j ∈ F , belong
to the good collection G, and moreover, every such cube belongs to the same

123



Harmonic measure and quantitative connectivity 907

tree T ⊂ G. In particular, T′ := DF ∩ D(Q) is a semi-coherent subtree of T,
and so is T′′ := (DF ∪ F ∪ F ′) ∩ D(Q), where F ′ denotes the collection of
all dyadic children of cubes in F .

Indeed, if any Q′ ∈ DF ∩ D(Q) were in M ∪ B (recall that M :=
{Q(T)}T⊂G is the collection of cubes which are the maximal elements of the
trees T in G), then by construction αQ′ = σ(Q′) for that cube (see (4.5)), so
by definition of m and mF , we would have

1 = σ(Q′)
σ (Q′)

≤ mF
(D(Q′)

)

σ(Q′)
≤ ‖mF‖C(Q) ≤ 1

2
,

a contradiction. Similarly, if some Q j ∈ F (respectively, Q′
j ∈ F ′) were in

M ∪ B, then its dyadic parent (respectively, dyadic grandparent) Q∗
j would

belong to DF ∩ D(Q), and by definition αQ∗
j
= σ(Q∗

j ), so again we reach a

contradiction. Consequently, F ∪ F ′ ∪ (DF ∩ D(Q)) does not meet M ∪ B,
and the claim follows.

6 Construction of chord-arc subdomains

For future reference, we now prove the following. Recall that for Q ∈ G, UQ
has precisely two connected components U±

Q in R
n+1\∂�.

Lemma 6.1 Let Q ∈ D(∂�), let k1 be such that 2k1 > 2k0 � 100K, see
(5.1), and suppose that there is a family F = FQ := {Q j } ⊂ D(Q)\{Q} of
pairwise disjoint sub-cubes of Q, with ‖mF‖C(Q) ≤ 1/2 (hence by Claim 5.5,
there is some T ⊂ G with T ⊃ (DF ∪ F ∪ F ′) ∩ D(Q)), and a non-empty
subcollection F∗ ⊂ F , such that:

(i) �(Q j ) ≤ 2−k1�(Q), for each cube Q j ∈ F∗;
(ii) the collection of balls

{
κB∗

Q j
:= B

(
xQ j , κK�(Q j )

) : Q j ∈ F∗} is

pairwise disjoint, where κ � K 4 is a sufficiently large positive constant;
and

(iii) F∗ has a disjoint decompositionF∗ = F∗+∪F∗−, where for each Q j ∈ F∗±,
there is a Chord-arc subdomain�±

Q j
⊂ �, consisting of a union of fattened

Whitney cubes I ∗, withU±
Q j

⊂ �±
Q j

⊂ B∗
Q j

:= B(xQ j , K�(Q j )), andwith
uniform control of the Chord-arc constants.

Define a semi-coherent subtree T∗ ⊂ T by

T∗ = {
Q′ ∈ D(Q) : Q j ⊂ Q′ for some Q j ∈ F∗} ,
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and for each choice of ± for which F∗± is non-empty, set

�±
Q := �±

T∗
⋃

⎛

⎝
⋃

Q j ∈F∗±

�±
Q j

⎞

⎠ (6.1)

Then for κ large enough, depending only on allowable parameters, �±
Q is a

Chord-arc domain, with chord arc constants depending only on the uniformly
controlledChord-arc constants of�±

Q j
and on the other allowable parameters.

Moreover,�±
Q ⊂ B∗

Q∩� = B(xQ, K�(Q))∩�, and�±
Q is a union of fattened

Whitney cubes.

Remark 6.2 Note that we define �±
Q if and only if F∗± is non-empty. It may

be that one of F∗+,F∗− is empty, but F∗+ and F∗− cannot both be empty, since
F∗ is non-empty by assumption.

Proof of Lemma 6.1 Without loss of generality we may assume that �±
Q j

is

not contained in �±
T∗ for all Q j ∈ F∗ (otherwise we can drop those cubes

from F∗). On the other hand, we notice that �±
Q is a union of (open) fattened

Whitney cubes (assuming that it is non-empty): each�±
Q j

has this property by

assumption, as does �±
T∗ by construction.

We next observe that if �+
Q (resp. �−

Q) is non-empty, then it is contained

in �. Indeed, by construction, �+
Q is non-empty if and only if F∗+ is non-

empty. In turn, F∗+ is non-empty if and only if there is some Q j ∈ F∗ such
that U+

Q j
⊂ �+

Q j
⊂ �, and moreover, the latter is true for every Q j ∈ F∗+,

by definition. But each such Q j belongs to T∗, hence U+
Q j

⊂ �+
T∗ , again by

construction (see (3.9)). Thus, �+
T∗ meets �, and since �+

T∗ ⊂ R
n+1\∂�,

therefore �+
T∗ ⊂ �. Combining these observations, we see that �+

Q ⊂ �. Of

course, the same reasoning applies to �−
Q , provided it is non-empty.

In addition, since T∗ ⊂ T, and since K � K 1/2, by Lemma 3.3
we have �±

T∗ ⊂ B∗
Q = B(xQ, K�(Q)). Furthermore, �±

Q j
⊂ B∗

Q j
:=

B(xQ j , K�(Q j )), and since �(Q j ) ≤ 2−k1�(Q) ≤ (100K )−1�(Q), we obtain

dist(�±
Q j

, Q) + diam(�±
Q j

) ≤ 3K�(Q j ) ≤ 3K2−k1�(Q) � �(Q).

Thus, in particular, �±
Q j

⊂ B∗
Q , and therefore also �±

Q ⊂ B∗
Q .

It therefore remains to establish the Chord-arc properties. It is straightfor-
ward to prove the interior corkscrew condition and the upper n-ADR bound,
and we omit the details. Thus, we must verify the Harnack Chain condition,
the lower n-ADR bound, and the exterior corkscrew condition.
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6.1 Harnack Chains

Suppose, without loss of generality, that �+
Q is non-empty, and let x, y ∈ �+

Q ,

with |x − y| = r . If x and y both lie in �+
T∗ , or in the same �+

Q j
, then we can

connect x and y by a suitable Harnack path, since each of these domains is
Chord-arc. Thus, we may suppose either that 1) x ∈ �+

T∗ and y lies in some
�+

Q j
, or that 2) x and y lie in two distinct �+

Q j1
and �+

Q j2
. We may reduce the

latter case to the former case: by the separation property (ii) in Lemma 6.1,
we must have r � κ max

(
diam(�+

Q j1
), diam(�+

Q j2
)
)
, so given case 1), we

can connect x ∈ �+
Q j1

to the center z1 of some I ∗
1 ⊂ U+

Q1
, and y ∈ �+

Q j2
to

the center z2 of some I2 ⊂ U+
Q2
, where Q1, Q2 ∈ T∗, with Q ji ⊂ Qi ⊂ Q,

and �(Qi ) ≈ r , i = 1, 2. Finally, we can connect z1 and z2 using that �+
T∗ is

Chord-arc.
Hence, we need only construct a suitable Harnack Chain in Case 1). We

note that by assumption and construction, U+
Q j

⊂ �+
T∗ ∩ �+

Q j
.

Suppose first that
|x − y| = r ≤ c′�(Q j ), (6.2)

where c′ ≤ 1 is a sufficiently small positive constant to be chosen. Since
y ∈ �+

Q j
⊂ B∗

Q j
, we then have that x ∈ 2B∗

Q j
, so by the construction of �+

T∗
and the separation property (ii), it follows that δ�(x) ≥ c�(Q j ), where c is a
uniform constant depending only on the allowable parameters (in particular,
this fact is true for all x ∈ �+

T∗ ∩ 2B∗
Q j

, so it does not depend on the choice

of c′ < 1). Now choosing c′ ≤ c/2 (eventually, it may be even smaller),
we find that δ�(y) ≥ (c/2)�(Q j ). Moreover, y ∈ �+

Q j
⊂ B∗

Q j
implies that

δ�(y) ≤ K�(Q j ). Also, since x ∈ 2B∗
Q j

we have that δ�(x) ≤ 2K�(Q j ).

Since�+
Q j

and�+
T∗ are each the interior of a union of fattenedWhitney cubes,

it follows that there are Whitney cubes I and J , with x ∈ I ∗, y ∈ J ∗, and

�(I ) ≈ �(J ) ≈ �(Q j ),

where the implicit constants dependon K . For c′ small enough in (6.2), depend-
ing on the implicit constants in the last display, and on the parameter τ in (3.4),
this can happen only if I ∗ and J ∗ overlap (recall that we have fixed τ small
enough that I ∗ and J ∗ overlap if and only if I and J have a boundary point
in common), in which case we may trivially connect x and y by a suitable
Harnack Chain.

On the other hand, suppose that

|x − y| = r ≥ c′�(Q j ).
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Let z ∈ U+
Q j

⊂ �+
T∗ ∩�+

Q j
, with dist(z, ∂�+

Q) � �(Q j ) (wemay find such a z,

since U+
Q j

is a union of fattened Whitney cubes, all of length �(I ∗) ≈ �(Q j );
just take z to be the center of such an I ∗).Wemay then construct an appropriate
Harnack Chain from y to x by connecting y to z via a Harnack Chain in the
Chord-arc domain �+

Q j
, and z to x via a Harnack Chain in the Chord-arc

domain �+
T∗ .

6.2 Lower n-ADR and exterior corkscrews

We will establish these two properties essentially simultaneously. Again sup-
pose that, e.g., �+

Q is non-empty. Let x ∈ ∂�+
Q , and consider B(x, r), with

r < diam�+
Q ≈K �(Q). Our main goal at this stage is to prove the following:

∣∣B(x, r)\�+
Q

∣∣ ≥ crn+1, (6.3)

with c a uniform positive constant depending only upon allowable parameters
(including κ). Indeed, momentarily taking this estimate for granted, we may
combine (6.3) with the interior corkscrew condition to deduce the lower n-
ADR bound via the relative isoperimetric inequality [24, p. 190]. In turn, with
both the lower and upper n-ADR bounds in hand, (6.3) implies the existence
of exterior corkscrews (see, e.g., [31, Lemma 5.7]).

Thus, it is enough to prove (6.3). We consider the following cases.
Case 1: B(x, r/2) does not meet ∂�+

Q j
for any Q j ∈ F∗+. In this case, the

exterior corkscrew for �+
T∗ associated with B(x, r/2) easily implies (6.3).

Case 2: B(x, r/2)meets ∂�+
Q j

for at least one Q j ∈ F∗+, and r ≤ κ1/2�(Q j0),
where Q j0 is chosen to have the largest length �(Q j0) among those Q j such
that ∂�+

Q j
meets B(x, r/2).Wenow further split the present case into subcases.

Subcase 2a: B(x, r/2) meets ∂�+
Q j0

at a point z with δ�(z) ≤ (Mκ1/2)−1

�(Q j0), where M is a large number to be chosen. Then B(z, (Mκ1/2)−1r) ⊂
B(x, r), for M large enough. In addition, we claim that B(z, (Mκ1/2)−1r)
misses �+

T∗ ∪ ( ∪ j �= j0 �+
Q j

)
. The fact that B(z, (Mκ1/2)−1r) misses every

other �+
Q j

, j �= j0, follows immediately from the restriction r ≤ κ1/2�(Q j0),

and the separation property (ii). To see that B(z, (Mκ1/2)−1r) misses �+
T∗ ,

note that if |z − y| < (Mκ1/2)−1r , then

δ�(y) ≤ δ�(z) + (Mκ1/2)−1r ≤ (
(Mκ1/2)−1 + M−1) �(Q j0) � �(Q j0),
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for M large. On the other hand,

δ�(y) � �(Q j0), ∀ y ∈ �+
T∗ ∩ B

(
z, κ1/2�(Q j0)

)
,

by the construction of �+
T∗ and the separation property (ii). Thus, the claim

follows, for a sufficiently large (fixed) choice of M . Since B(z, (Mκ1/2)−1r)
misses �+

T∗ and all other �+
Q j

, we inherit an exterior corkscrew point in the

present case (depending on M and κ) from the Chord-arc domain�+
Q j0

. Again
(6.3) follows.
Subcase 2b: δ�(z) ≥ (Mκ1/2)−1�(Q j0), for every z ∈ B(x, r/2) ∩ ∂�+

Q j0

(hence δ�(z) ≈κ,K �(Q j0), since �+
Q j0

⊂ B∗
Q j0

). We claim that consequently,

x ∈ ∂ I ∗, for some I with �(I ) ≈ �(Q j0) � r , such that int I ∗ ⊂ �+
Q . To

see this, observe that it is clear if x ∈ ∂�+
Q j0

(just take z = x). Otherwise, by
the separation property (ii), the remaining possibility in the present scenario
is that x ∈ ∂U+

Q′ ∩ ∂�+
T∗ , for some Q′ ∈ T∗ with Q j0 ⊂ Q′, in which case

δ�(x) ≈ �(Q′) ≥ �(Q j0). Since also δ�(x) ≤ |x − z| + δ�(z) �κ,K �(Q j0),
for any z ∈ B(x, r/2) ∩ ∂�+

Q j0
, the claim follows.

On the other hand, since x ∈ ∂�+
Q , there is a J ∈ W with �(J ) ≈ �(Q j0),

such that J ∗ is not contained in �+
Q . We then have an exterior corkscrew point

in J ∗ ∩ B(x, r), and (6.3) follows in this case.
Case 3: B(x, r/2)meets ∂�+

Q j
for at least one Q j ∈ F∗+, and r > κ1/2�(Q j0),

where as above Q j0 has the largest length �(Q j0) among those Q j such that
∂�+

Q j
meets B(x, r/2). In particular then, r � 2K�(Q j0) = diam(B∗

Q j0
) ≥

diam(�+
Q j0

), since we assume κ � K 4.

We next claim that B(x, r/4) contains some x1 ∈ ∂�+
T∗ ∩ ∂�+

Q . This is

clear if x ∈ ∂�+
T∗ by taking x1 = x . Otherwise, x ∈ ∂�+

Q j
for some Q j ∈ F∗.

Note that U±
Q j

⊂ B(xQ j , K�(Q j )) ⊂ B(x, 2K�(Q j )). Also, U
±
Q j

⊂ �±
T∗ , by

construction. On the other hand we note that if z ∈ U±
Q we have by (3.12)

|z − xQ j | ≥ δ�(z) � η1/2�(Q) ≥ η1/22k1�(Q j ) � K�(Q j )

by our choice of k1. By this fact, and the definition of �T∗ , we have

U±
Q ⊂ �±

T∗\B(x, 3K�(Q j )).

Using then that �±
T∗ is connected, we see that a path within �±

T∗ join-
ing U±

Q j
with U±

Q must meet ∂B(x, 3K�(Q j )). Hence we can find y± ∈
�±

T∗ ∩ ∂B(x, 3K�(Q j )). By Lemma 3.3, �+
T∗ and �−

T∗ are disjoint (they live
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912 J. Azzam et al.

respectively above and below the graph �T), so a path joining y+ and y−
within ∂B(x, 3K�(Q j )) meets some x1 ∈ ∂�+

T∗ ∩ ∂B(x, 3K�(Q j )). On the

other hand, x1 /∈ �+
Q j

, since �+
Q j

⊂ B∗
Q j

⊂ B(x, 3K�(Q j )). Furthermore,
x1 ∈ ∂B(x, 3K�(Q j )) ⊂ κB∗

Q j
, so by assumption (ii), we necessarily have

that x1 /∈ �+
Qk

for k �= j . Thus, x1 ∈ ∂�+
Q , and moreover, since B(x, r/2)

meets ∂�+
Q j

(at x) we have �(Q j ) ≤ �(Q j0). Therefore, x1 is the claimed
point, since in the current case 3K�(Q j ) ≤ 3K�(Q j0) � r .

With the point x1 in hand, we note that

B(x1, r/4) ⊂ B(x, r/2) and B(x1, r/2) ⊂ B(x, r). (6.4)

By the exterior corkscrew condition for �+
T∗ ,

∣∣B(x1, r/4)\�+
T∗
∣∣ ≥ c1r

n+1, (6.5)

for some constant c1 depending only on n and the ADR/UR constants for ∂�,

by Lemma 3.3. Also, for each �+
Q j

whose boundary meets B(x1, r/4)\�+
T∗

(and thus meets B(x, r/2)),

κ1/4 diam(B∗
Q j

) ≤ κ1/4 diam(B∗
Q j0

) ≤ 2Kκ1/4�(Q j0) ≤ 2Kr

κ1/4 � r, (6.6)

in the present scenario. Consequently, κ1/4B∗
Q j

⊂ B(x1, r/2), for all such Q j .
We now make the following claim.

Claim 6.3 On has ∣∣B(x1, r/2)\�+
Q

∣∣ ≥ c2r
n+1, (6.7)

for some c2 > 0 depending only on allowable parameters.

Observe that by the second containment in (6.4), we obtain (6.3) as an
immediate consequence of (6.7), and thus the proof will be complete once we
have established Claim 6.3.

Proof of Claim 6.3 To prove the claim, we suppose first that

∑∣∣B∗
Q j

\�+
T∗
∣∣ ≤ c1

2
rn+1, (6.8)

where the sum runs over those j such that B∗
Q j

meets B(x1, r/4)\�+
T∗ , and c1

is the constant in (6.5). In that case, (6.7) holds with c2 = c1/2 (and even with
B(x1, r/4)), by definition of �+

Q (see (6.1)), and the fact that �Q j ⊂ B∗
Q j

. On
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the other hand, if (6.8) fails, then summing over the same subset of indices j ,
we have

CK
∑

�(Q j )
n+1 ≥

∑∣∣B∗
Q j

\�+
T∗
∣∣ ≥ c1

2
rn+1 (6.9)

We now make a second claim:

Claim 6.4 For j appearing in the previous sum, we have

∣∣
(
κ1/4B∗

Q j
\B∗

Q j

)
\�+

T∗
∣∣ ≥ c �(Q j )

n+1, (6.10)

for some uniform c > 0.

Taking the latter claim for granted momentarily, we insert estimate (6.10)
into (6.9) and sum, to obtain

∑∣∣
(
κ1/4B∗

Q j
\B∗

Q j

)
\�+

T∗
∣∣ � rn+1. (6.11)

By the separation property (ii), the balls κ1/4B∗
Q j

are pairwise disjoint, and

by assumption �+
Q j

⊂ B∗
Q j

. Thus, for any given j1, κ1/4B∗
Q j1

\B∗
Q j1

misses

∪ j�
+
Q j

. Moreover, as noted above (see (6.6) and the ensuing comment),

κ1/4B∗
Q j

⊂ B(x1, r/2) for each j under consideration in (6.8)–(6.11). Claim
6.3 now follows. ��
Proof of Claim 6.4 There are two cases: if 1

2κ
1/4B∗

Q j
⊂ R

n+1\�+
T∗ , then

(6.10) is trivial, since κ � 1. Otherwise, 12κ
1/4B∗

Q j
contains a point z ∈ ∂�+

T∗ .

In the latter case, by the exterior corkscrew condition for �+
T∗ ,

∣∣B
(
z, 2−1κ1/4K�(Q j )

)\�+
T∗
∣∣ � κ(n+1)/4(K�(Q j )

)n+1 � |B∗
Q j

|,

since κ � 1. On the other hand, B
(
z, 2−1κ1/4K�(Q j )

) ⊂ κ1/4B∗
Q j

, and
(6.10) follows, finishing the proof of Claim 6.4. ��

Next, (6.4) and (6.7) yield (6.3) in the present case and hence the proof of
Lemma 6.1 is complete. ��

7 Step 2: Proof of H[M0, 1]
We shall deduce H [M0, 1] (see Sect. 4.2) from the following pair of claims.

Claim 7.1 H [0, θ ] holds for every θ ∈ (0, 1].
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914 J. Azzam et al.

Proof of Claim 7.1 If a = 0 in (4.10), then ‖m‖C(Q) = 0, whence it follows
by Claim 5.5, with F = ∅, that there is a tree T ⊂ G, with D(Q) ⊂ T. Hence
T′ := D(Q) is a coherent subtree of T, so by Lemma 3.3, each of �±

T′ is a
CAD, containing U±

Q , respectively, with �±
T′ ⊂ B∗

Q by (3.13). Moreover, by
[35, Proposition A.14]

Q ⊂ ∂�±
T′ ∩ ∂�,

so that σ(Q) ≤ σ(∂�±
T′ ∩ ∂�). Thus, H [0, θ ] holds trivially. ��

Claim 7.2 There is a uniform constant b > 0 such that H [a, 1] �⇒ H [a +
b, 1], for all a ∈ [0, M0).

Combining Claims 7.1 and 7.2, we find that H [M0, 1] holds.
To prove Claim 7.2, we shall require the following.

Lemma 7.3 [31, Lemma 7.2] Suppose that E is an n-ADR set, and letm be a
discrete Carleson measure, as in (4.6)–(4.8) above. Fix Q ∈ D(E). Let a ≥ 0
and b > 0, and suppose thatm

(D(Q)
) ≤ (a+b) σ (Q). Then there is a family

F = {Q j } ⊂ D(Q) of pairwise disjoint cubes, and a constant C depending
only on n and the ADR constant such that

‖mF‖C(Q) ≤ Cb, (7.1)

σ

( ⋃

Fbad

Q j

)
≤ a + b

a + 2b
σ(Q), (7.2)

where Fbad := {Q j ∈ F : m
(D(Q j )\{Q j }

)
> aσ(Q j )}.

We refer the reader to [31, Lemma 7.2] for the proof. We remark that the
lemma is stated in [31] in the case that E is the boundary of a connected domain,
but the proof actually requires only that E have a dyadic cube structure, and
that σ be a non-negative, dyadically doubling Borel measure on E . In our case,
we shall of course apply the lemma with E = ∂�, where � is open, but not
necessarily connected.

Proof of Claim 7.2 We assume that H [a, 1] holds, for some a ∈ [0, M0).
Let us set b = 1/(2C), where C is the constant in (7.1). Consider a cube
Q ∈ D(∂�) with m(D(Q)) ≤ (a + b)σ (Q). Suppose that there is a set
VQ ⊂ UQ ∩ � such that (4.11) holds with θ = 1. We fix k1 > k0 (see (5.1))
large enough so that 2k1 > 100K .
Case 1: There exists Q′ ∈ Dk1(Q) (see (2.11)) with m

(D(Q′)
) ≤ aσ(Q′).

In the present scenario θ = 1, that is, σ(FQ) = σ(Q) (see (4.11) and
(5.4)), which implies σ(FQ ∩ Q′) = σ(Q′). We apply Lemma 5.3 to obtain

123



Harmonic measure and quantitative connectivity 915

VQ′ ⊂ UQ′ ∩ � and the corresponding FQ′ which satisfies σ(FQ′) = σ(Q′).
That is, (4.11) holds for Q′, with θ = 1. Consequently, we may apply the
induction hypothesis to Q′, to find V ∗

Q′ ⊂ VQ′ , such that for eachUi
Q′ meeting

V ∗
Q′ , there is a Chord-arc domain �i

Q′ ⊃ Ui
Q′ formed by a union of fattened

Whitney cubes with �i
Q′ ⊂ B(x ′

Q, K�(Q′)) ∩ �, and

∑

i :Ui
Q′ meets V ∗

Q′

σ(∂�i
Q′ ∩ Q′) ≥ caσ(Q′). (7.3)

By Lemma 5.3, and since k1 > k0, each y ∈ V ∗
Q′ lies on a λ-carrot path

connecting some y ∈ Q′ to some x ∈ VQ ; let V ∗∗
Q denote the set of all such x ,

and let U∗∗
Q (respectively, U∗

Q′) denote the collection of connected components
of UQ (resp., of UQ′) which meet V ∗∗

Q (resp., V ∗
Q′). By construction, each

component Ui
Q′ ∈ U∗

Q′ may be joined to some corresponding component in
U∗∗

Q , via one of the carrot paths. After possible renumbering, we designate

this component as Ui
Q , we let xi , yi denote the points in V ∗∗

Q ∩ Ui
Q and in

V ∗
Q ∩ Ui

Q′ , respectively, that are joined by this carrot path, and we let γi be
the portion of the carrot path joining xi to yi (if there is more than one such
path or component, we just pick one). We also let V ∗

Q = {xi }i be the collection
of all of the selected points xi . We let Wi be the collection of Whitney cubes
meeting γi , and we then define

�i
Q := �i

Q′
⋃

int

( ⋃

I∈Wi

I ∗
)⋃

Ui
Q .

By the definition of a λ-carrot path, since �(Q′) ≈k1 �(Q), and since �i
Q′ is a

CAD, onemay readily verify that�i
Q is also a CAD consisting of a union∪k I ∗

k
of fattenedWhitney cubes I ∗

k . We omit the details. Moreover, by construction,

∂�i
Q ∩ Q ⊃ ∂�i

Q′ ∩ Q′,

so that the analogue of (7.3) holds with Q′ replaced by Q, and with ca replaced
by ck1ca .

It remains to verify that �i
Q ⊂ B∗

Q = B(xQ, K�(Q)). By the induction

hypothesis, and our choice of k1, since �(Q′) = 2−k1�(Q) we have

�i
Q′ ⊂ B∗

Q′ ∩ � = B(xQ′, K�(Q′)) ∩ � ⊂ B∗
Q ∩ �.
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916 J. Azzam et al.

Moreover, UQ ⊂ B∗
Q , by (3.13). We therefore need only to consider I ∗ with

I ∈ Wi . For such an I , by definition there is a point zi ∈ I ∩ γi and yi ∈ Q′,
so that zi ∈ γ (yi , xi ) and thus,

δ�(zi ) ≤ |zi − yi | ≤ �(yi , zi ) ≤ �(yi , xi ) ≤ λ−1δ�(xi )

≤ λ−1|xi − xQ | ≤ λ−1CK 1/2�(Q),

where in the last inequality we have used (3.12) and the fact that xi ∈ UQ .
Hence, for every z ∈ I ∗ by (3.3)

|z − xQ | ≤ diam(2I ) + |zi − yi | + |yi − xQ | ≤ C |zi − yi |
+ diam(Q) < K�(Q),

by our choice of the parameters K and λ.
We then obtain the conclusion of H [a + b, 1] in the present case.

Case 2: m
(D(Q′)

)
> aσ(Q′) for every Q′ ∈ Dk1(Q).

In this case, we apply Lemma 7.3 to obtain a pairwise disjoint family F =
{Q j } ⊂ D(Q) such that (7.1) and (7.2) hold. In particular, by our choice of
b = 1/(2C),

‖mF‖C(Q) ≤ 1/2, (7.4)

so that the conclusions of Claim 5.5 hold.
We set

F0 := Q\
(⋃

F
Q j

)
, (7.5)

define

Fgood := F\Fbad = {
Q j ∈ F : m

(D(Q j )\{Q j }
) ≤ aσ(Q j )

}
, (7.6)

and let

G0 :=
⋃

Fgood

Q j .

Then by (7.2)
σ(F0 ∪ G0) ≥ ρσ(Q), (7.7)

where ρ ∈ (0, 1) is defined by

a + b

a + 2b
≤ M0 + b

M0 + 2b
=: 1 − ρ ∈ (0, 1). (7.8)

We claim that
�(Q j ) ≤ 2−k1 �(Q), ∀ Q j ∈ Fgood . (7.9)
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Indeed, if this were not true for some Q j , then by definition of Fgood and
pigeon-holing there will be Q′

j ∈ D(Q j ) with �(Q′
j ) = 2−k1 �(Q) such that

m
(D(Q′

j )
) ≤ a σ(Q′

j ). This contradicts the assumptions of the current case.
Note also that Q /∈ Fgood by (7.9) and Q /∈ Fbad by (7.2), hence F ⊂

D(Q)\{Q}. By (7.4) and Claim 5.5, there is some tree T ⊂ G so that T′′ =
(DF ∪F ∪F ′)∩D(Q) is a semi-coherent subtree of T, where F ′ denotes the
collection of all dyadic children of cubes in F .
Case 2a: σ(F0) ≥ 1

2 ρσ(Q).
In this case, Q has an ample overlap with the boundary of a Chord-arc

domain with controlled Chord-arc constants. Indeed, let T′ = DF ∩ D(Q)

which, by (7.4) and Claim 5.5, is a semi-coherent subtree of some T ⊂ G.
Hence, by Lemma 3.3, each of �±

T′ is a CAD with constants depending on
the allowable parameters, formed by the union of fattened Whitney boxes,
which satisfies �±

T′ ⊂ B∗
Q ∩� (see (3.8), (3.9), and (3.13)). Moreover, by [35,

Proposition A.14] and [31, Proposition 6.3] and our current assumptions,

σ(Q ∩ ∂�±
T′) = σ(F0) ≥ ρ

2
σ(Q).

Recall that in establishing H [a + b, 1], we assume that there is a set VQ ⊂
UQ ∩ � for which (4.11) holds with θ = 1. Pick then x ∈ VQ and set
V ∗
Q := {x} ⊂ VQ . Note that sinceUQ = U+

Q ∪U−
Q it follows that x belongs to

eitherU+
Q ∩� orU−

Q ∩�. For the sake of specificity assume that x ∈ U+
Q ∩�

hence, in particular,U+
Q ⊂ �+

T′ ⊂ �. Note also thatU+
Q is the only component

of UQ meeting V ∗
Q . All these together give at once that the conclusion of

H [a + b, 1] holds in the present case.
Case 2b: σ(F0) < 1

2 ρσ(Q).
In this case by (7.7)

σ(G0) ≥ ρ

2
σ(Q). (7.10)

In addition, by the definition of Fgood (7.6), and pigeon-holing, every Q j ∈
Fgood has a dyadic child Q′

j (there could be more children satisfying this, but
we just pick one) so that

m
(D(Q′

j )
) ≤ aσ(Q′

j ). (7.11)

Under the present assumptions θ = 1, that is, σ(FQ) = σ(Q) (see (4.11) and
(5.4)), hence σ(FQ ∩ Q′

j ) = σ(Q′
j ). We apply Lemma 5.3 (recall (7.9)) to

obtain VQ′
j

⊂ UQ′
j
∩ � and FQ′

j
which satisfies σ(FQ′

j
) = σ(Q′

j ). That is,

(4.11) holds for Q′
j , with θ = 1. Consequently, recalling that Q′

j ∈ T ⊂ G (see
Claim 5.5), and applying the induction hypothesis to Q′

j , we find V
∗
Q′

j
⊂ VQ′

j
,
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918 J. Azzam et al.

such that for eachU±
Q′

j
meeting V ∗

Q′
j
, there is a Chord-arc domain�±

Q′
j
⊃ U±

Q′
j

formed by a union of fattenedWhitney cubes with�±
Q′

j
⊂ B∗

Q′
j
∩�. Moreover,

since in particular, the cubes in F along with all of their children belong to
the same tree T (see Claim 5.5), the connected component U±

Q j
overlaps with

the corresponding component U±
Q′

j
for its child, so we may augment �±

Q′
j
by

adjoining to it the appropriate component U±
Q j

, to form a chord arc domain

�±
Q j

:= �±
Q′

j
∪U±

Q j
. (7.12)

Moreover, since K � 1, and since Q′
j ⊂ Q j , we have that B∗

Q′
j
⊂ B∗

Q j
, hence

�±
Q j

⊂ B∗
Q j

by construction.

By a covering lemma argument, for a sufficiently large constant κ � K 4,
we may extract a subcollection F∗

good ⊂ Fgood so that {κB∗
Q j

}Q j∈F∗
good

is a
pairwise disjoint family, and

⋃

Q j∈Fgood

Q j ⊂
⋃

Q j∈F∗
good

5κB∗
Q j

.

In particular, by (7.10),

∑

Q j∈F∗
good

σ(Q j ) �κ,K

∑

Q j∈Fgood

σ(Q j ) = σ(G0) � ρσ(Q), (7.13)

where the implicit constants depend on ADR, K , and the dilation factor κ .
By the induction hypothesis, and by construction (7.12) and n-ADR,

σ(Q j ∩ ∂�Q j ) � σ(Q′
j ) � σ(Q j ), (7.14)

where �Q j is equal either to �+
Q j

or to �−
Q j

(if (7.14) holds for both choices,

we arbitrarily set �Q j = �+
Q j

).
Combining (7.14) with (7.13), we obtain

∑

Q j∈F∗
good

σ(Q j ∩ ∂�Q j ) � σ(Q). (7.15)

We now assign each Q j ∈ F∗
good either to F∗+ or to F∗−, depending on

whether we chose �Q j satisfying (7.14) to be �+
Q j

, or �−
Q j

. We note that at
least one of the sub-collectionsF∗± is non-empty, since for each j , there was at
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least one choice of “+’ or “-” such that (7.14) holds for the corresponding choice
of �Q j . Moreover, the two collections are disjoint, since we have arbitrarily
designated�Q j = �+

Q j
in the case that there were two choices for a particular

Q j .
To proceed, as in Lemma 6.1 we set

T∗ =
{
Q′ ∈ D(Q) : Q j ⊂ Q′ for some Q j ∈ F∗

good

}

which is semi-coherent by construction.
For F∗± non-empty, we now define

�±
Q = �±

T∗
⋃( ⋃

Q j∈F∗±

�Q j

)
. (7.16)

Observe that by the induction hypothesis, and our construction (see (7.12) and
the ensuing comment), for an appropriate choice of ±, U±

Q j
⊂ �Q j ⊂ B∗

Q j
,

and since �(Q j ) ≤ 2−k1�(Q), by (7.15) and Lemma 6.1, with F∗ = F∗
good ,

each (non-empty) choice of�±
Q defines a Chord-arc domain with the requisite

properties.
Thus, we have proved Claim 7.2 and therefore, as noted above, it follows

that H [M0, 1] holds. ��

8 Step 3: Bootstrapping θ

In this last step, we shall prove that there is a uniform constant ζ ∈ (0, 1) such
that for each θ ∈ (0, 1], H [M0, θ ] �⇒ H [M0, ζ θ ]. Since we have already
established H [M0, 1], we then conclude that H [M0, θ1] holds for any given
θ1 ∈ (0, 1]. As noted above, it then follows that Theorem 1.2 holds, as desired.

In turn, it will be enough to verify the following.

Claim 8.1 There is a uniform constant β ∈ (0, 1) such that for every a ∈
[0, M0), θ ∈ (0, 1], ϑ ∈ (0, 1), and b = 1/(2C) as in Step 2/Proof of Claim
7.2, if H [M0, θ ] holds, then

H [a, (1 − ϑ)θ ] �⇒ H [a + b, (1 − ϑβ)θ ].
Let us momentarily take Claim 8.1 for granted. Recall that by Claim 7.1,

H [0, θ ] holds for all θ ∈ (0, 1]. In particular, given θ ∈ (0, 1] fixed, for
which H [M0, θ ] holds, we have that H [0, θ/2] holds. Combining the latter
fact with Claim 8.1, and iterating, we obtain that H [kb, (1− 2−1βk)θ ] holds.
We eventually reach H [M0, (1 − 2−1βν)θ ], with ν ≈ M0/b. The conclusion
of Step 3 now follows, with ζ := 1 − 2−1βν .
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Proof of Claim 8.1 The proof will be a refinement of that of Claim 7.2. We
are given some θ ∈ (0, 1] such that H [M0, θ ] holds, and we assume that
H [a, (1− ϑ)θ ] holds, for some a ∈ [0, M0) and ϑ ∈ (0, 1). Set b = 1/(2C),
where as before C is the constant in (7.1). Consider a cube Q ∈ D(∂�)

with m(D(Q)) ≤ (a + b)σ (Q). Suppose that there is a set VQ ⊂ UQ ∩ �

such that (4.11) holds with θ replaced by (1 − ϑβ)θ , for some β ∈ (0, 1) to
be determined. Our goal is to show that for a sufficiently small, but uniform
choice of β, we may deduce the conclusion of the induction hypothesis, with
Ca+b, ca+b in place of Ca, ca .

By assumption, and recalling the definition of FQ in (5.4), we have that
(4.11) holds with constant (1 − ϑβ)θ , i.e.,

σ(FQ) ≥ (1 − ϑβ)θσ(Q). (8.1)

As in the proof of Claim 7.2, we fix k1 > k0 (see (5.1)) large enough so that
2k1 > 100K . There are two principal cases. The first is as follows.
Case 1: There exists Q′ ∈ Dk1(Q) (see (2.11)) with m

(D(Q′)
) ≤ aσ(Q′).

We split Case 1 into two subcases.
Case 1a: σ(FQ ∩ Q′) ≥ (1 − ϑ)θσ(Q′).

In this case, we follow the Case 1 argument for θ = 1 in Sect. 7 mutatis
mutandis, so we merely sketch the proof. By Lemma 5.3, we may construct
VQ′ and FQ′ so that FQ ∩ Q′ = FQ′ and hence σ(FQ′) ≥ (1 − ϑ)θσ(Q′).
We may then apply the induction hypothesis H [a, (1 − ϑ)θ ] in Q′, and then
proceed exactly as in Case 1 in Section 7 to construct a subset V ∗

Q ⊂ VQ and

a family of Chord-arc domains �i
Q satisfying the various desired properties,

and such that ∑

i :Ui
Q meets V ∗

Q

σ(∂�i
Q ∩ Q) ≥ caσ(Q′) �k1 caσ(Q).

The conclusion of H [a + b, (1− ϑβ)θ ] then holds in the present scenario.
Case 1b: σ(FQ ∩ Q′) < (1 − ϑ)θσ(Q′).

By (8.1)

(1 − ϑβ)θσ(Q) ≤ σ(FQ) = σ(FQ ∩ Q′) +
∑

Q′′∈Dk1 (Q)\{Q′}
σ(FQ ∩ Q′′).

In the scenario of Case 1b, this leads to

(1 − ϑβ)θσ(Q′) + (1 − ϑβ)θ
∑

Q′′∈Dk1 (Q)\{Q′}
σ(Q′′) = (1 − ϑβ)θσ(Q)

≤ (1 − ϑ)θσ(Q′) +
∑

Q′′∈Dk1 (Q)\{Q′}
σ(FQ ∩ Q′′),
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that is,

(1 − β)ϑθσ(Q′) + (1 − ϑβ)θ
∑

Q′′∈Dk1 (Q)\{Q′}
σ(Q′′)

≤
∑

Q′′∈Dk1 (Q)\{Q′}
σ(FQ ∩ Q′′). (8.2)

Note that we have the dyadic doubling estimate

∑

Q′′∈Dk1 (Q)\{Q′}
σ(Q′′) ≤ σ(Q) ≤ M1σ(Q′),

where M1 = M1(k1, n, ADR). Combining this estimate with (8.2), we obtain

[
(1 − β)

ϑ

M1
+ (1 − ϑβ)

]
θ

∑

Q′′∈Dk1 (Q)\{Q′}
σ(Q′′)

≤
∑

Q′′∈Dk1 (Q)\{Q′}
σ(FQ ∩ Q′′).

We now choose β ≤ 1/(M1 + 1), so that (1 − β)/M1 ≥ β, and therefore the
expression in square brackets is at least 1. Consequently, by pigeon-holing,
there exists a particular Q′′

0 ∈ Dk1(Q)\{Q′} such that

θσ (Q′′
0) ≤ σ(FQ ∩ Q′′

0). (8.3)

By Lemma 5.3, we can find VQ′′
0
such that FQ ∩ Q′′

0 = FQ′′
0
, where the latter

is defined as in (5.4), with Q′′
0 in place of Q. By assumption, H [M0, θ ] holds,

so combining (8.3) with the fact that (4.10) holds with a = M0 for every
Q ∈ D(∂�), we find that there exists a subset V ∗

Q′′
0

⊂ VQ′′
0
, along with a

family of Chord-arc domains {�i
Q′′
0
}i enjoying all the appropriate properties

relative to Q′′
0. Using that �(Q

′′
0) ≈k1 �(Q), we may now proceed exactly as in

Case 1a above, and also Case 1 in Section 7, to construct V ∗
Q and {�i

Q}i such
that the conclusion of H [a + b, (1 − ϑβ)θ ] holds in the present case also.
Case 2: m

(D(Q′)
)

> aσ(Q′) for every Q′ ∈ Dk1(Q).
In this case, we apply Lemma 7.3 to obtain a pairwise disjoint family F =

{Q j } ⊂ D(Q) such that (7.1) and (7.2) hold. In particular, by our choice of
b = 1/(2C), ‖mF‖C(Q) ≤ 1/2.

Recall that FQ is defined in (5.4), and satisfies (8.1). We define F0 =
Q\(⋃F Q j ) as in (7.5), and Fgood := F\Fbad as in (7.6). Let G0 :=
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⋃
Fgood

Q j . Then as above (see (7.7)),

σ(F0 ∪ G0) ≥ ρσ(Q), (8.4)

where again ρ = ρ(M0, b) ∈ (0, 1) is defined as in (7.8). Just as in Case 2
for θ = 1 in Sect. 7, we have that

�(Q j ) ≤ 2−k1 �(Q), ∀ Q j ∈ Fgood , and F ⊂ D(Q)\{Q} (8.5)

(see (7.9)). Hence, the conclusions of Claim 5.5 hold.
We first observe that if σ(F0) ≥ εσ(Q), for some ε > 0 to be cho-

sen (depending on allowable parameters), then the desired conclusion holds.
Indeed, in this case, we may proceed exactly as in the analogous scenario in
Case 2a in Sect. 7: the promised Chord-arc domain is again simply one of
�±

T′ , since at least one of these contains a point in VQ and hence in particular
is a subdomain of �. The constant ca+b in our conclusion will depend on ε,
but in the end this will be harmless, since ε will be chosen to depend only on
allowable parameters.

We may therefore suppose that

σ(F0) < εσ(Q). (8.6)

Next, we refine the decomposition F = Fgood ∪Fbad . With ρ as in (7.8) and
(8.4), we choose β < ρ/4. Set

F (1)
good := {

Q j ∈ Fgood : σ(FQ ∩ Q j ) ≥ (
1 − 4ϑβρ−1)θσ (Q j )

}
,

and define F (2)
good := Fgood\F (1)

good . Let

F (1)
bad := {

Q j ∈ Fbad : σ(FQ ∩ Q j ) ≥ θσ (Q j )
}
,

and define F (2)
bad := Fbad\F (1)

bad .
We split the remaining part of Case 2 into two subcases. The first of these

will be easy, based on our previous arguments.
Case 2a: There is Q j ∈ F (1)

bad such that �(Q j ) > 2−k1 �(Q).

By definition of F (1)
bad , one has σ(FQ ∩ Q j ) ≥ θσ (Q j ). By pigeon-holing,

Q j has a descendant Q′ with �(Q′) = 2−k1�(Q), such that σ(FQ ∩ Q′) ≥
θσ (Q′). We may then apply H [M0, θ ] in Q′, and proceed exactly as we did in
Case 1b above with the cube Q′′

0, which enjoyed precisely the same properties
as does our current Q′. Thus, we draw the desired conclusion in the present
case.
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The main case is the following.
Case 2b: Every Q j ∈ F (1)

bad satisfies �(Q j ) ≤ 2−k1 �(Q).
Observe that by definition,

σ(FQ ∩ Q j ) ≤ (
1 − 4ϑβρ−1)θσ (Q j ), ∀ Q j ∈ F (2)

good , (8.7)

and also
σ(FQ ∩ Q j ) ≤ θσ (Q j ), ∀ Q j ∈ F (2)

bad , (8.8)

Set F∗ := F\F (2)
good . For future reference, we shall derive a certain ample-

ness estimate for the cubes in F∗. By (8.1),

(1 − ϑβ)θσ(Q) ≤ σ(FQ) ≤ σ(F0) +
∑

F∗
σ(Q j ) +

∑

F (2)
good

σ(FQ ∩ Q j )

≤ εσ(Q) +
∑

F∗
σ(Q j ) + (

1 − 4ϑβρ−1) θσ (Q),

(8.9)

where in the last step have used (8.6) and (8.7). Observe that

(1 − ϑβ)θ = (
4ρ−1 − 1

)
ϑβθ + (

1 − 4ϑβρ−1) θ. (8.10)

Using (8.9) and (8.10), for ε � (
4ρ−1 − 1

)
ϑβθ , we obtain

2−1 (4ρ−1 − 1
)
ϑβθσ(Q) ≤

∑

F∗
σ(Q j )

and thus
σ(Q) ≤ C(ϑ, ρ, β, θ)

∑

F∗
σ(Q j ). (8.11)

We now make the following claim. ��
Claim 8.2 For ε chosen sufficiently small,

max

⎛

⎜
⎝
∑

F (1)
good

σ(Q j ),
∑

F (1)
bad

σ(Q j )

⎞

⎟
⎠ ≥ εσ(Q).
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Proof of Claim 8.2 If
∑

F (1)
good

σ(Q j ) ≥ εσ(Q), then we are done. Therefore,

suppose that ∑

F (1)
good

σ(Q j ) < εσ(Q). (8.12)

We have made the decomposition

F = F (1)
good ∪ F (2)

good ∪ F (1)
bad ∪ F (2)

bad . (8.13)

Consequently

σ(FQ) ≤
∑

F (2)
good

σ(FQ ∩ Q j ) +
∑

Fbad

σ(FQ ∩ Q j ) + O (εσ (Q)) ,

where we have used (8.6), and (8.12) to estimate the contributions of F0, and
of F (1)

good , respectively. This, (8.1), (8.7), and (8.8) yield

(1 − ϑβ)θ

⎛

⎜
⎝
∑

F (2)
good

σ(Q j ) +
∑

F (2)
bad

σ(Q j )

⎞

⎟
⎠ ≤ (1 − ϑβ)θσ(Q) ≤ σ(FQ)

≤ (
1 − 4ϑβρ−1) θ

∑

F (2)
good

σ(Q j ) +
∑

F (1)
bad

σ(Q j )

+θ
∑

F (2)
bad

σ(Q j ) + O (εσ (Q)) .

In turn, applying (8.10) in the latter estimate, and rearranging terms, we obtain

(4ρ−1 − 1)ϑβθ
∑

F (2)
good

σ(Q j ) − ϑβθ
∑

F (2)
bad

σ(Q j ) ≤
∑

F (1)
bad

σ(Q j ) + O (εσ (Q)) .

(8.14)
Recalling that G0 = ∪Fgood Q j , and that Fgood = F (1)

good ∪ F (2)
good , we further

note that by (8.4), choosing ε � ρ, and using (8.6) and (8.12), we find in
particular that ∑

F (2)
good

σ(Q j ) ≥ ρ

2
σ(Q). (8.15)
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Applying (8.15) and the trivial estimate
∑

F (2)
bad

σ(Q j ) ≤ σ(Q) in (8.14), we

then have

ϑβθ
[
1 − ρ

2

]
σ(Q) =

[(
4ρ−1 − 1

)
ϑβθ

ρ

2
− ϑβθ

]
σ(Q)

≤ (
4ρ−1 − 1

)
ϑβθ

∑

F (2)
good

σ(Q j ) − ϑβθ
∑

F (2)
nbad

σ(Q j )

≤
∑

F (1)
bad

σ(Q j ) + O (εσ (Q)) .

Since ρ < 1, we conclude, for ε ≤ (4C)−1ϑβθ , that

1

4
ϑβθ σ(Q) ≤

∑

F (1)
bad

σ(Q j ),

and Claim 8.2 follows.

With Claim 8.2 in hand, let us return to the proof of Case 2b of Claim 8.1.
We begin by noting that by definition of F (1)

bad , and Lemma 5.3, we can apply

H [M0, θ ] to any Q j ∈ F (1)
bad , hence for each such Q j there is a family of

Chord-arc domains {�i
Q j

}i satisfying the desired properties.
Now consider Q j ∈ F (1)

good . Since F (1)
good ⊂ Fgood , by pigeon-holing Q j

has a dyadic child Q′
j satisfying

m
(D(Q′

j )
) ≤ aσ(Q′

j ), (8.16)

(there may be more than one such child, but we just pick one). Our immediate
goal is to find a child Q′′

j of Q j , which may or may not equal Q′
j , for which we

may construct a family of Chord-arc domains {�i
Q′′

j
}i satisfying the desired

properties. To this end, we assume first that Q′
j satisfies

σ(FQ ∩ Q′
j ) ≥ (1 − ϑ)θσ(Q′

j ). (8.17)

In this case, we set Q′′
j := Q′

j , and using Lemma 5.3, by the induction hypoth-
esis H [a, (1 − ϑ)θ ], we obtain the desired family of Chord-arc domains.

We therefore consider the case

σ(FQ ∩ Q′
j ) < (1 − ϑ)θσ(Q′

j ). (8.18)
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In this case, we shall select Q′′
j �= Q′

j . Recall that we use the notation Q′′ � Q
to mean that Q′′ is a dyadic child of Q. Set

F ′′
j :=

{
Q′′

j � Q j : Q′′
j �= Q′

j

}
.

Note that we have the dyadic doubling estimate

∑

Q′′
j∈F ′′

j

σ(Q′′
j ) ≤ σ(Q j ) ≤ M1σ(Q′

j ), (8.19)

where M1 = M1(n, ADR). We also note that

(
1 − 4ϑβρ−1)θ = (

1 − 4βρ−1)ϑθ + (1 − ϑ)θ. (8.20)

By definition of F (1)
good ,

(
1 − 4ϑβρ−1)θσ (Q j ) ≤ σ(FQ ∩ Q j ) = σ(FQ ∩ Q′

j )

+
∑

Q′′
j∈F ′′

j

σ(FQ ∩ Q′′
j ).

By (8.18), it follows that

(
1 − 4ϑβρ−1)θσ (Q′

j ) + (
1 − 4ϑβρ−1)θ

∑

Q′′
j∈F ′′

j

σ(Q′′
j )

= (
1 − 4ϑβρ−1)θσ (Q j )

≤ (1 − ϑ)θσ(Q′
j ) +

∑

Q′′
j∈F ′′

j

σ(FQ ∩ Q′′
j ).

In turn, using (8.20), we obtain

(
1 − 4βρ−1)ϑθσ(Q′

j ) + (
1 − 4ϑβρ−1)θ

∑

Q′′
j∈F ′′

j

σ(Q′′
j )

≤
∑

Q′′
j∈F ′′

j

σ(FQ ∩ Q′′
j ).
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By the dyadic doubling estimate (8.19), this leads to

[(
1 − 4βρ−1)ϑM−1

1 + (
1 − 4ϑβρ−1)

]
θ

∑

Q′′
j∈F ′′

j

σ(Q′′
j )

≤
∑

Q′′
j∈F ′′

j

σ(FQ ∩ Q′′
j ).

Choosing β ≤ ρ/(4(M1 + 1)), we find that the expression in square brackets
is at least 1, and therefore, by pigeon holing, we can pick Q′′

j ∈ F ′′
j satisfying

σ(FQ ∩ Q′′
j ) ≥ θσ (Q′′

j ). (8.21)

Hence, using Lemma 5.3, we see that the induction hypothesis H [M0, θ ]
holds for Q′′

j ∈ F ′′
j , and once again we obtain the desired family of Chord-arc

domains.
Recall that we have constructed our packing measure m in such a way that

each Q j ∈ F , as well as all of its children, alongwith the cubes inDF ∩D(Q),
belong to the same tree T; see Claim 5.5. This means in particular that for each
such Q j , the Whitney region UQ j has exactly two components U±

Q j
⊂ �±

T ,
and the analogous statement is true for each child of Q j . This fact has the
following consequences:

Remark 8.3 For each Q j ∈ F (1)
bad , and for the selected child Q′′

j of each Q j ∈
F (1)
good , the conclusion of the induction hypothesis produces at most twoChord-

arc domains �±
Q j

⊃ U±
Q j

(resp. �±
Q′′

j
⊃ U±

Q′′
j
), which we enumerate as �i

Q j

(resp.�i
Q′′

j
), i = 1, 2, with i = 1 corresponding “+”, and i = 2 corresponding

to “-”, respectively.

Remark 8.4 For each Q j ∈ F (1)
good , the connected component U±

Q j
overlaps

with the corresponding componentU±
Q′′

j
for its child, so we may augment�i

Q′′
j

by adjoining to it the appropriate componentU±
Q j

, to form a chord arc domain

�i
Q j

:= �i
Q′′

j
∪Ui

Q j
.

By the induction hypothesis, for each Q j ∈ F (1)
bad ∪F (1)

good (and by n-ADR,

in the case of F (1)
good ), the Chord-arc domains �i

Q j
that we have constructed

satisfy
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∑

i

σ(Q j ∩ ∂�i
Q j

) � σ(Q j ),

where the sum has either one or two terms, and where the implicit constant
depends either on M0 and θ , or on a and (1−ϑ)θ , depending on which part of
the induction hypothesis we have used. In particular, for each such Q j , there
is at least one choice of index i such that �i

Q j
=: �Q j satisfies

σ(Q j ∩ ∂�Q j ) � σ(Q j ) (8.22)

(if the latter is true for both choices i = 1, 2,we arbitrarily choose i = 1,which
we recall corresponds to “+”). Combining the latter bound with Claim 8.2, and
recalling that ε has now been fixed depending only on allowable parameters,
we see that ∑

Q j ∈F (1)
bad ∪F (1)

good

σ(Q j ∩ ∂�Q j ) � σ(Q)

For Q j ∈ F (1)
bad ∪ F (1)

good , as above set B
∗
Q j

:= B(xQ j , K�(Q j )). By a covering

lemma argument, we may extract a subfamily F∗ ⊂ F (1)
bad ∪ F (1)

good such that

{κB∗
Q j

}Q j∈F∗ is pairwise disjoint, where again κ � K 4 is a large dilation
factor, and such that

∑

Q j ∈F∗
σ(Q j ∩ ∂�Q j ) �κ σ (Q) (8.23)

Let us now build (at most two) Chord-arc domains�i
Q satisfying the desired

properties. Recall that for each Q j ∈ F∗, we defined the correspondingChord-
arc domain �Q j := �i

Q j
, where the choice of index i (if there was a choice),

wasmade so that (8.22) holds.We then assign each Q j ∈ F∗ either toF∗+ or to
F∗−, depending on whether we chose�Q j satisfying (8.22) to be�1

Q j
= �+

Q j
,

or �2
Q j

= �−
Q j

. We note that at least one of the sub-collections F∗± is non-
empty, since for each j , there was at least one choice of index i such that
(8.22) holds with �Q j := �i

Q j
. Moreover, the two collections are disjoint,

since we have arbitrarily designated �Q j = �1
Q j

(corresponding to “+”) in
the case that there were two choices for a particular Q j . We further note that
if Q j ∈ F∗±, then �Q j = �±

Q j
⊃ U±

Q j
.

We are now in position to apply Lemma 6.1. Set

T∗ = {
Q′ ∈ D(Q) : Q j ⊂ Q′ for some Q j ∈ F∗} ,
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which is a semi-coherent subtree of T, with maximal cube Q. Without loss of
generality, we may suppose that F∗+ is non-empty, and we then define

�+
Q := �+

T∗
⋃

⎛

⎝
⋃

Q j ∈F∗+

�Q j

⎞

⎠ ,

and similarly with “+” replaced by “−”, provided that F∗− is also non-empty.
Observe that by the induction hypothesis, and our construction (see Remarks
8.3 and 8.4, and Lemma 3.3), for an appropriate choice of “±”,U±

Q j
⊂ �Q j ⊂

B∗
Q j

, and since �(Q j ) ≤ 2−k1�(Q), by (8.23) and Lemma 6.1, each (non-
empty) choice defines a Chord-arc domain with the requisite properties. This
completes the proof of Case 2b of Claim 8.1 and hence that of Theorem 1.2.

��

Part 2: Proof of Theorem 1.3

9 Preliminaries for the Proof of Theorem 1.3

9.1 Uniform rectifiability

Recall the definition of n-uniform rectifiable (n-UR) sets in Definition 2.2.
Given a ball B ⊂ R

n+1, we denote

bβE (B) = inf
L

1

r(B)

(
sup

y∈E∩B
dist(y, L) + sup

y∈L∩B
dist(y, E)

)
, (9.1)

where the infimum is taken over all the affine n-planes that intersect B. The
following result is due to David and Semmes:

Theorem 9.1 Let E ⊂ R
n+1 be n-ADR. Denote σ = Hn� E and let D be the

associated dyadic lattice. Then, E is n-UR if and only if, for any ε > 0,

∑

Q∈D:Q⊂R,
bβ(3BQ)>ε

σ (Q) ≤ C(ε) σ (R) for all R ∈ D.

For the proof, see [23, Theorem 2.4, p.32] (this provides a slight variant
of Theorem 9.1, and it is straightforward to check that both formulations are
equivalent). Remark that the constant 3 multiplying BQ in the estimate above
can be replaced by any number larger than 1.

Recall also the following result (see [28] or [44]).
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Theorem 9.2 Let � ⊂ R
n+1, n ≥ 1, be an open set satisfying an interior

corkscrew condition, with n-ADR boundary, such that the harmonic measure
in � belongs to weak-A∞. Then ∂� is n-UR.

9.2 Harmonic measure

From now on we assume that � ⊂ R
n+1 is an open set with n-ADR boundary

such that the harmonic measure in � belongs to weak-A∞. We denote by σ

the surface measure in ∂�, that is, σ = Hn� ∂�. We also consider the dyadic
lattice D associated with σ as in Lemma 2.16. The AD-regularity constant of
∂� is denoted by C0.

We denote by ωp the harmonic measure with pole at p of �, and by g(·, ·)
the Green function. Much as before we write δ�(x) = dist(x, ∂�).

The followingwell known result is sometimes called “Bourgain’s estimate”:

Lemma 9.3 [13]. Let� � R
n+1 be open with n-ADR boundary, x ∈ ∂�, and

0 < r ≤ diam(∂�)/2. Then

ωy(B(x, 2r)) ≥ c > 0, for all y ∈ � ∩ B(x, r) (9.2)

where c depends on n and the n-ADRity constant of ∂�.

The following is also well known.

Lemma 9.4 Let � � R
n+1 be open with n-ADR boundary. Let p, q ∈ � be

such |p − q| ≥ 4 δ�(q). Then,

g(p, q) ≤ C
ωp(B(q, 4δ�(q)))

δ�(q)n−1 .

Weremark that the previous lemma is also valid in the case n > 1without the
n-ADR assumption. In the case n = 1 this holds under the 1-ADR assumption,
and also in the more general situation where� satisfies the CDC. This follows
easily from [1, Lemmas 3.4 and 3.5]. Notice that n-ADR implies the CDC in
R
n+1 (for any n), by standard arguments.
The following lemma is also known. See [28, Lemma 3.14], for example.

Lemma 9.5 Let � � R
n+1 be open with n-ADR boundary and let p ∈ �. Let

B be a ball centered at ∂� such that p /∈ 8B. Then

 

B
g(p, x) dx ≤ C

ωp(4B)

r(B)n−1 .

Lemma 9.6 Let � � R
n+1 be open with n-ADR boundary. Let x ∈ ∂� and

0 < r < diam(�). Let u be a non-negative harmonic function in B(x, 4r)∩�
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Harmonic measure and quantitative connectivity 931

and continuous in B(x, 4r) ∩ � such that u ≡ 0 in ∂� ∩ B(x, 4r). Then
extending u by 0 in B(x, 4r)\�, there exists a constant α > 0 such that, for
all y, z ∈ B(x, r),

|u(y) − u(z)| ≤ C

( |y − z|
r

)α

sup
B(x,2r)

u ≤ C

( |y − z|
r

)α  

B(x,4r)
u,

where C and α depend on n and the AD-regularity of ∂�. In particular,

u(y) ≤ C

(
δ�(y)

r

)α

sup
B(x,2r)

u ≤ C

(
δ�(y)

r

)α  

B(x,4r)
u.

The next result provides a partial converse to Lemma 9.4.

Lemma 9.7 Let � � R
n+1 be open with n-ADR boundary. Let p ∈ � and let

Q ∈ D be such that p /∈ 2BQ. Suppose that ωp(Q) ≈ ωp(2Q). Then there
exists some q ∈ � such that

�(Q) � δ�(q) ≈ dist(q, Q) ≤ 4 diam(Q)

and

ωp(2Q)

�(Q)n−1 ≤ c g(p, q).

Proof For a given k0 ≥ 2 to be fixed below, we can pick P ∈ D(Q) with
�(P) = 2−k0�(Q) such that

ωp(P) ≈k0 ωp(Q).

Let ϕP be a C∞ function supported in BP , ϕP ≡ 1 on P , and such that
‖∇ϕP‖∞ � 1/�(P). Then, choosing k0 small enough so that p /∈ 50BP , say,
and applying Caccioppoli’s inequality,

ωp(2Q) ≈ ωp(Q) ≈k0 ωp(P) ≤
ˆ

ϕP dωp = −
ˆ

∇yg(p, y) ∇ϕP(y) dy

� 1

�(P)

ˆ

BP

|∇yg(p, y)| dy � �(P)n
(  

BP

|∇yg(p, y)|2 dy
)1/2

� �(P)n−1
(  

2BP

|g(p, y)|2 dy
)1/2

� �(P)n−1
 

3BP

g(p, y) dy.
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932 J. Azzam et al.

Applying now Lemmas 9.6 and 9.5 and taking k0 small enough so that 24BP ∩
∂� ⊂ 2Q, for any a ∈ (0, 1) we get

 

y∈3BP :δ�(y)≤a�(P)

g(p, y) dy � aα

 

6BP

g(p, y) dy

� aα ωp(24BP)

�(P)n−1 � aα ωp(2Q)

�(P)n−1 .

From the estimates above we infer that

ωp(2Q) �k0 �(P)n−1
 

y∈3BP :δ�(y)≥a�(P)

g(p, y) dy + aα ωp(2Q).

Hence, for a small enough, we derive

ωp(2Q) �k0 �(P)n−1
 

y∈3BP :δ�(y)≥a�(P)

g(p, y) dy,

which implies the existence of the point q required in the lemma. ��

9.3 Harnack chains and carrots

It will be more convenient for us to work with Harnack chains instead of
curves. The existence of a carrot curve is equivalent to having what we call a
good chain between points.

Let x ∈ �, y ∈ � be such that δ�(y) ≤ δ�(x), and let C > 1. A C-good
chain (orC-good Harnack chain) from x to y is a sequence of balls B1, B2, . . .

(finite or infinite) contained in � such that x ∈ B1 and either

• lim j→∞ dist(y, Bj ) = 0 if y ∈ ∂�, or
• y ∈ BN if y ∈ �, where N is the number of elements of the sequence if
this is finite,

and moreover the following hold:

• Bj ∩ Bj+1 �= ∅ for all j ,
• C−1 dist(Bj , ∂�) ≤ r(Bj ) ≤ C dist(Bj , ∂�) for all j ,
• r(Bj ) ≤ C r(Bi ) if j > i ,
• for each t > 0 there are at most C balls Bj such that t < r(Bj ) ≤ 2t .

Abusing language, sometimes we will omit the constant C and we will just
say “good chain” or “good Harnack chain”.

Observe that in the definitions of carrot curves and good chains, the order
of x and y is important: having a carrot curve from x to y is not equivalent to
having one from y to x , and similarly with good chains.
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Lemma 9.8 There is a carrot curve from x ∈ � to y ∈ � if and only if there
is a good Harnack chain from x to y.

Proof Let γ be a carrot curve from x to y. We can assume y ∈ �, since if
y ∈ ∂�,we canobtain this case by taking a limit of points y j ∈ � converging to
y. Let {Bj }Nj=1 be a Vitali subcovering of the family {B(z, δ�(z)/10) : z ∈ γ }
and let rB j stand for the radius and xB j for the center of Bj . So the balls Bj
are disjoint and 5Bj cover γ . Note that for t > 0, if t < rB j ≤ 2t ,

|xB j − y| ≤ H1(γ (xB j , y)) � δ�(xB j ) ≈ rB j ≤ 2t.

In particular, since the Bj ’s are disjoint, by volume considerations, there can
only be boundedly many Bj of radius between t/2 and t , say. Moreover, we
may order the balls Bj so that x ∈ 5B1 and Bj+1 is a ball Bk such that
5Bk ∩ 5Bj �= ∅ and 5Bk contains the point from γ ∩ ⋃

h:5Bh∩5Bj �=∅
5Bh

which is maximal in the natural order induced by γ (so that x is the minimal
point in γ ). Then for j > i ,

rB j ≈ δ�(xB j ) ≤ |xB j − xBi | + δ�(xBi ) ≤ H1(γ (xBi , y)) + δ�(xBi ) � rBi .

This implies 5B1, 5B2, . . . is a C-good chain for a sufficiently big C .
Now suppose that we can find a good chain from x to y, call it B1, . . . , BN .

Let γ be the path obtained by connecting their centers in order. Let z ∈ γ .
Then there is a j such that z ∈ [xB j , xB j+1], the segment joining xB j and xB j+1 .
Since {Bi }i is a good chain,

H1(γ (z, y)) ≤ |z − xB j+1 | + H1(γ (xB j+1 , y)) ≤ rB j+1 +
N∑

i= j

2rBi � rB j ≈ δ�(z).

We would like to note that the implicit constants do not depend on N . Indeed,
from the properties of the good chain it easily follows that

N∑

i= j

rBi ≤
∞∑

k=0

∑

i :2−k−1<
rBi
CrB j

≤2−k

rBi ≤ 2C2 rB j .

Thus, γ is a carrot curve from x to y. ��

10 The main lemma for the Proof of Theorem 1.3

Because of the absence of doubling conditions on harmonic measure under the
weak-A∞ assumption, to prove Theorem 1.3 we cannot use arguments similar
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934 J. Azzam et al.

to the ones in [1] or [6]. Instead, we prove a local result which involves only
one pole and one ball which has its own interest. This is the Main Lemma 10.2
below.

Let B ⊂ R
n+1 be a ball centered at ∂� and let p ∈ �. We restate Definition

2.15 in the following form: ωp satisfies the weak-A∞ condition in B if for
every ε0 ∈ (0, 1) there exists δ0 ∈ (0, 1) such that the following holds: for any
subset E ⊂ B ∩ ∂�,

σ(E) ≤ δ0 σ(B ∩ ∂�) �⇒ ωp(E) ≤ ε0 ωp(2B). (10.1)

In the next sections we will prove the following.
Main Theorem 10.2 Let � ⊂ R

n+1 have n-uniformly rectifiable boundary.
Let R0 ∈ D and let p ∈ �\4BR0 be a point such that

c �(R0) ≤ dist(p, ∂�) ≤ dist(p, R0) ≤ c−1 �(R0)

and ωp(R0) ≥ c′ > 0. Suppose that ωp satisfies the weak-A∞ condition
in BR0 . Then there exists a subset Con(R0) ⊂ R0 and a constant c′′ > 0
with σ(Con(R0)) ≥ c′′ σ(R0) such that each point x ∈ Con(R0) can be
joined to p by a carrot curve. The constant c′′ and the constants involved in
the carrot condition only depend on c, c′, n, the weak-A∞ condition, and the
n-UR character of ∂�.

The notation Con(·) stands for “connectable”.
It is easy to check that Theorem 1.3 follows from this result. First notice

that the assumptions of the theorem imply that ∂� is n-uniformly rectifiable
by Theorem 9.2. Consider now any x ∈ � and take a point ξ ∈ ∂� such that
|x − ξ | = δ�(x). Then we consider the point p in the segment [x, ξ ] such that
|p − ξ | = 1

16 δ�(x). By Lemma 9.3, we have

ωp(B(ξ, 1
8δ�(x))) � 1,

because p ∈ 1
2 B(ξ, 1

8δ�(x)). Hence, by covering B(ξ, 1
8δ�(x)) ∩ ∂� with

cubes R ∈ D contained in B(ξ, 1
4δ�(x)) ∩ ∂� with side length comparable to

δ�(x)we deduce that at least one these cubes, call it R0, satisfies ωp(R0) � 1.
Further, by taking the side length small enough, we may also assume that p /∈
4BR0 . Since ωp satisfies the weak-A∞ property in BR0 (by the assumptions
in Theorem 1.3), we can apply the Main Lemma 10.2 above and infer that
there exists a subset F := Con(R0) ⊂ R0 with σ(F) ≥ c′ σ(R0) � δ�(x)n

such that all y ∈ F can be joined to x by a carrot curve, which proves that �
satisfies the weak local John condition and concludes the proof of Theorem
1.3.
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Two essential ingredients of the proof of theMain Lemma 10.2 are a corona
type decomposition (whose existence is ensured by the n-uniform rectifiability
of the boundary) and the Alt–Caffarelli–Friedman monotonicity formula [3].
This formula is used in some of the connectivity arguments below. This allows
to connect by carrot curves corkscrew points where the Green function is not
too small to other corkscrew points at a larger distance from the boundary
where the Green function is still not too small (see Lemma 11.6 for the precise
statement). The use of the Alt–Caffarelli–Friedman formula is not new to
problems involving harmonic measure and connectivity (see, for example,
[7]). However, the way it is applied here is new, as far as we know.

Two important steps of the proof of the Main Lemma 10.2 (and so of Theo-
rem 1.3) are theGeometric Lemma 14.3 and theKeyLemma 15.1. An essential
idea consists of distinguishing cubes with “twowell separated big corkscrews”
(see Sect. 13.4 for the precise definition). In the Geometric Lemma 10.2 we
construct two disjoint open sets satisfying a John condition associated to trees
involving this type of cubes, so that the boundaries of the open sets are located
in places where the Green function is very small. This construction is only pos-
sible because the associated tree involves only cubes with two well separated
big corkscrews. The existence of these cubes is an obstacle for the construc-
tion of carrot curves. However, in a sense, in the Key Lemma 15.1 we take
advantage of their existence to obtain some delicate estimates for the Green
function on some corkscrew points.

We claim now that to prove he Main Lemma 10.2 we can assume that
� = R

n+1\∂�. To check this, let �, p, and R0 satisfy the assumptions in
the Main Lemma. Consider the open set V = R

n+1\∂�. Then the harmonic
measureωp in� coincides with the harmonicmeasureω

p
V in V (the fact that V

is not connected does not disturb us). ThusV , p, and R0 satisfy the assumptions
in the Main Lemma, and moreover V = R

n+1\∂� = R
n+1\∂V . Assuming

the Main Lemma to be valid in this particular case, we deduce that there exists
a subset Con(R0) ⊂ R0 and a constant c′′ > 0 with σ(Con(R0)) ≥ c′′ σ(R0)

such that each point x ∈ Con(R0) can be joined to p by a carrot curve in
V . Now just observe that if γ is one of this carrot curves and it joints p and
x ∈ Con(R0) ⊂ ∂V = ∂�, then γ is contained in V except for its end-point
x . By connectivity, since p ∈ �∩ γ , γ must be contained in �, except for the
end-point x . Hence, γ is a carrot curve with respect to �.

Sections 11–16 are devoted to the proof of Main Lemma 10.2. To this end,
we will assume that � = R

n+1\∂�.
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11 The Alt–Caffarelli–Friedman formula and the existence of short
paths

11.1 The Alt–Caffarelli–Friedman formula

Recall the following well known result of Alt–Caffarelli–Friedman (see [14,
Theorems 12.1 and 12.3]):

Theorem 11.1 Let B(x, R) ⊂ R
n+1, and let u1, u2 ∈ W 1,2(B(x, R)) ∩

C(B(x, R)) be nonnegative subharmonic functions. Suppose that u1(x) =
u2(x) = 0 and that u1 · u2 ≡ 0. Set

Ji (x, r) = 1

r2

ˆ

B(x,r)

|∇ui (y)|2
|y − x |n−1 dy,

and
J (x, r) = J1(x, r) J2(x, r). (11.1)

Then J (x, r) is a non-decreasing function of r ∈ (0, R) and J (x, r) < ∞ for
all r ∈ (0, R). That is,

J (x, r1) ≤ J (x, r2) < ∞ for 0 < r1 ≤ r2 < R. (11.2)

Further,

Ji (x, r) � 1

r2
‖ui‖2∞,B(x,2r). (11.3)

In the case of equality we have the following result (see [46, Theorem 2.9]).

Theorem 11.2 Let B(x, R) and u1, u2 be as in Theorem 11.1. Suppose that
J (x, ra) = J (x, rb) for some 0 < ra < rb < R. Then either one or the other
of the following holds:

(a) u1 = 0 in B(x, rb) or u2 = 0 in B(x, rb);
(b) there exists a unit vector e and constants k1, k2 > 0 such that

u1(y) = k1 ((y − x) · e)+, u2(y) = k2 ((y − x) · e)−, in B(x, rb).

We will also need the following auxiliary lemma.

Lemma 11.3 Let B(x, R) ⊂ R
n+1, and let {ui }i≥1 ⊂ W 1,2(B(x, R)) ∩

C(B(x, R)) a sequence of functions which are nonnegative, subharmonic,
such that each ui is harmonic in {y ∈ B(x, R) : ui (y) > 0} and ui (x) = 0.
Suppose also that

‖ui‖∞,B(x,R) ≤ C1 R and ‖ui‖Lipα,B(x,R) ≤ C1 R
1−α
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for all i ≥ 1. Then, for every 0 < r < R there exists a subsequence {uik }k≥1
which converges uniformly in B(x, r) and weakly in W 1,2(B(x, r)) to some
function u ∈ W 1,2(B(x, r)) ∩ C(B(x, r)), and moreover,

lim
k→∞

ˆ

B(x,r)

|∇uik (y)|2
|y − x |n−1 dy =

ˆ

B(x,r)

|∇u(y)|2
|y − x |n−1 dy. (11.4)

Proof The existence of a subsequence {uik }k≥1 converging weakly in
W 1,2(B(x, r)) and uniformly in B(x, r) to some function u ∈ W 1,2(B(x, r))∩
C(B(x, r)) is an immediate consequence of the Arzelà–Ascoli and the
Banach–Alaoglu theorems. The identity (11.4) is clear when n = 1, and quite
likely, for n > 1 this is also well known. However, for completeness, we will
show the details (for n > 1).

Consider a non-negative subharmonic function v ∈ W 1,2(B(x, R)) ∩
C(B(x, R)) which is harmonic in {y ∈ B(x, R) : v(y) > 0} so that v(x) = 0.
For 0 < r < R and 0 < δ < R − r , let ϕ be a radial C∞ function such that
χB(x,r) ≤ ϕ ≤ χB(x,r+δ). Let E(y) = c−1

n |y|1−n be the fundamental solution
of the Laplacian. For ε > 0, denote vε = max(v, ε) − ε. Then we have

ˆ |∇vε(y)|2
|y − x |n−1 ϕ(y) dy = cn

ˆ
∇vε(y) ∇(E(x − ·) vε ϕ)(y) dy

− cn

ˆ
∇vε(y) E(x − y) vε(y) ∇ϕ(y) dy

− cn

ˆ
∇vε(y) ∇yE(x − y) vε(y) ϕ(y) dy = cn(I1 − I2 − I3).

Using the fact that vε is harmonic in {vε > 0} and that E(x − ·) vε ϕ ∈
W 1,2

0 ({vε > 0} ∩ B(x, R)) since ϕ is compactly supported in B(x, R), vε = 0
on ∂{vε > 0}, and x is far away from {vε > 0}, it follows easily that I1 = 0.
On the other hand, we have

2 I3 =
ˆ

∇(v2ε ϕ)(y) ∇yE(x − y) dy −
ˆ

vε(y)
2 ∇yE(x − y) ∇ϕ(y) dy

= −vε(x)
2 −

ˆ
vε(y)

2 ∇yE(x − y) ∇ϕ(y) dy.

Thus,

ˆ |∇vε(y)|2
|y − x |n−1 ϕ(y) dy = −cn

ˆ
∇vε(y) E(x − y) vε(y) ∇ϕ(y) dy

+ cn
2

ˆ
vε(y)

2 ∇yE(x − y) ∇ϕ(y) dy.
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Taking into account that supp∇ϕ is far away from x , letting ε → 0, we obtain

ˆ |∇v(y)|2
|y − x |n−1 ϕ(y) dy = −cn

ˆ
∇v(y) E(x − y) v(y) ∇ϕ(y) dy

+ cn
2

ˆ
v(y)2 ∇yE(x − y) ∇ϕ(y) dy.

Using the preceding identity, it follows easily that

lim
k→∞

ˆ |∇uik (y)|2
|y − x |n−1 ϕ(y) dy =

ˆ |∇u(y)|2
|y − x |n−1 ϕ(y) dy.

Indeed, limk→∞ uik (x)
2 = u(x)2. Also, it is clear that

lim
k→∞

ˆ
uik (y)

2 ∇yE(x − y) ∇ϕ(y) dy =
ˆ

u(y)2 ∇yE(x − y) ∇ϕ(y) dy.

Further,
ˆ

∇uik (y) E(x − y) uik (y) ∇ϕ(y) dy

=
ˆ

∇uik (y) E(x − y) u(y) ∇ϕ(y) dy

+
ˆ

∇uik (y) E(x − y) (uik (y) − u(y)) ∇ϕ(y) dy

k→∞→
ˆ

∇u(y) E(x − y) u(y) ∇ϕ(y) dy,

by theweak convergence of uik inW
1,2(B(x, R)) and the uniform convergence

in B(x, r + δ), since supp∇ϕ is far away from x .
Let ψ be a radial C∞ function such that χB(x,r−δ) ≤ ψ ≤ χB(x,r). The

same argument as above shows that

lim
k→∞

ˆ |∇uik (y)|2
|y − x |n−1 ψ(y) dy =

ˆ |∇u(y)|2
|y − x |n−1 ψ(y) dy.

Consequently,

lim sup
k→∞

ˆ

B(x,r)

|∇uik (y)|2
|y − x |n−1 dy ≤ lim

k→∞

ˆ |∇uik (y)|2
|y − x |n−1 ϕ(y) dy

=
ˆ |∇u(y)|2

|y − x |n−1 ϕ(y) dy,
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and also

lim inf
k→∞

ˆ

B(x,r)

|∇uik (y)|2
|y − x |n−1 dy ≥ lim

k→∞

ˆ |∇uik (y)|2
|y − x |n−1 ψ(y) dy

=
ˆ |∇u(y)|2

|y − x |n−1 ψ(y) dy.

Since δ > 0 can be taken arbitrarily small, (11.4) follows. ��
Lemma 11.4 Let B(x, 2R) ⊂ R

n+1, and let u1, u2 ∈ W 1,2(B(x, 2R)) ∩
C(B(x, 2R)) be nonnegative subharmonic functions such that each ui is har-
monic in {y ∈ B(x, 2R) : ui (y) > 0}. Suppose that u1(x) = u2(x) = 0 and
that u1 · u2 ≡ 0. Assume also that

‖ui‖∞,B(x,2R) ≤ C1 R and ‖ui‖Lipα,B(x,2R) ≤ C1 R
1−α for i = 1, 2.

For any ε > 0, there exists some δ > 0 such that if

J (x, R) ≤ (1 + δ) J (x, 1
2 R),

with J (·, ·) defined in (11.1), then either one or the other of the following
holds:

(a) ‖u1‖∞,B(x,R) ≤ ε R or ‖u2‖∞,B(x,R) ≤ ε R;
(b) there exists a unit vector e and constants k1, k2 > 0 such that

‖u1 − k1 ((· − x) · e)+‖∞,B(x,R) ≤ ε R,

‖u2 − k2 ((· − x) · e)−‖∞,B(x,R) ≤ ε R.

The constant δ depends only on n, α,C1, ε.

Proof Suppose that the conclusion of the lemma fails. Then, by replacing
ui (y) by 1

R ui (Ry + x), we can assume that x = 0 and R = 1. Let ε > 0,
and for each δ = 1/k and i = 1, 2, consider functions ui,k satisfying the
assumptions of the lemma and such that neither (a) nor (b) holds for them.
By Lemma 11.3, there exist subsequences (which we still denote by {ui,k}k)
which converge uniformly in B(0, 3

2 ) and weakly in W 1,2(B(0, 3
2 )) to some

functions ui ∈ W 1,2(B(0, 3
2 )) ∩ C(B(0, 3

2 )), and moreover,

lim
k→∞

ˆ

B(0,r)

|∇ui,k(y)|2
|y|n−1 dy =

ˆ

B(0,r)

|∇ui (y)|2
|y|n−1 dy

both for r = 1 and r = 1/2. Clearly, the functions ui are non-negative,
subharmonic, and u1 · u2 = 0. Hence, by Theorem 11.2, one of the following
holds:
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(a’) u1 = 0 in B(0, 1) or u2 = 0 in B(0, 1);
(b’) there exists a unit vector e and constants k1, k2 > 0 such that

u1(y) = k1 (y · e)+, u2(y) = k2 (y · e)−, in B(0, 1).

However, the fact that neither (a) nor (b) holds for any pair u1,k , u2,k , together
with the uniform convergence of {ui,k}k , implies that neither (a’) nor (b’) can
hold, and thus we get a contradiction. ��

11.2 Existence of short paths

Let p ∈ � and � > 1. For x ∈ ∂�, we write x ∈ WA(p, �) if for all
0 < r ≤ δ�(p),

�−1 σ(B(x, r))

σ (B(x, δ�(p)))
≤ ωp(B(x, r)) ≤ �

σ(B(x, r))

σ (B(x, δ�(p)))
.

We will see in Sect. 12 that, under the assumptions of the Main Lemma 10.2,
for some � big enough,

σ(WA(p, �) ∩ R0) � σ(R0). (11.5)

Lemma 11.5 Let p ∈ �, x0 ∈ WA(p, �), and r ∈ (0, δ�(p)). Then there
exists q ∈ B(x0, r) such that, for some constant κ ∈ (0, 1/10),

(a) δ�(q) ≥ κ r , and
(b)

κ
ωp(B(x0, r))

rn−1 ≤ g(p, q) ≤ κ−1 ωp(B(x0, r))

rn−1 .

The constant κ depends only on �, n, and C0, the AD-regularity constant of
∂�.

Proof This follows easily from Lemmas 9.4 and 9.7. ��

Lemma 11.6 (Short paths). Let p ∈ �, x0 ∈ WA(p, �), and for 0 < r0 ≤
δ�(p)/4, 0 < τ0, λ0 ≤ 1, let q ∈ � be such that

q ∈ B(x0, r0), δ�(q) ≥ τ0 r0, g(p, q) ≥ λ0
δ�(q)

δ�(p)n
. (11.6)
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Then there exist constants A1 > 1 and 0 < a1, λ1 < 1 such that for every
r ∈ (r0, δ�(p)/2), there exists some point q ′ ∈ � such that

q ′ ∈ B(x0, A1r), δ�(q ′) ≥ κ |x0 − q ′| ≥ κ r, g(p, q ′) ≥ λ1
δ�(q ′)
δ�(p)n

,

(11.7)
(with κ as in Lemma 11.5) and such that q and q ′ can be joined by a curve γ

such that

γ ⊂ {y ∈ B(x0, A1r) : dist(y, ∂�) > a1 r0}.
The parameters λ1, A1, a1 depend only on C0, �, λ0, τ0 and the ratio r/r0.

Proof All the parameters in the lemmawill befixed along the proof.Weassume
that A1 � κ−1 > 1. First note that we may assume that r < 2A−1

1 |x0 − p|.
Otherwise, we just take a point q ′ ∈ � such that |p − q ′| = δ�(p)/2, which
clearly satisfies the properties in (11.7). Further, both q and q ′ belong to the
open connected set

U := {x ∈ � : g(p, x) > c2 r0 δ�(p)−n}
for a sufficiently small c2 > 0. The fact that U is connected is well known.
This follows from the fact that, for any λ > 0, any connected component of
{g(p, ·) > λ} should contain p. Otherwise there would be a connected com-
ponent where g(p, ·)−λ is positive and harmonic with zero boundary values.
So, bymaximumprinciple, g(p, ·)−λ should equal λ in thewhole component,
which is a contradiction. So there is only one connected component.

We just let γ be a curve contained in U . Note that

dist(U, ∂�) ≥ c r
1
α

0 δ�(p)1−
1
α ≥ a r0,

for a sufficiently small a > 0 because, by boundary Hölder continuity,

g(p, x) �
(

δ�(x)

δ�(p)

)α 1

δ�(p)n−1

if dist(x, ∂�) ≤ δ�(p)/2. Further, the fact that g(p, x) ≤ c|x− p|1−n ensures
that U ⊂ B(p,Cδ�(p)), for a sufficiently big constant C depending on r/r0.

So from now on we assume that r < 2A−1
1 |x0 − p|. By Lemma 11.5 we

know there exists some point q̃ ∈ � such that

q̃ ∈ B(x0, κ
−1r), δ�(̃q) ≥ r ≥ κ |x0 − q̃| ≥ κ δ�(̃q) ≥ κ r,

g(p, q̃) ≥ c
δ�(̃q)

δ�(p)n
, (11.8)
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942 J. Azzam et al.

with c depending on κ and �.
Assume that q and q̃ cannot be joined by a curve γ as in the statement of the

lemma. Otherwise, we choose q ′ = q̃ and we are done. For t > 0, consider
the open set

V t = {
x ∈ B(x0,

1
4 A1r) : g(p, x) > t r0 δ�(p)−n}.

We fix t > 0 small enough such that q, q̃ ∈ V 2t ⊂ V t . Such t exists by (11.6)
and (11.8), and it may depend on �, λ, r/r0.

Let V1 and V2 be the respective components of V t to which q and q̃ belong.
We have

V1 ∩ V2 = ∅,

because otherwise there is a curve contained in V t ⊂ B(x0,
1
4 A1r) which

connects q and q̃, and further this is far away from ∂�. Indeed, we claim that

dist(V t , ∂�) �A1,�,t,r/r0 r0. (11.9)

To see this, note that by the Hölder continuity of g(p, ·) in B(x0,
1
2 A1r), for

all x ∈ V t , we have

t
r0

δ�(p)n
≤ g(p, x) � sup

y∈B(x0,
1
2 A1r)

g(p, y)

(
δ�(x)

A1r

)α

≤
 

B(x0,
3
4 A1r)

g(p, y) dy

(
δ�(x)

A1r

)α

�A1,�

A1r

δ�(p)n

(
δ�(x)

A1r

)α

,

where in the last inequality we used Lemma 9.5 and that x0 ∈ WA(p, �). This
yields our claim.

Next we wish to apply the Alt–Caffarelli–Friedman formula with

u1(x) = χV1 (δ�(p)n g(p, x) − t r0)
+,

u2(x) = χV2 (δ�(p)n g(p, x) − t r0)
+.

It is clear that both satisfy the hypotheses of Theorem 11.1. For i = 1, 2 and
0 < s < A1r , we denote

Ji (x0, s) = 1

s2

ˆ

B(x0,s)

|∇ui (y)|2
|y − x0|n−1 dy,
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so that J (x0, s) = J1(x0, s) J2(x0, s). We claim that:

(i) Ji (x0, s) �� 1 for i = 1, 2 and 0 < s < 1
4 A1r .

(ii) Ji (x0, 2r) ��,λ,r/r0 1 for i = 1, 2.

The condition (i) follows from (11.3) and the fact that

g(p, y) � s

δ�(p)n
for all y ∈ B(x0, s), (11.10)

which holds by Lemma 9.5 and subharmonicity, since x0 ∈ WA(p, �). Con-
cerning (ii), note first that

|∇u1(y)| � δ�(p)n
g(p, y)

δ�(y)
�τ0 δ�(p)n

r0
δ�(p)n

= 1 for all y ∈ B(q, τ0r0/2),

where we first used Cauchy estimates and then the pointwise bounds of
g(·, ·) in (11.10) with s ≈ δ�(y). Thus, using also that q ∈ V 2t , we
infer that u1(y) > t r0/2 in some ball B(q, ctr0) with c possibly depend-
ing on �, λ, r/r0. Analogously, we deduce that u2(y) > t r0/2 in some ball
B(̃q, ctr0). Let B be the largest open ball centered at q not intersecting ∂V1
and let y0 ∈ ∂V1 ∩ ∂B. Then, by considering the convex hull H ⊂ B of
B(q, ctr0) and y0 and integrating in spherical coordinates (with the origin in
y0), one can check that

ˆ

H
|∇u1| dy �t rn+1

0 .

An analogous estimate holds for u2, and then it easily follows that

Ji (x0, 2r0) �t 1,

which implies (ii). We leave the details for the reader.
From the conditions (i) and (ii) and the fact that J (x, r) is non-decreasing

we infer that

J (x0, s) ≈�,λ,r/r0 1 for 2r < s < 1
4 A1r.

and also

Ji (x0, s) ≈�,λ,r/r0 1 for i = 1, 2 and 2r < s < 1
4 A1r . (11.11)

Assume that 1
4 A1 = 2m for some big m > 1. Since J (x0, s) is non-

decreasing we infer that there exists some h ∈ [1,m − 1] such that
J (x0, 2

h+1r) ≤ C(�, λ, r/r0)
1/m J (x0, 2

hr),
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944 J. Azzam et al.

because otherwise, by iterating the reverse inequality, we get a contradiction.
Now from Lemma 11.4 we deduce that, given any ε > 0, for m big enough,
there are constant ki ≈�,λ,r/r0 1 and a unit vector e such that

‖u1−k1 ((·−x0)·e)+‖∞,B(x0,2hr)+‖u2−k2 ((·−x0)·e)−‖∞,B(x0,2hr) ≤ ε 2h r.
(11.12)

As a matter of fact, ‖ui‖∞,B(x0,2h+1r) ≈�,λ,r/r0 2hr by (11.3), (11.11), and
(11.10); ‖ui‖Lipα,B(x0,2h+1r) ��,λ,r/r0 (2hr)1−α by Lemma 9.6; and the option
(a) in Lemma 11.4 cannot hold (since we have ‖ui‖∞,B(x0,2hr) ≈�,λ,r/r0 2

hr ).
In particular, for ε small, (11.12) implies that if q ′ := x0 + 2h−1re, then

one has u1(q ′) ≈�,λ,r/r0 2
h−1r , and also that

u1(y) ≈�,λ,r/r0 2
h−1r > 0 for all y ∈ B(q ′, 2h−2r).

Thus B(q ′, 2h−2r) ⊂ � and so q ′ is at a distance at least 2h−2r from ∂�, and
also

g(p, q ′) ≥ u1(q ′)
δ�(p)n

≈�,λ,r/r0
2h r

δ�(p)n
.

Further, since q and q ′ are both in V1 by definition, there is a curve γ which
joins q and q ′ contained in V1 satisfying

dist(γ, ∂�) �A1,�,t,r/r0 r0,

by (11.9). So q ′ satisfies all the required properties in the lemma and we are
done. ��

12 Types of cubes

From now on we fix R0 ∈ D and p ∈ � and we assume that we are under the
assumptions of the Main Lemma 10.2.

We need now to define two families HD and LD of high density and low
density cubes, respectively. Let A � 1 be some fixed constant. We denote by
HD (high density) the family of maximal cubes Q ∈ D which are contained
in R0 and satisfy

ωp(2Q)

σ (2Q)
≥ A

ωp(2R0)

σ (2R0)
.
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We also denote by LD (low density) the family of maximal cubes Q ∈ D
which are contained in R0 and satisfy

ωp(Q)

σ (Q)
≤ A−1 ωp(R0)

σ (R0)

(notice that ωp(R0) ≈ ωp(2R0) ≈ 1 by assumption). Observe that the defini-
tion of the familyHD involves the density of 2Q, while the one of LD involves
the density of Q.

We denote

BH =
⋃

Q∈HD
Q and BL =

⋃

Q∈LD
Q.

Lemma 12.1 We have

σ(BH ) � 1

A
σ(R0) and ωp(BL) ≤ 1

A
ωp(R0).

Proof By Vitali’s covering theorem, there exists a subfamily I ⊂ HD so that
the cubes 2Q, Q ∈ I , are pairwise disjoint and

⋃

Q∈HD
2Q ⊂

⋃

Q∈I
6Q.

Then, since σ is doubling, we obtain

σ(BH ) �
∑

Q∈I
σ(2Q) ≤ 1

A

∑

Q∈I

ωp(2Q)

ωp(2R0)
σ (2R0) � 1

A
σ(R0).

Next we turn our attention to the low density cubes. Since the cubes from
LD are pairwise disjoint, we have

ωp(BL) =
∑

Q∈LD
ωp(Q) ≤ 1

A

∑

Q∈LD

σ(Q)

σ (R0)
ωp(R0) ≤ 1

A
ωp(R0).

��
From the above estimates and the fact that the harmonic measure belongs

to weak-A∞ (cf. (10.1)), we infer that if A is chosen big enough, then

ωp(BH ) ≤ ε0 ωp(2BR0) ≤ 1

4
ωp(R0)
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946 J. Azzam et al.

and thus

ωp(BH ∪ BL) ≤ 1

4
ωp(R0) + 1

A
ωp(R0) ≤ 1

2
ωp(R0).

As a consequence, denoting G0 = R0\(BH ∪ BL)), we deduce that

ωp(G0) ≥ 1

2
ωp(R0) ≈ ωp(2BR0),

which implies that

σ(G0) � σ(2BR0) ≈ σ(R0),

again using the fact that ωp belongs to weak-A∞ in BR0 . So we have:

Lemma 12.2 Assuming A big enough, the set G0 := R0\(BH ∪BL)) satisfies

ωp(G0) ≈ 1 and σ(G0) ≈ σ(R0),

with the implicit constants depending on C0 and the weak-A∞ condition in
BR0 .

We denote by G the family of those cubes Q ∈ D(R0) which are not
contained in

⋃
P∈HD∪LD P . In particular, such cubes Q ∈ G do not belong to

HD ∪ LD and

A−1ωp(R0)

σ (R0)
≤ ωp(Q)

σ (Q)
� ωp(2Q)

σ (2Q)
≤ A

ωp(2R0)

σ (2R0)
. (12.1)

From this fact, it follows easily that G0 is contained in the set WA(p, �)

defined in Sect. 11.2, assuming � big enough, and so Lemma 12.2 ensures
that (11.5) holds.

The following lemma is an immediate consequence of Lemma 11.5.

Lemma 12.3 For every cube Q ∈ G there exists some point zQ ∈ 2BQ ∩ �

such that δ�(zQ) ≥ κ0 �(Q) and

g(p, zQ) > c3
�(Q)

σ (R0)
, (12.2)

for some κ0, c3 > 0, which depend on A and on the weak-A∞ constants in
BR0 .
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If zQ ∈ 2BQ ∩ � and δ�(zQ) ≥ κ0 �(Q), we say that zQ is κ0-corkscrew
for Q. If (12.2) holds, we say that zQ is a c3-good corkscrew for Q. Abusing
notation, quite often we will not write “for Q”.

We will need the following auxiliary result:

Lemma 12.4 Let Q ∈ D and let zQ be a λ-good c4-corkscrew, for some
λ, c4 > 0. Suppose that �(Q) ≥ c5 �(R0). Then there exists some C-good
Harnack chain that joins zQ and p, with C depending on λ, c5.

Proof Consider the open set U = {x ∈ � : g(p, x) > λ �(Q)/σ (R0)}. This
is connected and thus there exists a curve γ ⊂ U that connects zQ and p. By
Hölder continuity, any point x ∈ � such that δ�(x) ≤ δ�(p)/2, satisfies

g(p, x) ≤ c

(
δ�(x)

�(R0)

)α 1

�(R0)n−1 .

Since g(p, x) > λ �(Q)/σ (R0) �c5,λ �(R0)
1−n for all x ∈ U , we then deduce

that dist(U, ∂�) ≥ c6 �(R0) for some c6 > 0 depending on λ and c5. Thus,

dist(γ, ∂�) ≥ c6 �(R0).

From the fact that g(p, x) ≤ |p − x |1−n for all x ∈ �, we infer that any
x ∈ U satisfies

λ
�(Q)

σ (R0)
< g(p, x) ≤ 1

|p − x |n−1 .

Therefore,

|p − x | <

(
σ(R0)

λ �(Q)

)1/(n−1)

�c5,λ �(R0).

SoU ⊂ B(p,C2 �(R0)) for someC2 depending on λ and c5. Next we consider
a Besicovitch covering of γ with balls Bi of radius c6�(R0)/2. By volume
considerations, it easily follows that the number of balls Bi is bounded above
by some constantC3 depending on λ and c5, and thus this is aC-good Harnack
chain, with C = C(λ, c5). ��
Lemma 12.5 There exists some constant κ1 with 0 < κ1 ≤ κ0 such that the
following holds for all λ > 0. Let Q ∈ G, Q �= R0, and let zQ be a λ-good
κ1-corkscrew. Then there exists some cube R ∈ G with Q � R ⊂ R0 and
�(R) ≤ C �(Q) and a λ′-good κ1-corkscrew zR such that zQ and zR can be
joined by a C ′(λ)-good Harnack chain, with λ′ > 0 and C depending on λ.
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The proof below yields a constant λ′ < λ. On the other hand, the lemma
ensures that zR is still a κ1-corkscrew, which will be important for the argu-
ments to come.

Proof This follows easily from Lemma 11.6. For completeness we will show
the details.

By choosing � = �(A) > 0 big enough, G0 ∩ Q ⊂ WA(p, �) and thus
there exists some x0 ∈ Q ∩ WA(p, �). We let

κ1 = min
(
κ0, κ

)
,

where κ0 is defined in Lemma 12.3 and κ in Lemma 11.5 (and thus it depends
only on A and C0). We apply Lemma 11.6 to x0, q = zQ , with r0 = 3r(BQ),
λ0 ≈ λ, and r = 4r(BQ). To this end, note that

δ�(q) ≥ κ1 �(Q) = κ1
1

4
�(r(BQ)) = κ1

1

12
r0.

Hence there exists q ′ ∈ B(x0, A1r) such that

δ�(q ′) ≥ κ |x0 − q ′| ≥ κ r, g(p, q ′) ≥ λ1
δ�(q ′)
δ�(p)n

, (12.3)

and such that q and q ′ can be joined by a curve γ such that

γ ⊂ {y ∈ B(x0, A1r) : dist(y, ∂�) > a1 r0}, (12.4)

with λ1, A1, a1 depending on C0, A, λ, κ1. Now let R ∈ D be the cube con-
taining x0 such that

1

2
r(BR) < |x0 − q ′| ≤ r(BR).

Observe that

r(BR) ≥ |x0 − q ′| ≥ r = 4r(BQ) and r(BR) < 2|x0 − q ′| ≤ 2A1 r �λ �(Q).

Also, we may assume that �(R) ≤ �(R0) because otherwise we have �(Q) �
A1 δ�(p) and then the statement in the lemma follows from Lemma 12.4. So
we have Q � R ⊂ R0.

From (12.3) we get

δ�(q ′) ≥ κ |x0 − q ′| ≥ 1

2
κ r(BR) = 2κ �(R) > κ1 �(R)
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and

g(p, q ′) ≥ c λ1
2κ �(R)

σ (R0)
.

Hence, q ′ is a λ′-good κ1-corkscrew, for λ′ = cλ12κ .
From (12.4) and arguing as in the end of the proof of Lemma 12.4 we infer

that zQ = q and zR = q ′ can be joined by a C(λ)-good Harnack chain. ��
From now on we will assume that all corkscrew points for cubes Q ∈ G are

κ1-corkscrews, unless otherwise stated.

13 The corona decomposition and the Key Lemma

13.1 The corona decomposition

Recall that the bβ coefficient of a ball was defined in (9.1). For each Q ∈ D,
we denote

bβ(Q) = bβ∂�(100BQ).

Now we fix a constant 0 < ε � min(1, κ1). Given R ∈ D(R0), we denote
byStop(R) the maximal family of cubes Q ∈ D(R)\{R} satisfying that either
Q /∈ G or bβ

(
Q̂
)

> ε, where Q̂ is the parent of Q. Recall that the family
G was defined in (12.1). Note that, by maximality, Stop(R) is a family of
pairwise disjoint cubes.

We define

T(R) := {Q ∈ D(R) : � S ∈ Stop(R) such that Q ⊂ S}.
In particular, note that Stop(R) �⊂ T(R).

We now define the family of the top cubes with respect to R0 as follows:
first we define the families Topk for k ≥ 1 inductively. We set

Top1 = {R ∈ D(R0) ∩ G : �(R) = 2−10�(R0)}.
Assuming that Topk has been defined, we set

Topk+1 =
⋃

R∈Topk
(Stop(R) ∩ G),

and then we define

Top =
⋃

k≥1

Topk .
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Notice that the family of cubes Q ∈ D(R0) with �(Q) ≤ 2−10�(R0) which
are not contained in any cube P ∈ HD ∪ LD is contained in

⋃
R∈Top T(R),

and this union is disjoint. Also, all the cubes in that union belong to G.
The following lemma is an easy consequence of our construction. Its proof

is left for the reader.

Lemma 13.1 We have

Top ⊂ G.

Also, for each R ∈ Top,

T(R) ⊂ G.

Further, for all Q ∈ T(R) ∪ Stop(R),

ωp(2Q) ≤ C A
σ(Q)

σ (R0)
.

Remark that the last inequality holds for any cube Q ∈ Stop(R) because
its parent Q̂ belongs to T(R) and so Q̂ is not contained in any cube from HD,
which implies that ωp(2Q) ≤ ωp(2Q̂) � A σ(Q̂)

σ (R0)
≈ A σ(Q)

σ (R0)
.

Using that ∂� is n-UR (by the assumption in the Main Lemma 10.2), it is
easy to prove that the cubes from Top satisfy a Carleson packing condition.
This is shown in the next lemma.

Lemma 13.2 We have
∑

R∈Top
σ(R) ≤ M(ε) σ (R0).

Proof For each Q ∈ Top we have

σ(Q) =
∑

P∈Stop(Q)∩G
σ(P) +

∑

P∈Stop(Q)\G
σ(P) + σ

(
Q\

⋃

P∈Stop(Q)

P

)
.

Then we get

∑

Q∈Top
σ(Q) ≤

∑

Q∈Top

∑

P∈Stop(Q)∩G
σ(P)

+
∑

Q∈Top

∑

P∈Stop(Q)\G
σ(P) +

∑

Q∈Top
σ

(
Q\

⋃

P∈Stop(Q)

P

)
.

(13.1)
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Note now that, because of the stopping conditions, for all Q ∈ Top, if P ∈
Stop(Q) ∩ G, then the parent P̂ of P satisfies bβ∂�(100BP̂) > ε. Hence, by
Theorems 9.1 and 9.2,

∑

Q∈Top

∑

P∈Stop(Q)∩G
σ(P) ≤

∑

P∈D(R0):bβ∂�(100BP̂ )>ε

σ (P) ≤ C(ε) σ (R0).

On the other hand, the cubes P ∈ Stop(Q)\Gwith Q ∈ Top do not contain
any cube from Top, by construction. Hence, they are disjoint and thus

∑

Q∈Top

∑

P∈Stop(Q)\G
σ(P) ≤ σ(R0).

By an analogous reason,

∑

Q∈Top
σ

(
Q\

⋃

P∈Stop(Q)

P

)
≤ σ(R0).

Using (13.1) and the estimates above, the lemma follows. ��
Given a constant K � 1, next we define

GK
0 =

{
x ∈ G0 :

∑

R∈Top
χR(x) ≤ K

}
, (13.2)

By Chebyshev and the preceding lemma, we have

σ(G0\GK
0 ) ≤ σ(R0\GK

0 ) ≤ 1

K

ˆ

R0

∑

R∈Top
χR dσ ≤ M(ε)

K
σ(R0).

Therefore, if K is chosen big enough (depending on M(ε) and the constants
on the weak-A∞ condition), by Lemma 12.2 we get

σ(G0\GK
0 ) ≤ 1

2
σ(G0),

and thus

σ(GK
0 ) ≥ 1

2
σ(G0) � σ(R0).

We distinguish now two types of cubes from Top. We denote by Topa the
family of cubes R ∈ Top such thatT(R) = {R}, andwe setTopb = Top\Topa .

123



952 J. Azzam et al.

Notice that, by construction, if R ∈ Topb, then bβ(R) ≤ ε. On the other hand,
this estimate may fail if R ∈ Topa .

13.2 The truncated corona decomposition

For technical reasons,we need now to define a truncated version of the previous
corona decomposition.Wefix a big natural number N � 1. Thenwe letTop(N )

be the family of the cubes from Top with side length larger than 2−N�(R0).
Given R ∈ Top(N ) we let T(N )(R) be the subfamily of the cubes from T(R)

with side length larger than 2−N�(R0), and we let Stop(N )(R) be a maximal
subfamily from Stop(R) ∪ DN (R0), where DN (R0) is the subfamily of the
cubes from D(R0) with side length 2−N�(R0). We also denote Top(N )

a =
Top(N ) ∩ Topa and Top

(N )
b = Top(N ) ∩ Topb.

Observe that, since Top(N ) ⊂ Top, we also have

∑

R∈Top(N )

χR(x) ≤
∑

R∈Top
χR(x) ≤ K for all x ∈ GK

0 .

13.3 The key lemma

The main ingredient for the proof of the Main Lemma 10.2 is the following
result.

Lemma 13.3 (Key Lemma). Given η ∈ (0, 1) and λ ∈ (0, c3] (with c3 as in
(12.2)), there exists an exceptional family Ex(R) ⊂ Stop(R) ∩ G satisfying

∑

P∈Ex(R)

σ (P) ≤ η σ(R)

such that, for every Q ∈ Stop(R) ∩ G\Ex(R), any λ-good corkscrew for Q
can be joined to some λ′-good corkscrew for R by a C(λ, η)-good Harnack
chain, with λ′ depending on λ, η.

This lemma will be proved in the next Sects. 14 and 15. Using this result,
in Sect. 16 we will build the required carrot curves for the Main Lemma 10.2,
which join the pole p to points from a suitable big piece of R0. If the reader
prefers to see how this is applied before its long proof, they may go directly
to Sect. 16. A crucial point in the Key Lemma is that the constant ε in the
definition of the stopping cubes of the corona decomposition does not depend
on the constants λ or η above.

To prove the Key Lemma 13.3 we will need first to introduce the notion
of “cubes with well separated big corkscrews” and we will split T(N )(R) into

123



Harmonic measure and quantitative connectivity 953

subtrees by introducing an additional stopping condition involving this type
of cubes. Later on, in Sect. 14 we will prove the “Geometric Lemma”, which
relies on a geometric construction which plays a fundamental role in the proof
of the Key Lemma.

13.4 The cubes with well separated big corkscrews

Let Q ∈ D be a cube such that bβ(Q) ≤ C4ε. For example, Q might be a
cube from Q ∈ T(N )(R)∪Stop(N )(R), with R ∈ Top(N )

b (which in particular
implies that bβ(R) ≤ ε). We denote by LQ a best approximating n-plane
for bβ(Q), and we choose z1Q and z2Q to be two fixed points in BQ such that

dist(ziQ, LQ) = r(BQ)/2 and lie in different components of R
n+1\LQ . So z1Q

and z2Q are corkscrews for Q. We will call them “big corkscrews”.
Since any corkscrew x for Q satisfies δ�(x) ≥ κ1 �(Q) and we have chosen

ε � κ1, it turns out that

dist(x, LQ) ≥ 1

2
κ1 �(Q) � ε �(Q).

As a consequence, x can be joined either to z1Q or to z2Q by a C-good Harnack
chain,withC dependingonly onn,C0, κ1, and thus only onn,C0 and theweak-
A∞ constants in BR0 . The following lemma follows by the same reasoning:

Lemma 13.4 Let Q, Q′ ∈ D be cubes such that bβ(Q), bβ(Q′) ≤ C4ε and
Q′ is the parent of Q. Let ziQ, ziQ′ , for i = 1, 2, be big corkscrews for Q and

Q′ respectively. Then, after relabeling the corkscrews if necessary, ziQ can be

joined to ziQ′ by a C-good Harnack chain, with C depending only on n,C0, κ1.

Given � > 0, we will write Q ∈ WSBC(�) (or just Q ∈ WSBC, which
stands for “well separated big corkscrews”) if bβ(Q) ≤ C4ε and the big
corkscrews z1Q , z

2
Q can not be joined by any �-good Harnack chain. The

parameter � will be chosen below. For the moment, let us say that �−1 � ε.
The reader should think that in spite of bβ(Q) ≤ C4ε, the possible existence
of “holes of size C ε�(Q) in ∂�” makes possible the connection of the big
corkscrews by means of �-Harnack chains passing through these holes. Note
that if bβ(Q) ≤ C4ε and Q /∈ WSBC(�), then any pair of corkscrews for Q
can be connected by aC(�)-goodHarnack chain, since any of these corkscrews
can be joined by a good chain to one of the big corkscrews for Q, as mentioned
above.

123



954 J. Azzam et al.

13.5 The tree of cubes of type WSBC and the subtrees

Given R ∈ Top(N )
b , denote by StopWSBC(R) the maximal subfamily of cubes

Q ∈ D(R) which satisfy that either

• Q /∈ WSBC(�), or
• Q /∈ T(N )(R).

Also, denote by TWSBC(R) the cubes from D(R) which are not contained in
any cube from StopWSBC(R). So this tree is empty if R /∈ WSBC(�). Notice
also that StopWSBC(R) �⊂ TWSBC(R).

Observe that if Q ∈ StopWSBC(R), it may happen that Q /∈ WSBC(�).
However, unless Q = R, it holds that Q ∈ WSBC(�′), with �′ > � depend-
ing only on � and C0 (because the parent of Q belongs to WSBC(�)).

For each Q ∈ StopWSBC(R)\Stop(R), we denote

SubTree(Q) = D(Q) ∩ T(N )(R), SubStop(Q) = Stop(R) ∩ D(Q).

So we have

T(N )(R) = TWSBC(R) ∪
⋃

Q∈StopWSBC(R)

SubTree(Q),

and the union is disjoint. Observe also that we have the partition

Stop(R) = (
StopWSBC(R)∩Stop(R)

)∪
⋃

Q∈StopWSBC(R)\Stop(R)

SubStop(Q).

(13.3)

14 The geometric lemma

14.1 The geometric lemma for the tree of cubes of type WSBC

Let R ∈ Top(N )
b and suppose that TWSBC(R) �= ∅. We need now to define

a family End(R) of cubes from D, which in a sense can be considered as a
regularized version ofStopWSBC(R). The first step consists of introducing the
following auxiliary function:

dR(x) := inf
Q∈TWSBC(R)

(�(Q) + dist(x, Q)), for x ∈ R
n+1.

Observe that dR is 1-Lipschitz.
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For each x ∈ ∂� we take the largest cube Qx ∈ D such that x ∈ Qx and

�(Qx ) ≤ 1

300
inf
y∈Qx

dR(y). (14.1)

We consider the collection of the different cubes Qx , x ∈ ∂�, and we denote
it by End(R).

Lemma 14.1 Given R ∈ Top(N )
b , the cubes fromEnd(R) are pairwise disjoint

and satisfy the following properties:

(a) If P ∈ End(R) and x ∈ 50BP, then 100 �(P) ≤ dR(x) ≤ 900 �(P).
(b) There exists some absolute constant C such that if P, P ′ ∈ End(R) and

50BP ∩ 50BP ′ �= ∅, then C−1�(P) ≤ �(P ′) ≤ C �(P).

(c) For each P ∈ End(R), there at most N cubes P ′ ∈ End(R) such that
50BP ∩ 50BP ′ �= ∅, where N is some absolute constant.

(d) If P ∈ End(R) and dist(P, R) ≤ 20 �(R), then there exists some Q ∈
TWSBC(R) such that P ⊂ 22Q and �(Q) ≤ 2000 �(P).

Proof The proof is a routine task. For the reader’s convenience we show the
details. To show (a), consider x ∈ 50BP . Since dR(·) is 1-Lipschitz and, by
definition, dR(xP) ≥ 300 �(P), we have

dR(x) ≥ dR(xP) − |x − xP | ≥ dR(xP) − 50 r(BP)

≥ 300 �(P) − 200 �(P) = 100 �(P).

To prove the converse inequality, by the definition of End(R), there exists
some z′ ∈ P̂ , the parent of P , such that

dR(z′) ≤ 300 �(P̂) = 600 �(P).

Also, we have

|x − z′| ≤ |x − xP | + |xP − z′| ≤ 50 r(BP) + 2�(P) ≤ 300 �(P).

Thus,

dR(x) ≤ dR(z′) + |x − z′| ≤ (600 + 300) �(P).

The statement (b) is an immediate consequence of (a), and (c) follows easily
from (b). To show (d), observe that, for any S ∈ TWSBC(R),

�(P) ≤ dR(xP)

300
≤ �(S) + dist(xP , S)

300
≤ �(P) + �(S) + dist(P, S)

300
.
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Thus,

�(P) ≤ �(S) + dist(P, S)

299
.

In particular, choosing S = R, we deduce

�(P) ≤ �(R) + dist(P, R)

299
≤ 21

299
�(R) ≤ �(R),

and thus, using again that dist(P, R) ≤ 20�(R), it follows that P ⊂ 22R. Let
S0 ∈ TWSBC(R) be such that dR(xP) = �(S0) + dist(xP , S0), and let Q ∈ D
be the smallest cube such that S0 ⊂ Q and P ⊂ 22Q. Since S0 ⊂ R and
P ⊂ 22R, we deduce that S0 ⊂ Q ⊂ R, implying that Q ∈ TWSBC(R).
So it just remains to check that �(Q) ≤ 2000 �(P). To this end, consider a

cube Q̃ ⊃ S0 such that

�(P) + �(S0) + dist(P, S0) ≤ �(Q̃) ≤ 2
(
�(P) + �(S0) + dist(P, S0)

)
.

From the first inequality, it is clear that P ⊂ 2Q̃ and then, by the definition
of Q, we infer that Q ⊂ Q̃. This inclusion and the second inequality above
imply that

�(Q) ≤ �(Q̃) ≤ 2
(
�(P) + �(S0) + dist(xP , S0)

) = 4�(P) + 2 dR(xP).

By (a) we know that dR(xP) ≤ 900 �(P), and so we derive �(Q)

≤ 2000 �(P). ��
Lemma 14.2 Given R ∈ Top(N )

b , if Q ∈ End(R) and dist(P, R) ≤ 20 �(R),
then bβ(Q) ≤ C ε and Q ∈ WSBC(�′), with �′ = c6 �, for some absolute
constants C, c6 > 0.

Proof This immediate from the fact that, by (d) in the previous lemma, there
exists some cube Q′ ∈ TWSBC(R) such that Q ⊂ 22Q′ and �(Q′) ≤
2000 �(Q), so that bβ(Q′) ≤ ε and Q′ ∈ WSBC(�). ��

As in Sect. 3, we make a standard Whitney decomposition of the open set
�. With a harmless abuse of notation we let W = W(�) denote a collection
of (closed) dyadicWhitney cubes of�, so that the cubes inW form a pairwise
non-overlapping covering of �, which satisfy for some M0 > 20 and D0 ≥ 1

(i) 10I ⊂ �;
(ii) M0 I ∩ ∂� �= ∅;
(iii) there are at most D0 cubes I ′ ∈ W such that 10I ∩ 10I ′ �= ∅. Further,

for such cubes I ′, we have �(I ′) ≈ �(I ), where �(I ′) stands for the side
length of I ′.
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From the properties (i) and (ii) it is clear that dist(I, ∂�) ≈ �(I ). We assume
that the Whitney cubes are small enough so that

diam(I ) <
1

100
dist(I, ∂�). (14.2)

To construct this Whitney decomposition one just needs to replace each cube
I ∈ W , as in [49, Chapter VI], by its descendants I ′ ∈ Dk(I ), for some fixed
k ≥ 1.

For each I ∈ W , asmuch as inLemma9.4,wedenote by BI a ball concentric
with I and radius C5�(I ), where C5 is a universal constant big enough so that

g(p, x) � ωp(BI )

�(I )n−1 for all x ∈ 4I,

and whenever p /∈ 5I . Obviously, the ball BI intersects ∂�, and the family
{BI }I∈W does not have finite overlapping.

Given a bounded measurable set F ⊂ R
n+1 with |F | > 0, and a function

f ∈ L1
loc(R

n+1), we denote by mF f the mean of f in F with respect to
Lebesgue measure. That is,

mF f =
 

F
f dx .

To state the Geometric Lemma we need some additional notation. Given
a cube R′ ∈ TWSBC(R), we denote by T̃WSBC(R′) the family of cubes from
D with side length at most �(R′) which are contained in 100BR′ and are not
contained in any cube fromEnd(R).We also denote by Ẽnd(R′) the subfamily
of the cubes fromEnd(R)which are contained in some cube from T̃WSBC(R′).
Note that T̃WSBC(R′) is not a tree, in general, but a union of trees. Further,
from Lemma 14.1(a), it follows easily that

TWSBC(R) ∪ StopWSBC(R) ⊂ T̃WSBC(R) ∩ D(R).

Lemma 14.3 (Geometric Lemma). Let 0 < γ < 1, and assume that the
constant� = �(γ ) in the definition ofWSBC is big enough. Let R ∈ Top(N )

b ∩
WSBC(�) and let R′ ∈ TWSBC(R) be such that �(R′) = 2−k0�(R), with
k0 = k0(γ ) ≥ 1 big enough. Then there are two open sets V1, V2 ⊂ CBR′ ∩�

with disjoint closures which satisfy the following properties:

(a) There are subfamiliesWi ⊂ W such that Vi = ⋃
I∈Wi

1.1 int(I ).
(b) Each Vi contains a ball Bi with r(Bi ) ≈ �(R′), and each corkscrew point

for R′ contained in 2BR′ ∩Vi can be joined to the center zi of Bi by a good
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Harnack chain contained in Vi . Further, any point x ∈ Vi can be joined to
zi by a good Harnack chain (not necessarily contained in Vi ).

(c) For each Q ∈ (
TWSBC(R) ∪ StopWSBC(R)

) ∩ D(R′) there are big
corkscrews z1Q ∈ V1 ∩ 2BQ and z2Q ∈ V2 ∩ 2BQ, and if Q̂ is an ancestor

of Q which also belongs to TWSBC(R) ∩ D(R′), then ziQ can be joined to

zi
Q̂
by a good Harnack chain, for each i = 1, 2.

(d) (∂V1 ∪ ∂V2) ∩ 10BR′ ⊂ ⋃
P∈Ẽnd(R′) 2BP.

(e) For each P ∈ Ẽnd(R′) such that 2BP ∩ 10BR′ �= ∅, letWP be the family
of Whitney cubes I ⊂ V1 ∪ V2 such that 1.1I ∩ ∂(V1 ∪ V2) ∩ 2BP �= ∅,
so that

∂Vi ∩ 2BP ⊂
⋃

I∈WP

1.1I .

Then
(i)

m4I g(p, ·) ≤ γ
�(P)

σ (R0)
for each I ∈ WP ,

and
(ii)

∑

I∈WP

�(I )n � �(P)n and
∑

I∈WP

ωp(BI ) � ωp(CBP),

for some universal constant C > 1.

The constants involved in the Harnack chain and corkscrew conditions may
depend on ε, �, and γ .5

14.2 Proof of the geometric Lemma 14.3

In this whole subsection we fix R ∈ Top(N )
b and we assume TWSBC(R) �= ∅,

as in Lemma 14.3. We let R′ ∈ TWSBC(R) be such that �(R′) = 2−k0�(R),
with k0 = k0(γ ) ≥ 1 big enough, as in Lemma 14.3, and we consider the
associated families T̃WSBC(R′) and Ẽnd(R′).
Remark 14.4 By arguments analogous to the ones in Lemma 14.2, it fol-
lows easily that if Q ∈ T̃WSBC(R′), for R′ ∈ TWSBC(R) such that �(R′) =
5 To guarantee the existence of the sets Vi and the fact that they are contained in � we use the
assumption that � = R

n+1\∂�.
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2−k0�(R), then there exists some cube S ∈ TWSBC(R) such that Q ⊂ 22S
and �(S) ≤ 2000�(Q). This implies that bβ(Q) ≤ C ε and Q ∈ WSBC(c6�)

too.

In order to define the open setsV1,V2 described in the lemma, firstwe need to
associate some open setsU1(Q),U2(Q) to each Q ∈ T̃WSBC(R′) ∪ Ẽnd(R′).
We distinguish two cases:

• For Q ∈ T̃WSBC(R′), we let Ji (Q) be the family of Whitney cubes I ∈ W
which intersect

{y ∈ 20BQ : dist(y, LQ) > ε1/4 �(Q)}
and are contained in the same connected component of R

n+1\LQ as ziQ ,
and then we set

Ui (Q) =
⋃

I∈Ji (Q)

1.1 int(I ).

• For Q ∈ Ẽnd(R′) the definition of Ui (Q) is more elaborated. First we
consider an auxiliary ball B̃Q , concentric with BQ , such that 19BQ ⊂
B̃Q ⊂ 20BQ and having thin boundaries for ωp. This means that, for some
absolute constant C ,

ωp({x ∈ 2B̃Q : dist(x, ∂ B̃Q) ≤ t r(B̃Q)
}) ≤ C t ωp(2B̃Q) for all t > 0.

(14.3)
The existence of such ball B̃Q follows by well known arguments (see for
example [50, p.370]).
Next we denote by J (Q) the family of Whitney cubes I ∈ W which
intersect B̃Q and satisfy �(I ) ≥ θ �(Q) for θ ∈ (0, 1) depending on γ (the
reader should think that θ � ε and that θ = 2− j1 for some j1 � 1), and
we set

U (Q) =
⋃

I∈J (Q)

1.1 int(I ). (14.4)

For a fixed i = 1 or 2, let {Di
j (Q)} j≥0 be the connected components of

U (Q) which satisfy one of the following properties:
– either ziQ ∈ Di

j (Q) (recall that ziQ is a big corkscrew for Q), or

– there exists some y ∈ Di
j (Q) such that g(p, y) > γ �(Q) σ (R0)

−1

and there is a C6(γ, θ)-good Harnack chain that joins y to ziQ , for some
constant C6(γ, θ) to be chosen below.

Then we let Ui (Q) = ⋃
j D

i
j (Q). After reordering the sequence, we

assume that ziQ ∈ Di
0(Q). We let Ji (Q) be the subfamily of cubes from

J (Q) contained in Ui (Q).
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In the case Q ∈ T̃WSBC(R′), from the definitions, it is clear that the sets
Ui (Q) are open and connected and

U1(Q) ∩U2(Q) = ∅. (14.5)

In the case Q ∈ Ẽnd(R′), the sets Ui (Q) may fail to be connected. However,
(14.5) still holds if � is chosen big enough (which will be the case). Indeed,
if some component Di

j can be joined by C6(γ, θ)-good Harnack chains both

to z1Q and z2Q , then there is a C(γ, θ)-good Harnack chain that joins z1Q to z2Q ,
and thus Q does not belong to WSBC(c6�) if � is taken big enough, which
cannot happen by Lemma 14.2. Note also that the two components of

{y ∈ B̃Q : dist(y, LQ) > ε1/2 �(Q)}

are contained in D1
0(Q)∪D2

0(Q), because bβ(Q) ≤ Cε andwe assume θ � ε.
The following is immediate:

Lemma 14.5 Assume that we relabel appropriately the sets Ui (P) and

corkscrews ziP for P ∈ T̃WSBC(R′) ∪ Ẽnd(R′). Then for all Q, Q̂ ∈
T̃WSBC(R′) ∪ Ẽnd(R′) such that Q̂ is the parent of Q we have

[
z1Q, z1

Q̂

] ⊂ U1(Q) ∩U1(Q̂) and
[
z2Q, z2

Q̂

] ⊂ U2(Q) ∩U2(Q̂). (14.6)

Further,

dist
([ziQ, zi

Q̂
], ∂�

) ≥ c �(Q) for i = 1, 2,

where c depends at most on n and C0.

The labeling above can be chosen inductively. First we fix the sets Ui (T )

and corkscrews xiT for every maximal cube T from T̃WSBC(R′) (contained in
100BR′ and with side length equal to �(R′)). Further we assume that, for any
maximal cube T , the corkscrew xiT is at the same side of LR′ as ziR′ , for each
i = 1, 2 (this property will be used below). Later we label the sons of each T
so that (14.6) holds for any son Q of T . Then we proceed with the grandsons
of T , and so on. We leave the details for the reader.

The following result will be used later to prove the property (e)(i).

Lemma 14.6 Suppose that the constant k0(γ ) in Lemma 14.3 is big enough.

Let Q ∈ Ẽnd(R′) and assume θ small enough and C6(γ, θ) big enough in
the definition of Ui (Q). If y ∈ B̃Q satisfies g(p, y) > γ �(Q) σ (R0)

−1, then
y ∈ U1(Q) ∪U2(Q).
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Recall B̃Q is the ball with thin boundary appearing in (14.3).

Proof By the definition of Ui (Q), it suffices to show that y belongs to some
component Di

j (Q) and that there is a C6(γ, θ)-good Harnack chain that joins

y to ziQ . To this end, observe that by the boundaryHölder continuity of g(p, ·),

γ
�(Q)

σ (R0)
≤ g(p, y) ≤ C

(
δ�(y)

�(Q)

)α

m30BQ g(p, ·) ≤ C

(
δ�(y)

�(Q)

)α
�(Q)

σ (R0)
,

where in the last inequality we used Lemma 9.5. Thus,

δ�(y) ≥ c γ 1/α �(Q),

and if θ is small enough, then y belongs to some connected component of the set
U (Q) in (14.4). By Lemma 14.1(d) there is a cube Q′ ∈ TWSBC(R) such that
Q ⊂ 22Q′ and �(Q′) ≈ �(Q). In particular,WA(p, �)∩ Q′ ⊃ G0 ∩ Q′ �= ∅

and thus, by applying Lemma 11.6 with q = y and r0 = Cr(BQ) (for a
suitable C > 1), it follows that there exists a κ1-corkscrew y′ ∈ C(γ ) BQ ,
with C(γ ) > 20 say, such that y can be joined to y′ by a C ′(γ )-good Harnack
chain. Assuming that the constant k0(γ ) in Lemma 14.3 is big enough, it turns
out that y′ ∈ 2BQ′′ for some Q′′ ∈ TWSBC(R) such that 22Q′′ ⊃ Q. Since
all the cubes S such that Q ⊂ S ⊂ 22Q′′ satisfy bβ(S) ≤ C ε, by applying
Lemma 13.4 repeatedly, it follows that y′ can be joined either to z1Q or z2Q by
a C ′′(γ )-good Harnack chain. Then, joining both Harnack chains, it follows
that y can be joined either to z1Q or z2Q by a C ′′′(γ )-good Harnack chain. So y

belongs to one of the components Di
j , assuming C6(γ, θ) big enough. ��

From now on we assume θ small enough and C6(γ, θ) big enough so that
the preceding lemma holds. Also, we assume θ � ε4. We define

V1 =
⋃

Q∈T̃WSBC(R′)∪Ẽnd(R′)

U1(Q), V2 =
⋃

Q∈T̃WSBC(R′)∪Ẽnd(R′)

U2(Q).

Next we will show that

V1 ∩ V2 = ∅.

Since the number of cubes Q ∈ T̃WSBC(R′) ∪ Ẽnd(R′) is finite (because
of the truncation in the corona decomposition), this is a consequence of the
following:
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Lemma 14.7 Suppose � is big enough in the definition ofWSBC (depending

on θ ). For all P, Q ∈ T̃WSBC(R′) ∪ Ẽnd(R′), we have

U1(P) ∩U2(Q) = ∅.

Proof Wesuppose that �(Q) ≥ �(P)Wealso assume thatU1(P)∩U2(Q) �= ∅

and then we will get a contradiction. Notice first that if �(P) = �(Q) =
2− j�(R′) for some j ≥ 0, then the corkscrews ziP and ziQ are at the same side
of LQ for each i = 1, 2. This follows easily by induction on j .
Case 1. Suppose first that P, Q ∈ T̃WSBC(R′). Since the cubes from J2(Q)

have side length at least c ε1/4 �(Q), it follows that at least one of the cubes
from J1(P) has side length at least c′ ε1/4 �(Q), which implies that �(P) ≥
c′′ ε1/4 �(Q), by the construction of U1(P).

Since U1(P) ∩ U2(Q) �= ∅, there exists some curve γ = γ (z1P , z2Q) that

joins z1P and z2Q such that dist(γ, ∂�) ≥ c ε1/2 �(Q) because all the cubes

from J2(Q) have side length at least c ε1/4 �(Q), and the ones from J1(P)

have side length ≥ c ε1/4 �(P) ≥ c ε1/2 �(Q).
Let P̂ be the ancestor of P such that �(P̂) = �(Q). From the fact that

U1(P) ∩ U2(Q) �= ∅, we deduce that 20BP ∩ 20BQ �= ∅ and thus 20BP̂ ∩
20BQ �= ∅, and so 20BP̂ ⊂ 60BQ . This implies that z1

P̂
is in the same

connected component as z1Q and also that dist([z1Q, z1
P̂
], ∂�) � �(Q), because

bβ(100BQ) ≤ ε � 1 and they are at the same side of LQ .
Consider now the chain P = P1 ⊂ P2 ⊂ · · · ⊂ Pm = P̂ , so that Pi+1 is

the parent of Pi . Form the curve γ ′ = γ ′(z1
P̂
, z1P) with endpoints z1

P̂
and z1P

by joining the segments [z1Pi , z1Pi+1
]. Since these segments satisfy

dist
([z1Pi , z1Pi+1

], ∂�
) ≥ c �(Pi ) ≥ c �(P) ≥ c ε1/4 �(Q),

it is clear that dist(γ ′, ∂�) ≥ c ε1/4 �(Q).
Next we form a curve γ ′′ = γ ′′(z1Q, z2Q) which joins z1Q to z2Q by joining

[z1Q, z1
P̂
], γ ′(z1

P̂
, z1P), and γ (z1P , z2Q). It follows easily that this is contained

in 90BQ and that dist(γ ′′, ∂�) ≥ c ε1/2 �(Q). However, this is not possible
because z1Q and z2Q are in different connected components of R

n+1\LQ and

bβ(Q) ≤ ε � ε1/2 (since we assume ε � 1).
Case 2. Suppose now that Q ∈ Ẽnd(R′). The arguments are quite similar to
the ones above. In this case, the cubes from J2(Q) have side length at least
θ �(Q) and thus at least one of the cubes from J1(P) has side length at least
c θ �(Q), which implies that �(P) ≥ c′ θ �(Q).
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Now there exists a curve γ = γ (z1P , z2Q) that joints z1P and z2Q such that

dist(γ, ∂�) ≥ c θ2 �(Q) because all the cubes fromJ2(Q) have side length at
least θ �(Q), and the ones from J1(P) have side length θ �(P) ≥ c θ2 �(Q).

We consider again cubes P̂ and P1, . . . , Pm defined exactly as above. By
the same reasoning as above, dist([z1Q, z1

P̂
], ∂�) � �(Q). We also define the

curve γ ′ = γ ′(z1
P̂
, z1P) which joins z1

P̂
to z1P in the same way. In the present

case we have

dist(γ ′, ∂�) � �(P) ≥ c θ �(Q).

Again construct a curve γ ′′ = γ ′′(z1Q, z2Q) which joins z1Q to z2Q by gathering

[z1Q, z1
P̂
], γ ′(z1

P̂
, z1P), and γ (z1P , z2Q). This is contained in CBQ (for some

C > 1 possibly depending on γ ) and satisfies dist(γ ′′, ∂�) ≥ c θ2 �(Q). From
this fact we deduce that z1Q and z2Q can be joined byC(θ)-good Harnack chain.
Taking� big enough (depending onC(θ)), this implies that the big corkscrews
for Q can be joined by a (c6�)-goodHarnack chain, which contradicts Lemma
14.2.
Case 3. Finally suppose that P ∈ Ẽnd(R′). We consider the same auxiliary
cube P̂ and the same curve γ = γ (z1P , z2Q) satisfying dist(γ, ∂�) ≥ c θ �(P).

By joining the segments [z2Pi , z2Pi+1
], we construct a curve γ ′

2 = γ ′
2(z

2
P̂
, z2P)

analogous to γ ′ = γ ′(z1
P̂
, z1P) from the case 2, so that this joins z2

P̂
to z2P and

satisfies dist(γ ′
2, ∂�) � �(P).

We construct a curve γ ′′′ that joins z1P to z2P by joining γ (z1P , z2Q), [z2Q, z2
P̂
],

and γ ′
2(z

2
P̂
, z2P). Again this is contained in CBQ and it holds dist(γ ′′′, ∂�) ≥

c θ �(P). This implies that z1P and z2P can be joined by C(θ)-good Harnack
chain. Taking � big enough, we deduce the big corkscrews for P can be joined
by a (c6�)-good Harnack chain, which is a contradiction. ��

By the definition of V1 and V2 it is clear that the properties (a), (b) and (c)
in Lemma 14.3 hold. So to complete the proof of the lemma it just remains to
prove (d) and (e).

Proof of Lemma 14.3(d) Let x ∈ (∂V1 ∪ ∂V2) ∩ 10BR′ . We have to show that
there exists some S ∈ Ẽnd(R′) such that x ∈ 2BS . To this end we consider
y ∈ ∂� such that |x − y| = δ�(x). Since xR′ ∈ ∂�, it follows that y ∈ 20BR′ .
Let S ∈ Ẽnd(R′) be such that y ∈ S. Observe that

�(S) ≤ 1

300
dR(y) ≤ 1

300

(
�(R′) + 20 r(BR′)

) = 81

300
�(R′) ≤ 1

3
�(R′).

(14.7)
We claim that x ∈ 2BS . Indeed, if x /∈ 2BS , taking also into account (14.7),

there exists some ancestor Q of S contained in 100BR′ such that x ∈ 2BQ and
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δ�(x) = |x − y| ≈ �(Q). From the fact that S � Q ⊂ 100BR′ we deduce that
Q ∈ T̃WSBC(R′). By the construction of the sets Ui (Q), it is immediate to
check that the condition that δ�(x) ≈ �(Q) implies that x ∈ U1(Q)∪U2(Q).
Thus x ∈ V1 ∪ V2 and so x /∈ ∂(V1 ∪ V2) = ∂V1 ∪ ∂V2 (for this identity we
use that dist(V1, V2) > 0), which is a contradiction. ��

To show (e), first we need to prove the next result:

Lemma 14.8 For each i = 1, 2, we have

∂Vi ∩ 10BR′ ⊂
⋃

Q∈Ẽnd(R′)

∂Ui (Q).

Proof Clearly, we have

∂Vi ∩ 10BR′ ⊂
⋃

P∈T̃WSBC(R′):
P∩10BR′ �=∅

∂Ui (P) ∪
⋃

Q∈Ẽnd(R′):
Q∩10BR′ �=∅

∂Ui (Q).

So it suffices to show that
⋃

P∈T̃WSBC(R′):
P∩10BR′ �=∅

∂Ui (P) ∩ ∂Vi ∩ 10BR′ = ∅. (14.8)

Let x ∈ ∂Ui (P) ∩ ∂Vi ∩ 10BR′ , with P ∈ T̃WSBC(R′), P ∩ 10BR′ �= ∅.
From the definition of Ui (P), it follows easily that

δ�(x) � ε1/4�(P). (14.9)

On the other hand, by Lemma 14.3(d), there exists some Q ∈ Ẽnd(R′) such
that x ∈ 2BQ . By the definition of Ui (Q), since θ � ε, it also follows easily
that

{
y ∈ 2BQ : δ�(y) > ε1/2�(Q)

} ⊂ V1 ∪ V2.

Hence, dist(∂Vi ∩ 2BQ, ∂�) ≤ ε1/2 �(Q), and so

δ�(x) ≤ ε1/2 �(Q). (14.10)

We claim that �(Q) � �(P). Indeed, from the fact that x ∈ ∂Ui (P) ⊂
30BP , we infer that

30BP ∩ 2BQ �= ∅.
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Suppose that �(Q) ≥ �(P). This implies that BP ⊂ 33BQ . Consider now a

cube S ⊂ P belonging to Ẽnd(R′). Since BS ∩ 33BQ �= ∅, by Lemma 14.1
(b) we have

�(Q) ≈ �(S) ≤ �(P),

which proves our claim. Together with (14.9) and (14.10), this yields

ε1/4�(P) � δ�(x) � ε1/2 �(Q) � ε1/2 �(P),

which is a contradiction for ε small enough. So there does not exist any x ∈
∂Ui (P) ∩ ∂Vi ∩ 10BR′ , which proves (14.8). ��
Proof of Lemma 14.3(e) Let P ∈ Ẽnd(R′) be such that 2BP ∩ 10BR′ �= ∅.
The statement (i) is an immediate consequence of Lemma 14.6. In fact, this
lemma implies that any y ∈ 2BP such that g(p, y) > γ �(P) σ (R0)

−1 is
contained inU1(P)∪U2(P) and thus inV1∪V2. In particular, y /∈ ∂(V1∪V2) =
∂V1 ∪ ∂V2. Thus, if y ∈ 2BP ∩ ∂Vi , then

g(p, y) ≤ γ
�(P)

σ (R0)
.

It is easy to check that this implies the statement (i) in Lemma 14.3(e) (possibly
after replacing γ by Cγ ).

Next we turn our attention to (ii). To this end, denote by JP the subfamily
of the cubes Q ∈ Ẽnd(R′) such that 30BQ ∩ 2BP �= ∅. By Lemma 14.8,

∂Vi ∩ 2BP ⊂
⋃

Q∈JP

∂Ui (Q) ∩ 2BP . (14.11)

We will show that
∑

I∈WP

�(I )n � �(P)n and
∑

I∈WP

ωp(BI ) � ωp(CBP), (14.12)

whereWP is the family ofWhitney cubes I ⊂ V1∪V2 such that 1.1I ∩∂(V1∪
V2) ∩ 2BP �= ∅. To this end, observe that, by (14.11) and the construction
of Ui (Q), for each I ∈ WP there exists some Q ∈ JP such that I ⊂ 30BQ

and either �(I ) ≈ θ�(Q) or 1.1I ∩ ∂ B̃Q �= ∅. Using the n-ADRity of σ , it is
immediate to check that for each Q ∈ JP ,

∑

I⊂30BQ :
�(I )=θ�(Q)

�(I )n � �(Q)n.
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Also,

∑

I∈W:
1.1I∩∂ B̃Q �=∅

�(I )n �
∑

I∈W
1.1I∩∂ B̃Q �=∅

Hn(2I ∩ ∂ B̃Q) � Hn(∂ B̃Q) � �(Q)n.

Since the number of cubes Q ∈ JP is uniformly bounded (by Lemma 14.1(b))
and �(Q) ≈ �(P), the above inequalities yield the first estimate in (14.12).

To prove the second one we also distinguish among the two types of cubes
I ∈ JP above. First, by the bounded overlap of the balls BI such that �(I ) =
θ �(Q), we get ∑

I⊂30BQ
�(I )≈θ�(Q)

ωp(BI ) � ωp(CBP), (14.13)

since the balls BI in the sum are contained CBP for a suitable universal
constant C > 1. To deal with the cubes I ∈ W such that 1.1I ∩ ∂ B̃Q �= ∅ we
intend to use the thin boundary property of B̃Q in (14.3). To this end, we write

∑

I∈W :
1.1I∩∂ B̃Q �=∅

ωp(BI ) =
∑

k≥0

∑

I∈W :
1.1I∩∂ B̃Q �=∅

�(I )=2−k�(Q)

ωp(BI ) �
∑

k≥0

ωp(U2−k+1 diam(Q)(∂ B̃Q)),

where Ud(A) stands for the d-neighborhood of A. By (14.3) it follows that

ωp(U2−k�(Q)(∂ B̃Q)) � 2−kωp(C ′BQ),

and thus

∑

I∈W:
1.1I∩∂ B̃Q �=∅

ωp(BI ) � ωp(C ′BQ) � ωp(CBP),

for a suitable C > 1. Together with (14.13), this yields the second inequality
in (14.12), which completes the proof of Lemma 14.3(e). ��

15 Proof of the key lemma

We fix R0 ∈ D and a corkscrew point p ∈ � as in the preceding sections. We
consider R ∈ Top(N )

b and we assume TWSBC(R) �= ∅, as in Lemma 14.3. We
let R′ ∈ TWSBC(R) be such that �(R′) = 2−k0�(R), with k0 = k0(γ ) ≥ 1 big
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enough. Given λ > 0 and i = 1, 2, we set

Hi (R
′) = {

Q ∈ StopWSBC(R)∩D(R′)∩G : g(p, ziQ) > λ �(Q) σ (R0)
−1},

(15.1)
so that by Lemma 12.3,StopWSBC(R)∩D(R′)∩G = H1(R′)∪H2(R′). Here
we are assuming that the corkscrews ziQ belong to the set Vi fromLemma 14.3,
that λ is small enough, and we are taking into account that, by the arguments
in Sect. 13.4, any corkscrew for Q can be joined to one of the big corkscrews
z1Q by some C-good Harnack chain.

Lemma 15.1 (BabyKey Lemma). Let p, R0, R, R′ be as above. Given λ > 0,
define also Hi (R′) as above. For a given τ > 0, suppose that

σ

( ⋃

Q∈Hi (R′)
Q

)
≥ τ σ (R′).

If γ is small enough in the definition of Vi in Lemma 14.3 (depending on τ

and λ), then

g(p, ziR′) ≥ c(λ, τ )
�(R′)
σ (R0)

.

Remark that � depends on γ (see Lemma 14.3), and thus the families
WSBC(�), StopWSBC(R),Hi (R′) also depend on γ . The reader should thing
that � → ∞ as γ → 0.

A key fact in this lemma is that the constants λ, τ can be taken arbitrarily
small, without requiring ε → 0 as λτ → 0. Instead, the lemma requires
γ → 0, which does not affect the packing condition in Lemma 13.2.

We denote

Bdy(R′) =
⋃

P∈Ẽnd(R′):2BP∩10BR′ �=∅

WP ,

with WP as in the Lemma 14.3. That is, WP is the family of Whitney cubes
I ⊂ V1 ∪ V2 such that 1.1I ∩ ∂(V1 ∪ V2) ∩ 2BP �= ∅. So the family Bdy(R′)
contains Whitney cubes which intersect the boundaries of V1 or V2 and are
close to 10BR′ .

Let us introduce some extra piece of notation. Given q ∈ R
n+1 and 0 <

r < s we let

A(q, r, s) = B(q, s)\B(q, r).

To prove Lemma 15.1, first we need the following auxiliary result.

123



968 J. Azzam et al.

Lemma 15.2 Let p, R0, R, R′ be as above and, for i = 1 or 2, let Q ∈ Hi (R′).
Let Vi be as in Lemma 14.3 and let q ∈ � be a corkscrew point for Q which
belongs to Vi . Denote r = 2�(R′) and for δ ∈ (0, 1/100) set

Aδ
r = {

x ∈ A(q, r, 2r) ∩ � : δ�(x) > δ r
}
.

Then we have

g(p, q) � 1

r
sup

y∈Aδ
r∩Vi

g(p, y)

δ�(y)

ˆ

Aδ
r

g(q, x) dx

+ δα/2

rn+3

ˆ

A(q,r,2r)
g(p, x) dx

ˆ

A(q,r,2r)
g(q, x) dx

+
∑

I∈Bdy(R′)

1

�(I )

ˆ

2I

∣∣g(p, x) ∇g(q, x) − ∇g(p, x) g(q, x)
∣∣ dx .

Let us note that the fact that q is a corkscrew for Q contained in Vi implies
that dist(q, ∂Vi ) ≈ �(Q), by the construction of the sets Vi in Lemma 14.3.

Proof We fix i = 1, for definiteness. Recall that V1 = ⋃
I∈W1

1.1 int(I ). For
each I ∈ W1, consider a smooth function ηI such that χ0.9I ≤ ηI ≤ χ1.09I
with ‖∇ηI‖∞ � �(I )−1 and

η :=
∑

I∈W1

ηI ≡ 1 on V1 ∩ 10BR′\
⋃

I∈Bdy(R′)
2I.

It follows that supp η ⊂ V1 and so supp η ∩ V2 = ∅, and also

supp(∇η) ∩ 10BR′ ⊂
⋃

I∈Bdy(R′)
2I.

Let ϕ0 be a smooth function such that χB(q,1.2r) ≤ ϕ0 ≤ χB(q,1.8r), with
‖∇ϕ0‖∞ � 1/r . Then we set

ϕ = η ϕ0.

So ϕ is smooth, and it satisfies

supp∇ϕ ⊂ (
A(q, r, 2r) ∩ V1

) ∪
⋃

I∈Bdy(R′)
2I.

Observe that, in a sense, ϕ is a smooth version of the function χB(q,r)∩V1 .
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Since g(p, q) = g(p, q) ϕ(q) and g(p, ·) ϕ is a continuous function from
W 1,2

0 (�), we have

g(p, q) =
ˆ

�

∇(g(p, ·) ϕ)(x) ∇g(q, x) dx

=
ˆ

�

g(p, x) ∇ϕ(x) ∇g(q, x) dx +
ˆ

�

ϕ(x) ∇g(p, x) ∇g(q, x) dx

=: I1 + I2.

First we estimate I2. For ε with 0 < ε < 1/10, we consider a smooth
function ϕε such that χB(q,εδ�(q)) ≤ ϕε ≤ χB(q,2εδ�(q)), with ‖∇ϕε‖∞ �
1/(εδ�(q)). Since ϕε ϕ = ϕε, we have

I2 =
ˆ

�

ϕε(x) ∇g(p, x) ∇g(q, x) dx

+
ˆ

�

ϕ(x)(1 − ϕε(x)) ∇g(p, x) ∇g(q, x) dx

=: I2,a + I2,b.

To deal with I2,a we use the fact that for x ∈ B(q, 2εδ�(q)) we have

|∇g(q, x)| � 1

|x − q|n and |∇g(p, x)| � g(p, q)

δ�(q)
.

Then we get

|I2,a| � g(p, q)

δ�(q)

ˆ

B(q,2εδ�(q))

1

|x − q|n dx � g(p, q)

δ�(q)
ε δ�(q) = ε g(p, q).

Let us turn our attention to I2,b. We denote ψ = ϕ(1 − ϕε). Integrating by
parts, we get

I2,b =
ˆ

∇g(p, x) ∇(ψ g(q, ·))(x) dx −
ˆ

∇g(p, x) ∇ψ(x) g(q, x) dx .

Observe now that the first integral vanishes because ψ g(q, ·) ∈ W 1,2
0 (�) ∩

C(�) and vanishes at ∂� and at p. Hence, since ∇ψ = ∇ϕ − ∇ϕε, we derive

I2,b = −
ˆ

∇g(p, x) ∇ϕ(x) g(q, x) dx +
ˆ

∇g(p, x)∇ϕε(x) g(q, x) dx = I3 + I4.
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To estimate I4 we take into account that |∇ϕε| � χA(q,εδ�(q),2εδ�(q))/(εδ�(q)),
and then we derive

|I4| � 1

ε δ�(q)

ˆ

A(q,εδ�(q),2εδ�(q))

|∇g(p, x)| g(q, x) dx .

Using now that, for x in the domain of integration,

g(q, x) � 1

(ε δ�(q))n−1 and |∇g(p, x)| � g(p, q)

δ�(q)
,

we obtain

|I4| � 1

ε δ�(q)

1

(ε δ�(q))n−1

g(p, q)

δ�(q)
(ε δ�(q))n+1 � ε g(p, q).

From the above estimates we infer that

g(p, q) ≤ |I1 + I3| + c ε g(p, q).

Since neither I1 nor I3 depend on ε, letting ε → 0 we get

g(p, q) ≤ |I1 + I3|
≤
∣∣∣∣

ˆ
g(p, x) ∇ϕ(x) ∇g(q, x) dx −

ˆ
∇g(p, x) ∇ϕ(x) g(q, x) dx

∣∣∣∣

≤
ˆ

|∇ϕ(x)|∣∣g(p, x) ∇g(q, x) − ∇g(p, x) g(q, x)
∣∣ dx .

We denote

F̃ =
⋃

I∈Bdy(R′)
2I,

Ãδ
r = {

x ∈ A(q, 1.2r, 1.8r) ∩ V1\F̃ : δ�(x) > δ r
}
,

and

Ãr,δ = {
x ∈ A(q, 1.2, 1.8r) ∩ V1\F̃ : δ�(x) ≤ δ r

}
.
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Next we split the last integral as follows:

g(p, q) ≤
ˆ

Ãδ
r

|∇ϕ(x)| ∣∣g(p, x) ∇g(q, x) − ∇g(p, x) g(q, x)
∣∣ dx

+
ˆ

Ãr,δ
|∇ϕ(x)| ∣∣g(p, x) ∇g(q, x) − ∇g(p, x) g(q, x)

∣∣ dx

+
ˆ

F̃
|∇ϕ(x)| ∣∣g(p, x) ∇g(q, x) − ∇g(p, x) g(q, x)

∣∣ dx

=: J1 + J2 + J3. (15.2)

Concerning J1, we have

|∇g(p, x)| � g(p, x)

δ�(x)
and |∇g(q, x)| � g(q, x)

δ�(x)
for all x ∈ Ãδ

r .

Thus, using also that |∇ϕ| � 1/r outside F̃ ,

J1 � 1

r
sup

x∈Aδ
r∩V1

g(p, x)

δ�(x)

ˆ

Aδ
r

g(q, x) dx . (15.3)

Regarding J2, using Cauchy–Schwarz, we get

J2 � 1

r

ˆ

Ãr,δ

∣∣g(p, x) ∇g(q, x) − ∇g(p, x) g(q, x)
∣∣ dx

≤ 1

r

(ˆ

Ãr,δ
g(p, x)2 dx

)1/2 (ˆ

Ãr,δ
|∇g(q, x)|2 dx

)1/2

+ 1

r

(ˆ

Ãr,δ
|∇g(p, x)|2 dx

)1/2 (ˆ

Ãr,δ
g(q, x)2 dx

)1/2

. (15.4)

To estimate the integral
´
Ãr,δ

g(p, x)2 dx , we take into account that, for all

x ∈ Ãr,δ ,

g(p, x) � δα

 

A(q,r,2r)
g(p, y) dy.

Then we deduce

ˆ

Ãr,δ
g(p, x)2 dx � δα

rn+1

(ˆ

A(q,r,2r)
g(p, x) dx

)2

.
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Next we estimate the integral
´
Ãr,δ

|∇g(q, x)|2 dx . By covering Ãr,δ by a
finite family of balls of radius r/100 and applying Caccioppoli’s inequality to
each one, it follows that

ˆ

Ãr,δ
|∇g(q, x)|2 dx � 1

r2

ˆ

A(q,1.1r,1.9r)
g(q, x)2 dx .

Since

g(q, x) �
 

A(q,r,2r)
g(q, y) dy for all x ∈ A(q, 1.1r, 1.9r),

we get

ˆ

Ãr,δ
|∇g(q, x)|2 dx � 1

r2

ˆ

A(q,1.1r,1.9r)
g(q, x)2 dx

� 1

rn+3

(ˆ

A(q,r,2r)
g(q, x) dx

)2

.

So we obtain

(ˆ

Ãr,δ
g(p, x)2 dx

)1/2 (ˆ

Ãr,δ
|∇g(q, x)|2 dx

)1/2

� δα/2

rn+2

ˆ

A(q,r,2r)
g(p, x) dx

ˆ

A(q,r,2r)
g(q, x) dx .

By interchanging, p and q, it is immediate to check that an analogous estimate
holds for the second summand on the right hand side of (15.4). Thus we get

J2 � δα/2

rn+3

ˆ

A(q,r,2r)
g(p, x) dx

ˆ

A(q,r,2r)
g(q, x) dx . (15.5)

Concerning J3, we just take into account that |∇ϕ| � 1/�(I ) in 2I , and
then we obtain

J3 �
∑

I∈Bdy(R′)

1

�(I )

ˆ

2I

∣∣g(p, x) ∇g(q, x) − ∇g(p, x) g(q, x)
∣∣ dx .

Together with (15.2), (15.3), and (15.5), this yields the lemma. ��
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Proof of Lemma 15.1 We fix i = 1, for definiteness. By a Vitali type cover-
ing theorem, there exists a subfamily H̃1(R′) ⊂ H1(R′) such that the balls
{8BQ}Q∈H̃1(R′) are disjoint and

∑

Q∈H1(R′)
σ (Q) �

∑

Q∈H̃1(R′)

σ (Q).

By Lemma 15.2, for each Q ∈ H̃1(R′) we have

g(p, z1Q) � 1

r
sup

y∈2BR′∩V1:δ�(y)≥δ�(R′)

g(p, y)

δ�(y)

ˆ

A(z1Q ,r,2r)
g(z1Q, x) dx

+ δα/2

rn+3

ˆ

A(z1Q ,r,2r)
g(p, x) dx

ˆ

A(z1Q ,r,2r)
g(z1Q, x) dx

+
∑

I∈Bdy(R′)

1

�(I )

ˆ

2I

∣∣g(p, x) ∇g(z1Q, x) − ∇g(p, x) g(z1Q, x)
∣∣ dx

=: I1(Q) + I2(Q) + I3(Q),

with r = 2�(R′). Since g(p, z1Q) > λ �(Q)/σ (R0), we derive

λτ σ(R′) � λ
∑

Q∈H̃1(R′)

σ (Q) �
∑

Q∈H̃1(R′)

g(p, z1Q) �(Q)n−1 σ(R0)

�
3∑

j=1

∑

Q∈H̃1(R′)

I j (Q) �(Q)n−1 σ(R0). (15.6)

Estimate of
∑

Q∈W̃H1(R′) I1(Q) �(Q)n−1

We have

∑

Q∈H̃1(R′)
I1(Q) �(Q)n−1

≤ 1

r
sup

y∈2BR′∩V1:δ�(y)≥δ�(R′)

g(p, y)

δ�(y)

∑

Q∈H̃1(R′)

ˆ

A(z1Q ,r,2r)
g(z1Q , x) dx �(Q)n−1.
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Note now that

∑

Q∈H̃1(R′)

ˆ

A(z1Q ,r,2r)
g(z1Q, x) dx �(Q)n−1 �

ˆ

2BR′

∑

Q∈H̃1(R′)

ωx (4Q) dx

≤
ˆ

2BR′
1 dx � �(R′)n+1,

where we used the fact that the cubes 4Q, with Q ∈ H̃1(R′), are pairwise
disjoint. Since r ≈ �(R′), we derive

∑

Q∈H̃1(R′)

I1(Q) �(Q)n−1 � sup
y∈2BR′∩V1:δ�(y)≥δ�(R′)

g(p, y)

δ�(y)
σ (R′).

Estimate of
∑

Q∈W̃H1(R′) I2(Q) �(Q)n−1

First we estimate
´
A(z1Q ,r,2r) g(p, x) dx by applying Lemma 9.5:

ˆ

A(z1Q ,r,2r)
g(p, x) dx ≤

ˆ

2BR′
g(p, x) dx � �(R′)n+1 ωp(8BR′)

�(R′)n−1

� �(R′)2 σ(R′)
σ (R0)

≈ rn+2

σ(R0)
.

So we have

∑

Q∈H̃1(R′)

I2(Q) �(Q)n−1 � δα/2

r σ(R0)

∑

Q∈H̃1(R′)

ˆ

A(z1Q ,r,2r)
g(z1Q, x) dx �(Q)n−1

� δα/2

r σ(R0)

ˆ

2BR′

∑

Q∈H̃1(R′)

ωx (4Q) dx

� δα/2

r σ(R0)

ˆ

2BR′
1 dx � δα/2 σ(R′)

σ (R0)
.
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Estimate of
∑

Q∈W̃H1(R′) I3(Q) �(Q)n−1

Note first that, for each I ∈ Bdy(R′), since z1Q /∈ 4I , using the subharmonicity

of g(p, ·) and g(z1Q, ·) in 4I , and Caccioppoli’s inequality,

1

�(I )

ˆ

2I

∣∣g(p, x) ∇g(z1Q, x)
∣∣ dx � 1

�(I )
sup
x∈2I

g(p, x)
ˆ

2I
|∇g(z1Q, x)| dx

� �(I )n−1m4I g(p, ·) m4I g(z
1
Q, ·).

By very similar estimates, we also get

1

�(I )

ˆ

2I

∣∣∇g(p, x) g(z1Q, x)
∣∣ dx � �(I )n−1m4I g(p, ·) m4I g(z

1
Q, ·).

Recall now that, by Lemma 14.3(e)(i),

m4I g(p, ·) ≤ γ
�(P)

σ (R0)

for each I ∈ WP , with P ∈ Ẽnd(R′) such that 2BP ∩ 10BR′ �= ∅.
We distinguish two types of Whitney cubes I ∈ Bdy(R′). We write I ∈ T1

if �(I ) ≥ γ 1/2�(P) for some P such that I ∈ WP and 2BP ∩ 10BR′ �= ∅,
and we write I ∈ T2 otherwise (there may exist more than one P such that
I ∈ WP , but ifWP ∩ WP ′ �= ∅, then �(P) ≈ �(P ′)). So we split

∑

Q∈H̃1(R′)
I3(Q) �(Q)n−1 ≤

∑

Q∈H̃1(R′)

∑

I∈Bdy(R′)
�(I )n−1 m4I g(p, ·) m4I g(z

1
Q , ·) �(Q)n−1

=
∑

Q∈H̃1(R′)

∑

I∈T1
. . . +

∑

Q∈H̃1(R′)

∑

I∈T2
. . . =: S1 + S2. (15.7)

Concerning the sum S1 we have

S1 � γ
∑

Q∈H̃1(R′)

∑

P∈Ẽnd(R′):
2BP∩10BR′ �=∅

∑

I∈WP∩T1

�(P)

σ (R0)
�(I )n−1m4I g(z

1
Q, ·) �(Q)n−1

� γ 1/2
∑

Q∈H̃1(R′)

∑

P∈Ẽnd(R′):
2BP∩10BR′ �=∅

∑

I∈WP

�(I )n

σ(R0)
m4I g(z

1
Q, ·) �(Q)n−1
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Next we take into account that

�(Q)n−1m4I g(z
1
Q, ·) � ωxI (4Q),

where xI stands for the center of I and C > 1 is some absolute constant.
This follows from Lemma 9.5 if xI is far from Q, and it can be deduced from
Lemma 9.3 when xI is close to Q (in this case,ωxI (4Q) ≈ 1). Then we derive

S1 � γ 1/2
∑

Q∈H̃1(R′)

∑

P∈Ẽnd(R′):
2BP∩10BR′ �=∅

∑

I∈WP

ωxI (4Q)
�(I )n

σ(R0)
.

Since
∑

Q∈H̃1(R′) ωxI (4Q) � 1 for each I , we get

S1 � γ 1/2
∑

P∈Ẽnd(R′):
2BP∩10BR′ �=∅

∑

I∈WP

�(I )n

σ(R0)
.

By Lemma 14.3(e)(ii), we have
∑

I∈WP
�(I )n � �(P)n , and so we deduce

S1 � γ 1/2
∑

P∈Ẽnd(R′):
2BP∩10BR′ �=∅

σ(P)

σ (R0)
� γ 1/2 σ(R′)

σ (R0)
.

Next we turn our attention to the sum S2 in (15.7). Recall that

S2 =
∑

Q∈H̃1(R′)

∑

I∈T2
�(I )n−1m4I g(p, ·) m4I g(z

1
Q, ·) �(Q)n−1.

Let us remark that we assume the condition that I ∈ WP for some 2P ∈
Ẽnd(R′) such that 2BP ∩ 10BR′ �= ∅ to be part of the definition of I ∈ T2.
Using the estimate m4I g(p, ·) � ωp(BI ) �(I )1−n , we derive

S2 �
∑

Q∈H̃1(R′)

∑

I∈T2
ωp(BI )m4I g(z

1
Q, ·) �(Q)n−1

=
∑

Q∈H̃1(R′)

∑

I∈T2:20I∩20BQ �=∅

. . . +
∑

Q∈H̃1(R′)

∑

I∈T2:20I∩20BQ=∅

. . . =: A + B.

To estimate the term A we take into account that if 20I ∩ 20BQ �= ∅ and
I ∈ WP , then �(P) � �(Q) and thus �(I ) � γ 1/2 �(Q) because I ∈ T2. As a
consequence, I ⊂ 21BQ and also, by the Hölder continuity of g(z1Q, ·), if we
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let B be a ball concentric with BI with radius comparable to �(Q) and such
that dist(z1Q, B) ≈ �(Q), we obtain

m2BI g(z1Q, ·) �
(
r(BI )

r(B)

)α

mBg(z
1
Q, ·) � γ α/2 1

�(Q)n−1 ,

where α > 0 is the exponent of Hölder continuity. Hence,

A � γ α/2
∑

Q∈H̃1(R′)

∑

P∈Ẽnd(R′):
2BP∩10BR′ �=∅

20BP∩20BQ �=∅

∑

I∈WP∩T2
ωp(BI ).

By Lemma 14.3(e)(ii), we have
∑

I∈WP
ωp(BI ) � ωp(CBP), and using also

that, for P as above, CBP ⊂ C ′BQ for some absolute constant C ′, we obtain

A � γ α/2
∑

Q∈H̃1(R′)

ωp(C ′BQ) � γ α/2
∑

Q∈H̃1(R′)

σ (Q)

σ (R0)
� γ α/2 σ(R′)

σ (R0)
.

Finally, we turn our attention to the term B. We have

B =
∑

Q∈H̃1(R′)

∑

I∈T2:20I∩20BQ=∅

ωp(BI )m4I g(z
1
Q, ·) �(Q)n−1

=
∑

I∈T2
ωp(BI )

 

4I

∑

Q∈H̃1(R′):20I∩20BQ=∅

g(z1Q, x) �(Q)n−1 dx

�
∑

I∈T2
ωp(BI )

 

4I

∑

Q∈H̃1(R′):20I∩20BQ=∅

ωx (8BQ) dx .

We claim now that, in the last sum, if one assumes that 20I ∩ 20BQ = ∅,

then dist(I, 8BQ) ≥ c γ −1/2 �(I ). To check this, take P ∈ Ẽnd(R′) such that
I ∈ WP . Then note that

�(P) ≤ 1

300
dR(xP ) ≤ 1

300

(
dist(xP , Q) + �(Q)

)

≤ 1

300

(
dist(xP , I ) + diam(I ) + dist(I, 8BQ) + C�(Q)

)
.

Using that I ∩ 2BP �= ∅, diam(I ) ≤ Cγ 1/2�(P) � �(P), and �(Q) ≤
dist(I, 8BQ), we get
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�(P) ≤ 1

300

(
dist(I, 8BQ) + 3r(BP ) + C �(Q)

) ≤ C dist(I, 8BQ) + 12

300
�(P),

which implies that

�(I ) ≤ Cγ 1/2 �(P) ≤ C γ 1/2 dist(I, 8BQ),

and yields our claim.
Taking into account that the balls {8BQ}Q∈H̃1(R′) are disjoint and the Hölder

continuity of ω(·)(∂�\cγ −1/2 I ), for all x ∈ 4I we get

∑

Q∈H̃1(R′):20I∩20BQ=∅

ωx (8BQ) � ωx (∂�\cγ −1/2 I ) � γ α/2.

Thus,

B � γ α/2
∑

I∈T2
ωp(BI ) ≤ γ α/2

∑

P∈Ẽnd(R′):
2BP∩10BR′ �=∅

∑

I∈WP∩T2
ωp(BI ).

Recalling again that
∑

I∈WP
ωp(BI ) � ωp(CBP), we deduce

B � γ α/2
∑

P∈Ẽnd(R′):
2BP∩10BR′ �=∅

ωp(CBP) � γ α/2
∑

P∈Ẽnd(R′):
2BP∩10BR′ �=∅

σ(P)

σ (R0)
� γ α/2 σ(R′)

σ (R0)
.

Remark that for the second inequality we took into account that P is contained
in a cube of the form 22P ′ with P ′ ∈ TWSBC(R) and �(P ′) ≈ �(P), by
Lemma 14.1. This implies that ωp(CBP) ≤ ωp(C ′BP ′) � σ(P ′) σ (R0)

−1 �
σ(P) σ (R0)

−1.
Gathering the estimates above and recalling (15.6), we deduce

λτ σ(R′) � sup
y∈2BR′∩V1:δ�(y)≥δ�(R′)

g(p, y)

δ�(y)
σ (R′) σ (R0) + δα/2 σ(R′) + γ α/2 σ(R′).

So, if δ and γ are small enough (depending on λ, τ ), we infer that

λ τ σ(R′) � sup
y∈2BR′∩V1:δ�(y)≥δ�(R′)

g(p, y)

δ�(y)
σ (R′) σ (R0).
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That is, there exists some y0 ∈ 2BR′ ∩ V1 with δ�(y0) ≥ δ �(R′) such that

g(p, y0)

δ�(y)
� λτ

σ(R0)
,

with δ depending on λ, τ . Since z1R′ and y0 can be joined by aC-good Harnack
chain (for some C depending on δ and γ , and thus on λ, τ ), we deduce that

g(p, z1R′)

�(R′)
� c(λ, τ )

σ (R0)
,

as wished. ��
Lemma 15.3 Let η ∈ (0, 1) and λ > 0. Choose γ = γ (λ, τ ) small enough
as in Lemma 15.1 with τ = η/2. Assume that the familyWSBC(�) is defined
by choosing � big enough depending on γ (and thus on λ and η) as in Lemma
14.3. Let R ∈ Top(N )

b and suppose that TWSBC(R) �= ∅. Then, there exists an
exceptional family ExWSBC(R) ⊂ StopWSBC(R) ∩ G satisfying

∑

P∈ExWSBC(R)

σ (P) ≤ η σ(R)

such that, for every Q ∈ StopWSBC(R) ∩ G\ExWSBC(R), any λ-good
corkscrew for Q can be joined to some λ′-good corkscrew for R by a C(λ, η)-
good Harnack chain, with λ′ depending on λ, η.

Proof For any R′ ∈ Dk0(R)∩TWSBC(R), with k0 = k0(γ ), we defineHi (R′)
as in (15.1), so that

StopWSBC(R) ∩ G ∩ D(R′) = H1(R
′) ∪ H2(R

′).

For each R′, we set

ExWSBC(R′) =
2⋃

i=1

{
Q ∈ Hi (R

′) : ∑P∈Hi (R′) σ (P) ≤ τ σ (R′)
}
.

That is, for fixed i = 1 or 2, if
∑

P∈Hi (R′) σ (P) ≤ τ σ (R′), then all the cubes
from Hi (R′) belong to ExWSBC(R′). In this way, it is clear that

∑

P∈ExWSBC(R′)
σ (P) ≤ 2τ σ (R) = η σ(R′). (15.8)
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We claim that the λ-good corkscrews of cubes from StopWSBC(R) ∩ G ∩
D(R′)\ExWSBC(R′) can be joined to some λ̃-good corkscrew for R′ by a
C̃-good Harnack chain, with λ̃ depending on λ, η, and C̃ depending on �

and thus on λ, η too. Indeed, if Q ∈ Hi (R′)\ExWSBC(R′) and ziQ is λ-good
corkscrew belonging to Vi (we use the notation of Lemma 15.1 and 14.3),
then

∑
P∈Hi (R′) σ (P) > τ σ(R′) by the definition above and thus Lemma

15.1 ensures that g(p, ziR′) ≥ c(λ, τ )
�(R′)
σ (R0)

. So ziR′ is a λ̃-good corkscrew,

which by Lemma 14.3(c) can be joined to ziQ by a C̃-good Harnack chain. In

turn, this λ̃-good corkscrew for R′ can be joined to some λ′-good corkscrew
for R by a C ′-good Harnack chain, by applying Lemma 13.4 k0 times, with
C ′ depending on k0 and thus on λ and η.

On the other hand, the cubes Q ∈ StopWSBC(R) ∩ G which are not con-
tained in any cube R′ ∈ Dk0(R) ∩ TWSBC(R) satisfy �(Q) ≥ 2−k0�(R),
and then, arguing as above, their associated λ-good corkscrews can be joined
to some λ′-good corkscrew for R by a C ′-good Harnack chain, by applying
Lemma 13.4 at most k0 times. Hence, if we define

ExWSBC(R) =
⋃

R′∈Dk0 (R)

ExWSBC(R′),

taking into account (15.8), the lemma follows. ��
Proof of the Key Lemma 13.3 We choose � = �(λ, η) as in Lemma 15.3 and
we consider the associated family WSBC(�). In case that TWSBC(R) = ∅,
we set Ex(R) = ∅. Otherwise, we consider the family ExWSBC(R) from
Lemma 15.3, and we define

Ex(R) = (
ExWSBC(R) ∩ Stop(R)

) ∪
⋃

Q∈ExWSBC(R)\Stop(R)

(
SubStop(Q) ∩ G

)
.

Itmay be useful for the reader to compare the definition abovewith the partition
of Stop(R) in (13.3). By Lemma 15.3 we have

∑

P∈Ex(R)

σ (P) ≤
∑

Q∈ExWSBC(R)

σ (P) ≤ η σ(R).

Next we show that for every P ∈ Stop(R) ∩ G\Ex(R), any λ-good
corkscrew for P can be joined to some λ′-good corkscrew for R by a C(λ, η)-
goodHarnack chain. In fact, if P ∈ StopWSBC(R), then P ∈ StopWSBC(R)∩
G\ExWSBC(R) since such cube P cannot belong to SubStop(Q) for any
Q ∈ StopWSBC(R)\Stop(R) (recall the partition (13.3)), and thus the
existence of such Harnack chain is ensured by Lemma 15.3. On the other
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hand, if P /∈ StopWSBC(R), then P is contained in some cube Q(P) ∈
StopWSBC(R)\WSBC(�). Consider the chain P = S1 ⊂ S2 ⊂ · · · ⊂ Sm =
Q(P), so that each Si is the parent of Si−1. For 1 ≤ i ≤ m, choose inductively
a big corkscrew xi for Si in such a way that x1 is at the same side of LP as the
good λ corkscrew zP for P , and xi+1 is at the same side of LSi as xi for each
i . Using that bβ(Si ) ≤ Cε � 1 for all i , it easy to check that the line obtained
by joining the segments [zP , x1], [x1, x2],…,[xm−1, xm] is a good carrot curve
and so gives rise to a good Harnack chain that joins zP to xm . It may happen
that xm is not a λ-good corkscrew. However, since Q(P) /∈ WSBC(�), it turns
out that xm can be joined to some c3-good corkscrew zQ(P) for Q(P) by some
C(�)-good Harnack chain, with c3 given by (12.2) (and thus independent of
λ and η), because Q(P) ∈ G. Note that since λ ≤ c3, zQ(P) is also a λ-good
corkscrew. In turn, since Q(P) /∈ ExWSBC(R), zQ(P) can be joined to some
λ′-good corkscrew for R by anotherC ′(λ, η)-good Harnack chain. Altogether,
this shows that zP can be connected to some λ′-good corkscrew for R by a
C ′′(λ, η)-good Harnack chain, which completes the proof of the lemma. ��

Below we will write Ex(R, λ, η) instead of Ex(R) to keep track of the
dependence of this family on the parameters λ and η.

16 Proof of the main Lemma 10.2

16.1 Notation

Recall that by the definition of GK
0 in (13.2),

∑
R∈Top χR(x) ≤ K for all

x ∈ GK
0 . For such x , let Q be the smallest cube from Top that contains x , and

denote n0(x) = log2
�(R0)
�(Q)

, so that Q ∈ Dn0(x)(R0). Next let N0 ∈ Z be such
that

σ
({
x ∈ GK

0 : n0(x) ≤ N0 − 1
}) ≥ 1

2
σ(GK

0 ),

and denote

G̃K
0 = {

x ∈ GK
0 : n0(x) ≤ N0 − 1

}
.

Fix

N = N0 − 1,

and set

T′
a = DN (R0) ∪ Top(N )

a ,
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and also

T′
b = Top(N )

b \DN (R0)

(recall that Top(N )
a and Top(N )

b were defined in Section 13.2). So if R ∈
T′
a\DN (R0), then StopN (R) coincides the family of sons of R, and it R ∈ T′

b
this will not be the case, in general. Next we denote byTa andTb the respective
subfamilies of cubes from T′

a and T
′
b which intersect G̃

K
0 .

For j ≥ 0, we set

T j
b =

{
R ∈ Tb :

∑

Q∈Tb:Q⊃R

χQ = j on R
}
.

We also denote

S j
b = {

Q ∈ D : Q ∈ StopN (R) for some R ∈ T j
b

}
, Sb =

⋃

j

S j
b,

and we let T j
a be the subfamily of cubes R ∈ Ta such that there exists some

Q ∈ S j−1
b such that Q ⊃ R and R is not contained in any cube from Sk

b with
k ≥ j .

16.2 Two auxiliary lemmas

Lemma 16.1 The following properties hold for the family T1
b:

(a) The cubes from T1
b are pairwise disjoint and cover G̃K

0 , assuming N0 big
enough.

(b) If R ∈ T1
b, then �(R) ≈K �(R0).

(c) Given R ∈ D(R0)with �(R) ≥ c �(R0) (for example, R ∈ T1
b) andλ > 0, if

zR is a λ-good corkscrew point for R, then there is a C(λ, c)-goodHarnack
chain that joins zR to p.

Proof Concerning the statement (a), the cubes from T1
b are pairwise disjoint

by construction. Suppose that x ∈ G̃K
0 is not contained in any cube from T1

b.
By the definition of the family TopN , this implies that all the cubes Q ⊂ R0
with 2−N�(R0) ≤ �(Q) ≤ 2−10�(R0) containing x belong to Ta . However,
there are at most K cubes Q of this type, which is not possible if N is taken
big enough. So the cubes from T1

b cover G̃
K
0 .

The proof of (b) is analogous. Given R ∈ T1
b, all the cubes Q which contain

R and have side length smaller or equal that 2−10�(R0) belong to Ta . Hence
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there at most K − 1 cubes Q of this type, because G̃K
0 ∩ R �= ∅. Thus,

�(R) ≥ 2−K−10�(R0).
The statement (c) is an immediate consequence of (b) and Lemma 12.4. ��

Lemma 16.2 Let Q ∈ T j
a ∪ T j

b for some j ≥ 2 and let zQ be a λ-good
corkscrew for Q, with λ > 0. There exists some constant γ0(λ, K ) > 0 such if
�(Q) ≤ γ0(λ, K ) �(R0), then there exists some cube R ∈ Sb such that R ⊃ Q
with a λ′-good corkscrew zR for R such that zR can be joined to zQ by a
C(λ, K )-good Harnack chain, with λ′ depending on λ and K .

Proof We assume γ0(λ, K ) > 0 small enough. Then we can apply Lemma
12.5 K + 1 times to get cubes R1, . . . , RK+1 satisfying:

• Q � R1 � R2 � · · · � RK+1 and �(RK+1) ≤ 2−10�(R0),
• each R j has an associated λ′-good corkscrew zRi (with λ′ depending on

λ, K ) and there exists a C(λ, K )-good Harnack chain joining zQ and
zR1, . . . , zRK+1 .

Since Q ∩ G̃K
0 �= ∅, at least one of the cubes R1, . . . , RK+1, say R j , does

not belong to Top. This implies that R j ∈ T(N )(R̃) for some R̃ ∈ Tb. Let
R ∈ Stop(N )(R̃) be the stopping cube that contains Q. Then Lemma 14.3
ensures that there is a goodHarnack chain that connects zR j to some corkscrew
zR for R. Notice that �(R j ) ≈λ,K �(Q) ≈λ,K �(R) because Q ⊂ R ⊂ R j .
This implies that g(p, zR) ≈K ,λ g(p, zR j ) ≈K ,λ g(p, zQ). Further, gathering
the Harnack chain that joins zQ to z R̃ and the one that joins zR j to zR , we
obtain the good Harnack chain required by the lemma. ��

16.3 The algorithm to construct good Harnack chains

Wewill construct goodHarnack chains that join good corkscrews from “most”
cubes fromDN (R0) that intersect G̃K

0 to good corkscrews from cubes belong-
ing to R ∈ T1

b, and then we will join these latter good corkscrews to p using
the fact that �(R) ≈ �(R0). To this end we choose η > 0 such that

η ≤ 1

2K

σ(G̃K
0 )

σ (R0)
,

and we denote

m = max
x∈G̃K

0

∑

R∈Tb
χR(x)

(so that m ≤ K ) and we apply the following algorithm: we set am+1 = c3, so
that (12.2) ensures that for each Q ∈ Ta∪Tb there exists somegoodam+1-good
corkscrew zQ . For j = m,m−1, . . . , 1, we perform the following procedure:
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(1) Join a j+1-good corkscrews of cubes Q from T j+1
a ∪ T j+1

b such
that �(Q) ≤ c′

j �(R0) to a′
j -good corkscrews of cubes R(Q) from

S1
b ∪ . . .∪S j

b by C
′
j -good Harnack chains, with a

′
j ≤ a j+1, so that

R(Q) is an ancestor of Q. This step can be performed because of
Lemma 16.2, with c′

j = γ0(a j+1, K ) in the lemma. The constants
a′
j , c

′
j , and C

′
j depend on a j+1 and K .

(2) Set

NC j =
⋃

R∈T j
b

Ex(R, a′
j , η),

and join a′
j -good corkscrews for all cubes Q ∈ S j

b\NC j to a j -good

corkscrews for cubes R(Q) ∈ T j
b byC j -goodHarnack chains, with

a j ≤ a′
j , so that R(Q) is an ancestor of Q. To this end, one applies

Lemma 13.3, which ensures the existence of such Harnack chains
connecting a′

j -good corkscrew points for cubes from S j
b \ NC j to

a j -good corkscrew points for cubes from T j
b . The constants a j and

C j depend on a′
j and K .

After iterating the procedure above for j = m,m−1 . . . , 1 and joining some
Harnack chains arisen in the different iterations, we will have constructed C-
good Harnack chains that join am+1-good corkscrew points for all cubes Q ∈
Ta not contained in

⋃m
j=1

⋃
P∈NC j

P to a1-good corkscrews of some ancestors

R(Q) belonging eitherT1
b or, more generally, such that �(R(Q)) � �(R0). The

constants c′
j , a

′
j , a j , C j worsen at each step j . However, this is not harmful

because the number of iterations of the procedure is at most m, and m ≤ K .
Denote by IN the cubes from DN (R0) which intersect G̃K

0 and are not
contained in any cube from {P ∈ NC j : j = 1, · · ·m}. By the algorithm above
we have constructed good Harnack chains that join am+1-good corkscrew
points for all cubes Q ∈ IN to some a1-good corkscrew for cubes R(Q) ∈
D(R0) with �(R(Q)) ≈ �(R0). Also, by applying Lemma 16.1 (c) we can
connect the a1-good corkscrew for R(Q) to p by a good Harnack chain.

Consider now an arbitrary point x ∈ G̃K
0 ∩ Q, with Q ∈ IN . By the

definition of G̃K
0 and the choice N = N0, all the cubes P ∈ D containing x

with side length smaller or equal than �(Q) satisfy bβ(P) ≤ ε. Then, by an
easy geometric argument (see the proof of Lemma 13.3 for a related one) it is
easy to check that there is a good Harnack chain joining any good corkscrew
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for Q to x . Hence, for all the points x ∈ ⋃
Q∈IN Q ∩ G̃K

0 there is a good
Harnack chain that joins x to p.

Finally, observe that, for each j , by Lemma 13.3,

∑

P∈NC j

σ(P) =
∑

R∈T j
b

∑

P∈Ex(R,a′
j ,η)

σ (P) ≤ η
∑

R∈T j
b

σ(R) ≤ η σ(R0)

≤ 1

2K
σ(G̃K

0 ).

Therefore,

m∑

j=1

∑

P∈NC j

σ(P) ≤ m

2K
σ(G̃K

0 ) ≤ 1

2
σ(G̃K

0 ),

and thus

∑

Q∈IN
σ(Q) ≥ σ(G̃K

0 ) −
m∑

j=1

∑

P∈NC j

σ(P) ≥ 1

2
σ(G̃K

0 ) ≈ σ(R0).

This finishes the proof of the Main Lemma 10.2. ��

Appendix A: Some counter-examples

We shall discuss some counter-examples which show that our background
hypotheses in Theorem 1.1 (namely, n-ADR and interior corkscrew condi-
tion) are natural, and in some sense in the nature of best possible. In the first
two examples, � is a domain satisfying an interior corkscrew condition, such
that ∂� satisfies exactly one (but not both) of the upper or the lower n-ADR
bounds, and for which harmonic measure ω fails to be weak-A∞ with respect
to surface measure σ on ∂�. In this setting, in which full n-ADR fails, there
is no established notion of uniform rectifiability, but in each case, the domain
will enjoy some substitute property which would imply uniform rectifiability
of the boundary in the presence of full n-ADR.Moreover, these examples may
be constructed in such a way that the failure of the condition (either upper or
lower n-ADR) can be expressed quantitatively, with a bound that may be taken
arbitrarily close to a true n-ADR bound; see (A.3) and (A.6) below.

In the last example, we construct an open set � with n-ADR boundary, and
for which ω ∈ weak-A∞ with respect to surface measure, but for which the
interior corkscrew condition fails, and ∂� is not n-UR.
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Example 1 Failure of the upper n-ADR bound. In [8], the authors construct
an example of a Reifenberg flat domain � ⊂ R

n+1 for which surface measure
σ = Hn� ∂� is locally finite on ∂�, but for which the upper n-ADR bound

σ(	(x, r)) ≤ Crn (A.1)

fails, and for which harmonic measure ω is not absolutely continuous with
respect to σ . Note that the hypothesis of Reifenberg flatness implies in par-
ticular that � and �ext := R

n+1\� are both NTA domains, hence both enjoy
the corkscrew condition, so by the relative isoperimetric inequality, the lower
n-ADR bound

σ(	(x, r)) ≥ crn (A.2)

holds. Thus, it is the failure of (A.1) which causes the failure of absolute
continuity: in the presence of (A.1), the results of [21] apply, and one has that
ω ∈ A∞(σ ), and that ∂� satisfies a “big pieces of Lipschitz graphs” condition
(see [21] for a precise statement), and hence is n-UR. We note that by a result
of Badger [10], a version of the Lipschitz approximation result of [21] still
holds for NTAdomains with locally finite surfacemeasure, even in the absence
of the upper n-ADR condition.

In addition, given any ε > 0, the construction in [8] can be made in such a
way that (A.1) fails “within ε”, i.e., so that

σ(	(x, r) ≤ Crn−ε, ∀ x ∈ ∂�, r < 1. (A.3)

Let us sketch an argument to explain why this is so; we refer the interested
reader to [8] for more details.

The domain � in [8] is obtained by enlarging a Wolff snowflake, that we
will denote here by D. Both � and D are δ-Reifenberg flat, with δ as small
as wished in the construction (recall that Wolff snowflakes can be taken δ-
Reifenberg flat, with δ as small as wished).

It is shown in [8, Theorem 3.1] that for all x ∈ ∂� and r < 1,

Hn(B(x, r) ∩ ∂�) � max(rn, rαμ(B(x,Cr))) ≤ max(rn, μ(B(x,Cr)))
(A.4)

where μ is some measure supported on ∂D satisfying μ(B(x, r)) � rn−α for
all x in some compact set E ⊂ ∂�∩ ∂D, and some α > 0. In the construction
in [8], the authors take μ = ωD , the harmonic measure for D. Further, from
results of Kenig and Toro it follows that harmonic measure in a δ-Reifenberg
flat domain D satisfies

ωD(B(x, r)) � rn−εωD(B(x, 1)), ∀ x ∈ ∂D, r < 1,
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with ε → 0 as δ → 0 (see [40, Theorem 4.1]). As a consequence, the measure
μ satisfies

μ(B(x, r)) � rn−ε, ∀ x ∈ R
n+1, r < 1,

with ε as small as wished depending on δ. From (A.4), it follows that

Hn(B(x, r) ∩ ∂�) � max(rn, rn−ε) ≤ rn−ε, ∀ x ∈ ∂�, r < 1.

Example 2 Failure of the lower n-ADR bound. In [2, Example 5.5], the authors
give an example of a domain satisfying the interior corkscrew condition, whose
boundary is rectifiable (indeed, it is contained in a countable union of hyper-
planes), and satisfies the upper n-ADR condition (A.1), but not the lower
n-ADR condition (A.2), but for which surface measure σ fails to be abso-
lutely continuous with respect to harmonic measure, and in fact, for which the
non-degeneracy condition

A ⊂ 	x := B(x, 10δ�(x))∩ ∂�, σ(A)≥(1−η)σ (	x ) �⇒ ωx (A)≥c,
(A.5)

fails to hold uniformly for x ∈ �, for any fixed positive η and c, and therefore
ω cannot beweak-A∞ with respect to σ .We note that in the presence of the full
n-ADRcondition, if ∂�were contained in a countable union of hyperplanes (as
it is in the example), then in particular it would satisfy the “BAUP” condition
of [23], and thus would be n-UR [23, Theorem I.2.18, p. 36].

Moreover, given any ε > 0, the parameters in the example of [2] can be
chosen in such a way that the lower ADR bound fails “within ε”, i.e., so that

Hn(	(x, r)) � min(rn+ε, rn), ∀x ∈ ∂�. (A.6)

To see this, we proceed as follows. We follow closely the construction in [2,
Example 5.5], with some modification of the parameters. Fix ε > 0, and set

ck := 2−k(n+ε).

For k ≥ 1, and n ≥ 2, set

�k := {(x, t) ∈ R
n+1+ : t = 2−k, x ∈ 	(0, 2−εkck) + ckZ

n},

where for x ∈ R
n , 	(x, r) := {y ∈ R

n : |x − y| < r} is the usual n-disk of
radius r centered at x . Define

� := R
n+1+ \ (∪∞

k=1�k
)
, �k := R

n+1+ \�k,
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each of which is clearly open and connected. Notice that � satisfies the inte-
rior Corkscrew condition (since the sets �k are located at heights which are
sufficently separated). Moreover, it is easy to see that ∂� satisfies the upper
ADR condition and that R

n × {0} ⊂ ∂�.
On the other hand, the lower ADR bound fails. To see this, let X = (x, 0) ∈

∂�, and choose mk,x ∈ Z
n and Xk = (ck mk,x , 2−k) ∈ �k ⊂ ∂� such that

Xk → X . Set Bk = B(Xk, 2−k−2), and observe that Hn(Bk ∩ ∂�)/(2−kn) ≈
2−knε → 0 as k → ∞, or equivalently

Hn(Bk ∩ ∂�) ≈ rn+ε′
k ,

where Bk has radius rk ≈ 2−k , and ε′ = nε. We shall show that this behavior
is in fact typical, and that (A.6) holds, with ε′ in place of ε.

Let ω(·) := ω
(·)
� and ω

(·)
k := ω

(·)
�k

denote harmonic measure for the domains
� and �k respectively.

Claim ω(·)(F) = 0, with F := R
n × {0}. Thus, in particular (A.5) fails.

It remains to verify (A.6), and the claim. As regards the former, note that
for X = (x, 0) ∈ F , we have the trivial standard lower n-ADR bound
Hn(	(X, r)) � rn , whereas for X = (x, 2−k) ∈ �k , we have

Hn�∂�

(
B(X, r)

) ≥ Hn�∂�k

(
B(X, r)

)
�

⎧
⎪⎪⎨

⎪⎪⎩

rn, r < 2−εkck,
2−knεcnk , 2

−εkck ≤ r ≤ ck
2−knεrn, ck < r ≤ 2−k+1

rn, r > 2−k+1.
(A.7)

The first and fourth of these estimates are of course the standard lower n-ADR
bound. For r ≤ ck , the second estimate is bounded below by 2−knεrn , and
in turn, with r � 2−k , the second and third estimates are therefore bounded
below by

2−knεrn � rn+nε = rn+ε′
,

which yields (A.6) with ε′ = nε in place of ε.
Let us now prove the claim. We first recall some definitions. Given an open

set O ⊂ R
n+1, and a compact set K ⊂ O , we define the capacity of K relative

to O as

cap(K , O) = inf

{¨

O
|∇φ|2 dY : φ ∈ C∞

0 (O), φ ≥ 1 in K

}
.
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Also, the inhomogeneous capacity of K is defined as

Cap(K ) = inf

{¨

Rn+1

(|φ|2 + |∇φ|2) dY : φ ∈ C∞
0 (R), φ ≥ 1 in K

}
.

Combining [25, Theorem 2.38], [1, Theorem 2.2.7] and [1, Theorem 4.5.2] we
have that if K is a compact subset of B, where B is a ball with radius smaller
than 1, then

cap(K , 2B) � Cap(K ) � sup
μ

μ(K ) (A.8)

where the implicit constants depend only on n, the sup runs over all Radon
positive measures μ supported on K , for which

W (μ)(X) :=
ˆ 1

0

μ(B(X, t))

tn−1

dt

t
≤ 1, ∀ X ∈ suppμ.

Fix k ≥ 2, and set

β = βk := 2k(n−1)ck = 2k(n−1)2−k(n+ε) = 2−k(1+ε),

by definition of ck . Our next goal is to show that

cap
(
B(X0, s)∩�k, B(X0, 2s)

)
� sn−1, X0 := (x0, 2

−k) ∈ �k, β ≤ s < 1.
(A.9)

For a fixed X0 and s, write K = B(X0, s) ∩ �k , set μ = 2knεs−1 Hn�K , and
note that for X ∈ K , similarly to (A.7), we have

μ
(
B(X, r)

) ≈ 2knεs−1

⎧
⎪⎪⎨

⎪⎪⎩

rn, r < 2−εkck,
2−knεcnk , 2−εkck ≤ r ≤ ck
2−knεrn, ck < r ≤ s
2−knεsn, r > s.

(A.10)

To compute W (μ)(X) for X ∈ K write

W (μ)(X) =
ˆ 1

0

μ(B(X, t))

tn−1

dt

t
=
ˆ 2−εkck

0
+

ˆ ck

2−εkck
+

ˆ s

ck
+

ˆ 1

s

=: I + I I + I I I + I V .

Then, since s ≥ β = 2k(n−1)ck = 2−k(1+ε),

I + I I � 2knεs−1
(
2−εkck + 2−knεcnk

ˆ ∞

2−εkck

dt

tn

)
� 2εk(n−1)cks

−1 � 1.
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Furthermore, the last two estimates in (A.10) easily imply that I I I + I V � 1
and hence W (μ)(X) � 1 for every X ∈ K . This, (A.8), and (A.10) imply as
desired (A.9):

cap
(
B(X0, s) ∩ �k, B(X0, 2s)

)
� μ(K ) � sn−1.

Set

Pk :=
{(

x, 2−k − β
)

∈ R
n+1+ : x ∈ R

n
}

,

and observe that for X ∈ Pk ,

β ≤ δk(X) := dist(X, ∂�k) = dist(X, �k) ≤ 2β.

Recall that F = R
n × {0}, and define

u(X) := ωX
k (F), X ∈ �k .

Observe that u ∈ W 1,2(�k) ∩ C(�k) since ∂�k is ADR (constants depend
on k but we just use this qualitatively) and χF is a Lipschitz function on ∂�k .
Fix Z0 ∈ Pk and let Z ′

0 ∈ �k be such that |Z0 − Z ′
0| = dist(Z0, ∂�k) ≤ 2β.

Let �Z0 = �k ∩ B(Z ′
0,

3
42

−k), which is an open connected bounded set. We
can now apply the usual capacitary estimates (see, e.g., [25, Theorem 6.18])
to find a constant α = α(n) > 0 such that

u(Z0) � exp

(

−α

ˆ 2−k−2

3β

ds

s

)

≈ (
2kβ

)α = 2−αεk .

where we have used (A.9), the definition of β, and the fact that u ≡ 0 on
∂�k ∩ B(Z ′

0, 2
−k−1). Note that the last estimate holds for any Z0 ∈ Pk and

therefore, by the maximum principle,

u(x, t) � 2−αεk, (x, t) ∈ �k, t > 2−k − β.

In particular, ifwe set X0 := (0, . . . , 0, 1) ∈ R
n+1+ , then by another application

of the maximum principle,

ωX0(F) ≤ ω
X0
k (F) = u(X0) � 2−αεk → 0,

as k → ∞, and the claim is established.

Example 3 Failure of the interior corkscrew condition. The example is based
on the construction of Garnett’s 4-corners Cantor set C ⊂ R

2 (see, e.g., [23,
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Chapter 1]). Let I0 be a unit square positioned with lower left corner at the
origin in the plane, and in general for each k = 0, 1, 2, . . . , we let Ik be the
unit square positioned with lower left corner at the point (2k, 0) on the x-axis.
Set �0 := I0. Let �1 be the first stage of the 4-corners construction, i.e., a
union of four squares of side length 1/4, positioned in the corners of the unit
square I1, and similarly, for each k, let �k be the k-th stage of the 4-corners
construction, positioned inside Ik . Note that dist(�k, �k+1) = 1 for every
k. Set � := ∪k�k . It is easy to check that ∂� is n-ADR, and that the non-
degeneracy condition (A.5) holds in � for some uniform positive η and c, and
thus by the criterion of [11], ω ∈weak-A∞(σ ). On the other hand, the interior
corkscrew condition clearly fails to hold in � (it holds only for decreasingly
small scales as k increases), and certainly ∂� cannot be n-UR: indeed, if it
were, then ∂�k would be n-UR, with uniform constants, for each k, and this
would imply that C itself was n-UR, whereas in fact, as is well known, it is
totally non-rectifiable. One can produce a similar set in 3 dimensions by simply
taking the cylinder �′ = � × [0, 1]. Details are left to the interested reader.
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